lguest: expost switcher_pages array (as lg_switcher_pages).
[deliverable/linux.git] / drivers / lguest / page_tables.c
CommitLineData
2e04ef76
RR
1/*P:700
2 * The pagetable code, on the other hand, still shows the scars of
f938d2c8
RR
3 * previous encounters. It's functional, and as neat as it can be in the
4 * circumstances, but be wary, for these things are subtle and break easily.
5 * The Guest provides a virtual to physical mapping, but we can neither trust
a6bd8e13 6 * it nor use it: we verify and convert it here then point the CPU to the
2e04ef76
RR
7 * converted Guest pages when running the Guest.
8:*/
f938d2c8
RR
9
10/* Copyright (C) Rusty Russell IBM Corporation 2006.
d7e28ffe
RR
11 * GPL v2 and any later version */
12#include <linux/mm.h>
5a0e3ad6 13#include <linux/gfp.h>
d7e28ffe
RR
14#include <linux/types.h>
15#include <linux/spinlock.h>
16#include <linux/random.h>
17#include <linux/percpu.h>
18#include <asm/tlbflush.h>
47436aa4 19#include <asm/uaccess.h>
d7e28ffe
RR
20#include "lg.h"
21
2e04ef76
RR
22/*M:008
23 * We hold reference to pages, which prevents them from being swapped.
f56a384e
RR
24 * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
25 * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
2e04ef76
RR
26 * could probably consider launching Guests as non-root.
27:*/
f56a384e 28
bff672e6
RR
29/*H:300
30 * The Page Table Code
31 *
a91d74a3
RR
32 * We use two-level page tables for the Guest, or three-level with PAE. If
33 * you're not entirely comfortable with virtual addresses, physical addresses
34 * and page tables then I recommend you review arch/x86/lguest/boot.c's "Page
35 * Table Handling" (with diagrams!).
bff672e6
RR
36 *
37 * The Guest keeps page tables, but we maintain the actual ones here: these are
38 * called "shadow" page tables. Which is a very Guest-centric name: these are
39 * the real page tables the CPU uses, although we keep them up to date to
40 * reflect the Guest's. (See what I mean about weird naming? Since when do
41 * shadows reflect anything?)
42 *
43 * Anyway, this is the most complicated part of the Host code. There are seven
44 * parts to this:
e1e72965
RR
45 * (i) Looking up a page table entry when the Guest faults,
46 * (ii) Making sure the Guest stack is mapped,
47 * (iii) Setting up a page table entry when the Guest tells us one has changed,
bff672e6 48 * (iv) Switching page tables,
e1e72965 49 * (v) Flushing (throwing away) page tables,
bff672e6
RR
50 * (vi) Mapping the Switcher when the Guest is about to run,
51 * (vii) Setting up the page tables initially.
2e04ef76 52:*/
bff672e6 53
2e04ef76 54/*
a91d74a3
RR
55 * The Switcher uses the complete top PTE page. That's 1024 PTE entries (4MB)
56 * or 512 PTE entries with PAE (2MB).
2e04ef76 57 */
df29f43e 58#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
d7e28ffe 59
2e04ef76
RR
60/*
61 * For PAE we need the PMD index as well. We use the last 2MB, so we
62 * will need the last pmd entry of the last pmd page.
63 */
acdd0b62
MZ
64#ifdef CONFIG_X86_PAE
65#define SWITCHER_PMD_INDEX (PTRS_PER_PMD - 1)
acdd0b62
MZ
66#define CHECK_GPGD_MASK _PAGE_PRESENT
67#else
acdd0b62
MZ
68#define CHECK_GPGD_MASK _PAGE_TABLE
69#endif
70
2e04ef76
RR
71/*
72 * We actually need a separate PTE page for each CPU. Remember that after the
bff672e6 73 * Switcher code itself comes two pages for each CPU, and we don't want this
2e04ef76
RR
74 * CPU's guest to see the pages of any other CPU.
75 */
df29f43e 76static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
d7e28ffe
RR
77#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
78
2e04ef76
RR
79/*H:320
80 * The page table code is curly enough to need helper functions to keep it
a91d74a3
RR
81 * clear and clean. The kernel itself provides many of them; one advantage
82 * of insisting that the Guest and Host use the same CONFIG_PAE setting.
bff672e6 83 *
df29f43e 84 * There are two functions which return pointers to the shadow (aka "real")
bff672e6
RR
85 * page tables.
86 *
87 * spgd_addr() takes the virtual address and returns a pointer to the top-level
e1e72965
RR
88 * page directory entry (PGD) for that address. Since we keep track of several
89 * page tables, the "i" argument tells us which one we're interested in (it's
2e04ef76
RR
90 * usually the current one).
91 */
382ac6b3 92static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
d7e28ffe 93{
df29f43e 94 unsigned int index = pgd_index(vaddr);
d7e28ffe 95
bff672e6 96 /* Return a pointer index'th pgd entry for the i'th page table. */
382ac6b3 97 return &cpu->lg->pgdirs[i].pgdir[index];
d7e28ffe
RR
98}
99
acdd0b62 100#ifdef CONFIG_X86_PAE
2e04ef76
RR
101/*
102 * This routine then takes the PGD entry given above, which contains the
acdd0b62 103 * address of the PMD page. It then returns a pointer to the PMD entry for the
2e04ef76
RR
104 * given address.
105 */
acdd0b62
MZ
106static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
107{
108 unsigned int index = pmd_index(vaddr);
109 pmd_t *page;
110
acdd0b62
MZ
111 /* You should never call this if the PGD entry wasn't valid */
112 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
113 page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
114
115 return &page[index];
116}
117#endif
118
2e04ef76
RR
119/*
120 * This routine then takes the page directory entry returned above, which
e1e72965 121 * contains the address of the page table entry (PTE) page. It then returns a
2e04ef76
RR
122 * pointer to the PTE entry for the given address.
123 */
acdd0b62 124static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
d7e28ffe 125{
acdd0b62
MZ
126#ifdef CONFIG_X86_PAE
127 pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
128 pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);
129
130 /* You should never call this if the PMD entry wasn't valid */
131 BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
132#else
df29f43e 133 pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
bff672e6 134 /* You should never call this if the PGD entry wasn't valid */
df29f43e 135 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
acdd0b62
MZ
136#endif
137
90603d15 138 return &page[pte_index(vaddr)];
d7e28ffe
RR
139}
140
2e04ef76 141/*
9f54288d 142 * These functions are just like the above, except they access the Guest
2e04ef76
RR
143 * page tables. Hence they return a Guest address.
