x86: apic copy apic_64.c to apic_32.c
[deliverable/linux.git] / drivers / lguest / page_tables.c
CommitLineData
f938d2c8
RR
1/*P:700 The pagetable code, on the other hand, still shows the scars of
2 * previous encounters. It's functional, and as neat as it can be in the
3 * circumstances, but be wary, for these things are subtle and break easily.
4 * The Guest provides a virtual to physical mapping, but we can neither trust
a6bd8e13
RR
5 * it nor use it: we verify and convert it here then point the CPU to the
6 * converted Guest pages when running the Guest. :*/
f938d2c8
RR
7
8/* Copyright (C) Rusty Russell IBM Corporation 2006.
d7e28ffe
RR
9 * GPL v2 and any later version */
10#include <linux/mm.h>
11#include <linux/types.h>
12#include <linux/spinlock.h>
13#include <linux/random.h>
14#include <linux/percpu.h>
15#include <asm/tlbflush.h>
47436aa4 16#include <asm/uaccess.h>
d7e28ffe
RR
17#include "lg.h"
18
f56a384e
RR
19/*M:008 We hold reference to pages, which prevents them from being swapped.
20 * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
21 * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
22 * could probably consider launching Guests as non-root. :*/
23
bff672e6
RR
24/*H:300
25 * The Page Table Code
26 *
27 * We use two-level page tables for the Guest. If you're not entirely
28 * comfortable with virtual addresses, physical addresses and page tables then
e1e72965
RR
29 * I recommend you review arch/x86/lguest/boot.c's "Page Table Handling" (with
30 * diagrams!).
bff672e6
RR
31 *
32 * The Guest keeps page tables, but we maintain the actual ones here: these are
33 * called "shadow" page tables. Which is a very Guest-centric name: these are
34 * the real page tables the CPU uses, although we keep them up to date to
35 * reflect the Guest's. (See what I mean about weird naming? Since when do
36 * shadows reflect anything?)
37 *
38 * Anyway, this is the most complicated part of the Host code. There are seven
39 * parts to this:
e1e72965
RR
40 * (i) Looking up a page table entry when the Guest faults,
41 * (ii) Making sure the Guest stack is mapped,
42 * (iii) Setting up a page table entry when the Guest tells us one has changed,
bff672e6 43 * (iv) Switching page tables,
e1e72965 44 * (v) Flushing (throwing away) page tables,
bff672e6
RR
45 * (vi) Mapping the Switcher when the Guest is about to run,
46 * (vii) Setting up the page tables initially.
47 :*/
48
bff672e6
RR
49
50/* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is
51 * conveniently placed at the top 4MB, so it uses a separate, complete PTE
52 * page. */
df29f43e 53#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
d7e28ffe 54
bff672e6
RR
55/* We actually need a separate PTE page for each CPU. Remember that after the
56 * Switcher code itself comes two pages for each CPU, and we don't want this
57 * CPU's guest to see the pages of any other CPU. */
df29f43e 58static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
d7e28ffe
RR
59#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
60
e1e72965
RR
61/*H:320 The page table code is curly enough to need helper functions to keep it
62 * clear and clean.
bff672e6 63 *
df29f43e 64 * There are two functions which return pointers to the shadow (aka "real")
bff672e6
RR
65 * page tables.
