dm: fix use after free crash due to incorrect cleanup sequence
[deliverable/linux.git] / drivers / md / dm-thin.c
CommitLineData
991d9fa0 1/*
e49e5829 2 * Copyright (C) 2011-2012 Red Hat UK.
991d9fa0
JT
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-thin-metadata.h"
4f81a417 8#include "dm-bio-prison.h"
1f4e0ff0 9#include "dm.h"
991d9fa0
JT
10
11#include <linux/device-mapper.h>
12#include <linux/dm-io.h>
13#include <linux/dm-kcopyd.h>
0f30af98 14#include <linux/jiffies.h>
604ea906 15#include <linux/log2.h>
991d9fa0 16#include <linux/list.h>
c140e1c4 17#include <linux/rculist.h>
991d9fa0
JT
18#include <linux/init.h>
19#include <linux/module.h>
20#include <linux/slab.h>
a822c83e 21#include <linux/vmalloc.h>
ac4c3f34 22#include <linux/sort.h>
67324ea1 23#include <linux/rbtree.h>
991d9fa0
JT
24
25#define DM_MSG_PREFIX "thin"
26
27/*
28 * Tunable constants
29 */
7768ed33 30#define ENDIO_HOOK_POOL_SIZE 1024
991d9fa0 31#define MAPPING_POOL_SIZE 1024
905e51b3 32#define COMMIT_PERIOD HZ
80c57893
MS
33#define NO_SPACE_TIMEOUT_SECS 60
34
35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
991d9fa0 36
df5d2e90
MP
37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 "A percentage of time allocated for copy on write");
39
991d9fa0
JT
40/*
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
43 */
44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
991d9fa0
JT
47/*
48 * Device id is restricted to 24 bits.
49 */
50#define MAX_DEV_ID ((1 << 24) - 1)
51
52/*
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
55 *
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
61 * same data blocks.
62 *
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
65 *
66 * Let's say we write to a shared block in what was the origin. The
67 * steps are:
68 *
69 * i) plug io further to this physical block. (see bio_prison code).
70 *
71 * ii) quiesce any read io to that shared data block. Obviously
44feb387 72 * including all devices that share this block. (see dm_deferred_set code)
991d9fa0
JT
73 *
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
76 *
77 * iv) insert the new mapping into the origin's btree
fe878f34 78 * (process_prepared_mapping). This act of inserting breaks some
991d9fa0
JT
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
84 *
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
87 *
88 * Steps (ii) and (iii) occur in parallel.
89 *
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
93 *
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
97 *
98 * - The snap mapping still points to the old block. As it would after
99 * the commit.
100 *
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
108 */
109
110/*----------------------------------------------------------------*/
111
991d9fa0
JT
112/*
113 * Key building.
114 */
34fbcf62
JT
115enum lock_space {
116 VIRTUAL,
117 PHYSICAL
118};
119
120static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
991d9fa0 122{
34fbcf62 123 key->virtual = (ls == VIRTUAL);
991d9fa0 124 key->dev = dm_thin_dev_id(td);
5f274d88 125 key->block_begin = b;
34fbcf62
JT
126 key->block_end = e;
127}
128
129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 struct dm_cell_key *key)
131{
132 build_key(td, PHYSICAL, b, b + 1llu, key);
991d9fa0
JT
133}
134
135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
44feb387 136 struct dm_cell_key *key)
991d9fa0 137{
34fbcf62 138 build_key(td, VIRTUAL, b, b + 1llu, key);
991d9fa0
JT
139}
140
141/*----------------------------------------------------------------*/
142
7d327fe0
JT
143#define THROTTLE_THRESHOLD (1 * HZ)
144
145struct throttle {
146 struct rw_semaphore lock;
147 unsigned long threshold;
148 bool throttle_applied;
149};
150
151static void throttle_init(struct throttle *t)
152{
153 init_rwsem(&t->lock);
154 t->throttle_applied = false;
155}
156
157static void throttle_work_start(struct throttle *t)
158{
159 t->threshold = jiffies + THROTTLE_THRESHOLD;
160}
161
162static void throttle_work_update(struct throttle *t)
163{
164 if (!t->throttle_applied && jiffies > t->threshold) {
165 down_write(&t->lock);
166 t->throttle_applied = true;
167 }
168}
169
170static void throttle_work_complete(struct throttle *t)
171{
172 if (t->throttle_applied) {
173 t->throttle_applied = false;
174 up_write(&t->lock);
175 }
176}
177
178static void throttle_lock(struct throttle *t)
179{
180 down_read(&t->lock);
181}
182
183static void throttle_unlock(struct throttle *t)
184{
185 up_read(&t->lock);
186}
187
188/*----------------------------------------------------------------*/
189
991d9fa0
JT
190/*
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
193 * devices.
194 */
a24c2569 195struct dm_thin_new_mapping;
67e2e2b2 196
e49e5829 197/*
3e1a0699 198 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
e49e5829
JT
199 */
200enum pool_mode {
201 PM_WRITE, /* metadata may be changed */
3e1a0699 202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
e49e5829
JT
203 PM_READ_ONLY, /* metadata may not be changed */
204 PM_FAIL, /* all I/O fails */
205};
206
67e2e2b2 207struct pool_features {
e49e5829
JT
208 enum pool_mode mode;
209
9bc142dd
MS
210 bool zero_new_blocks:1;
211 bool discard_enabled:1;
212 bool discard_passdown:1;
787a996c 213 bool error_if_no_space:1;
67e2e2b2
JT
214};
215
e49e5829
JT
216struct thin_c;
217typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
a374bb21 218typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
e49e5829
JT
219typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220
ac4c3f34
JT
221#define CELL_SORT_ARRAY_SIZE 8192
222
991d9fa0
JT
223struct pool {
224 struct list_head list;
225 struct dm_target *ti; /* Only set if a pool target is bound */
226
227 struct mapped_device *pool_md;
228 struct block_device *md_dev;
229 struct dm_pool_metadata *pmd;
230
991d9fa0 231 dm_block_t low_water_blocks;
55f2b8bd 232 uint32_t sectors_per_block;
f9a8e0cd 233 int sectors_per_block_shift;
991d9fa0 234
67e2e2b2 235 struct pool_features pf;
88a6621b 236 bool low_water_triggered:1; /* A dm event has been sent */
80e96c54 237 bool suspended:1;
991d9fa0 238
44feb387 239 struct dm_bio_prison *prison;
991d9fa0
JT
240 struct dm_kcopyd_client *copier;
241
242 struct workqueue_struct *wq;
7d327fe0 243 struct throttle throttle;
991d9fa0 244 struct work_struct worker;
905e51b3 245 struct delayed_work waker;
85ad643b 246 struct delayed_work no_space_timeout;
991d9fa0 247
905e51b3 248 unsigned long last_commit_jiffies;
55f2b8bd 249 unsigned ref_count;
991d9fa0
JT
250
251 spinlock_t lock;
991d9fa0
JT
252 struct bio_list deferred_flush_bios;
253 struct list_head prepared_mappings;
104655fd 254 struct list_head prepared_discards;
c140e1c4 255 struct list_head active_thins;
991d9fa0 256
44feb387
MS
257 struct dm_deferred_set *shared_read_ds;
258 struct dm_deferred_set *all_io_ds;
991d9fa0 259
a24c2569 260 struct dm_thin_new_mapping *next_mapping;
991d9fa0 261 mempool_t *mapping_pool;
e49e5829
JT
262
263 process_bio_fn process_bio;
264 process_bio_fn process_discard;
265
a374bb21
JT
266 process_cell_fn process_cell;
267 process_cell_fn process_discard_cell;
268
e49e5829
JT
269 process_mapping_fn process_prepared_mapping;
270 process_mapping_fn process_prepared_discard;
ac4c3f34 271
a822c83e 272 struct dm_bio_prison_cell **cell_sort_array;
991d9fa0
JT
273};
274
e49e5829 275static enum pool_mode get_pool_mode(struct pool *pool);
b5330655 276static void metadata_operation_failed(struct pool *pool, const char *op, int r);
e49e5829 277
991d9fa0
JT
278/*
279 * Target context for a pool.
280 */
281struct pool_c {
282 struct dm_target *ti;
283 struct pool *pool;
284 struct dm_dev *data_dev;
285 struct dm_dev *metadata_dev;
286 struct dm_target_callbacks callbacks;
287
288 dm_block_t low_water_blocks;
0424caa1
MS
289 struct pool_features requested_pf; /* Features requested during table load */
290 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
991d9fa0
JT
291};
292
293/*
294 * Target context for a thin.
295 */
296struct thin_c {
c140e1c4 297 struct list_head list;
991d9fa0 298 struct dm_dev *pool_dev;
2dd9c257 299 struct dm_dev *origin_dev;
e5aea7b4 300 sector_t origin_size;
991d9fa0
JT
301 dm_thin_id dev_id;
302
303 struct pool *pool;
304 struct dm_thin_device *td;
583024d2
MS
305 struct mapped_device *thin_md;
306
738211f7 307 bool requeue_mode:1;
c140e1c4 308 spinlock_t lock;
a374bb21 309 struct list_head deferred_cells;
c140e1c4
MS
310 struct bio_list deferred_bio_list;
311 struct bio_list retry_on_resume_list;
67324ea1 312 struct rb_root sort_bio_list; /* sorted list of deferred bios */
b10ebd34
JT
313
314 /*
315 * Ensures the thin is not destroyed until the worker has finished
316 * iterating the active_thins list.
317 */
318 atomic_t refcount;
319 struct completion can_destroy;
991d9fa0
JT
320};
321
322/*----------------------------------------------------------------*/
323
34fbcf62
JT
324/**
325 * __blkdev_issue_discard_async - queue a discard with async completion
326 * @bdev: blockdev to issue discard for
327 * @sector: start sector
328 * @nr_sects: number of sectors to discard
329 * @gfp_mask: memory allocation flags (for bio_alloc)
330 * @flags: BLKDEV_IFL_* flags to control behaviour
331 * @parent_bio: parent discard bio that all sub discards get chained to
332 *
333 * Description:
334 * Asynchronously issue a discard request for the sectors in question.
335 * NOTE: this variant of blk-core's blkdev_issue_discard() is a stop-gap
336 * that is being kept local to DM thinp until the block changes to allow
337 * late bio splitting land upstream.
338 */
339static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector,
340 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags,
341 struct bio *parent_bio)
342{
343 struct request_queue *q = bdev_get_queue(bdev);
344 int type = REQ_WRITE | REQ_DISCARD;
345 unsigned int max_discard_sectors, granularity;
346 int alignment;
347 struct bio *bio;
348 int ret = 0;
349 struct blk_plug plug;
350
351 if (!q)
352 return -ENXIO;
353
354 if (!blk_queue_discard(q))
355 return -EOPNOTSUPP;
356
357 /* Zero-sector (unknown) and one-sector granularities are the same. */
358 granularity = max(q->limits.discard_granularity >> 9, 1U);
359 alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
360
361 /*
362 * Ensure that max_discard_sectors is of the proper
363 * granularity, so that requests stay aligned after a split.
364 */
365 max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9);
366 max_discard_sectors -= max_discard_sectors % granularity;
367 if (unlikely(!max_discard_sectors)) {
368 /* Avoid infinite loop below. Being cautious never hurts. */
369 return -EOPNOTSUPP;
370 }
371
372 if (flags & BLKDEV_DISCARD_SECURE) {
373 if (!blk_queue_secdiscard(q))
374 return -EOPNOTSUPP;
375 type |= REQ_SECURE;
376 }
377
378 blk_start_plug(&plug);
379 while (nr_sects) {
380 unsigned int req_sects;
381 sector_t end_sect, tmp;
382
383 /*
384 * Required bio_put occurs in bio_endio thanks to bio_chain below
385 */
386 bio = bio_alloc(gfp_mask, 1);
387 if (!bio) {
388 ret = -ENOMEM;
389 break;
390 }
391
392 req_sects = min_t(sector_t, nr_sects, max_discard_sectors);
393
394 /*
395 * If splitting a request, and the next starting sector would be
396 * misaligned, stop the discard at the previous aligned sector.
397 */
398 end_sect = sector + req_sects;
399 tmp = end_sect;
400 if (req_sects < nr_sects &&
401 sector_div(tmp, granularity) != alignment) {
402 end_sect = end_sect - alignment;
403 sector_div(end_sect, granularity);
404 end_sect = end_sect * granularity + alignment;
405 req_sects = end_sect - sector;
406 }
407
408 bio_chain(bio, parent_bio);
409
410 bio->bi_iter.bi_sector = sector;
411 bio->bi_bdev = bdev;
412
413 bio->bi_iter.bi_size = req_sects << 9;
414 nr_sects -= req_sects;
415 sector = end_sect;
416
417 submit_bio(type, bio);
418
419 /*
420 * We can loop for a long time in here, if someone does
421 * full device discards (like mkfs). Be nice and allow
422 * us to schedule out to avoid softlocking if preempt
423 * is disabled.
424 */
425 cond_resched();
426 }
427 blk_finish_plug(&plug);
428
429 return ret;
430}
431
432static bool block_size_is_power_of_two(struct pool *pool)
433{
434 return pool->sectors_per_block_shift >= 0;
435}
436
437static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
438{
439 return block_size_is_power_of_two(pool) ?
440 (b << pool->sectors_per_block_shift) :
441 (b * pool->sectors_per_block);
442}
443
444static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e,
445 struct bio *parent_bio)
446{
447 sector_t s = block_to_sectors(tc->pool, data_b);
448 sector_t len = block_to_sectors(tc->pool, data_e - data_b);
449
450 return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len,
451 GFP_NOWAIT, 0, parent_bio);
452}
453
454/*----------------------------------------------------------------*/
455
025b9685
JT
456/*
457 * wake_worker() is used when new work is queued and when pool_resume is
458 * ready to continue deferred IO processing.
459 */
460static void wake_worker(struct pool *pool)
461{
462 queue_work(pool->wq, &pool->worker);
463}
464
465/*----------------------------------------------------------------*/
466
6beca5eb
JT
467static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
468 struct dm_bio_prison_cell **cell_result)
469{
470 int r;
471 struct dm_bio_prison_cell *cell_prealloc;
472
473 /*
474 * Allocate a cell from the prison's mempool.
475 * This might block but it can't fail.
476 */
477 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
478
479 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
480 if (r)
481 /*
482 * We reused an old cell; we can get rid of
483 * the new one.
484 */
485 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
486
487 return r;
488}
489
490static void cell_release(struct pool *pool,
491 struct dm_bio_prison_cell *cell,
492 struct bio_list *bios)
493{
494 dm_cell_release(pool->prison, cell, bios);
495 dm_bio_prison_free_cell(pool->prison, cell);
496}
497
2d759a46
JT
498static void cell_visit_release(struct pool *pool,
499 void (*fn)(void *, struct dm_bio_prison_cell *),
500 void *context,
501 struct dm_bio_prison_cell *cell)
502{
503 dm_cell_visit_release(pool->prison, fn, context, cell);
504 dm_bio_prison_free_cell(pool->prison, cell);
505}
506
6beca5eb
JT
507static void cell_release_no_holder(struct pool *pool,
508 struct dm_bio_prison_cell *cell,
509 struct bio_list *bios)
510{
511 dm_cell_release_no_holder(pool->prison, cell, bios);
512 dm_bio_prison_free_cell(pool->prison, cell);
513}
514
af91805a
MS
515static void cell_error_with_code(struct pool *pool,
516 struct dm_bio_prison_cell *cell, int error_code)
6beca5eb 517{
af91805a 518 dm_cell_error(pool->prison, cell, error_code);
6beca5eb
JT
519 dm_bio_prison_free_cell(pool->prison, cell);
520}
521
af91805a
MS
522static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
523{
524 cell_error_with_code(pool, cell, -EIO);
525}
526
a374bb21
JT
527static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
528{
529 cell_error_with_code(pool, cell, 0);
530}
531
532static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
533{
534 cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
535}
536
6beca5eb
JT
537/*----------------------------------------------------------------*/
538
991d9fa0
JT
539/*
540 * A global list of pools that uses a struct mapped_device as a key.
541 */
542static struct dm_thin_pool_table {
543 struct mutex mutex;
544 struct list_head pools;
545} dm_thin_pool_table;
546
547static void pool_table_init(void)
548{
549 mutex_init(&dm_thin_pool_table.mutex);
550 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
551}
552
553static void __pool_table_insert(struct pool *pool)
554{
555 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
556 list_add(&pool->list, &dm_thin_pool_table.pools);
557}
558
559static void __pool_table_remove(struct pool *pool)
560{
561 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
562 list_del(&pool->list);
563}
564
565static struct pool *__pool_table_lookup(struct mapped_device *md)
566{
567 struct pool *pool = NULL, *tmp;
568
569 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
570
571 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
572 if (tmp->pool_md == md) {
573 pool = tmp;
574 break;
575 }
576 }
577
578 return pool;
579}
580
581static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
582{
583 struct pool *pool = NULL, *tmp;
584
585 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
586
587 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
588 if (tmp->md_dev == md_dev) {
589 pool = tmp;
590 break;
591 }
592 }
593
594 return pool;
595}
596
597/*----------------------------------------------------------------*/
598
a24c2569 599struct dm_thin_endio_hook {
eb2aa48d 600 struct thin_c *tc;
44feb387
MS
601 struct dm_deferred_entry *shared_read_entry;
602 struct dm_deferred_entry *all_io_entry;
a24c2569 603 struct dm_thin_new_mapping *overwrite_mapping;
67324ea1 604 struct rb_node rb_node;
34fbcf62 605 struct dm_bio_prison_cell *cell;
eb2aa48d
JT
606};
607
42d6a8ce
MS
608static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
609{
610 bio_list_merge(bios, master);
611 bio_list_init(master);
612}
613
614static void error_bio_list(struct bio_list *bios, int error)
991d9fa0
JT
615{
616 struct bio *bio;
42d6a8ce
MS
617
618 while ((bio = bio_list_pop(bios)))
619 bio_endio(bio, error);
620}
621
622static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
623{
991d9fa0 624 struct bio_list bios;
18adc577 625 unsigned long flags;
991d9fa0
JT
626
627 bio_list_init(&bios);
18adc577 628
c140e1c4 629 spin_lock_irqsave(&tc->lock, flags);
42d6a8ce 630 __merge_bio_list(&bios, master);
c140e1c4 631 spin_unlock_irqrestore(&tc->lock, flags);
991d9fa0 632
42d6a8ce 633 error_bio_list(&bios, error);
991d9fa0
JT
634}
635
a374bb21
JT
636static void requeue_deferred_cells(struct thin_c *tc)
637{
638 struct pool *pool = tc->pool;
639 unsigned long flags;
640 struct list_head cells;
641 struct dm_bio_prison_cell *cell, *tmp;
642
643 INIT_LIST_HEAD(&cells);
644
645 spin_lock_irqsave(&tc->lock, flags);
646 list_splice_init(&tc->deferred_cells, &cells);
647 spin_unlock_irqrestore(&tc->lock, flags);
648
649 list_for_each_entry_safe(cell, tmp, &cells, user_list)
650 cell_requeue(pool, cell);
651}
652
991d9fa0
JT
653static void requeue_io(struct thin_c *tc)
654{
3e1a0699 655 struct bio_list bios;
42d6a8ce 656 unsigned long flags;
3e1a0699
JT
657
658 bio_list_init(&bios);
659
c140e1c4 660 spin_lock_irqsave(&tc->lock, flags);
42d6a8ce
MS
661 __merge_bio_list(&bios, &tc->deferred_bio_list);
662 __merge_bio_list(&bios, &tc->retry_on_resume_list);
c140e1c4 663 spin_unlock_irqrestore(&tc->lock, flags);
3e1a0699 664
42d6a8ce
MS
665 error_bio_list(&bios, DM_ENDIO_REQUEUE);
666 requeue_deferred_cells(tc);
3e1a0699
JT
667}
668
c140e1c4
MS
669static void error_retry_list(struct pool *pool)
670{
671 struct thin_c *tc;
672
673 rcu_read_lock();
674 list_for_each_entry_rcu(tc, &pool->active_thins, list)
42d6a8ce 675 error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO);
c140e1c4
MS
676 rcu_read_unlock();
677}
678
991d9fa0
JT
679/*
680 * This section of code contains the logic for processing a thin device's IO.
