dm thin metadata: introduce dm_pool_abort_metadata
[deliverable/linux.git] / drivers / md / dm-thin.c
CommitLineData
991d9fa0
JT
1/*
2 * Copyright (C) 2011 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-thin-metadata.h"
8
9#include <linux/device-mapper.h>
10#include <linux/dm-io.h>
11#include <linux/dm-kcopyd.h>
12#include <linux/list.h>
13#include <linux/init.h>
14#include <linux/module.h>
15#include <linux/slab.h>
16
17#define DM_MSG_PREFIX "thin"
18
19/*
20 * Tunable constants
21 */
7768ed33 22#define ENDIO_HOOK_POOL_SIZE 1024
991d9fa0
JT
23#define DEFERRED_SET_SIZE 64
24#define MAPPING_POOL_SIZE 1024
25#define PRISON_CELLS 1024
905e51b3 26#define COMMIT_PERIOD HZ
991d9fa0
JT
27
28/*
29 * The block size of the device holding pool data must be
30 * between 64KB and 1GB.
31 */
32#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
33#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
34
991d9fa0
JT
35/*
36 * Device id is restricted to 24 bits.
37 */
38#define MAX_DEV_ID ((1 << 24) - 1)
39
40/*
41 * How do we handle breaking sharing of data blocks?
42 * =================================================
43 *
44 * We use a standard copy-on-write btree to store the mappings for the
45 * devices (note I'm talking about copy-on-write of the metadata here, not
46 * the data). When you take an internal snapshot you clone the root node
47 * of the origin btree. After this there is no concept of an origin or a
48 * snapshot. They are just two device trees that happen to point to the
49 * same data blocks.
50 *
51 * When we get a write in we decide if it's to a shared data block using
52 * some timestamp magic. If it is, we have to break sharing.
53 *
54 * Let's say we write to a shared block in what was the origin. The
55 * steps are:
56 *
57 * i) plug io further to this physical block. (see bio_prison code).
58 *
59 * ii) quiesce any read io to that shared data block. Obviously
60 * including all devices that share this block. (see deferred_set code)
61 *
62 * iii) copy the data block to a newly allocate block. This step can be
63 * missed out if the io covers the block. (schedule_copy).
64 *
65 * iv) insert the new mapping into the origin's btree
fe878f34 66 * (process_prepared_mapping). This act of inserting breaks some
991d9fa0
JT
67 * sharing of btree nodes between the two devices. Breaking sharing only
68 * effects the btree of that specific device. Btrees for the other
69 * devices that share the block never change. The btree for the origin
70 * device as it was after the last commit is untouched, ie. we're using
71 * persistent data structures in the functional programming sense.
72 *
73 * v) unplug io to this physical block, including the io that triggered
74 * the breaking of sharing.
75 *
76 * Steps (ii) and (iii) occur in parallel.
77 *
78 * The metadata _doesn't_ need to be committed before the io continues. We
79 * get away with this because the io is always written to a _new_ block.
80 * If there's a crash, then:
81 *
82 * - The origin mapping will point to the old origin block (the shared
83 * one). This will contain the data as it was before the io that triggered
84 * the breaking of sharing came in.
85 *
86 * - The snap mapping still points to the old block. As it would after
87 * the commit.
88 *
89 * The downside of this scheme is the timestamp magic isn't perfect, and
90 * will continue to think that data block in the snapshot device is shared
91 * even after the write to the origin has broken sharing. I suspect data
92 * blocks will typically be shared by many different devices, so we're
93 * breaking sharing n + 1 times, rather than n, where n is the number of
94 * devices that reference this data block. At the moment I think the
95 * benefits far, far outweigh the disadvantages.
96 */
97
98/*----------------------------------------------------------------*/
99
100/*
101 * Sometimes we can't deal with a bio straight away. We put them in prison
102 * where they can't cause any mischief. Bios are put in a cell identified
103 * by a key, multiple bios can be in the same cell. When the cell is
104 * subsequently unlocked the bios become available.
105 */
106struct bio_prison;
107
108struct cell_key {
109 int virtual;
110 dm_thin_id dev;
111 dm_block_t block;
112};
113
a24c2569 114struct dm_bio_prison_cell {
991d9fa0
JT
115 struct hlist_node list;
116 struct bio_prison *prison;
117 struct cell_key key;
6f94a4c4 118 struct bio *holder;
991d9fa0
JT
119 struct bio_list bios;
120};
121
122struct bio_prison {
123 spinlock_t lock;
124 mempool_t *cell_pool;
125
126 unsigned nr_buckets;
127 unsigned hash_mask;
128 struct hlist_head *cells;
129};
130
131static uint32_t calc_nr_buckets(unsigned nr_cells)
132{
133 uint32_t n = 128;
134
135 nr_cells /= 4;
136 nr_cells = min(nr_cells, 8192u);
137
138 while (n < nr_cells)
139 n <<= 1;
140
141 return n;
142}
143
a24c2569
MS
144static struct kmem_cache *_cell_cache;
145
991d9fa0
JT
146/*
147 * @nr_cells should be the number of cells you want in use _concurrently_.
148 * Don't confuse it with the number of distinct keys.
149 */
150static struct bio_prison *prison_create(unsigned nr_cells)
151{
152 unsigned i;
153 uint32_t nr_buckets = calc_nr_buckets(nr_cells);
154 size_t len = sizeof(struct bio_prison) +
155 (sizeof(struct hlist_head) * nr_buckets);
156 struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
157
158 if (!prison)
159 return NULL;
160
161 spin_lock_init(&prison->lock);
a24c2569 162 prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
991d9fa0
JT
163 if (!prison->cell_pool) {
164 kfree(prison);
165 return NULL;
166 }
167
168 prison->nr_buckets = nr_buckets;
169 prison->hash_mask = nr_buckets - 1;
170 prison->cells = (struct hlist_head *) (prison + 1);
171 for (i = 0; i < nr_buckets; i++)
172 INIT_HLIST_HEAD(prison->cells + i);
173
174 return prison;
175}
176
177static void prison_destroy(struct bio_prison *prison)
178{
179 mempool_destroy(prison->cell_pool);
180 kfree(prison);
181}
182
183static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
184{
185 const unsigned long BIG_PRIME = 4294967291UL;
186 uint64_t hash = key->block * BIG_PRIME;
187
188 return (uint32_t) (hash & prison->hash_mask);
189}
190
191static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
192{
193 return (lhs->virtual == rhs->virtual) &&
194 (lhs->dev == rhs->dev) &&
195 (lhs->block == rhs->block);
196}
197
a24c2569
MS
198static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
199 struct cell_key *key)
991d9fa0 200{
a24c2569 201 struct dm_bio_prison_cell *cell;
991d9fa0
JT
202 struct hlist_node *tmp;
203
204 hlist_for_each_entry(cell, tmp, bucket, list)
205 if (keys_equal(&cell->key, key))
206 return cell;
207
208 return NULL;
209}
210
211/*
212 * This may block if a new cell needs allocating. You must ensure that
213 * cells will be unlocked even if the calling thread is blocked.
214 *
6f94a4c4 215 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
991d9fa0
JT
216 */
217static int bio_detain(struct bio_prison *prison, struct cell_key *key,
a24c2569 218 struct bio *inmate, struct dm_bio_prison_cell **ref)
991d9fa0 219{
6f94a4c4 220 int r = 1;
991d9fa0
JT
221 unsigned long flags;
222 uint32_t hash = hash_key(prison, key);
a24c2569 223 struct dm_bio_prison_cell *cell, *cell2;
991d9fa0
JT
224
225 BUG_ON(hash > prison->nr_buckets);
226
227 spin_lock_irqsave(&prison->lock, flags);
991d9fa0 228
6f94a4c4
JT
229 cell = __search_bucket(prison->cells + hash, key);
230 if (cell) {
231 bio_list_add(&cell->bios, inmate);
232 goto out;
991d9fa0
JT
233 }
234
6f94a4c4
JT
235 /*
236 * Allocate a new cell
237 */
991d9fa0 238 spin_unlock_irqrestore(&prison->lock, flags);
6f94a4c4
JT
239 cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
240 spin_lock_irqsave(&prison->lock, flags);
991d9fa0 241
6f94a4c4
JT
242 /*
243 * We've been unlocked, so we have to double check that
244 * nobody else has inserted this cell in the meantime.
245 */
246 cell = __search_bucket(prison->cells + hash, key);
247 if (cell) {
991d9fa0 248 mempool_free(cell2, prison->cell_pool);
6f94a4c4
JT
249 bio_list_add(&cell->bios, inmate);
250 goto out;
251 }
252
253 /*
254 * Use new cell.
255 */
256 cell = cell2;
257
258 cell->prison = prison;
259 memcpy(&cell->key, key, sizeof(cell->key));
260 cell->holder = inmate;
261 bio_list_init(&cell->bios);
262 hlist_add_head(&cell->list, prison->cells + hash);
263
264 r = 0;
265
266out:
267 spin_unlock_irqrestore(&prison->lock, flags);
991d9fa0
JT
268
269 *ref = cell;
270
271 return r;
272}
273
274/*
275 * @inmates must have been initialised prior to this call
276 */
a24c2569 277static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
991d9fa0
JT
278{
279 struct bio_prison *prison = cell->prison;
280
281 hlist_del(&cell->list);
282
03aaae7c
MS
283 if (inmates) {
284 bio_list_add(inmates, cell->holder);
285 bio_list_merge(inmates, &cell->bios);
286 }
991d9fa0
JT
287
288 mempool_free(cell, prison->cell_pool);
289}
290
a24c2569 291static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
991d9fa0
JT
292{
293 unsigned long flags;
294 struct bio_prison *prison = cell->prison;
295
296 spin_lock_irqsave(&prison->lock, flags);
297 __cell_release(cell, bios);
298 spin_unlock_irqrestore(&prison->lock, flags);
299}
300
301/*
302 * There are a couple of places where we put a bio into a cell briefly
303 * before taking it out again. In these situations we know that no other
304 * bio may be in the cell. This function releases the cell, and also does
305 * a sanity check.
306 */
a24c2569 307static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
6f94a4c4 308{
6f94a4c4
JT
309 BUG_ON(cell->holder != bio);
310 BUG_ON(!bio_list_empty(&cell->bios));
03aaae7c
MS
311
312 __cell_release(cell, NULL);
6f94a4c4
JT
313}
314
a24c2569 315static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
991d9fa0 316{
991d9fa0 317 unsigned long flags;
6f94a4c4 318 struct bio_prison *prison = cell->prison;
991d9fa0
JT
319
320 spin_lock_irqsave(&prison->lock, flags);
6f94a4c4 321 __cell_release_singleton(cell, bio);
991d9fa0 322 spin_unlock_irqrestore(&prison->lock, flags);
6f94a4c4
JT
323}
324
325/*
326 * Sometimes we don't want the holder, just the additional bios.
327 */
a24c2569
MS
328static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
329 struct bio_list *inmates)
6f94a4c4
JT
330{
331 struct bio_prison *prison = cell->prison;
332
333 hlist_del(&cell->list);
334 bio_list_merge(inmates, &cell->bios);
335
336 mempool_free(cell, prison->cell_pool);
337}
338
a24c2569
MS
339static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
340 struct bio_list *inmates)
6f94a4c4
JT
341{
342 unsigned long flags;
343 struct bio_prison *prison = cell->prison;
991d9fa0 344
6f94a4c4
JT
345 spin_lock_irqsave(&prison->lock, flags);
346 __cell_release_no_holder(cell, inmates);
347 spin_unlock_irqrestore(&prison->lock, flags);
991d9fa0
JT
348}
349
a24c2569 350static void cell_error(struct dm_bio_prison_cell *cell)
991d9fa0
JT
351{
352 struct bio_prison *prison = cell->prison;
353 struct bio_list bios;
354 struct bio *bio;
355 unsigned long flags;
356
357 bio_list_init(&bios);
358
359 spin_lock_irqsave(&prison->lock, flags);
360 __cell_release(cell, &bios);
361 spin_unlock_irqrestore(&prison->lock, flags);
362
363 while ((bio = bio_list_pop(&bios)))
364 bio_io_error(bio);
365}
366
367/*----------------------------------------------------------------*/
368
369/*
370 * We use the deferred set to keep track of pending reads to shared blocks.