66 *
67 * spgd_addr() takes the virtual address and returns a pointer to the top-level
e1e72965
RR
68 * page directory entry (PGD) for that address. Since we keep track of several
69 * page tables, the "i" argument tells us which one we're interested in (it's
bff672e6 70 * usually the current one). */
382ac6b3 71static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
d7e28ffe 72{
df29f43e 73 unsigned int index = pgd_index(vaddr);
d7e28ffe 74
bff672e6 75 /* We kill any Guest trying to touch the Switcher addresses. */
d7e28ffe 76 if (index >= SWITCHER_PGD_INDEX) {
382ac6b3 77 kill_guest(cpu, "attempt to access switcher pages");
d7e28ffe
RR
78 index = 0;
79 }
bff672e6 80 /* Return a pointer index'th pgd entry for the i'th page table. */
382ac6b3 81 return &cpu->lg->pgdirs[i].pgdir[index];
d7e28ffe
RR
82}
83
e1e72965
RR
84/* This routine then takes the page directory entry returned above, which
85 * contains the address of the page table entry (PTE) page. It then returns a
86 * pointer to the PTE entry for the given address. */
2092aa27 87static pte_t *spte_addr(pgd_t spgd, unsigned long vaddr)
d7e28ffe 88{
df29f43e 89 pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
bff672e6 90 /* You should never call this if the PGD entry wasn't valid */
df29f43e
MZ
91 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
92 return &page[(vaddr >> PAGE_SHIFT) % PTRS_PER_PTE];
d7e28ffe
RR
93}
94
bff672e6
RR
95/* These two functions just like the above two, except they access the Guest
96 * page tables. Hence they return a Guest address. */
1713608f 97static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
d7e28ffe 98{
df29f43e 99 unsigned int index = vaddr >> (PGDIR_SHIFT);
1713608f 100 return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
d7e28ffe
RR
101}
102
934faab4 103static unsigned long gpte_addr(pgd_t gpgd, unsigned long vaddr)
d7e28ffe 104{
df29f43e
MZ
105 unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
106 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
107 return gpage + ((vaddr>>PAGE_SHIFT) % PTRS_PER_PTE) * sizeof(pte_t);
d7e28ffe 108}
a6bd8e13
RR
109/*:*/
110
71a3f4ed
RR
111/*M:014 get_pfn is slow: we could probably try to grab batches of pages here as
112 * an optimization (ie. pre-faulting). :*/
d7e28ffe 113
bff672e6
RR
114/*H:350 This routine takes a page number given by the Guest and converts it to
115 * an actual, physical page number. It can fail for several reasons: the
116 * virtual address might not be mapped by the Launcher, the write flag is set
117 * and the page is read-only, or the write flag was set and the page was
118 * shared so had to be copied, but we ran out of memory.
119 *
a6bd8e13
RR
120 * This holds a reference to the page, so release_pte() is careful to put that
121 * back. */
d7e28ffe
RR
122static unsigned long get_pfn(unsigned long virtpfn, int write)
123{
124 struct page *page;
71a3f4ed
RR
125
126 /* gup me one page at this address please! */
127 if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
128 return page_to_pfn(page);
129
bff672e6 130 /* This value indicates failure. */
71a3f4ed 131 return -1UL;
d7e28ffe
RR
132}
133
bff672e6
RR
134/*H:340 Converting a Guest page table entry to a shadow (ie. real) page table
135 * entry can be a little tricky. The flags are (almost) the same, but the
136 * Guest PTE contains a virtual page number: the CPU needs the real page
137 * number. */
382ac6b3 138static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
d7e28ffe 139{
df29f43e 140 unsigned long pfn, base, flags;
d7e28ffe 141
bff672e6
RR
142 /* The Guest sets the global flag, because it thinks that it is using
143 * PGE. We only told it to use PGE so it would tell us whether it was
144 * flushing a kernel mapping or a userspace mapping. We don't actually
145 * use the global bit, so throw it away. */
df29f43e 146 flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
bff672e6 147
3c6b5bfa 148 /* The Guest's pages are offset inside the Launcher. */
382ac6b3 149 base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
3c6b5bfa 150
bff672e6
RR
151 /* We need a temporary "unsigned long" variable to hold the answer from
152 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
153 * fit in spte.pfn. get_pfn() finds the real physical number of the
154 * page, given the virtual number. */
df29f43e 155 pfn = get_pfn(base + pte_pfn(gpte), write);
d7e28ffe 156 if (pfn == -1UL) {
382ac6b3 157 kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
bff672e6
RR
158 /* When we destroy the Guest, we'll go through the shadow page
159 * tables and release_pte() them. Make sure we don't think
160 * this one is valid! */
df29f43e 161 flags = 0;
d7e28ffe 162 }
df29f43e
MZ
163 /* Now we assemble our shadow PTE from the page number and flags. */
164 return pfn_pte(pfn, __pgprot(flags));
d7e28ffe
RR
165}
166
bff672e6 167/*H:460 And to complete the chain, release_pte() looks like this: */
df29f43e 168static void release_pte(pte_t pte)
d7e28ffe 169{
71a3f4ed 170 /* Remember that get_user_pages_fast() took a reference to the page, in
bff672e6 171 * get_pfn()? We have to put it back now. */
df29f43e
MZ
172 if (pte_flags(pte) & _PAGE_PRESENT)
173 put_page(pfn_to_page(pte_pfn(pte)));
d7e28ffe 174}
bff672e6 175/*:*/
d7e28ffe 176
382ac6b3 177static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
d7e28ffe 178{
31f4b46e
AD
179 if ((pte_flags(gpte) & _PAGE_PSE) ||
180 pte_pfn(gpte) >= cpu->lg->pfn_limit)
382ac6b3 181 kill_guest(cpu, "bad page table entry");
d7e28ffe
RR
182}
183
382ac6b3 184static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
d7e28ffe 185{
382ac6b3
GOC
186 if ((pgd_flags(gpgd) & ~_PAGE_TABLE) ||
187 (pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
188 kill_guest(cpu, "bad page directory entry");
d7e28ffe
RR
189}
190
bff672e6 191/*H:330
e1e72965 192 * (i) Looking up a page table entry when the Guest faults.
