lightnvm: put bio before return
[deliverable/linux.git] / drivers / lightnvm / rrpc.c
CommitLineData
ae1519ec
MB
1/*
2 * Copyright (C) 2015 IT University of Copenhagen
3 * Initial release: Matias Bjorling <m@bjorling.me>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License version
7 * 2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15 */
16
17#include "rrpc.h"
18
19static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20static DECLARE_RWSEM(rrpc_lock);
21
22static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23 struct nvm_rq *rqd, unsigned long flags);
24
25#define rrpc_for_each_lun(rrpc, rlun, i) \
26 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27 (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28
29static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30{
31 struct rrpc_block *rblk = a->rblk;
32 unsigned int pg_offset;
33
34 lockdep_assert_held(&rrpc->rev_lock);
35
36 if (a->addr == ADDR_EMPTY || !rblk)
37 return;
38
39 spin_lock(&rblk->lock);
40
41 div_u64_rem(a->addr, rrpc->dev->pgs_per_blk, &pg_offset);
42 WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
43 rblk->nr_invalid_pages++;
44
45 spin_unlock(&rblk->lock);
46
47 rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
48}
49
50static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
51 unsigned len)
52{
53 sector_t i;
54
55 spin_lock(&rrpc->rev_lock);
56 for (i = slba; i < slba + len; i++) {
57 struct rrpc_addr *gp = &rrpc->trans_map[i];
58
59 rrpc_page_invalidate(rrpc, gp);
60 gp->rblk = NULL;
61 }
62 spin_unlock(&rrpc->rev_lock);
63}
64
65static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
66 sector_t laddr, unsigned int pages)
67{
68 struct nvm_rq *rqd;
69 struct rrpc_inflight_rq *inf;
70
71 rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
72 if (!rqd)
73 return ERR_PTR(-ENOMEM);
74
75 inf = rrpc_get_inflight_rq(rqd);
76 if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
77 mempool_free(rqd, rrpc->rq_pool);
78 return NULL;
79 }
80
81 return rqd;
82}
83
84static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
85{
86 struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
87
88 rrpc_unlock_laddr(rrpc, inf);
89
90 mempool_free(rqd, rrpc->rq_pool);
91}
92
93static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
94{
95 sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
96 sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
97 struct nvm_rq *rqd;
98
99 do {
100 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
101 schedule();
102 } while (!rqd);
103
104 if (IS_ERR(rqd)) {
105 pr_err("rrpc: unable to acquire inflight IO\n");
106 bio_io_error(bio);
107 return;
108 }
109
110 rrpc_invalidate_range(rrpc, slba, len);
111 rrpc_inflight_laddr_release(rrpc, rqd);
112}
113
114static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
115{
116 return (rblk->next_page == rrpc->dev->pgs_per_blk);
117}
118
b7ceb7d5 119static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
ae1519ec
MB
120{
121 struct nvm_block *blk = rblk->parent;
122
123 return blk->id * rrpc->dev->pgs_per_blk;
124}
125
7386af27
MB
126static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
127 struct ppa_addr r)
128{
129 struct ppa_addr l;
130 int secs, pgs, blks, luns;
131 sector_t ppa = r.ppa;
132
133 l.ppa = 0;
134
135 div_u64_rem(ppa, dev->sec_per_pg, &secs);
136 l.g.sec = secs;
137
138 sector_div(ppa, dev->sec_per_pg);
139 div_u64_rem(ppa, dev->sec_per_blk, &pgs);
140 l.g.pg = pgs;
141
142 sector_div(ppa, dev->pgs_per_blk);
143 div_u64_rem(ppa, dev->blks_per_lun, &blks);
144 l.g.blk = blks;
145
146 sector_div(ppa, dev->blks_per_lun);
147 div_u64_rem(ppa, dev->luns_per_chnl, &luns);
148 l.g.lun = luns;
149
150 sector_div(ppa, dev->luns_per_chnl);
151 l.g.ch = ppa;
152
153 return l;
154}
155
b7ceb7d5 156static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
ae1519ec
MB
157{
158 struct ppa_addr paddr;
159
160 paddr.ppa = addr;
7386af27 161 return linear_to_generic_addr(dev, paddr);
ae1519ec
MB
162}
163
164/* requires lun->lock taken */
165static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
166{
167 struct rrpc *rrpc = rlun->rrpc;
168
169 BUG_ON(!rblk);
170
171 if (rlun->cur) {
172 spin_lock(&rlun->cur->lock);
173 WARN_ON(!block_is_full(rrpc, rlun->cur));
174 spin_unlock(&rlun->cur->lock);
175 }
176 rlun->cur = rblk;
177}
178
179static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
180 unsigned long flags)
181{
ff0e498b 182 struct nvm_lun *lun = rlun->parent;
ae1519ec
MB
183 struct nvm_block *blk;
184 struct rrpc_block *rblk;
185
ff0e498b
JG
186 spin_lock(&lun->lock);
187 blk = nvm_get_blk_unlocked(rrpc->dev, rlun->parent, flags);
188 if (!blk) {
189 pr_err("nvm: rrpc: cannot get new block from media manager\n");