681 * Much of the code depends on pool object resources (lists, workqueues, etc)
682 * but most is exclusively called from the thin target rather than the thin-pool
683 * target.
684 */
685
686static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
687{
58f77a21 688 struct pool *pool = tc->pool;
4f024f37 689 sector_t block_nr = bio->bi_iter.bi_sector;
55f2b8bd 690
58f77a21
MS
691 if (block_size_is_power_of_two(pool))
692 block_nr >>= pool->sectors_per_block_shift;
f9a8e0cd 693 else
58f77a21 694 (void) sector_div(block_nr, pool->sectors_per_block);
55f2b8bd
MS
695
696 return block_nr;
991d9fa0
JT
697}
698
34fbcf62
JT
699/*
700 * Returns the _complete_ blocks that this bio covers.
701 */
702static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
703 dm_block_t *begin, dm_block_t *end)
704{
705 struct pool *pool = tc->pool;
706 sector_t b = bio->bi_iter.bi_sector;
707 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
708
709 b += pool->sectors_per_block - 1ull; /* so we round up */
710
711 if (block_size_is_power_of_two(pool)) {
712 b >>= pool->sectors_per_block_shift;
713 e >>= pool->sectors_per_block_shift;
714 } else {
715 (void) sector_div(b, pool->sectors_per_block);
716 (void) sector_div(e, pool->sectors_per_block);
717 }
718
719 if (e < b)
720 /* Can happen if the bio is within a single block. */
721 e = b;
722
723 *begin = b;
724 *end = e;
725}
726
991d9fa0
JT
727static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
728{
729 struct pool *pool = tc->pool;
4f024f37 730 sector_t bi_sector = bio->bi_iter.bi_sector;
991d9fa0
JT
731
732 bio->bi_bdev = tc->pool_dev->bdev;
58f77a21 733 if (block_size_is_power_of_two(pool))
4f024f37
KO
734 bio->bi_iter.bi_sector =
735 (block << pool->sectors_per_block_shift) |
736 (bi_sector & (pool->sectors_per_block - 1));
58f77a21 737 else
4f024f37 738 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
58f77a21 739 sector_div(bi_sector, pool->sectors_per_block);
991d9fa0
JT
740}
741
2dd9c257
JT
742static void remap_to_origin(struct thin_c *tc, struct bio *bio)
743{
744 bio->bi_bdev = tc->origin_dev->bdev;
745}
746
4afdd680
JT
747static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
748{
749 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
750 dm_thin_changed_this_transaction(tc->td);
751}
752
e8088073
JT
753static void inc_all_io_entry(struct pool *pool, struct bio *bio)
754{
755 struct dm_thin_endio_hook *h;
756
757 if (bio->bi_rw & REQ_DISCARD)
758 return;
759
59c3d2c6 760 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
e8088073
JT
761 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
762}
763
2dd9c257 764static void issue(struct thin_c *tc, struct bio *bio)
991d9fa0
JT
765{
766 struct pool *pool = tc->pool;
767 unsigned long flags;
768
e49e5829
JT
769 if (!bio_triggers_commit(tc, bio)) {
770 generic_make_request(bio);
771 return;
772 }
773
991d9fa0 774 /*
e49e5829
JT
775 * Complete bio with an error if earlier I/O caused changes to
776 * the metadata that can't be committed e.g, due to I/O errors
777 * on the metadata device.
991d9fa0 778 */
e49e5829
JT
779 if (dm_thin_aborted_changes(tc->td)) {
780 bio_io_error(bio);
781 return;
782 }
783
784 /*
785 * Batch together any bios that trigger commits and then issue a
786 * single commit for them in process_deferred_bios().
787 */
788 spin_lock_irqsave(&pool->lock, flags);
789 bio_list_add(&pool->deferred_flush_bios, bio);
790 spin_unlock_irqrestore(&pool->lock, flags);
991d9fa0
JT
791}
792
2dd9c257
JT
793static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
794{
795 remap_to_origin(tc, bio);
796 issue(tc, bio);
797}
798
799static void remap_and_issue(struct thin_c *tc, struct bio *bio,
800 dm_block_t block)
801{
802 remap(tc, bio, block);
803 issue(tc, bio);
804}
805
991d9fa0
JT
806/*----------------------------------------------------------------*/
807
808/*
809 * Bio endio functions.
810 */
a24c2569 811struct dm_thin_new_mapping {
991d9fa0
JT
812 struct list_head list;
813
7f214665 814 bool pass_discard:1;
34fbcf62 815 bool maybe_shared:1;
991d9fa0 816
50f3c3ef
JT
817 /*
818 * Track quiescing, copying and zeroing preparation actions. When this
819 * counter hits zero the block is prepared and can be inserted into the
820 * btree.
821 */
822 atomic_t prepare_actions;
823
7f214665 824 int err;
991d9fa0 825 struct thin_c *tc;
34fbcf62 826 dm_block_t virt_begin, virt_end;
991d9fa0 827 dm_block_t data_block;
34fbcf62 828 struct dm_bio_prison_cell *cell;
991d9fa0
JT
829
830 /*
831 * If the bio covers the whole area of a block then we can avoid
832 * zeroing or copying. Instead this bio is hooked. The bio will
833 * still be in the cell, so care has to be taken to avoid issuing
834 * the bio twice.
835 */
836 struct bio *bio;
837 bio_end_io_t *saved_bi_end_io;
838};
839
50f3c3ef 840static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
991d9fa0
JT
841{
842 struct pool *pool = m->tc->pool;
843
50f3c3ef 844 if (atomic_dec_and_test(&m->prepare_actions)) {
daec338b 845 list_add_tail(&m->list, &pool->prepared_mappings);
991d9fa0
JT
846 wake_worker(pool);
847 }
848}
849
e5aea7b4 850static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
991d9fa0
JT
851{
852 unsigned long flags;
991d9fa0
JT
853 struct pool *pool = m->tc->pool;
854
991d9fa0 855 spin_lock_irqsave(&pool->lock, flags);
50f3c3ef 856 __complete_mapping_preparation(m);
991d9fa0
JT
857 spin_unlock_irqrestore(&pool->lock, flags);
858}
859
e5aea7b4
JT
860static void copy_complete(int read_err, unsigned long write_err, void *context)
861{
862 struct dm_thin_new_mapping *m = context;
863
864 m->err = read_err || write_err ? -EIO : 0;
865 complete_mapping_preparation(m);
866}
867
991d9fa0
JT
868static void overwrite_endio(struct bio *bio, int err)
869{
59c3d2c6 870 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
a24c2569 871 struct dm_thin_new_mapping *m = h->overwrite_mapping;
991d9fa0 872
8b908f8e
MS
873 bio->bi_end_io = m->saved_bi_end_io;
874
991d9fa0 875 m->err = err;
e5aea7b4 876 complete_mapping_preparation(m);
991d9fa0
JT
877}
878
991d9fa0
JT
879/*----------------------------------------------------------------*/
880
881/*
882 * Workqueue.
883 */
884
885/*
886 * Prepared mapping jobs.
887 */
888
889/*
2d759a46
JT
890 * This sends the bios in the cell, except the original holder, back
891 * to the deferred_bios list.
991d9fa0 892 */
f286ba0e 893static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
991d9fa0 894{
991d9fa0
JT
895 struct pool *pool = tc->pool;
896 unsigned long flags;
897
c140e1c4
MS
898 spin_lock_irqsave(&tc->lock, flags);
899 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
900 spin_unlock_irqrestore(&tc->lock, flags);
991d9fa0
JT
901
902 wake_worker(pool);
903}
904
a374bb21
JT
905static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
906
2d759a46
JT
907struct remap_info {
908 struct thin_c *tc;
909 struct bio_list defer_bios;
910 struct bio_list issue_bios;
911};
912
913static void __inc_remap_and_issue_cell(void *context,
914 struct dm_bio_prison_cell *cell)
a374bb21 915{
2d759a46 916 struct remap_info *info = context;
a374bb21 917 struct bio *bio;
a374bb21 918
2d759a46 919 while ((bio = bio_list_pop(&cell->bios))) {
a374bb21 920 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
2d759a46 921 bio_list_add(&info->defer_bios, bio);
a374bb21 922 else {
2d759a46
JT
923 inc_all_io_entry(info->tc->pool, bio);
924
925 /*
926 * We can't issue the bios with the bio prison lock
927 * held, so we add them to a list to issue on
928 * return from this function.
929 */
930 bio_list_add(&info->issue_bios, bio);
a374bb21
JT
931 }
932 }
933}
934
2d759a46
JT
935static void inc_remap_and_issue_cell(struct thin_c *tc,
936 struct dm_bio_prison_cell *cell,
937 dm_block_t block)
938{
939 struct bio *bio;
940 struct remap_info info;
941
942 info.tc = tc;
943 bio_list_init(&info.defer_bios);
944 bio_list_init(&info.issue_bios);
945
946 /*
947 * We have to be careful to inc any bios we're about to issue
948 * before the cell is released, and avoid a race with new bios
949 * being added to the cell.
950 */
951 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
952 &info, cell);
953
954 while ((bio = bio_list_pop(&info.defer_bios)))
955 thin_defer_bio(tc, bio);
956
957 while ((bio = bio_list_pop(&info.issue_bios)))
958 remap_and_issue(info.tc, bio, block);
959}
960
e49e5829
JT
961static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
962{
6beca5eb 963 cell_error(m->tc->pool, m->cell);
e49e5829
JT
964 list_del(&m->list);
965 mempool_free(m, m->tc->pool->mapping_pool);
966}
025b9685 967
a24c2569 968static void process_prepared_mapping(struct dm_thin_new_mapping *m)
991d9fa0
JT
969{
970 struct thin_c *tc = m->tc;
6beca5eb 971 struct pool *pool = tc->pool;
8b908f8e 972 struct bio *bio = m->bio;
991d9fa0
JT
973 int r;
974
991d9fa0 975 if (m->err) {
6beca5eb 976 cell_error(pool, m->cell);
905386f8 977 goto out;
991d9fa0
JT
978 }
979
980 /*
981 * Commit the prepared block into the mapping btree.
982 * Any I/O for this block arriving after this point will get
983 * remapped to it directly.
984 */
34fbcf62 985 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
991d9fa0 986 if (r) {
b5330655 987 metadata_operation_failed(pool, "dm_thin_insert_block", r);
6beca5eb 988 cell_error(pool, m->cell);
905386f8 989 goto out;
991d9fa0
JT
990 }
991
992 /*
993 * Release any bios held while the block was being provisioned.
994 * If we are processing a write bio that completely covers the block,
995 * we already processed it so can ignore it now when processing
996 * the bios in the cell.
997 */
998 if (bio) {
2d759a46 999 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
991d9fa0 1000 bio_endio(bio, 0);
2d759a46
JT
1001 } else {
1002 inc_all_io_entry(tc->pool, m->cell->holder);
1003 remap_and_issue(tc, m->cell->holder, m->data_block);
1004 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1005 }
991d9fa0 1006
905386f8 1007out:
991d9fa0 1008 list_del(&m->list);
6beca5eb 1009 mempool_free(m, pool->mapping_pool);
991d9fa0
JT
1010}
1011
34fbcf62
JT
1012/*----------------------------------------------------------------*/
1013
1014static void free_discard_mapping(struct dm_thin_new_mapping *m)
104655fd 1015{
104655fd 1016 struct thin_c *tc = m->tc;
34fbcf62
JT
1017 if (m->cell)
1018 cell_defer_no_holder(tc, m->cell);
1019 mempool_free(m, tc->pool->mapping_pool);
1020}
104655fd 1021
34fbcf62
JT
1022static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1023{
e49e5829 1024 bio_io_error(m->bio);
34fbcf62
JT
1025 free_discard_mapping(m);
1026}
1027
1028static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1029{
1030 bio_endio(m->bio, 0);
1031 free_discard_mapping(m);
1032}
1033
1034static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1035{
1036 int r;
1037 struct thin_c *tc = m->tc;
1038
1039 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1040 if (r) {
1041 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1042 bio_io_error(m->bio);
1043 } else
1044 bio_endio(m->bio, 0);
1045
f286ba0e 1046 cell_defer_no_holder(tc, m->cell);
e49e5829
JT
1047 mempool_free(m, tc->pool->mapping_pool);
1048}
1049
34fbcf62 1050static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
e49e5829 1051{
34fbcf62
JT
1052 /*
1053 * We've already unmapped this range of blocks, but before we
1054 * passdown we have to check that these blocks are now unused.
1055 */
1056 int r;
1057 bool used = true;
e49e5829 1058 struct thin_c *tc = m->tc;
34fbcf62
JT
1059 struct pool *pool = tc->pool;
1060 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
104655fd 1061
34fbcf62
JT
1062 while (b != end) {
1063 /* find start of unmapped run */
1064 for (; b < end; b++) {
1065 r = dm_pool_block_is_used(pool->pmd, b, &used);
1066 if (r)
1067 return r;
e8088073 1068
34fbcf62
JT
1069 if (!used)
1070 break;
19fa1a67 1071 }
104655fd 1072
34fbcf62
JT
1073 if (b == end)
1074 break;
1075
1076 /* find end of run */
1077 for (e = b + 1; e != end; e++) {
1078 r = dm_pool_block_is_used(pool->pmd, e, &used);
1079 if (r)
1080 return r;
1081
1082 if (used)
1083 break;
1084 }
1085
1086 r = issue_discard(tc, b, e, m->bio);
1087 if (r)
1088 return r;
1089
1090 b = e;
1091 }
1092
1093 return 0;
104655fd
JT
1094}
1095
34fbcf62 1096static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
e49e5829
JT
1097{
1098 int r;
1099 struct thin_c *tc = m->tc;
34fbcf62 1100 struct pool *pool = tc->pool;
e49e5829 1101
34fbcf62 1102 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
e49e5829 1103 if (r)
34fbcf62
JT
1104 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1105
1106 else if (m->maybe_shared)
1107 r = passdown_double_checking_shared_status(m);
1108 else
1109 r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio);
e49e5829 1110
34fbcf62
JT
1111 /*
1112 * Even if r is set, there could be sub discards in flight that we
1113 * need to wait for.
1114 */
1115 bio_endio(m->bio, r);
1116 cell_defer_no_holder(tc, m->cell);
1117 mempool_free(m, pool->mapping_pool);
e49e5829
JT
1118}
1119
104655fd 1120static void process_prepared(struct pool *pool, struct list_head *head,
e49e5829 1121 process_mapping_fn *fn)
991d9fa0
JT
1122{
1123 unsigned long flags;
1124 struct list_head maps;
a24c2569 1125 struct dm_thin_new_mapping *m, *tmp;
991d9fa0
JT
1126
1127 INIT_LIST_HEAD(&maps);
1128 spin_lock_irqsave(&pool->lock, flags);
104655fd 1129 list_splice_init(head, &maps);
991d9fa0
JT
1130 spin_unlock_irqrestore(&pool->lock, flags);
1131
1132 list_for_each_entry_safe(m, tmp, &maps, list)
e49e5829 1133 (*fn)(m);
991d9fa0
JT
1134}
1135
1136/*
1137 * Deferred bio jobs.
1138 */
104655fd 1139static int io_overlaps_block(struct pool *pool, struct bio *bio)
991d9fa0 1140{
4f024f37
KO
1141 return bio->bi_iter.bi_size ==
1142 (pool->sectors_per_block << SECTOR_SHIFT);
104655fd
JT
1143}
1144
1145static int io_overwrites_block(struct pool *pool, struct bio *bio)
1146{
1147 return (bio_data_dir(bio) == WRITE) &&
1148 io_overlaps_block(pool, bio);
991d9fa0
JT
1149}
1150
1151static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1152 bio_end_io_t *fn)
1153{
1154 *save = bio->bi_end_io;
1155 bio->bi_end_io = fn;
1156}
1157
1158static int ensure_next_mapping(struct pool *pool)
1159{
1160 if (pool->next_mapping)
1161 return 0;
1162
1163 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1164
1165 return pool->next_mapping ? 0 : -ENOMEM;
1166}
1167
a24c2569 1168static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
991d9fa0 1169{
16961b04 1170 struct dm_thin_new_mapping *m = pool->next_mapping;
991d9fa0
JT
1171
1172 BUG_ON(!pool->next_mapping);
1173
16961b04
MS
1174 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1175 INIT_LIST_HEAD(&m->list);
1176 m->bio = NULL;
1177
991d9fa0
JT
1178 pool->next_mapping = NULL;
1179
16961b04 1180 return m;
991d9fa0
JT
1181}
1182
e5aea7b4
JT
1183static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1184 sector_t begin, sector_t end)
1185{
1186 int r;
1187 struct dm_io_region to;
1188
1189 to.bdev = tc->pool_dev->bdev;
1190 to.sector = begin;
1191 to.count = end - begin;
1192
1193 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1194 if (r < 0) {
1195 DMERR_LIMIT("dm_kcopyd_zero() failed");
1196 copy_complete(1, 1, m);
1197 }
1198}
1199
452d7a62 1200static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
34fbcf62 1201 dm_block_t data_begin,
452d7a62
MS
1202 struct dm_thin_new_mapping *m)
1203{
1204 struct pool *pool = tc->pool;
1205 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1206
1207 h->overwrite_mapping = m;
1208 m->bio = bio;
1209 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1210 inc_all_io_entry(pool, bio);
34fbcf62 1211 remap_and_issue(tc, bio, data_begin);
452d7a62
MS
1212}
1213
e5aea7b4
JT
1214/*
1215 * A partial copy also needs to zero the uncopied region.
