lguest: make write() operation smp aware
[deliverable/linux.git] / drivers / lguest / hypercalls.c
CommitLineData
f938d2c8
RR
1/*P:500 Just as userspace programs request kernel operations through a system
2 * call, the Guest requests Host operations through a "hypercall". You might
3 * notice this nomenclature doesn't really follow any logic, but the name has
4 * been around for long enough that we're stuck with it. As you'd expect, this
5 * code is basically a one big switch statement. :*/
6
7/* Copyright (C) 2006 Rusty Russell IBM Corporation
d7e28ffe
RR
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22*/
23#include <linux/uaccess.h>
24#include <linux/syscalls.h>
25#include <linux/mm.h>
26#include <asm/page.h>
27#include <asm/pgtable.h>
d7e28ffe
RR
28#include "lg.h"
29
b410e7b1
JS
30/*H:120 This is the core hypercall routine: where the Guest gets what it wants.
31 * Or gets killed. Or, in the case of LHCALL_CRASH, both. */
32static void do_hcall(struct lguest *lg, struct hcall_args *args)
d7e28ffe 33{
b410e7b1 34 switch (args->arg0) {
d7e28ffe 35 case LHCALL_FLUSH_ASYNC:
bff672e6
RR
36 /* This call does nothing, except by breaking out of the Guest
37 * it makes us process all the asynchronous hypercalls. */
d7e28ffe
RR
38 break;
39 case LHCALL_LGUEST_INIT:
bff672e6
RR
40 /* You can't get here unless you're already initialized. Don't
41 * do that. */
d7e28ffe
RR
42 kill_guest(lg, "already have lguest_data");
43 break;
ec04b13f
BR
44 case LHCALL_SHUTDOWN: {
45 /* Shutdown is such a trivial hypercall that we do it in four
bff672e6 46 * lines right here. */
d7e28ffe 47 char msg[128];
bff672e6
RR
48 /* If the lgread fails, it will call kill_guest() itself; the
49 * kill_guest() with the message will be ignored. */
2d37f94a 50 __lgread(lg, msg, args->arg1, sizeof(msg));
d7e28ffe
RR
51 msg[sizeof(msg)-1] = '\0';
52 kill_guest(lg, "CRASH: %s", msg);
ec04b13f
BR
53 if (args->arg2 == LGUEST_SHUTDOWN_RESTART)
54 lg->dead = ERR_PTR(-ERESTART);
d7e28ffe
RR
55 break;
56 }
57 case LHCALL_FLUSH_TLB:
bff672e6
RR
58 /* FLUSH_TLB comes in two flavors, depending on the
59 * argument: */
b410e7b1 60 if (args->arg1)
d7e28ffe
RR
61 guest_pagetable_clear_all(lg);
62 else
63 guest_pagetable_flush_user(lg);
64 break;
bff672e6
RR
65
66 /* All these calls simply pass the arguments through to the right
67 * routines. */
d7e28ffe 68 case LHCALL_NEW_PGTABLE:
b410e7b1 69 guest_new_pagetable(lg, args->arg1);
d7e28ffe
RR
70 break;
71 case LHCALL_SET_STACK:
b410e7b1 72 guest_set_stack(lg, args->arg1, args->arg2, args->arg3);
d7e28ffe
RR
73 break;
74 case LHCALL_SET_PTE:
df29f43e 75 guest_set_pte(lg, args->arg1, args->arg2, __pte(args->arg3));
d7e28ffe
RR
76 break;
77 case LHCALL_SET_PMD:
b410e7b1 78 guest_set_pmd(lg, args->arg1, args->arg2);
d7e28ffe
RR
79 break;
80 case LHCALL_SET_CLOCKEVENT:
b410e7b1 81 guest_set_clockevent(lg, args->arg1);
d7e28ffe
RR
82 break;
83 case LHCALL_TS:
bff672e6 84 /* This sets the TS flag, as we saw used in run_guest(). */
b410e7b1 85 lg->ts = args->arg1;
d7e28ffe
RR
86 break;
87 case LHCALL_HALT:
bff672e6 88 /* Similarly, this sets the halted flag for run_guest(). */
d7e28ffe
RR
89 lg->halted = 1;
90 break;
15045275
RR
91 case LHCALL_NOTIFY:
92 lg->pending_notify = args->arg1;
93 break;
d7e28ffe 94 default:
e1e72965 95 /* It should be an architecture-specific hypercall. */
b410e7b1
JS
96 if (lguest_arch_do_hcall(lg, args))
97 kill_guest(lg, "Bad hypercall %li\n", args->arg0);
d7e28ffe
RR
98 }
99}
b410e7b1 100/*:*/
d7e28ffe 101
b410e7b1
JS
102/*H:124 Asynchronous hypercalls are easy: we just look in the array in the
103 * Guest's "struct lguest_data" to see if any new ones are marked "ready".
