Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[deliverable/linux.git] / drivers / md / bcache / alloc.c
CommitLineData
cafe5635
KO
1/*
2 * Primary bucket allocation code
3 *
4 * Copyright 2012 Google, Inc.
5 *
6 * Allocation in bcache is done in terms of buckets:
7 *
8 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
9 * btree pointers - they must match for the pointer to be considered valid.
10 *
11 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
12 * bucket simply by incrementing its gen.
13 *
14 * The gens (along with the priorities; it's really the gens are important but
15 * the code is named as if it's the priorities) are written in an arbitrary list
16 * of buckets on disk, with a pointer to them in the journal header.
17 *
18 * When we invalidate a bucket, we have to write its new gen to disk and wait
19 * for that write to complete before we use it - otherwise after a crash we
20 * could have pointers that appeared to be good but pointed to data that had
21 * been overwritten.
22 *
23 * Since the gens and priorities are all stored contiguously on disk, we can
24 * batch this up: We fill up the free_inc list with freshly invalidated buckets,
25 * call prio_write(), and when prio_write() finishes we pull buckets off the
26 * free_inc list and optionally discard them.
27 *
28 * free_inc isn't the only freelist - if it was, we'd often to sleep while
29 * priorities and gens were being written before we could allocate. c->free is a
30 * smaller freelist, and buckets on that list are always ready to be used.
31 *
32 * If we've got discards enabled, that happens when a bucket moves from the
33 * free_inc list to the free list.
34 *
35 * There is another freelist, because sometimes we have buckets that we know
36 * have nothing pointing into them - these we can reuse without waiting for
37 * priorities to be rewritten. These come from freed btree nodes and buckets
38 * that garbage collection discovered no longer had valid keys pointing into
39 * them (because they were overwritten). That's the unused list - buckets on the
40 * unused list move to the free list, optionally being discarded in the process.
41 *
42 * It's also important to ensure that gens don't wrap around - with respect to
43 * either the oldest gen in the btree or the gen on disk. This is quite
44 * difficult to do in practice, but we explicitly guard against it anyways - if
45 * a bucket is in danger of wrapping around we simply skip invalidating it that
46 * time around, and we garbage collect or rewrite the priorities sooner than we
47 * would have otherwise.
48 *
49 * bch_bucket_alloc() allocates a single bucket from a specific cache.
50 *
51 * bch_bucket_alloc_set() allocates one or more buckets from different caches
52 * out of a cache set.
53 *
54 * free_some_buckets() drives all the processes described above. It's called
55 * from bch_bucket_alloc() and a few other places that need to make sure free
56 * buckets are ready.
57 *
58 * invalidate_buckets_(lru|fifo)() find buckets that are available to be
59 * invalidated, and then invalidate them and stick them on the free_inc list -
60 * in either lru or fifo order.
61 */
62
63#include "bcache.h"
64#include "btree.h"
65
49b1212d 66#include <linux/blkdev.h>
79826c35 67#include <linux/freezer.h>
119ba0f8 68#include <linux/kthread.h>
cafe5635 69#include <linux/random.h>
c37511b8 70#include <trace/events/bcache.h>
cafe5635 71
cafe5635
KO
72/* Bucket heap / gen */
73
74uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
75{
76 uint8_t ret = ++b->gen;
77
78 ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
79 WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
80
cafe5635
KO
81 return ret;
82}
83
84void bch_rescale_priorities(struct cache_set *c, int sectors)
85{
86 struct cache *ca;
87 struct bucket *b;
88 unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
89 unsigned i;
90 int r;
91
92 atomic_sub(sectors, &c->rescale);
93
94 do {
95 r = atomic_read(&c->rescale);
96
97 if (r >= 0)
98 return;
99 } while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
100
101 mutex_lock(&c->bucket_lock);
102
103 c->min_prio = USHRT_MAX;
104
105 for_each_cache(ca, c, i)
106 for_each_bucket(b, ca)
107 if (b->prio &&
108 b->prio != BTREE_PRIO &&
109 !atomic_read(&b->pin)) {
110 b->prio--;
111 c->min_prio = min(c->min_prio, b->prio);
112 }
113
114 mutex_unlock(&c->bucket_lock);
115}
116
2531d9ee
KO
117/*
118 * Background allocation thread: scans for buckets to be invalidated,
119 * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
120 * then optionally issues discard commands to the newly free buckets, then puts
121 * them on the various freelists.