190 spin_unlock(&lun->lock);
ae1519ec 191 return NULL;
ff0e498b 192 }
ae1519ec
MB
193
194 rblk = &rlun->blocks[blk->id];
ff0e498b
JG
195 list_add_tail(&rblk->list, &rlun->open_list);
196 spin_unlock(&lun->lock);
ae1519ec 197
ff0e498b 198 blk->priv = rblk;
ae1519ec
MB
199 bitmap_zero(rblk->invalid_pages, rrpc->dev->pgs_per_blk);
200 rblk->next_page = 0;
201 rblk->nr_invalid_pages = 0;
202 atomic_set(&rblk->data_cmnt_size, 0);
203
204 return rblk;
205}
206
207static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
208{
ff0e498b
JG
209 struct rrpc_lun *rlun = rblk->rlun;
210 struct nvm_lun *lun = rlun->parent;
211
212 spin_lock(&lun->lock);
213 nvm_put_blk_unlocked(rrpc->dev, rblk->parent);
214 list_del(&rblk->list);
215 spin_unlock(&lun->lock);
ae1519ec
MB
216}
217
d3d1a438
WT
218static void rrpc_put_blks(struct rrpc *rrpc)
219{
220 struct rrpc_lun *rlun;
221 int i;
222
223 for (i = 0; i < rrpc->nr_luns; i++) {
224 rlun = &rrpc->luns[i];
225 if (rlun->cur)
226 rrpc_put_blk(rrpc, rlun->cur);
227 if (rlun->gc_cur)
228 rrpc_put_blk(rrpc, rlun->gc_cur);
229 }
230}
231
ae1519ec
MB
232static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
233{
234 int next = atomic_inc_return(&rrpc->next_lun);
235
236 return &rrpc->luns[next % rrpc->nr_luns];
237}
238
239static void rrpc_gc_kick(struct rrpc *rrpc)
240{
241 struct rrpc_lun *rlun;
242 unsigned int i;
243
244 for (i = 0; i < rrpc->nr_luns; i++) {
245 rlun = &rrpc->luns[i];
246 queue_work(rrpc->krqd_wq, &rlun->ws_gc);
247 }
248}
249
250/*
251 * timed GC every interval.
252 */
253static void rrpc_gc_timer(unsigned long data)
254{
255 struct rrpc *rrpc = (struct rrpc *)data;
256
257 rrpc_gc_kick(rrpc);
258 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
259}
260
261static void rrpc_end_sync_bio(struct bio *bio)
262{
263 struct completion *waiting = bio->bi_private;
264
265 if (bio->bi_error)
266 pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
267
268 complete(waiting);
269}
270
271/*
272 * rrpc_move_valid_pages -- migrate live data off the block
273 * @rrpc: the 'rrpc' structure
274 * @block: the block from which to migrate live pages
275 *
276 * Description:
277 * GC algorithms may call this function to migrate remaining live
278 * pages off the block prior to erasing it. This function blocks
279 * further execution until the operation is complete.
280 */
281static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
282{
283 struct request_queue *q = rrpc->dev->q;
284 struct rrpc_rev_addr *rev;
285 struct nvm_rq *rqd;
286 struct bio *bio;
287 struct page *page;
288 int slot;
289 int nr_pgs_per_blk = rrpc->dev->pgs_per_blk;
b7ceb7d5 290 u64 phys_addr;
ae1519ec
MB
291 DECLARE_COMPLETION_ONSTACK(wait);
292
293 if (bitmap_full(rblk->invalid_pages, nr_pgs_per_blk))
294 return 0;
295
296 bio = bio_alloc(GFP_NOIO, 1);
297 if (!bio) {
298 pr_err("nvm: could not alloc bio to gc\n");
299 return -ENOMEM;
300 }
301
302 page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
16c6d048
WT
303 if (!page) {
304 bio_put(bio);
3bfbc6ad 305 return -ENOMEM;
16c6d048 306 }
ae1519ec
MB
307
308 while ((slot = find_first_zero_bit(rblk->invalid_pages,
309 nr_pgs_per_blk)) < nr_pgs_per_blk) {
310
311 /* Lock laddr */
312 phys_addr = (rblk->parent->id * nr_pgs_per_blk) + slot;
313
314try:
315 spin_lock(&rrpc->rev_lock);
316 /* Get logical address from physical to logical table */
317 rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
318 /* already updated by previous regular write */
319 if (rev->addr == ADDR_EMPTY) {
320 spin_unlock(&rrpc->rev_lock);
321 continue;
322 }
323
324 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
325 if (IS_ERR_OR_NULL(rqd)) {
326 spin_unlock(&rrpc->rev_lock);
327 schedule();
328 goto try;
329 }
330
331 spin_unlock(&rrpc->rev_lock);
332
333 /* Perform read to do GC */
334 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
335 bio->bi_rw = READ;
336 bio->bi_private = &wait;
337 bio->bi_end_io = rrpc_end_sync_bio;
338
339 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
340 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
341
342 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
343 pr_err("rrpc: gc read failed.\n");
344 rrpc_inflight_laddr_release(rrpc, rqd);
345 goto finished;
346 }
347 wait_for_completion_io(&wait);
2b11c1b2
WT
348 if (bio->bi_error) {
349 rrpc_inflight_laddr_release(rrpc, rqd);
350 goto finished;
351 }
ae1519ec
MB
352
353 bio_reset(bio);
354 reinit_completion(&wait);
355
356 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
357 bio->bi_rw = WRITE;
358 bio->bi_private = &wait;
359 bio->bi_end_io = rrpc_end_sync_bio;
360
361 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
362
363 /* turn the command around and write the data back to a new
