dm crypt: rename struct convert_context sector field
[deliverable/linux.git] / drivers / md / dm-thin.c
CommitLineData
991d9fa0
JT
1/*
2 * Copyright (C) 2011 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-thin-metadata.h"
8
9#include <linux/device-mapper.h>
10#include <linux/dm-io.h>
11#include <linux/dm-kcopyd.h>
12#include <linux/list.h>
13#include <linux/init.h>
14#include <linux/module.h>
15#include <linux/slab.h>
16
17#define DM_MSG_PREFIX "thin"
18
19/*
20 * Tunable constants
21 */
7768ed33 22#define ENDIO_HOOK_POOL_SIZE 1024
991d9fa0
JT
23#define DEFERRED_SET_SIZE 64
24#define MAPPING_POOL_SIZE 1024
25#define PRISON_CELLS 1024
905e51b3 26#define COMMIT_PERIOD HZ
991d9fa0
JT
27
28/*
29 * The block size of the device holding pool data must be
30 * between 64KB and 1GB.
31 */
32#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
33#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
34
991d9fa0
JT
35/*
36 * Device id is restricted to 24 bits.
37 */
38#define MAX_DEV_ID ((1 << 24) - 1)
39
40/*
41 * How do we handle breaking sharing of data blocks?
42 * =================================================
43 *
44 * We use a standard copy-on-write btree to store the mappings for the
45 * devices (note I'm talking about copy-on-write of the metadata here, not
46 * the data). When you take an internal snapshot you clone the root node
47 * of the origin btree. After this there is no concept of an origin or a
48 * snapshot. They are just two device trees that happen to point to the
49 * same data blocks.
50 *
51 * When we get a write in we decide if it's to a shared data block using
52 * some timestamp magic. If it is, we have to break sharing.
53 *
54 * Let's say we write to a shared block in what was the origin. The
55 * steps are:
56 *
57 * i) plug io further to this physical block. (see bio_prison code).
58 *
59 * ii) quiesce any read io to that shared data block. Obviously
60 * including all devices that share this block. (see deferred_set code)
61 *
62 * iii) copy the data block to a newly allocate block. This step can be
63 * missed out if the io covers the block. (schedule_copy).
64 *
65 * iv) insert the new mapping into the origin's btree
fe878f34 66 * (process_prepared_mapping). This act of inserting breaks some
991d9fa0
JT
67 * sharing of btree nodes between the two devices. Breaking sharing only
68 * effects the btree of that specific device. Btrees for the other
69 * devices that share the block never change. The btree for the origin
70 * device as it was after the last commit is untouched, ie. we're using
71 * persistent data structures in the functional programming sense.
72 *
73 * v) unplug io to this physical block, including the io that triggered
74 * the breaking of sharing.
75 *
76 * Steps (ii) and (iii) occur in parallel.
77 *
78 * The metadata _doesn't_ need to be committed before the io continues. We
79 * get away with this because the io is always written to a _new_ block.
80 * If there's a crash, then:
81 *
82 * - The origin mapping will point to the old origin block (the shared
83 * one). This will contain the data as it was before the io that triggered
84 * the breaking of sharing came in.
85 *
86 * - The snap mapping still points to the old block. As it would after
87 * the commit.
88 *
89 * The downside of this scheme is the timestamp magic isn't perfect, and
90 * will continue to think that data block in the snapshot device is shared
91 * even after the write to the origin has broken sharing. I suspect data
92 * blocks will typically be shared by many different devices, so we're
93 * breaking sharing n + 1 times, rather than n, where n is the number of
94 * devices that reference this data block. At the moment I think the
95 * benefits far, far outweigh the disadvantages.
96 */
97
98/*----------------------------------------------------------------*/
99
100/*
101 * Sometimes we can't deal with a bio straight away. We put them in prison
102 * where they can't cause any mischief. Bios are put in a cell identified
103 * by a key, multiple bios can be in the same cell. When the cell is
104 * subsequently unlocked the bios become available.
105 */
106struct bio_prison;
107
108struct cell_key {
109 int virtual;
110 dm_thin_id dev;
111 dm_block_t block;
112};
113
a24c2569 114struct dm_bio_prison_cell {
991d9fa0
JT
115 struct hlist_node list;
116 struct bio_prison *prison;
117 struct cell_key key;
6f94a4c4 118 struct bio *holder;
991d9fa0
JT
119 struct bio_list bios;
120};
121
122struct bio_prison {
123 spinlock_t lock;
124 mempool_t *cell_pool;
125
126 unsigned nr_buckets;
127 unsigned hash_mask;
128 struct hlist_head *cells;
129};
130
131static uint32_t calc_nr_buckets(unsigned nr_cells)
132{
133 uint32_t n = 128;
134
135 nr_cells /= 4;
136 nr_cells = min(nr_cells, 8192u);
137
138 while (n < nr_cells)
139 n <<= 1;
140
141 return n;
142}
143
a24c2569
MS
144static struct kmem_cache *_cell_cache;
145
991d9fa0
JT
146/*
147 * @nr_cells should be the number of cells you want in use _concurrently_.
148 * Don't confuse it with the number of distinct keys.
149 */
150static struct bio_prison *prison_create(unsigned nr_cells)
151{
152 unsigned i;
153 uint32_t nr_buckets = calc_nr_buckets(nr_cells);
154 size_t len = sizeof(struct bio_prison) +
155 (sizeof(struct hlist_head) * nr_buckets);
156 struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
157
158 if (!prison)
159 return NULL;
160
161 spin_lock_init(&prison->lock);
a24c2569 162 prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
991d9fa0
JT
163 if (!prison->cell_pool) {
164 kfree(prison);
165 return NULL;
166 }
167
168 prison->nr_buckets = nr_buckets;
169 prison->hash_mask = nr_buckets - 1;
170 prison->cells = (struct hlist_head *) (prison + 1);
171 for (i = 0; i < nr_buckets; i++)
172 INIT_HLIST_HEAD(prison->cells + i);
173
174 return prison;
175}
176
177static void prison_destroy(struct bio_prison *prison)
178{
179 mempool_destroy(prison->cell_pool);
180 kfree(prison);
181}
182
183static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
184{
185 const unsigned long BIG_PRIME = 4294967291UL;
186 uint64_t hash = key->block * BIG_PRIME;
187
188 return (uint32_t) (hash & prison->hash_mask);
189}
190
191static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
192{
193 return (lhs->virtual == rhs->virtual) &&
194 (lhs->dev == rhs->dev) &&
195 (lhs->block == rhs->block);
196}
197
a24c2569
MS
198static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
199 struct cell_key *key)
991d9fa0 200{
a24c2569 201 struct dm_bio_prison_cell *cell;
991d9fa0
JT
202 struct hlist_node *tmp;
203
204 hlist_for_each_entry(cell, tmp, bucket, list)
205 if (keys_equal(&cell->key, key))
206 return cell;
207
208 return NULL;
209}
210
211/*
212 * This may block if a new cell needs allocating. You must ensure that
213 * cells will be unlocked even if the calling thread is blocked.
214 *
6f94a4c4 215 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
991d9fa0
JT
216 */
217static int bio_detain(struct bio_prison *prison, struct cell_key *key,
a24c2569 218 struct bio *inmate, struct dm_bio_prison_cell **ref)
991d9fa0 219{
6f94a4c4 220 int r = 1;
991d9fa0
JT
221 unsigned long flags;
222 uint32_t hash = hash_key(prison, key);
a24c2569 223 struct dm_bio_prison_cell *cell, *cell2;
991d9fa0
JT
224
225 BUG_ON(hash > prison->nr_buckets);
226
227 spin_lock_irqsave(&prison->lock, flags);
991d9fa0 228
6f94a4c4
JT
229 cell = __search_bucket(prison->cells + hash, key);
230 if (cell) {
231 bio_list_add(&cell->bios, inmate);
232 goto out;
991d9fa0
JT
233 }
234
6f94a4c4
JT
235 /*
236 * Allocate a new cell
237 */
991d9fa0 238 spin_unlock_irqrestore(&prison->lock, flags);
6f94a4c4
JT
239 cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
240 spin_lock_irqsave(&prison->lock, flags);
991d9fa0 241
6f94a4c4
JT
242 /*
243 * We've been unlocked, so we have to double check that
244 * nobody else has inserted this cell in the meantime.
245 */
246 cell = __search_bucket(prison->cells + hash, key);
247 if (cell) {
991d9fa0 248 mempool_free(cell2, prison->cell_pool);
6f94a4c4
JT
249 bio_list_add(&cell->bios, inmate);
250 goto out;
251 }
252
253 /*
254 * Use new cell.
255 */
256 cell = cell2;
257
258 cell->prison = prison;
259 memcpy(&cell->key, key, sizeof(cell->key));
260 cell->holder = inmate;
261 bio_list_init(&cell->bios);
262 hlist_add_head(&cell->list, prison->cells + hash);
263
264 r = 0;
265
266out:
267 spin_unlock_irqrestore(&prison->lock, flags);
991d9fa0
JT
268
269 *ref = cell;
270
271 return r;
272}
273
274/*
275 * @inmates must have been initialised prior to this call
276 */
a24c2569 277static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
991d9fa0
JT
278{
279 struct bio_prison *prison = cell->prison;
280
281 hlist_del(&cell->list);
282
03aaae7c
MS
283 if (inmates) {
284 bio_list_add(inmates, cell->holder);
285 bio_list_merge(inmates, &cell->bios);
286 }
991d9fa0
JT
287
288 mempool_free(cell, prison->cell_pool);
289}
290
a24c2569 291static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
991d9fa0
JT
292{
293 unsigned long flags;
294 struct bio_prison *prison = cell->prison;
295
296 spin_lock_irqsave(&prison->lock, flags);
297 __cell_release(cell, bios);
298 spin_unlock_irqrestore(&prison->lock, flags);
299}
300
301/*
302 * There are a couple of places where we put a bio into a cell briefly
303 * before taking it out again. In these situations we know that no other
304 * bio may be in the cell. This function releases the cell, and also does
305 * a sanity check.
306 */
a24c2569 307static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
6f94a4c4 308{
6f94a4c4
JT
309 BUG_ON(cell->holder != bio);
310 BUG_ON(!bio_list_empty(&cell->bios));
03aaae7c
MS
311
312 __cell_release(cell, NULL);
6f94a4c4
JT
313}
314
a24c2569 315static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
991d9fa0 316{
991d9fa0 317 unsigned long flags;
6f94a4c4 318 struct bio_prison *prison = cell->prison;
991d9fa0
JT
319
320 spin_lock_irqsave(&prison->lock, flags);
6f94a4c4 321 __cell_release_singleton(cell, bio);
991d9fa0 322 spin_unlock_irqrestore(&prison->lock, flags);
6f94a4c4
JT
323}
324
325/*
326 * Sometimes we don't want the holder, just the additional bios.