371 * We do this to ensure the new mapping caused by a write isn't performed
372 * until these prior reads have completed. Otherwise the insertion of the
373 * new mapping could free the old block that the read bios are mapped to.
374 */
375
376struct deferred_set;
377struct deferred_entry {
378 struct deferred_set *ds;
379 unsigned count;
380 struct list_head work_items;
381};
382
383struct deferred_set {
384 spinlock_t lock;
385 unsigned current_entry;
386 unsigned sweeper;
387 struct deferred_entry entries[DEFERRED_SET_SIZE];
388};
389
390static void ds_init(struct deferred_set *ds)
391{
392 int i;
393
394 spin_lock_init(&ds->lock);
395 ds->current_entry = 0;
396 ds->sweeper = 0;
397 for (i = 0; i < DEFERRED_SET_SIZE; i++) {
398 ds->entries[i].ds = ds;
399 ds->entries[i].count = 0;
400 INIT_LIST_HEAD(&ds->entries[i].work_items);
401 }
402}
403
404static struct deferred_entry *ds_inc(struct deferred_set *ds)
405{
406 unsigned long flags;
407 struct deferred_entry *entry;
408
409 spin_lock_irqsave(&ds->lock, flags);
410 entry = ds->entries + ds->current_entry;
411 entry->count++;
412 spin_unlock_irqrestore(&ds->lock, flags);
413
414 return entry;
415}
416
417static unsigned ds_next(unsigned index)
418{
419 return (index + 1) % DEFERRED_SET_SIZE;
420}
421
422static void __sweep(struct deferred_set *ds, struct list_head *head)
423{
424 while ((ds->sweeper != ds->current_entry) &&
425 !ds->entries[ds->sweeper].count) {
426 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
427 ds->sweeper = ds_next(ds->sweeper);
428 }
429
430 if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
431 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
432}
433
434static void ds_dec(struct deferred_entry *entry, struct list_head *head)
435{
436 unsigned long flags;
437
438 spin_lock_irqsave(&entry->ds->lock, flags);
439 BUG_ON(!entry->count);
440 --entry->count;
441 __sweep(entry->ds, head);
442 spin_unlock_irqrestore(&entry->ds->lock, flags);
443}
444
445/*
446 * Returns 1 if deferred or 0 if no pending items to delay job.
447 */
448static int ds_add_work(struct deferred_set *ds, struct list_head *work)
449{
450 int r = 1;
451 unsigned long flags;
452 unsigned next_entry;
453
454 spin_lock_irqsave(&ds->lock, flags);
455 if ((ds->sweeper == ds->current_entry) &&
456 !ds->entries[ds->current_entry].count)
457 r = 0;
458 else {
459 list_add(work, &ds->entries[ds->current_entry].work_items);
460 next_entry = ds_next(ds->current_entry);
461 if (!ds->entries[next_entry].count)
462 ds->current_entry = next_entry;
463 }
464 spin_unlock_irqrestore(&ds->lock, flags);
465
466 return r;
467}
468
469/*----------------------------------------------------------------*/
470
471/*
472 * Key building.
473 */
474static void build_data_key(struct dm_thin_device *td,
475 dm_block_t b, struct cell_key *key)
476{
477 key->virtual = 0;
478 key->dev = dm_thin_dev_id(td);
479 key->block = b;
480}
481
482static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
483 struct cell_key *key)
484{
485 key->virtual = 1;
486 key->dev = dm_thin_dev_id(td);
487 key->block = b;
488}
489
490/*----------------------------------------------------------------*/
491
492/*
493 * A pool device ties together a metadata device and a data device. It
494 * also provides the interface for creating and destroying internal
495 * devices.
496 */
a24c2569 497struct dm_thin_new_mapping;
67e2e2b2
JT
498
499struct pool_features {
500 unsigned zero_new_blocks:1;
501 unsigned discard_enabled:1;
502 unsigned discard_passdown:1;
503};
504
991d9fa0
JT
505struct pool {
506 struct list_head list;
507 struct dm_target *ti; /* Only set if a pool target is bound */
508
509 struct mapped_device *pool_md;
510 struct block_device *md_dev;
511 struct dm_pool_metadata *pmd;
512
991d9fa0 513 dm_block_t low_water_blocks;
55f2b8bd 514 uint32_t sectors_per_block;
f9a8e0cd 515 int sectors_per_block_shift;
991d9fa0 516
67e2e2b2 517 struct pool_features pf;
991d9fa0
JT
518 unsigned low_water_triggered:1; /* A dm event has been sent */
519 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
520
521 struct bio_prison *prison;
522 struct dm_kcopyd_client *copier;
523
524 struct workqueue_struct *wq;
525 struct work_struct worker;
905e51b3 526 struct delayed_work waker;
991d9fa0 527
905e51b3 528 unsigned long last_commit_jiffies;
55f2b8bd 529 unsigned ref_count;
991d9fa0
JT
530
531 spinlock_t lock;
532 struct bio_list deferred_bios;
533 struct bio_list deferred_flush_bios;
534 struct list_head prepared_mappings;
104655fd 535 struct list_head prepared_discards;
991d9fa0
JT
536
537 struct bio_list retry_on_resume_list;
538
eb2aa48d 539 struct deferred_set shared_read_ds;
104655fd 540 struct deferred_set all_io_ds;
991d9fa0 541
a24c2569 542 struct dm_thin_new_mapping *next_mapping;
991d9fa0
JT
543 mempool_t *mapping_pool;
544 mempool_t *endio_hook_pool;
545};
546
547/*
548 * Target context for a pool.
549 */
550struct pool_c {
551 struct dm_target *ti;
552 struct pool *pool;
553 struct dm_dev *data_dev;
554 struct dm_dev *metadata_dev;
555 struct dm_target_callbacks callbacks;
556
557 dm_block_t low_water_blocks;
67e2e2b2 558 struct pool_features pf;
991d9fa0
JT
559};
560
561/*
562 * Target context for a thin.
563 */
564struct thin_c {
565 struct dm_dev *pool_dev;
2dd9c257 566 struct dm_dev *origin_dev;
991d9fa0
JT
567 dm_thin_id dev_id;
568
569 struct pool *pool;
570 struct dm_thin_device *td;
571};
572
573/*----------------------------------------------------------------*/
574
575/*
576 * A global list of pools that uses a struct mapped_device as a key.
577 */
578static struct dm_thin_pool_table {
579 struct mutex mutex;
580 struct list_head pools;
581} dm_thin_pool_table;
582
583static void pool_table_init(void)
584{
585 mutex_init(&dm_thin_pool_table.mutex);
586 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
587}
588
589static void __pool_table_insert(struct pool *pool)
590{
591 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
592 list_add(&pool->list, &dm_thin_pool_table.pools);
593}
594
595static void __pool_table_remove(struct pool *pool)
596{
597 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
598 list_del(&pool->list);
599}
600
601static struct pool *__pool_table_lookup(struct mapped_device *md)
602{
603 struct pool *pool = NULL, *tmp;
604
605 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
606
607 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
608 if (tmp->pool_md == md) {
609 pool = tmp;
610 break;
611 }
612 }
613
614 return pool;
615}
616
617static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
618{
619 struct pool *pool = NULL, *tmp;
620
621 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
622
623 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
624 if (tmp->md_dev == md_dev) {
625 pool = tmp;
626 break;
627 }
628 }
629
630 return pool;
631}
632
633/*----------------------------------------------------------------*/
634
a24c2569 635struct dm_thin_endio_hook {
eb2aa48d
JT
636 struct thin_c *tc;
637 struct deferred_entry *shared_read_entry;
104655fd 638 struct deferred_entry *all_io_entry;
a24c2569 639 struct dm_thin_new_mapping *overwrite_mapping;
eb2aa48d
JT
640};
641
991d9fa0
JT
642static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
643{
644 struct bio *bio;
645 struct bio_list bios;
646
647 bio_list_init(&bios);
648 bio_list_merge(&bios, master);
649 bio_list_init(master);
650
651 while ((bio = bio_list_pop(&bios))) {
a24c2569
MS
652 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
653
eb2aa48d 654 if (h->tc == tc)
991d9fa0
JT
655 bio_endio(bio, DM_ENDIO_REQUEUE);
656 else
657 bio_list_add(master, bio);
658 }
659}
660
661static void requeue_io(struct thin_c *tc)
662{
663 struct pool *pool = tc->pool;
664 unsigned long flags;
665
666 spin_lock_irqsave(&pool->lock, flags);
667 __requeue_bio_list(tc, &pool->deferred_bios);
668 __requeue_bio_list(tc, &pool->retry_on_resume_list);
669 spin_unlock_irqrestore(&pool->lock, flags);
670}
671
672/*
673 * This section of code contains the logic for processing a thin device's IO.
674 * Much of the code depends on pool object resources (lists, workqueues, etc)
675 * but most is exclusively called from the thin target rather than the thin-pool
676 * target.
677 */
678
679static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
680{
55f2b8bd
MS
681 sector_t block_nr = bio->bi_sector;
682
f9a8e0cd
MP
683 if (tc->pool->sectors_per_block_shift < 0)
684 (void) sector_div(block_nr, tc->pool->sectors_per_block);
685 else
686 block_nr >>= tc->pool->sectors_per_block_shift;
55f2b8bd
MS
687
688 return block_nr;
991d9fa0
JT
689}
690
691static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
692{
693 struct pool *pool = tc->pool;
55f2b8bd 694 sector_t bi_sector = bio->bi_sector;
991d9fa0
JT
695
696 bio->bi_bdev = tc->pool_dev->bdev;
f9a8e0cd
MP
697 if (tc->pool->sectors_per_block_shift < 0)
698 bio->bi_sector = (block * pool->sectors_per_block) +
699 sector_div(bi_sector, pool->sectors_per_block);
700 else
701 bio->bi_sector = (block << pool->sectors_per_block_shift) |
702 (bi_sector & (pool->sectors_per_block - 1));
991d9fa0
JT
703}
704
2dd9c257
JT
705static void remap_to_origin(struct thin_c *tc, struct bio *bio)
706{
707 bio->bi_bdev = tc->origin_dev->bdev;
708}
709
4afdd680
JT
710static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
711{
712 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
713 dm_thin_changed_this_transaction(tc->td);
714}
715
2dd9c257 716static void issue(struct thin_c *tc, struct bio *bio)
991d9fa0
JT
717{
718 struct pool *pool = tc->pool;
719 unsigned long flags;
720
991d9fa0
JT
721 /*
722 * Batch together any FUA/FLUSH bios we find and then issue
723 * a single commit for them in process_deferred_bios().