364 * address
365 */
366 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
367 pr_err("rrpc: gc write failed.\n");
368 rrpc_inflight_laddr_release(rrpc, rqd);
369 goto finished;
370 }
371 wait_for_completion_io(&wait);
372
373 rrpc_inflight_laddr_release(rrpc, rqd);
2b11c1b2
WT
374 if (bio->bi_error)
375 goto finished;
ae1519ec
MB
376
377 bio_reset(bio);
378 }
379
380finished:
381 mempool_free(page, rrpc->page_pool);
382 bio_put(bio);
383
384 if (!bitmap_full(rblk->invalid_pages, nr_pgs_per_blk)) {
385 pr_err("nvm: failed to garbage collect block\n");
386 return -EIO;
387 }
388
389 return 0;
390}
391
392static void rrpc_block_gc(struct work_struct *work)
393{
394 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
395 ws_gc);
396 struct rrpc *rrpc = gcb->rrpc;
397 struct rrpc_block *rblk = gcb->rblk;
398 struct nvm_dev *dev = rrpc->dev;
d0ca798f
WT
399 struct nvm_lun *lun = rblk->parent->lun;
400 struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
ae1519ec 401
d0ca798f 402 mempool_free(gcb, rrpc->gcb_pool);
ae1519ec
MB
403 pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
404
405 if (rrpc_move_valid_pages(rrpc, rblk))
d0ca798f
WT
406 goto put_back;
407
408 if (nvm_erase_blk(dev, rblk->parent))
409 goto put_back;
ae1519ec 410
ae1519ec 411 rrpc_put_blk(rrpc, rblk);
d0ca798f
WT
412
413 return;
414
415put_back:
416 spin_lock(&rlun->lock);
417 list_add_tail(&rblk->prio, &rlun->prio_list);
418 spin_unlock(&rlun->lock);
ae1519ec
MB
419}
420
421/* the block with highest number of invalid pages, will be in the beginning
422 * of the list
423 */
424static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
425 struct rrpc_block *rb)
426{
427 if (ra->nr_invalid_pages == rb->nr_invalid_pages)
428 return ra;
429
430 return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
431}
432
433/* linearly find the block with highest number of invalid pages
434 * requires lun->lock
435 */
436static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
437{
438 struct list_head *prio_list = &rlun->prio_list;
439 struct rrpc_block *rblock, *max;
440
441 BUG_ON(list_empty(prio_list));
442
443 max = list_first_entry(prio_list, struct rrpc_block, prio);
444 list_for_each_entry(rblock, prio_list, prio)
445 max = rblock_max_invalid(max, rblock);
446
447 return max;
448}
449
450static void rrpc_lun_gc(struct work_struct *work)
451{
452 struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
453 struct rrpc *rrpc = rlun->rrpc;
454 struct nvm_lun *lun = rlun->parent;
455 struct rrpc_block_gc *gcb;
456 unsigned int nr_blocks_need;
457
458 nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
459
460 if (nr_blocks_need < rrpc->nr_luns)
461 nr_blocks_need = rrpc->nr_luns;
462
b262924b 463 spin_lock(&rlun->lock);
ae1519ec
MB
464 while (nr_blocks_need > lun->nr_free_blocks &&
465 !list_empty(&rlun->prio_list)) {
466 struct rrpc_block *rblock = block_prio_find_max(rlun);
467 struct nvm_block *block = rblock->parent;
468
469 if (!rblock->nr_invalid_pages)
470 break;
471
b262924b
WT
472 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
473 if (!gcb)
474 break;
475
ae1519ec
MB
476 list_del_init(&rblock->prio);
477
478 BUG_ON(!block_is_full(rrpc, rblock));
479
480 pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
481
ae1519ec
MB
482 gcb->rrpc = rrpc;
483 gcb->rblk = rblock;
484 INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
485
486 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
487
488 nr_blocks_need--;
489 }
b262924b 490 spin_unlock(&rlun->lock);
ae1519ec
MB
491
492 /* TODO: Hint that request queue can be started again */
493}
494
495static void rrpc_gc_queue(struct work_struct *work)
496{
497 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
498 ws_gc);
499 struct rrpc *rrpc = gcb->rrpc;
500 struct rrpc_block *rblk = gcb->rblk;
501 struct nvm_lun *lun = rblk->parent->lun;
502 struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
503
504 spin_lock(&rlun->lock);
505 list_add_tail(&rblk->prio, &rlun->prio_list);
506 spin_unlock(&rlun->lock);
507
508 mempool_free(gcb, rrpc->gcb_pool);
509 pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
510 rblk->parent->id);
511}
512
513static const struct block_device_operations rrpc_fops = {
514 .owner = THIS_MODULE,
515};
516
517static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
518{
519 unsigned int i;
520 struct rrpc_lun *rlun, *max_free;
521
522 if (!is_gc)
523 return get_next_lun(rrpc);
524
525 /* during GC, we don't care about RR, instead we want to make
526 * sure that we maintain evenness between the block luns.
527 */
528 max_free = &rrpc->luns[0];
529 /* prevent GC-ing lun from devouring pages of a lun with
530 * little free blocks. We don't take the lock as we only need an
531 * estimate.