1216 */
991d9fa0 1217static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
2dd9c257
JT
1218 struct dm_dev *origin, dm_block_t data_origin,
1219 dm_block_t data_dest,
e5aea7b4
JT
1220 struct dm_bio_prison_cell *cell, struct bio *bio,
1221 sector_t len)
991d9fa0
JT
1222{
1223 int r;
1224 struct pool *pool = tc->pool;
a24c2569 1225 struct dm_thin_new_mapping *m = get_next_mapping(pool);
991d9fa0 1226
991d9fa0 1227 m->tc = tc;
34fbcf62
JT
1228 m->virt_begin = virt_block;
1229 m->virt_end = virt_block + 1u;
991d9fa0
JT
1230 m->data_block = data_dest;
1231 m->cell = cell;
991d9fa0 1232
e5aea7b4
JT
1233 /*
1234 * quiesce action + copy action + an extra reference held for the
1235 * duration of this function (we may need to inc later for a
1236 * partial zero).
1237 */
1238 atomic_set(&m->prepare_actions, 3);
1239
44feb387 1240 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
e5aea7b4 1241 complete_mapping_preparation(m); /* already quiesced */
991d9fa0
JT
1242
1243 /*
1244 * IO to pool_dev remaps to the pool target's data_dev.
1245 *
1246 * If the whole block of data is being overwritten, we can issue the
1247 * bio immediately. Otherwise we use kcopyd to clone the data first.
1248 */
452d7a62
MS
1249 if (io_overwrites_block(pool, bio))
1250 remap_and_issue_overwrite(tc, bio, data_dest, m);
1251 else {
991d9fa0
JT
1252 struct dm_io_region from, to;
1253
2dd9c257 1254 from.bdev = origin->bdev;
991d9fa0 1255 from.sector = data_origin * pool->sectors_per_block;
e5aea7b4 1256 from.count = len;
991d9fa0
JT
1257
1258 to.bdev = tc->pool_dev->bdev;
1259 to.sector = data_dest * pool->sectors_per_block;
e5aea7b4 1260 to.count = len;
991d9fa0
JT
1261
1262 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1263 0, copy_complete, m);
1264 if (r < 0) {
c397741c 1265 DMERR_LIMIT("dm_kcopyd_copy() failed");
e5aea7b4
JT
1266 copy_complete(1, 1, m);
1267
1268 /*
1269 * We allow the zero to be issued, to simplify the
1270 * error path. Otherwise we'd need to start
1271 * worrying about decrementing the prepare_actions
1272 * counter.
1273 */
1274 }
1275
1276 /*
1277 * Do we need to zero a tail region?
1278 */
1279 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1280 atomic_inc(&m->prepare_actions);
1281 ll_zero(tc, m,
1282 data_dest * pool->sectors_per_block + len,
1283 (data_dest + 1) * pool->sectors_per_block);
991d9fa0
JT
1284 }
1285 }
e5aea7b4
JT
1286
1287 complete_mapping_preparation(m); /* drop our ref */
991d9fa0
JT
1288}
1289
2dd9c257
JT
1290static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1291 dm_block_t data_origin, dm_block_t data_dest,
a24c2569 1292 struct dm_bio_prison_cell *cell, struct bio *bio)
2dd9c257
JT
1293{
1294 schedule_copy(tc, virt_block, tc->pool_dev,
e5aea7b4
JT
1295 data_origin, data_dest, cell, bio,
1296 tc->pool->sectors_per_block);
2dd9c257
JT
1297}
1298
991d9fa0 1299static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
a24c2569 1300 dm_block_t data_block, struct dm_bio_prison_cell *cell,
991d9fa0
JT
1301 struct bio *bio)
1302{
1303 struct pool *pool = tc->pool;
a24c2569 1304 struct dm_thin_new_mapping *m = get_next_mapping(pool);
991d9fa0 1305
50f3c3ef 1306 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
991d9fa0 1307 m->tc = tc;
34fbcf62
JT
1308 m->virt_begin = virt_block;
1309 m->virt_end = virt_block + 1u;
991d9fa0
JT
1310 m->data_block = data_block;
1311 m->cell = cell;
991d9fa0
JT
1312
1313 /*
1314 * If the whole block of data is being overwritten or we are not
1315 * zeroing pre-existing data, we can issue the bio immediately.
1316 * Otherwise we use kcopyd to zero the data first.
1317 */
f8ae7525
MS
1318 if (pool->pf.zero_new_blocks) {
1319 if (io_overwrites_block(pool, bio))
1320 remap_and_issue_overwrite(tc, bio, data_block, m);
1321 else
1322 ll_zero(tc, m, data_block * pool->sectors_per_block,
1323 (data_block + 1) * pool->sectors_per_block);
1324 } else
991d9fa0 1325 process_prepared_mapping(m);
e5aea7b4 1326}
991d9fa0 1327
e5aea7b4
JT
1328static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1329 dm_block_t data_dest,
1330 struct dm_bio_prison_cell *cell, struct bio *bio)
1331{
1332 struct pool *pool = tc->pool;
1333 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1334 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1335
1336 if (virt_block_end <= tc->origin_size)
1337 schedule_copy(tc, virt_block, tc->origin_dev,
1338 virt_block, data_dest, cell, bio,
1339 pool->sectors_per_block);
1340
1341 else if (virt_block_begin < tc->origin_size)
1342 schedule_copy(tc, virt_block, tc->origin_dev,
1343 virt_block, data_dest, cell, bio,
1344 tc->origin_size - virt_block_begin);
1345
1346 else
1347 schedule_zero(tc, virt_block, data_dest, cell, bio);
991d9fa0
JT
1348}
1349
2c43fd26
JT
1350static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1351
1352static void check_for_space(struct pool *pool)
1353{
1354 int r;
1355 dm_block_t nr_free;
1356
1357 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1358 return;
1359
1360 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1361 if (r)
1362 return;
1363
1364 if (nr_free)
1365 set_pool_mode(pool, PM_WRITE);
1366}
1367
e49e5829
JT
1368/*
1369 * A non-zero return indicates read_only or fail_io mode.
1370 * Many callers don't care about the return value.
1371 */
020cc3b5 1372static int commit(struct pool *pool)
e49e5829
JT
1373{
1374 int r;
1375
8d07e8a5 1376 if (get_pool_mode(pool) >= PM_READ_ONLY)
e49e5829
JT
1377 return -EINVAL;
1378
020cc3b5 1379 r = dm_pool_commit_metadata(pool->pmd);
b5330655
JT
1380 if (r)
1381 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
2c43fd26
JT
1382 else
1383 check_for_space(pool);
e49e5829
JT
1384
1385 return r;
1386}
1387
88a6621b
JT
1388static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1389{
1390 unsigned long flags;
1391
1392 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1393 DMWARN("%s: reached low water mark for data device: sending event.",
1394 dm_device_name(pool->pool_md));
1395 spin_lock_irqsave(&pool->lock, flags);
1396 pool->low_water_triggered = true;
1397 spin_unlock_irqrestore(&pool->lock, flags);
1398 dm_table_event(pool->ti->table);
1399 }
1400}
1401
991d9fa0
JT
1402static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1403{
1404 int r;
1405 dm_block_t free_blocks;
991d9fa0
JT
1406 struct pool *pool = tc->pool;
1407
3e1a0699 1408 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
8d30abff
JT
1409 return -EINVAL;
1410
991d9fa0 1411 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
b5330655
JT
1412 if (r) {
1413 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
991d9fa0 1414 return r;
b5330655 1415 }
991d9fa0 1416
88a6621b 1417 check_low_water_mark(pool, free_blocks);
991d9fa0
JT
1418
1419 if (!free_blocks) {
94563bad
MS
1420 /*
1421 * Try to commit to see if that will free up some
1422 * more space.
1423 */
020cc3b5
JT
1424 r = commit(pool);
1425 if (r)
1426 return r;
991d9fa0 1427
94563bad 1428 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
b5330655
JT
1429 if (r) {
1430 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
94563bad 1431 return r;
b5330655 1432 }
991d9fa0 1433
94563bad 1434 if (!free_blocks) {
3e1a0699 1435 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
94563bad 1436 return -ENOSPC;
991d9fa0
JT
1437 }
1438 }
1439
1440 r = dm_pool_alloc_data_block(pool->pmd, result);
4a02b34e 1441 if (r) {
b5330655 1442 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
991d9fa0 1443 return r;
4a02b34e 1444 }
991d9fa0
JT
1445
1446 return 0;
1447}
1448
1449/*
1450 * If we have run out of space, queue bios until the device is
1451 * resumed, presumably after having been reloaded with more space.
1452 */
1453static void retry_on_resume(struct bio *bio)
1454{
59c3d2c6 1455 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
eb2aa48d 1456 struct thin_c *tc = h->tc;
991d9fa0
JT
1457 unsigned long flags;
1458
c140e1c4
MS
1459 spin_lock_irqsave(&tc->lock, flags);
1460 bio_list_add(&tc->retry_on_resume_list, bio);
1461 spin_unlock_irqrestore(&tc->lock, flags);
991d9fa0
JT
1462}
1463
af91805a 1464static int should_error_unserviceable_bio(struct pool *pool)
8c0f0e8c 1465{
3e1a0699
JT
1466 enum pool_mode m = get_pool_mode(pool);
1467
1468 switch (m) {
1469 case PM_WRITE:
1470 /* Shouldn't get here */
1471 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
af91805a 1472 return -EIO;
3e1a0699
JT
1473
1474 case PM_OUT_OF_DATA_SPACE:
af91805a 1475 return pool->pf.error_if_no_space ? -ENOSPC : 0;
3e1a0699
JT
1476
1477 case PM_READ_ONLY:
1478 case PM_FAIL:
af91805a 1479 return -EIO;
3e1a0699
JT
1480 default:
1481 /* Shouldn't get here */
1482 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
af91805a 1483 return -EIO;
3e1a0699
JT
1484 }
1485}
8c0f0e8c 1486
3e1a0699
JT
1487static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1488{
af91805a
MS
1489 int error = should_error_unserviceable_bio(pool);
1490
1491 if (error)
1492 bio_endio(bio, error);
6d16202b
MS
1493 else
1494 retry_on_resume(bio);
8c0f0e8c
MS
1495}
1496
399caddf 1497static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
991d9fa0
JT
1498{
1499 struct bio *bio;
1500 struct bio_list bios;
af91805a 1501 int error;
991d9fa0 1502
af91805a
MS
1503 error = should_error_unserviceable_bio(pool);
1504 if (error) {
1505 cell_error_with_code(pool, cell, error);
3e1a0699
JT
1506 return;
1507 }
1508
991d9fa0 1509 bio_list_init(&bios);
6beca5eb 1510 cell_release(pool, cell, &bios);
991d9fa0 1511
9d094eeb
MS
1512 while ((bio = bio_list_pop(&bios)))
1513 retry_on_resume(bio);
991d9fa0
JT
1514}
1515
34fbcf62
JT
1516static void process_discard_cell_no_passdown(struct thin_c *tc,
1517 struct dm_bio_prison_cell *virt_cell)
104655fd 1518{
104655fd 1519 struct pool *pool = tc->pool;
34fbcf62 1520 struct dm_thin_new_mapping *m = get_next_mapping(pool);
104655fd 1521
34fbcf62
JT
1522 /*
1523 * We don't need to lock the data blocks, since there's no
1524 * passdown. We only lock data blocks for allocation and breaking sharing.
1525 */
1526 m->tc = tc;
1527 m->virt_begin = virt_cell->key.block_begin;
1528 m->virt_end = virt_cell->key.block_end;
1529 m->cell = virt_cell;
1530 m->bio = virt_cell->holder;
104655fd 1531
34fbcf62
JT
1532 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1533 pool->process_prepared_discard(m);
1534}
104655fd 1535
34fbcf62
JT
1536/*
1537 * FIXME: DM local hack to defer parent bios's end_io until we
1538 * _know_ all chained sub range discard bios have completed.
1539 * Will go away once late bio splitting lands upstream!
1540 */
1541static inline void __bio_inc_remaining(struct bio *bio)
1542{
1543 bio->bi_flags |= (1 << BIO_CHAIN);
1544 smp_mb__before_atomic();
1545 atomic_inc(&bio->__bi_remaining);
1546}
7a7e97ca 1547
34fbcf62
JT
1548static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1549 struct bio *bio)
1550{
1551 struct pool *pool = tc->pool;
1552
1553 int r;
1554 bool maybe_shared;
1555 struct dm_cell_key data_key;
1556 struct dm_bio_prison_cell *data_cell;
1557 struct dm_thin_new_mapping *m;
1558 dm_block_t virt_begin, virt_end, data_begin;
1559
1560 while (begin != end) {
1561 r = ensure_next_mapping(pool);
1562 if (r)
1563 /* we did our best */
1564 return;
e8088073 1565
34fbcf62
JT
1566 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1567 &data_begin, &maybe_shared);
1568 if (r)
104655fd 1569 /*
34fbcf62
JT
1570 * Silently fail, letting any mappings we've
1571 * created complete.
104655fd 1572 */
34fbcf62
JT
1573 break;
1574
1575 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1576 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1577 /* contention, we'll give up with this range */
1578 begin = virt_end;
1579 continue;
104655fd 1580 }
104655fd 1581
104655fd 1582 /*
34fbcf62
JT
1583 * IO may still be going to the destination block. We must
1584 * quiesce before we can do the removal.
104655fd 1585 */
34fbcf62
JT
1586 m = get_next_mapping(pool);
1587 m->tc = tc;
1588 m->maybe_shared = maybe_shared;
1589 m->virt_begin = virt_begin;
1590 m->virt_end = virt_end;
1591 m->data_block = data_begin;
1592 m->cell = data_cell;
1593 m->bio = bio;
104655fd 1594
34fbcf62
JT
1595 /*
1596 * The parent bio must not complete before sub discard bios are
1597 * chained to it (see __blkdev_issue_discard_async's bio_chain)!
1598 *
1599 * This per-mapping bi_remaining increment is paired with
1600 * the implicit decrement that occurs via bio_endio() in
1601 * process_prepared_discard_{passdown,no_passdown}.
1602 */
1603 __bio_inc_remaining(bio);
1604 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1605 pool->process_prepared_discard(m);
1606
1607 begin = virt_end;
104655fd
JT
1608 }
1609}
1610
34fbcf62
JT
1611static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1612{
1613 struct bio *bio = virt_cell->holder;
1614 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1615
1616 /*
1617 * The virt_cell will only get freed once the origin bio completes.
1618 * This means it will remain locked while all the individual
1619 * passdown bios are in flight.
1620 */
1621 h->cell = virt_cell;
1622 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1623
1624 /*
1625 * We complete the bio now, knowing that the bi_remaining field
1626 * will prevent completion until the sub range discards have
1627 * completed.
1628 */
1629 bio_endio(bio, 0);
1630}
1631
a374bb21
JT
1632static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1633{
34fbcf62
JT
1634 dm_block_t begin, end;
1635 struct dm_cell_key virt_key;
1636 struct dm_bio_prison_cell *virt_cell;
a374bb21 1637
34fbcf62
JT
1638 get_bio_block_range(tc, bio, &begin, &end);
1639 if (begin == end) {
1640 /*
1641 * The discard covers less than a block.
1642 */
1643 bio_endio(bio, 0);
a374bb21 1644 return;
34fbcf62 1645 }
a374bb21 1646
34fbcf62
JT
1647 build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1648 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1649 /*
1650 * Potential starvation issue: We're relying on the
1651 * fs/application being well behaved, and not trying to
1652 * send IO to a region at the same time as discarding it.
1653 * If they do this persistently then it's possible this
1654 * cell will never be granted.
1655 */
1656 return;
1657
1658 tc->pool->process_discard_cell(tc, virt_cell);
a374bb21
JT
1659}
1660
991d9fa0 1661static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
44feb387 1662 struct dm_cell_key *key,
991d9fa0 1663 struct dm_thin_lookup_result *lookup_result,
a24c2569 1664 struct dm_bio_prison_cell *cell)
991d9fa0
JT
1665{
1666 int r;
1667 dm_block_t data_block;
d6fc2042 1668 struct pool *pool = tc->pool;
991d9fa0
JT
1669
1670 r = alloc_data_block(tc, &data_block);
1671 switch (r) {
1672 case 0:
2dd9c257
JT
1673 schedule_internal_copy(tc, block, lookup_result->block,
1674 data_block, cell, bio);
991d9fa0
JT
1675 break;
1676
1677 case -ENOSPC:
399caddf 1678 retry_bios_on_resume(pool, cell);
991d9fa0
JT
1679 break;
1680
1681 default:
c397741c
MS
1682 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1683 __func__, r);
d6fc2042 1684 cell_error(pool, cell);
991d9fa0
JT
1685 break;
1686 }
1687}
1688
23ca2bb6
JT
1689static void __remap_and_issue_shared_cell(void *context,
1690 struct dm_bio_prison_cell *cell)
1691{
1692 struct remap_info *info = context;
1693 struct bio *bio;
1694
1695 while ((bio = bio_list_pop(&cell->bios))) {
1696 if ((bio_data_dir(bio) == WRITE) ||
1697 (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1698 bio_list_add(&info->defer_bios, bio);
1699 else {
1700 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1701
1702 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1703 inc_all_io_entry(info->tc->pool, bio);
1704 bio_list_add(&info->issue_bios, bio);
1705 }
1706 }
1707}
1708
1709static void remap_and_issue_shared_cell(struct thin_c *tc,
1710 struct dm_bio_prison_cell *cell,
1711 dm_block_t block)
1712{
1713 struct bio *bio;
1714 struct remap_info info;
1715
1716 info.tc = tc;
1717 bio_list_init(&info.defer_bios);
1718 bio_list_init(&info.issue_bios);
1719
1720 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1721 &info, cell);
1722
1723 while ((bio = bio_list_pop(&info.defer_bios)))
1724 thin_defer_bio(tc, bio);
1725
1726 while ((bio = bio_list_pop(&info.issue_bios)))
1727 remap_and_issue(tc, bio, block);
1728}
1729
991d9fa0
JT
1730static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1731 dm_block_t block,
23ca2bb6
JT
1732 struct dm_thin_lookup_result *lookup_result,
1733 struct dm_bio_prison_cell *virt_cell)
991d9fa0 1734{
23ca2bb6 1735 struct dm_bio_prison_cell *data_cell;
991d9fa0 1736 struct pool *pool = tc->pool;
44feb387 1737 struct dm_cell_key key;
991d9fa0
JT
1738
1739 /*
1740 * If cell is already occupied, then sharing is already in the process
1741 * of being broken so we have nothing further to do here.