bff672e6
RR
193 *
194 * We saw this call in run_guest(): when we see a page fault in the Guest, we
195 * come here. That's because we only set up the shadow page tables lazily as
196 * they're needed, so we get page faults all the time and quietly fix them up
197 * and return to the Guest without it knowing.
198 *
199 * If we fixed up the fault (ie. we mapped the address), this routine returns
e1e72965 200 * true. Otherwise, it was a real fault and we need to tell the Guest. */
1713608f 201int demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
d7e28ffe 202{
df29f43e
MZ
203 pgd_t gpgd;
204 pgd_t *spgd;
d7e28ffe 205 unsigned long gpte_ptr;
df29f43e
MZ
206 pte_t gpte;
207 pte_t *spte;
d7e28ffe 208
bff672e6 209 /* First step: get the top-level Guest page table entry. */
382ac6b3 210 gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
bff672e6 211 /* Toplevel not present? We can't map it in. */
df29f43e 212 if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
d7e28ffe
RR
213 return 0;
214
bff672e6 215 /* Now look at the matching shadow entry. */
382ac6b3 216 spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
df29f43e 217 if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
bff672e6 218 /* No shadow entry: allocate a new shadow PTE page. */
d7e28ffe 219 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
bff672e6
RR
220 /* This is not really the Guest's fault, but killing it is
221 * simple for this corner case. */
d7e28ffe 222 if (!ptepage) {
382ac6b3 223 kill_guest(cpu, "out of memory allocating pte page");
d7e28ffe
RR
224 return 0;
225 }
bff672e6 226 /* We check that the Guest pgd is OK. */
382ac6b3 227 check_gpgd(cpu, gpgd);
bff672e6
RR
228 /* And we copy the flags to the shadow PGD entry. The page
229 * number in the shadow PGD is the page we just allocated. */
df29f43e 230 *spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd));
d7e28ffe
RR
231 }
232
bff672e6
RR
233 /* OK, now we look at the lower level in the Guest page table: keep its
234 * address, because we might update it later. */
934faab4 235 gpte_ptr = gpte_addr(gpgd, vaddr);
382ac6b3 236 gpte = lgread(cpu, gpte_ptr, pte_t);
d7e28ffe 237
bff672e6 238 /* If this page isn't in the Guest page tables, we can't page it in. */
df29f43e 239 if (!(pte_flags(gpte) & _PAGE_PRESENT))
d7e28ffe
RR
240 return 0;
241
bff672e6
RR
242 /* Check they're not trying to write to a page the Guest wants
243 * read-only (bit 2 of errcode == write). */
df29f43e 244 if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
d7e28ffe
RR
245 return 0;
246
e1e72965 247 /* User access to a kernel-only page? (bit 3 == user access) */
df29f43e 248 if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
d7e28ffe
RR
249 return 0;
250
bff672e6
RR
251 /* Check that the Guest PTE flags are OK, and the page number is below
252 * the pfn_limit (ie. not mapping the Launcher binary). */
382ac6b3 253 check_gpte(cpu, gpte);
e1e72965 254
bff672e6 255 /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
df29f43e 256 gpte = pte_mkyoung(gpte);
d7e28ffe 257 if (errcode & 2)
df29f43e 258 gpte = pte_mkdirty(gpte);
d7e28ffe 259
bff672e6 260 /* Get the pointer to the shadow PTE entry we're going to set. */
2092aa27 261 spte = spte_addr(*spgd, vaddr);
bff672e6
RR
262 /* If there was a valid shadow PTE entry here before, we release it.