532 */
533 rrpc_for_each_lun(rrpc, rlun, i) {
534 if (rlun->parent->nr_free_blocks >
535 max_free->parent->nr_free_blocks)
536 max_free = rlun;
537 }
538
539 return max_free;
540}
541
542static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
b7ceb7d5 543 struct rrpc_block *rblk, u64 paddr)
ae1519ec
MB
544{
545 struct rrpc_addr *gp;
546 struct rrpc_rev_addr *rev;
547
548 BUG_ON(laddr >= rrpc->nr_pages);
549
550 gp = &rrpc->trans_map[laddr];
551 spin_lock(&rrpc->rev_lock);
552 if (gp->rblk)
553 rrpc_page_invalidate(rrpc, gp);
554
555 gp->addr = paddr;
556 gp->rblk = rblk;
557
558 rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
559 rev->addr = laddr;
560 spin_unlock(&rrpc->rev_lock);
561
562 return gp;
563}
564
b7ceb7d5 565static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
ae1519ec 566{
b7ceb7d5 567 u64 addr = ADDR_EMPTY;
ae1519ec
MB
568
569 spin_lock(&rblk->lock);
570 if (block_is_full(rrpc, rblk))
571 goto out;
572
573 addr = block_to_addr(rrpc, rblk) + rblk->next_page;
574
575 rblk->next_page++;
576out:
577 spin_unlock(&rblk->lock);
578 return addr;
579}
580
581/* Simple round-robin Logical to physical address translation.
582 *
583 * Retrieve the mapping using the active append point. Then update the ap for
584 * the next write to the disk.
585 *
586 * Returns rrpc_addr with the physical address and block. Remember to return to
587 * rrpc->addr_cache when request is finished.
588 */
589static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
590 int is_gc)
591{
592 struct rrpc_lun *rlun;
593 struct rrpc_block *rblk;
594 struct nvm_lun *lun;
b7ceb7d5 595 u64 paddr;
ae1519ec
MB
596
597 rlun = rrpc_get_lun_rr(rrpc, is_gc);
598 lun = rlun->parent;
599
600 if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
601 return NULL;
602
603 spin_lock(&rlun->lock);
604
605 rblk = rlun->cur;
606retry:
607 paddr = rrpc_alloc_addr(rrpc, rblk);
608
609 if (paddr == ADDR_EMPTY) {
610 rblk = rrpc_get_blk(rrpc, rlun, 0);
611 if (rblk) {
612 rrpc_set_lun_cur(rlun, rblk);
613 goto retry;
614 }
615
616 if (is_gc) {
617 /* retry from emergency gc block */
618 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
619 if (paddr == ADDR_EMPTY) {
620 rblk = rrpc_get_blk(rrpc, rlun, 1);
621 if (!rblk) {
622 pr_err("rrpc: no more blocks");
623 goto err;
624 }
625
626 rlun->gc_cur = rblk;
627 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
628 }
629 rblk = rlun->gc_cur;
630 }
631 }
632
633 spin_unlock(&rlun->lock);
634 return rrpc_update_map(rrpc, laddr, rblk, paddr);
635err:
636 spin_unlock(&rlun->lock);
637 return NULL;
638}
639
640static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
641{
642 struct rrpc_block_gc *gcb;
643
644 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
645 if (!gcb) {
646 pr_err("rrpc: unable to queue block for gc.");
647 return;
648 }
649
650 gcb->rrpc = rrpc;
651 gcb->rblk = rblk;
652
653 INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
654 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
655}
656
657static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
658 sector_t laddr, uint8_t npages)
659{
660 struct rrpc_addr *p;
661 struct rrpc_block *rblk;
662 struct nvm_lun *lun;
663 int cmnt_size, i;
664
665 for (i = 0; i < npages; i++) {
666 p = &rrpc->trans_map[laddr + i];
667 rblk = p->rblk;
668 lun = rblk->parent->lun;
669
670 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
ff0e498b
JG
671 if (unlikely(cmnt_size == rrpc->dev->pgs_per_blk)) {
672 struct nvm_block *blk = rblk->parent;
673 struct rrpc_lun *rlun = rblk->rlun;
674
675 spin_lock(&lun->lock);
676 lun->nr_open_blocks--;
677 lun->nr_closed_blocks++;
678 blk->state &= ~NVM_BLK_ST_OPEN;
679 blk->state |= NVM_BLK_ST_CLOSED;
680 list_move_tail(&rblk->list, &rlun->closed_list);
681 spin_unlock(&lun->lock);
682
ae1519ec 683 rrpc_run_gc(rrpc, rblk);
ff0e498b 684 }
ae1519ec
MB
685 }
686}
687
72d256ec 688static void rrpc_end_io(struct nvm_rq *rqd)
ae1519ec
MB
689{
690 struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
691 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
692 uint8_t npages = rqd->nr_pages;
693 sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
694
695 if (bio_data_dir(rqd->bio) == WRITE)
696 rrpc_end_io_write(rrpc, rrqd, laddr, npages);
697
3cd485b1
WT
698 bio_put(rqd->bio);
699
ae1519ec 700 if (rrqd->flags & NVM_IOTYPE_GC)
91276162 701 return;
ae1519ec
MB
702
703 rrpc_unlock_rq(rrpc, rqd);
ae1519ec
MB
704
705 if (npages > 1)
706 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
707 if (rqd->metadata)
708 nvm_dev_dma_free(rrpc->dev, rqd->metadata, rqd->dma_metadata);
709
710 mempool_free(rqd, rrpc->rq_pool);