122 */
cafe5635
KO
123
124static inline bool can_inc_bucket_gen(struct bucket *b)
125{
2531d9ee 126 return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
cafe5635
KO
127}
128
2531d9ee 129bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
cafe5635 130{
2531d9ee 131 BUG_ON(!ca->set->gc_mark_valid);
cafe5635 132
4fe6a816
KO
133 return (!GC_MARK(b) ||
134 GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
cafe5635
KO
135 !atomic_read(&b->pin) &&
136 can_inc_bucket_gen(b);
137}
138
2531d9ee 139void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
cafe5635 140{
2531d9ee
KO
141 lockdep_assert_held(&ca->set->bucket_lock);
142 BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
7159b1ad
KO
143
144 if (GC_SECTORS_USED(b))
2531d9ee 145 trace_bcache_invalidate(ca, b - ca->buckets);
7159b1ad 146
cafe5635
KO
147 bch_inc_gen(ca, b);
148 b->prio = INITIAL_PRIO;
149 atomic_inc(&b->pin);
2531d9ee
KO
150}
151
152static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
153{
154 __bch_invalidate_one_bucket(ca, b);
155
156 fifo_push(&ca->free_inc, b - ca->buckets);
cafe5635
KO
157}
158
e0a985a4
KO
159/*
160 * Determines what order we're going to reuse buckets, smallest bucket_prio()
161 * first: we also take into account the number of sectors of live data in that
162 * bucket, and in order for that multiply to make sense we have to scale bucket
163 *
164 * Thus, we scale the bucket priorities so that the bucket with the smallest
165 * prio is worth 1/8th of what INITIAL_PRIO is worth.
166 */
167
168#define bucket_prio(b) \
169({ \
170 unsigned min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \
171 \
172 (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); \
173})
cafe5635 174
b1a67b0f
KO
175#define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r))
176#define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r))
cafe5635 177
b1a67b0f
KO
178static void invalidate_buckets_lru(struct cache *ca)
179{
cafe5635
KO
180 struct bucket *b;
181 ssize_t i;
182
183 ca->heap.used = 0;
184
185 for_each_bucket(b, ca) {
2531d9ee 186 if (!bch_can_invalidate_bucket(ca, b))
86b26b82
KO
187 continue;
188
189 if (!heap_full(&ca->heap))
190 heap_add(&ca->heap, b, bucket_max_cmp);
191 else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
192 ca->heap.data[0] = b;
193 heap_sift(&ca->heap, 0, bucket_max_cmp);
cafe5635
KO
194 }
195 }
196
cafe5635
KO
197 for (i = ca->heap.used / 2 - 1; i >= 0; --i)
198 heap_sift(&ca->heap, i, bucket_min_cmp);
199
200 while (!fifo_full(&ca->free_inc)) {
201 if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
86b26b82
KO
202 /*
203 * We don't want to be calling invalidate_buckets()
cafe5635
KO
204 * multiple times when it can't do anything
205 */
206 ca->invalidate_needs_gc = 1;
72a44517 207 wake_up_gc(ca->set);
cafe5635
KO
208 return;
209 }
210
2531d9ee 211 bch_invalidate_one_bucket(ca, b);
cafe5635
KO
212 }
213}
214
215static void invalidate_buckets_fifo(struct cache *ca)
216{
217 struct bucket *b;
218 size_t checked = 0;
219
220 while (!fifo_full(&ca->free_inc)) {
221 if (ca->fifo_last_bucket < ca->sb.first_bucket ||
222 ca->fifo_last_bucket >= ca->sb.nbuckets)
223 ca->fifo_last_bucket = ca->sb.first_bucket;
224
225 b = ca->buckets + ca->fifo_last_bucket++;
226
2531d9ee
KO
227 if (bch_can_invalidate_bucket(ca, b))
228 bch_invalidate_one_bucket(ca, b);
cafe5635
KO
229
230 if (++checked >= ca->sb.nbuckets) {
231 ca->invalidate_needs_gc = 1;
72a44517 232 wake_up_gc(ca->set);
cafe5635
KO
233 return;
234 }
235 }
236}
237
238static void invalidate_buckets_random(struct cache *ca)
239{
240 struct bucket *b;
241 size_t checked = 0;