724 */
4afdd680 725 if (bio_triggers_commit(tc, bio)) {
991d9fa0
JT
726 spin_lock_irqsave(&pool->lock, flags);
727 bio_list_add(&pool->deferred_flush_bios, bio);
728 spin_unlock_irqrestore(&pool->lock, flags);
729 } else
730 generic_make_request(bio);
731}
732
2dd9c257
JT
733static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
734{
735 remap_to_origin(tc, bio);
736 issue(tc, bio);
737}
738
739static void remap_and_issue(struct thin_c *tc, struct bio *bio,
740 dm_block_t block)
741{
742 remap(tc, bio, block);
743 issue(tc, bio);
744}
745
991d9fa0
JT
746/*
747 * wake_worker() is used when new work is queued and when pool_resume is
748 * ready to continue deferred IO processing.
749 */
750static void wake_worker(struct pool *pool)
751{
752 queue_work(pool->wq, &pool->worker);
753}
754
755/*----------------------------------------------------------------*/
756
757/*
758 * Bio endio functions.
759 */
a24c2569 760struct dm_thin_new_mapping {
991d9fa0
JT
761 struct list_head list;
762
eb2aa48d
JT
763 unsigned quiesced:1;
764 unsigned prepared:1;
104655fd 765 unsigned pass_discard:1;
991d9fa0
JT
766
767 struct thin_c *tc;
768 dm_block_t virt_block;
769 dm_block_t data_block;
a24c2569 770 struct dm_bio_prison_cell *cell, *cell2;
991d9fa0
JT
771 int err;
772
773 /*
774 * If the bio covers the whole area of a block then we can avoid
775 * zeroing or copying. Instead this bio is hooked. The bio will
776 * still be in the cell, so care has to be taken to avoid issuing
777 * the bio twice.
778 */
779 struct bio *bio;
780 bio_end_io_t *saved_bi_end_io;
781};
782
a24c2569 783static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
991d9fa0
JT
784{
785 struct pool *pool = m->tc->pool;
786
eb2aa48d 787 if (m->quiesced && m->prepared) {
991d9fa0
JT
788 list_add(&m->list, &pool->prepared_mappings);
789 wake_worker(pool);
790 }
791}
792
793static void copy_complete(int read_err, unsigned long write_err, void *context)
794{
795 unsigned long flags;
a24c2569 796 struct dm_thin_new_mapping *m = context;
991d9fa0
JT
797 struct pool *pool = m->tc->pool;
798
799 m->err = read_err || write_err ? -EIO : 0;
800
801 spin_lock_irqsave(&pool->lock, flags);
802 m->prepared = 1;
803 __maybe_add_mapping(m);
804 spin_unlock_irqrestore(&pool->lock, flags);
805}
806
807static void overwrite_endio(struct bio *bio, int err)
808{
809 unsigned long flags;
a24c2569
MS
810 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
811 struct dm_thin_new_mapping *m = h->overwrite_mapping;
991d9fa0
JT
812 struct pool *pool = m->tc->pool;
813
814 m->err = err;
815
816 spin_lock_irqsave(&pool->lock, flags);
817 m->prepared = 1;
818 __maybe_add_mapping(m);
819 spin_unlock_irqrestore(&pool->lock, flags);
820}
821
991d9fa0
JT
822/*----------------------------------------------------------------*/
823
824/*
825 * Workqueue.
826 */
827
828/*
829 * Prepared mapping jobs.
830 */
831
832/*
833 * This sends the bios in the cell back to the deferred_bios list.
834 */
a24c2569 835static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
991d9fa0
JT
836 dm_block_t data_block)
837{
838 struct pool *pool = tc->pool;
839 unsigned long flags;
840
841 spin_lock_irqsave(&pool->lock, flags);
842 cell_release(cell, &pool->deferred_bios);
843 spin_unlock_irqrestore(&tc->pool->lock, flags);
844
845 wake_worker(pool);
846}
847
848/*
849 * Same as cell_defer above, except it omits one particular detainee,
850 * a write bio that covers the block and has already been processed.
851 */
a24c2569 852static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
991d9fa0
JT
853{
854 struct bio_list bios;
991d9fa0
JT
855 struct pool *pool = tc->pool;
856 unsigned long flags;
857
858 bio_list_init(&bios);
991d9fa0
JT
859
860 spin_lock_irqsave(&pool->lock, flags);
6f94a4c4 861 cell_release_no_holder(cell, &pool->deferred_bios);
991d9fa0
JT
862 spin_unlock_irqrestore(&pool->lock, flags);
863
864 wake_worker(pool);
865}
866
a24c2569 867static void process_prepared_mapping(struct dm_thin_new_mapping *m)
991d9fa0
JT
868{
869 struct thin_c *tc = m->tc;
870 struct bio *bio;
871 int r;
872
873 bio = m->bio;
874 if (bio)
875 bio->bi_end_io = m->saved_bi_end_io;
876
877 if (m->err) {
878 cell_error(m->cell);
905386f8 879 goto out;
991d9fa0
JT
880 }
881
882 /*
883 * Commit the prepared block into the mapping btree.
884 * Any I/O for this block arriving after this point will get
885 * remapped to it directly.
886 */
887 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
888 if (r) {
889 DMERR("dm_thin_insert_block() failed");
890 cell_error(m->cell);
905386f8 891 goto out;
991d9fa0
JT
892 }
893
894 /*
895 * Release any bios held while the block was being provisioned.
896 * If we are processing a write bio that completely covers the block,
897 * we already processed it so can ignore it now when processing
898 * the bios in the cell.
899 */
900 if (bio) {
6f94a4c4 901 cell_defer_except(tc, m->cell);
991d9fa0
JT
902 bio_endio(bio, 0);
903 } else
904 cell_defer(tc, m->cell, m->data_block);
905
905386f8 906out:
991d9fa0
JT
907 list_del(&m->list);
908 mempool_free(m, tc->pool->mapping_pool);
909}
910
a24c2569 911static void process_prepared_discard(struct dm_thin_new_mapping *m)
104655fd
JT
912{
913 int r;
914 struct thin_c *tc = m->tc;
915
916 r = dm_thin_remove_block(tc->td, m->virt_block);
917 if (r)
918 DMERR("dm_thin_remove_block() failed");
919
920 /*
921 * Pass the discard down to the underlying device?
922 */
923 if (m->pass_discard)
924 remap_and_issue(tc, m->bio, m->data_block);
925 else
926 bio_endio(m->bio, 0);
927
928 cell_defer_except(tc, m->cell);
929 cell_defer_except(tc, m->cell2);
930 mempool_free(m, tc->pool->mapping_pool);
931}
932
933static void process_prepared(struct pool *pool, struct list_head *head,
a24c2569 934 void (*fn)(struct dm_thin_new_mapping *))
991d9fa0
JT
935{
936 unsigned long flags;
937 struct list_head maps;
a24c2569 938 struct dm_thin_new_mapping *m, *tmp;
991d9fa0
JT
939
940 INIT_LIST_HEAD(&maps);
941 spin_lock_irqsave(&pool->lock, flags);
104655fd 942 list_splice_init(head, &maps);
991d9fa0
JT
943 spin_unlock_irqrestore(&pool->lock, flags);
944
945 list_for_each_entry_safe(m, tmp, &maps, list)
104655fd 946 fn(m);
991d9fa0
JT
947}
948
949/*
950 * Deferred bio jobs.
951 */
104655fd 952static int io_overlaps_block(struct pool *pool, struct bio *bio)
991d9fa0 953{
f9a8e0cd 954 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
104655fd
JT
955}
956
957static int io_overwrites_block(struct pool *pool, struct bio *bio)
958{
959 return (bio_data_dir(bio) == WRITE) &&
960 io_overlaps_block(pool, bio);
991d9fa0
JT
961}
962
963static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
964 bio_end_io_t *fn)
965{
966 *save = bio->bi_end_io;
967 bio->bi_end_io = fn;
968}
969
970static int ensure_next_mapping(struct pool *pool)
971{
972 if (pool->next_mapping)
973 return 0;
974
975 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
976
977 return pool->next_mapping ? 0 : -ENOMEM;
978}
979
a24c2569 980static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
991d9fa0 981{
a24c2569 982 struct dm_thin_new_mapping *r = pool->next_mapping;
991d9fa0
JT
983
984 BUG_ON(!pool->next_mapping);
985
986 pool->next_mapping = NULL;
987
988 return r;
989}
990
991static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
2dd9c257
JT
992 struct dm_dev *origin, dm_block_t data_origin,
993 dm_block_t data_dest,
a24c2569 994 struct dm_bio_prison_cell *cell, struct bio *bio)
991d9fa0
JT
995{
996 int r;
997 struct pool *pool = tc->pool;
a24c2569 998 struct dm_thin_new_mapping *m = get_next_mapping(pool);
991d9fa0
JT
999
1000 INIT_LIST_HEAD(&m->list);
eb2aa48d 1001 m->quiesced = 0;
991d9fa0
JT
1002 m->prepared = 0;
1003 m->tc = tc;
1004 m->virt_block = virt_block;
1005 m->data_block = data_dest;
1006 m->cell = cell;
1007 m->err = 0;
1008 m->bio = NULL;
1009
eb2aa48d
JT
1010 if (!ds_add_work(&pool->shared_read_ds, &m->list))
1011 m->quiesced = 1;
991d9fa0
JT
1012
1013 /*
1014 * IO to pool_dev remaps to the pool target's data_dev.
1015 *
1016 * If the whole block of data is being overwritten, we can issue the
1017 * bio immediately. Otherwise we use kcopyd to clone the data first.
1018 */
1019 if (io_overwrites_block(pool, bio)) {
a24c2569
MS
1020 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1021
eb2aa48d 1022 h->overwrite_mapping = m;
991d9fa0
JT
1023 m->bio = bio;
1024 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
991d9fa0
JT
1025 remap_and_issue(tc, bio, data_dest);
1026 } else {
1027 struct dm_io_region from, to;
1028
2dd9c257 1029 from.bdev = origin->bdev;
991d9fa0
JT
1030 from.sector = data_origin * pool->sectors_per_block;
1031 from.count = pool->sectors_per_block;
1032
1033 to.bdev = tc->pool_dev->bdev;
1034 to.sector = data_dest * pool->sectors_per_block;
1035 to.count = pool->sectors_per_block;
1036
1037 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1038 0, copy_complete, m);
1039 if (r < 0) {
1040 mempool_free(m, pool->mapping_pool);
1041 DMERR("dm_kcopyd_copy() failed");
1042 cell_error(cell);
1043 }
1044 }
1045}
1046
2dd9c257
JT
1047static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1048 dm_block_t data_origin, dm_block_t data_dest,
a24c2569 1049 struct dm_bio_prison_cell *cell, struct bio *bio)
2dd9c257
JT
1050{
1051 schedule_copy(tc, virt_block, tc->pool_dev,
1052 data_origin, data_dest, cell, bio);
1053}
1054
1055static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1056 dm_block_t data_dest,
a24c2569 1057 struct dm_bio_prison_cell *cell, struct bio *bio)
2dd9c257
JT
1058{
1059 schedule_copy(tc, virt_block, tc->origin_dev,
1060 virt_block, data_dest, cell, bio);
1061}
1062
991d9fa0 1063static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
a24c2569 1064 dm_block_t data_block, struct dm_bio_prison_cell *cell,
991d9fa0
JT
1065 struct bio *bio)
1066{
1067 struct pool *pool = tc->pool;
a24c2569 1068 struct dm_thin_new_mapping *m = get_next_mapping(pool);
991d9fa0
JT
1069
1070 INIT_LIST_HEAD(&m->list);
eb2aa48d 1071 m->quiesced = 1;
991d9fa0
JT
1072 m->prepared = 0;
1073 m->tc = tc;
1074 m->virt_block = virt_block;
1075 m->data_block = data_block;
1076 m->cell = cell;
1077 m->err = 0;
1078 m->bio = NULL;
1079
1080 /*
1081 * If the whole block of data is being overwritten or we are not
1082 * zeroing pre-existing data, we can issue the bio immediately.