ae1519ec
MB
711}
712
713static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
714 struct nvm_rq *rqd, unsigned long flags, int npages)
715{
716 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
717 struct rrpc_addr *gp;
718 sector_t laddr = rrpc_get_laddr(bio);
719 int is_gc = flags & NVM_IOTYPE_GC;
720 int i;
721
722 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
723 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
724 return NVM_IO_REQUEUE;
725 }
726
727 for (i = 0; i < npages; i++) {
728 /* We assume that mapping occurs at 4KB granularity */
729 BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_pages));
730 gp = &rrpc->trans_map[laddr + i];
731
732 if (gp->rblk) {
733 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
734 gp->addr);
735 } else {
736 BUG_ON(is_gc);
737 rrpc_unlock_laddr(rrpc, r);
738 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
739 rqd->dma_ppa_list);
740 return NVM_IO_DONE;
741 }
742 }
743
744 rqd->opcode = NVM_OP_HBREAD;
745
746 return NVM_IO_OK;
747}
748
749static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
750 unsigned long flags)
751{
752 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
753 int is_gc = flags & NVM_IOTYPE_GC;
754 sector_t laddr = rrpc_get_laddr(bio);
755 struct rrpc_addr *gp;
756
757 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
758 return NVM_IO_REQUEUE;
759
760 BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_pages));
761 gp = &rrpc->trans_map[laddr];
762
763 if (gp->rblk) {
764 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
765 } else {
766 BUG_ON(is_gc);
767 rrpc_unlock_rq(rrpc, rqd);
768 return NVM_IO_DONE;
769 }
770
771 rqd->opcode = NVM_OP_HBREAD;
772 rrqd->addr = gp;
773
774 return NVM_IO_OK;
775}
776
777static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
778 struct nvm_rq *rqd, unsigned long flags, int npages)
779{
780 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
781 struct rrpc_addr *p;
782 sector_t laddr = rrpc_get_laddr(bio);
783 int is_gc = flags & NVM_IOTYPE_GC;
784 int i;
785
786 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
787 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
788 return NVM_IO_REQUEUE;
789 }
790
791 for (i = 0; i < npages; i++) {
792 /* We assume that mapping occurs at 4KB granularity */
793 p = rrpc_map_page(rrpc, laddr + i, is_gc);
794 if (!p) {
795 BUG_ON(is_gc);
796 rrpc_unlock_laddr(rrpc, r);
797 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
798 rqd->dma_ppa_list);
799 rrpc_gc_kick(rrpc);
800 return NVM_IO_REQUEUE;
801 }
802
803 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
804 p->addr);
805 }
806
807 rqd->opcode = NVM_OP_HBWRITE;
808
809 return NVM_IO_OK;
810}
811
812static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
813 struct nvm_rq *rqd, unsigned long flags)
814{
815 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
816 struct rrpc_addr *p;
817 int is_gc = flags & NVM_IOTYPE_GC;
818 sector_t laddr = rrpc_get_laddr(bio);
819
820 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
821 return NVM_IO_REQUEUE;
822
823 p = rrpc_map_page(rrpc, laddr, is_gc);
824 if (!p) {
825 BUG_ON(is_gc);
826 rrpc_unlock_rq(rrpc, rqd);
827 rrpc_gc_kick(rrpc);
828 return NVM_IO_REQUEUE;
829 }
830
831 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
832 rqd->opcode = NVM_OP_HBWRITE;
833 rrqd->addr = p;
834
835 return NVM_IO_OK;
836}
837
838static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
839 struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
840{
841 if (npages > 1) {
842 rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
843 &rqd->dma_ppa_list);
844 if (!rqd->ppa_list) {
845 pr_err("rrpc: not able to allocate ppa list\n");
846 return NVM_IO_ERR;
847 }
848
849 if (bio_rw(bio) == WRITE)
850 return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
851 npages);
852
853 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
854 }
855
856 if (bio_rw(bio) == WRITE)
857 return rrpc_write_rq(rrpc, bio, rqd, flags);
858
859 return rrpc_read_rq(rrpc, bio, rqd, flags);
860}
861
862static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
863 struct nvm_rq *rqd, unsigned long flags)
864{
865 int err;
866 struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
867 uint8_t nr_pages = rrpc_get_pages(bio);
868 int bio_size = bio_sectors(bio) << 9;
869
870 if (bio_size < rrpc->dev->sec_size)
871 return NVM_IO_ERR;
872 else if (bio_size > rrpc->dev->max_rq_size)
873 return NVM_IO_ERR;
874
875 err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
876 if (err)
877 return err;
878
879 bio_get(bio);
880 rqd->bio = bio;