144 */
1713608f 145static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
d7e28ffe 146{
df29f43e 147 unsigned int index = vaddr >> (PGDIR_SHIFT);
1713608f 148 return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
d7e28ffe
RR
149}
150
acdd0b62 151#ifdef CONFIG_X86_PAE
a91d74a3 152/* Follow the PGD to the PMD. */
acdd0b62 153static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
d7e28ffe 154{
df29f43e
MZ
155 unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
156 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
acdd0b62
MZ
157 return gpage + pmd_index(vaddr) * sizeof(pmd_t);
158}
acdd0b62 159
a91d74a3 160/* Follow the PMD to the PTE. */
acdd0b62 161static unsigned long gpte_addr(struct lg_cpu *cpu,
92b4d8df 162 pmd_t gpmd, unsigned long vaddr)
acdd0b62 163{
92b4d8df 164 unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT;
acdd0b62 165
acdd0b62 166 BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
92b4d8df
RR
167 return gpage + pte_index(vaddr) * sizeof(pte_t);
168}
acdd0b62 169#else
a91d74a3 170/* Follow the PGD to the PTE (no mid-level for !PAE). */
92b4d8df
RR
171static unsigned long gpte_addr(struct lg_cpu *cpu,
172 pgd_t gpgd, unsigned long vaddr)
173{
174 unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
175
176 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
90603d15 177 return gpage + pte_index(vaddr) * sizeof(pte_t);
d7e28ffe 178}
92b4d8df 179#endif
a6bd8e13
RR
180/*:*/
181
9f54288d 182/*M:007
2e04ef76
RR
183 * get_pfn is slow: we could probably try to grab batches of pages here as
184 * an optimization (ie. pre-faulting).
185:*/
d7e28ffe 186
2e04ef76
RR
187/*H:350
188 * This routine takes a page number given by the Guest and converts it to
bff672e6
RR
189 * an actual, physical page number. It can fail for several reasons: the
190 * virtual address might not be mapped by the Launcher, the write flag is set
191 * and the page is read-only, or the write flag was set and the page was
192 * shared so had to be copied, but we ran out of memory.
193 *
a6bd8e13 194 * This holds a reference to the page, so release_pte() is careful to put that
2e04ef76
RR
195 * back.
196 */
d7e28ffe
RR
197static unsigned long get_pfn(unsigned long virtpfn, int write)
198{
199 struct page *page;
71a3f4ed
RR
200
201 /* gup me one page at this address please! */
202 if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
203 return page_to_pfn(page);
204
bff672e6 205 /* This value indicates failure. */
71a3f4ed 206 return -1UL;
d7e28ffe
RR
207}
208
2e04ef76
RR
209/*H:340
210 * Converting a Guest page table entry to a shadow (ie. real) page table
bff672e6
RR
211 * entry can be a little tricky. The flags are (almost) the same, but the
212 * Guest PTE contains a virtual page number: the CPU needs the real page
2e04ef76
RR
213 * number.
214 */
382ac6b3 215static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
d7e28ffe 216{
df29f43e 217 unsigned long pfn, base, flags;
d7e28ffe 218
2e04ef76
RR
219 /*
220 * The Guest sets the global flag, because it thinks that it is using
bff672e6
RR
221 * PGE. We only told it to use PGE so it would tell us whether it was
222 * flushing a kernel mapping or a userspace mapping. We don't actually
2e04ef76
RR
223 * use the global bit, so throw it away.
224 */
df29f43e 225 flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
bff672e6 226
3c6b5bfa 227 /* The Guest's pages are offset inside the Launcher. */
382ac6b3 228 base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
3c6b5bfa 229
2e04ef76
RR
230 /*
231 * We need a temporary "unsigned long" variable to hold the answer from
bff672e6
RR
232 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
233 * fit in spte.pfn. get_pfn() finds the real physical number of the
2e04ef76
RR
234 * page, given the virtual number.
235 */
df29f43e 236 pfn = get_pfn(base + pte_pfn(gpte), write);
d7e28ffe 237 if (pfn == -1UL) {
382ac6b3 238 kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
2e04ef76
RR
239 /*
240 * When we destroy the Guest, we'll go through the shadow page
bff672e6 241 * tables and release_pte() them. Make sure we don't think
2e04ef76
RR
242 * this one is valid!
243 */
df29f43e 244 flags = 0;
d7e28ffe 245 }
df29f43e
MZ
246 /* Now we assemble our shadow PTE from the page number and flags. */
247 return pfn_pte(pfn, __pgprot(flags));
d7e28ffe
RR
248}
249
bff672e6 250/*H:460 And to complete the chain, release_pte() looks like this: */
df29f43e 251static void release_pte(pte_t pte)
d7e28ffe 252{
2e04ef76
RR
253 /*
254 * Remember that get_user_pages_fast() took a reference to the page, in
255 * get_pfn()? We have to put it back now.
256 */
df29f43e 257 if (pte_flags(pte) & _PAGE_PRESENT)
90603d15 258 put_page(pte_page(pte));
d7e28ffe 259}
bff672e6 260/*:*/
d7e28ffe 261
e1d12606 262static bool check_gpte(struct lg_cpu *cpu, pte_t gpte)
d7e28ffe 263{
31f4b46e 264 if ((pte_flags(gpte) & _PAGE_PSE) ||
e1d12606 265 pte_pfn(gpte) >= cpu->lg->pfn_limit) {
382ac6b3 266 kill_guest(cpu, "bad page table entry");
e1d12606
RR
267 return false;
268 }
269 return true;
d7e28ffe
RR
270}
271
e1d12606 272static bool check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
d7e28ffe 273{
acdd0b62 274 if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
e1d12606 275 (pgd_pfn(gpgd) >= cpu->lg->pfn_limit)) {
382ac6b3 276 kill_guest(cpu, "bad page directory entry");
e1d12606
RR
277 return false;
278 }
279 return true;
d7e28ffe
RR
280}
281
acdd0b62 282#ifdef CONFIG_X86_PAE
e1d12606 283static bool check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
acdd0b62
MZ
284{
285 if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
e1d12606 286 (pmd_pfn(gpmd) >= cpu->lg->pfn_limit)) {
acdd0b62 287 kill_guest(cpu, "bad page middle directory entry");
e1d12606
RR
288 return false;
289 }
290 return true;
acdd0b62
MZ
291}
292#endif
293
17427e08
RR
294/*H:331
295 * This is the core routine to walk the shadow page tables and find the page
296 * table entry for a specific address.