242
243 while (!fifo_full(&ca->free_inc)) {
244 size_t n;
245 get_random_bytes(&n, sizeof(n));
246
247 n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
248 n += ca->sb.first_bucket;
249
250 b = ca->buckets + n;
251
2531d9ee
KO
252 if (bch_can_invalidate_bucket(ca, b))
253 bch_invalidate_one_bucket(ca, b);
cafe5635
KO
254
255 if (++checked >= ca->sb.nbuckets / 2) {
256 ca->invalidate_needs_gc = 1;
72a44517 257 wake_up_gc(ca->set);
cafe5635
KO
258 return;
259 }
260 }
261}
262
263static void invalidate_buckets(struct cache *ca)
264{
2531d9ee 265 BUG_ON(ca->invalidate_needs_gc);
cafe5635
KO
266
267 switch (CACHE_REPLACEMENT(&ca->sb)) {
268 case CACHE_REPLACEMENT_LRU:
269 invalidate_buckets_lru(ca);
270 break;
271 case CACHE_REPLACEMENT_FIFO:
272 invalidate_buckets_fifo(ca);
273 break;
274 case CACHE_REPLACEMENT_RANDOM:
275 invalidate_buckets_random(ca);
276 break;
277 }
278}
279
280#define allocator_wait(ca, cond) \
281do { \
86b26b82 282 while (1) { \
119ba0f8 283 set_current_state(TASK_INTERRUPTIBLE); \
86b26b82
KO
284 if (cond) \
285 break; \
cafe5635
KO
286 \
287 mutex_unlock(&(ca)->set->bucket_lock); \
79826c35 288 if (kthread_should_stop()) \
119ba0f8 289 return 0; \
cafe5635 290 \
79826c35 291 try_to_freeze(); \
cafe5635 292 schedule(); \
cafe5635
KO
293 mutex_lock(&(ca)->set->bucket_lock); \
294 } \
119ba0f8 295 __set_current_state(TASK_RUNNING); \
cafe5635
KO
296} while (0)
297
78365411
KO
298static int bch_allocator_push(struct cache *ca, long bucket)
299{
300 unsigned i;
301
302 /* Prios/gens are actually the most important reserve */
303 if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
304 return true;
305
306 for (i = 0; i < RESERVE_NR; i++)
307 if (fifo_push(&ca->free[i], bucket))
308 return true;
309
310 return false;
311}
312
119ba0f8 313static int bch_allocator_thread(void *arg)
cafe5635 314{
119ba0f8 315 struct cache *ca = arg;
cafe5635
KO
316
317 mutex_lock(&ca->set->bucket_lock);
318
319 while (1) {
86b26b82
KO
320 /*
321 * First, we pull buckets off of the unused and free_inc lists,
322 * possibly issue discards to them, then we add the bucket to
323 * the free list:
324 */
2531d9ee 325 while (!fifo_empty(&ca->free_inc)) {
cafe5635
KO
326 long bucket;
327
2531d9ee 328 fifo_pop(&ca->free_inc, bucket);
cafe5635 329
cafe5635 330 if (ca->discard) {
49b1212d
KO
331 mutex_unlock(&ca->set->bucket_lock);
332 blkdev_issue_discard(ca->bdev,
333 bucket_to_sector(ca->set, bucket),
8b326d3a 334 ca->sb.bucket_size, GFP_KERNEL, 0);
49b1212d 335 mutex_lock(&ca->set->bucket_lock);
cafe5635 336 }
49b1212d 337
78365411 338 allocator_wait(ca, bch_allocator_push(ca, bucket));
0a63b66d 339 wake_up(&ca->set->btree_cache_wait);
35fcd848 340 wake_up(&ca->set->bucket_wait);
cafe5635
KO
341 }
342
86b26b82
KO
343 /*
344 * We've run out of free buckets, we need to find some buckets
345 * we can invalidate. First, invalidate them in memory and add
346 * them to the free_inc list:
347 */
cafe5635 348
2531d9ee 349retry_invalidate:
86b26b82 350 allocator_wait(ca, ca->set->gc_mark_valid &&
2531d9ee 351 !ca->invalidate_needs_gc);
86b26b82 352 invalidate_buckets(ca);
cafe5635 353
86b26b82
KO
354 /*
355 * Now, we write their new gens to disk so we can start writing
356 * new stuff to them:
357 */
358 allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
2531d9ee
KO
359 if (CACHE_SYNC(&ca->set->sb)) {
360 /*
361 * This could deadlock if an allocation with a btree
362 * node locked ever blocked - having the btree node
363 * locked would block garbage collection, but here we're
364 * waiting on garbage collection before we invalidate
365 * and free anything.