327 */
a24c2569
MS
328static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
329 struct bio_list *inmates)
6f94a4c4
JT
330{
331 struct bio_prison *prison = cell->prison;
332
333 hlist_del(&cell->list);
334 bio_list_merge(inmates, &cell->bios);
335
336 mempool_free(cell, prison->cell_pool);
337}
338
a24c2569
MS
339static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
340 struct bio_list *inmates)
6f94a4c4
JT
341{
342 unsigned long flags;
343 struct bio_prison *prison = cell->prison;
991d9fa0 344
6f94a4c4
JT
345 spin_lock_irqsave(&prison->lock, flags);
346 __cell_release_no_holder(cell, inmates);
347 spin_unlock_irqrestore(&prison->lock, flags);
991d9fa0
JT
348}
349
a24c2569 350static void cell_error(struct dm_bio_prison_cell *cell)
991d9fa0
JT
351{
352 struct bio_prison *prison = cell->prison;
353 struct bio_list bios;
354 struct bio *bio;
355 unsigned long flags;
356
357 bio_list_init(&bios);
358
359 spin_lock_irqsave(&prison->lock, flags);
360 __cell_release(cell, &bios);
361 spin_unlock_irqrestore(&prison->lock, flags);
362
363 while ((bio = bio_list_pop(&bios)))
364 bio_io_error(bio);
365}
366
367/*----------------------------------------------------------------*/
368
369/*
370 * We use the deferred set to keep track of pending reads to shared blocks.
371 * We do this to ensure the new mapping caused by a write isn't performed
372 * until these prior reads have completed. Otherwise the insertion of the
373 * new mapping could free the old block that the read bios are mapped to.
374 */
375
376struct deferred_set;
377struct deferred_entry {
378 struct deferred_set *ds;
379 unsigned count;
380 struct list_head work_items;
381};
382
383struct deferred_set {
384 spinlock_t lock;
385 unsigned current_entry;
386 unsigned sweeper;
387 struct deferred_entry entries[DEFERRED_SET_SIZE];
388};
389
390static void ds_init(struct deferred_set *ds)
391{
392 int i;
393
394 spin_lock_init(&ds->lock);
395 ds->current_entry = 0;
396 ds->sweeper = 0;
397 for (i = 0; i < DEFERRED_SET_SIZE; i++) {
398 ds->entries[i].ds = ds;
399 ds->entries[i].count = 0;
400 INIT_LIST_HEAD(&ds->entries[i].work_items);
401 }
402}
403
404static struct deferred_entry *ds_inc(struct deferred_set *ds)
405{
406 unsigned long flags;
407 struct deferred_entry *entry;
408
409 spin_lock_irqsave(&ds->lock, flags);
410 entry = ds->entries + ds->current_entry;
411 entry->count++;
412 spin_unlock_irqrestore(&ds->lock, flags);
413
414 return entry;
415}
416
417static unsigned ds_next(unsigned index)
418{
419 return (index + 1) % DEFERRED_SET_SIZE;
420}
421
422static void __sweep(struct deferred_set *ds, struct list_head *head)
423{
424 while ((ds->sweeper != ds->current_entry) &&
425 !ds->entries[ds->sweeper].count) {
426 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
427 ds->sweeper = ds_next(ds->sweeper);
428 }
429
430 if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
431 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
432}
433
434static void ds_dec(struct deferred_entry *entry, struct list_head *head)
435{
436 unsigned long flags;
437
438 spin_lock_irqsave(&entry->ds->lock, flags);
439 BUG_ON(!entry->count);
440 --entry->count;
441 __sweep(entry->ds, head);
442 spin_unlock_irqrestore(&entry->ds->lock, flags);
443}
444
445/*
446 * Returns 1 if deferred or 0 if no pending items to delay job.
447 */
448static int ds_add_work(struct deferred_set *ds, struct list_head *work)
449{
450 int r = 1;
451 unsigned long flags;
452 unsigned next_entry;
453
454 spin_lock_irqsave(&ds->lock, flags);
455 if ((ds->sweeper == ds->current_entry) &&
456 !ds->entries[ds->current_entry].count)
457 r = 0;
458 else {
459 list_add(work, &ds->entries[ds->current_entry].work_items);
460 next_entry = ds_next(ds->current_entry);
461 if (!ds->entries[next_entry].count)
462 ds->current_entry = next_entry;
463 }
464 spin_unlock_irqrestore(&ds->lock, flags);
465
466 return r;
467}
468
469/*----------------------------------------------------------------*/
470
471/*
472 * Key building.
473 */
474static void build_data_key(struct dm_thin_device *td,
475 dm_block_t b, struct cell_key *key)
476{
477 key->virtual = 0;
478 key->dev = dm_thin_dev_id(td);
479 key->block = b;
480}
481
482static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
483 struct cell_key *key)
484{
485 key->virtual = 1;
486 key->dev = dm_thin_dev_id(td);
487 key->block = b;
488}
489
490/*----------------------------------------------------------------*/
491
492/*
493 * A pool device ties together a metadata device and a data device. It
494 * also provides the interface for creating and destroying internal
495 * devices.
496 */
a24c2569 497struct dm_thin_new_mapping;
67e2e2b2
JT
498
499struct pool_features {
500 unsigned zero_new_blocks:1;
501 unsigned discard_enabled:1;
502 unsigned discard_passdown:1;
503};
504
991d9fa0
JT
505struct pool {
506 struct list_head list;
507 struct dm_target *ti; /* Only set if a pool target is bound */
508
509 struct mapped_device *pool_md;
510 struct block_device *md_dev;
511 struct dm_pool_metadata *pmd;
512
991d9fa0 513 dm_block_t low_water_blocks;
55f2b8bd 514 uint32_t sectors_per_block;
f9a8e0cd 515 int sectors_per_block_shift;
991d9fa0 516
67e2e2b2 517 struct pool_features pf;
991d9fa0
JT
518 unsigned low_water_triggered:1; /* A dm event has been sent */
519 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
520
521 struct bio_prison *prison;
522 struct dm_kcopyd_client *copier;
523
524 struct workqueue_struct *wq;
525 struct work_struct worker;
905e51b3 526 struct delayed_work waker;
991d9fa0 527
905e51b3 528 unsigned long last_commit_jiffies;
55f2b8bd 529 unsigned ref_count;
991d9fa0
JT
530
531 spinlock_t lock;
532 struct bio_list deferred_bios;
533 struct bio_list deferred_flush_bios;
534 struct list_head prepared_mappings;
104655fd 535 struct list_head prepared_discards;
991d9fa0
JT
536
537 struct bio_list retry_on_resume_list;
538
eb2aa48d 539 struct deferred_set shared_read_ds;
104655fd 540 struct deferred_set all_io_ds;
991d9fa0 541
a24c2569 542 struct dm_thin_new_mapping *next_mapping;
991d9fa0
JT
543 mempool_t *mapping_pool;
544 mempool_t *endio_hook_pool;
545};
546
547/*
548 * Target context for a pool.
549 */
550struct pool_c {
551 struct dm_target *ti;
552 struct pool *pool;
553 struct dm_dev *data_dev;
554 struct dm_dev *metadata_dev;
555 struct dm_target_callbacks callbacks;
556
557 dm_block_t low_water_blocks;
67e2e2b2 558 struct pool_features pf;
991d9fa0
JT
559};
560
561/*
562 * Target context for a thin.
563 */
564struct thin_c {
565 struct dm_dev *pool_dev;
2dd9c257 566 struct dm_dev *origin_dev;
991d9fa0
JT
567 dm_thin_id dev_id;
568
569 struct pool *pool;
570 struct dm_thin_device *td;
571};
572
573/*----------------------------------------------------------------*/
574
575/*
576 * A global list of pools that uses a struct mapped_device as a key.
577 */
578static struct dm_thin_pool_table {
579 struct mutex mutex;
580 struct list_head pools;
581} dm_thin_pool_table;
582
583static void pool_table_init(void)
584{
585 mutex_init(&dm_thin_pool_table.mutex);
586 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
587}
588
589static void __pool_table_insert(struct pool *pool)
590{
591 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
592 list_add(&pool->list, &dm_thin_pool_table.pools);
593}
594
595static void __pool_table_remove(struct pool *pool)
596{
597 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
598 list_del(&pool->list);
599}
600
601static struct pool *__pool_table_lookup(struct mapped_device *md)
602{
603 struct pool *pool = NULL, *tmp;
604
605 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
606
607 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
608 if (tmp->pool_md == md) {
609 pool = tmp;
610 break;
611 }
612 }
613
614 return pool;
615}
616
617static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
618{
619 struct pool *pool = NULL, *tmp;
620
621 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
622
623 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
624 if (tmp->md_dev == md_dev) {
625 pool = tmp;
626 break;
627 }
628 }
629
630 return pool;
631}
632
633/*----------------------------------------------------------------*/
634
a24c2569 635struct dm_thin_endio_hook {
eb2aa48d
JT
636 struct thin_c *tc;
637 struct deferred_entry *shared_read_entry;
104655fd 638 struct deferred_entry *all_io_entry;
a24c2569 639 struct dm_thin_new_mapping *overwrite_mapping;
eb2aa48d
JT
640};
641
991d9fa0
JT
642static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
643{
644 struct bio *bio;
645 struct bio_list bios;
646
647 bio_list_init(&bios);
648 bio_list_merge(&bios, master);
649 bio_list_init(master);
650
651 while ((bio = bio_list_pop(&bios))) {
a24c2569
MS
652 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
653
eb2aa48d 654 if (h->tc == tc)
991d9fa0
JT
655 bio_endio(bio, DM_ENDIO_REQUEUE);
656 else
657 bio_list_add(master, bio);
658 }
659}
660
661static void requeue_io(struct thin_c *tc)
662{
663 struct pool *pool = tc->pool;
664 unsigned long flags;
665
666 spin_lock_irqsave(&pool->lock, flags);
667 __requeue_bio_list(tc, &pool->deferred_bios);
668 __requeue_bio_list(tc, &pool->retry_on_resume_list);
669 spin_unlock_irqrestore(&pool->lock, flags);
670}
671
672/*
673 * This section of code contains the logic for processing a thin device's IO.
674 * Much of the code depends on pool object resources (lists, workqueues, etc)
675 * but most is exclusively called from the thin target rather than the thin-pool
676 * target.
677 */
678
679static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
680{
55f2b8bd
MS
681 sector_t block_nr = bio->bi_sector;
682
f9a8e0cd
MP
683 if (tc->pool->sectors_per_block_shift < 0)
684 (void) sector_div(block_nr, tc->pool->sectors_per_block);
685 else
686 block_nr >>= tc->pool->sectors_per_block_shift;
55f2b8bd
MS
687
688 return block_nr;
991d9fa0
JT
689}
690
691static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
692{
693 struct pool *pool = tc->pool;
55f2b8bd 694 sector_t bi_sector = bio->bi_sector;
991d9fa0
JT
695
696 bio->bi_bdev = tc->pool_dev->bdev;
f9a8e0cd
MP
697 if (tc->pool->sectors_per_block_shift < 0)
698 bio->bi_sector = (block * pool->sectors_per_block) +
699 sector_div(bi_sector, pool->sectors_per_block);
700 else
701 bio->bi_sector = (block << pool->sectors_per_block_shift) |
702 (bi_sector & (pool->sectors_per_block - 1));
991d9fa0
JT
703}
704
2dd9c257
JT
705static void remap_to_origin(struct thin_c *tc, struct bio *bio)
706{
707 bio->bi_bdev = tc->origin_dev->bdev;
708}
709
710static void issue(struct thin_c *tc, struct bio *bio)
991d9fa0
JT
711{
712 struct pool *pool = tc->pool;
713 unsigned long flags;
714
991d9fa0
JT
715 /*
716 * Batch together any FUA/FLUSH bios we find and then issue
717 * a single commit for them in process_deferred_bios().