297 *
298 * If allocate is set, then we allocate any missing levels, setting the flags
299 * on the new page directory and mid-level directories using the arguments
300 * (which are copied from the Guest's page table entries).
301 */
302static pte_t *find_spte(struct lg_cpu *cpu, unsigned long vaddr, bool allocate,
303 int pgd_flags, int pmd_flags)
304{
305 pgd_t *spgd;
306 /* Mid level for PAE. */
307#ifdef CONFIG_X86_PAE
308 pmd_t *spmd;
309#endif
310
311 /* Get top level entry. */
312 spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
313 if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
314 /* No shadow entry: allocate a new shadow PTE page. */
315 unsigned long ptepage;
316
317 /* If they didn't want us to allocate anything, stop. */
318 if (!allocate)
319 return NULL;
320
321 ptepage = get_zeroed_page(GFP_KERNEL);
322 /*
323 * This is not really the Guest's fault, but killing it is
324 * simple for this corner case.
325 */
326 if (!ptepage) {
327 kill_guest(cpu, "out of memory allocating pte page");
328 return NULL;
329 }
330 /*
331 * And we copy the flags to the shadow PGD entry. The page
332 * number in the shadow PGD is the page we just allocated.
333 */
334 set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags));
335 }
336
337 /*
338 * Intel's Physical Address Extension actually uses three levels of
339 * page tables, so we need to look in the mid-level.
340 */
341#ifdef CONFIG_X86_PAE
342 /* Now look at the mid-level shadow entry. */
343 spmd = spmd_addr(cpu, *spgd, vaddr);
344
345 if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
346 /* No shadow entry: allocate a new shadow PTE page. */
347 unsigned long ptepage;
348
349 /* If they didn't want us to allocate anything, stop. */
350 if (!allocate)
351 return NULL;
352
353 ptepage = get_zeroed_page(GFP_KERNEL);
354
355 /*
356 * This is not really the Guest's fault, but killing it is
357 * simple for this corner case.
358 */
359 if (!ptepage) {
360 kill_guest(cpu, "out of memory allocating pmd page");
361 return NULL;
362 }
363
364 /*
365 * And we copy the flags to the shadow PMD entry. The page
366 * number in the shadow PMD is the page we just allocated.
367 */
368 set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags));
369 }
370#endif
371
372 /* Get the pointer to the shadow PTE entry we're going to set. */
373 return spte_addr(cpu, *spgd, vaddr);
374}
375
bff672e6 376/*H:330
e1e72965 377 * (i) Looking up a page table entry when the Guest faults.
bff672e6
RR
378 *
379 * We saw this call in run_guest(): when we see a page fault in the Guest, we
380 * come here. That's because we only set up the shadow page tables lazily as
381 * they're needed, so we get page faults all the time and quietly fix them up
382 * and return to the Guest without it knowing.
383 *
384 * If we fixed up the fault (ie. we mapped the address), this routine returns
2e04ef76
RR
385 * true. Otherwise, it was a real fault and we need to tell the Guest.
386 */
df1693ab 387bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
d7e28ffe 388{
d7e28ffe 389 unsigned long gpte_ptr;
df29f43e
MZ
390 pte_t gpte;
391 pte_t *spte;
acdd0b62 392 pmd_t gpmd;
17427e08 393 pgd_t gpgd;
acdd0b62 394
68a644d7
RR
395 /* We never demand page the Switcher, so trying is a mistake. */
396 if (vaddr >= switcher_addr)
397 return false;
398
bff672e6 399 /* First step: get the top-level Guest page table entry. */
5dea1c88
RR
400 if (unlikely(cpu->linear_pages)) {
401 /* Faking up a linear mapping. */
402 gpgd = __pgd(CHECK_GPGD_MASK);
403 } else {
404 gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
405 /* Toplevel not present? We can't map it in. */
406 if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
407 return false;
d7e28ffe 408
17427e08
RR
409 /*
410 * This kills the Guest if it has weird flags or tries to
411 * refer to a "physical" address outside the bounds.
2e04ef76 412 */
e1d12606
RR
413 if (!check_gpgd(cpu, gpgd))
414 return false;
d7e28ffe
RR
415 }
416
17427e08
RR
417 /* This "mid-level" entry is only used for non-linear, PAE mode. */
418 gpmd = __pmd(_PAGE_TABLE);
419
acdd0b62 420#ifdef CONFIG_X86_PAE
17427e08 421 if (likely(!cpu->linear_pages)) {
5dea1c88
RR
422 gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
423 /* Middle level not present? We can't map it in. */
424 if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
425 return false;
acdd0b62 426
17427e08
RR
427 /*
428 * This kills the Guest if it has weird flags or tries to
429 * refer to a "physical" address outside the bounds.
2e04ef76 430 */
e1d12606
RR
431 if (!check_gpmd(cpu, gpmd))
432 return false;
acdd0b62 433 }
92b4d8df 434
2e04ef76
RR
435 /*
436 * OK, now we look at the lower level in the Guest page table: keep its
437 * address, because we might update it later.
438 */
92b4d8df
RR
439 gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
440#else
2e04ef76
RR
441 /*
442 * OK, now we look at the lower level in the Guest page table: keep its
443 * address, because we might update it later.
444 */
acdd0b62 445 gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
92b4d8df 446#endif
a91d74a3 447
5dea1c88
RR
448 if (unlikely(cpu->linear_pages)) {
449 /* Linear? Make up a PTE which points to same page. */
450 gpte = __pte((vaddr & PAGE_MASK) | _PAGE_RW | _PAGE_PRESENT);
451 } else {
452 /* Read the actual PTE value. */
453 gpte = lgread(cpu, gpte_ptr, pte_t);
454 }
d7e28ffe 455
bff672e6 456 /* If this page isn't in the Guest page tables, we can't page it in. */
df29f43e 457 if (!(pte_flags(gpte) & _PAGE_PRESENT))
df1693ab 458 return false;
d7e28ffe 459
2e04ef76
RR
460 /*
461 * Check they're not trying to write to a page the Guest wants
462 * read-only (bit 2 of errcode == write).