881 rqd->ins = &rrpc->instance;
882 rqd->nr_pages = nr_pages;
883 rrq->flags = flags;
884
885 err = nvm_submit_io(rrpc->dev, rqd);
886 if (err) {
887 pr_err("rrpc: I/O submission failed: %d\n", err);
3cd485b1 888 bio_put(bio);
c27278bd
WT
889 if (!(flags & NVM_IOTYPE_GC)) {
890 rrpc_unlock_rq(rrpc, rqd);
891 if (rqd->nr_pages > 1)
892 nvm_dev_dma_free(rrpc->dev,
893 rqd->ppa_list, rqd->dma_ppa_list);
894 }
ae1519ec
MB
895 return NVM_IO_ERR;
896 }
897
898 return NVM_IO_OK;
899}
900
dece1635 901static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
ae1519ec
MB
902{
903 struct rrpc *rrpc = q->queuedata;
904 struct nvm_rq *rqd;
905 int err;
906
907 if (bio->bi_rw & REQ_DISCARD) {
908 rrpc_discard(rrpc, bio);
dece1635 909 return BLK_QC_T_NONE;
ae1519ec
MB
910 }
911
912 rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
913 if (!rqd) {
914 pr_err_ratelimited("rrpc: not able to queue bio.");
915 bio_io_error(bio);
dece1635 916 return BLK_QC_T_NONE;
ae1519ec
MB
917 }
918 memset(rqd, 0, sizeof(struct nvm_rq));
919
920 err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
921 switch (err) {
922 case NVM_IO_OK:
dece1635 923 return BLK_QC_T_NONE;
ae1519ec
MB
924 case NVM_IO_ERR:
925 bio_io_error(bio);
926 break;
927 case NVM_IO_DONE:
928 bio_endio(bio);
929 break;
930 case NVM_IO_REQUEUE:
931 spin_lock(&rrpc->bio_lock);
932 bio_list_add(&rrpc->requeue_bios, bio);
933 spin_unlock(&rrpc->bio_lock);
934 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
935 break;
936 }
937
938 mempool_free(rqd, rrpc->rq_pool);
dece1635 939 return BLK_QC_T_NONE;
ae1519ec
MB
940}
941
942static void rrpc_requeue(struct work_struct *work)
943{
944 struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
945 struct bio_list bios;
946 struct bio *bio;
947
948 bio_list_init(&bios);
949
950 spin_lock(&rrpc->bio_lock);
951 bio_list_merge(&bios, &rrpc->requeue_bios);
952 bio_list_init(&rrpc->requeue_bios);
953 spin_unlock(&rrpc->bio_lock);
954
955 while ((bio = bio_list_pop(&bios)))
956 rrpc_make_rq(rrpc->disk->queue, bio);
957}
958
959static void rrpc_gc_free(struct rrpc *rrpc)
960{
961 struct rrpc_lun *rlun;
962 int i;
963
964 if (rrpc->krqd_wq)
965 destroy_workqueue(rrpc->krqd_wq);
966
967 if (rrpc->kgc_wq)
968 destroy_workqueue(rrpc->kgc_wq);
969
970 if (!rrpc->luns)
971 return;
972
973 for (i = 0; i < rrpc->nr_luns; i++) {
974 rlun = &rrpc->luns[i];
975
976 if (!rlun->blocks)
977 break;
978 vfree(rlun->blocks);
979 }
980}
981
982static int rrpc_gc_init(struct rrpc *rrpc)
983{
984 rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
985 rrpc->nr_luns);
986 if (!rrpc->krqd_wq)
987 return -ENOMEM;
988
989 rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
990 if (!rrpc->kgc_wq)
991 return -ENOMEM;
992
993 setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
994
995 return 0;
996}
997
998static void rrpc_map_free(struct rrpc *rrpc)
999{
1000 vfree(rrpc->rev_trans_map);
1001 vfree(rrpc->trans_map);
1002}
1003
1004static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
1005{
1006 struct rrpc *rrpc = (struct rrpc *)private;
1007 struct nvm_dev *dev = rrpc->dev;
1008 struct rrpc_addr *addr = rrpc->trans_map + slba;
1009 struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
1010 sector_t max_pages = dev->total_pages * (dev->sec_size >> 9);
1011 u64 elba = slba + nlb;
1012 u64 i;
1013
1014 if (unlikely(elba > dev->total_pages)) {
1015 pr_err("nvm: L2P data from device is out of bounds!\n");
1016 return -EINVAL;
1017 }
1018
1019 for (i = 0; i < nlb; i++) {
1020 u64 pba = le64_to_cpu(entries[i]);
1021 /* LNVM treats address-spaces as silos, LBA and PBA are
1022 * equally large and zero-indexed.
1023 */
1024 if (unlikely(pba >= max_pages && pba != U64_MAX)) {
1025 pr_err("nvm: L2P data entry is out of bounds!\n");
1026 return -EINVAL;
1027 }
1028
1029 /* Address zero is a special one. The first page on a disk is
1030 * protected. As it often holds internal device boot
1031 * information.
1032 */
1033 if (!pba)
1034 continue;
1035
1036 addr[i].addr = pba;
1037 raddr[pba].addr = slba + i;
1038 }
1039
1040 return 0;
1041}
1042
1043static int rrpc_map_init(struct rrpc *rrpc)
1044{
1045 struct nvm_dev *dev = rrpc->dev;
1046 sector_t i;
1047 int ret;
1048
1049 rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_pages);
1050 if (!rrpc->trans_map)
1051 return -ENOMEM;
1052
1053 rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
1054 * rrpc->nr_pages);
1055 if (!rrpc->rev_trans_map)
1056 return -ENOMEM;
1057
1058 for (i = 0; i < rrpc->nr_pages; i++) {
1059 struct rrpc_addr *p = &rrpc->trans_map[i];
1060 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