366 *
367 * But this should be safe since the btree code always
368 * uses btree_check_reserve() before allocating now, and
369 * if it fails it blocks without btree nodes locked.
370 */
371 if (!fifo_full(&ca->free_inc))
372 goto retry_invalidate;
373
cafe5635 374 bch_prio_write(ca);
2531d9ee 375 }
cafe5635
KO
376 }
377}
378
2531d9ee
KO
379/* Allocation */
380
78365411 381long bch_bucket_alloc(struct cache *ca, unsigned reserve, bool wait)
cafe5635 382{
35fcd848
KO
383 DEFINE_WAIT(w);
384 struct bucket *b;
385 long r;
386
387 /* fastpath */
78365411
KO
388 if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
389 fifo_pop(&ca->free[reserve], r))
35fcd848 390 goto out;
35fcd848 391
7159b1ad
KO
392 if (!wait) {
393 trace_bcache_alloc_fail(ca, reserve);
35fcd848 394 return -1;
7159b1ad 395 }
35fcd848 396
78365411 397 do {
35fcd848
KO
398 prepare_to_wait(&ca->set->bucket_wait, &w,
399 TASK_UNINTERRUPTIBLE);
400
401 mutex_unlock(&ca->set->bucket_lock);
402 schedule();
403 mutex_lock(&ca->set->bucket_lock);
78365411
KO
404 } while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
405 !fifo_pop(&ca->free[reserve], r));
35fcd848
KO
406
407 finish_wait(&ca->set->bucket_wait, &w);
408out:
119ba0f8 409 wake_up_process(ca->alloc_thread);
cafe5635 410
7159b1ad
KO
411 trace_bcache_alloc(ca, reserve);
412
280481d0 413 if (expensive_debug_checks(ca->set)) {
cafe5635
KO
414 size_t iter;
415 long i;
78365411 416 unsigned j;
cafe5635
KO
417
418 for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
419 BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
420
78365411
KO
421 for (j = 0; j < RESERVE_NR; j++)
422 fifo_for_each(i, &ca->free[j], iter)
423 BUG_ON(i == r);
cafe5635
KO
424 fifo_for_each(i, &ca->free_inc, iter)
425 BUG_ON(i == r);
cafe5635 426 }
280481d0 427
35fcd848 428 b = ca->buckets + r;
cafe5635 429
35fcd848 430 BUG_ON(atomic_read(&b->pin) != 1);
cafe5635 431
35fcd848 432 SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
cafe5635 433
78365411 434 if (reserve <= RESERVE_PRIO) {
35fcd848 435 SET_GC_MARK(b, GC_MARK_METADATA);
981aa8c0 436 SET_GC_MOVE(b, 0);
35fcd848
KO
437 b->prio = BTREE_PRIO;
438 } else {
439 SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
981aa8c0 440 SET_GC_MOVE(b, 0);
35fcd848 441 b->prio = INITIAL_PRIO;
cafe5635
KO
442 }
443
35fcd848 444 return r;
cafe5635
KO
445}
446
2531d9ee
KO
447void __bch_bucket_free(struct cache *ca, struct bucket *b)
448{
449 SET_GC_MARK(b, 0);
450 SET_GC_SECTORS_USED(b, 0);
451}
452
cafe5635
KO
453void bch_bucket_free(struct cache_set *c, struct bkey *k)
454{
455 unsigned i;
456
2531d9ee
KO
457 for (i = 0; i < KEY_PTRS(k); i++)
458 __bch_bucket_free(PTR_CACHE(c, k, i),
459 PTR_BUCKET(c, k, i));
cafe5635
KO
460}
461
78365411 462int __bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
35fcd848 463 struct bkey *k, int n, bool wait)
cafe5635
KO
464{
465 int i;
466
467 lockdep_assert_held(&c->bucket_lock);
468 BUG_ON(!n || n > c->caches_loaded || n > 8);
469