463 */
df29f43e 464 if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
df1693ab 465 return false;
d7e28ffe 466
e1e72965 467 /* User access to a kernel-only page? (bit 3 == user access) */
df29f43e 468 if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
df1693ab 469 return false;
d7e28ffe 470
2e04ef76
RR
471 /*
472 * Check that the Guest PTE flags are OK, and the page number is below
473 * the pfn_limit (ie. not mapping the Launcher binary).
474 */
e1d12606
RR
475 if (!check_gpte(cpu, gpte))
476 return false;
e1e72965 477
bff672e6 478 /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
df29f43e 479 gpte = pte_mkyoung(gpte);
d7e28ffe 480 if (errcode & 2)
df29f43e 481 gpte = pte_mkdirty(gpte);
d7e28ffe 482
bff672e6 483 /* Get the pointer to the shadow PTE entry we're going to set. */
17427e08
RR
484 spte = find_spte(cpu, vaddr, true, pgd_flags(gpgd), pmd_flags(gpmd));
485 if (!spte)
486 return false;
2e04ef76
RR
487
488 /*
489 * If there was a valid shadow PTE entry here before, we release it.
490 * This can happen with a write to a previously read-only entry.
491 */
d7e28ffe
RR
492 release_pte(*spte);
493
2e04ef76
RR
494 /*
495 * If this is a write, we insist that the Guest page is writable (the
496 * final arg to gpte_to_spte()).
497 */
df29f43e 498 if (pte_dirty(gpte))
382ac6b3 499 *spte = gpte_to_spte(cpu, gpte, 1);
df29f43e 500 else
2e04ef76
RR
501 /*
502 * If this is a read, don't set the "writable" bit in the page
bff672e6 503 * table entry, even if the Guest says it's writable. That way
e1e72965 504 * we will come back here when a write does actually occur, so
2e04ef76
RR
505 * we can update the Guest's _PAGE_DIRTY flag.
506 */
4c1ea3dd 507 set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
d7e28ffe 508
2e04ef76
RR
509 /*
510 * Finally, we write the Guest PTE entry back: we've set the
511 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags.
512 */
5dea1c88
RR
513 if (likely(!cpu->linear_pages))
514 lgwrite(cpu, gpte_ptr, pte_t, gpte);
bff672e6 515
2e04ef76
RR
516 /*
517 * The fault is fixed, the page table is populated, the mapping
e1e72965
RR
518 * manipulated, the result returned and the code complete. A small
519 * delay and a trace of alliteration are the only indications the Guest
2e04ef76
RR
520 * has that a page fault occurred at all.
521 */
df1693ab 522 return true;
d7e28ffe
RR
523}
524
e1e72965
RR
525/*H:360
526 * (ii) Making sure the Guest stack is mapped.
bff672e6 527 *
e1e72965
RR
528 * Remember that direct traps into the Guest need a mapped Guest kernel stack.
529 * pin_stack_pages() calls us here: we could simply call demand_page(), but as
530 * we've seen that logic is quite long, and usually the stack pages are already
531 * mapped, so it's overkill.
bff672e6
RR
532 *
533 * This is a quick version which answers the question: is this virtual address
2e04ef76
RR
534 * mapped by the shadow page tables, and is it writable?
535 */
df1693ab 536static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
d7e28ffe 537{
17427e08 538 pte_t *spte;
d7e28ffe 539 unsigned long flags;
68a644d7
RR
540
541 /* You can't put your stack in the Switcher! */
542 if (vaddr >= switcher_addr)
543 return false;
544
17427e08
RR
545 /* If there's no shadow PTE, it's not writable. */
546 spte = find_spte(cpu, vaddr, false, 0, 0);
547 if (!spte)
df1693ab 548 return false;
d7e28ffe 549
2e04ef76
RR
550 /*
551 * Check the flags on the pte entry itself: it must be present and
552 * writable.
553 */
17427e08 554 flags = pte_flags(*spte);
d7e28ffe
RR
555 return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
556}
557
2e04ef76
RR
558/*
559 * So, when pin_stack_pages() asks us to pin a page, we check if it's already
bff672e6 560 * in the page tables, and if not, we call demand_page() with error code 2
2e04ef76
RR
561 * (meaning "write").
562 */
1713608f 563void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
d7e28ffe 564{
1713608f 565 if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
382ac6b3 566 kill_guest(cpu, "bad stack page %#lx", vaddr);
d7e28ffe 567}
a91d74a3 568/*:*/
d7e28ffe 569
acdd0b62
MZ
570#ifdef CONFIG_X86_PAE
571static void release_pmd(pmd_t *spmd)
572{
573 /* If the entry's not present, there's nothing to release. */
574 if (pmd_flags(*spmd) & _PAGE_PRESENT) {
575 unsigned int i;
576 pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
577 /* For each entry in the page, we might need to release it. */
578 for (i = 0; i < PTRS_PER_PTE; i++)
579 release_pte(ptepage[i]);
580 /* Now we can free the page of PTEs */
581 free_page((long)ptepage);
582 /* And zero out the PMD entry so we never release it twice. */
4c1ea3dd 583 set_pmd(spmd, __pmd(0));
acdd0b62
MZ
584 }
585}
586
587static void release_pgd(pgd_t *spgd)
588{
589 /* If the entry's not present, there's nothing to release. */
590 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
591 unsigned int i;
592 pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
593
594 for (i = 0; i < PTRS_PER_PMD; i++)
595 release_pmd(&pmdpage[i]);
596
597 /* Now we can free the page of PMDs */
598 free_page((long)pmdpage);
599 /* And zero out the PGD entry so we never release it twice. */
600 set_pgd(spgd, __pgd(0));
601 }
602}
603
604#else /* !CONFIG_X86_PAE */
a91d74a3
RR
605/*H:450
606 * If we chase down the release_pgd() code, the non-PAE version looks like
607 * this. The PAE version is almost identical, but instead of calling
608 * release_pte it calls release_pmd(), which looks much like this.
609 */
90603d15 610static void release_pgd(pgd_t *spgd)
d7e28ffe 611{
bff672e6 612 /* If the entry's not present, there's nothing to release. */
df29f43e 613 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
d7e28ffe 614 unsigned int i;
2e04ef76
RR
615 /*
616 * Converting the pfn to find the actual PTE page is easy: turn
bff672e6 617 * the page number into a physical address, then convert to a
2e04ef76
RR
618 * virtual address (easy for kernel pages like this one).