1742 */
1743 build_data_key(tc->td, lookup_result->block, &key);
23ca2bb6
JT
1744 if (bio_detain(pool, &key, bio, &data_cell)) {
1745 cell_defer_no_holder(tc, virt_cell);
991d9fa0 1746 return;
23ca2bb6 1747 }
991d9fa0 1748
23ca2bb6
JT
1749 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1750 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1751 cell_defer_no_holder(tc, virt_cell);
1752 } else {
59c3d2c6 1753 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
991d9fa0 1754
44feb387 1755 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
e8088073 1756 inc_all_io_entry(pool, bio);
991d9fa0 1757 remap_and_issue(tc, bio, lookup_result->block);
23ca2bb6
JT
1758
1759 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1760 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
991d9fa0
JT
1761 }
1762}
1763
1764static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
a24c2569 1765 struct dm_bio_prison_cell *cell)
991d9fa0
JT
1766{
1767 int r;
1768 dm_block_t data_block;
6beca5eb 1769 struct pool *pool = tc->pool;
991d9fa0
JT
1770
1771 /*
1772 * Remap empty bios (flushes) immediately, without provisioning.
1773 */
4f024f37 1774 if (!bio->bi_iter.bi_size) {
6beca5eb 1775 inc_all_io_entry(pool, bio);
f286ba0e 1776 cell_defer_no_holder(tc, cell);
e8088073 1777
991d9fa0
JT
1778 remap_and_issue(tc, bio, 0);
1779 return;
1780 }
1781
1782 /*
1783 * Fill read bios with zeroes and complete them immediately.
1784 */
1785 if (bio_data_dir(bio) == READ) {
1786 zero_fill_bio(bio);
f286ba0e 1787 cell_defer_no_holder(tc, cell);
991d9fa0
JT
1788 bio_endio(bio, 0);
1789 return;
1790 }
1791
1792 r = alloc_data_block(tc, &data_block);
1793 switch (r) {
1794 case 0:
2dd9c257
JT
1795 if (tc->origin_dev)
1796 schedule_external_copy(tc, block, data_block, cell, bio);
1797 else
1798 schedule_zero(tc, block, data_block, cell, bio);
991d9fa0
JT
1799 break;
1800
1801 case -ENOSPC:
399caddf 1802 retry_bios_on_resume(pool, cell);
991d9fa0
JT
1803 break;
1804
1805 default:
c397741c
MS
1806 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1807 __func__, r);
6beca5eb 1808 cell_error(pool, cell);
991d9fa0
JT
1809 break;
1810 }
1811}
1812
a374bb21 1813static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
991d9fa0
JT
1814{
1815 int r;
6beca5eb 1816 struct pool *pool = tc->pool;
a374bb21 1817 struct bio *bio = cell->holder;
991d9fa0 1818 dm_block_t block = get_bio_block(tc, bio);
991d9fa0
JT
1819 struct dm_thin_lookup_result lookup_result;
1820
a374bb21
JT
1821 if (tc->requeue_mode) {
1822 cell_requeue(pool, cell);
991d9fa0 1823 return;
a374bb21 1824 }
991d9fa0
JT
1825
1826 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1827 switch (r) {
1828 case 0:
23ca2bb6
JT
1829 if (lookup_result.shared)
1830 process_shared_bio(tc, bio, block, &lookup_result, cell);
1831 else {
6beca5eb 1832 inc_all_io_entry(pool, bio);
991d9fa0 1833 remap_and_issue(tc, bio, lookup_result.block);
a374bb21 1834 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
e8088073 1835 }
991d9fa0
JT
1836 break;
1837
1838 case -ENODATA:
2dd9c257 1839 if (bio_data_dir(bio) == READ && tc->origin_dev) {
6beca5eb 1840 inc_all_io_entry(pool, bio);
f286ba0e 1841 cell_defer_no_holder(tc, cell);
e8088073 1842
e5aea7b4
JT
1843 if (bio_end_sector(bio) <= tc->origin_size)
1844 remap_to_origin_and_issue(tc, bio);
1845
1846 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1847 zero_fill_bio(bio);
1848 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1849 remap_to_origin_and_issue(tc, bio);
1850
1851 } else {
1852 zero_fill_bio(bio);
1853 bio_endio(bio, 0);
1854 }
2dd9c257
JT
1855 } else
1856 provision_block(tc, bio, block, cell);
991d9fa0
JT
1857 break;
1858
1859 default:
c397741c
MS
1860 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1861 __func__, r);
f286ba0e 1862 cell_defer_no_holder(tc, cell);
991d9fa0
JT
1863 bio_io_error(bio);
1864 break;
1865 }
1866}
1867
a374bb21
JT
1868static void process_bio(struct thin_c *tc, struct bio *bio)
1869{
1870 struct pool *pool = tc->pool;
1871 dm_block_t block = get_bio_block(tc, bio);
1872 struct dm_bio_prison_cell *cell;
1873 struct dm_cell_key key;
1874
1875 /*
1876 * If cell is already occupied, then the block is already
1877 * being provisioned so we have nothing further to do here.
1878 */
1879 build_virtual_key(tc->td, block, &key);
1880 if (bio_detain(pool, &key, bio, &cell))
1881 return;
1882
1883 process_cell(tc, cell);
1884}
1885
1886static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1887 struct dm_bio_prison_cell *cell)
e49e5829
JT
1888{
1889 int r;
1890 int rw = bio_data_dir(bio);
1891 dm_block_t block = get_bio_block(tc, bio);
1892 struct dm_thin_lookup_result lookup_result;
1893
1894 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1895 switch (r) {
1896 case 0:
a374bb21 1897 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
8c0f0e8c 1898 handle_unserviceable_bio(tc->pool, bio);
a374bb21
JT
1899 if (cell)
1900 cell_defer_no_holder(tc, cell);
1901 } else {
e8088073 1902 inc_all_io_entry(tc->pool, bio);
e49e5829 1903 remap_and_issue(tc, bio, lookup_result.block);
a374bb21
JT
1904 if (cell)
1905 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
e8088073 1906 }
e49e5829
JT
1907 break;
1908
1909 case -ENODATA:
a374bb21
JT
1910 if (cell)
1911 cell_defer_no_holder(tc, cell);
e49e5829 1912 if (rw != READ) {
8c0f0e8c 1913 handle_unserviceable_bio(tc->pool, bio);
e49e5829
JT
1914 break;
1915 }
1916
1917 if (tc->origin_dev) {
e8088073 1918 inc_all_io_entry(tc->pool, bio);
e49e5829
JT
1919 remap_to_origin_and_issue(tc, bio);
1920 break;
1921 }
1922
1923 zero_fill_bio(bio);
1924 bio_endio(bio, 0);
1925 break;
1926
1927 default:
c397741c
MS
1928 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1929 __func__, r);
a374bb21
JT
1930 if (cell)
1931 cell_defer_no_holder(tc, cell);
e49e5829
JT
1932 bio_io_error(bio);
1933 break;
1934 }
1935}
1936
a374bb21
JT
1937static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1938{
1939 __process_bio_read_only(tc, bio, NULL);
1940}
1941
1942static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1943{
1944 __process_bio_read_only(tc, cell->holder, cell);
1945}
1946
3e1a0699
JT
1947static void process_bio_success(struct thin_c *tc, struct bio *bio)
1948{
1949 bio_endio(bio, 0);
1950}
1951
e49e5829
JT
1952static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1953{
1954 bio_io_error(bio);
1955}
1956
a374bb21
JT
1957static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1958{
1959 cell_success(tc->pool, cell);
1960}
1961
1962static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1963{
1964 cell_error(tc->pool, cell);
1965}
1966
ac8c3f3d
JT
1967/*
1968 * FIXME: should we also commit due to size of transaction, measured in
1969 * metadata blocks?
1970 */
905e51b3
JT
1971static int need_commit_due_to_time(struct pool *pool)
1972{
0f30af98
MS
1973 return !time_in_range(jiffies, pool->last_commit_jiffies,
1974 pool->last_commit_jiffies + COMMIT_PERIOD);
905e51b3
JT
1975}
1976
67324ea1
MS
1977#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1978#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1979
1980static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1981{
1982 struct rb_node **rbp, *parent;
1983 struct dm_thin_endio_hook *pbd;
1984 sector_t bi_sector = bio->bi_iter.bi_sector;
1985
1986 rbp = &tc->sort_bio_list.rb_node;
1987 parent = NULL;
1988 while (*rbp) {
1989 parent = *rbp;
1990 pbd = thin_pbd(parent);
1991
1992 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1993 rbp = &(*rbp)->rb_left;
1994 else
1995 rbp = &(*rbp)->rb_right;
1996 }
1997
1998 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1999 rb_link_node(&pbd->rb_node, parent, rbp);
2000 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2001}
2002
2003static void __extract_sorted_bios(struct thin_c *tc)
2004{
2005 struct rb_node *node;
2006 struct dm_thin_endio_hook *pbd;
2007 struct bio *bio;
2008
2009 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2010 pbd = thin_pbd(node);
2011 bio = thin_bio(pbd);
2012
2013 bio_list_add(&tc->deferred_bio_list, bio);
2014 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2015 }
2016
2017 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2018}
2019
2020static void __sort_thin_deferred_bios(struct thin_c *tc)
2021{
2022 struct bio *bio;
2023 struct bio_list bios;
2024
2025 bio_list_init(&bios);
2026 bio_list_merge(&bios, &tc->deferred_bio_list);
2027 bio_list_init(&tc->deferred_bio_list);
2028
2029 /* Sort deferred_bio_list using rb-tree */
2030 while ((bio = bio_list_pop(&bios)))
2031 __thin_bio_rb_add(tc, bio);
2032
2033 /*
2034 * Transfer the sorted bios in sort_bio_list back to
2035 * deferred_bio_list to allow lockless submission of
2036 * all bios.
2037 */
2038 __extract_sorted_bios(tc);
2039}
2040
c140e1c4 2041static void process_thin_deferred_bios(struct thin_c *tc)
991d9fa0 2042{
c140e1c4 2043 struct pool *pool = tc->pool;
991d9fa0
JT
2044 unsigned long flags;
2045 struct bio *bio;
2046 struct bio_list bios;
67324ea1 2047 struct blk_plug plug;
8a01a6af 2048 unsigned count = 0;
991d9fa0 2049
c140e1c4 2050 if (tc->requeue_mode) {
42d6a8ce 2051 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
c140e1c4
MS
2052 return;
2053 }
2054
991d9fa0
JT
2055 bio_list_init(&bios);
2056
c140e1c4 2057 spin_lock_irqsave(&tc->lock, flags);
67324ea1
MS
2058
2059 if (bio_list_empty(&tc->deferred_bio_list)) {
2060 spin_unlock_irqrestore(&tc->lock, flags);
2061 return;
2062 }
2063
2064 __sort_thin_deferred_bios(tc);
2065
c140e1c4
MS
2066 bio_list_merge(&bios, &tc->deferred_bio_list);
2067 bio_list_init(&tc->deferred_bio_list);
67324ea1 2068
c140e1c4 2069 spin_unlock_irqrestore(&tc->lock, flags);
991d9fa0 2070
67324ea1 2071 blk_start_plug(&plug);
991d9fa0 2072 while ((bio = bio_list_pop(&bios))) {
991d9fa0
JT
2073 /*
2074 * If we've got no free new_mapping structs, and processing
2075 * this bio might require one, we pause until there are some
2076 * prepared mappings to process.
2077 */
2078 if (ensure_next_mapping(pool)) {
c140e1c4
MS
2079 spin_lock_irqsave(&tc->lock, flags);
2080 bio_list_add(&tc->deferred_bio_list, bio);
2081 bio_list_merge(&tc->deferred_bio_list, &bios);
2082 spin_unlock_irqrestore(&tc->lock, flags);
991d9fa0
JT
2083 break;
2084 }
104655fd
JT
2085
2086 if (bio->bi_rw & REQ_DISCARD)
e49e5829 2087 pool->process_discard(tc, bio);
104655fd 2088 else
e49e5829 2089 pool->process_bio(tc, bio);
8a01a6af
JT
2090
2091 if ((count++ & 127) == 0) {
7d327fe0 2092 throttle_work_update(&pool->throttle);
8a01a6af
JT
2093 dm_pool_issue_prefetches(pool->pmd);
2094 }
991d9fa0 2095 }
67324ea1 2096 blk_finish_plug(&plug);
c140e1c4
MS
2097}
2098
ac4c3f34
JT
2099static int cmp_cells(const void *lhs, const void *rhs)
2100{
2101 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2102 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2103
2104 BUG_ON(!lhs_cell->holder);
2105 BUG_ON(!rhs_cell->holder);
2106
2107 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2108 return -1;
2109
2110 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2111 return 1;
2112
2113 return 0;
2114}
2115
2116static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2117{
2118 unsigned count = 0;
2119 struct dm_bio_prison_cell *cell, *tmp;
2120
2121 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2122 if (count >= CELL_SORT_ARRAY_SIZE)
2123 break;
2124
2125 pool->cell_sort_array[count++] = cell;
2126 list_del(&cell->user_list);
2127 }
2128
2129 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2130
2131 return count;
2132}
2133
a374bb21
JT
2134static void process_thin_deferred_cells(struct thin_c *tc)
2135{
2136 struct pool *pool = tc->pool;
2137 unsigned long flags;
2138 struct list_head cells;
ac4c3f34
JT
2139 struct dm_bio_prison_cell *cell;
2140 unsigned i, j, count;
a374bb21
JT
2141
2142 INIT_LIST_HEAD(&cells);
2143
2144 spin_lock_irqsave(&tc->lock, flags);
2145 list_splice_init(&tc->deferred_cells, &cells);
2146 spin_unlock_irqrestore(&tc->lock, flags);
2147
2148 if (list_empty(&cells))
2149 return;
2150
ac4c3f34
JT
2151 do {
2152 count = sort_cells(tc->pool, &cells);
a374bb21 2153
ac4c3f34
JT
2154 for (i = 0; i < count; i++) {
2155 cell = pool->cell_sort_array[i];
2156 BUG_ON(!cell->holder);
a374bb21 2157
ac4c3f34
JT
2158 /*
2159 * If we've got no free new_mapping structs, and processing
2160 * this bio might require one, we pause until there are some
2161 * prepared mappings to process.
2162 */
2163 if (ensure_next_mapping(pool)) {
2164 for (j = i; j < count; j++)
2165 list_add(&pool->cell_sort_array[j]->user_list, &cells);
2166
2167 spin_lock_irqsave(&tc->lock, flags);
2168 list_splice(&cells, &tc->deferred_cells);
2169 spin_unlock_irqrestore(&tc->lock, flags);
2170 return;
2171 }
2172
2173 if (cell->holder->bi_rw & REQ_DISCARD)
2174 pool->process_discard_cell(tc, cell);
2175 else
2176 pool->process_cell(tc, cell);
2177 }
2178 } while (!list_empty(&cells));
a374bb21
JT
2179}
2180
b10ebd34
JT
2181static void thin_get(struct thin_c *tc);
2182static void thin_put(struct thin_c *tc);
2183
2184/*
2185 * We can't hold rcu_read_lock() around code that can block. So we
2186 * find a thin with the rcu lock held; bump a refcount; then drop
2187 * the lock.
2188 */
2189static struct thin_c *get_first_thin(struct pool *pool)
2190{
2191 struct thin_c *tc = NULL;
2192
2193 rcu_read_lock();
2194 if (!list_empty(&pool->active_thins)) {
2195 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2196 thin_get(tc);
2197 }
2198 rcu_read_unlock();
2199
2200 return tc;
2201}
2202
2203static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2204{
2205 struct thin_c *old_tc = tc;
2206
2207 rcu_read_lock();
2208 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2209 thin_get(tc);
2210 thin_put(old_tc);
2211 rcu_read_unlock();
2212 return tc;
2213 }
2214 thin_put(old_tc);
2215 rcu_read_unlock();
2216
2217 return NULL;
2218}
2219
c140e1c4
MS
2220static void process_deferred_bios(struct pool *pool)
2221{
2222 unsigned long flags;
2223 struct bio *bio;
2224 struct bio_list bios;
2225 struct thin_c *tc;
2226
b10ebd34
JT
2227 tc = get_first_thin(pool);
2228 while (tc) {
a374bb21 2229 process_thin_deferred_cells(tc);
c140e1c4 2230 process_thin_deferred_bios(tc);
b10ebd34
JT
2231 tc = get_next_thin(pool, tc);
2232 }
991d9fa0
JT
2233
2234 /*
2235 * If there are any deferred flush bios, we must commit
2236 * the metadata before issuing them.
2237 */
2238 bio_list_init(&bios);
2239 spin_lock_irqsave(&pool->lock, flags);
2240 bio_list_merge(&bios, &pool->deferred_flush_bios);
2241 bio_list_init(&pool->deferred_flush_bios);
2242 spin_unlock_irqrestore(&pool->lock, flags);
2243
4d1662a3
MS
2244 if (bio_list_empty(&bios) &&
2245 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
991d9fa0
JT
2246 return;
2247
020cc3b5 2248 if (commit(pool)) {
991d9fa0
JT
2249 while ((bio = bio_list_pop(&bios)))
2250 bio_io_error(bio);
2251 return;
2252 }
905e51b3 2253 pool->last_commit_jiffies = jiffies;
991d9fa0
JT
2254
2255 while ((bio = bio_list_pop(&bios)))
2256 generic_make_request(bio);
2257}
2258
2259static void do_worker(struct work_struct *ws)
2260{
2261 struct pool *pool = container_of(ws, struct pool, worker);
2262
7d327fe0 2263 throttle_work_start(&pool->throttle);
8a01a6af 2264 dm_pool_issue_prefetches(pool->pmd);
7d327fe0 2265 throttle_work_update(&pool->throttle);
e49e5829 2266 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
7d327fe0 2267 throttle_work_update(&pool->throttle);
e49e5829 2268 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
7d327fe0 2269 throttle_work_update(&pool->throttle);
991d9fa0 2270 process_deferred_bios(pool);
7d327fe0 2271 throttle_work_complete(&pool->throttle);
991d9fa0
JT
2272}
2273
905e51b3
JT
2274/*
2275 * We want to commit periodically so that not too much
2276 * unwritten data builds up.