bff672e6
RR
104 *
105 * We are careful to do these in order: obviously we respect the order the
106 * Guest put them in the ring, but we also promise the Guest that they will
107 * happen before any normal hypercall (which is why we check this before
108 * checking for a normal hcall). */
d7e28ffe
RR
109static void do_async_hcalls(struct lguest *lg)
110{
111 unsigned int i;
112 u8 st[LHCALL_RING_SIZE];
113
bff672e6 114 /* For simplicity, we copy the entire call status array in at once. */
d7e28ffe
RR
115 if (copy_from_user(&st, &lg->lguest_data->hcall_status, sizeof(st)))
116 return;
117
bff672e6 118 /* We process "struct lguest_data"s hcalls[] ring once. */
d7e28ffe 119 for (i = 0; i < ARRAY_SIZE(st); i++) {
b410e7b1 120 struct hcall_args args;
bff672e6
RR
121 /* We remember where we were up to from last time. This makes
122 * sure that the hypercalls are done in the order the Guest
123 * places them in the ring. */
d7e28ffe
RR
124 unsigned int n = lg->next_hcall;
125
bff672e6 126 /* 0xFF means there's no call here (yet). */
d7e28ffe
RR
127 if (st[n] == 0xFF)
128 break;
129
bff672e6
RR
130 /* OK, we have hypercall. Increment the "next_hcall" cursor,
131 * and wrap back to 0 if we reach the end. */
d7e28ffe
RR
132 if (++lg->next_hcall == LHCALL_RING_SIZE)
133 lg->next_hcall = 0;
134
b410e7b1
JS
135 /* Copy the hypercall arguments into a local copy of
136 * the hcall_args struct. */
137 if (copy_from_user(&args, &lg->lguest_data->hcalls[n],
138 sizeof(struct hcall_args))) {
d7e28ffe
RR
139 kill_guest(lg, "Fetching async hypercalls");
140 break;
141 }
142
bff672e6 143 /* Do the hypercall, same as a normal one. */
b410e7b1 144 do_hcall(lg, &args);
bff672e6
RR
145
146 /* Mark the hypercall done. */
d7e28ffe
RR
147 if (put_user(0xFF, &lg->lguest_data->hcall_status[n])) {
148 kill_guest(lg, "Writing result for async hypercall");
149 break;
150 }
151
15045275
RR
152 /* Stop doing hypercalls if they want to notify the Launcher:
153 * it needs to service this first. */
154 if (lg->pending_notify)
d7e28ffe
RR
155 break;
156 }
157}
158
bff672e6
RR
159/* Last of all, we look at what happens first of all. The very first time the
160 * Guest makes a hypercall, we end up here to set things up: */
d7e28ffe
RR
161static void initialize(struct lguest *lg)
162{
bff672e6
RR
163 /* You can't do anything until you're initialized. The Guest knows the
164 * rules, so we're unforgiving here. */
b410e7b1
JS
165 if (lg->hcall->arg0 != LHCALL_LGUEST_INIT) {
166 kill_guest(lg, "hypercall %li before INIT", lg->hcall->arg0);
d7e28ffe
RR
167 return;
168 }
169
b410e7b1 170 if (lguest_arch_init_hypercalls(lg))
d7e28ffe 171 kill_guest(lg, "bad guest page %p", lg->lguest_data);
3c6b5bfa 172
bff672e6
RR
173 /* The Guest tells us where we're not to deliver interrupts by putting