619 */
df29f43e 620 pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
bff672e6 621 /* For each entry in the page, we might need to release it. */
df29f43e 622 for (i = 0; i < PTRS_PER_PTE; i++)
d7e28ffe 623 release_pte(ptepage[i]);
bff672e6 624 /* Now we can free the page of PTEs */
d7e28ffe 625 free_page((long)ptepage);
e1e72965 626 /* And zero out the PGD entry so we never release it twice. */
df29f43e 627 *spgd = __pgd(0);
d7e28ffe
RR
628 }
629}
acdd0b62 630#endif
2e04ef76
RR
631
632/*H:445
633 * We saw flush_user_mappings() twice: once from the flush_user_mappings()
e1e72965 634 * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
2e04ef76
RR
635 * It simply releases every PTE page from 0 up to the Guest's kernel address.
636 */
d7e28ffe
RR
637static void flush_user_mappings(struct lguest *lg, int idx)
638{
639 unsigned int i;
bff672e6 640 /* Release every pgd entry up to the kernel's address. */
47436aa4 641 for (i = 0; i < pgd_index(lg->kernel_address); i++)
90603d15 642 release_pgd(lg->pgdirs[idx].pgdir + i);
d7e28ffe
RR
643}
644
2e04ef76
RR
645/*H:440
646 * (v) Flushing (throwing away) page tables,
e1e72965
RR
647 *
648 * The Guest has a hypercall to throw away the page tables: it's used when a
2e04ef76
RR
649 * large number of mappings have been changed.
650 */
1713608f 651void guest_pagetable_flush_user(struct lg_cpu *cpu)
d7e28ffe 652{
bff672e6 653 /* Drop the userspace part of the current page table. */
1713608f 654 flush_user_mappings(cpu->lg, cpu->cpu_pgd);
d7e28ffe 655}
bff672e6 656/*:*/
d7e28ffe 657
47436aa4 658/* We walk down the guest page tables to get a guest-physical address */
1713608f 659unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
47436aa4
RR
660{
661 pgd_t gpgd;
662 pte_t gpte;
acdd0b62
MZ
663#ifdef CONFIG_X86_PAE
664 pmd_t gpmd;
665#endif
5dea1c88
RR
666
667 /* Still not set up? Just map 1:1. */
668 if (unlikely(cpu->linear_pages))
669 return vaddr;
670
47436aa4 671 /* First step: get the top-level Guest page table entry. */
382ac6b3 672 gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
47436aa4 673 /* Toplevel not present? We can't map it in. */
6afbdd05 674 if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) {
382ac6b3 675 kill_guest(cpu, "Bad address %#lx", vaddr);
6afbdd05
RR
676 return -1UL;
677 }
47436aa4 678
acdd0b62
MZ
679#ifdef CONFIG_X86_PAE
680 gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
681 if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
682 kill_guest(cpu, "Bad address %#lx", vaddr);
92b4d8df
RR
683 gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t);
684#else
acdd0b62 685 gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
92b4d8df 686#endif
47436aa4 687 if (!(pte_flags(gpte) & _PAGE_PRESENT))
382ac6b3 688 kill_guest(cpu, "Bad address %#lx", vaddr);
47436aa4
RR
689
690 return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
691}
692
2e04ef76
RR
693/*
694 * We keep several page tables. This is a simple routine to find the page
bff672e6 695 * table (if any) corresponding to this top-level address the Guest has given
2e04ef76
RR
696 * us.
697 */
d7e28ffe
RR
698static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
699{
700 unsigned int i;
701 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
4357bd94 702 if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
d7e28ffe
RR
703 break;
704 return i;
705}
706
2e04ef76
RR
707/*H:435
708 * And this is us, creating the new page directory. If we really do
bff672e6 709 * allocate a new one (and so the kernel parts are not there), we set
2e04ef76
RR
710 * blank_pgdir.
711 */
1713608f 712static unsigned int new_pgdir(struct lg_cpu *cpu,
ee3db0f2 713 unsigned long gpgdir,
d7e28ffe
RR
714 int *blank_pgdir)
715{
716 unsigned int next;
acdd0b62
MZ
717#ifdef CONFIG_X86_PAE
718 pmd_t *pmd_table;
719#endif
d7e28ffe 720
2e04ef76
RR
721 /*
722 * We pick one entry at random to throw out. Choosing the Least
723 * Recently Used might be better, but this is easy.
724 */
382ac6b3 725 next = random32() % ARRAY_SIZE(cpu->lg->pgdirs);
bff672e6 726 /* If it's never been allocated at all before, try now. */
382ac6b3
GOC
727 if (!cpu->lg->pgdirs[next].pgdir) {
728 cpu->lg->pgdirs[next].pgdir =
729 (pgd_t *)get_zeroed_page(GFP_KERNEL);
bff672e6 730 /* If the allocation fails, just keep using the one we have */
382ac6b3 731 if (!cpu->lg->pgdirs[next].pgdir)
1713608f 732 next = cpu->cpu_pgd;
acdd0b62
MZ
733 else {
734#ifdef CONFIG_X86_PAE
2e04ef76
RR
735 /*
736 * In PAE mode, allocate a pmd page and populate the
737 * last pgd entry.
738 */
acdd0b62
MZ
739 pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL);
740 if (!pmd_table) {
741 free_page((long)cpu->lg->pgdirs[next].pgdir);
742 set_pgd(cpu->lg->pgdirs[next].pgdir, __pgd(0));
743 next = cpu->cpu_pgd;
744 } else {
745 set_pgd(cpu->lg->pgdirs[next].pgdir +
746 SWITCHER_PGD_INDEX,
747 __pgd(__pa(pmd_table) | _PAGE_PRESENT));
2e04ef76
RR
748 /*
749 * This is a blank page, so there are no kernel
750 * mappings: caller must map the stack!
751 */
acdd0b62
MZ
752 *blank_pgdir = 1;
753 }
754#else
d7e28ffe 755 *blank_pgdir = 1;
acdd0b62
MZ
756#endif
757 }
d7e28ffe 758 }
bff672e6 759 /* Record which Guest toplevel this shadows. */
382ac6b3 760 cpu->lg->pgdirs[next].gpgdir = gpgdir;
d7e28ffe 761 /* Release all the non-kernel mappings. */
382ac6b3 762 flush_user_mappings(cpu->lg, next);
d7e28ffe
RR
763
764 return next;
765}
766
2e04ef76
RR
767/*H:470
768 * Finally, a routine which throws away everything: all PGD entries in all
e1e72965 769 * the shadow page tables, including the Guest's kernel mappings. This is used
2e04ef76
RR
770 * when we destroy the Guest.