2277 */
2278static void do_waker(struct work_struct *ws)
2279{
2280 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2281 wake_worker(pool);
2282 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2283}
2284
85ad643b
JT
2285/*
2286 * We're holding onto IO to allow userland time to react. After the
2287 * timeout either the pool will have been resized (and thus back in
2288 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
2289 */
2290static void do_no_space_timeout(struct work_struct *ws)
2291{
2292 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2293 no_space_timeout);
2294
2295 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
2296 set_pool_mode(pool, PM_READ_ONLY);
2297}
2298
991d9fa0
JT
2299/*----------------------------------------------------------------*/
2300
e7a3e871 2301struct pool_work {
738211f7 2302 struct work_struct worker;
e7a3e871
JT
2303 struct completion complete;
2304};
2305
2306static struct pool_work *to_pool_work(struct work_struct *ws)
2307{
2308 return container_of(ws, struct pool_work, worker);
2309}
2310
2311static void pool_work_complete(struct pool_work *pw)
2312{
2313 complete(&pw->complete);
2314}
738211f7 2315
e7a3e871
JT
2316static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2317 void (*fn)(struct work_struct *))
2318{
2319 INIT_WORK_ONSTACK(&pw->worker, fn);
2320 init_completion(&pw->complete);
2321 queue_work(pool->wq, &pw->worker);
2322 wait_for_completion(&pw->complete);
2323}
2324
2325/*----------------------------------------------------------------*/
2326
2327struct noflush_work {
2328 struct pool_work pw;
2329 struct thin_c *tc;
738211f7
JT
2330};
2331
e7a3e871 2332static struct noflush_work *to_noflush(struct work_struct *ws)
738211f7 2333{
e7a3e871 2334 return container_of(to_pool_work(ws), struct noflush_work, pw);
738211f7
JT
2335}
2336
2337static void do_noflush_start(struct work_struct *ws)
2338{
e7a3e871 2339 struct noflush_work *w = to_noflush(ws);
738211f7
JT
2340 w->tc->requeue_mode = true;
2341 requeue_io(w->tc);
e7a3e871 2342 pool_work_complete(&w->pw);
738211f7
JT
2343}
2344
2345static void do_noflush_stop(struct work_struct *ws)
2346{
e7a3e871 2347 struct noflush_work *w = to_noflush(ws);
738211f7 2348 w->tc->requeue_mode = false;
e7a3e871 2349 pool_work_complete(&w->pw);
738211f7
JT
2350}
2351
2352static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2353{
2354 struct noflush_work w;
2355
738211f7 2356 w.tc = tc;
e7a3e871 2357 pool_work_wait(&w.pw, tc->pool, fn);
738211f7
JT
2358}
2359
2360/*----------------------------------------------------------------*/
2361
e49e5829
JT
2362static enum pool_mode get_pool_mode(struct pool *pool)
2363{
2364 return pool->pf.mode;
2365}
2366
3e1a0699
JT
2367static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2368{
2369 dm_table_event(pool->ti->table);
2370 DMINFO("%s: switching pool to %s mode",
2371 dm_device_name(pool->pool_md), new_mode);
2372}
2373
34fbcf62
JT
2374static bool passdown_enabled(struct pool_c *pt)
2375{
2376 return pt->adjusted_pf.discard_passdown;
2377}
2378
2379static void set_discard_callbacks(struct pool *pool)
2380{
2381 struct pool_c *pt = pool->ti->private;
2382
2383 if (passdown_enabled(pt)) {
2384 pool->process_discard_cell = process_discard_cell_passdown;
2385 pool->process_prepared_discard = process_prepared_discard_passdown;
2386 } else {
2387 pool->process_discard_cell = process_discard_cell_no_passdown;
2388 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2389 }
2390}
2391
8b64e881 2392static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
e49e5829 2393{
cdc2b415 2394 struct pool_c *pt = pool->ti->private;
07f2b6e0
MS
2395 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2396 enum pool_mode old_mode = get_pool_mode(pool);
80c57893 2397 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
07f2b6e0
MS
2398
2399 /*
2400 * Never allow the pool to transition to PM_WRITE mode if user
2401 * intervention is required to verify metadata and data consistency.
2402 */
2403 if (new_mode == PM_WRITE && needs_check) {
2404 DMERR("%s: unable to switch pool to write mode until repaired.",
2405 dm_device_name(pool->pool_md));
2406 if (old_mode != new_mode)
2407 new_mode = old_mode;
2408 else
2409 new_mode = PM_READ_ONLY;
2410 }
2411 /*
2412 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2413 * not going to recover without a thin_repair. So we never let the
2414 * pool move out of the old mode.
2415 */
2416 if (old_mode == PM_FAIL)
2417 new_mode = old_mode;
e49e5829 2418
8b64e881 2419 switch (new_mode) {
e49e5829 2420 case PM_FAIL:
8b64e881 2421 if (old_mode != new_mode)
3e1a0699 2422 notify_of_pool_mode_change(pool, "failure");
5383ef3a 2423 dm_pool_metadata_read_only(pool->pmd);
e49e5829
JT
2424 pool->process_bio = process_bio_fail;
2425 pool->process_discard = process_bio_fail;
a374bb21
JT
2426 pool->process_cell = process_cell_fail;
2427 pool->process_discard_cell = process_cell_fail;
e49e5829
JT
2428 pool->process_prepared_mapping = process_prepared_mapping_fail;
2429 pool->process_prepared_discard = process_prepared_discard_fail;
3e1a0699
JT
2430
2431 error_retry_list(pool);
e49e5829
JT
2432 break;
2433
2434 case PM_READ_ONLY:
8b64e881 2435 if (old_mode != new_mode)
3e1a0699
JT
2436 notify_of_pool_mode_change(pool, "read-only");
2437 dm_pool_metadata_read_only(pool->pmd);
2438 pool->process_bio = process_bio_read_only;
2439 pool->process_discard = process_bio_success;
a374bb21
JT
2440 pool->process_cell = process_cell_read_only;
2441 pool->process_discard_cell = process_cell_success;
3e1a0699 2442 pool->process_prepared_mapping = process_prepared_mapping_fail;
34fbcf62 2443 pool->process_prepared_discard = process_prepared_discard_success;
3e1a0699
JT
2444
2445 error_retry_list(pool);
2446 break;
2447
2448 case PM_OUT_OF_DATA_SPACE:
2449 /*
2450 * Ideally we'd never hit this state; the low water mark
2451 * would trigger userland to extend the pool before we
2452 * completely run out of data space. However, many small
2453 * IOs to unprovisioned space can consume data space at an
2454 * alarming rate. Adjust your low water mark if you're
2455 * frequently seeing this mode.
2456 */
2457 if (old_mode != new_mode)
2458 notify_of_pool_mode_change(pool, "out-of-data-space");
2459 pool->process_bio = process_bio_read_only;
a374bb21
JT
2460 pool->process_discard = process_discard_bio;
2461 pool->process_cell = process_cell_read_only;
3e1a0699 2462 pool->process_prepared_mapping = process_prepared_mapping;
34fbcf62 2463 set_discard_callbacks(pool);
85ad643b 2464
80c57893
MS
2465 if (!pool->pf.error_if_no_space && no_space_timeout)
2466 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
e49e5829
JT
2467 break;
2468
2469 case PM_WRITE:
8b64e881 2470 if (old_mode != new_mode)
3e1a0699 2471 notify_of_pool_mode_change(pool, "write");
9b7aaa64 2472 dm_pool_metadata_read_write(pool->pmd);
e49e5829 2473 pool->process_bio = process_bio;
a374bb21
JT
2474 pool->process_discard = process_discard_bio;
2475 pool->process_cell = process_cell;
e49e5829 2476 pool->process_prepared_mapping = process_prepared_mapping;
34fbcf62 2477 set_discard_callbacks(pool);
e49e5829
JT
2478 break;
2479 }
8b64e881
MS
2480
2481 pool->pf.mode = new_mode;
cdc2b415
MS
2482 /*
2483 * The pool mode may have changed, sync it so bind_control_target()
2484 * doesn't cause an unexpected mode transition on resume.
2485 */
2486 pt->adjusted_pf.mode = new_mode;
e49e5829
JT
2487}
2488
07f2b6e0 2489static void abort_transaction(struct pool *pool)
b5330655 2490{
07f2b6e0
MS
2491 const char *dev_name = dm_device_name(pool->pool_md);
2492
2493 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2494 if (dm_pool_abort_metadata(pool->pmd)) {
2495 DMERR("%s: failed to abort metadata transaction", dev_name);
2496 set_pool_mode(pool, PM_FAIL);
2497 }
2498
2499 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2500 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2501 set_pool_mode(pool, PM_FAIL);
2502 }
2503}
399caddf 2504
07f2b6e0
MS
2505static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2506{
b5330655
JT
2507 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2508 dm_device_name(pool->pool_md), op, r);
2509
07f2b6e0 2510 abort_transaction(pool);
b5330655
JT
2511 set_pool_mode(pool, PM_READ_ONLY);
2512}
2513
e49e5829
JT
2514/*----------------------------------------------------------------*/
2515
991d9fa0
JT
2516/*
2517 * Mapping functions.
2518 */
2519
2520/*
2521 * Called only while mapping a thin bio to hand it over to the workqueue.
2522 */
2523static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2524{
2525 unsigned long flags;
2526 struct pool *pool = tc->pool;
2527
c140e1c4
MS
2528 spin_lock_irqsave(&tc->lock, flags);
2529 bio_list_add(&tc->deferred_bio_list, bio);
2530 spin_unlock_irqrestore(&tc->lock, flags);
991d9fa0
JT
2531
2532 wake_worker(pool);
2533}
2534
7d327fe0
JT
2535static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2536{
2537 struct pool *pool = tc->pool;
2538
2539 throttle_lock(&pool->throttle);
2540 thin_defer_bio(tc, bio);
2541 throttle_unlock(&pool->throttle);
2542}
2543
a374bb21
JT
2544static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2545{
2546 unsigned long flags;
2547 struct pool *pool = tc->pool;
2548
2549 throttle_lock(&pool->throttle);
2550 spin_lock_irqsave(&tc->lock, flags);
2551 list_add_tail(&cell->user_list, &tc->deferred_cells);
2552 spin_unlock_irqrestore(&tc->lock, flags);
2553 throttle_unlock(&pool->throttle);
2554
2555 wake_worker(pool);
2556}
2557
59c3d2c6 2558static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
eb2aa48d 2559{
59c3d2c6 2560 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
eb2aa48d
JT
2561
2562 h->tc = tc;
2563 h->shared_read_entry = NULL;
e8088073 2564 h->all_io_entry = NULL;
eb2aa48d 2565 h->overwrite_mapping = NULL;
34fbcf62 2566 h->cell = NULL;
eb2aa48d
JT
2567}
2568
991d9fa0
JT
2569/*
2570 * Non-blocking function called from the thin target's map function.
2571 */
7de3ee57 2572static int thin_bio_map(struct dm_target *ti, struct bio *bio)
991d9fa0
JT
2573{
2574 int r;
2575 struct thin_c *tc = ti->private;
2576 dm_block_t block = get_bio_block(tc, bio);
2577 struct dm_thin_device *td = tc->td;
2578 struct dm_thin_lookup_result result;
a374bb21 2579 struct dm_bio_prison_cell *virt_cell, *data_cell;
e8088073 2580 struct dm_cell_key key;
991d9fa0 2581
59c3d2c6 2582 thin_hook_bio(tc, bio);
e49e5829 2583
738211f7
JT
2584 if (tc->requeue_mode) {
2585 bio_endio(bio, DM_ENDIO_REQUEUE);
2586 return DM_MAPIO_SUBMITTED;
2587 }
2588
e49e5829
JT
2589 if (get_pool_mode(tc->pool) == PM_FAIL) {
2590 bio_io_error(bio);
2591 return DM_MAPIO_SUBMITTED;
2592 }
2593
104655fd 2594 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
7d327fe0 2595 thin_defer_bio_with_throttle(tc, bio);
991d9fa0
JT
2596 return DM_MAPIO_SUBMITTED;
2597 }
2598
c822ed96
JT
2599 /*
2600 * We must hold the virtual cell before doing the lookup, otherwise
2601 * there's a race with discard.
2602 */
2603 build_virtual_key(tc->td, block, &key);
a374bb21 2604 if (bio_detain(tc->pool, &key, bio, &virt_cell))
c822ed96
JT
2605 return DM_MAPIO_SUBMITTED;
2606
991d9fa0
JT
2607 r = dm_thin_find_block(td, block, 0, &result);
2608
2609 /*
2610 * Note that we defer readahead too.
2611 */
2612 switch (r) {
2613 case 0:
2614 if (unlikely(result.shared)) {
2615 /*
2616 * We have a race condition here between the
2617 * result.shared value returned by the lookup and
2618 * snapshot creation, which may cause new
2619 * sharing.
2620 *
2621 * To avoid this always quiesce the origin before
2622 * taking the snap. You want to do this anyway to
2623 * ensure a consistent application view
2624 * (i.e. lockfs).
2625 *
2626 * More distant ancestors are irrelevant. The
2627 * shared flag will be set in their case.
2628 */
a374bb21 2629 thin_defer_cell(tc, virt_cell);
e8088073 2630 return DM_MAPIO_SUBMITTED;
991d9fa0 2631 }
e8088073 2632
e8088073 2633 build_data_key(tc->td, result.block, &key);
a374bb21
JT
2634 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2635 cell_defer_no_holder(tc, virt_cell);
e8088073
JT
2636 return DM_MAPIO_SUBMITTED;
2637 }
2638
2639 inc_all_io_entry(tc->pool, bio);
a374bb21
JT
2640 cell_defer_no_holder(tc, data_cell);
2641 cell_defer_no_holder(tc, virt_cell);
e8088073
JT
2642
2643 remap(tc, bio, result.block);
2644 return DM_MAPIO_REMAPPED;
991d9fa0
JT
2645
2646 case -ENODATA:
e49e5829 2647 case -EWOULDBLOCK:
a374bb21 2648 thin_defer_cell(tc, virt_cell);
2aab3850 2649 return DM_MAPIO_SUBMITTED;
e49e5829
JT
2650
2651 default:
2652 /*
2653 * Must always call bio_io_error on failure.
2654 * dm_thin_find_block can fail with -EINVAL if the
2655 * pool is switched to fail-io mode.
2656 */
2657 bio_io_error(bio);
a374bb21 2658 cell_defer_no_holder(tc, virt_cell);
2aab3850 2659 return DM_MAPIO_SUBMITTED;
991d9fa0 2660 }
991d9fa0
JT
2661}
2662
2663static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2664{
991d9fa0 2665 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
760fe67e 2666 struct request_queue *q;
991d9fa0 2667
760fe67e
MS
2668 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2669 return 1;
991d9fa0 2670
760fe67e
MS
2671 q = bdev_get_queue(pt->data_dev->bdev);
2672 return bdi_congested(&q->backing_dev_info, bdi_bits);
991d9fa0
JT
2673}
2674
c140e1c4 2675static void requeue_bios(struct pool *pool)
991d9fa0 2676{
c140e1c4
MS
2677 unsigned long flags;
2678 struct thin_c *tc;
2679
2680 rcu_read_lock();
2681 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2682 spin_lock_irqsave(&tc->lock, flags);
2683 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2684 bio_list_init(&tc->retry_on_resume_list);
2685 spin_unlock_irqrestore(&tc->lock, flags);
2686 }
2687 rcu_read_unlock();
991d9fa0
JT
2688}
2689
2690/*----------------------------------------------------------------
2691 * Binding of control targets to a pool object
2692 *--------------------------------------------------------------*/
9bc142dd
MS
2693static bool data_dev_supports_discard(struct pool_c *pt)
2694{
2695 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2696
2697 return q && blk_queue_discard(q);
2698}
2699
58051b94
JT
2700static bool is_factor(sector_t block_size, uint32_t n)
2701{
2702 return !sector_div(block_size, n);
2703}
2704
9bc142dd
MS
2705/*
2706 * If discard_passdown was enabled verify that the data device
0424caa1 2707 * supports discards. Disable discard_passdown if not.
9bc142dd 2708 */
0424caa1 2709static void disable_passdown_if_not_supported(struct pool_c *pt)
9bc142dd 2710{
0424caa1
MS
2711 struct pool *pool = pt->pool;
2712 struct block_device *data_bdev = pt->data_dev->bdev;
2713 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
0424caa1 2714 const char *reason = NULL;
9bc142dd
MS
2715 char buf[BDEVNAME_SIZE];
2716
0424caa1 2717 if (!pt->adjusted_pf.discard_passdown)
9bc142dd
MS
2718 return;
2719
0424caa1
MS
2720 if (!data_dev_supports_discard(pt))
2721 reason = "discard unsupported";
2722
2723 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2724 reason = "max discard sectors smaller than a block";
9bc142dd 2725
0424caa1
MS
2726 if (reason) {
2727 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2728 pt->adjusted_pf.discard_passdown = false;
2729 }
9bc142dd
MS
2730}
2731
991d9fa0
JT
2732static int bind_control_target(struct pool *pool, struct dm_target *ti)
2733{
2734 struct pool_c *pt = ti->private;
2735
e49e5829 2736 /*
9b7aaa64 2737 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
e49e5829 2738 */
07f2b6e0 2739 enum pool_mode old_mode = get_pool_mode(pool);
0424caa1 2740 enum pool_mode new_mode = pt->adjusted_pf.mode;
e49e5829 2741
8b64e881
MS
2742 /*
2743 * Don't change the pool's mode until set_pool_mode() below.
2744 * Otherwise the pool's process_* function pointers may
2745 * not match the desired pool mode.