1083 * Otherwise we use kcopyd to zero the data first.
1084 */
67e2e2b2 1085 if (!pool->pf.zero_new_blocks)
991d9fa0
JT
1086 process_prepared_mapping(m);
1087
1088 else if (io_overwrites_block(pool, bio)) {
a24c2569
MS
1089 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1090
eb2aa48d 1091 h->overwrite_mapping = m;
991d9fa0
JT
1092 m->bio = bio;
1093 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
991d9fa0 1094 remap_and_issue(tc, bio, data_block);
991d9fa0
JT
1095 } else {
1096 int r;
1097 struct dm_io_region to;
1098
1099 to.bdev = tc->pool_dev->bdev;
1100 to.sector = data_block * pool->sectors_per_block;
1101 to.count = pool->sectors_per_block;
1102
1103 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1104 if (r < 0) {
1105 mempool_free(m, pool->mapping_pool);
1106 DMERR("dm_kcopyd_zero() failed");
1107 cell_error(cell);
1108 }
1109 }
1110}
1111
1112static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1113{
1114 int r;
1115 dm_block_t free_blocks;
1116 unsigned long flags;
1117 struct pool *pool = tc->pool;
1118
1119 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1120 if (r)
1121 return r;
1122
1123 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1124 DMWARN("%s: reached low water mark, sending event.",
1125 dm_device_name(pool->pool_md));
1126 spin_lock_irqsave(&pool->lock, flags);
1127 pool->low_water_triggered = 1;
1128 spin_unlock_irqrestore(&pool->lock, flags);
1129 dm_table_event(pool->ti->table);
1130 }
1131
1132 if (!free_blocks) {
1133 if (pool->no_free_space)
1134 return -ENOSPC;
1135 else {
1136 /*
1137 * Try to commit to see if that will free up some
1138 * more space.
1139 */
1140 r = dm_pool_commit_metadata(pool->pmd);
1141 if (r) {
1142 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1143 __func__, r);
1144 return r;
1145 }
1146
1147 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1148 if (r)
1149 return r;
1150
1151 /*
1152 * If we still have no space we set a flag to avoid
1153 * doing all this checking and return -ENOSPC.
1154 */
1155 if (!free_blocks) {
1156 DMWARN("%s: no free space available.",
1157 dm_device_name(pool->pool_md));
1158 spin_lock_irqsave(&pool->lock, flags);
1159 pool->no_free_space = 1;
1160 spin_unlock_irqrestore(&pool->lock, flags);
1161 return -ENOSPC;
1162 }
1163 }
1164 }
1165
1166 r = dm_pool_alloc_data_block(pool->pmd, result);
1167 if (r)
1168 return r;
1169
1170 return 0;
1171}
1172
1173/*
1174 * If we have run out of space, queue bios until the device is
1175 * resumed, presumably after having been reloaded with more space.
1176 */
1177static void retry_on_resume(struct bio *bio)
1178{
a24c2569 1179 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
eb2aa48d 1180 struct thin_c *tc = h->tc;
991d9fa0
JT
1181 struct pool *pool = tc->pool;
1182 unsigned long flags;
1183
1184 spin_lock_irqsave(&pool->lock, flags);
1185 bio_list_add(&pool->retry_on_resume_list, bio);
1186 spin_unlock_irqrestore(&pool->lock, flags);
1187}
1188
a24c2569 1189static void no_space(struct dm_bio_prison_cell *cell)
991d9fa0
JT
1190{
1191 struct bio *bio;
1192 struct bio_list bios;
1193
1194 bio_list_init(&bios);
1195 cell_release(cell, &bios);
1196
1197 while ((bio = bio_list_pop(&bios)))
1198 retry_on_resume(bio);
1199}
1200
104655fd
JT
1201static void process_discard(struct thin_c *tc, struct bio *bio)
1202{
1203 int r;
c3a0ce2e 1204 unsigned long flags;
104655fd 1205 struct pool *pool = tc->pool;
a24c2569 1206 struct dm_bio_prison_cell *cell, *cell2;
104655fd
JT
1207 struct cell_key key, key2;
1208 dm_block_t block = get_bio_block(tc, bio);
1209 struct dm_thin_lookup_result lookup_result;
a24c2569 1210 struct dm_thin_new_mapping *m;
104655fd
JT
1211
1212 build_virtual_key(tc->td, block, &key);
1213 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1214 return;
1215
1216 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1217 switch (r) {
1218 case 0:
1219 /*
1220 * Check nobody is fiddling with this pool block. This can
1221 * happen if someone's in the process of breaking sharing
1222 * on this block.
1223 */
1224 build_data_key(tc->td, lookup_result.block, &key2);
1225 if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1226 cell_release_singleton(cell, bio);
1227 break;
1228 }
1229
1230 if (io_overlaps_block(pool, bio)) {
1231 /*
1232 * IO may still be going to the destination block. We must
1233 * quiesce before we can do the removal.
1234 */
1235 m = get_next_mapping(pool);
1236 m->tc = tc;
17b7d63f 1237 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
104655fd
JT
1238 m->virt_block = block;
1239 m->data_block = lookup_result.block;
1240 m->cell = cell;
1241 m->cell2 = cell2;
1242 m->err = 0;
1243 m->bio = bio;
1244
1245 if (!ds_add_work(&pool->all_io_ds, &m->list)) {
c3a0ce2e 1246 spin_lock_irqsave(&pool->lock, flags);
104655fd 1247 list_add(&m->list, &pool->prepared_discards);
c3a0ce2e 1248 spin_unlock_irqrestore(&pool->lock, flags);
104655fd
JT
1249 wake_worker(pool);
1250 }
1251 } else {
1252 /*
49296309
MP
1253 * The DM core makes sure that the discard doesn't span
1254 * a block boundary. So we submit the discard of a
1255 * partial block appropriately.
104655fd 1256 */
104655fd
JT
1257 cell_release_singleton(cell, bio);
1258 cell_release_singleton(cell2, bio);
650d2a06
MP
1259 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1260 remap_and_issue(tc, bio, lookup_result.block);
1261 else
1262 bio_endio(bio, 0);
104655fd
JT
1263 }
1264 break;
1265
1266 case -ENODATA:
1267 /*
1268 * It isn't provisioned, just forget it.
1269 */
1270 cell_release_singleton(cell, bio);
1271 bio_endio(bio, 0);
1272 break;
1273
1274 default:
1275 DMERR("discard: find block unexpectedly returned %d", r);
1276 cell_release_singleton(cell, bio);
1277 bio_io_error(bio);
1278 break;
1279 }
1280}
1281
991d9fa0
JT
1282static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1283 struct cell_key *key,
1284 struct dm_thin_lookup_result *lookup_result,
a24c2569 1285 struct dm_bio_prison_cell *cell)
991d9fa0
JT
1286{
1287 int r;
1288 dm_block_t data_block;
1289
1290 r = alloc_data_block(tc, &data_block);
1291 switch (r) {
1292 case 0:
2dd9c257
JT
1293 schedule_internal_copy(tc, block, lookup_result->block,
1294 data_block, cell, bio);
991d9fa0
JT
1295 break;
1296
1297 case -ENOSPC:
1298 no_space(cell);
1299 break;
1300
1301 default:
1302 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1303 cell_error(cell);
1304 break;
1305 }
1306}
1307
1308static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1309 dm_block_t block,
1310 struct dm_thin_lookup_result *lookup_result)
1311{
a24c2569 1312 struct dm_bio_prison_cell *cell;
991d9fa0
JT
1313 struct pool *pool = tc->pool;
1314 struct cell_key key;
1315
1316 /*
1317 * If cell is already occupied, then sharing is already in the process
1318 * of being broken so we have nothing further to do here.
1319 */
1320 build_data_key(tc->td, lookup_result->block, &key);
1321 if (bio_detain(pool->prison, &key, bio, &cell))
1322 return;
1323
60049701 1324 if (bio_data_dir(bio) == WRITE && bio->bi_size)
991d9fa0
JT
1325 break_sharing(tc, bio, block, &key, lookup_result, cell);
1326 else {
a24c2569 1327 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
991d9fa0 1328
eb2aa48d 1329 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
991d9fa0
JT
1330
1331 cell_release_singleton(cell, bio);
1332 remap_and_issue(tc, bio, lookup_result->block);
1333 }
1334}
1335
1336static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
a24c2569 1337 struct dm_bio_prison_cell *cell)
991d9fa0
JT
1338{
1339 int r;
1340 dm_block_t data_block;
1341
1342 /*
1343 * Remap empty bios (flushes) immediately, without provisioning.
1344 */
1345 if (!bio->bi_size) {
1346 cell_release_singleton(cell, bio);
1347 remap_and_issue(tc, bio, 0);
1348 return;
1349 }
1350
1351 /*
1352 * Fill read bios with zeroes and complete them immediately.
1353 */
1354 if (bio_data_dir(bio) == READ) {
1355 zero_fill_bio(bio);
1356 cell_release_singleton(cell, bio);
1357 bio_endio(bio, 0);
1358 return;
1359 }
1360
1361 r = alloc_data_block(tc, &data_block);
1362 switch (r) {
1363 case 0:
2dd9c257
JT
1364 if (tc->origin_dev)
1365 schedule_external_copy(tc, block, data_block, cell, bio);
1366 else
1367 schedule_zero(tc, block, data_block, cell, bio);
991d9fa0
JT
1368 break;
1369
1370 case -ENOSPC:
1371 no_space(cell);
1372 break;
1373
1374 default:
1375 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1376 cell_error(cell);
1377 break;
1378 }
1379}
1380
1381static void process_bio(struct thin_c *tc, struct bio *bio)
1382{
1383 int r;
1384 dm_block_t block = get_bio_block(tc, bio);
a24c2569 1385 struct dm_bio_prison_cell *cell;
991d9fa0
JT
1386 struct cell_key key;
1387 struct dm_thin_lookup_result lookup_result;
1388
1389 /*
1390 * If cell is already occupied, then the block is already
1391 * being provisioned so we have nothing further to do here.
1392 */
1393 build_virtual_key(tc->td, block, &key);
1394 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1395 return;
1396
1397 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1398 switch (r) {
1399 case 0:
1400 /*
1401 * We can release this cell now. This thread is the only
1402 * one that puts bios into a cell, and we know there were
1403 * no preceding bios.
1404 */
1405 /*
1406 * TODO: this will probably have to change when discard goes
1407 * back in.
1408 */
1409 cell_release_singleton(cell, bio);
1410
1411 if (lookup_result.shared)
1412 process_shared_bio(tc, bio, block, &lookup_result);
1413 else
1414 remap_and_issue(tc, bio, lookup_result.block);
1415 break;
1416
1417 case -ENODATA:
2dd9c257
JT
1418 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1419 cell_release_singleton(cell, bio);
1420 remap_to_origin_and_issue(tc, bio);
1421 } else
1422 provision_block(tc, bio, block, cell);
991d9fa0
JT
1423 break;
1424
1425 default:
1426 DMERR("dm_thin_find_block() failed, error = %d", r);
104655fd 1427 cell_release_singleton(cell, bio);
991d9fa0
JT
1428 bio_io_error(bio);
1429 break;
1430 }
1431}
1432
905e51b3
JT
1433static int need_commit_due_to_time(struct pool *pool)
1434{
1435 return jiffies < pool->last_commit_jiffies ||
1436 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1437}
1438
991d9fa0
JT
1439static void process_deferred_bios(struct pool *pool)
1440{
1441 unsigned long flags;
1442 struct bio *bio;
1443 struct bio_list bios;
1444 int r;
1445
1446 bio_list_init(&bios);
1447
1448 spin_lock_irqsave(&pool->lock, flags);
1449 bio_list_merge(&bios, &pool->deferred_bios);
1450 bio_list_init(&pool->deferred_bios);
1451 spin_unlock_irqrestore(&pool->lock, flags);
1452
1453 while ((bio = bio_list_pop(&bios))) {
a24c2569 1454 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
eb2aa48d
JT
1455 struct thin_c *tc = h->tc;
1456
991d9fa0
JT
1457 /*
1458 * If we've got no free new_mapping structs, and processing
1459 * this bio might require one, we pause until there are some
1460 * prepared mappings to process.