771 */
d7e28ffe
RR
772static void release_all_pagetables(struct lguest *lg)
773{
774 unsigned int i, j;
775
bff672e6 776 /* Every shadow pagetable this Guest has */
d7e28ffe 777 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
acdd0b62
MZ
778 if (lg->pgdirs[i].pgdir) {
779#ifdef CONFIG_X86_PAE
780 pgd_t *spgd;
781 pmd_t *pmdpage;
782 unsigned int k;
783
784 /* Get the last pmd page. */
785 spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX;
786 pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
787
2e04ef76
RR
788 /*
789 * And release the pmd entries of that pmd page,
790 * except for the switcher pmd.
791 */
acdd0b62
MZ
792 for (k = 0; k < SWITCHER_PMD_INDEX; k++)
793 release_pmd(&pmdpage[k]);
794#endif
bff672e6 795 /* Every PGD entry except the Switcher at the top */
d7e28ffe 796 for (j = 0; j < SWITCHER_PGD_INDEX; j++)
90603d15 797 release_pgd(lg->pgdirs[i].pgdir + j);
acdd0b62 798 }
d7e28ffe
RR
799}
800
2e04ef76
RR
801/*
802 * We also throw away everything when a Guest tells us it's changed a kernel
bff672e6 803 * mapping. Since kernel mappings are in every page table, it's easiest to
e1e72965 804 * throw them all away. This traps the Guest in amber for a while as
2e04ef76
RR
805 * everything faults back in, but it's rare.
806 */
4665ac8e 807void guest_pagetable_clear_all(struct lg_cpu *cpu)
d7e28ffe 808{
4665ac8e 809 release_all_pagetables(cpu->lg);
bff672e6 810 /* We need the Guest kernel stack mapped again. */
4665ac8e 811 pin_stack_pages(cpu);
d7e28ffe 812}
5dea1c88
RR
813
814/*H:430
815 * (iv) Switching page tables
816 *
817 * Now we've seen all the page table setting and manipulation, let's see
818 * what happens when the Guest changes page tables (ie. changes the top-level
819 * pgdir). This occurs on almost every context switch.
820 */
821void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
822{
823 int newpgdir, repin = 0;
824
825 /*
826 * The very first time they call this, we're actually running without
827 * any page tables; we've been making it up. Throw them away now.
828 */
829 if (unlikely(cpu->linear_pages)) {
830 release_all_pagetables(cpu->lg);
831 cpu->linear_pages = false;
832 /* Force allocation of a new pgdir. */
833 newpgdir = ARRAY_SIZE(cpu->lg->pgdirs);
834 } else {
835 /* Look to see if we have this one already. */
836 newpgdir = find_pgdir(cpu->lg, pgtable);
837 }
838
839 /*
840 * If not, we allocate or mug an existing one: if it's a fresh one,
841 * repin gets set to 1.
842 */
843 if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
844 newpgdir = new_pgdir(cpu, pgtable, &repin);
845 /* Change the current pgd index to the new one. */
846 cpu->cpu_pgd = newpgdir;
847 /* If it was completely blank, we map in the Guest kernel stack */
848 if (repin)
849 pin_stack_pages(cpu);
850}
e1e72965 851/*:*/
2e04ef76
RR
852
853/*M:009
854 * Since we throw away all mappings when a kernel mapping changes, our
e1e72965
RR
855 * performance sucks for guests using highmem. In fact, a guest with
856 * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
857 * usually slower than a Guest with less memory.
858 *
859 * This, of course, cannot be fixed. It would take some kind of... well, I
2e04ef76
RR
860 * don't know, but the term "puissant code-fu" comes to mind.
861:*/
d7e28ffe 862
2e04ef76
RR
863/*H:420
864 * This is the routine which actually sets the page table entry for then
bff672e6
RR
865 * "idx"'th shadow page table.
866 *
867 * Normally, we can just throw out the old entry and replace it with 0: if they
868 * use it demand_page() will put the new entry in. We need to do this anyway:
869 * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
870 * is read from, and _PAGE_DIRTY when it's written to.
871 *
872 * But Avi Kivity pointed out that most Operating Systems (Linux included) set
873 * these bits on PTEs immediately anyway. This is done to save the CPU from
874 * having to update them, but it helps us the same way: if they set
875 * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
876 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
877 */
382ac6b3 878static void do_set_pte(struct lg_cpu *cpu, int idx,
df29f43e 879 unsigned long vaddr, pte_t gpte)
d7e28ffe 880{
e1e72965 881 /* Look up the matching shadow page directory entry. */
382ac6b3 882 pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
acdd0b62
MZ
883#ifdef CONFIG_X86_PAE
884 pmd_t *spmd;
885#endif
bff672e6
RR
886
887 /* If the top level isn't present, there's no entry to update. */
df29f43e 888 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
acdd0b62
MZ
889#ifdef CONFIG_X86_PAE
890 spmd = spmd_addr(cpu, *spgd, vaddr);
891 if (pmd_flags(*spmd) & _PAGE_PRESENT) {
892#endif
2e04ef76 893 /* Otherwise, start by releasing the existing entry. */
acdd0b62
MZ
894 pte_t *spte = spte_addr(cpu, *spgd, vaddr);
895 release_pte(*spte);
896
2e04ef76
RR
897 /*
898 * If they're setting this entry as dirty or accessed,
899 * we might as well put that entry they've given us in
900 * now. This shaves 10% off a copy-on-write
901 * micro-benchmark.
902 */
acdd0b62 903 if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
e1d12606
RR
904 if (!check_gpte(cpu, gpte))
905 return;
4c1ea3dd
RR
906 set_pte(spte,
907 gpte_to_spte(cpu, gpte,
acdd0b62 908 pte_flags(gpte) & _PAGE_DIRTY));
2e04ef76
RR
909 } else {
910 /*
911 * Otherwise kill it and we can demand_page()
912 * it in later.