263 * This can happen with a write to a previously read-only entry. */
d7e28ffe
RR
264 release_pte(*spte);
265
bff672e6
RR
266 /* If this is a write, we insist that the Guest page is writable (the
267 * final arg to gpte_to_spte()). */
df29f43e 268 if (pte_dirty(gpte))
382ac6b3 269 *spte = gpte_to_spte(cpu, gpte, 1);
df29f43e 270 else
bff672e6
RR
271 /* If this is a read, don't set the "writable" bit in the page
272 * table entry, even if the Guest says it's writable. That way
e1e72965
RR
273 * we will come back here when a write does actually occur, so
274 * we can update the Guest's _PAGE_DIRTY flag. */
382ac6b3 275 *spte = gpte_to_spte(cpu, pte_wrprotect(gpte), 0);
d7e28ffe 276
bff672e6
RR
277 /* Finally, we write the Guest PTE entry back: we've set the
278 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
382ac6b3 279 lgwrite(cpu, gpte_ptr, pte_t, gpte);
bff672e6 280
e1e72965
RR
281 /* The fault is fixed, the page table is populated, the mapping
282 * manipulated, the result returned and the code complete. A small
283 * delay and a trace of alliteration are the only indications the Guest
284 * has that a page fault occurred at all. */
d7e28ffe
RR
285 return 1;
286}
287
e1e72965
RR
288/*H:360
289 * (ii) Making sure the Guest stack is mapped.
bff672e6 290 *
e1e72965
RR
291 * Remember that direct traps into the Guest need a mapped Guest kernel stack.
292 * pin_stack_pages() calls us here: we could simply call demand_page(), but as
293 * we've seen that logic is quite long, and usually the stack pages are already
294 * mapped, so it's overkill.
bff672e6
RR
295 *
296 * This is a quick version which answers the question: is this virtual address
297 * mapped by the shadow page tables, and is it writable? */
1713608f 298static int page_writable(struct lg_cpu *cpu, unsigned long vaddr)
d7e28ffe 299{
df29f43e 300 pgd_t *spgd;
d7e28ffe
RR
301 unsigned long flags;
302
e1e72965 303 /* Look at the current top level entry: is it present? */
382ac6b3 304 spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
df29f43e 305 if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
d7e28ffe
RR
306 return 0;
307
bff672e6
RR
308 /* Check the flags on the pte entry itself: it must be present and
309 * writable. */
2092aa27 310 flags = pte_flags(*(spte_addr(*spgd, vaddr)));
df29f43e 311
d7e28ffe
RR
312 return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
313}
314
bff672e6
RR
315/* So, when pin_stack_pages() asks us to pin a page, we check if it's already
316 * in the page tables, and if not, we call demand_page() with error code 2
317 * (meaning "write"). */
1713608f 318void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
d7e28ffe 319{
1713608f 320 if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
382ac6b3 321 kill_guest(cpu, "bad stack page %#lx", vaddr);
d7e28ffe
RR
322}
323
bff672e6 324/*H:450 If we chase down the release_pgd() code, it looks like this: */
df29f43e 325static void release_pgd(struct lguest *lg, pgd_t *spgd)
d7e28ffe 326{
bff672e6 327 /* If the entry's not present, there's nothing to release. */
df29f43e 328 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
d7e28ffe 329 unsigned int i;
bff672e6
RR
330 /* Converting the pfn to find the actual PTE page is easy: turn
331 * the page number into a physical address, then convert to a
332 * virtual address (easy for kernel pages like this one). */
df29f43e 333 pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
bff672e6 334 /* For each entry in the page, we might need to release it. */
df29f43e 335 for (i = 0; i < PTRS_PER_PTE; i++)
d7e28ffe 336 release_pte(ptepage[i]);
bff672e6 337 /* Now we can free the page of PTEs */
d7e28ffe 338 free_page((long)ptepage);
e1e72965 339 /* And zero out the PGD entry so we never release it twice. */
df29f43e 340 *spgd = __pgd(0);
d7e28ffe
RR
341 }
342}
343
e1e72965
RR
344/*H:445 We saw flush_user_mappings() twice: once from the flush_user_mappings()
345 * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
346 * It simply releases every PTE page from 0 up to the Guest's kernel address. */
d7e28ffe
RR
347static void flush_user_mappings(struct lguest *lg, int idx)