2746 */
2747 pt->adjusted_pf.mode = old_mode;
2748
2749 pool->ti = ti;
2750 pool->pf = pt->adjusted_pf;
2751 pool->low_water_blocks = pt->low_water_blocks;
2752
9bc142dd 2753 set_pool_mode(pool, new_mode);
f402693d 2754
991d9fa0
JT
2755 return 0;
2756}
2757
2758static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2759{
2760 if (pool->ti == ti)
2761 pool->ti = NULL;
2762}
2763
2764/*----------------------------------------------------------------
2765 * Pool creation
2766 *--------------------------------------------------------------*/
67e2e2b2
JT
2767/* Initialize pool features. */
2768static void pool_features_init(struct pool_features *pf)
2769{
e49e5829 2770 pf->mode = PM_WRITE;
9bc142dd
MS
2771 pf->zero_new_blocks = true;
2772 pf->discard_enabled = true;
2773 pf->discard_passdown = true;
787a996c 2774 pf->error_if_no_space = false;
67e2e2b2
JT
2775}
2776
991d9fa0
JT
2777static void __pool_destroy(struct pool *pool)
2778{
2779 __pool_table_remove(pool);
2780
a822c83e 2781 vfree(pool->cell_sort_array);
991d9fa0
JT
2782 if (dm_pool_metadata_close(pool->pmd) < 0)
2783 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2784
44feb387 2785 dm_bio_prison_destroy(pool->prison);
991d9fa0
JT
2786 dm_kcopyd_client_destroy(pool->copier);
2787
2788 if (pool->wq)
2789 destroy_workqueue(pool->wq);
2790
2791 if (pool->next_mapping)
2792 mempool_free(pool->next_mapping, pool->mapping_pool);
2793 mempool_destroy(pool->mapping_pool);
44feb387
MS
2794 dm_deferred_set_destroy(pool->shared_read_ds);
2795 dm_deferred_set_destroy(pool->all_io_ds);
991d9fa0
JT
2796 kfree(pool);
2797}
2798
a24c2569 2799static struct kmem_cache *_new_mapping_cache;
a24c2569 2800
991d9fa0
JT
2801static struct pool *pool_create(struct mapped_device *pool_md,
2802 struct block_device *metadata_dev,
e49e5829
JT
2803 unsigned long block_size,
2804 int read_only, char **error)
991d9fa0
JT
2805{
2806 int r;
2807 void *err_p;
2808 struct pool *pool;
2809 struct dm_pool_metadata *pmd;
e49e5829 2810 bool format_device = read_only ? false : true;
991d9fa0 2811
e49e5829 2812 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
991d9fa0
JT
2813 if (IS_ERR(pmd)) {
2814 *error = "Error creating metadata object";
2815 return (struct pool *)pmd;
2816 }
2817
2818 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2819 if (!pool) {
2820 *error = "Error allocating memory for pool";
2821 err_p = ERR_PTR(-ENOMEM);
2822 goto bad_pool;
2823 }
2824
2825 pool->pmd = pmd;
2826 pool->sectors_per_block = block_size;
f9a8e0cd
MP
2827 if (block_size & (block_size - 1))
2828 pool->sectors_per_block_shift = -1;
2829 else
2830 pool->sectors_per_block_shift = __ffs(block_size);
991d9fa0 2831 pool->low_water_blocks = 0;
67e2e2b2 2832 pool_features_init(&pool->pf);
a195db2d 2833 pool->prison = dm_bio_prison_create();
991d9fa0
JT
2834 if (!pool->prison) {
2835 *error = "Error creating pool's bio prison";
2836 err_p = ERR_PTR(-ENOMEM);
2837 goto bad_prison;
2838 }
2839
df5d2e90 2840 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
991d9fa0
JT
2841 if (IS_ERR(pool->copier)) {
2842 r = PTR_ERR(pool->copier);
2843 *error = "Error creating pool's kcopyd client";
2844 err_p = ERR_PTR(r);
2845 goto bad_kcopyd_client;
2846 }
2847
2848 /*
2849 * Create singlethreaded workqueue that will service all devices
2850 * that use this metadata.
2851 */
2852 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2853 if (!pool->wq) {
2854 *error = "Error creating pool's workqueue";
2855 err_p = ERR_PTR(-ENOMEM);
2856 goto bad_wq;
2857 }
2858
7d327fe0 2859 throttle_init(&pool->throttle);
991d9fa0 2860 INIT_WORK(&pool->worker, do_worker);
905e51b3 2861 INIT_DELAYED_WORK(&pool->waker, do_waker);
85ad643b 2862 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
991d9fa0 2863 spin_lock_init(&pool->lock);
991d9fa0
JT
2864 bio_list_init(&pool->deferred_flush_bios);
2865 INIT_LIST_HEAD(&pool->prepared_mappings);
104655fd 2866 INIT_LIST_HEAD(&pool->prepared_discards);
c140e1c4 2867 INIT_LIST_HEAD(&pool->active_thins);
88a6621b 2868 pool->low_water_triggered = false;
80e96c54 2869 pool->suspended = true;
44feb387
MS
2870
2871 pool->shared_read_ds = dm_deferred_set_create();
2872 if (!pool->shared_read_ds) {
2873 *error = "Error creating pool's shared read deferred set";
2874 err_p = ERR_PTR(-ENOMEM);
2875 goto bad_shared_read_ds;
2876 }
2877
2878 pool->all_io_ds = dm_deferred_set_create();
2879 if (!pool->all_io_ds) {
2880 *error = "Error creating pool's all io deferred set";
2881 err_p = ERR_PTR(-ENOMEM);
2882 goto bad_all_io_ds;
2883 }
991d9fa0
JT
2884
2885 pool->next_mapping = NULL;
a24c2569
MS
2886 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2887 _new_mapping_cache);
991d9fa0
JT
2888 if (!pool->mapping_pool) {
2889 *error = "Error creating pool's mapping mempool";
2890 err_p = ERR_PTR(-ENOMEM);
2891 goto bad_mapping_pool;
2892 }
2893
a822c83e
JT
2894 pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2895 if (!pool->cell_sort_array) {
2896 *error = "Error allocating cell sort array";
2897 err_p = ERR_PTR(-ENOMEM);
2898 goto bad_sort_array;
2899 }
2900
991d9fa0 2901 pool->ref_count = 1;
905e51b3 2902 pool->last_commit_jiffies = jiffies;
991d9fa0
JT
2903 pool->pool_md = pool_md;
2904 pool->md_dev = metadata_dev;
2905 __pool_table_insert(pool);
2906
2907 return pool;
2908
a822c83e
JT
2909bad_sort_array:
2910 mempool_destroy(pool->mapping_pool);
991d9fa0 2911bad_mapping_pool:
44feb387
MS
2912 dm_deferred_set_destroy(pool->all_io_ds);
2913bad_all_io_ds:
2914 dm_deferred_set_destroy(pool->shared_read_ds);
2915bad_shared_read_ds:
991d9fa0
JT
2916 destroy_workqueue(pool->wq);
2917bad_wq:
2918 dm_kcopyd_client_destroy(pool->copier);
2919bad_kcopyd_client:
44feb387 2920 dm_bio_prison_destroy(pool->prison);
991d9fa0
JT
2921bad_prison:
2922 kfree(pool);
2923bad_pool:
2924 if (dm_pool_metadata_close(pmd))
2925 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2926
2927 return err_p;
2928}
2929
2930static void __pool_inc(struct pool *pool)
2931{
2932 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2933 pool->ref_count++;
2934}
2935
2936static void __pool_dec(struct pool *pool)
2937{
2938 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2939 BUG_ON(!pool->ref_count);
2940 if (!--pool->ref_count)
2941 __pool_destroy(pool);
2942}
2943
2944static struct pool *__pool_find(struct mapped_device *pool_md,
2945 struct block_device *metadata_dev,
e49e5829
JT
2946 unsigned long block_size, int read_only,
2947 char **error, int *created)
991d9fa0
JT
2948{
2949 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2950
2951 if (pool) {
f09996c9
MS
2952 if (pool->pool_md != pool_md) {
2953 *error = "metadata device already in use by a pool";
991d9fa0 2954 return ERR_PTR(-EBUSY);
f09996c9 2955 }
991d9fa0
JT
2956 __pool_inc(pool);
2957
2958 } else {
2959 pool = __pool_table_lookup(pool_md);
2960 if (pool) {
f09996c9
MS
2961 if (pool->md_dev != metadata_dev) {
2962 *error = "different pool cannot replace a pool";
991d9fa0 2963 return ERR_PTR(-EINVAL);
f09996c9 2964 }
991d9fa0
JT
2965 __pool_inc(pool);
2966
67e2e2b2 2967 } else {
e49e5829 2968 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
67e2e2b2
JT
2969 *created = 1;
2970 }
991d9fa0
JT
2971 }
2972
2973 return pool;
2974}
2975
2976/*----------------------------------------------------------------
2977 * Pool target methods
2978 *--------------------------------------------------------------*/
2979static void pool_dtr(struct dm_target *ti)
2980{
2981 struct pool_c *pt = ti->private;
2982
2983 mutex_lock(&dm_thin_pool_table.mutex);
2984
2985 unbind_control_target(pt->pool, ti);
2986 __pool_dec(pt->pool);
2987 dm_put_device(ti, pt->metadata_dev);
2988 dm_put_device(ti, pt->data_dev);
2989 kfree(pt);
2990
2991 mutex_unlock(&dm_thin_pool_table.mutex);
2992}
2993
991d9fa0
JT
2994static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2995 struct dm_target *ti)
2996{
2997 int r;
2998 unsigned argc;
2999 const char *arg_name;
3000
3001 static struct dm_arg _args[] = {
74aa45c3 3002 {0, 4, "Invalid number of pool feature arguments"},
991d9fa0
JT
3003 };
3004
3005 /*
3006 * No feature arguments supplied.
3007 */
3008 if (!as->argc)
3009 return 0;
3010
3011 r = dm_read_arg_group(_args, as, &argc, &ti->error);
3012 if (r)
3013 return -EINVAL;
3014
3015 while (argc && !r) {
3016 arg_name = dm_shift_arg(as);
3017 argc--;
3018
e49e5829 3019 if (!strcasecmp(arg_name, "skip_block_zeroing"))
9bc142dd 3020 pf->zero_new_blocks = false;
e49e5829
JT
3021
3022 else if (!strcasecmp(arg_name, "ignore_discard"))
9bc142dd 3023 pf->discard_enabled = false;
e49e5829
JT
3024
3025 else if (!strcasecmp(arg_name, "no_discard_passdown"))
9bc142dd 3026 pf->discard_passdown = false;
991d9fa0 3027
e49e5829
JT
3028 else if (!strcasecmp(arg_name, "read_only"))
3029 pf->mode = PM_READ_ONLY;
3030
787a996c
MS
3031 else if (!strcasecmp(arg_name, "error_if_no_space"))
3032 pf->error_if_no_space = true;
3033
e49e5829
JT
3034 else {
3035 ti->error = "Unrecognised pool feature requested";
3036 r = -EINVAL;
3037 break;
3038 }
991d9fa0
JT
3039 }
3040
3041 return r;
3042}
3043
ac8c3f3d
JT
3044static void metadata_low_callback(void *context)
3045{
3046 struct pool *pool = context;
3047
3048 DMWARN("%s: reached low water mark for metadata device: sending event.",
3049 dm_device_name(pool->pool_md));
3050
3051 dm_table_event(pool->ti->table);
3052}
3053
7d48935e
MS
3054static sector_t get_dev_size(struct block_device *bdev)
3055{
3056 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3057}
3058
3059static void warn_if_metadata_device_too_big(struct block_device *bdev)
b17446df 3060{
7d48935e 3061 sector_t metadata_dev_size = get_dev_size(bdev);
b17446df
JT
3062 char buffer[BDEVNAME_SIZE];
3063
7d48935e 3064 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
b17446df
JT
3065 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3066 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
7d48935e
MS
3067}
3068
3069static sector_t get_metadata_dev_size(struct block_device *bdev)
3070{
3071 sector_t metadata_dev_size = get_dev_size(bdev);
3072
3073 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3074 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
b17446df
JT
3075
3076 return metadata_dev_size;
3077}
3078
24347e95
JT
3079static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3080{
3081 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3082
7d48935e 3083 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
24347e95
JT
3084
3085 return metadata_dev_size;
3086}
3087
ac8c3f3d
JT
3088/*
3089 * When a metadata threshold is crossed a dm event is triggered, and
3090 * userland should respond by growing the metadata device. We could let
3091 * userland set the threshold, like we do with the data threshold, but I'm
3092 * not sure they know enough to do this well.
3093 */
3094static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3095{
3096 /*
3097 * 4M is ample for all ops with the possible exception of thin
3098 * device deletion which is harmless if it fails (just retry the
3099 * delete after you've grown the device).
3100 */
3101 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3102 return min((dm_block_t)1024ULL /* 4M */, quarter);
3103}
3104
991d9fa0
JT
3105/*
3106 * thin-pool <metadata dev> <data dev>
3107 * <data block size (sectors)>
3108 * <low water mark (blocks)>
3109 * [<#feature args> [<arg>]*]
3110 *
3111 * Optional feature arguments are:
3112 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
67e2e2b2
JT
3113 * ignore_discard: disable discard
3114 * no_discard_passdown: don't pass discards down to the data device
787a996c
MS
3115 * read_only: Don't allow any changes to be made to the pool metadata.
3116 * error_if_no_space: error IOs, instead of queueing, if no space.
991d9fa0
JT
3117 */
3118static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3119{
67e2e2b2 3120 int r, pool_created = 0;
991d9fa0
JT
3121 struct pool_c *pt;
3122 struct pool *pool;
3123 struct pool_features pf;
3124 struct dm_arg_set as;
3125 struct dm_dev *data_dev;
3126 unsigned long block_size;
3127 dm_block_t low_water_blocks;
3128 struct dm_dev *metadata_dev;
5d0db96d 3129 fmode_t metadata_mode;
991d9fa0
JT
3130
3131 /*
3132 * FIXME Remove validation from scope of lock.
3133 */
3134 mutex_lock(&dm_thin_pool_table.mutex);
3135
3136 if (argc < 4) {
3137 ti->error = "Invalid argument count";
3138 r = -EINVAL;
3139 goto out_unlock;
3140 }
5d0db96d 3141
991d9fa0
JT
3142 as.argc = argc;
3143 as.argv = argv;
3144
5d0db96d
JT
3145 /*
3146 * Set default pool features.
3147 */
3148 pool_features_init(&pf);
3149
3150 dm_consume_args(&as, 4);
3151 r = parse_pool_features(&as, &pf, ti);
3152 if (r)
3153 goto out_unlock;
3154
3155 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3156 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
991d9fa0
JT
3157 if (r) {
3158 ti->error = "Error opening metadata block device";
3159 goto out_unlock;
3160 }
7d48935e 3161 warn_if_metadata_device_too_big(metadata_dev->bdev);
991d9fa0
JT
3162
3163 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3164 if (r) {
3165 ti->error = "Error getting data device";
3166 goto out_metadata;
3167 }
3168
3169 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3170 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3171 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
55f2b8bd 3172 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
991d9fa0
JT
3173 ti->error = "Invalid block size";
3174 r = -EINVAL;
3175 goto out;
3176 }
3177
3178 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3179 ti->error = "Invalid low water mark";
3180 r = -EINVAL;
3181 goto out;
3182 }
3183
991d9fa0
JT
3184 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3185 if (!pt) {
3186 r = -ENOMEM;
3187 goto out;
3188 }
3189
3190 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
e49e5829 3191 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
991d9fa0
JT
3192 if (IS_ERR(pool)) {
3193 r = PTR_ERR(pool);
3194 goto out_free_pt;
3195 }
3196
67e2e2b2
JT
3197 /*
3198 * 'pool_created' reflects whether this is the first table load.
3199 * Top level discard support is not allowed to be changed after
3200 * initial load. This would require a pool reload to trigger thin
3201 * device changes.
3202 */
3203 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3204 ti->error = "Discard support cannot be disabled once enabled";
3205 r = -EINVAL;
3206 goto out_flags_changed;
3207 }
3208
991d9fa0
JT
3209 pt->pool = pool;
3210 pt->ti = ti;
3211 pt->metadata_dev = metadata_dev;
3212 pt->data_dev = data_dev;
3213 pt->low_water_blocks = low_water_blocks;
0424caa1 3214 pt->adjusted_pf = pt->requested_pf = pf;
55a62eef 3215 ti->num_flush_bios = 1;
9bc142dd 3216
67e2e2b2
JT
3217 /*
3218 * Only need to enable discards if the pool should pass
3219 * them down to the data device. The thin device's discard
3220 * processing will cause mappings to be removed from the btree.
3221 */
b60ab990 3222 ti->discard_zeroes_data_unsupported = true;
67e2e2b2 3223 if (pf.discard_enabled && pf.discard_passdown) {
55a62eef 3224 ti->num_discard_bios = 1;
9bc142dd 3225
67e2e2b2
JT
3226 /*
3227 * Setting 'discards_supported' circumvents the normal
3228 * stacking of discard limits (this keeps the pool and
3229 * thin devices' discard limits consistent).
3230 */
0ac55489 3231 ti->discards_supported = true;
67e2e2b2 3232 }
991d9fa0
JT
3233 ti->private = pt;
3234
ac8c3f3d
JT
3235 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3236 calc_metadata_threshold(pt),
3237 metadata_low_callback,
3238 pool);
3239 if (r)
3240 goto out_free_pt;
3241
991d9fa0
JT
3242 pt->callbacks.congested_fn = pool_is_congested;
3243 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3244
3245 mutex_unlock(&dm_thin_pool_table.mutex);
3246
3247 return 0;
3248
67e2e2b2
JT
3249out_flags_changed:
3250 __pool_dec(pool);
991d9fa0
JT
3251out_free_pt:
3252 kfree(pt);
3253out:
3254 dm_put_device(ti, data_dev);
3255out_metadata:
3256 dm_put_device(ti, metadata_dev);
3257out_unlock:
3258 mutex_unlock(&dm_thin_pool_table.mutex);
3259
3260 return r;
3261}
3262
7de3ee57 3263static int pool_map(struct dm_target *ti, struct bio *bio)
991d9fa0
JT
3264{
3265 int r;
3266 struct pool_c *pt = ti->private;
3267 struct pool *pool = pt->pool;
3268 unsigned long flags;
3269
3270 /*
3271 * As this is a singleton target, ti->begin is always zero.