718 */
719 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
720 spin_lock_irqsave(&pool->lock, flags);
721 bio_list_add(&pool->deferred_flush_bios, bio);
722 spin_unlock_irqrestore(&pool->lock, flags);
723 } else
724 generic_make_request(bio);
725}
726
2dd9c257
JT
727static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
728{
729 remap_to_origin(tc, bio);
730 issue(tc, bio);
731}
732
733static void remap_and_issue(struct thin_c *tc, struct bio *bio,
734 dm_block_t block)
735{
736 remap(tc, bio, block);
737 issue(tc, bio);
738}
739
991d9fa0
JT
740/*
741 * wake_worker() is used when new work is queued and when pool_resume is
742 * ready to continue deferred IO processing.
743 */
744static void wake_worker(struct pool *pool)
745{
746 queue_work(pool->wq, &pool->worker);
747}
748
749/*----------------------------------------------------------------*/
750
751/*
752 * Bio endio functions.
753 */
a24c2569 754struct dm_thin_new_mapping {
991d9fa0
JT
755 struct list_head list;
756
eb2aa48d
JT
757 unsigned quiesced:1;
758 unsigned prepared:1;
104655fd 759 unsigned pass_discard:1;
991d9fa0
JT
760
761 struct thin_c *tc;
762 dm_block_t virt_block;
763 dm_block_t data_block;
a24c2569 764 struct dm_bio_prison_cell *cell, *cell2;
991d9fa0
JT
765 int err;
766
767 /*
768 * If the bio covers the whole area of a block then we can avoid
769 * zeroing or copying. Instead this bio is hooked. The bio will
770 * still be in the cell, so care has to be taken to avoid issuing
771 * the bio twice.
772 */
773 struct bio *bio;
774 bio_end_io_t *saved_bi_end_io;
775};
776
a24c2569 777static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
991d9fa0
JT
778{
779 struct pool *pool = m->tc->pool;
780
eb2aa48d 781 if (m->quiesced && m->prepared) {
991d9fa0
JT
782 list_add(&m->list, &pool->prepared_mappings);
783 wake_worker(pool);
784 }
785}
786
787static void copy_complete(int read_err, unsigned long write_err, void *context)
788{
789 unsigned long flags;
a24c2569 790 struct dm_thin_new_mapping *m = context;
991d9fa0
JT
791 struct pool *pool = m->tc->pool;
792
793 m->err = read_err || write_err ? -EIO : 0;
794
795 spin_lock_irqsave(&pool->lock, flags);
796 m->prepared = 1;
797 __maybe_add_mapping(m);
798 spin_unlock_irqrestore(&pool->lock, flags);
799}
800
801static void overwrite_endio(struct bio *bio, int err)
802{
803 unsigned long flags;
a24c2569
MS
804 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
805 struct dm_thin_new_mapping *m = h->overwrite_mapping;
991d9fa0
JT
806 struct pool *pool = m->tc->pool;
807
808 m->err = err;
809
810 spin_lock_irqsave(&pool->lock, flags);
811 m->prepared = 1;
812 __maybe_add_mapping(m);
813 spin_unlock_irqrestore(&pool->lock, flags);
814}
815
991d9fa0
JT
816/*----------------------------------------------------------------*/
817
818/*
819 * Workqueue.
820 */
821
822/*
823 * Prepared mapping jobs.
824 */
825
826/*
827 * This sends the bios in the cell back to the deferred_bios list.
828 */
a24c2569 829static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
991d9fa0
JT
830 dm_block_t data_block)
831{
832 struct pool *pool = tc->pool;
833 unsigned long flags;
834
835 spin_lock_irqsave(&pool->lock, flags);
836 cell_release(cell, &pool->deferred_bios);
837 spin_unlock_irqrestore(&tc->pool->lock, flags);
838
839 wake_worker(pool);
840}
841
842/*
843 * Same as cell_defer above, except it omits one particular detainee,
844 * a write bio that covers the block and has already been processed.
845 */
a24c2569 846static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
991d9fa0
JT
847{
848 struct bio_list bios;
991d9fa0
JT
849 struct pool *pool = tc->pool;
850 unsigned long flags;
851
852 bio_list_init(&bios);
991d9fa0
JT
853
854 spin_lock_irqsave(&pool->lock, flags);
6f94a4c4 855 cell_release_no_holder(cell, &pool->deferred_bios);
991d9fa0
JT
856 spin_unlock_irqrestore(&pool->lock, flags);
857
858 wake_worker(pool);
859}
860
a24c2569 861static void process_prepared_mapping(struct dm_thin_new_mapping *m)
991d9fa0
JT
862{
863 struct thin_c *tc = m->tc;
864 struct bio *bio;
865 int r;
866
867 bio = m->bio;
868 if (bio)
869 bio->bi_end_io = m->saved_bi_end_io;
870
871 if (m->err) {
872 cell_error(m->cell);
873 return;
874 }
875
876 /*
877 * Commit the prepared block into the mapping btree.
878 * Any I/O for this block arriving after this point will get
879 * remapped to it directly.
880 */
881 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
882 if (r) {
883 DMERR("dm_thin_insert_block() failed");
884 cell_error(m->cell);
885 return;
886 }
887
888 /*
889 * Release any bios held while the block was being provisioned.
890 * If we are processing a write bio that completely covers the block,
891 * we already processed it so can ignore it now when processing
892 * the bios in the cell.
893 */
894 if (bio) {
6f94a4c4 895 cell_defer_except(tc, m->cell);
991d9fa0
JT
896 bio_endio(bio, 0);
897 } else
898 cell_defer(tc, m->cell, m->data_block);
899
900 list_del(&m->list);
901 mempool_free(m, tc->pool->mapping_pool);
902}
903
a24c2569 904static void process_prepared_discard(struct dm_thin_new_mapping *m)
104655fd
JT
905{
906 int r;
907 struct thin_c *tc = m->tc;
908
909 r = dm_thin_remove_block(tc->td, m->virt_block);
910 if (r)
911 DMERR("dm_thin_remove_block() failed");
912
913 /*
914 * Pass the discard down to the underlying device?
915 */
916 if (m->pass_discard)
917 remap_and_issue(tc, m->bio, m->data_block);
918 else
919 bio_endio(m->bio, 0);
920
921 cell_defer_except(tc, m->cell);
922 cell_defer_except(tc, m->cell2);
923 mempool_free(m, tc->pool->mapping_pool);
924}
925
926static void process_prepared(struct pool *pool, struct list_head *head,
a24c2569 927 void (*fn)(struct dm_thin_new_mapping *))
991d9fa0
JT
928{
929 unsigned long flags;
930 struct list_head maps;
a24c2569 931 struct dm_thin_new_mapping *m, *tmp;
991d9fa0
JT
932
933 INIT_LIST_HEAD(&maps);
934 spin_lock_irqsave(&pool->lock, flags);
104655fd 935 list_splice_init(head, &maps);
991d9fa0
JT
936 spin_unlock_irqrestore(&pool->lock, flags);
937
938 list_for_each_entry_safe(m, tmp, &maps, list)
104655fd 939 fn(m);
991d9fa0
JT
940}
941
942/*
943 * Deferred bio jobs.
944 */
104655fd 945static int io_overlaps_block(struct pool *pool, struct bio *bio)
991d9fa0 946{
f9a8e0cd 947 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
104655fd
JT
948}
949
950static int io_overwrites_block(struct pool *pool, struct bio *bio)
951{
952 return (bio_data_dir(bio) == WRITE) &&
953 io_overlaps_block(pool, bio);
991d9fa0
JT
954}
955
956static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
957 bio_end_io_t *fn)
958{
959 *save = bio->bi_end_io;
960 bio->bi_end_io = fn;
961}
962
963static int ensure_next_mapping(struct pool *pool)
964{
965 if (pool->next_mapping)
966 return 0;
967
968 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
969
970 return pool->next_mapping ? 0 : -ENOMEM;
971}
972
a24c2569 973static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
991d9fa0 974{
a24c2569 975 struct dm_thin_new_mapping *r = pool->next_mapping;
991d9fa0
JT
976
977 BUG_ON(!pool->next_mapping);
978
979 pool->next_mapping = NULL;
980
981 return r;
982}
983
984static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
2dd9c257
JT
985 struct dm_dev *origin, dm_block_t data_origin,
986 dm_block_t data_dest,
a24c2569 987 struct dm_bio_prison_cell *cell, struct bio *bio)
991d9fa0
JT
988{
989 int r;
990 struct pool *pool = tc->pool;
a24c2569 991 struct dm_thin_new_mapping *m = get_next_mapping(pool);
991d9fa0
JT
992
993 INIT_LIST_HEAD(&m->list);
eb2aa48d 994 m->quiesced = 0;
991d9fa0
JT
995 m->prepared = 0;
996 m->tc = tc;
997 m->virt_block = virt_block;
998 m->data_block = data_dest;
999 m->cell = cell;
1000 m->err = 0;
1001 m->bio = NULL;
1002
eb2aa48d
JT
1003 if (!ds_add_work(&pool->shared_read_ds, &m->list))
1004 m->quiesced = 1;
991d9fa0
JT
1005
1006 /*
1007 * IO to pool_dev remaps to the pool target's data_dev.
1008 *
1009 * If the whole block of data is being overwritten, we can issue the
1010 * bio immediately. Otherwise we use kcopyd to clone the data first.
1011 */
1012 if (io_overwrites_block(pool, bio)) {
a24c2569
MS
1013 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1014
eb2aa48d 1015 h->overwrite_mapping = m;
991d9fa0
JT
1016 m->bio = bio;
1017 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
991d9fa0
JT
1018 remap_and_issue(tc, bio, data_dest);
1019 } else {
1020 struct dm_io_region from, to;
1021
2dd9c257 1022 from.bdev = origin->bdev;
991d9fa0
JT
1023 from.sector = data_origin * pool->sectors_per_block;
1024 from.count = pool->sectors_per_block;
1025
1026 to.bdev = tc->pool_dev->bdev;
1027 to.sector = data_dest * pool->sectors_per_block;
1028 to.count = pool->sectors_per_block;
1029
1030 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1031 0, copy_complete, m);
1032 if (r < 0) {
1033 mempool_free(m, pool->mapping_pool);
1034 DMERR("dm_kcopyd_copy() failed");
1035 cell_error(cell);
1036 }
1037 }
1038}
1039
2dd9c257
JT
1040static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1041 dm_block_t data_origin, dm_block_t data_dest,
a24c2569 1042 struct dm_bio_prison_cell *cell, struct bio *bio)
2dd9c257
JT
1043{
1044 schedule_copy(tc, virt_block, tc->pool_dev,
1045 data_origin, data_dest, cell, bio);
1046}
1047
1048static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1049 dm_block_t data_dest,
a24c2569 1050 struct dm_bio_prison_cell *cell, struct bio *bio)
2dd9c257
JT
1051{
1052 schedule_copy(tc, virt_block, tc->origin_dev,
1053 virt_block, data_dest, cell, bio);
1054}
1055
991d9fa0 1056static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
a24c2569 1057 dm_block_t data_block, struct dm_bio_prison_cell *cell,
991d9fa0
JT
1058 struct bio *bio)
1059{
1060 struct pool *pool = tc->pool;
a24c2569 1061 struct dm_thin_new_mapping *m = get_next_mapping(pool);
991d9fa0
JT
1062
1063 INIT_LIST_HEAD(&m->list);
eb2aa48d 1064 m->quiesced = 1;
991d9fa0
JT
1065 m->prepared = 0;
1066 m->tc = tc;
1067 m->virt_block = virt_block;
1068 m->data_block = data_block;
1069 m->cell = cell;
1070 m->err = 0;
1071 m->bio = NULL;
1072
1073 /*
1074 * If the whole block of data is being overwritten or we are not
1075 * zeroing pre-existing data, we can issue the bio immediately.