348{
349 unsigned int i;
bff672e6 350 /* Release every pgd entry up to the kernel's address. */
47436aa4 351 for (i = 0; i < pgd_index(lg->kernel_address); i++)
d7e28ffe
RR
352 release_pgd(lg, lg->pgdirs[idx].pgdir + i);
353}
354
e1e72965
RR
355/*H:440 (v) Flushing (throwing away) page tables,
356 *
357 * The Guest has a hypercall to throw away the page tables: it's used when a
358 * large number of mappings have been changed. */
1713608f 359void guest_pagetable_flush_user(struct lg_cpu *cpu)
d7e28ffe 360{
bff672e6 361 /* Drop the userspace part of the current page table. */
1713608f 362 flush_user_mappings(cpu->lg, cpu->cpu_pgd);
d7e28ffe 363}
bff672e6 364/*:*/
d7e28ffe 365
47436aa4 366/* We walk down the guest page tables to get a guest-physical address */
1713608f 367unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
47436aa4
RR
368{
369 pgd_t gpgd;
370 pte_t gpte;
371
372 /* First step: get the top-level Guest page table entry. */
382ac6b3 373 gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
47436aa4
RR
374 /* Toplevel not present? We can't map it in. */
375 if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
382ac6b3 376 kill_guest(cpu, "Bad address %#lx", vaddr);
47436aa4 377
382ac6b3 378 gpte = lgread(cpu, gpte_addr(gpgd, vaddr), pte_t);
47436aa4 379 if (!(pte_flags(gpte) & _PAGE_PRESENT))
382ac6b3 380 kill_guest(cpu, "Bad address %#lx", vaddr);
47436aa4
RR
381
382 return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
383}
384
bff672e6
RR
385/* We keep several page tables. This is a simple routine to find the page
386 * table (if any) corresponding to this top-level address the Guest has given
387 * us. */
d7e28ffe
RR
388static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
389{
390 unsigned int i;
391 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
4357bd94 392 if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
d7e28ffe
RR
393 break;
394 return i;
395}
396
bff672e6
RR
397/*H:435 And this is us, creating the new page directory. If we really do
398 * allocate a new one (and so the kernel parts are not there), we set
399 * blank_pgdir. */
1713608f 400static unsigned int new_pgdir(struct lg_cpu *cpu,
ee3db0f2 401 unsigned long gpgdir,
d7e28ffe
RR
402 int *blank_pgdir)
403{
404 unsigned int next;
405
bff672e6
RR
406 /* We pick one entry at random to throw out. Choosing the Least
407 * Recently Used might be better, but this is easy. */
382ac6b3 408 next = random32() % ARRAY_SIZE(cpu->lg->pgdirs);
bff672e6 409 /* If it's never been allocated at all before, try now. */
382ac6b3
GOC
410 if (!cpu->lg->pgdirs[next].pgdir) {
411 cpu->lg->pgdirs[next].pgdir =
412 (pgd_t *)get_zeroed_page(GFP_KERNEL);
bff672e6 413 /* If the allocation fails, just keep using the one we have */
382ac6b3 414 if (!cpu->lg->pgdirs[next].pgdir)
1713608f 415 next = cpu->cpu_pgd;
d7e28ffe 416 else
bff672e6
RR
417 /* This is a blank page, so there are no kernel
418 * mappings: caller must map the stack! */
d7e28ffe
RR
419 *blank_pgdir = 1;
420 }
bff672e6 421 /* Record which Guest toplevel this shadows. */
382ac6b3 422 cpu->lg->pgdirs[next].gpgdir = gpgdir;
d7e28ffe 423 /* Release all the non-kernel mappings. */
382ac6b3 424 flush_user_mappings(cpu->lg, next);
d7e28ffe
RR
425
426 return next;
427}
428
bff672e6
RR
429/*H:430 (iv) Switching page tables
430 *
e1e72965
RR
431 * Now we've seen all the page table setting and manipulation, let's see what
432 * what happens when the Guest changes page tables (ie. changes the top-level
433 * pgdir). This occurs on almost every context switch. */
4665ac8e 434void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
d7e28ffe
RR
435{
436 int newpgdir, repin = 0;
437
bff672e6 438 /* Look to see if we have this one already. */
382ac6b3 439 newpgdir = find_pgdir(cpu->lg, pgtable);
bff672e6
RR
440 /* If not, we allocate or mug an existing one: if it's a fresh one,
441 * repin gets set to 1. */
382ac6b3 442 if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
1713608f 443 newpgdir = new_pgdir(cpu, pgtable, &repin);
bff672e6 444 /* Change the current pgd index to the new one. */
1713608f 445 cpu->cpu_pgd = newpgdir;