1061
1062 p->addr = ADDR_EMPTY;
1063 r->addr = ADDR_EMPTY;
1064 }
1065
1066 if (!dev->ops->get_l2p_tbl)
1067 return 0;
1068
1069 /* Bring up the mapping table from device */
16f26c3a 1070 ret = dev->ops->get_l2p_tbl(dev, 0, dev->total_pages,
ae1519ec
MB
1071 rrpc_l2p_update, rrpc);
1072 if (ret) {
1073 pr_err("nvm: rrpc: could not read L2P table.\n");
1074 return -EINVAL;
1075 }
1076
1077 return 0;
1078}
1079
1080
1081/* Minimum pages needed within a lun */
1082#define PAGE_POOL_SIZE 16
1083#define ADDR_POOL_SIZE 64
1084
1085static int rrpc_core_init(struct rrpc *rrpc)
1086{
1087 down_write(&rrpc_lock);
1088 if (!rrpc_gcb_cache) {
1089 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
1090 sizeof(struct rrpc_block_gc), 0, 0, NULL);
1091 if (!rrpc_gcb_cache) {
1092 up_write(&rrpc_lock);
1093 return -ENOMEM;
1094 }
1095
1096 rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1097 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1098 0, 0, NULL);
1099 if (!rrpc_rq_cache) {
1100 kmem_cache_destroy(rrpc_gcb_cache);
1101 up_write(&rrpc_lock);
1102 return -ENOMEM;
1103 }
1104 }
1105 up_write(&rrpc_lock);
1106
1107 rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1108 if (!rrpc->page_pool)
1109 return -ENOMEM;
1110
1111 rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
1112 rrpc_gcb_cache);
1113 if (!rrpc->gcb_pool)
1114 return -ENOMEM;
1115
1116 rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1117 if (!rrpc->rq_pool)
1118 return -ENOMEM;
1119
1120 spin_lock_init(&rrpc->inflights.lock);
1121 INIT_LIST_HEAD(&rrpc->inflights.reqs);
1122
1123 return 0;
1124}
1125
1126static void rrpc_core_free(struct rrpc *rrpc)
1127{
1128 mempool_destroy(rrpc->page_pool);
1129 mempool_destroy(rrpc->gcb_pool);
1130 mempool_destroy(rrpc->rq_pool);
1131}
1132
1133static void rrpc_luns_free(struct rrpc *rrpc)
1134{
1135 kfree(rrpc->luns);
1136}
1137
1138static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
1139{
1140 struct nvm_dev *dev = rrpc->dev;
1141 struct rrpc_lun *rlun;
1142 int i, j;
1143
4b79beb4
WT
1144 if (dev->pgs_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1145 pr_err("rrpc: number of pages per block too high.");
1146 return -EINVAL;
1147 }
1148
ae1519ec
MB
1149 spin_lock_init(&rrpc->rev_lock);
1150
1151 rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1152 GFP_KERNEL);
1153 if (!rrpc->luns)
1154 return -ENOMEM;
1155
1156 /* 1:1 mapping */
1157 for (i = 0; i < rrpc->nr_luns; i++) {
1158 struct nvm_lun *lun = dev->mt->get_lun(dev, lun_begin + i);
1159
ae1519ec
MB
1160 rlun = &rrpc->luns[i];
1161 rlun->rrpc = rrpc;
1162 rlun->parent = lun;
1163 INIT_LIST_HEAD(&rlun->prio_list);
ff0e498b
JG
1164 INIT_LIST_HEAD(&rlun->open_list);
1165 INIT_LIST_HEAD(&rlun->closed_list);
1166
ae1519ec
MB
1167 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1168 spin_lock_init(&rlun->lock);
1169
1170 rrpc->total_blocks += dev->blks_per_lun;
1171 rrpc->nr_pages += dev->sec_per_lun;
1172
1173 rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1174 rrpc->dev->blks_per_lun);
1175 if (!rlun->blocks)
1176 goto err;
1177
1178 for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
1179 struct rrpc_block *rblk = &rlun->blocks[j];
1180 struct nvm_block *blk = &lun->blocks[j];
1181
1182 rblk->parent = blk;
d7a64d27 1183 rblk->rlun = rlun;
ae1519ec
MB
1184 INIT_LIST_HEAD(&rblk->prio);
1185 spin_lock_init(&rblk->lock);
1186 }
1187 }
1188
1189 return 0;
1190err:
1191 return -ENOMEM;
1192}
1193
1194static void rrpc_free(struct rrpc *rrpc)
1195{
1196 rrpc_gc_free(rrpc);
1197 rrpc_map_free(rrpc);
1198 rrpc_core_free(rrpc);
1199 rrpc_luns_free(rrpc);
1200
1201 kfree(rrpc);
1202}
1203
1204static void rrpc_exit(void *private)
1205{
1206 struct rrpc *rrpc = private;
1207
1208 del_timer(&rrpc->gc_timer);
1209
1210 flush_workqueue(rrpc->krqd_wq);
1211 flush_workqueue(rrpc->kgc_wq);
1212
1213 rrpc_free(rrpc);
1214}
1215
1216static sector_t rrpc_capacity(void *private)
1217{
1218 struct rrpc *rrpc = private;
1219 struct nvm_dev *dev = rrpc->dev;
1220 sector_t reserved, provisioned;
1221
1222 /* cur, gc, and two emergency blocks for each lun */
1223 reserved = rrpc->nr_luns * dev->max_pages_per_blk * 4;
1224 provisioned = rrpc->nr_pages - reserved;
1225
1226 if (reserved > rrpc->nr_pages) {
1227 pr_err("rrpc: not enough space available to expose storage.\n");
1228 return 0;
1229 }
1230
1231 sector_div(provisioned, 10);
1232 return provisioned * 9 * NR_PHY_IN_LOG;
1233}
1234
1235/*
1236 * Looks up the logical address from reverse trans map and check if its valid by
1237 * comparing the logical to physical address with the physical address.