3272 */
3273 spin_lock_irqsave(&pool->lock, flags);
3274 bio->bi_bdev = pt->data_dev->bdev;
3275 r = DM_MAPIO_REMAPPED;
3276 spin_unlock_irqrestore(&pool->lock, flags);
3277
3278 return r;
3279}
3280
b17446df 3281static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
991d9fa0
JT
3282{
3283 int r;
3284 struct pool_c *pt = ti->private;
3285 struct pool *pool = pt->pool;
55f2b8bd
MS
3286 sector_t data_size = ti->len;
3287 dm_block_t sb_data_size;
991d9fa0 3288
b17446df 3289 *need_commit = false;
991d9fa0 3290
55f2b8bd
MS
3291 (void) sector_div(data_size, pool->sectors_per_block);
3292
991d9fa0
JT
3293 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3294 if (r) {
4fa5971a
MS
3295 DMERR("%s: failed to retrieve data device size",
3296 dm_device_name(pool->pool_md));
991d9fa0
JT
3297 return r;
3298 }
3299
3300 if (data_size < sb_data_size) {
4fa5971a
MS
3301 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3302 dm_device_name(pool->pool_md),
55f2b8bd 3303 (unsigned long long)data_size, sb_data_size);
991d9fa0
JT
3304 return -EINVAL;
3305
3306 } else if (data_size > sb_data_size) {
07f2b6e0
MS
3307 if (dm_pool_metadata_needs_check(pool->pmd)) {
3308 DMERR("%s: unable to grow the data device until repaired.",
3309 dm_device_name(pool->pool_md));
3310 return 0;
3311 }
3312
6f7f51d4
MS
3313 if (sb_data_size)
3314 DMINFO("%s: growing the data device from %llu to %llu blocks",
3315 dm_device_name(pool->pool_md),
3316 sb_data_size, (unsigned long long)data_size);
991d9fa0
JT
3317 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3318 if (r) {
b5330655 3319 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
991d9fa0
JT
3320 return r;
3321 }
3322
b17446df 3323 *need_commit = true;
991d9fa0
JT
3324 }
3325
3326 return 0;
3327}
3328
24347e95
JT
3329static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3330{
3331 int r;
3332 struct pool_c *pt = ti->private;
3333 struct pool *pool = pt->pool;
3334 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3335
3336 *need_commit = false;
3337
610bba8b 3338 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
24347e95
JT
3339
3340 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3341 if (r) {
4fa5971a
MS
3342 DMERR("%s: failed to retrieve metadata device size",
3343 dm_device_name(pool->pool_md));
24347e95
JT
3344 return r;
3345 }
3346
3347 if (metadata_dev_size < sb_metadata_dev_size) {
4fa5971a
MS
3348 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3349 dm_device_name(pool->pool_md),
24347e95
JT
3350 metadata_dev_size, sb_metadata_dev_size);
3351 return -EINVAL;
3352
3353 } else if (metadata_dev_size > sb_metadata_dev_size) {
07f2b6e0
MS
3354 if (dm_pool_metadata_needs_check(pool->pmd)) {
3355 DMERR("%s: unable to grow the metadata device until repaired.",
3356 dm_device_name(pool->pool_md));
3357 return 0;
3358 }
3359
7d48935e 3360 warn_if_metadata_device_too_big(pool->md_dev);
6f7f51d4
MS
3361 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3362 dm_device_name(pool->pool_md),
3363 sb_metadata_dev_size, metadata_dev_size);
24347e95
JT
3364 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3365 if (r) {
b5330655 3366 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
24347e95
JT
3367 return r;
3368 }
3369
3370 *need_commit = true;
3371 }
3372
3373 return 0;
3374}
3375
b17446df
JT
3376/*
3377 * Retrieves the number of blocks of the data device from
3378 * the superblock and compares it to the actual device size,
3379 * thus resizing the data device in case it has grown.
3380 *
3381 * This both copes with opening preallocated data devices in the ctr
3382 * being followed by a resume
3383 * -and-
3384 * calling the resume method individually after userspace has
3385 * grown the data device in reaction to a table event.
3386 */
3387static int pool_preresume(struct dm_target *ti)
3388{
3389 int r;
24347e95 3390 bool need_commit1, need_commit2;
b17446df
JT
3391 struct pool_c *pt = ti->private;
3392 struct pool *pool = pt->pool;
3393
3394 /*
3395 * Take control of the pool object.
3396 */
3397 r = bind_control_target(pool, ti);
3398 if (r)
3399 return r;
3400
3401 r = maybe_resize_data_dev(ti, &need_commit1);
3402 if (r)
3403 return r;
3404
24347e95
JT
3405 r = maybe_resize_metadata_dev(ti, &need_commit2);
3406 if (r)
3407 return r;
3408
3409 if (need_commit1 || need_commit2)
020cc3b5 3410 (void) commit(pool);
b17446df
JT
3411
3412 return 0;
3413}
3414
583024d2
MS
3415static void pool_suspend_active_thins(struct pool *pool)
3416{
3417 struct thin_c *tc;
3418
3419 /* Suspend all active thin devices */
3420 tc = get_first_thin(pool);
3421 while (tc) {
3422 dm_internal_suspend_noflush(tc->thin_md);
3423 tc = get_next_thin(pool, tc);
3424 }
3425}
3426
3427static void pool_resume_active_thins(struct pool *pool)
3428{
3429 struct thin_c *tc;
3430
3431 /* Resume all active thin devices */
3432 tc = get_first_thin(pool);
3433 while (tc) {
3434 dm_internal_resume(tc->thin_md);
3435 tc = get_next_thin(pool, tc);
3436 }
3437}
3438
991d9fa0
JT
3439static void pool_resume(struct dm_target *ti)
3440{
3441 struct pool_c *pt = ti->private;
3442 struct pool *pool = pt->pool;
3443 unsigned long flags;
3444
583024d2
MS
3445 /*
3446 * Must requeue active_thins' bios and then resume
3447 * active_thins _before_ clearing 'suspend' flag.
3448 */
3449 requeue_bios(pool);
3450 pool_resume_active_thins(pool);
3451
991d9fa0 3452 spin_lock_irqsave(&pool->lock, flags);
88a6621b 3453 pool->low_water_triggered = false;
80e96c54 3454 pool->suspended = false;
991d9fa0 3455 spin_unlock_irqrestore(&pool->lock, flags);
80e96c54 3456
905e51b3 3457 do_waker(&pool->waker.work);
991d9fa0
JT
3458}
3459
80e96c54
MS
3460static void pool_presuspend(struct dm_target *ti)
3461{
3462 struct pool_c *pt = ti->private;
3463 struct pool *pool = pt->pool;
3464 unsigned long flags;
3465
3466 spin_lock_irqsave(&pool->lock, flags);
3467 pool->suspended = true;
3468 spin_unlock_irqrestore(&pool->lock, flags);
583024d2
MS
3469
3470 pool_suspend_active_thins(pool);
80e96c54
MS
3471}
3472
3473static void pool_presuspend_undo(struct dm_target *ti)
3474{
3475 struct pool_c *pt = ti->private;
3476 struct pool *pool = pt->pool;
3477 unsigned long flags;
3478
583024d2
MS
3479 pool_resume_active_thins(pool);
3480
80e96c54
MS
3481 spin_lock_irqsave(&pool->lock, flags);
3482 pool->suspended = false;
3483 spin_unlock_irqrestore(&pool->lock, flags);
3484}
3485
991d9fa0
JT
3486static void pool_postsuspend(struct dm_target *ti)
3487{
991d9fa0
JT
3488 struct pool_c *pt = ti->private;
3489 struct pool *pool = pt->pool;
3490
905e51b3 3491 cancel_delayed_work(&pool->waker);
85ad643b 3492 cancel_delayed_work(&pool->no_space_timeout);
991d9fa0 3493 flush_workqueue(pool->wq);
020cc3b5 3494 (void) commit(pool);
991d9fa0
JT
3495}
3496
3497static int check_arg_count(unsigned argc, unsigned args_required)
3498{
3499 if (argc != args_required) {
3500 DMWARN("Message received with %u arguments instead of %u.",
3501 argc, args_required);
3502 return -EINVAL;
3503 }
3504
3505 return 0;
3506}
3507
3508static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3509{
3510 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3511 *dev_id <= MAX_DEV_ID)
3512 return 0;
3513
3514 if (warning)
3515 DMWARN("Message received with invalid device id: %s", arg);
3516
3517 return -EINVAL;
3518}
3519
3520static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3521{
3522 dm_thin_id dev_id;
3523 int r;
3524
3525 r = check_arg_count(argc, 2);
3526 if (r)
3527 return r;
3528
3529 r = read_dev_id(argv[1], &dev_id, 1);
3530 if (r)
3531 return r;
3532
3533 r = dm_pool_create_thin(pool->pmd, dev_id);
3534 if (r) {
3535 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3536 argv[1]);
3537 return r;
3538 }
3539
3540 return 0;
3541}
3542
3543static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3544{
3545 dm_thin_id dev_id;
3546 dm_thin_id origin_dev_id;
3547 int r;
3548
3549 r = check_arg_count(argc, 3);
3550 if (r)
3551 return r;
3552
3553 r = read_dev_id(argv[1], &dev_id, 1);
3554 if (r)
3555 return r;
3556
3557 r = read_dev_id(argv[2], &origin_dev_id, 1);
3558 if (r)
3559 return r;
3560
3561 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3562 if (r) {
3563 DMWARN("Creation of new snapshot %s of device %s failed.",
3564 argv[1], argv[2]);
3565 return r;
3566 }
3567
3568 return 0;
3569}
3570
3571static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3572{
3573 dm_thin_id dev_id;
3574 int r;
3575
3576 r = check_arg_count(argc, 2);
3577 if (r)
3578 return r;
3579
3580 r = read_dev_id(argv[1], &dev_id, 1);
3581 if (r)
3582 return r;
3583
3584 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3585 if (r)
3586 DMWARN("Deletion of thin device %s failed.", argv[1]);
3587
3588 return r;
3589}
3590
3591static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3592{
3593 dm_thin_id old_id, new_id;
3594 int r;
3595
3596 r = check_arg_count(argc, 3);
3597 if (r)
3598 return r;
3599
3600 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3601 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3602 return -EINVAL;
3603 }
3604
3605 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3606 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3607 return -EINVAL;
3608 }
3609
3610 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3611 if (r) {
3612 DMWARN("Failed to change transaction id from %s to %s.",
3613 argv[1], argv[2]);
3614 return r;
3615 }
3616
3617 return 0;
3618}
3619
cc8394d8
JT
3620static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3621{
3622 int r;
3623
3624 r = check_arg_count(argc, 1);
3625 if (r)
3626 return r;
3627
020cc3b5 3628 (void) commit(pool);
0d200aef 3629
cc8394d8
JT
3630 r = dm_pool_reserve_metadata_snap(pool->pmd);
3631 if (r)
3632 DMWARN("reserve_metadata_snap message failed.");
3633
3634 return r;
3635}
3636
3637static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3638{
3639 int r;
3640
3641 r = check_arg_count(argc, 1);
3642 if (r)
3643 return r;
3644
3645 r = dm_pool_release_metadata_snap(pool->pmd);
3646 if (r)
3647 DMWARN("release_metadata_snap message failed.");
3648
3649 return r;
3650}
3651
991d9fa0
JT
3652/*
3653 * Messages supported:
3654 * create_thin <dev_id>
3655 * create_snap <dev_id> <origin_id>
3656 * delete <dev_id>
991d9fa0 3657 * set_transaction_id <current_trans_id> <new_trans_id>
cc8394d8
JT
3658 * reserve_metadata_snap
3659 * release_metadata_snap
991d9fa0
JT
3660 */
3661static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3662{
3663 int r = -EINVAL;
3664 struct pool_c *pt = ti->private;
3665 struct pool *pool = pt->pool;
3666
2a7eaea0
JT
3667 if (get_pool_mode(pool) >= PM_READ_ONLY) {
3668 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3669 dm_device_name(pool->pool_md));
fd467696 3670 return -EOPNOTSUPP;
2a7eaea0
JT
3671 }
3672
991d9fa0
JT
3673 if (!strcasecmp(argv[0], "create_thin"))
3674 r = process_create_thin_mesg(argc, argv, pool);
3675
3676 else if (!strcasecmp(argv[0], "create_snap"))
3677 r = process_create_snap_mesg(argc, argv, pool);
3678
3679 else if (!strcasecmp(argv[0], "delete"))
3680 r = process_delete_mesg(argc, argv, pool);
3681
3682 else if (!strcasecmp(argv[0], "set_transaction_id"))
3683 r = process_set_transaction_id_mesg(argc, argv, pool);
3684
cc8394d8
JT
3685 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3686 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3687
3688 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3689 r = process_release_metadata_snap_mesg(argc, argv, pool);
3690
991d9fa0
JT
3691 else
3692 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3693
e49e5829 3694 if (!r)
020cc3b5 3695 (void) commit(pool);
991d9fa0
JT
3696
3697 return r;
3698}
3699
e49e5829
JT
3700static void emit_flags(struct pool_features *pf, char *result,
3701 unsigned sz, unsigned maxlen)
3702{
3703 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
787a996c
MS
3704 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3705 pf->error_if_no_space;
e49e5829
JT
3706 DMEMIT("%u ", count);
3707
3708 if (!pf->zero_new_blocks)
3709 DMEMIT("skip_block_zeroing ");
3710
3711 if (!pf->discard_enabled)
3712 DMEMIT("ignore_discard ");
3713
3714 if (!pf->discard_passdown)
3715 DMEMIT("no_discard_passdown ");
3716
3717 if (pf->mode == PM_READ_ONLY)
3718 DMEMIT("read_only ");
787a996c
MS
3719
3720 if (pf->error_if_no_space)
3721 DMEMIT("error_if_no_space ");
e49e5829
JT
3722}
3723
991d9fa0
JT
3724/*
3725 * Status line is:
3726 * <transaction id> <used metadata sectors>/<total metadata sectors>
3727 * <used data sectors>/<total data sectors> <held metadata root>
3728 */
fd7c092e
MP
3729static void pool_status(struct dm_target *ti, status_type_t type,
3730 unsigned status_flags, char *result, unsigned maxlen)
991d9fa0 3731{
e49e5829 3732 int r;
991d9fa0
JT
3733 unsigned sz = 0;
3734 uint64_t transaction_id;
3735 dm_block_t nr_free_blocks_data;
3736 dm_block_t nr_free_blocks_metadata;
3737 dm_block_t nr_blocks_data;
3738 dm_block_t nr_blocks_metadata;
3739 dm_block_t held_root;
3740 char buf[BDEVNAME_SIZE];
3741 char buf2[BDEVNAME_SIZE];
3742 struct pool_c *pt = ti->private;
3743 struct pool *pool = pt->pool;
3744
3745 switch (type) {
3746 case STATUSTYPE_INFO:
e49e5829
JT
3747 if (get_pool_mode(pool) == PM_FAIL) {
3748 DMEMIT("Fail");
3749 break;
3750 }
3751
1f4e0ff0
AK
3752 /* Commit to ensure statistics aren't out-of-date */
3753 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
020cc3b5 3754 (void) commit(pool);
1f4e0ff0 3755
fd7c092e
MP
3756 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3757 if (r) {
4fa5971a
MS
3758 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3759 dm_device_name(pool->pool_md), r);
fd7c092e
MP
3760 goto err;
3761 }
991d9fa0 3762
fd7c092e
MP
3763 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3764 if (r) {
4fa5971a
MS
3765 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3766 dm_device_name(pool->pool_md), r);
fd7c092e
MP
3767 goto err;
3768 }
991d9fa0
JT
3769
3770 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
fd7c092e 3771 if (r) {
4fa5971a
MS
3772 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3773 dm_device_name(pool->pool_md), r);
fd7c092e
MP
3774 goto err;
3775 }
991d9fa0 3776
fd7c092e
MP
3777 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3778 if (r) {
4fa5971a
MS
3779 DMERR("%s: dm_pool_get_free_block_count returned %d",
3780 dm_device_name(pool->pool_md), r);
fd7c092e
MP
3781 goto err;
3782 }
991d9fa0
JT
3783
3784 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
fd7c092e 3785 if (r) {
4fa5971a
MS
3786 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3787 dm_device_name(pool->pool_md), r);
fd7c092e
MP
3788 goto err;
3789 }
991d9fa0 3790
cc8394d8 3791 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
fd7c092e 3792 if (r) {
4fa5971a
MS
3793 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3794 dm_device_name(pool->pool_md), r);
fd7c092e
MP
3795 goto err;
3796 }
991d9fa0
JT
3797
3798 DMEMIT("%llu %llu/%llu %llu/%llu ",
3799 (unsigned long long)transaction_id,
3800 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3801 (unsigned long long)nr_blocks_metadata,
3802 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3803 (unsigned long long)nr_blocks_data);
3804
3805 if (held_root)
e49e5829
JT
3806 DMEMIT("%llu ", held_root);
3807 else
3808 DMEMIT("- ");
3809
3e1a0699
JT
3810 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3811 DMEMIT("out_of_data_space ");
3812 else if (pool->pf.mode == PM_READ_ONLY)
e49e5829 3813 DMEMIT("ro ");
991d9fa0 3814 else
e49e5829
JT
3815 DMEMIT("rw ");
3816
018debea 3817 if (!pool->pf.discard_enabled)
787a996c 3818 DMEMIT("ignore_discard ");
018debea 3819 else if (pool->pf.discard_passdown)
787a996c
MS
3820 DMEMIT("discard_passdown ");
3821 else
3822 DMEMIT("no_discard_passdown ");
3823
3824 if (pool->pf.error_if_no_space)
3825 DMEMIT("error_if_no_space ");
e49e5829 3826 else
787a996c 3827 DMEMIT("queue_if_no_space ");
991d9fa0
JT
3828
3829 break;
3830
3831 case STATUSTYPE_TABLE:
3832 DMEMIT("%s %s %lu %llu ",
3833 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3834 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3835 (unsigned long)pool->sectors_per_block,
3836 (unsigned long long)pt->low_water_blocks);
0424caa1 3837 emit_flags(&pt->requested_pf, result, sz, maxlen);
991d9fa0
JT
3838 break;
3839 }
fd7c092e 3840 return;
991d9fa0 3841
fd7c092e
MP
3842err:
3843 DMEMIT("Error");
991d9fa0
JT
3844}
3845
3846static int pool_iterate_devices(struct dm_target *ti,
3847 iterate_devices_callout_fn fn, void *data)
3848{
3849 struct pool_c *pt = ti->private;
3850
3851 return fn(ti, pt->data_dev, 0, ti->len, data);
3852}
3853
3854static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3855 struct bio_vec *biovec, int max_size)
3856{
3857 struct pool_c *pt = ti->private;
3858 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3859
3860 if (!q->merge_bvec_fn)
3861 return max_size;
3862
3863 bvm->bi_bdev = pt->data_dev->bdev;
3864
3865 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3866}
3867
3868static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3869{
3870 struct pool_c *pt = ti->private;
3871 struct pool *pool = pt->pool;
604ea906
MS
3872 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3873
3874 /*
d200c30e
MS
3875 * If max_sectors is smaller than pool->sectors_per_block adjust it
3876 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3877 * This is especially beneficial when the pool's data device is a RAID
3878 * device that has a full stripe width that matches pool->sectors_per_block
3879 * -- because even though partial RAID stripe-sized IOs will be issued to a
3880 * single RAID stripe; when aggregated they will end on a full RAID stripe
3881 * boundary.. which avoids additional partial RAID stripe writes cascading
604ea906 3882 */
604ea906
MS
3883 if (limits->max_sectors < pool->sectors_per_block) {
3884 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3885 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3886 limits->max_sectors--;
3887 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3888 }
604ea906 3889 }
991d9fa0 3890
0cc67cd9
MS
3891 /*
3892 * If the system-determined stacked limits are compatible with the
3893 * pool's blocksize (io_opt is a factor) do not override them.
