dm thin: add read only and fail io modes
[deliverable/linux.git] / drivers / md / dm-thin.c
CommitLineData
991d9fa0 1/*
e49e5829 2 * Copyright (C) 2011-2012 Red Hat UK.
991d9fa0
JT
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-thin-metadata.h"
8
9#include <linux/device-mapper.h>
10#include <linux/dm-io.h>
11#include <linux/dm-kcopyd.h>
12#include <linux/list.h>
13#include <linux/init.h>
14#include <linux/module.h>
15#include <linux/slab.h>
16
17#define DM_MSG_PREFIX "thin"
18
19/*
20 * Tunable constants
21 */
7768ed33 22#define ENDIO_HOOK_POOL_SIZE 1024
991d9fa0
JT
23#define DEFERRED_SET_SIZE 64
24#define MAPPING_POOL_SIZE 1024
25#define PRISON_CELLS 1024
905e51b3 26#define COMMIT_PERIOD HZ
991d9fa0
JT
27
28/*
29 * The block size of the device holding pool data must be
30 * between 64KB and 1GB.
31 */
32#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
33#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
34
991d9fa0
JT
35/*
36 * Device id is restricted to 24 bits.
37 */
38#define MAX_DEV_ID ((1 << 24) - 1)
39
40/*
41 * How do we handle breaking sharing of data blocks?
42 * =================================================
43 *
44 * We use a standard copy-on-write btree to store the mappings for the
45 * devices (note I'm talking about copy-on-write of the metadata here, not
46 * the data). When you take an internal snapshot you clone the root node
47 * of the origin btree. After this there is no concept of an origin or a
48 * snapshot. They are just two device trees that happen to point to the
49 * same data blocks.
50 *
51 * When we get a write in we decide if it's to a shared data block using
52 * some timestamp magic. If it is, we have to break sharing.
53 *
54 * Let's say we write to a shared block in what was the origin. The
55 * steps are:
56 *
57 * i) plug io further to this physical block. (see bio_prison code).
58 *
59 * ii) quiesce any read io to that shared data block. Obviously
60 * including all devices that share this block. (see deferred_set code)
61 *
62 * iii) copy the data block to a newly allocate block. This step can be
63 * missed out if the io covers the block. (schedule_copy).
64 *
65 * iv) insert the new mapping into the origin's btree
fe878f34 66 * (process_prepared_mapping). This act of inserting breaks some
991d9fa0
JT
67 * sharing of btree nodes between the two devices. Breaking sharing only
68 * effects the btree of that specific device. Btrees for the other
69 * devices that share the block never change. The btree for the origin
70 * device as it was after the last commit is untouched, ie. we're using
71 * persistent data structures in the functional programming sense.
72 *
73 * v) unplug io to this physical block, including the io that triggered
74 * the breaking of sharing.
75 *
76 * Steps (ii) and (iii) occur in parallel.
77 *
78 * The metadata _doesn't_ need to be committed before the io continues. We
79 * get away with this because the io is always written to a _new_ block.
80 * If there's a crash, then:
81 *
82 * - The origin mapping will point to the old origin block (the shared
83 * one). This will contain the data as it was before the io that triggered
84 * the breaking of sharing came in.
85 *
86 * - The snap mapping still points to the old block. As it would after
87 * the commit.
88 *
89 * The downside of this scheme is the timestamp magic isn't perfect, and
90 * will continue to think that data block in the snapshot device is shared
91 * even after the write to the origin has broken sharing. I suspect data
92 * blocks will typically be shared by many different devices, so we're
93 * breaking sharing n + 1 times, rather than n, where n is the number of
94 * devices that reference this data block. At the moment I think the
95 * benefits far, far outweigh the disadvantages.
96 */
97
98/*----------------------------------------------------------------*/
99
100/*
101 * Sometimes we can't deal with a bio straight away. We put them in prison
102 * where they can't cause any mischief. Bios are put in a cell identified
103 * by a key, multiple bios can be in the same cell. When the cell is
104 * subsequently unlocked the bios become available.
105 */
106struct bio_prison;
107
108struct cell_key {
109 int virtual;
110 dm_thin_id dev;
111 dm_block_t block;
112};
113
a24c2569 114struct dm_bio_prison_cell {
991d9fa0
JT
115 struct hlist_node list;
116 struct bio_prison *prison;
117 struct cell_key key;
6f94a4c4 118 struct bio *holder;
991d9fa0
JT
119 struct bio_list bios;
120};
121
122struct bio_prison {
123 spinlock_t lock;
124 mempool_t *cell_pool;
125
126 unsigned nr_buckets;
127 unsigned hash_mask;
128 struct hlist_head *cells;
129};
130
131static uint32_t calc_nr_buckets(unsigned nr_cells)
132{
133 uint32_t n = 128;
134
135 nr_cells /= 4;
136 nr_cells = min(nr_cells, 8192u);
137
138 while (n < nr_cells)
139 n <<= 1;
140
141 return n;
142}
143
a24c2569
MS
144static struct kmem_cache *_cell_cache;
145
991d9fa0
JT
146/*
147 * @nr_cells should be the number of cells you want in use _concurrently_.