1076 * Otherwise we use kcopyd to zero the data first.
1077 */
67e2e2b2 1078 if (!pool->pf.zero_new_blocks)
991d9fa0
JT
1079 process_prepared_mapping(m);
1080
1081 else if (io_overwrites_block(pool, bio)) {
a24c2569
MS
1082 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1083
eb2aa48d 1084 h->overwrite_mapping = m;
991d9fa0
JT
1085 m->bio = bio;
1086 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
991d9fa0 1087 remap_and_issue(tc, bio, data_block);
991d9fa0
JT
1088 } else {
1089 int r;
1090 struct dm_io_region to;
1091
1092 to.bdev = tc->pool_dev->bdev;
1093 to.sector = data_block * pool->sectors_per_block;
1094 to.count = pool->sectors_per_block;
1095
1096 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1097 if (r < 0) {
1098 mempool_free(m, pool->mapping_pool);
1099 DMERR("dm_kcopyd_zero() failed");
1100 cell_error(cell);
1101 }
1102 }
1103}
1104
1105static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1106{
1107 int r;
1108 dm_block_t free_blocks;
1109 unsigned long flags;
1110 struct pool *pool = tc->pool;
1111
1112 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1113 if (r)
1114 return r;
1115
1116 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1117 DMWARN("%s: reached low water mark, sending event.",
1118 dm_device_name(pool->pool_md));
1119 spin_lock_irqsave(&pool->lock, flags);
1120 pool->low_water_triggered = 1;
1121 spin_unlock_irqrestore(&pool->lock, flags);
1122 dm_table_event(pool->ti->table);
1123 }
1124
1125 if (!free_blocks) {
1126 if (pool->no_free_space)
1127 return -ENOSPC;
1128 else {
1129 /*
1130 * Try to commit to see if that will free up some
1131 * more space.
1132 */
1133 r = dm_pool_commit_metadata(pool->pmd);
1134 if (r) {
1135 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1136 __func__, r);
1137 return r;
1138 }
1139
1140 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1141 if (r)
1142 return r;
1143
1144 /*
1145 * If we still have no space we set a flag to avoid
1146 * doing all this checking and return -ENOSPC.
1147 */
1148 if (!free_blocks) {
1149 DMWARN("%s: no free space available.",
1150 dm_device_name(pool->pool_md));
1151 spin_lock_irqsave(&pool->lock, flags);
1152 pool->no_free_space = 1;
1153 spin_unlock_irqrestore(&pool->lock, flags);
1154 return -ENOSPC;
1155 }
1156 }
1157 }
1158
1159 r = dm_pool_alloc_data_block(pool->pmd, result);
1160 if (r)
1161 return r;
1162
1163 return 0;
1164}
1165
1166/*
1167 * If we have run out of space, queue bios until the device is
1168 * resumed, presumably after having been reloaded with more space.
1169 */
1170static void retry_on_resume(struct bio *bio)
1171{
a24c2569 1172 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
eb2aa48d 1173 struct thin_c *tc = h->tc;
991d9fa0
JT
1174 struct pool *pool = tc->pool;
1175 unsigned long flags;
1176
1177 spin_lock_irqsave(&pool->lock, flags);
1178 bio_list_add(&pool->retry_on_resume_list, bio);
1179 spin_unlock_irqrestore(&pool->lock, flags);
1180}
1181
a24c2569 1182static void no_space(struct dm_bio_prison_cell *cell)
991d9fa0
JT
1183{
1184 struct bio *bio;
1185 struct bio_list bios;
1186
1187 bio_list_init(&bios);
1188 cell_release(cell, &bios);
1189
1190 while ((bio = bio_list_pop(&bios)))
1191 retry_on_resume(bio);
1192}
1193
104655fd
JT
1194static void process_discard(struct thin_c *tc, struct bio *bio)
1195{
1196 int r;
c3a0ce2e 1197 unsigned long flags;
104655fd 1198 struct pool *pool = tc->pool;
a24c2569 1199 struct dm_bio_prison_cell *cell, *cell2;
104655fd
JT
1200 struct cell_key key, key2;
1201 dm_block_t block = get_bio_block(tc, bio);
1202 struct dm_thin_lookup_result lookup_result;
a24c2569 1203 struct dm_thin_new_mapping *m;
104655fd
JT
1204
1205 build_virtual_key(tc->td, block, &key);
1206 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1207 return;
1208
1209 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1210 switch (r) {
1211 case 0:
1212 /*
1213 * Check nobody is fiddling with this pool block. This can
1214 * happen if someone's in the process of breaking sharing
1215 * on this block.
1216 */
1217 build_data_key(tc->td, lookup_result.block, &key2);
1218 if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1219 cell_release_singleton(cell, bio);
1220 break;
1221 }
1222
1223 if (io_overlaps_block(pool, bio)) {
1224 /*
1225 * IO may still be going to the destination block. We must
1226 * quiesce before we can do the removal.
1227 */
1228 m = get_next_mapping(pool);
1229 m->tc = tc;
17b7d63f 1230 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
104655fd
JT
1231 m->virt_block = block;
1232 m->data_block = lookup_result.block;
1233 m->cell = cell;
1234 m->cell2 = cell2;
1235 m->err = 0;
1236 m->bio = bio;
1237
1238 if (!ds_add_work(&pool->all_io_ds, &m->list)) {
c3a0ce2e 1239 spin_lock_irqsave(&pool->lock, flags);
104655fd 1240 list_add(&m->list, &pool->prepared_discards);
c3a0ce2e 1241 spin_unlock_irqrestore(&pool->lock, flags);
104655fd
JT
1242 wake_worker(pool);
1243 }
1244 } else {
1245 /*
49296309
MP
1246 * The DM core makes sure that the discard doesn't span
1247 * a block boundary. So we submit the discard of a
1248 * partial block appropriately.
104655fd 1249 */
104655fd
JT
1250 cell_release_singleton(cell, bio);
1251 cell_release_singleton(cell2, bio);
650d2a06
MP
1252 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1253 remap_and_issue(tc, bio, lookup_result.block);
1254 else
1255 bio_endio(bio, 0);
104655fd
JT
1256 }
1257 break;
1258
1259 case -ENODATA:
1260 /*
1261 * It isn't provisioned, just forget it.
1262 */
1263 cell_release_singleton(cell, bio);
1264 bio_endio(bio, 0);
1265 break;
1266
1267 default:
1268 DMERR("discard: find block unexpectedly returned %d", r);
1269 cell_release_singleton(cell, bio);
1270 bio_io_error(bio);
1271 break;
1272 }
1273}
1274
991d9fa0
JT
1275static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1276 struct cell_key *key,
1277 struct dm_thin_lookup_result *lookup_result,
a24c2569 1278 struct dm_bio_prison_cell *cell)
991d9fa0
JT
1279{
1280 int r;
1281 dm_block_t data_block;
1282
1283 r = alloc_data_block(tc, &data_block);
1284 switch (r) {
1285 case 0:
2dd9c257
JT
1286 schedule_internal_copy(tc, block, lookup_result->block,
1287 data_block, cell, bio);
991d9fa0
JT
1288 break;
1289
1290 case -ENOSPC:
1291 no_space(cell);
1292 break;
1293
1294 default:
1295 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1296 cell_error(cell);
1297 break;
1298 }
1299}
1300
1301static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1302 dm_block_t block,
1303 struct dm_thin_lookup_result *lookup_result)
1304{
a24c2569 1305 struct dm_bio_prison_cell *cell;
991d9fa0
JT
1306 struct pool *pool = tc->pool;
1307 struct cell_key key;
1308
1309 /*
1310 * If cell is already occupied, then sharing is already in the process
1311 * of being broken so we have nothing further to do here.
1312 */
1313 build_data_key(tc->td, lookup_result->block, &key);
1314 if (bio_detain(pool->prison, &key, bio, &cell))
1315 return;
1316
1317 if (bio_data_dir(bio) == WRITE)
1318 break_sharing(tc, bio, block, &key, lookup_result, cell);
1319 else {
a24c2569 1320 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
991d9fa0 1321
eb2aa48d 1322 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
991d9fa0
JT
1323
1324 cell_release_singleton(cell, bio);
1325 remap_and_issue(tc, bio, lookup_result->block);
1326 }
1327}
1328
1329static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
a24c2569 1330 struct dm_bio_prison_cell *cell)
991d9fa0
JT
1331{
1332 int r;
1333 dm_block_t data_block;
1334
1335 /*
1336 * Remap empty bios (flushes) immediately, without provisioning.
1337 */
1338 if (!bio->bi_size) {
1339 cell_release_singleton(cell, bio);
1340 remap_and_issue(tc, bio, 0);
1341 return;
1342 }
1343
1344 /*
1345 * Fill read bios with zeroes and complete them immediately.
1346 */
1347 if (bio_data_dir(bio) == READ) {
1348 zero_fill_bio(bio);
1349 cell_release_singleton(cell, bio);
1350 bio_endio(bio, 0);
1351 return;
1352 }
1353
1354 r = alloc_data_block(tc, &data_block);
1355 switch (r) {
1356 case 0:
2dd9c257
JT
1357 if (tc->origin_dev)
1358 schedule_external_copy(tc, block, data_block, cell, bio);
1359 else
1360 schedule_zero(tc, block, data_block, cell, bio);
991d9fa0
JT
1361 break;
1362
1363 case -ENOSPC:
1364 no_space(cell);
1365 break;
1366
1367 default:
1368 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1369 cell_error(cell);
1370 break;
1371 }
1372}
1373
1374static void process_bio(struct thin_c *tc, struct bio *bio)
1375{
1376 int r;
1377 dm_block_t block = get_bio_block(tc, bio);
a24c2569 1378 struct dm_bio_prison_cell *cell;
991d9fa0
JT
1379 struct cell_key key;
1380 struct dm_thin_lookup_result lookup_result;
1381
1382 /*
1383 * If cell is already occupied, then the block is already
1384 * being provisioned so we have nothing further to do here.
1385 */
1386 build_virtual_key(tc->td, block, &key);
1387 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1388 return;
1389
1390 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1391 switch (r) {
1392 case 0:
1393 /*
1394 * We can release this cell now. This thread is the only
1395 * one that puts bios into a cell, and we know there were
1396 * no preceding bios.
1397 */
1398 /*
1399 * TODO: this will probably have to change when discard goes
1400 * back in.
1401 */
1402 cell_release_singleton(cell, bio);
1403
1404 if (lookup_result.shared)
1405 process_shared_bio(tc, bio, block, &lookup_result);
1406 else
1407 remap_and_issue(tc, bio, lookup_result.block);
1408 break;
1409
1410 case -ENODATA:
2dd9c257
JT
1411 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1412 cell_release_singleton(cell, bio);
1413 remap_to_origin_and_issue(tc, bio);
1414 } else
1415 provision_block(tc, bio, block, cell);
991d9fa0
JT
1416 break;
1417
1418 default:
1419 DMERR("dm_thin_find_block() failed, error = %d", r);
104655fd 1420 cell_release_singleton(cell, bio);
991d9fa0
JT
1421 bio_io_error(bio);
1422 break;
1423 }
1424}
1425
905e51b3
JT
1426static int need_commit_due_to_time(struct pool *pool)
1427{
1428 return jiffies < pool->last_commit_jiffies ||
1429 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1430}
1431
991d9fa0
JT
1432static void process_deferred_bios(struct pool *pool)
1433{
1434 unsigned long flags;
1435 struct bio *bio;
1436 struct bio_list bios;
1437 int r;
1438
1439 bio_list_init(&bios);
1440
1441 spin_lock_irqsave(&pool->lock, flags);
1442 bio_list_merge(&bios, &pool->deferred_bios);
1443 bio_list_init(&pool->deferred_bios);
1444 spin_unlock_irqrestore(&pool->lock, flags);
1445
1446 while ((bio = bio_list_pop(&bios))) {
a24c2569 1447 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
eb2aa48d
JT
1448 struct thin_c *tc = h->tc;
1449
991d9fa0
JT
1450 /*
1451 * If we've got no free new_mapping structs, and processing
1452 * this bio might require one, we pause until there are some
1453 * prepared mappings to process.