1461 */
1462 if (ensure_next_mapping(pool)) {
1463 spin_lock_irqsave(&pool->lock, flags);
1464 bio_list_merge(&pool->deferred_bios, &bios);
1465 spin_unlock_irqrestore(&pool->lock, flags);
1466
1467 break;
1468 }
104655fd
JT
1469
1470 if (bio->bi_rw & REQ_DISCARD)
1471 process_discard(tc, bio);
1472 else
1473 process_bio(tc, bio);
991d9fa0
JT
1474 }
1475
1476 /*
1477 * If there are any deferred flush bios, we must commit
1478 * the metadata before issuing them.
1479 */
1480 bio_list_init(&bios);
1481 spin_lock_irqsave(&pool->lock, flags);
1482 bio_list_merge(&bios, &pool->deferred_flush_bios);
1483 bio_list_init(&pool->deferred_flush_bios);
1484 spin_unlock_irqrestore(&pool->lock, flags);
1485
905e51b3 1486 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
991d9fa0
JT
1487 return;
1488
1489 r = dm_pool_commit_metadata(pool->pmd);
1490 if (r) {
1491 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1492 __func__, r);
1493 while ((bio = bio_list_pop(&bios)))
1494 bio_io_error(bio);
1495 return;
1496 }
905e51b3 1497 pool->last_commit_jiffies = jiffies;
991d9fa0
JT
1498
1499 while ((bio = bio_list_pop(&bios)))
1500 generic_make_request(bio);
1501}
1502
1503static void do_worker(struct work_struct *ws)
1504{
1505 struct pool *pool = container_of(ws, struct pool, worker);
1506
104655fd
JT
1507 process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
1508 process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
991d9fa0
JT
1509 process_deferred_bios(pool);
1510}
1511
905e51b3
JT
1512/*
1513 * We want to commit periodically so that not too much
1514 * unwritten data builds up.
1515 */
1516static void do_waker(struct work_struct *ws)
1517{
1518 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1519 wake_worker(pool);
1520 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1521}
1522
991d9fa0
JT
1523/*----------------------------------------------------------------*/
1524
1525/*
1526 * Mapping functions.
1527 */
1528
1529/*
1530 * Called only while mapping a thin bio to hand it over to the workqueue.
1531 */
1532static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1533{
1534 unsigned long flags;
1535 struct pool *pool = tc->pool;
1536
1537 spin_lock_irqsave(&pool->lock, flags);
1538 bio_list_add(&pool->deferred_bios, bio);
1539 spin_unlock_irqrestore(&pool->lock, flags);
1540
1541 wake_worker(pool);
1542}
1543
a24c2569 1544static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
eb2aa48d
JT
1545{
1546 struct pool *pool = tc->pool;
a24c2569 1547 struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
eb2aa48d
JT
1548
1549 h->tc = tc;
1550 h->shared_read_entry = NULL;
104655fd 1551 h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
eb2aa48d
JT
1552 h->overwrite_mapping = NULL;
1553
1554 return h;
1555}
1556
991d9fa0
JT
1557/*
1558 * Non-blocking function called from the thin target's map function.
1559 */
1560static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1561 union map_info *map_context)
1562{
1563 int r;
1564 struct thin_c *tc = ti->private;
1565 dm_block_t block = get_bio_block(tc, bio);
1566 struct dm_thin_device *td = tc->td;
1567 struct dm_thin_lookup_result result;
1568
eb2aa48d 1569 map_context->ptr = thin_hook_bio(tc, bio);
104655fd 1570 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
991d9fa0
JT
1571 thin_defer_bio(tc, bio);
1572 return DM_MAPIO_SUBMITTED;
1573 }
1574
1575 r = dm_thin_find_block(td, block, 0, &result);
1576
1577 /*
1578 * Note that we defer readahead too.
1579 */
1580 switch (r) {
1581 case 0:
1582 if (unlikely(result.shared)) {
1583 /*
1584 * We have a race condition here between the
1585 * result.shared value returned by the lookup and
1586 * snapshot creation, which may cause new
1587 * sharing.
1588 *
1589 * To avoid this always quiesce the origin before
1590 * taking the snap. You want to do this anyway to
1591 * ensure a consistent application view
1592 * (i.e. lockfs).
1593 *
1594 * More distant ancestors are irrelevant. The
1595 * shared flag will be set in their case.
1596 */
1597 thin_defer_bio(tc, bio);
1598 r = DM_MAPIO_SUBMITTED;
1599 } else {
1600 remap(tc, bio, result.block);
1601 r = DM_MAPIO_REMAPPED;
1602 }
1603 break;
1604
1605 case -ENODATA:
1606 /*
1607 * In future, the failed dm_thin_find_block above could
1608 * provide the hint to load the metadata into cache.
1609 */
1610 case -EWOULDBLOCK:
1611 thin_defer_bio(tc, bio);
1612 r = DM_MAPIO_SUBMITTED;
1613 break;
1614 }
1615
1616 return r;
1617}
1618
1619static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1620{
1621 int r;
1622 unsigned long flags;
1623 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1624
1625 spin_lock_irqsave(&pt->pool->lock, flags);
1626 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1627 spin_unlock_irqrestore(&pt->pool->lock, flags);
1628
1629 if (!r) {
1630 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1631 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1632 }
1633
1634 return r;
1635}
1636
1637static void __requeue_bios(struct pool *pool)
1638{
1639 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1640 bio_list_init(&pool->retry_on_resume_list);
1641}
1642
1643/*----------------------------------------------------------------
1644 * Binding of control targets to a pool object
1645 *--------------------------------------------------------------*/
1646static int bind_control_target(struct pool *pool, struct dm_target *ti)
1647{
1648 struct pool_c *pt = ti->private;
1649
1650 pool->ti = ti;
1651 pool->low_water_blocks = pt->low_water_blocks;
67e2e2b2 1652 pool->pf = pt->pf;
991d9fa0 1653
f402693d
MS
1654 /*
1655 * If discard_passdown was enabled verify that the data device
1656 * supports discards. Disable discard_passdown if not; otherwise
1657 * -EOPNOTSUPP will be returned.
1658 */
1659 if (pt->pf.discard_passdown) {
1660 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1661 if (!q || !blk_queue_discard(q)) {
1662 char buf[BDEVNAME_SIZE];
1663 DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
1664 bdevname(pt->data_dev->bdev, buf));
1665 pool->pf.discard_passdown = 0;
1666 }
1667 }
1668
991d9fa0
JT
1669 return 0;
1670}
1671
1672static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1673{
1674 if (pool->ti == ti)
1675 pool->ti = NULL;
1676}
1677
1678/*----------------------------------------------------------------
1679 * Pool creation
1680 *--------------------------------------------------------------*/
67e2e2b2
JT
1681/* Initialize pool features. */
1682static void pool_features_init(struct pool_features *pf)
1683{
1684 pf->zero_new_blocks = 1;
1685 pf->discard_enabled = 1;
1686 pf->discard_passdown = 1;
1687}
1688
991d9fa0
JT
1689static void __pool_destroy(struct pool *pool)
1690{
1691 __pool_table_remove(pool);
1692
1693 if (dm_pool_metadata_close(pool->pmd) < 0)
1694 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1695
1696 prison_destroy(pool->prison);
1697 dm_kcopyd_client_destroy(pool->copier);
1698
1699 if (pool->wq)
1700 destroy_workqueue(pool->wq);
1701
1702 if (pool->next_mapping)
1703 mempool_free(pool->next_mapping, pool->mapping_pool);
1704 mempool_destroy(pool->mapping_pool);
1705 mempool_destroy(pool->endio_hook_pool);
1706 kfree(pool);
1707}
1708
a24c2569
MS
1709static struct kmem_cache *_new_mapping_cache;
1710static struct kmem_cache *_endio_hook_cache;
1711
991d9fa0
JT
1712static struct pool *pool_create(struct mapped_device *pool_md,
1713 struct block_device *metadata_dev,
1714 unsigned long block_size, char **error)
1715{
1716 int r;
1717 void *err_p;
1718 struct pool *pool;
1719 struct dm_pool_metadata *pmd;
1720
66b1edc0 1721 pmd = dm_pool_metadata_open(metadata_dev, block_size, true);
991d9fa0
JT
1722 if (IS_ERR(pmd)) {
1723 *error = "Error creating metadata object";
1724 return (struct pool *)pmd;
1725 }
1726
1727 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1728 if (!pool) {
1729 *error = "Error allocating memory for pool";
1730 err_p = ERR_PTR(-ENOMEM);
1731 goto bad_pool;
1732 }
1733
1734 pool->pmd = pmd;
1735 pool->sectors_per_block = block_size;
f9a8e0cd
MP
1736 if (block_size & (block_size - 1))
1737 pool->sectors_per_block_shift = -1;
1738 else
1739 pool->sectors_per_block_shift = __ffs(block_size);
991d9fa0 1740 pool->low_water_blocks = 0;
67e2e2b2 1741 pool_features_init(&pool->pf);
991d9fa0
JT
1742 pool->prison = prison_create(PRISON_CELLS);
1743 if (!pool->prison) {
1744 *error = "Error creating pool's bio prison";
1745 err_p = ERR_PTR(-ENOMEM);
1746 goto bad_prison;
1747 }
1748
1749 pool->copier = dm_kcopyd_client_create();
1750 if (IS_ERR(pool->copier)) {
1751 r = PTR_ERR(pool->copier);
1752 *error = "Error creating pool's kcopyd client";
1753 err_p = ERR_PTR(r);
1754 goto bad_kcopyd_client;
1755 }
1756
1757 /*
1758 * Create singlethreaded workqueue that will service all devices
1759 * that use this metadata.