913 */
4c1ea3dd 914 set_pte(spte, __pte(0));
2e04ef76 915 }
acdd0b62
MZ
916#ifdef CONFIG_X86_PAE
917 }
918#endif
d7e28ffe
RR
919 }
920}
921
2e04ef76
RR
922/*H:410
923 * Updating a PTE entry is a little trickier.
bff672e6
RR
924 *
925 * We keep track of several different page tables (the Guest uses one for each
926 * process, so it makes sense to cache at least a few). Each of these have
927 * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
928 * all processes. So when the page table above that address changes, we update
929 * all the page tables, not just the current one. This is rare.
930 *
a6bd8e13 931 * The benefit is that when we have to track a new page table, we can keep all
2e04ef76
RR
932 * the kernel mappings. This speeds up context switch immensely.
933 */
382ac6b3 934void guest_set_pte(struct lg_cpu *cpu,
ee3db0f2 935 unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
d7e28ffe 936{
68a644d7
RR
937 /* We don't let you remap the Switcher; we need it to get back! */
938 if (vaddr >= switcher_addr) {
939 kill_guest(cpu, "attempt to set pte into Switcher pages");
940 return;
941 }
942
2e04ef76
RR
943 /*
944 * Kernel mappings must be changed on all top levels. Slow, but doesn't
945 * happen often.
946 */
382ac6b3 947 if (vaddr >= cpu->lg->kernel_address) {
d7e28ffe 948 unsigned int i;
382ac6b3
GOC
949 for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
950 if (cpu->lg->pgdirs[i].pgdir)
951 do_set_pte(cpu, i, vaddr, gpte);
d7e28ffe 952 } else {
bff672e6 953 /* Is this page table one we have a shadow for? */
382ac6b3
GOC
954 int pgdir = find_pgdir(cpu->lg, gpgdir);
955 if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
bff672e6 956 /* If so, do the update. */
382ac6b3 957 do_set_pte(cpu, pgdir, vaddr, gpte);
d7e28ffe
RR
958 }
959}
960
bff672e6 961/*H:400
e1e72965 962 * (iii) Setting up a page table entry when the Guest tells us one has changed.
bff672e6
RR
963 *
964 * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
965 * with the other side of page tables while we're here: what happens when the
966 * Guest asks for a page table to be updated?
967 *
968 * We already saw that demand_page() will fill in the shadow page tables when
969 * needed, so we can simply remove shadow page table entries whenever the Guest
970 * tells us they've changed. When the Guest tries to use the new entry it will
971 * fault and demand_page() will fix it up.
972 *
fd589a8f 973 * So with that in mind here's our code to update a (top-level) PGD entry:
bff672e6 974 */
ebe0ba84 975void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
d7e28ffe
RR
976{
977 int pgdir;
978
979 if (idx >= SWITCHER_PGD_INDEX)
980 return;
981
bff672e6 982 /* If they're talking about a page table we have a shadow for... */
ee3db0f2 983 pgdir = find_pgdir(lg, gpgdir);
d7e28ffe 984 if (pgdir < ARRAY_SIZE(lg->pgdirs))
bff672e6 985 /* ... throw it away. */
90603d15 986 release_pgd(lg->pgdirs[pgdir].pgdir + idx);
d7e28ffe 987}
a91d74a3 988
acdd0b62 989#ifdef CONFIG_X86_PAE
a91d74a3 990/* For setting a mid-level, we just throw everything away. It's easy. */
acdd0b62
MZ
991void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
992{
993 guest_pagetable_clear_all(&lg->cpus[0]);
994}
995#endif
d7e28ffe 996
2e04ef76
RR
997/*H:500
998 * (vii) Setting up the page tables initially.
bff672e6 999 *
5dea1c88
RR
1000 * When a Guest is first created, set initialize a shadow page table which
1001 * we will populate on future faults. The Guest doesn't have any actual
1002 * pagetables yet, so we set linear_pages to tell demand_page() to fake it
1003 * for the moment.
2e04ef76 1004 */
58a24566 1005int init_guest_pagetable(struct lguest *lg)
d7e28ffe 1006{
5dea1c88
RR
1007 struct lg_cpu *cpu = &lg->cpus[0];
1008 int allocated = 0;
58a24566 1009
5dea1c88
RR
1010 /* lg (and lg->cpus[]) starts zeroed: this allocates a new pgdir */
1011 cpu->cpu_pgd = new_pgdir(cpu, 0, &allocated);
1012 if (!allocated)
d7e28ffe 1013 return -ENOMEM;
a91d74a3 1014
5dea1c88
RR
1015 /* We start with a linear mapping until the initialize. */
1016 cpu->linear_pages = true;
d7e28ffe
RR
1017 return 0;
1018}
1019
a91d74a3 1020/*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
382ac6b3 1021void page_table_guest_data_init(struct lg_cpu *cpu)
47436aa4 1022{
c215a8b9
RR
1023 /*
1024 * We tell the Guest that it can't use the virtual addresses
1025 * used by the Switcher. This trick is equivalent to 4GB -
1026 * switcher_addr.
1027 */
1028 u32 top = ~switcher_addr + 1;
1029
47436aa4 1030 /* We get the kernel address: above this is all kernel memory. */
382ac6b3 1031 if (get_user(cpu->lg->kernel_address,
c215a8b9 1032 &cpu->lg->lguest_data->kernel_address)
2e04ef76 1033 /*
c215a8b9
RR
1034 * We tell the Guest that it can't use the top virtual
1035 * addresses (used by the Switcher).
2e04ef76 1036 */
c215a8b9 1037 || put_user(top, &cpu->lg->lguest_data->reserve_mem)) {
382ac6b3 1038 kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
5dea1c88
RR
1039 return;
1040 }
47436aa4 1041
2e04ef76
RR
1042 /*
1043 * In flush_user_mappings() we loop from 0 to
47436aa4 1044 * "pgd_index(lg->kernel_address)". This assumes it won't hit the
2e04ef76
RR
1045 * Switcher mappings, so check that now.