1454 */
1455 if (ensure_next_mapping(pool)) {
1456 spin_lock_irqsave(&pool->lock, flags);
1457 bio_list_merge(&pool->deferred_bios, &bios);
1458 spin_unlock_irqrestore(&pool->lock, flags);
1459
1460 break;
1461 }
104655fd
JT
1462
1463 if (bio->bi_rw & REQ_DISCARD)
1464 process_discard(tc, bio);
1465 else
1466 process_bio(tc, bio);
991d9fa0
JT
1467 }
1468
1469 /*
1470 * If there are any deferred flush bios, we must commit
1471 * the metadata before issuing them.
1472 */
1473 bio_list_init(&bios);
1474 spin_lock_irqsave(&pool->lock, flags);
1475 bio_list_merge(&bios, &pool->deferred_flush_bios);
1476 bio_list_init(&pool->deferred_flush_bios);
1477 spin_unlock_irqrestore(&pool->lock, flags);
1478
905e51b3 1479 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
991d9fa0
JT
1480 return;
1481
1482 r = dm_pool_commit_metadata(pool->pmd);
1483 if (r) {
1484 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1485 __func__, r);
1486 while ((bio = bio_list_pop(&bios)))
1487 bio_io_error(bio);
1488 return;
1489 }
905e51b3 1490 pool->last_commit_jiffies = jiffies;
991d9fa0
JT
1491
1492 while ((bio = bio_list_pop(&bios)))
1493 generic_make_request(bio);
1494}
1495
1496static void do_worker(struct work_struct *ws)
1497{
1498 struct pool *pool = container_of(ws, struct pool, worker);
1499
104655fd
JT
1500 process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
1501 process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
991d9fa0
JT
1502 process_deferred_bios(pool);
1503}
1504
905e51b3
JT
1505/*
1506 * We want to commit periodically so that not too much
1507 * unwritten data builds up.
1508 */
1509static void do_waker(struct work_struct *ws)
1510{
1511 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1512 wake_worker(pool);
1513 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1514}
1515
991d9fa0
JT
1516/*----------------------------------------------------------------*/
1517
1518/*
1519 * Mapping functions.
1520 */
1521
1522/*
1523 * Called only while mapping a thin bio to hand it over to the workqueue.
1524 */
1525static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1526{
1527 unsigned long flags;
1528 struct pool *pool = tc->pool;
1529
1530 spin_lock_irqsave(&pool->lock, flags);
1531 bio_list_add(&pool->deferred_bios, bio);
1532 spin_unlock_irqrestore(&pool->lock, flags);
1533
1534 wake_worker(pool);
1535}
1536
a24c2569 1537static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
eb2aa48d
JT
1538{
1539 struct pool *pool = tc->pool;
a24c2569 1540 struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
eb2aa48d
JT
1541
1542 h->tc = tc;
1543 h->shared_read_entry = NULL;
104655fd 1544 h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
eb2aa48d
JT
1545 h->overwrite_mapping = NULL;
1546
1547 return h;
1548}
1549
991d9fa0
JT
1550/*
1551 * Non-blocking function called from the thin target's map function.
1552 */
1553static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1554 union map_info *map_context)
1555{
1556 int r;
1557 struct thin_c *tc = ti->private;
1558 dm_block_t block = get_bio_block(tc, bio);
1559 struct dm_thin_device *td = tc->td;
1560 struct dm_thin_lookup_result result;
1561
eb2aa48d 1562 map_context->ptr = thin_hook_bio(tc, bio);
104655fd 1563 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
991d9fa0
JT
1564 thin_defer_bio(tc, bio);
1565 return DM_MAPIO_SUBMITTED;
1566 }
1567
1568 r = dm_thin_find_block(td, block, 0, &result);
1569
1570 /*
1571 * Note that we defer readahead too.
1572 */
1573 switch (r) {
1574 case 0:
1575 if (unlikely(result.shared)) {
1576 /*
1577 * We have a race condition here between the
1578 * result.shared value returned by the lookup and
1579 * snapshot creation, which may cause new
1580 * sharing.
1581 *
1582 * To avoid this always quiesce the origin before
1583 * taking the snap. You want to do this anyway to
1584 * ensure a consistent application view
1585 * (i.e. lockfs).
1586 *
1587 * More distant ancestors are irrelevant. The
1588 * shared flag will be set in their case.
1589 */
1590 thin_defer_bio(tc, bio);
1591 r = DM_MAPIO_SUBMITTED;
1592 } else {
1593 remap(tc, bio, result.block);
1594 r = DM_MAPIO_REMAPPED;
1595 }
1596 break;
1597
1598 case -ENODATA:
1599 /*
1600 * In future, the failed dm_thin_find_block above could
1601 * provide the hint to load the metadata into cache.
1602 */
1603 case -EWOULDBLOCK:
1604 thin_defer_bio(tc, bio);
1605 r = DM_MAPIO_SUBMITTED;
1606 break;
1607 }
1608
1609 return r;
1610}
1611
1612static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1613{
1614 int r;
1615 unsigned long flags;
1616 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1617
1618 spin_lock_irqsave(&pt->pool->lock, flags);
1619 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1620 spin_unlock_irqrestore(&pt->pool->lock, flags);
1621
1622 if (!r) {
1623 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1624 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1625 }
1626
1627 return r;
1628}
1629
1630static void __requeue_bios(struct pool *pool)
1631{
1632 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1633 bio_list_init(&pool->retry_on_resume_list);
1634}
1635
1636/*----------------------------------------------------------------
1637 * Binding of control targets to a pool object
1638 *--------------------------------------------------------------*/
1639static int bind_control_target(struct pool *pool, struct dm_target *ti)
1640{
1641 struct pool_c *pt = ti->private;
1642
1643 pool->ti = ti;
1644 pool->low_water_blocks = pt->low_water_blocks;
67e2e2b2 1645 pool->pf = pt->pf;
991d9fa0 1646
f402693d
MS
1647 /*
1648 * If discard_passdown was enabled verify that the data device
1649 * supports discards. Disable discard_passdown if not; otherwise
1650 * -EOPNOTSUPP will be returned.
1651 */
1652 if (pt->pf.discard_passdown) {
1653 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1654 if (!q || !blk_queue_discard(q)) {
1655 char buf[BDEVNAME_SIZE];
1656 DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
1657 bdevname(pt->data_dev->bdev, buf));
1658 pool->pf.discard_passdown = 0;
1659 }
1660 }
1661
991d9fa0
JT
1662 return 0;
1663}
1664
1665static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1666{
1667 if (pool->ti == ti)
1668 pool->ti = NULL;
1669}
1670
1671/*----------------------------------------------------------------
1672 * Pool creation
1673 *--------------------------------------------------------------*/
67e2e2b2
JT
1674/* Initialize pool features. */
1675static void pool_features_init(struct pool_features *pf)
1676{
1677 pf->zero_new_blocks = 1;
1678 pf->discard_enabled = 1;
1679 pf->discard_passdown = 1;
1680}
1681
991d9fa0
JT
1682static void __pool_destroy(struct pool *pool)
1683{
1684 __pool_table_remove(pool);
1685
1686 if (dm_pool_metadata_close(pool->pmd) < 0)
1687 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1688
1689 prison_destroy(pool->prison);
1690 dm_kcopyd_client_destroy(pool->copier);
1691
1692 if (pool->wq)
1693 destroy_workqueue(pool->wq);
1694
1695 if (pool->next_mapping)
1696 mempool_free(pool->next_mapping, pool->mapping_pool);
1697 mempool_destroy(pool->mapping_pool);
1698 mempool_destroy(pool->endio_hook_pool);
1699 kfree(pool);
1700}
1701
a24c2569
MS
1702static struct kmem_cache *_new_mapping_cache;
1703static struct kmem_cache *_endio_hook_cache;
1704
991d9fa0
JT
1705static struct pool *pool_create(struct mapped_device *pool_md,
1706 struct block_device *metadata_dev,
1707 unsigned long block_size, char **error)
1708{
1709 int r;
1710 void *err_p;
1711 struct pool *pool;
1712 struct dm_pool_metadata *pmd;
1713
1714 pmd = dm_pool_metadata_open(metadata_dev, block_size);
1715 if (IS_ERR(pmd)) {
1716 *error = "Error creating metadata object";
1717 return (struct pool *)pmd;
1718 }
1719
1720 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1721 if (!pool) {
1722 *error = "Error allocating memory for pool";
1723 err_p = ERR_PTR(-ENOMEM);
1724 goto bad_pool;
1725 }
1726
1727 pool->pmd = pmd;
1728 pool->sectors_per_block = block_size;
f9a8e0cd
MP
1729 if (block_size & (block_size - 1))
1730 pool->sectors_per_block_shift = -1;
1731 else
1732 pool->sectors_per_block_shift = __ffs(block_size);
991d9fa0 1733 pool->low_water_blocks = 0;
67e2e2b2 1734 pool_features_init(&pool->pf);
991d9fa0
JT
1735 pool->prison = prison_create(PRISON_CELLS);
1736 if (!pool->prison) {
1737 *error = "Error creating pool's bio prison";
1738 err_p = ERR_PTR(-ENOMEM);
1739 goto bad_prison;
1740 }
1741
1742 pool->copier = dm_kcopyd_client_create();
1743 if (IS_ERR(pool->copier)) {
1744 r = PTR_ERR(pool->copier);
1745 *error = "Error creating pool's kcopyd client";
1746 err_p = ERR_PTR(r);
1747 goto bad_kcopyd_client;
1748 }
1749
1750 /*
1751 * Create singlethreaded workqueue that will service all devices
1752 * that use this metadata.