3894 */
3895 if (io_opt_sectors < pool->sectors_per_block ||
604ea906
MS
3896 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3897 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3898 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3899 else
3900 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
0cc67cd9
MS
3901 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3902 }
0424caa1
MS
3903
3904 /*
3905 * pt->adjusted_pf is a staging area for the actual features to use.
3906 * They get transferred to the live pool in bind_control_target()
3907 * called from pool_preresume().
3908 */
b60ab990
MS
3909 if (!pt->adjusted_pf.discard_enabled) {
3910 /*
3911 * Must explicitly disallow stacking discard limits otherwise the
3912 * block layer will stack them if pool's data device has support.
3913 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3914 * user to see that, so make sure to set all discard limits to 0.
3915 */
3916 limits->discard_granularity = 0;
0424caa1 3917 return;
b60ab990 3918 }
0424caa1
MS
3919
3920 disable_passdown_if_not_supported(pt);
3921
34fbcf62
JT
3922 /*
3923 * The pool uses the same discard limits as the underlying data
3924 * device. DM core has already set this up.
3925 */
991d9fa0
JT
3926}
3927
3928static struct target_type pool_target = {
3929 .name = "thin-pool",
3930 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3931 DM_TARGET_IMMUTABLE,
34fbcf62 3932 .version = {1, 15, 0},
991d9fa0
JT
3933 .module = THIS_MODULE,
3934 .ctr = pool_ctr,
3935 .dtr = pool_dtr,
3936 .map = pool_map,
80e96c54
MS
3937 .presuspend = pool_presuspend,
3938 .presuspend_undo = pool_presuspend_undo,
991d9fa0
JT
3939 .postsuspend = pool_postsuspend,
3940 .preresume = pool_preresume,
3941 .resume = pool_resume,
3942 .message = pool_message,
3943 .status = pool_status,
3944 .merge = pool_merge,
3945 .iterate_devices = pool_iterate_devices,
3946 .io_hints = pool_io_hints,
3947};
3948
3949/*----------------------------------------------------------------
3950 * Thin target methods
3951 *--------------------------------------------------------------*/
b10ebd34
JT
3952static void thin_get(struct thin_c *tc)
3953{
3954 atomic_inc(&tc->refcount);
3955}
3956
3957static void thin_put(struct thin_c *tc)
3958{
3959 if (atomic_dec_and_test(&tc->refcount))
3960 complete(&tc->can_destroy);
3961}
3962
991d9fa0
JT
3963static void thin_dtr(struct dm_target *ti)
3964{
3965 struct thin_c *tc = ti->private;
c140e1c4
MS
3966 unsigned long flags;
3967
3968 spin_lock_irqsave(&tc->pool->lock, flags);
3969 list_del_rcu(&tc->list);
3970 spin_unlock_irqrestore(&tc->pool->lock, flags);
3971 synchronize_rcu();
991d9fa0 3972
17181fb7
MP
3973 thin_put(tc);
3974 wait_for_completion(&tc->can_destroy);
3975
991d9fa0
JT
3976 mutex_lock(&dm_thin_pool_table.mutex);
3977
3978 __pool_dec(tc->pool);
3979 dm_pool_close_thin_device(tc->td);
3980 dm_put_device(ti, tc->pool_dev);
2dd9c257
JT
3981 if (tc->origin_dev)
3982 dm_put_device(ti, tc->origin_dev);
991d9fa0
JT
3983 kfree(tc);
3984
3985 mutex_unlock(&dm_thin_pool_table.mutex);
3986}
3987
3988/*
3989 * Thin target parameters:
3990 *
2dd9c257 3991 * <pool_dev> <dev_id> [origin_dev]
991d9fa0
JT
3992 *
3993 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3994 * dev_id: the internal device identifier
2dd9c257 3995 * origin_dev: a device external to the pool that should act as the origin
67e2e2b2
JT
3996 *
3997 * If the pool device has discards disabled, they get disabled for the thin
3998 * device as well.
991d9fa0
JT
3999 */
4000static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4001{
4002 int r;
4003 struct thin_c *tc;
2dd9c257 4004 struct dm_dev *pool_dev, *origin_dev;
991d9fa0 4005 struct mapped_device *pool_md;
5e3283e2 4006 unsigned long flags;
991d9fa0
JT
4007
4008 mutex_lock(&dm_thin_pool_table.mutex);
4009
2dd9c257 4010 if (argc != 2 && argc != 3) {
991d9fa0
JT
4011 ti->error = "Invalid argument count";
4012 r = -EINVAL;
4013 goto out_unlock;
4014 }
4015
4016 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4017 if (!tc) {
4018 ti->error = "Out of memory";
4019 r = -ENOMEM;
4020 goto out_unlock;
4021 }
583024d2 4022 tc->thin_md = dm_table_get_md(ti->table);
c140e1c4 4023 spin_lock_init(&tc->lock);
a374bb21 4024 INIT_LIST_HEAD(&tc->deferred_cells);
c140e1c4
MS
4025 bio_list_init(&tc->deferred_bio_list);
4026 bio_list_init(&tc->retry_on_resume_list);
67324ea1 4027 tc->sort_bio_list = RB_ROOT;
991d9fa0 4028
2dd9c257
JT
4029 if (argc == 3) {
4030 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4031 if (r) {
4032 ti->error = "Error opening origin device";
4033 goto bad_origin_dev;
4034 }
4035 tc->origin_dev = origin_dev;
4036 }
4037
991d9fa0
JT
4038 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4039 if (r) {
4040 ti->error = "Error opening pool device";
4041 goto bad_pool_dev;
4042 }
4043 tc->pool_dev = pool_dev;
4044
4045 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4046 ti->error = "Invalid device id";
4047 r = -EINVAL;
4048 goto bad_common;
4049 }
4050
4051 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4052 if (!pool_md) {
4053 ti->error = "Couldn't get pool mapped device";
4054 r = -EINVAL;
4055 goto bad_common;
4056 }
4057
4058 tc->pool = __pool_table_lookup(pool_md);
4059 if (!tc->pool) {
4060 ti->error = "Couldn't find pool object";
4061 r = -EINVAL;
4062 goto bad_pool_lookup;
4063 }
4064 __pool_inc(tc->pool);
4065
e49e5829
JT
4066 if (get_pool_mode(tc->pool) == PM_FAIL) {
4067 ti->error = "Couldn't open thin device, Pool is in fail mode";
1acacc07 4068 r = -EINVAL;
80e96c54 4069 goto bad_pool;
e49e5829
JT
4070 }
4071
991d9fa0
JT
4072 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4073 if (r) {
4074 ti->error = "Couldn't open thin internal device";
80e96c54 4075 goto bad_pool;
991d9fa0
JT
4076 }
4077
542f9038
MS
4078 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4079 if (r)
80e96c54 4080 goto bad;
542f9038 4081
55a62eef 4082 ti->num_flush_bios = 1;
16ad3d10 4083 ti->flush_supported = true;
59c3d2c6 4084 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
67e2e2b2
JT
4085
4086 /* In case the pool supports discards, pass them on. */
b60ab990 4087 ti->discard_zeroes_data_unsupported = true;
67e2e2b2 4088 if (tc->pool->pf.discard_enabled) {
0ac55489 4089 ti->discards_supported = true;
55a62eef 4090 ti->num_discard_bios = 1;
34fbcf62 4091 ti->split_discard_bios = false;
67e2e2b2 4092 }
991d9fa0 4093
991d9fa0
JT
4094 mutex_unlock(&dm_thin_pool_table.mutex);
4095
5e3283e2 4096 spin_lock_irqsave(&tc->pool->lock, flags);
80e96c54
MS
4097 if (tc->pool->suspended) {
4098 spin_unlock_irqrestore(&tc->pool->lock, flags);
4099 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4100 ti->error = "Unable to activate thin device while pool is suspended";
4101 r = -EINVAL;
4102 goto bad;
4103 }
2b94e896
MD
4104 atomic_set(&tc->refcount, 1);
4105 init_completion(&tc->can_destroy);
c140e1c4 4106 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
5e3283e2 4107 spin_unlock_irqrestore(&tc->pool->lock, flags);
c140e1c4
MS
4108 /*
4109 * This synchronize_rcu() call is needed here otherwise we risk a
4110 * wake_worker() call finding no bios to process (because the newly
4111 * added tc isn't yet visible). So this reduces latency since we
4112 * aren't then dependent on the periodic commit to wake_worker().
4113 */
4114 synchronize_rcu();
4115
80e96c54
MS
4116 dm_put(pool_md);
4117
991d9fa0
JT
4118 return 0;
4119
80e96c54 4120bad:
1acacc07 4121 dm_pool_close_thin_device(tc->td);
80e96c54 4122bad_pool:
991d9fa0
JT
4123 __pool_dec(tc->pool);
4124bad_pool_lookup:
4125 dm_put(pool_md);
4126bad_common:
4127 dm_put_device(ti, tc->pool_dev);
4128bad_pool_dev:
2dd9c257
JT
4129 if (tc->origin_dev)
4130 dm_put_device(ti, tc->origin_dev);
4131bad_origin_dev:
991d9fa0
JT
4132 kfree(tc);
4133out_unlock:
4134 mutex_unlock(&dm_thin_pool_table.mutex);
4135
4136 return r;
4137}
4138
7de3ee57 4139static int thin_map(struct dm_target *ti, struct bio *bio)
991d9fa0 4140{
4f024f37 4141 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
991d9fa0 4142
7de3ee57 4143 return thin_bio_map(ti, bio);
991d9fa0
JT
4144}
4145
7de3ee57 4146static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
eb2aa48d
JT
4147{
4148 unsigned long flags;
59c3d2c6 4149 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
eb2aa48d 4150 struct list_head work;
a24c2569 4151 struct dm_thin_new_mapping *m, *tmp;
eb2aa48d
JT
4152 struct pool *pool = h->tc->pool;
4153
4154 if (h->shared_read_entry) {
4155 INIT_LIST_HEAD(&work);
44feb387 4156 dm_deferred_entry_dec(h->shared_read_entry, &work);
eb2aa48d
JT
4157
4158 spin_lock_irqsave(&pool->lock, flags);
4159 list_for_each_entry_safe(m, tmp, &work, list) {
4160 list_del(&m->list);
50f3c3ef 4161 __complete_mapping_preparation(m);
eb2aa48d
JT
4162 }
4163 spin_unlock_irqrestore(&pool->lock, flags);
4164 }
4165
104655fd
JT
4166 if (h->all_io_entry) {
4167 INIT_LIST_HEAD(&work);
44feb387 4168 dm_deferred_entry_dec(h->all_io_entry, &work);
563af186
JT
4169 if (!list_empty(&work)) {
4170 spin_lock_irqsave(&pool->lock, flags);
4171 list_for_each_entry_safe(m, tmp, &work, list)
daec338b 4172 list_add_tail(&m->list, &pool->prepared_discards);
563af186
JT
4173 spin_unlock_irqrestore(&pool->lock, flags);
4174 wake_worker(pool);
4175 }
104655fd
JT
4176 }
4177
34fbcf62
JT
4178 if (h->cell)
4179 cell_defer_no_holder(h->tc, h->cell);
4180
eb2aa48d
JT
4181 return 0;
4182}
4183
738211f7 4184static void thin_presuspend(struct dm_target *ti)
991d9fa0 4185{
738211f7
JT
4186 struct thin_c *tc = ti->private;
4187
991d9fa0 4188 if (dm_noflush_suspending(ti))
738211f7
JT
4189 noflush_work(tc, do_noflush_start);
4190}
4191
4192static void thin_postsuspend(struct dm_target *ti)
4193{
4194 struct thin_c *tc = ti->private;
4195
4196 /*
4197 * The dm_noflush_suspending flag has been cleared by now, so
4198 * unfortunately we must always run this.
4199 */
4200 noflush_work(tc, do_noflush_stop);
991d9fa0
JT
4201}
4202
e5aea7b4
JT
4203static int thin_preresume(struct dm_target *ti)
4204{
4205 struct thin_c *tc = ti->private;
4206
4207 if (tc->origin_dev)
4208 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4209
4210 return 0;
4211}
4212
991d9fa0
JT
4213/*
4214 * <nr mapped sectors> <highest mapped sector>
4215 */
fd7c092e
MP
4216static void thin_status(struct dm_target *ti, status_type_t type,
4217 unsigned status_flags, char *result, unsigned maxlen)
991d9fa0
JT
4218{
4219 int r;
4220 ssize_t sz = 0;
4221 dm_block_t mapped, highest;
4222 char buf[BDEVNAME_SIZE];
4223 struct thin_c *tc = ti->private;
4224
e49e5829
JT
4225 if (get_pool_mode(tc->pool) == PM_FAIL) {
4226 DMEMIT("Fail");
fd7c092e 4227 return;
e49e5829
JT
4228 }
4229
991d9fa0
JT
4230 if (!tc->td)
4231 DMEMIT("-");
4232 else {
4233 switch (type) {
4234 case STATUSTYPE_INFO:
4235 r = dm_thin_get_mapped_count(tc->td, &mapped);
fd7c092e
MP
4236 if (r) {
4237 DMERR("dm_thin_get_mapped_count returned %d", r);
4238 goto err;
4239 }
991d9fa0
JT
4240
4241 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
fd7c092e
MP
4242 if (r < 0) {
4243 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4244 goto err;
4245 }
991d9fa0
JT
4246
4247 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4248 if (r)
4249 DMEMIT("%llu", ((highest + 1) *
4250 tc->pool->sectors_per_block) - 1);
4251 else
4252 DMEMIT("-");
4253 break;
4254
4255 case STATUSTYPE_TABLE:
4256 DMEMIT("%s %lu",
4257 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4258 (unsigned long) tc->dev_id);
2dd9c257
JT
4259 if (tc->origin_dev)
4260 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
991d9fa0
JT
4261 break;
4262 }
4263 }
4264
fd7c092e
MP
4265 return;
4266
4267err:
4268 DMEMIT("Error");
991d9fa0
JT
4269}
4270
36f12aeb
MS
4271static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
4272 struct bio_vec *biovec, int max_size)
4273{
4274 struct thin_c *tc = ti->private;
4275 struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
4276
4277 if (!q->merge_bvec_fn)
4278 return max_size;
4279
4280 bvm->bi_bdev = tc->pool_dev->bdev;
4281 bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
4282
4283 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
4284}
4285
991d9fa0
JT
4286static int thin_iterate_devices(struct dm_target *ti,
4287 iterate_devices_callout_fn fn, void *data)
4288{
55f2b8bd 4289 sector_t blocks;
991d9fa0 4290 struct thin_c *tc = ti->private;
55f2b8bd 4291 struct pool *pool = tc->pool;
991d9fa0
JT
4292
4293 /*
4294 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4295 * we follow a more convoluted path through to the pool's target.
4296 */
55f2b8bd 4297 if (!pool->ti)
991d9fa0
JT
4298 return 0; /* nothing is bound */
4299
55f2b8bd
MS
4300 blocks = pool->ti->len;
4301 (void) sector_div(blocks, pool->sectors_per_block);
991d9fa0 4302 if (blocks)
55f2b8bd 4303 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
991d9fa0
JT
4304
4305 return 0;
4306}
4307
34fbcf62
JT
4308static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4309{
4310 struct thin_c *tc = ti->private;
4311 struct pool *pool = tc->pool;
4312
4313 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4314 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4315}
4316
991d9fa0
JT
4317static struct target_type thin_target = {
4318 .name = "thin",
34fbcf62 4319 .version = {1, 15, 0},
991d9fa0
JT
4320 .module = THIS_MODULE,
4321 .ctr = thin_ctr,
4322 .dtr = thin_dtr,
4323 .map = thin_map,
eb2aa48d 4324 .end_io = thin_endio,
e5aea7b4 4325 .preresume = thin_preresume,
738211f7 4326 .presuspend = thin_presuspend,
991d9fa0
JT
4327 .postsuspend = thin_postsuspend,
4328 .status = thin_status,
36f12aeb 4329 .merge = thin_merge,
991d9fa0 4330 .iterate_devices = thin_iterate_devices,
34fbcf62 4331 .io_hints = thin_io_hints,
991d9fa0
JT
4332};
4333
4334/*----------------------------------------------------------------*/
4335
4336static int __init dm_thin_init(void)
4337{
4338 int r;
4339
4340 pool_table_init();
4341
4342 r = dm_register_target(&thin_target);
4343 if (r)
4344 return r;
4345
4346 r = dm_register_target(&pool_target);
4347 if (r)
a24c2569
MS
4348 goto bad_pool_target;
4349
4350 r = -ENOMEM;
4351
a24c2569
MS
4352 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4353 if (!_new_mapping_cache)
4354 goto bad_new_mapping_cache;
4355
a24c2569
MS
4356 return 0;
4357
a24c2569 4358bad_new_mapping_cache:
a24c2569
MS
4359 dm_unregister_target(&pool_target);
4360bad_pool_target:
4361 dm_unregister_target(&thin_target);
991d9fa0
JT
4362
4363 return r;
4364}
4365
4366static void dm_thin_exit(void)
4367{
4368 dm_unregister_target(&thin_target);
4369 dm_unregister_target(&pool_target);
a24c2569 4370
a24c2569 4371 kmem_cache_destroy(_new_mapping_cache);
991d9fa0
JT
4372}
4373
4374module_init(dm_thin_init);
4375module_exit(dm_thin_exit);
4376
80c57893
MS
4377module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4378MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4379
7cab8bf1 4380MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
991d9fa0
JT
4381MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4382MODULE_LICENSE("GPL");
This page took 0.442232 seconds and 5 git commands to generate.