bff672e6 446 /* If it was completely blank, we map in the Guest kernel stack */
d7e28ffe 447 if (repin)
4665ac8e 448 pin_stack_pages(cpu);
d7e28ffe
RR
449}
450
bff672e6 451/*H:470 Finally, a routine which throws away everything: all PGD entries in all
e1e72965
RR
452 * the shadow page tables, including the Guest's kernel mappings. This is used
453 * when we destroy the Guest. */
d7e28ffe
RR
454static void release_all_pagetables(struct lguest *lg)
455{
456 unsigned int i, j;
457
bff672e6 458 /* Every shadow pagetable this Guest has */
d7e28ffe
RR
459 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
460 if (lg->pgdirs[i].pgdir)
bff672e6 461 /* Every PGD entry except the Switcher at the top */
d7e28ffe
RR
462 for (j = 0; j < SWITCHER_PGD_INDEX; j++)
463 release_pgd(lg, lg->pgdirs[i].pgdir + j);
464}
465
bff672e6
RR
466/* We also throw away everything when a Guest tells us it's changed a kernel
467 * mapping. Since kernel mappings are in every page table, it's easiest to
e1e72965
RR
468 * throw them all away. This traps the Guest in amber for a while as
469 * everything faults back in, but it's rare. */
4665ac8e 470void guest_pagetable_clear_all(struct lg_cpu *cpu)
d7e28ffe 471{
4665ac8e 472 release_all_pagetables(cpu->lg);
bff672e6 473 /* We need the Guest kernel stack mapped again. */
4665ac8e 474 pin_stack_pages(cpu);
d7e28ffe 475}
e1e72965
RR
476/*:*/
477/*M:009 Since we throw away all mappings when a kernel mapping changes, our
478 * performance sucks for guests using highmem. In fact, a guest with
479 * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
480 * usually slower than a Guest with less memory.
481 *
482 * This, of course, cannot be fixed. It would take some kind of... well, I
483 * don't know, but the term "puissant code-fu" comes to mind. :*/
d7e28ffe 484
bff672e6
RR
485/*H:420 This is the routine which actually sets the page table entry for then
486 * "idx"'th shadow page table.
487 *
488 * Normally, we can just throw out the old entry and replace it with 0: if they
489 * use it demand_page() will put the new entry in. We need to do this anyway:
490 * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
491 * is read from, and _PAGE_DIRTY when it's written to.
492 *
493 * But Avi Kivity pointed out that most Operating Systems (Linux included) set
494 * these bits on PTEs immediately anyway. This is done to save the CPU from
495 * having to update them, but it helps us the same way: if they set
496 * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
497 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
498 */
382ac6b3 499static void do_set_pte(struct lg_cpu *cpu, int idx,
df29f43e 500 unsigned long vaddr, pte_t gpte)
d7e28ffe 501{
e1e72965 502 /* Look up the matching shadow page directory entry. */
382ac6b3 503 pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
bff672e6
RR
504
505 /* If the top level isn't present, there's no entry to update. */
df29f43e 506 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
bff672e6 507 /* Otherwise, we start by releasing the existing entry. */
2092aa27 508 pte_t *spte = spte_addr(*spgd, vaddr);
d7e28ffe 509 release_pte(*spte);
bff672e6
RR
510
511 /* If they're setting this entry as dirty or accessed, we might
512 * as well put that entry they've given us in now. This shaves
513 * 10% off a copy-on-write micro-benchmark. */
df29f43e 514 if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
382ac6b3
GOC
515 check_gpte(cpu, gpte);
516 *spte = gpte_to_spte(cpu, gpte,
df29f43e 517 pte_flags(gpte) & _PAGE_DIRTY);
d7e28ffe 518 } else
e1e72965
RR
519 /* Otherwise kill it and we can demand_page() it in
520 * later. */
df29f43e 521 *spte = __pte(0);
d7e28ffe
RR
522 }
523}
524
bff672e6
RR
525/*H:410 Updating a PTE entry is a little trickier.
526 *
527 * We keep track of several different page tables (the Guest uses one for each
528 * process, so it makes sense to cache at least a few). Each of these have
529 * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
530 * all processes. So when the page table above that address changes, we update
531 * all the page tables, not just the current one. This is rare.