470 bkey_init(k);
471
472 /* sort by free space/prio of oldest data in caches */
473
474 for (i = 0; i < n; i++) {
475 struct cache *ca = c->cache_by_alloc[i];
78365411 476 long b = bch_bucket_alloc(ca, reserve, wait);
cafe5635
KO
477
478 if (b == -1)
479 goto err;
480
481 k->ptr[i] = PTR(ca->buckets[b].gen,
482 bucket_to_sector(c, b),
483 ca->sb.nr_this_dev);
484
485 SET_KEY_PTRS(k, i + 1);
486 }
487
488 return 0;
489err:
490 bch_bucket_free(c, k);
3a3b6a4e 491 bkey_put(c, k);
cafe5635
KO
492 return -1;
493}
494
78365411 495int bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
35fcd848 496 struct bkey *k, int n, bool wait)
cafe5635
KO
497{
498 int ret;
499 mutex_lock(&c->bucket_lock);
78365411 500 ret = __bch_bucket_alloc_set(c, reserve, k, n, wait);
cafe5635
KO
501 mutex_unlock(&c->bucket_lock);
502 return ret;
503}
504
2599b53b
KO
505/* Sector allocator */
506
507struct open_bucket {
508 struct list_head list;
509 unsigned last_write_point;
510 unsigned sectors_free;
511 BKEY_PADDED(key);
512};
513
514/*
515 * We keep multiple buckets open for writes, and try to segregate different
516 * write streams for better cache utilization: first we look for a bucket where
517 * the last write to it was sequential with the current write, and failing that
518 * we look for a bucket that was last used by the same task.
519 *
520 * The ideas is if you've got multiple tasks pulling data into the cache at the
521 * same time, you'll get better cache utilization if you try to segregate their
522 * data and preserve locality.
523 *
524 * For example, say you've starting Firefox at the same time you're copying a
525 * bunch of files. Firefox will likely end up being fairly hot and stay in the
526 * cache awhile, but the data you copied might not be; if you wrote all that
527 * data to the same buckets it'd get invalidated at the same time.
528 *
529 * Both of those tasks will be doing fairly random IO so we can't rely on
530 * detecting sequential IO to segregate their data, but going off of the task
531 * should be a sane heuristic.
532 */
533static struct open_bucket *pick_data_bucket(struct cache_set *c,
534 const struct bkey *search,
535 unsigned write_point,
536 struct bkey *alloc)
537{
538 struct open_bucket *ret, *ret_task = NULL;
539
540 list_for_each_entry_reverse(ret, &c->data_buckets, list)
541 if (!bkey_cmp(&ret->key, search))
542 goto found;
543 else if (ret->last_write_point == write_point)
544 ret_task = ret;
545
546 ret = ret_task ?: list_first_entry(&c->data_buckets,
547 struct open_bucket, list);
548found:
549 if (!ret->sectors_free && KEY_PTRS(alloc)) {
550 ret->sectors_free = c->sb.bucket_size;
551 bkey_copy(&ret->key, alloc);
552 bkey_init(alloc);
553 }
554
555 if (!ret->sectors_free)
556 ret = NULL;
557
558 return ret;
559}
560
561/*
562 * Allocates some space in the cache to write to, and k to point to the newly
563 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
564 * end of the newly allocated space).