1760 */
1761 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1762 if (!pool->wq) {
1763 *error = "Error creating pool's workqueue";
1764 err_p = ERR_PTR(-ENOMEM);
1765 goto bad_wq;
1766 }
1767
1768 INIT_WORK(&pool->worker, do_worker);
905e51b3 1769 INIT_DELAYED_WORK(&pool->waker, do_waker);
991d9fa0
JT
1770 spin_lock_init(&pool->lock);
1771 bio_list_init(&pool->deferred_bios);
1772 bio_list_init(&pool->deferred_flush_bios);
1773 INIT_LIST_HEAD(&pool->prepared_mappings);
104655fd 1774 INIT_LIST_HEAD(&pool->prepared_discards);
991d9fa0
JT
1775 pool->low_water_triggered = 0;
1776 pool->no_free_space = 0;
1777 bio_list_init(&pool->retry_on_resume_list);
eb2aa48d 1778 ds_init(&pool->shared_read_ds);
104655fd 1779 ds_init(&pool->all_io_ds);
991d9fa0
JT
1780
1781 pool->next_mapping = NULL;
a24c2569
MS
1782 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1783 _new_mapping_cache);
991d9fa0
JT
1784 if (!pool->mapping_pool) {
1785 *error = "Error creating pool's mapping mempool";
1786 err_p = ERR_PTR(-ENOMEM);
1787 goto bad_mapping_pool;
1788 }
1789
a24c2569
MS
1790 pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
1791 _endio_hook_cache);
991d9fa0
JT
1792 if (!pool->endio_hook_pool) {
1793 *error = "Error creating pool's endio_hook mempool";
1794 err_p = ERR_PTR(-ENOMEM);
1795 goto bad_endio_hook_pool;
1796 }
1797 pool->ref_count = 1;
905e51b3 1798 pool->last_commit_jiffies = jiffies;
991d9fa0
JT
1799 pool->pool_md = pool_md;
1800 pool->md_dev = metadata_dev;
1801 __pool_table_insert(pool);
1802
1803 return pool;
1804
1805bad_endio_hook_pool:
1806 mempool_destroy(pool->mapping_pool);
1807bad_mapping_pool:
1808 destroy_workqueue(pool->wq);
1809bad_wq:
1810 dm_kcopyd_client_destroy(pool->copier);
1811bad_kcopyd_client:
1812 prison_destroy(pool->prison);
1813bad_prison:
1814 kfree(pool);
1815bad_pool:
1816 if (dm_pool_metadata_close(pmd))
1817 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1818
1819 return err_p;
1820}
1821
1822static void __pool_inc(struct pool *pool)
1823{
1824 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1825 pool->ref_count++;
1826}
1827
1828static void __pool_dec(struct pool *pool)
1829{
1830 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1831 BUG_ON(!pool->ref_count);
1832 if (!--pool->ref_count)
1833 __pool_destroy(pool);
1834}
1835
1836static struct pool *__pool_find(struct mapped_device *pool_md,
1837 struct block_device *metadata_dev,
67e2e2b2
JT
1838 unsigned long block_size, char **error,
1839 int *created)
991d9fa0
JT
1840{
1841 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1842
1843 if (pool) {
f09996c9
MS
1844 if (pool->pool_md != pool_md) {
1845 *error = "metadata device already in use by a pool";
991d9fa0 1846 return ERR_PTR(-EBUSY);
f09996c9 1847 }
991d9fa0
JT
1848 __pool_inc(pool);
1849
1850 } else {
1851 pool = __pool_table_lookup(pool_md);
1852 if (pool) {
f09996c9
MS
1853 if (pool->md_dev != metadata_dev) {
1854 *error = "different pool cannot replace a pool";
991d9fa0 1855 return ERR_PTR(-EINVAL);
f09996c9 1856 }
991d9fa0
JT
1857 __pool_inc(pool);
1858
67e2e2b2 1859 } else {
991d9fa0 1860 pool = pool_create(pool_md, metadata_dev, block_size, error);
67e2e2b2
JT
1861 *created = 1;
1862 }
991d9fa0
JT
1863 }
1864
1865 return pool;
1866}
1867
1868/*----------------------------------------------------------------
1869 * Pool target methods
1870 *--------------------------------------------------------------*/
1871static void pool_dtr(struct dm_target *ti)
1872{
1873 struct pool_c *pt = ti->private;
1874
1875 mutex_lock(&dm_thin_pool_table.mutex);
1876
1877 unbind_control_target(pt->pool, ti);
1878 __pool_dec(pt->pool);
1879 dm_put_device(ti, pt->metadata_dev);
1880 dm_put_device(ti, pt->data_dev);
1881 kfree(pt);
1882
1883 mutex_unlock(&dm_thin_pool_table.mutex);
1884}
1885
991d9fa0
JT
1886static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1887 struct dm_target *ti)
1888{
1889 int r;
1890 unsigned argc;
1891 const char *arg_name;
1892
1893 static struct dm_arg _args[] = {
67e2e2b2 1894 {0, 3, "Invalid number of pool feature arguments"},
991d9fa0
JT
1895 };
1896
1897 /*
1898 * No feature arguments supplied.
1899 */
1900 if (!as->argc)
1901 return 0;
1902
1903 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1904 if (r)
1905 return -EINVAL;
1906
1907 while (argc && !r) {
1908 arg_name = dm_shift_arg(as);
1909 argc--;
1910
1911 if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1912 pf->zero_new_blocks = 0;
1913 continue;
67e2e2b2
JT
1914 } else if (!strcasecmp(arg_name, "ignore_discard")) {
1915 pf->discard_enabled = 0;
1916 continue;
1917 } else if (!strcasecmp(arg_name, "no_discard_passdown")) {
1918 pf->discard_passdown = 0;
1919 continue;
991d9fa0
JT
1920 }
1921
1922 ti->error = "Unrecognised pool feature requested";
1923 r = -EINVAL;
1924 }
1925
1926 return r;
1927}
1928
1929/*
1930 * thin-pool <metadata dev> <data dev>
1931 * <data block size (sectors)>
1932 * <low water mark (blocks)>
1933 * [<#feature args> [<arg>]*]
1934 *
1935 * Optional feature arguments are:
1936 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
67e2e2b2
JT
1937 * ignore_discard: disable discard
1938 * no_discard_passdown: don't pass discards down to the data device
991d9fa0
JT
1939 */
1940static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1941{
67e2e2b2 1942 int r, pool_created = 0;
991d9fa0
JT
1943 struct pool_c *pt;
1944 struct pool *pool;
1945 struct pool_features pf;
1946 struct dm_arg_set as;
1947 struct dm_dev *data_dev;
1948 unsigned long block_size;
1949 dm_block_t low_water_blocks;
1950 struct dm_dev *metadata_dev;
1951 sector_t metadata_dev_size;
c4a69ecd 1952 char b[BDEVNAME_SIZE];
991d9fa0
JT
1953
1954 /*
1955 * FIXME Remove validation from scope of lock.
1956 */
1957 mutex_lock(&dm_thin_pool_table.mutex);
1958
1959 if (argc < 4) {
1960 ti->error = "Invalid argument count";
1961 r = -EINVAL;
1962 goto out_unlock;
1963 }
1964 as.argc = argc;
1965 as.argv = argv;
1966
1967 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1968 if (r) {
1969 ti->error = "Error opening metadata block device";
1970 goto out_unlock;
1971 }
1972
1973 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
c4a69ecd
MS
1974 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1975 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1976 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
991d9fa0
JT
1977
1978 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1979 if (r) {
1980 ti->error = "Error getting data device";
1981 goto out_metadata;
1982 }
1983
1984 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1985 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1986 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
55f2b8bd 1987 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
991d9fa0
JT
1988 ti->error = "Invalid block size";
1989 r = -EINVAL;
1990 goto out;
1991 }
1992
1993 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1994 ti->error = "Invalid low water mark";
1995 r = -EINVAL;
1996 goto out;
1997 }
1998
1999 /*
2000 * Set default pool features.
2001 */
67e2e2b2 2002 pool_features_init(&pf);
991d9fa0
JT
2003
2004 dm_consume_args(&as, 4);
2005 r = parse_pool_features(&as, &pf, ti);
2006 if (r)
2007 goto out;
2008
2009 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2010 if (!pt) {
2011 r = -ENOMEM;
2012 goto out;
2013 }
2014
2015 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
67e2e2b2 2016 block_size, &ti->error, &pool_created);
991d9fa0
JT
2017 if (IS_ERR(pool)) {
2018 r = PTR_ERR(pool);
2019 goto out_free_pt;
2020 }
2021
67e2e2b2
JT
2022 /*
2023 * 'pool_created' reflects whether this is the first table load.
2024 * Top level discard support is not allowed to be changed after
2025 * initial load. This would require a pool reload to trigger thin
2026 * device changes.
2027 */
2028 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2029 ti->error = "Discard support cannot be disabled once enabled";
2030 r = -EINVAL;
2031 goto out_flags_changed;
2032 }
2033
55f2b8bd
MS
2034 /*
2035 * The block layer requires discard_granularity to be a power of 2.
2036 */
2037 if (pf.discard_enabled && !is_power_of_2(block_size)) {
2038 ti->error = "Discard support must be disabled when the block size is not a power of 2";
2039 r = -EINVAL;
2040 goto out_flags_changed;
2041 }
2042
991d9fa0
JT
2043 pt->pool = pool;
2044 pt->ti = ti;
2045 pt->metadata_dev = metadata_dev;
2046 pt->data_dev = data_dev;
2047 pt->low_water_blocks = low_water_blocks;
67e2e2b2 2048 pt->pf = pf;
991d9fa0 2049 ti->num_flush_requests = 1;
67e2e2b2
JT
2050 /*
2051 * Only need to enable discards if the pool should pass
2052 * them down to the data device. The thin device's discard
2053 * processing will cause mappings to be removed from the btree.
2054 */
2055 if (pf.discard_enabled && pf.discard_passdown) {
2056 ti->num_discard_requests = 1;
2057 /*
2058 * Setting 'discards_supported' circumvents the normal
2059 * stacking of discard limits (this keeps the pool and
2060 * thin devices' discard limits consistent).
2061 */
0ac55489 2062 ti->discards_supported = true;
67e2e2b2 2063 }
991d9fa0
JT
2064 ti->private = pt;
2065
2066 pt->callbacks.congested_fn = pool_is_congested;
2067 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2068
2069 mutex_unlock(&dm_thin_pool_table.mutex);
2070
2071 return 0;
2072
67e2e2b2
JT
2073out_flags_changed:
2074 __pool_dec(pool);
991d9fa0
JT
2075out_free_pt:
2076 kfree(pt);
2077out:
2078 dm_put_device(ti, data_dev);
2079out_metadata:
2080 dm_put_device(ti, metadata_dev);
2081out_unlock:
2082 mutex_unlock(&dm_thin_pool_table.mutex);
2083
2084 return r;
2085}
2086
2087static int pool_map(struct dm_target *ti, struct bio *bio,
2088 union map_info *map_context)
2089{
2090 int r;
2091 struct pool_c *pt = ti->private;
2092 struct pool *pool = pt->pool;
2093 unsigned long flags;
2094
2095 /*
2096 * As this is a singleton target, ti->begin is always zero.
2097 */
2098 spin_lock_irqsave(&pool->lock, flags);
2099 bio->bi_bdev = pt->data_dev->bdev;
2100 r = DM_MAPIO_REMAPPED;
2101 spin_unlock_irqrestore(&pool->lock, flags);
2102
2103 return r;
2104}
2105
2106/*
2107 * Retrieves the number of blocks of the data device from
2108 * the superblock and compares it to the actual device size,
2109 * thus resizing the data device in case it has grown.
2110 *
2111 * This both copes with opening preallocated data devices in the ctr
2112 * being followed by a resume
2113 * -and-
2114 * calling the resume method individually after userspace has
2115 * grown the data device in reaction to a table event.
2116 */
2117static int pool_preresume(struct dm_target *ti)
2118{
2119 int r;
2120 struct pool_c *pt = ti->private;
2121 struct pool *pool = pt->pool;
55f2b8bd
MS
2122 sector_t data_size = ti->len;
2123 dm_block_t sb_data_size;
991d9fa0
JT
2124
2125 /*
2126 * Take control of the pool object.