532 *
a6bd8e13
RR
533 * The benefit is that when we have to track a new page table, we can keep all
534 * the kernel mappings. This speeds up context switch immensely. */
382ac6b3 535void guest_set_pte(struct lg_cpu *cpu,
ee3db0f2 536 unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
d7e28ffe 537{
a6bd8e13
RR
538 /* Kernel mappings must be changed on all top levels. Slow, but doesn't
539 * happen often. */
382ac6b3 540 if (vaddr >= cpu->lg->kernel_address) {
d7e28ffe 541 unsigned int i;
382ac6b3
GOC
542 for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
543 if (cpu->lg->pgdirs[i].pgdir)
544 do_set_pte(cpu, i, vaddr, gpte);
d7e28ffe 545 } else {
bff672e6 546 /* Is this page table one we have a shadow for? */
382ac6b3
GOC
547 int pgdir = find_pgdir(cpu->lg, gpgdir);
548 if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
bff672e6 549 /* If so, do the update. */
382ac6b3 550 do_set_pte(cpu, pgdir, vaddr, gpte);
d7e28ffe
RR
551 }
552}
553
bff672e6 554/*H:400
e1e72965 555 * (iii) Setting up a page table entry when the Guest tells us one has changed.
bff672e6
RR
556 *
557 * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
558 * with the other side of page tables while we're here: what happens when the
559 * Guest asks for a page table to be updated?
560 *
561 * We already saw that demand_page() will fill in the shadow page tables when
562 * needed, so we can simply remove shadow page table entries whenever the Guest
563 * tells us they've changed. When the Guest tries to use the new entry it will
564 * fault and demand_page() will fix it up.
565 *
566 * So with that in mind here's our code to to update a (top-level) PGD entry:
567 */
ee3db0f2 568void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 idx)
d7e28ffe
RR
569{
570 int pgdir;
571
bff672e6
RR
572 /* The kernel seems to try to initialize this early on: we ignore its
573 * attempts to map over the Switcher. */
d7e28ffe
RR
574 if (idx >= SWITCHER_PGD_INDEX)
575 return;
576
bff672e6 577 /* If they're talking about a page table we have a shadow for... */
ee3db0f2 578 pgdir = find_pgdir(lg, gpgdir);
d7e28ffe 579 if (pgdir < ARRAY_SIZE(lg->pgdirs))
bff672e6 580 /* ... throw it away. */
d7e28ffe
RR
581 release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx);
582}
583
bff672e6
RR
584/*H:500 (vii) Setting up the page tables initially.
585 *
586 * When a Guest is first created, the Launcher tells us where the toplevel of
587 * its first page table is. We set some things up here: */
d7e28ffe
RR
588int init_guest_pagetable(struct lguest *lg, unsigned long pgtable)
589{
bff672e6
RR
590 /* We start on the first shadow page table, and give it a blank PGD
591 * page. */
1713608f
GOC
592 lg->pgdirs[0].gpgdir = pgtable;
593 lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
594 if (!lg->pgdirs[0].pgdir)
d7e28ffe 595 return -ENOMEM;
1713608f 596 lg->cpus[0].cpu_pgd = 0;
d7e28ffe
RR
597 return 0;
598}
599
47436aa4 600/* When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
382ac6b3 601void page_table_guest_data_init(struct lg_cpu *cpu)
47436aa4
RR
602{
603 /* We get the kernel address: above this is all kernel memory. */
382ac6b3
GOC
604 if (get_user(cpu->lg->kernel_address,
605 &cpu->lg->lguest_data->kernel_address)
47436aa4
RR
606 /* We tell the Guest that it can't use the top 4MB of virtual
607 * addresses used by the Switcher. */
382ac6b3
GOC
608 || put_user(4U*1024*1024, &cpu->lg->lguest_data->reserve_mem)
609 || put_user(cpu->lg->pgdirs[0].gpgdir, &cpu->lg->lguest_data->pgdir))
610 kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
47436aa4
RR
611
612 /* In flush_user_mappings() we loop from 0 to
613 * "pgd_index(lg->kernel_address)". This assumes it won't hit the
614 * Switcher mappings, so check that now. */
382ac6b3
GOC
615 if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
616 kill_guest(cpu, "bad kernel address %#lx",
617 cpu->lg->kernel_address);
47436aa4
RR
618}
619
bff672e6 620/* When a Guest dies, our cleanup is fairly simple. */
d7e28ffe
RR
621void free_guest_pagetable(struct lguest *lg)
622{
623 unsigned int i;
624
bff672e6 625 /* Throw away all page table pages. */
d7e28ffe 626 release_all_pagetables(lg);
bff672e6 627 /* Now free the top levels: free_page() can handle 0 just fine. */
d7e28ffe
RR
628 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
629 free_page((long)lg->pgdirs[i].pgdir);
630}
631
bff672e6
RR
632/*H:480 (vi) Mapping the Switcher when the Guest is about to run.