1753 */
1754 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1755 if (!pool->wq) {
1756 *error = "Error creating pool's workqueue";
1757 err_p = ERR_PTR(-ENOMEM);
1758 goto bad_wq;
1759 }
1760
1761 INIT_WORK(&pool->worker, do_worker);
905e51b3 1762 INIT_DELAYED_WORK(&pool->waker, do_waker);
991d9fa0
JT
1763 spin_lock_init(&pool->lock);
1764 bio_list_init(&pool->deferred_bios);
1765 bio_list_init(&pool->deferred_flush_bios);
1766 INIT_LIST_HEAD(&pool->prepared_mappings);
104655fd 1767 INIT_LIST_HEAD(&pool->prepared_discards);
991d9fa0
JT
1768 pool->low_water_triggered = 0;
1769 pool->no_free_space = 0;
1770 bio_list_init(&pool->retry_on_resume_list);
eb2aa48d 1771 ds_init(&pool->shared_read_ds);
104655fd 1772 ds_init(&pool->all_io_ds);
991d9fa0
JT
1773
1774 pool->next_mapping = NULL;
a24c2569
MS
1775 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1776 _new_mapping_cache);
991d9fa0
JT
1777 if (!pool->mapping_pool) {
1778 *error = "Error creating pool's mapping mempool";
1779 err_p = ERR_PTR(-ENOMEM);
1780 goto bad_mapping_pool;
1781 }
1782
a24c2569
MS
1783 pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
1784 _endio_hook_cache);
991d9fa0
JT
1785 if (!pool->endio_hook_pool) {
1786 *error = "Error creating pool's endio_hook mempool";
1787 err_p = ERR_PTR(-ENOMEM);
1788 goto bad_endio_hook_pool;
1789 }
1790 pool->ref_count = 1;
905e51b3 1791 pool->last_commit_jiffies = jiffies;
991d9fa0
JT
1792 pool->pool_md = pool_md;
1793 pool->md_dev = metadata_dev;
1794 __pool_table_insert(pool);
1795
1796 return pool;
1797
1798bad_endio_hook_pool:
1799 mempool_destroy(pool->mapping_pool);
1800bad_mapping_pool:
1801 destroy_workqueue(pool->wq);
1802bad_wq:
1803 dm_kcopyd_client_destroy(pool->copier);
1804bad_kcopyd_client:
1805 prison_destroy(pool->prison);
1806bad_prison:
1807 kfree(pool);
1808bad_pool:
1809 if (dm_pool_metadata_close(pmd))
1810 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1811
1812 return err_p;
1813}
1814
1815static void __pool_inc(struct pool *pool)
1816{
1817 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1818 pool->ref_count++;
1819}
1820
1821static void __pool_dec(struct pool *pool)
1822{
1823 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1824 BUG_ON(!pool->ref_count);
1825 if (!--pool->ref_count)
1826 __pool_destroy(pool);
1827}
1828
1829static struct pool *__pool_find(struct mapped_device *pool_md,
1830 struct block_device *metadata_dev,
67e2e2b2
JT
1831 unsigned long block_size, char **error,
1832 int *created)
991d9fa0
JT
1833{
1834 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1835
1836 if (pool) {
f09996c9
MS
1837 if (pool->pool_md != pool_md) {
1838 *error = "metadata device already in use by a pool";
991d9fa0 1839 return ERR_PTR(-EBUSY);
f09996c9 1840 }
991d9fa0
JT
1841 __pool_inc(pool);
1842
1843 } else {
1844 pool = __pool_table_lookup(pool_md);
1845 if (pool) {
f09996c9
MS
1846 if (pool->md_dev != metadata_dev) {
1847 *error = "different pool cannot replace a pool";
991d9fa0 1848 return ERR_PTR(-EINVAL);
f09996c9 1849 }
991d9fa0
JT
1850 __pool_inc(pool);
1851
67e2e2b2 1852 } else {
991d9fa0 1853 pool = pool_create(pool_md, metadata_dev, block_size, error);
67e2e2b2
JT
1854 *created = 1;
1855 }
991d9fa0
JT
1856 }
1857
1858 return pool;
1859}
1860
1861/*----------------------------------------------------------------
1862 * Pool target methods
1863 *--------------------------------------------------------------*/
1864static void pool_dtr(struct dm_target *ti)
1865{
1866 struct pool_c *pt = ti->private;
1867
1868 mutex_lock(&dm_thin_pool_table.mutex);
1869
1870 unbind_control_target(pt->pool, ti);
1871 __pool_dec(pt->pool);
1872 dm_put_device(ti, pt->metadata_dev);
1873 dm_put_device(ti, pt->data_dev);
1874 kfree(pt);
1875
1876 mutex_unlock(&dm_thin_pool_table.mutex);
1877}
1878
991d9fa0
JT
1879static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1880 struct dm_target *ti)
1881{
1882 int r;
1883 unsigned argc;
1884 const char *arg_name;
1885
1886 static struct dm_arg _args[] = {
67e2e2b2 1887 {0, 3, "Invalid number of pool feature arguments"},
991d9fa0
JT
1888 };
1889
1890 /*
1891 * No feature arguments supplied.
1892 */
1893 if (!as->argc)
1894 return 0;
1895
1896 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1897 if (r)
1898 return -EINVAL;
1899
1900 while (argc && !r) {
1901 arg_name = dm_shift_arg(as);
1902 argc--;
1903
1904 if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1905 pf->zero_new_blocks = 0;
1906 continue;
67e2e2b2
JT
1907 } else if (!strcasecmp(arg_name, "ignore_discard")) {
1908 pf->discard_enabled = 0;
1909 continue;
1910 } else if (!strcasecmp(arg_name, "no_discard_passdown")) {
1911 pf->discard_passdown = 0;
1912 continue;
991d9fa0
JT
1913 }
1914
1915 ti->error = "Unrecognised pool feature requested";
1916 r = -EINVAL;
1917 }
1918
1919 return r;
1920}
1921
1922/*
1923 * thin-pool <metadata dev> <data dev>
1924 * <data block size (sectors)>
1925 * <low water mark (blocks)>
1926 * [<#feature args> [<arg>]*]
1927 *
1928 * Optional feature arguments are:
1929 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
67e2e2b2
JT
1930 * ignore_discard: disable discard
1931 * no_discard_passdown: don't pass discards down to the data device
991d9fa0
JT
1932 */
1933static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1934{
67e2e2b2 1935 int r, pool_created = 0;
991d9fa0
JT
1936 struct pool_c *pt;
1937 struct pool *pool;
1938 struct pool_features pf;
1939 struct dm_arg_set as;
1940 struct dm_dev *data_dev;
1941 unsigned long block_size;
1942 dm_block_t low_water_blocks;
1943 struct dm_dev *metadata_dev;
1944 sector_t metadata_dev_size;
c4a69ecd 1945 char b[BDEVNAME_SIZE];
991d9fa0
JT
1946
1947 /*
1948 * FIXME Remove validation from scope of lock.
1949 */
1950 mutex_lock(&dm_thin_pool_table.mutex);
1951
1952 if (argc < 4) {
1953 ti->error = "Invalid argument count";
1954 r = -EINVAL;
1955 goto out_unlock;
1956 }
1957 as.argc = argc;
1958 as.argv = argv;
1959
1960 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1961 if (r) {
1962 ti->error = "Error opening metadata block device";
1963 goto out_unlock;
1964 }
1965
1966 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
c4a69ecd
MS
1967 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1968 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1969 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
991d9fa0
JT
1970
1971 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1972 if (r) {
1973 ti->error = "Error getting data device";
1974 goto out_metadata;
1975 }
1976
1977 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1978 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1979 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
55f2b8bd 1980 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
991d9fa0
JT
1981 ti->error = "Invalid block size";
1982 r = -EINVAL;
1983 goto out;
1984 }
1985
1986 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1987 ti->error = "Invalid low water mark";
1988 r = -EINVAL;
1989 goto out;
1990 }
1991
1992 /*
1993 * Set default pool features.
1994 */
67e2e2b2 1995 pool_features_init(&pf);
991d9fa0
JT
1996
1997 dm_consume_args(&as, 4);
1998 r = parse_pool_features(&as, &pf, ti);
1999 if (r)
2000 goto out;
2001
2002 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2003 if (!pt) {
2004 r = -ENOMEM;
2005 goto out;
2006 }
2007
2008 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
67e2e2b2 2009 block_size, &ti->error, &pool_created);
991d9fa0
JT
2010 if (IS_ERR(pool)) {
2011 r = PTR_ERR(pool);
2012 goto out_free_pt;
2013 }
2014
67e2e2b2
JT
2015 /*
2016 * 'pool_created' reflects whether this is the first table load.
2017 * Top level discard support is not allowed to be changed after
2018 * initial load. This would require a pool reload to trigger thin
2019 * device changes.
2020 */
2021 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2022 ti->error = "Discard support cannot be disabled once enabled";
2023 r = -EINVAL;
2024 goto out_flags_changed;
2025 }
2026
55f2b8bd
MS
2027 /*
2028 * The block layer requires discard_granularity to be a power of 2.
2029 */
2030 if (pf.discard_enabled && !is_power_of_2(block_size)) {
2031 ti->error = "Discard support must be disabled when the block size is not a power of 2";
2032 r = -EINVAL;
2033 goto out_flags_changed;
2034 }
2035
991d9fa0
JT
2036 pt->pool = pool;
2037 pt->ti = ti;
2038 pt->metadata_dev = metadata_dev;
2039 pt->data_dev = data_dev;
2040 pt->low_water_blocks = low_water_blocks;
67e2e2b2 2041 pt->pf = pf;
991d9fa0 2042 ti->num_flush_requests = 1;
67e2e2b2
JT
2043 /*
2044 * Only need to enable discards if the pool should pass
2045 * them down to the data device. The thin device's discard
2046 * processing will cause mappings to be removed from the btree.
2047 */
2048 if (pf.discard_enabled && pf.discard_passdown) {
2049 ti->num_discard_requests = 1;
2050 /*
2051 * Setting 'discards_supported' circumvents the normal
2052 * stacking of discard limits (this keeps the pool and
2053 * thin devices' discard limits consistent).
2054 */
2055 ti->discards_supported = 1;
2056 }
991d9fa0
JT
2057 ti->private = pt;
2058
2059 pt->callbacks.congested_fn = pool_is_congested;
2060 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2061
2062 mutex_unlock(&dm_thin_pool_table.mutex);
2063
2064 return 0;
2065
67e2e2b2
JT
2066out_flags_changed:
2067 __pool_dec(pool);
991d9fa0
JT
2068out_free_pt:
2069 kfree(pt);
2070out:
2071 dm_put_device(ti, data_dev);
2072out_metadata:
2073 dm_put_device(ti, metadata_dev);
2074out_unlock:
2075 mutex_unlock(&dm_thin_pool_table.mutex);
2076
2077 return r;
2078}
2079
2080static int pool_map(struct dm_target *ti, struct bio *bio,
2081 union map_info *map_context)
2082{
2083 int r;
2084 struct pool_c *pt = ti->private;
2085 struct pool *pool = pt->pool;
2086 unsigned long flags;
2087
2088 /*
2089 * As this is a singleton target, ti->begin is always zero.
2090 */
2091 spin_lock_irqsave(&pool->lock, flags);
2092 bio->bi_bdev = pt->data_dev->bdev;
2093 r = DM_MAPIO_REMAPPED;
2094 spin_unlock_irqrestore(&pool->lock, flags);
2095
2096 return r;
2097}
2098
2099/*
2100 * Retrieves the number of blocks of the data device from
2101 * the superblock and compares it to the actual device size,
2102 * thus resizing the data device in case it has grown.
2103 *
2104 * This both copes with opening preallocated data devices in the ctr
2105 * being followed by a resume
2106 * -and-
2107 * calling the resume method individually after userspace has
2108 * grown the data device in reaction to a table event.
2109 */
2110static int pool_preresume(struct dm_target *ti)
2111{
2112 int r;
2113 struct pool_c *pt = ti->private;
2114 struct pool *pool = pt->pool;
55f2b8bd
MS
2115 sector_t data_size = ti->len;
2116 dm_block_t sb_data_size;
991d9fa0
JT
2117
2118 /*
2119 * Take control of the pool object.