2127 */
2128 r = bind_control_target(pool, ti);
2129 if (r)
2130 return r;
2131
55f2b8bd
MS
2132 (void) sector_div(data_size, pool->sectors_per_block);
2133
991d9fa0
JT
2134 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2135 if (r) {
2136 DMERR("failed to retrieve data device size");
2137 return r;
2138 }
2139
2140 if (data_size < sb_data_size) {
2141 DMERR("pool target too small, is %llu blocks (expected %llu)",
55f2b8bd 2142 (unsigned long long)data_size, sb_data_size);
991d9fa0
JT
2143 return -EINVAL;
2144
2145 } else if (data_size > sb_data_size) {
2146 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2147 if (r) {
2148 DMERR("failed to resize data device");
2149 return r;
2150 }
2151
2152 r = dm_pool_commit_metadata(pool->pmd);
2153 if (r) {
2154 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2155 __func__, r);
2156 return r;
2157 }
2158 }
2159
2160 return 0;
2161}
2162
2163static void pool_resume(struct dm_target *ti)
2164{
2165 struct pool_c *pt = ti->private;
2166 struct pool *pool = pt->pool;
2167 unsigned long flags;
2168
2169 spin_lock_irqsave(&pool->lock, flags);
2170 pool->low_water_triggered = 0;
2171 pool->no_free_space = 0;
2172 __requeue_bios(pool);
2173 spin_unlock_irqrestore(&pool->lock, flags);
2174
905e51b3 2175 do_waker(&pool->waker.work);
991d9fa0
JT
2176}
2177
2178static void pool_postsuspend(struct dm_target *ti)
2179{
2180 int r;
2181 struct pool_c *pt = ti->private;
2182 struct pool *pool = pt->pool;
2183
905e51b3 2184 cancel_delayed_work(&pool->waker);
991d9fa0
JT
2185 flush_workqueue(pool->wq);
2186
2187 r = dm_pool_commit_metadata(pool->pmd);
2188 if (r < 0) {
2189 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2190 __func__, r);
2191 /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
2192 }
2193}
2194
2195static int check_arg_count(unsigned argc, unsigned args_required)
2196{
2197 if (argc != args_required) {
2198 DMWARN("Message received with %u arguments instead of %u.",
2199 argc, args_required);
2200 return -EINVAL;
2201 }
2202
2203 return 0;
2204}
2205
2206static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2207{
2208 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2209 *dev_id <= MAX_DEV_ID)
2210 return 0;
2211
2212 if (warning)
2213 DMWARN("Message received with invalid device id: %s", arg);
2214
2215 return -EINVAL;
2216}
2217
2218static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2219{
2220 dm_thin_id dev_id;
2221 int r;
2222
2223 r = check_arg_count(argc, 2);
2224 if (r)
2225 return r;
2226
2227 r = read_dev_id(argv[1], &dev_id, 1);
2228 if (r)
2229 return r;
2230
2231 r = dm_pool_create_thin(pool->pmd, dev_id);
2232 if (r) {
2233 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2234 argv[1]);
2235 return r;
2236 }
2237
2238 return 0;
2239}
2240
2241static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2242{
2243 dm_thin_id dev_id;
2244 dm_thin_id origin_dev_id;
2245 int r;
2246
2247 r = check_arg_count(argc, 3);
2248 if (r)
2249 return r;
2250
2251 r = read_dev_id(argv[1], &dev_id, 1);
2252 if (r)
2253 return r;
2254
2255 r = read_dev_id(argv[2], &origin_dev_id, 1);
2256 if (r)
2257 return r;
2258
2259 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2260 if (r) {
2261 DMWARN("Creation of new snapshot %s of device %s failed.",
2262 argv[1], argv[2]);
2263 return r;
2264 }
2265
2266 return 0;
2267}
2268
2269static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2270{
2271 dm_thin_id dev_id;
2272 int r;
2273
2274 r = check_arg_count(argc, 2);
2275 if (r)
2276 return r;
2277
2278 r = read_dev_id(argv[1], &dev_id, 1);
2279 if (r)
2280 return r;
2281
2282 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2283 if (r)
2284 DMWARN("Deletion of thin device %s failed.", argv[1]);
2285
2286 return r;
2287}
2288
2289static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2290{
2291 dm_thin_id old_id, new_id;
2292 int r;
2293
2294 r = check_arg_count(argc, 3);
2295 if (r)
2296 return r;
2297
2298 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2299 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2300 return -EINVAL;
2301 }
2302
2303 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2304 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2305 return -EINVAL;
2306 }
2307
2308 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2309 if (r) {
2310 DMWARN("Failed to change transaction id from %s to %s.",
2311 argv[1], argv[2]);
2312 return r;
2313 }
2314
2315 return 0;
2316}
2317
cc8394d8
JT
2318static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2319{
2320 int r;
2321
2322 r = check_arg_count(argc, 1);
2323 if (r)
2324 return r;
2325
0d200aef
JT
2326 r = dm_pool_commit_metadata(pool->pmd);
2327 if (r) {
2328 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2329 __func__, r);
2330 return r;
2331 }
2332
cc8394d8
JT
2333 r = dm_pool_reserve_metadata_snap(pool->pmd);
2334 if (r)
2335 DMWARN("reserve_metadata_snap message failed.");
2336
2337 return r;
2338}
2339
2340static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2341{
2342 int r;
2343
2344 r = check_arg_count(argc, 1);
2345 if (r)
2346 return r;
2347
2348 r = dm_pool_release_metadata_snap(pool->pmd);
2349 if (r)
2350 DMWARN("release_metadata_snap message failed.");
2351
2352 return r;
2353}
2354
991d9fa0
JT
2355/*
2356 * Messages supported:
2357 * create_thin <dev_id>
2358 * create_snap <dev_id> <origin_id>
2359 * delete <dev_id>
2360 * trim <dev_id> <new_size_in_sectors>
2361 * set_transaction_id <current_trans_id> <new_trans_id>
cc8394d8
JT
2362 * reserve_metadata_snap
2363 * release_metadata_snap
991d9fa0
JT
2364 */
2365static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2366{
2367 int r = -EINVAL;
2368 struct pool_c *pt = ti->private;
2369 struct pool *pool = pt->pool;
2370
2371 if (!strcasecmp(argv[0], "create_thin"))
2372 r = process_create_thin_mesg(argc, argv, pool);
2373
2374 else if (!strcasecmp(argv[0], "create_snap"))
2375 r = process_create_snap_mesg(argc, argv, pool);
2376
2377 else if (!strcasecmp(argv[0], "delete"))
2378 r = process_delete_mesg(argc, argv, pool);
2379
2380 else if (!strcasecmp(argv[0], "set_transaction_id"))
2381 r = process_set_transaction_id_mesg(argc, argv, pool);
2382
cc8394d8
JT
2383 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2384 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2385
2386 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2387 r = process_release_metadata_snap_mesg(argc, argv, pool);
2388
991d9fa0
JT
2389 else
2390 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2391
2392 if (!r) {
2393 r = dm_pool_commit_metadata(pool->pmd);
2394 if (r)
2395 DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2396 argv[0], r);
2397 }
2398
2399 return r;
2400}
2401
2402/*
2403 * Status line is:
2404 * <transaction id> <used metadata sectors>/<total metadata sectors>
2405 * <used data sectors>/<total data sectors> <held metadata root>
2406 */
2407static int pool_status(struct dm_target *ti, status_type_t type,
2408 char *result, unsigned maxlen)
2409{
67e2e2b2 2410 int r, count;
991d9fa0
JT
2411 unsigned sz = 0;
2412 uint64_t transaction_id;
2413 dm_block_t nr_free_blocks_data;
2414 dm_block_t nr_free_blocks_metadata;
2415 dm_block_t nr_blocks_data;
2416 dm_block_t nr_blocks_metadata;
2417 dm_block_t held_root;
2418 char buf[BDEVNAME_SIZE];
2419 char buf2[BDEVNAME_SIZE];
2420 struct pool_c *pt = ti->private;
2421 struct pool *pool = pt->pool;
2422
2423 switch (type) {
2424 case STATUSTYPE_INFO:
2425 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2426 &transaction_id);
2427 if (r)
2428 return r;
2429
2430 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2431 &nr_free_blocks_metadata);
2432 if (r)
2433 return r;
2434
2435 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2436 if (r)
2437 return r;
2438
2439 r = dm_pool_get_free_block_count(pool->pmd,
2440 &nr_free_blocks_data);
2441 if (r)
2442 return r;
2443
2444 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2445 if (r)
2446 return r;
2447
cc8394d8 2448 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
991d9fa0
JT
2449 if (r)
2450 return r;
2451
2452 DMEMIT("%llu %llu/%llu %llu/%llu ",
2453 (unsigned long long)transaction_id,
2454 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2455 (unsigned long long)nr_blocks_metadata,
2456 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2457 (unsigned long long)nr_blocks_data);
2458
2459 if (held_root)
2460 DMEMIT("%llu", held_root);
2461 else
2462 DMEMIT("-");
2463
2464 break;
2465
2466 case STATUSTYPE_TABLE:
2467 DMEMIT("%s %s %lu %llu ",
2468 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2469 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2470 (unsigned long)pool->sectors_per_block,
2471 (unsigned long long)pt->low_water_blocks);
2472
67e2e2b2 2473 count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
f402693d 2474 !pt->pf.discard_passdown;
67e2e2b2 2475 DMEMIT("%u ", count);
991d9fa0 2476
67e2e2b2 2477 if (!pool->pf.zero_new_blocks)
991d9fa0 2478 DMEMIT("skip_block_zeroing ");
67e2e2b2
JT
2479
2480 if (!pool->pf.discard_enabled)
2481 DMEMIT("ignore_discard ");
2482
f402693d 2483 if (!pt->pf.discard_passdown)
67e2e2b2
JT
2484 DMEMIT("no_discard_passdown ");
2485
991d9fa0
JT
2486 break;
2487 }
2488
2489 return 0;
2490}
2491
2492static int pool_iterate_devices(struct dm_target *ti,
2493 iterate_devices_callout_fn fn, void *data)
2494{
2495 struct pool_c *pt = ti->private;
2496
2497 return fn(ti, pt->data_dev, 0, ti->len, data);
2498}
2499
2500static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2501 struct bio_vec *biovec, int max_size)
2502{
2503 struct pool_c *pt = ti->private;
2504 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2505
2506 if (!q->merge_bvec_fn)
2507 return max_size;
2508
2509 bvm->bi_bdev = pt->data_dev->bdev;
2510
2511 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2512}
2513
104655fd
JT
2514static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2515{
67e2e2b2
JT
2516 /*
2517 * FIXME: these limits may be incompatible with the pool's data device
2518 */
104655fd
JT
2519 limits->max_discard_sectors = pool->sectors_per_block;
2520
2521 /*
2522 * This is just a hint, and not enforced. We have to cope with
49296309
MP
2523 * bios that cover a block partially. A discard that spans a block
2524 * boundary is not sent to this target.