174 * the range of addresses into "struct lguest_data". */
d7e28ffe 175 if (get_user(lg->noirq_start, &lg->lguest_data->noirq_start)
47436aa4 176 || get_user(lg->noirq_end, &lg->lguest_data->noirq_end))
d7e28ffe
RR
177 kill_guest(lg, "bad guest page %p", lg->lguest_data);
178
e1e72965
RR
179 /* We write the current time into the Guest's data page once so it can
180 * set its clock. */
6c8dca5d
RR
181 write_timestamp(lg);
182
47436aa4
RR
183 /* page_tables.c will also do some setup. */
184 page_table_guest_data_init(lg);
185
bff672e6
RR
186 /* This is the one case where the above accesses might have been the
187 * first write to a Guest page. This may have caused a copy-on-write
e1e72965
RR
188 * fault, but the old page might be (read-only) in the Guest
189 * pagetable. */
d7e28ffe
RR
190 guest_pagetable_clear_all(lg);
191}
192
bff672e6
RR
193/*H:100
194 * Hypercalls
195 *
196 * Remember from the Guest, hypercalls come in two flavors: normal and
197 * asynchronous. This file handles both of types.
198 */
d7e28ffe
RR
199void do_hypercalls(struct lguest *lg)
200{
cc6d4fbc 201 /* Not initialized yet? This hypercall must do it. */
d7e28ffe 202 if (unlikely(!lg->lguest_data)) {
cc6d4fbc
RR
203 /* Set up the "struct lguest_data" */
204 initialize(lg);
205 /* Hcall is done. */
206 lg->hcall = NULL;
d7e28ffe
RR
207 return;
208 }
209
bff672e6
RR
210 /* The Guest has initialized.
211 *
212 * Look in the hypercall ring for the async hypercalls: */
d7e28ffe 213 do_async_hcalls(lg);
bff672e6
RR
214
215 /* If we stopped reading the hypercall ring because the Guest did a
15045275 216 * NOTIFY to the Launcher, we want to return now. Otherwise we do
cc6d4fbc 217 * the hypercall. */
15045275 218 if (!lg->pending_notify) {
cc6d4fbc
RR
219 do_hcall(lg, lg->hcall);
220 /* Tricky point: we reset the hcall pointer to mark the
221 * hypercall as "done". We use the hcall pointer rather than
222 * the trap number to indicate a hypercall is pending.
223 * Normally it doesn't matter: the Guest will run again and
224 * update the trap number before we come back here.
225 *
e1e72965 226 * However, if we are signalled or the Guest sends I/O to the
cc6d4fbc
RR
227 * Launcher, the run_guest() loop will exit without running the
228 * Guest. When it comes back it would try to re-run the
229 * hypercall. */
230 lg->hcall = NULL;
d7e28ffe
RR
231 }
232}
6c8dca5d
RR
233
234/* This routine supplies the Guest with time: it's used for wallclock time at
235 * initial boot and as a rough time source if the TSC isn't available. */
236void write_timestamp(struct lguest *lg)
237{
238 struct timespec now;
239 ktime_get_real_ts(&now);
891ff65f 240 if (copy_to_user(&lg->lguest_data->time, &now, sizeof(struct timespec)))
6c8dca5d
RR
241 kill_guest(lg, "Writing timestamp");
242}
This page took 0.088958 seconds and 5 git commands to generate.