2120 */
2121 r = bind_control_target(pool, ti);
2122 if (r)
2123 return r;
2124
55f2b8bd
MS
2125 (void) sector_div(data_size, pool->sectors_per_block);
2126
991d9fa0
JT
2127 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2128 if (r) {
2129 DMERR("failed to retrieve data device size");
2130 return r;
2131 }
2132
2133 if (data_size < sb_data_size) {
2134 DMERR("pool target too small, is %llu blocks (expected %llu)",
55f2b8bd 2135 (unsigned long long)data_size, sb_data_size);
991d9fa0
JT
2136 return -EINVAL;
2137
2138 } else if (data_size > sb_data_size) {
2139 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2140 if (r) {
2141 DMERR("failed to resize data device");
2142 return r;
2143 }
2144
2145 r = dm_pool_commit_metadata(pool->pmd);
2146 if (r) {
2147 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2148 __func__, r);
2149 return r;
2150 }
2151 }
2152
2153 return 0;
2154}
2155
2156static void pool_resume(struct dm_target *ti)
2157{
2158 struct pool_c *pt = ti->private;
2159 struct pool *pool = pt->pool;
2160 unsigned long flags;
2161
2162 spin_lock_irqsave(&pool->lock, flags);
2163 pool->low_water_triggered = 0;
2164 pool->no_free_space = 0;
2165 __requeue_bios(pool);
2166 spin_unlock_irqrestore(&pool->lock, flags);
2167
905e51b3 2168 do_waker(&pool->waker.work);
991d9fa0
JT
2169}
2170
2171static void pool_postsuspend(struct dm_target *ti)
2172{
2173 int r;
2174 struct pool_c *pt = ti->private;
2175 struct pool *pool = pt->pool;
2176
905e51b3 2177 cancel_delayed_work(&pool->waker);
991d9fa0
JT
2178 flush_workqueue(pool->wq);
2179
2180 r = dm_pool_commit_metadata(pool->pmd);
2181 if (r < 0) {
2182 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2183 __func__, r);
2184 /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
2185 }
2186}
2187
2188static int check_arg_count(unsigned argc, unsigned args_required)
2189{
2190 if (argc != args_required) {
2191 DMWARN("Message received with %u arguments instead of %u.",
2192 argc, args_required);
2193 return -EINVAL;
2194 }
2195
2196 return 0;
2197}
2198
2199static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2200{
2201 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2202 *dev_id <= MAX_DEV_ID)
2203 return 0;
2204
2205 if (warning)
2206 DMWARN("Message received with invalid device id: %s", arg);
2207
2208 return -EINVAL;
2209}
2210
2211static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2212{
2213 dm_thin_id dev_id;
2214 int r;
2215
2216 r = check_arg_count(argc, 2);
2217 if (r)
2218 return r;
2219
2220 r = read_dev_id(argv[1], &dev_id, 1);
2221 if (r)
2222 return r;
2223
2224 r = dm_pool_create_thin(pool->pmd, dev_id);
2225 if (r) {
2226 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2227 argv[1]);
2228 return r;
2229 }
2230
2231 return 0;
2232}
2233
2234static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2235{
2236 dm_thin_id dev_id;
2237 dm_thin_id origin_dev_id;
2238 int r;
2239
2240 r = check_arg_count(argc, 3);
2241 if (r)
2242 return r;
2243
2244 r = read_dev_id(argv[1], &dev_id, 1);
2245 if (r)
2246 return r;
2247
2248 r = read_dev_id(argv[2], &origin_dev_id, 1);
2249 if (r)
2250 return r;
2251
2252 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2253 if (r) {
2254 DMWARN("Creation of new snapshot %s of device %s failed.",
2255 argv[1], argv[2]);
2256 return r;
2257 }
2258
2259 return 0;
2260}
2261
2262static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2263{
2264 dm_thin_id dev_id;
2265 int r;
2266
2267 r = check_arg_count(argc, 2);
2268 if (r)
2269 return r;
2270
2271 r = read_dev_id(argv[1], &dev_id, 1);
2272 if (r)
2273 return r;
2274
2275 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2276 if (r)
2277 DMWARN("Deletion of thin device %s failed.", argv[1]);
2278
2279 return r;
2280}
2281
2282static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2283{
2284 dm_thin_id old_id, new_id;
2285 int r;
2286
2287 r = check_arg_count(argc, 3);
2288 if (r)
2289 return r;
2290
2291 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2292 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2293 return -EINVAL;
2294 }
2295
2296 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2297 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2298 return -EINVAL;
2299 }
2300
2301 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2302 if (r) {
2303 DMWARN("Failed to change transaction id from %s to %s.",
2304 argv[1], argv[2]);
2305 return r;
2306 }
2307
2308 return 0;
2309}
2310
cc8394d8
JT
2311static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2312{
2313 int r;
2314
2315 r = check_arg_count(argc, 1);
2316 if (r)
2317 return r;
2318
0d200aef
JT
2319 r = dm_pool_commit_metadata(pool->pmd);
2320 if (r) {
2321 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2322 __func__, r);
2323 return r;
2324 }
2325
cc8394d8
JT
2326 r = dm_pool_reserve_metadata_snap(pool->pmd);
2327 if (r)
2328 DMWARN("reserve_metadata_snap message failed.");
2329
2330 return r;
2331}
2332
2333static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2334{
2335 int r;
2336
2337 r = check_arg_count(argc, 1);
2338 if (r)
2339 return r;
2340
2341 r = dm_pool_release_metadata_snap(pool->pmd);
2342 if (r)
2343 DMWARN("release_metadata_snap message failed.");
2344
2345 return r;
2346}
2347
991d9fa0
JT
2348/*
2349 * Messages supported:
2350 * create_thin <dev_id>
2351 * create_snap <dev_id> <origin_id>
2352 * delete <dev_id>
2353 * trim <dev_id> <new_size_in_sectors>
2354 * set_transaction_id <current_trans_id> <new_trans_id>
cc8394d8
JT
2355 * reserve_metadata_snap
2356 * release_metadata_snap
991d9fa0
JT
2357 */
2358static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2359{
2360 int r = -EINVAL;
2361 struct pool_c *pt = ti->private;
2362 struct pool *pool = pt->pool;
2363
2364 if (!strcasecmp(argv[0], "create_thin"))
2365 r = process_create_thin_mesg(argc, argv, pool);
2366
2367 else if (!strcasecmp(argv[0], "create_snap"))
2368 r = process_create_snap_mesg(argc, argv, pool);
2369
2370 else if (!strcasecmp(argv[0], "delete"))
2371 r = process_delete_mesg(argc, argv, pool);
2372
2373 else if (!strcasecmp(argv[0], "set_transaction_id"))
2374 r = process_set_transaction_id_mesg(argc, argv, pool);
2375
cc8394d8
JT
2376 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2377 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2378
2379 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2380 r = process_release_metadata_snap_mesg(argc, argv, pool);
2381
991d9fa0
JT
2382 else
2383 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2384
2385 if (!r) {
2386 r = dm_pool_commit_metadata(pool->pmd);
2387 if (r)
2388 DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2389 argv[0], r);
2390 }
2391
2392 return r;
2393}
2394
2395/*
2396 * Status line is:
2397 * <transaction id> <used metadata sectors>/<total metadata sectors>
2398 * <used data sectors>/<total data sectors> <held metadata root>
2399 */
2400static int pool_status(struct dm_target *ti, status_type_t type,
2401 char *result, unsigned maxlen)
2402{
67e2e2b2 2403 int r, count;
991d9fa0
JT
2404 unsigned sz = 0;
2405 uint64_t transaction_id;
2406 dm_block_t nr_free_blocks_data;
2407 dm_block_t nr_free_blocks_metadata;
2408 dm_block_t nr_blocks_data;
2409 dm_block_t nr_blocks_metadata;
2410 dm_block_t held_root;
2411 char buf[BDEVNAME_SIZE];
2412 char buf2[BDEVNAME_SIZE];
2413 struct pool_c *pt = ti->private;
2414 struct pool *pool = pt->pool;
2415
2416 switch (type) {
2417 case STATUSTYPE_INFO:
2418 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2419 &transaction_id);
2420 if (r)
2421 return r;
2422
2423 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2424 &nr_free_blocks_metadata);
2425 if (r)
2426 return r;
2427
2428 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2429 if (r)
2430 return r;
2431
2432 r = dm_pool_get_free_block_count(pool->pmd,
2433 &nr_free_blocks_data);
2434 if (r)
2435 return r;
2436
2437 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2438 if (r)
2439 return r;
2440
cc8394d8 2441 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
991d9fa0
JT
2442 if (r)
2443 return r;
2444
2445 DMEMIT("%llu %llu/%llu %llu/%llu ",
2446 (unsigned long long)transaction_id,
2447 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2448 (unsigned long long)nr_blocks_metadata,
2449 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2450 (unsigned long long)nr_blocks_data);
2451
2452 if (held_root)
2453 DMEMIT("%llu", held_root);
2454 else
2455 DMEMIT("-");
2456
2457 break;
2458
2459 case STATUSTYPE_TABLE:
2460 DMEMIT("%s %s %lu %llu ",
2461 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2462 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2463 (unsigned long)pool->sectors_per_block,
2464 (unsigned long long)pt->low_water_blocks);
2465
67e2e2b2 2466 count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
f402693d 2467 !pt->pf.discard_passdown;
67e2e2b2 2468 DMEMIT("%u ", count);
991d9fa0 2469
67e2e2b2 2470 if (!pool->pf.zero_new_blocks)
991d9fa0 2471 DMEMIT("skip_block_zeroing ");
67e2e2b2
JT
2472
2473 if (!pool->pf.discard_enabled)
2474 DMEMIT("ignore_discard ");
2475
f402693d 2476 if (!pt->pf.discard_passdown)
67e2e2b2
JT
2477 DMEMIT("no_discard_passdown ");
2478
991d9fa0
JT
2479 break;
2480 }
2481
2482 return 0;
2483}
2484
2485static int pool_iterate_devices(struct dm_target *ti,
2486 iterate_devices_callout_fn fn, void *data)
2487{
2488 struct pool_c *pt = ti->private;
2489
2490 return fn(ti, pt->data_dev, 0, ti->len, data);
2491}
2492
2493static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2494 struct bio_vec *biovec, int max_size)
2495{
2496 struct pool_c *pt = ti->private;
2497 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2498
2499 if (!q->merge_bvec_fn)
2500 return max_size;
2501
2502 bvm->bi_bdev = pt->data_dev->bdev;
2503
2504 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2505}
2506
104655fd
JT
2507static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2508{
67e2e2b2
JT
2509 /*
2510 * FIXME: these limits may be incompatible with the pool's data device
2511 */
104655fd
JT
2512 limits->max_discard_sectors = pool->sectors_per_block;
2513
2514 /*
2515 * This is just a hint, and not enforced. We have to cope with
49296309
MP
2516 * bios that cover a block partially. A discard that spans a block
2517 * boundary is not sent to this target.