148 * Don't confuse it with the number of distinct keys.
149 */
150static struct bio_prison *prison_create(unsigned nr_cells)
151{
152 unsigned i;
153 uint32_t nr_buckets = calc_nr_buckets(nr_cells);
154 size_t len = sizeof(struct bio_prison) +
155 (sizeof(struct hlist_head) * nr_buckets);
156 struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
157
158 if (!prison)
159 return NULL;
160
161 spin_lock_init(&prison->lock);
a24c2569 162 prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
991d9fa0
JT
163 if (!prison->cell_pool) {
164 kfree(prison);
165 return NULL;
166 }
167
168 prison->nr_buckets = nr_buckets;
169 prison->hash_mask = nr_buckets - 1;
170 prison->cells = (struct hlist_head *) (prison + 1);
171 for (i = 0; i < nr_buckets; i++)
172 INIT_HLIST_HEAD(prison->cells + i);
173
174 return prison;
175}
176
177static void prison_destroy(struct bio_prison *prison)
178{
179 mempool_destroy(prison->cell_pool);
180 kfree(prison);
181}
182
183static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
184{
185 const unsigned long BIG_PRIME = 4294967291UL;
186 uint64_t hash = key->block * BIG_PRIME;
187
188 return (uint32_t) (hash & prison->hash_mask);
189}
190
191static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
192{
193 return (lhs->virtual == rhs->virtual) &&
194 (lhs->dev == rhs->dev) &&
195 (lhs->block == rhs->block);
196}
197
a24c2569
MS
198static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
199 struct cell_key *key)
991d9fa0 200{
a24c2569 201 struct dm_bio_prison_cell *cell;
991d9fa0
JT
202 struct hlist_node *tmp;
203
204 hlist_for_each_entry(cell, tmp, bucket, list)
205 if (keys_equal(&cell->key, key))
206 return cell;
207
208 return NULL;
209}
210
211/*
212 * This may block if a new cell needs allocating. You must ensure that
213 * cells will be unlocked even if the calling thread is blocked.
214 *
6f94a4c4 215 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
991d9fa0
JT
216 */
217static int bio_detain(struct bio_prison *prison, struct cell_key *key,
a24c2569 218 struct bio *inmate, struct dm_bio_prison_cell **ref)
991d9fa0 219{
6f94a4c4 220 int r = 1;
991d9fa0
JT
221 unsigned long flags;
222 uint32_t hash = hash_key(prison, key);
a24c2569 223 struct dm_bio_prison_cell *cell, *cell2;
991d9fa0
JT
224
225 BUG_ON(hash > prison->nr_buckets);
226
227 spin_lock_irqsave(&prison->lock, flags);
991d9fa0 228
6f94a4c4
JT
229 cell = __search_bucket(prison->cells + hash, key);
230 if (cell) {
231 bio_list_add(&cell->bios, inmate);
232 goto out;
991d9fa0
JT
233 }
234
6f94a4c4
JT
235 /*
236 * Allocate a new cell
237 */
991d9fa0 238 spin_unlock_irqrestore(&prison->lock, flags);
6f94a4c4
JT
239 cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
240 spin_lock_irqsave(&prison->lock, flags);
991d9fa0 241
6f94a4c4
JT
242 /*
243 * We've been unlocked, so we have to double check that
244 * nobody else has inserted this cell in the meantime.
245 */
246 cell = __search_bucket(prison->cells + hash, key);
247 if (cell) {
991d9fa0 248 mempool_free(cell2, prison->cell_pool);
6f94a4c4
JT
249 bio_list_add(&cell->bios, inmate);
250 goto out;
251 }
252
253 /*
254 * Use new cell.
255 */
256 cell = cell2;
257
258 cell->prison = prison;
259 memcpy(&cell->key, key, sizeof(cell->key));
260 cell->holder = inmate;
261 bio_list_init(&cell->bios);
262 hlist_add_head(&cell->list, prison->cells + hash);
263
264 r = 0;
265
266out:
267 spin_unlock_irqrestore(&prison->lock, flags);
991d9fa0
JT
268
269 *ref = cell;
270
271 return r;
272}
273
274/*
275 * @inmates must have been initialised prior to this call
276 */
a24c2569 277static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
991d9fa0
JT
278{
279 struct bio_prison *prison = cell->prison;
280
281 hlist_del(&cell->list);
282
03aaae7c
MS
283 if (inmates) {
284 bio_list_add(inmates, cell->holder);
285 bio_list_merge(inmates, &cell->bios);
286 }
991d9fa0
JT
287
288 mempool_free(cell, prison->cell_pool);
289}
290
a24c2569 291static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
991d9fa0
JT
292{
293 unsigned long flags;
294 struct bio_prison *prison = cell->prison;
295
296 spin_lock_irqsave(&prison->lock, flags);
297 __cell_release(cell, bios);
298 spin_unlock_irqrestore(&prison->lock, flags);
299}
300
301/*
302 * There are a couple of places where we put a bio into a cell briefly
303 * before taking it out again. In these situations we know that no other
304 * bio may be in the cell. This function releases the cell, and also does
305 * a sanity check.