633 *
e1e72965 634 * The Switcher and the two pages for this CPU need to be visible in the
bff672e6 635 * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
e1e72965
RR
636 * for each CPU already set up, we just need to hook them in now we know which
637 * Guest is about to run on this CPU. */
0c78441c 638void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
d7e28ffe 639{
df29f43e
MZ
640 pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
641 pgd_t switcher_pgd;
642 pte_t regs_pte;
a53a35a8 643 unsigned long pfn;
d7e28ffe 644
bff672e6
RR
645 /* Make the last PGD entry for this Guest point to the Switcher's PTE
646 * page for this CPU (with appropriate flags). */
84f12e39 647 switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL);
df29f43e 648
1713608f 649 cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
d7e28ffe 650
bff672e6
RR
651 /* We also change the Switcher PTE page. When we're running the Guest,
652 * we want the Guest's "regs" page to appear where the first Switcher
653 * page for this CPU is. This is an optimization: when the Switcher
654 * saves the Guest registers, it saves them into the first page of this
655 * CPU's "struct lguest_pages": if we make sure the Guest's register
656 * page is already mapped there, we don't have to copy them out
657 * again. */
a53a35a8 658 pfn = __pa(cpu->regs_page) >> PAGE_SHIFT;
84f12e39 659 regs_pte = pfn_pte(pfn, __pgprot(__PAGE_KERNEL));
df29f43e 660 switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte;
d7e28ffe 661}
bff672e6 662/*:*/
d7e28ffe
RR
663
664static void free_switcher_pte_pages(void)
665{
666 unsigned int i;
667
668 for_each_possible_cpu(i)
669 free_page((long)switcher_pte_page(i));
670}
671
bff672e6
RR
672/*H:520 Setting up the Switcher PTE page for given CPU is fairly easy, given
673 * the CPU number and the "struct page"s for the Switcher code itself.
674 *
675 * Currently the Switcher is less than a page long, so "pages" is always 1. */
d7e28ffe
RR
676static __init void populate_switcher_pte_page(unsigned int cpu,
677 struct page *switcher_page[],
678 unsigned int pages)
679{
680 unsigned int i;
df29f43e 681 pte_t *pte = switcher_pte_page(cpu);
d7e28ffe 682
bff672e6 683 /* The first entries are easy: they map the Switcher code. */
d7e28ffe 684 for (i = 0; i < pages; i++) {
df29f43e
MZ
685 pte[i] = mk_pte(switcher_page[i],
686 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
d7e28ffe
RR
687 }
688
bff672e6 689 /* The only other thing we map is this CPU's pair of pages. */
d7e28ffe
RR
690 i = pages + cpu*2;
691
bff672e6 692 /* First page (Guest registers) is writable from the Guest */
df29f43e
MZ
693 pte[i] = pfn_pte(page_to_pfn(switcher_page[i]),
694 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW));
695
bff672e6
RR
696 /* The second page contains the "struct lguest_ro_state", and is
697 * read-only. */
df29f43e
MZ
698 pte[i+1] = pfn_pte(page_to_pfn(switcher_page[i+1]),
699 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
d7e28ffe
RR
700}
701
e1e72965
RR
702/* We've made it through the page table code. Perhaps our tired brains are
703 * still processing the details, or perhaps we're simply glad it's over.
704 *
a6bd8e13
RR
705 * If nothing else, note that all this complexity in juggling shadow page tables
706 * in sync with the Guest's page tables is for one reason: for most Guests this
707 * page table dance determines how bad performance will be. This is why Xen
708 * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
709 * have implemented shadow page table support directly into hardware.
e1e72965
RR
710 *
711 * There is just one file remaining in the Host. */
712
bff672e6
RR
713/*H:510 At boot or module load time, init_pagetables() allocates and populates
714 * the Switcher PTE page for each CPU. */
d7e28ffe
RR
715__init int init_pagetables(struct page **switcher_page, unsigned int pages)
716{
717 unsigned int i;
718
719 for_each_possible_cpu(i) {
df29f43e 720 switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
d7e28ffe
RR
721 if (!switcher_pte_page(i)) {
722 free_switcher_pte_pages();
723 return -ENOMEM;
724 }
725 populate_switcher_pte_page(i, switcher_page, pages);
726 }
727 return 0;
728}
bff672e6 729/*:*/
d7e28ffe 730
bff672e6 731/* Cleaning up simply involves freeing the PTE page for each CPU. */
d7e28ffe
RR
732void free_pagetables(void)
733{
734 free_switcher_pte_pages();
735}
This page took 0.199566 seconds and 5 git commands to generate.