104655fd
JT
2518 */
2519 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
67e2e2b2 2520 limits->discard_zeroes_data = pool->pf.zero_new_blocks;
104655fd
JT
2521}
2522
991d9fa0
JT
2523static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2524{
2525 struct pool_c *pt = ti->private;
2526 struct pool *pool = pt->pool;
2527
2528 blk_limits_io_min(limits, 0);
2529 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
67e2e2b2
JT
2530 if (pool->pf.discard_enabled)
2531 set_discard_limits(pool, limits);
991d9fa0
JT
2532}
2533
2534static struct target_type pool_target = {
2535 .name = "thin-pool",
2536 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2537 DM_TARGET_IMMUTABLE,
cc8394d8 2538 .version = {1, 2, 0},
991d9fa0
JT
2539 .module = THIS_MODULE,
2540 .ctr = pool_ctr,
2541 .dtr = pool_dtr,
2542 .map = pool_map,
2543 .postsuspend = pool_postsuspend,
2544 .preresume = pool_preresume,
2545 .resume = pool_resume,
2546 .message = pool_message,
2547 .status = pool_status,
2548 .merge = pool_merge,
2549 .iterate_devices = pool_iterate_devices,
2550 .io_hints = pool_io_hints,
2551};
2552
2553/*----------------------------------------------------------------
2554 * Thin target methods
2555 *--------------------------------------------------------------*/
2556static void thin_dtr(struct dm_target *ti)
2557{
2558 struct thin_c *tc = ti->private;
2559
2560 mutex_lock(&dm_thin_pool_table.mutex);
2561
2562 __pool_dec(tc->pool);
2563 dm_pool_close_thin_device(tc->td);
2564 dm_put_device(ti, tc->pool_dev);
2dd9c257
JT
2565 if (tc->origin_dev)
2566 dm_put_device(ti, tc->origin_dev);
991d9fa0
JT
2567 kfree(tc);
2568
2569 mutex_unlock(&dm_thin_pool_table.mutex);
2570}
2571
2572/*
2573 * Thin target parameters:
2574 *
2dd9c257 2575 * <pool_dev> <dev_id> [origin_dev]
991d9fa0
JT
2576 *
2577 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2578 * dev_id: the internal device identifier
2dd9c257 2579 * origin_dev: a device external to the pool that should act as the origin
67e2e2b2
JT
2580 *
2581 * If the pool device has discards disabled, they get disabled for the thin
2582 * device as well.
991d9fa0
JT
2583 */
2584static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2585{
2586 int r;
2587 struct thin_c *tc;
2dd9c257 2588 struct dm_dev *pool_dev, *origin_dev;
991d9fa0
JT
2589 struct mapped_device *pool_md;
2590
2591 mutex_lock(&dm_thin_pool_table.mutex);
2592
2dd9c257 2593 if (argc != 2 && argc != 3) {
991d9fa0
JT
2594 ti->error = "Invalid argument count";
2595 r = -EINVAL;
2596 goto out_unlock;
2597 }
2598
2599 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2600 if (!tc) {
2601 ti->error = "Out of memory";
2602 r = -ENOMEM;
2603 goto out_unlock;
2604 }
2605
2dd9c257
JT
2606 if (argc == 3) {
2607 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2608 if (r) {
2609 ti->error = "Error opening origin device";
2610 goto bad_origin_dev;
2611 }
2612 tc->origin_dev = origin_dev;
2613 }
2614
991d9fa0
JT
2615 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2616 if (r) {
2617 ti->error = "Error opening pool device";
2618 goto bad_pool_dev;
2619 }
2620 tc->pool_dev = pool_dev;
2621
2622 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2623 ti->error = "Invalid device id";
2624 r = -EINVAL;
2625 goto bad_common;
2626 }
2627
2628 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2629 if (!pool_md) {
2630 ti->error = "Couldn't get pool mapped device";
2631 r = -EINVAL;
2632 goto bad_common;
2633 }
2634
2635 tc->pool = __pool_table_lookup(pool_md);
2636 if (!tc->pool) {
2637 ti->error = "Couldn't find pool object";
2638 r = -EINVAL;
2639 goto bad_pool_lookup;
2640 }
2641 __pool_inc(tc->pool);
2642
2643 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2644 if (r) {
2645 ti->error = "Couldn't open thin internal device";
2646 goto bad_thin_open;
2647 }
2648
542f9038
MS
2649 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2650 if (r)
2651 goto bad_thin_open;
2652
991d9fa0 2653 ti->num_flush_requests = 1;
67e2e2b2
JT
2654
2655 /* In case the pool supports discards, pass them on. */
2656 if (tc->pool->pf.discard_enabled) {
2657 ti->discards_supported = 1;
2658 ti->num_discard_requests = 1;
650d2a06 2659 ti->discard_zeroes_data_unsupported = 1;
49296309
MP
2660 /* Discard requests must be split on a block boundary */
2661 ti->split_discard_requests = 1;
67e2e2b2 2662 }
991d9fa0
JT
2663
2664 dm_put(pool_md);
2665
2666 mutex_unlock(&dm_thin_pool_table.mutex);
2667
2668 return 0;
2669
2670bad_thin_open:
2671 __pool_dec(tc->pool);
2672bad_pool_lookup:
2673 dm_put(pool_md);
2674bad_common:
2675 dm_put_device(ti, tc->pool_dev);
2676bad_pool_dev:
2dd9c257
JT
2677 if (tc->origin_dev)
2678 dm_put_device(ti, tc->origin_dev);
2679bad_origin_dev:
991d9fa0
JT
2680 kfree(tc);
2681out_unlock:
2682 mutex_unlock(&dm_thin_pool_table.mutex);
2683
2684 return r;
2685}
2686
2687static int thin_map(struct dm_target *ti, struct bio *bio,
2688 union map_info *map_context)
2689{
6efd6e83 2690 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
991d9fa0
JT
2691
2692 return thin_bio_map(ti, bio, map_context);
2693}
2694
eb2aa48d
JT
2695static int thin_endio(struct dm_target *ti,
2696 struct bio *bio, int err,
2697 union map_info *map_context)
2698{
2699 unsigned long flags;
a24c2569 2700 struct dm_thin_endio_hook *h = map_context->ptr;
eb2aa48d 2701 struct list_head work;
a24c2569 2702 struct dm_thin_new_mapping *m, *tmp;
eb2aa48d
JT
2703 struct pool *pool = h->tc->pool;
2704
2705 if (h->shared_read_entry) {
2706 INIT_LIST_HEAD(&work);
2707 ds_dec(h->shared_read_entry, &work);
2708
2709 spin_lock_irqsave(&pool->lock, flags);
2710 list_for_each_entry_safe(m, tmp, &work, list) {
2711 list_del(&m->list);
2712 m->quiesced = 1;
2713 __maybe_add_mapping(m);
2714 }
2715 spin_unlock_irqrestore(&pool->lock, flags);
2716 }
2717
104655fd
JT
2718 if (h->all_io_entry) {
2719 INIT_LIST_HEAD(&work);
2720 ds_dec(h->all_io_entry, &work);
c3a0ce2e 2721 spin_lock_irqsave(&pool->lock, flags);
104655fd
JT
2722 list_for_each_entry_safe(m, tmp, &work, list)
2723 list_add(&m->list, &pool->prepared_discards);
c3a0ce2e 2724 spin_unlock_irqrestore(&pool->lock, flags);
104655fd
JT
2725 }
2726
eb2aa48d
JT
2727 mempool_free(h, pool->endio_hook_pool);
2728
2729 return 0;
2730}
2731
991d9fa0
JT
2732static void thin_postsuspend(struct dm_target *ti)
2733{
2734 if (dm_noflush_suspending(ti))
2735 requeue_io((struct thin_c *)ti->private);
2736}
2737
2738/*
2739 * <nr mapped sectors> <highest mapped sector>
2740 */
2741static int thin_status(struct dm_target *ti, status_type_t type,
2742 char *result, unsigned maxlen)
2743{
2744 int r;
2745 ssize_t sz = 0;
2746 dm_block_t mapped, highest;
2747 char buf[BDEVNAME_SIZE];
2748 struct thin_c *tc = ti->private;
2749
2750 if (!tc->td)
2751 DMEMIT("-");
2752 else {
2753 switch (type) {
2754 case STATUSTYPE_INFO:
2755 r = dm_thin_get_mapped_count(tc->td, &mapped);
2756 if (r)
2757 return r;
2758
2759 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2760 if (r < 0)
2761 return r;
2762
2763 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2764 if (r)
2765 DMEMIT("%llu", ((highest + 1) *
2766 tc->pool->sectors_per_block) - 1);
2767 else
2768 DMEMIT("-");
2769 break;
2770
2771 case STATUSTYPE_TABLE:
2772 DMEMIT("%s %lu",
2773 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2774 (unsigned long) tc->dev_id);
2dd9c257
JT
2775 if (tc->origin_dev)
2776 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
991d9fa0
JT
2777 break;
2778 }
2779 }
2780
2781 return 0;
2782}
2783
2784static int thin_iterate_devices(struct dm_target *ti,
2785 iterate_devices_callout_fn fn, void *data)
2786{
55f2b8bd 2787 sector_t blocks;
991d9fa0 2788 struct thin_c *tc = ti->private;
55f2b8bd 2789 struct pool *pool = tc->pool;
991d9fa0
JT
2790
2791 /*
2792 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2793 * we follow a more convoluted path through to the pool's target.
2794 */
55f2b8bd 2795 if (!pool->ti)
991d9fa0
JT
2796 return 0; /* nothing is bound */
2797
55f2b8bd
MS
2798 blocks = pool->ti->len;
2799 (void) sector_div(blocks, pool->sectors_per_block);
991d9fa0 2800 if (blocks)
55f2b8bd 2801 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
991d9fa0
JT
2802
2803 return 0;
2804}
2805
2806static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2807{
2808 struct thin_c *tc = ti->private;
104655fd 2809 struct pool *pool = tc->pool;
991d9fa0
JT
2810
2811 blk_limits_io_min(limits, 0);
104655fd
JT
2812 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2813 set_discard_limits(pool, limits);
991d9fa0
JT
2814}
2815
2816static struct target_type thin_target = {
2817 .name = "thin",
55f2b8bd 2818 .version = {1, 2, 0},
991d9fa0
JT
2819 .module = THIS_MODULE,
2820 .ctr = thin_ctr,
2821 .dtr = thin_dtr,
2822 .map = thin_map,
eb2aa48d 2823 .end_io = thin_endio,
991d9fa0
JT
2824 .postsuspend = thin_postsuspend,
2825 .status = thin_status,
2826 .iterate_devices = thin_iterate_devices,
2827 .io_hints = thin_io_hints,
2828};
2829
2830/*----------------------------------------------------------------*/
2831
2832static int __init dm_thin_init(void)
2833{
2834 int r;
2835
2836 pool_table_init();
2837
2838 r = dm_register_target(&thin_target);
2839 if (r)
2840 return r;
2841
2842 r = dm_register_target(&pool_target);
2843 if (r)
a24c2569
MS
2844 goto bad_pool_target;
2845
2846 r = -ENOMEM;
2847
2848 _cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
2849 if (!_cell_cache)
2850 goto bad_cell_cache;
2851
2852 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2853 if (!_new_mapping_cache)
2854 goto bad_new_mapping_cache;
2855
2856 _endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
2857 if (!_endio_hook_cache)
2858 goto bad_endio_hook_cache;
2859
2860 return 0;
2861
2862bad_endio_hook_cache:
2863 kmem_cache_destroy(_new_mapping_cache);
2864bad_new_mapping_cache:
2865 kmem_cache_destroy(_cell_cache);
2866bad_cell_cache:
2867 dm_unregister_target(&pool_target);
2868bad_pool_target:
2869 dm_unregister_target(&thin_target);
991d9fa0
JT
2870
2871 return r;
2872}
2873
2874static void dm_thin_exit(void)
2875{
2876 dm_unregister_target(&thin_target);
2877 dm_unregister_target(&pool_target);
a24c2569
MS
2878
2879 kmem_cache_destroy(_cell_cache);
2880 kmem_cache_destroy(_new_mapping_cache);
2881 kmem_cache_destroy(_endio_hook_cache);
991d9fa0
JT
2882}
2883
2884module_init(dm_thin_init);
2885module_exit(dm_thin_exit);
2886
7cab8bf1 2887MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
991d9fa0
JT
2888MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2889MODULE_LICENSE("GPL");
This page took 0.24136 seconds and 5 git commands to generate.