1046 */
68a644d7 1047 if (cpu->lg->kernel_address >= switcher_addr)
382ac6b3
GOC
1048 kill_guest(cpu, "bad kernel address %#lx",
1049 cpu->lg->kernel_address);
47436aa4
RR
1050}
1051
bff672e6 1052/* When a Guest dies, our cleanup is fairly simple. */
d7e28ffe
RR
1053void free_guest_pagetable(struct lguest *lg)
1054{
1055 unsigned int i;
1056
bff672e6 1057 /* Throw away all page table pages. */
d7e28ffe 1058 release_all_pagetables(lg);
bff672e6 1059 /* Now free the top levels: free_page() can handle 0 just fine. */
d7e28ffe
RR
1060 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
1061 free_page((long)lg->pgdirs[i].pgdir);
1062}
1063
2e04ef76
RR
1064/*H:480
1065 * (vi) Mapping the Switcher when the Guest is about to run.
bff672e6 1066 *
e1e72965 1067 * The Switcher and the two pages for this CPU need to be visible in the
bff672e6 1068 * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
e1e72965 1069 * for each CPU already set up, we just need to hook them in now we know which
2e04ef76
RR
1070 * Guest is about to run on this CPU.
1071 */
0c78441c 1072void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
d7e28ffe 1073{
c9f29549 1074 pte_t *switcher_pte_page = __this_cpu_read(switcher_pte_pages);
df29f43e 1075 pte_t regs_pte;
d7e28ffe 1076
acdd0b62
MZ
1077#ifdef CONFIG_X86_PAE
1078 pmd_t switcher_pmd;
1079 pmd_t *pmd_table;
1080
4c1ea3dd
RR
1081 switcher_pmd = pfn_pmd(__pa(switcher_pte_page) >> PAGE_SHIFT,
1082 PAGE_KERNEL_EXEC);
acdd0b62 1083
a91d74a3
RR
1084 /* Figure out where the pmd page is, by reading the PGD, and converting
1085 * it to a virtual address. */
acdd0b62
MZ
1086 pmd_table = __va(pgd_pfn(cpu->lg->
1087 pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX])
1088 << PAGE_SHIFT);
a91d74a3 1089 /* Now write it into the shadow page table. */
4c1ea3dd 1090 set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd);
acdd0b62
MZ
1091#else
1092 pgd_t switcher_pgd;
1093
2e04ef76
RR
1094 /*
1095 * Make the last PGD entry for this Guest point to the Switcher's PTE
1096 * page for this CPU (with appropriate flags).
1097 */
ed1dc778 1098 switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC);
df29f43e 1099
1713608f 1100 cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
d7e28ffe 1101
acdd0b62 1102#endif
2e04ef76
RR
1103 /*
1104 * We also change the Switcher PTE page. When we're running the Guest,
bff672e6
RR
1105 * we want the Guest's "regs" page to appear where the first Switcher
1106 * page for this CPU is. This is an optimization: when the Switcher
1107 * saves the Guest registers, it saves them into the first page of this
1108 * CPU's "struct lguest_pages": if we make sure the Guest's register
1109 * page is already mapped there, we don't have to copy them out
2e04ef76
RR
1110 * again.
1111 */
4c1ea3dd
RR
1112 regs_pte = pfn_pte(__pa(cpu->regs_page) >> PAGE_SHIFT, PAGE_KERNEL);
1113 set_pte(&switcher_pte_page[pte_index((unsigned long)pages)], regs_pte);
d7e28ffe 1114}
bff672e6 1115/*:*/
d7e28ffe
RR
1116
1117static void free_switcher_pte_pages(void)
1118{
1119 unsigned int i;
1120
1121 for_each_possible_cpu(i)
1122 free_page((long)switcher_pte_page(i));
1123}
1124
2e04ef76
RR
1125/*H:520
1126 * Setting up the Switcher PTE page for given CPU is fairly easy, given
93a2cdff 1127 * the CPU number and the "struct page"s for the Switcher and per-cpu pages.
2e04ef76 1128 */
d7e28ffe 1129static __init void populate_switcher_pte_page(unsigned int cpu,
93a2cdff 1130 struct page *switcher_pages[])
d7e28ffe 1131{
df29f43e 1132 pte_t *pte = switcher_pte_page(cpu);
93a2cdff 1133 int i;
d7e28ffe 1134
93a2cdff
RR
1135 /* The first entries maps the Switcher code. */
1136 set_pte(&pte[0], mk_pte(switcher_pages[0],
90603d15 1137 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
d7e28ffe 1138
bff672e6 1139 /* The only other thing we map is this CPU's pair of pages. */
93a2cdff 1140 i = 1 + cpu*2;
d7e28ffe 1141
bff672e6 1142 /* First page (Guest registers) is writable from the Guest */
856c6088 1143 set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_pages[i]),
90603d15 1144 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)));
df29f43e 1145
2e04ef76
RR
1146 /*
1147 * The second page contains the "struct lguest_ro_state", and is
1148 * read-only.
1149 */
856c6088 1150 set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_pages[i+1]),
90603d15 1151 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
d7e28ffe
RR
1152}
1153
2e04ef76
RR
1154/*
1155 * We've made it through the page table code. Perhaps our tired brains are
e1e72965
RR
1156 * still processing the details, or perhaps we're simply glad it's over.
1157 *
a6bd8e13
RR
1158 * If nothing else, note that all this complexity in juggling shadow page tables
1159 * in sync with the Guest's page tables is for one reason: for most Guests this
1160 * page table dance determines how bad performance will be. This is why Xen
1161 * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
1162 * have implemented shadow page table support directly into hardware.
e1e72965 1163 *
2e04ef76
RR
1164 * There is just one file remaining in the Host.
1165 */
e1e72965 1166
2e04ef76
RR
1167/*H:510
1168 * At boot or module load time, init_pagetables() allocates and populates
1169 * the Switcher PTE page for each CPU.
1170 */
93a2cdff 1171__init int init_pagetables(struct page **switcher_pages)
d7e28ffe
RR
1172{
1173 unsigned int i;
1174
1175 for_each_possible_cpu(i) {
df29f43e 1176 switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
d7e28ffe
RR
1177 if (!switcher_pte_page(i)) {
1178 free_switcher_pte_pages();
1179 return -ENOMEM;
1180 }
93a2cdff 1181 populate_switcher_pte_page(i, switcher_pages);
d7e28ffe
RR
1182 }
1183 return 0;
1184}
bff672e6 1185/*:*/
d7e28ffe 1186
bff672e6 1187/* Cleaning up simply involves freeing the PTE page for each CPU. */
d7e28ffe
RR
1188void free_pagetables(void)
1189{
1190 free_switcher_pte_pages();
1191}
This page took 0.719723 seconds and 5 git commands to generate.