104655fd
JT
2525 */
2526 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
67e2e2b2 2527 limits->discard_zeroes_data = pool->pf.zero_new_blocks;
104655fd
JT
2528}
2529
991d9fa0
JT
2530static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2531{
2532 struct pool_c *pt = ti->private;
2533 struct pool *pool = pt->pool;
2534
2535 blk_limits_io_min(limits, 0);
2536 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
67e2e2b2
JT
2537 if (pool->pf.discard_enabled)
2538 set_discard_limits(pool, limits);
991d9fa0
JT
2539}
2540
2541static struct target_type pool_target = {
2542 .name = "thin-pool",
2543 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2544 DM_TARGET_IMMUTABLE,
cc8394d8 2545 .version = {1, 2, 0},
991d9fa0
JT
2546 .module = THIS_MODULE,
2547 .ctr = pool_ctr,
2548 .dtr = pool_dtr,
2549 .map = pool_map,
2550 .postsuspend = pool_postsuspend,
2551 .preresume = pool_preresume,
2552 .resume = pool_resume,
2553 .message = pool_message,
2554 .status = pool_status,
2555 .merge = pool_merge,
2556 .iterate_devices = pool_iterate_devices,
2557 .io_hints = pool_io_hints,
2558};
2559
2560/*----------------------------------------------------------------
2561 * Thin target methods
2562 *--------------------------------------------------------------*/
2563static void thin_dtr(struct dm_target *ti)
2564{
2565 struct thin_c *tc = ti->private;
2566
2567 mutex_lock(&dm_thin_pool_table.mutex);
2568
2569 __pool_dec(tc->pool);
2570 dm_pool_close_thin_device(tc->td);
2571 dm_put_device(ti, tc->pool_dev);
2dd9c257
JT
2572 if (tc->origin_dev)
2573 dm_put_device(ti, tc->origin_dev);
991d9fa0
JT
2574 kfree(tc);
2575
2576 mutex_unlock(&dm_thin_pool_table.mutex);
2577}
2578
2579/*
2580 * Thin target parameters:
2581 *
2dd9c257 2582 * <pool_dev> <dev_id> [origin_dev]
991d9fa0
JT
2583 *
2584 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2585 * dev_id: the internal device identifier
2dd9c257 2586 * origin_dev: a device external to the pool that should act as the origin
67e2e2b2
JT
2587 *
2588 * If the pool device has discards disabled, they get disabled for the thin
2589 * device as well.
991d9fa0
JT
2590 */
2591static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2592{
2593 int r;
2594 struct thin_c *tc;
2dd9c257 2595 struct dm_dev *pool_dev, *origin_dev;
991d9fa0
JT
2596 struct mapped_device *pool_md;
2597
2598 mutex_lock(&dm_thin_pool_table.mutex);
2599
2dd9c257 2600 if (argc != 2 && argc != 3) {
991d9fa0
JT
2601 ti->error = "Invalid argument count";
2602 r = -EINVAL;
2603 goto out_unlock;
2604 }
2605
2606 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2607 if (!tc) {
2608 ti->error = "Out of memory";
2609 r = -ENOMEM;
2610 goto out_unlock;
2611 }
2612
2dd9c257
JT
2613 if (argc == 3) {
2614 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2615 if (r) {
2616 ti->error = "Error opening origin device";
2617 goto bad_origin_dev;
2618 }
2619 tc->origin_dev = origin_dev;
2620 }
2621
991d9fa0
JT
2622 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2623 if (r) {
2624 ti->error = "Error opening pool device";
2625 goto bad_pool_dev;
2626 }
2627 tc->pool_dev = pool_dev;
2628
2629 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2630 ti->error = "Invalid device id";
2631 r = -EINVAL;
2632 goto bad_common;
2633 }
2634
2635 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2636 if (!pool_md) {
2637 ti->error = "Couldn't get pool mapped device";
2638 r = -EINVAL;
2639 goto bad_common;
2640 }
2641
2642 tc->pool = __pool_table_lookup(pool_md);
2643 if (!tc->pool) {
2644 ti->error = "Couldn't find pool object";
2645 r = -EINVAL;
2646 goto bad_pool_lookup;
2647 }
2648 __pool_inc(tc->pool);
2649
2650 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2651 if (r) {
2652 ti->error = "Couldn't open thin internal device";
2653 goto bad_thin_open;
2654 }
2655
542f9038
MS
2656 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2657 if (r)
2658 goto bad_thin_open;
2659
991d9fa0 2660 ti->num_flush_requests = 1;
16ad3d10 2661 ti->flush_supported = true;
67e2e2b2
JT
2662
2663 /* In case the pool supports discards, pass them on. */
2664 if (tc->pool->pf.discard_enabled) {
0ac55489 2665 ti->discards_supported = true;
67e2e2b2 2666 ti->num_discard_requests = 1;
0ac55489 2667 ti->discard_zeroes_data_unsupported = true;
49296309 2668 /* Discard requests must be split on a block boundary */
0ac55489 2669 ti->split_discard_requests = true;
67e2e2b2 2670 }
991d9fa0
JT
2671
2672 dm_put(pool_md);
2673
2674 mutex_unlock(&dm_thin_pool_table.mutex);
2675
2676 return 0;
2677
2678bad_thin_open:
2679 __pool_dec(tc->pool);
2680bad_pool_lookup:
2681 dm_put(pool_md);
2682bad_common:
2683 dm_put_device(ti, tc->pool_dev);
2684bad_pool_dev:
2dd9c257
JT
2685 if (tc->origin_dev)
2686 dm_put_device(ti, tc->origin_dev);
2687bad_origin_dev:
991d9fa0
JT
2688 kfree(tc);
2689out_unlock:
2690 mutex_unlock(&dm_thin_pool_table.mutex);
2691
2692 return r;
2693}
2694
2695static int thin_map(struct dm_target *ti, struct bio *bio,
2696 union map_info *map_context)
2697{
6efd6e83 2698 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
991d9fa0
JT
2699
2700 return thin_bio_map(ti, bio, map_context);
2701}
2702
eb2aa48d
JT
2703static int thin_endio(struct dm_target *ti,
2704 struct bio *bio, int err,
2705 union map_info *map_context)
2706{
2707 unsigned long flags;
a24c2569 2708 struct dm_thin_endio_hook *h = map_context->ptr;
eb2aa48d 2709 struct list_head work;
a24c2569 2710 struct dm_thin_new_mapping *m, *tmp;
eb2aa48d
JT
2711 struct pool *pool = h->tc->pool;
2712
2713 if (h->shared_read_entry) {
2714 INIT_LIST_HEAD(&work);
2715 ds_dec(h->shared_read_entry, &work);
2716
2717 spin_lock_irqsave(&pool->lock, flags);
2718 list_for_each_entry_safe(m, tmp, &work, list) {
2719 list_del(&m->list);
2720 m->quiesced = 1;
2721 __maybe_add_mapping(m);
2722 }
2723 spin_unlock_irqrestore(&pool->lock, flags);
2724 }
2725
104655fd
JT
2726 if (h->all_io_entry) {
2727 INIT_LIST_HEAD(&work);
2728 ds_dec(h->all_io_entry, &work);
c3a0ce2e 2729 spin_lock_irqsave(&pool->lock, flags);
104655fd
JT
2730 list_for_each_entry_safe(m, tmp, &work, list)
2731 list_add(&m->list, &pool->prepared_discards);
c3a0ce2e 2732 spin_unlock_irqrestore(&pool->lock, flags);
104655fd
JT
2733 }
2734
eb2aa48d
JT
2735 mempool_free(h, pool->endio_hook_pool);
2736
2737 return 0;
2738}
2739
991d9fa0
JT
2740static void thin_postsuspend(struct dm_target *ti)
2741{
2742 if (dm_noflush_suspending(ti))
2743 requeue_io((struct thin_c *)ti->private);
2744}
2745
2746/*
2747 * <nr mapped sectors> <highest mapped sector>
2748 */
2749static int thin_status(struct dm_target *ti, status_type_t type,
2750 char *result, unsigned maxlen)
2751{
2752 int r;
2753 ssize_t sz = 0;
2754 dm_block_t mapped, highest;
2755 char buf[BDEVNAME_SIZE];
2756 struct thin_c *tc = ti->private;
2757
2758 if (!tc->td)
2759 DMEMIT("-");
2760 else {
2761 switch (type) {
2762 case STATUSTYPE_INFO:
2763 r = dm_thin_get_mapped_count(tc->td, &mapped);
2764 if (r)
2765 return r;
2766
2767 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2768 if (r < 0)
2769 return r;
2770
2771 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2772 if (r)
2773 DMEMIT("%llu", ((highest + 1) *
2774 tc->pool->sectors_per_block) - 1);
2775 else
2776 DMEMIT("-");
2777 break;
2778
2779 case STATUSTYPE_TABLE:
2780 DMEMIT("%s %lu",
2781 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2782 (unsigned long) tc->dev_id);
2dd9c257
JT
2783 if (tc->origin_dev)
2784 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
991d9fa0
JT
2785 break;
2786 }
2787 }
2788
2789 return 0;
2790}
2791
2792static int thin_iterate_devices(struct dm_target *ti,
2793 iterate_devices_callout_fn fn, void *data)
2794{
55f2b8bd 2795 sector_t blocks;
991d9fa0 2796 struct thin_c *tc = ti->private;
55f2b8bd 2797 struct pool *pool = tc->pool;
991d9fa0
JT
2798
2799 /*
2800 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2801 * we follow a more convoluted path through to the pool's target.
2802 */
55f2b8bd 2803 if (!pool->ti)
991d9fa0
JT
2804 return 0; /* nothing is bound */
2805
55f2b8bd
MS
2806 blocks = pool->ti->len;
2807 (void) sector_div(blocks, pool->sectors_per_block);
991d9fa0 2808 if (blocks)
55f2b8bd 2809 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
991d9fa0
JT
2810
2811 return 0;
2812}
2813
2814static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2815{
2816 struct thin_c *tc = ti->private;
104655fd 2817 struct pool *pool = tc->pool;
991d9fa0
JT
2818
2819 blk_limits_io_min(limits, 0);
104655fd
JT
2820 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2821 set_discard_limits(pool, limits);
991d9fa0
JT
2822}
2823
2824static struct target_type thin_target = {
2825 .name = "thin",
55f2b8bd 2826 .version = {1, 2, 0},
991d9fa0
JT
2827 .module = THIS_MODULE,
2828 .ctr = thin_ctr,
2829 .dtr = thin_dtr,
2830 .map = thin_map,
eb2aa48d 2831 .end_io = thin_endio,
991d9fa0
JT
2832 .postsuspend = thin_postsuspend,
2833 .status = thin_status,
2834 .iterate_devices = thin_iterate_devices,
2835 .io_hints = thin_io_hints,
2836};
2837
2838/*----------------------------------------------------------------*/
2839
2840static int __init dm_thin_init(void)
2841{
2842 int r;
2843
2844 pool_table_init();
2845
2846 r = dm_register_target(&thin_target);
2847 if (r)
2848 return r;
2849
2850 r = dm_register_target(&pool_target);
2851 if (r)
a24c2569
MS
2852 goto bad_pool_target;
2853
2854 r = -ENOMEM;
2855
2856 _cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
2857 if (!_cell_cache)
2858 goto bad_cell_cache;
2859
2860 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2861 if (!_new_mapping_cache)
2862 goto bad_new_mapping_cache;
2863
2864 _endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
2865 if (!_endio_hook_cache)
2866 goto bad_endio_hook_cache;
2867
2868 return 0;
2869
2870bad_endio_hook_cache:
2871 kmem_cache_destroy(_new_mapping_cache);
2872bad_new_mapping_cache:
2873 kmem_cache_destroy(_cell_cache);
2874bad_cell_cache:
2875 dm_unregister_target(&pool_target);
2876bad_pool_target:
2877 dm_unregister_target(&thin_target);
991d9fa0
JT
2878
2879 return r;
2880}
2881
2882static void dm_thin_exit(void)
2883{
2884 dm_unregister_target(&thin_target);
2885 dm_unregister_target(&pool_target);
a24c2569
MS
2886
2887 kmem_cache_destroy(_cell_cache);
2888 kmem_cache_destroy(_new_mapping_cache);
2889 kmem_cache_destroy(_endio_hook_cache);
991d9fa0
JT
2890}
2891
2892module_init(dm_thin_init);
2893module_exit(dm_thin_exit);
2894
7cab8bf1 2895MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
991d9fa0
JT
2896MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2897MODULE_LICENSE("GPL");
This page took 0.201525 seconds and 5 git commands to generate.