1238 * Returns 0 on free, otherwise 1 if in use
1239 */
1240static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1241{
1242 struct nvm_dev *dev = rrpc->dev;
1243 int offset;
1244 struct rrpc_addr *laddr;
b7ceb7d5 1245 u64 paddr, pladdr;
ae1519ec
MB
1246
1247 for (offset = 0; offset < dev->pgs_per_blk; offset++) {
1248 paddr = block_to_addr(rrpc, rblk) + offset;
1249
1250 pladdr = rrpc->rev_trans_map[paddr].addr;
1251 if (pladdr == ADDR_EMPTY)
1252 continue;
1253
1254 laddr = &rrpc->trans_map[pladdr];
1255
1256 if (paddr == laddr->addr) {
1257 laddr->rblk = rblk;
1258 } else {
1259 set_bit(offset, rblk->invalid_pages);
1260 rblk->nr_invalid_pages++;
1261 }
1262 }
1263}
1264
1265static int rrpc_blocks_init(struct rrpc *rrpc)
1266{
1267 struct rrpc_lun *rlun;
1268 struct rrpc_block *rblk;
1269 int lun_iter, blk_iter;
1270
1271 for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1272 rlun = &rrpc->luns[lun_iter];
1273
1274 for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
1275 blk_iter++) {
1276 rblk = &rlun->blocks[blk_iter];
1277 rrpc_block_map_update(rrpc, rblk);
1278 }
1279 }
1280
1281 return 0;
1282}
1283
1284static int rrpc_luns_configure(struct rrpc *rrpc)
1285{
1286 struct rrpc_lun *rlun;
1287 struct rrpc_block *rblk;
1288 int i;
1289
1290 for (i = 0; i < rrpc->nr_luns; i++) {
1291 rlun = &rrpc->luns[i];
1292
1293 rblk = rrpc_get_blk(rrpc, rlun, 0);
1294 if (!rblk)
d3d1a438 1295 goto err;
ae1519ec
MB
1296
1297 rrpc_set_lun_cur(rlun, rblk);
1298
1299 /* Emergency gc block */
1300 rblk = rrpc_get_blk(rrpc, rlun, 1);
1301 if (!rblk)
d3d1a438 1302 goto err;
ae1519ec
MB
1303 rlun->gc_cur = rblk;
1304 }
1305
1306 return 0;
d3d1a438
WT
1307err:
1308 rrpc_put_blks(rrpc);
1309 return -EINVAL;
ae1519ec
MB
1310}
1311
1312static struct nvm_tgt_type tt_rrpc;
1313
1314static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
1315 int lun_begin, int lun_end)
1316{
1317 struct request_queue *bqueue = dev->q;
1318 struct request_queue *tqueue = tdisk->queue;
1319 struct rrpc *rrpc;
1320 int ret;
1321
1322 if (!(dev->identity.dom & NVM_RSP_L2P)) {
1323 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1324 dev->identity.dom);
1325 return ERR_PTR(-EINVAL);
1326 }
1327
1328 rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1329 if (!rrpc)
1330 return ERR_PTR(-ENOMEM);
1331
1332 rrpc->instance.tt = &tt_rrpc;
1333 rrpc->dev = dev;
1334 rrpc->disk = tdisk;
1335
1336 bio_list_init(&rrpc->requeue_bios);
1337 spin_lock_init(&rrpc->bio_lock);
1338 INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1339
1340 rrpc->nr_luns = lun_end - lun_begin + 1;
1341
1342 /* simple round-robin strategy */
1343 atomic_set(&rrpc->next_lun, -1);
1344
1345 ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
1346 if (ret) {
1347 pr_err("nvm: rrpc: could not initialize luns\n");
1348 goto err;
1349 }
1350
1351 rrpc->poffset = dev->sec_per_lun * lun_begin;
1352 rrpc->lun_offset = lun_begin;
1353
1354 ret = rrpc_core_init(rrpc);
1355 if (ret) {
1356 pr_err("nvm: rrpc: could not initialize core\n");
1357 goto err;
1358 }
1359
1360 ret = rrpc_map_init(rrpc);
1361 if (ret) {
1362 pr_err("nvm: rrpc: could not initialize maps\n");
1363 goto err;
1364 }
1365
1366 ret = rrpc_blocks_init(rrpc);
1367 if (ret) {
1368 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1369 goto err;
1370 }
1371
1372 ret = rrpc_luns_configure(rrpc);
1373 if (ret) {
1374 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1375 goto err;
1376 }
1377
1378 ret = rrpc_gc_init(rrpc);
1379 if (ret) {
1380 pr_err("nvm: rrpc: could not initialize gc\n");
1381 goto err;
1382 }
1383
1384 /* inherit the size from the underlying device */
1385 blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1386 blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1387
1388 pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1389 rrpc->nr_luns, (unsigned long long)rrpc->nr_pages);
1390
1391 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1392
1393 return rrpc;
1394err:
1395 rrpc_free(rrpc);
1396 return ERR_PTR(ret);
1397}
1398
1399/* round robin, page-based FTL, and cost-based GC */
1400static struct nvm_tgt_type tt_rrpc = {
1401 .name = "rrpc",
1402 .version = {1, 0, 0},
1403
1404 .make_rq = rrpc_make_rq,
1405 .capacity = rrpc_capacity,
1406 .end_io = rrpc_end_io,
1407
1408 .init = rrpc_init,
1409 .exit = rrpc_exit,
1410};
1411
1412static int __init rrpc_module_init(void)
1413{
1414 return nvm_register_target(&tt_rrpc);
1415}
1416
1417static void rrpc_module_exit(void)
1418{
1419 nvm_unregister_target(&tt_rrpc);
1420}
1421
1422module_init(rrpc_module_init);
1423module_exit(rrpc_module_exit);
1424MODULE_LICENSE("GPL v2");
1425MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");
This page took 0.107841 seconds and 5 git commands to generate.