565 *
566 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
567 * sectors were actually allocated.
568 *
569 * If s->writeback is true, will not fail.
570 */
571bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors,
572 unsigned write_point, unsigned write_prio, bool wait)
573{
574 struct open_bucket *b;
575 BKEY_PADDED(key) alloc;
576 unsigned i;
577
578 /*
579 * We might have to allocate a new bucket, which we can't do with a
580 * spinlock held. So if we have to allocate, we drop the lock, allocate
581 * and then retry. KEY_PTRS() indicates whether alloc points to
582 * allocated bucket(s).
583 */
584
585 bkey_init(&alloc.key);
586 spin_lock(&c->data_bucket_lock);
587
588 while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
589 unsigned watermark = write_prio
78365411
KO
590 ? RESERVE_MOVINGGC
591 : RESERVE_NONE;
2599b53b
KO
592
593 spin_unlock(&c->data_bucket_lock);
594
595 if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
596 return false;
597
598 spin_lock(&c->data_bucket_lock);
599 }
600
601 /*
602 * If we had to allocate, we might race and not need to allocate the
603 * second time we call find_data_bucket(). If we allocated a bucket but
604 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
605 */
606 if (KEY_PTRS(&alloc.key))
3a3b6a4e 607 bkey_put(c, &alloc.key);
2599b53b
KO
608
609 for (i = 0; i < KEY_PTRS(&b->key); i++)
610 EBUG_ON(ptr_stale(c, &b->key, i));
611
612 /* Set up the pointer to the space we're allocating: */
613
614 for (i = 0; i < KEY_PTRS(&b->key); i++)
615 k->ptr[i] = b->key.ptr[i];
616
617 sectors = min(sectors, b->sectors_free);
618
619 SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
620 SET_KEY_SIZE(k, sectors);
621 SET_KEY_PTRS(k, KEY_PTRS(&b->key));
622
623 /*
624 * Move b to the end of the lru, and keep track of what this bucket was
625 * last used for:
626 */
627 list_move_tail(&b->list, &c->data_buckets);
628 bkey_copy_key(&b->key, k);
629 b->last_write_point = write_point;
630
631 b->sectors_free -= sectors;
632
633 for (i = 0; i < KEY_PTRS(&b->key); i++) {
634 SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
635
636 atomic_long_add(sectors,
637 &PTR_CACHE(c, &b->key, i)->sectors_written);
638 }
639
640 if (b->sectors_free < c->sb.block_size)
641 b->sectors_free = 0;
642
643 /*
644 * k takes refcounts on the buckets it points to until it's inserted
645 * into the btree, but if we're done with this bucket we just transfer
646 * get_data_bucket()'s refcount.
647 */
648 if (b->sectors_free)
649 for (i = 0; i < KEY_PTRS(&b->key); i++)
650 atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
651
652 spin_unlock(&c->data_bucket_lock);
653 return true;
654}
655
cafe5635
KO
656/* Init */
657
2599b53b
KO
658void bch_open_buckets_free(struct cache_set *c)
659{
660 struct open_bucket *b;
661
662 while (!list_empty(&c->data_buckets)) {
663 b = list_first_entry(&c->data_buckets,
664 struct open_bucket, list);
665 list_del(&b->list);
666 kfree(b);
667 }
668}
669
670int bch_open_buckets_alloc(struct cache_set *c)
671{
672 int i;
673
674 spin_lock_init(&c->data_bucket_lock);
675
676 for (i = 0; i < 6; i++) {
677 struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
678 if (!b)
679 return -ENOMEM;
680
681 list_add(&b->list, &c->data_buckets);
682 }
683
684 return 0;
685}
686
119ba0f8
KO
687int bch_cache_allocator_start(struct cache *ca)
688{
79826c35
KO
689 struct task_struct *k = kthread_run(bch_allocator_thread,
690 ca, "bcache_allocator");
691 if (IS_ERR(k))
692 return PTR_ERR(k);
119ba0f8 693
79826c35 694 ca->alloc_thread = k;
119ba0f8
KO
695 return 0;
696}
This page took 0.1967 seconds and 5 git commands to generate.