306 */
a24c2569 307static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
6f94a4c4 308{
6f94a4c4
JT
309 BUG_ON(cell->holder != bio);
310 BUG_ON(!bio_list_empty(&cell->bios));
03aaae7c
MS
311
312 __cell_release(cell, NULL);
6f94a4c4
JT
313}
314
a24c2569 315static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
991d9fa0 316{
991d9fa0 317 unsigned long flags;
6f94a4c4 318 struct bio_prison *prison = cell->prison;
991d9fa0
JT
319
320 spin_lock_irqsave(&prison->lock, flags);
6f94a4c4 321 __cell_release_singleton(cell, bio);
991d9fa0 322 spin_unlock_irqrestore(&prison->lock, flags);
6f94a4c4
JT
323}
324
325/*
326 * Sometimes we don't want the holder, just the additional bios.
327 */
a24c2569
MS
328static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
329 struct bio_list *inmates)
6f94a4c4
JT
330{
331 struct bio_prison *prison = cell->prison;
332
333 hlist_del(&cell->list);
334 bio_list_merge(inmates, &cell->bios);
335
336 mempool_free(cell, prison->cell_pool);
337}
338
a24c2569
MS
339static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
340 struct bio_list *inmates)
6f94a4c4
JT
341{
342 unsigned long flags;
343 struct bio_prison *prison = cell->prison;
991d9fa0 344
6f94a4c4
JT
345 spin_lock_irqsave(&prison->lock, flags);
346 __cell_release_no_holder(cell, inmates);
347 spin_unlock_irqrestore(&prison->lock, flags);
991d9fa0
JT
348}
349
a24c2569 350static void cell_error(struct dm_bio_prison_cell *cell)
991d9fa0
JT
351{
352 struct bio_prison *prison = cell->prison;
353 struct bio_list bios;
354 struct bio *bio;
355 unsigned long flags;
356
357 bio_list_init(&bios);
358
359 spin_lock_irqsave(&prison->lock, flags);
360 __cell_release(cell, &bios);
361 spin_unlock_irqrestore(&prison->lock, flags);
362
363 while ((bio = bio_list_pop(&bios)))
364 bio_io_error(bio);
365}
366
367/*----------------------------------------------------------------*/
368
369/*
370 * We use the deferred set to keep track of pending reads to shared blocks.
371 * We do this to ensure the new mapping caused by a write isn't performed
372 * until these prior reads have completed. Otherwise the insertion of the
373 * new mapping could free the old block that the read bios are mapped to.
374 */
375
376struct deferred_set;
377struct deferred_entry {
378 struct deferred_set *ds;
379 unsigned count;
380 struct list_head work_items;
381};
382
383struct deferred_set {
384 spinlock_t lock;
385 unsigned current_entry;
386 unsigned sweeper;
387 struct deferred_entry entries[DEFERRED_SET_SIZE];
388};
389
390static void ds_init(struct deferred_set *ds)
391{
392 int i;
393
394 spin_lock_init(&ds->lock);
395 ds->current_entry = 0;
396 ds->sweeper = 0;
397 for (i = 0; i < DEFERRED_SET_SIZE; i++) {
398 ds->entries[i].ds = ds;
399 ds->entries[i].count = 0;
400 INIT_LIST_HEAD(&ds->entries[i].work_items);
401 }
402}
403
404static struct deferred_entry *ds_inc(struct deferred_set *ds)
405{
406 unsigned long flags;
407 struct deferred_entry *entry;
408
409 spin_lock_irqsave(&ds->lock, flags);
410 entry = ds->entries + ds->current_entry;
411 entry->count++;
412 spin_unlock_irqrestore(&ds->lock, flags);
413
414 return entry;
415}
416
417static unsigned ds_next(unsigned index)
418{
419 return (index + 1) % DEFERRED_SET_SIZE;
420}
421
422static void __sweep(struct deferred_set *ds, struct list_head *head)
423{
424 while ((ds->sweeper != ds->current_entry) &&
425 !ds->entries[ds->sweeper].count) {
426 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
427 ds->sweeper = ds_next(ds->sweeper);
428 }
429
430 if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
431 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
432}
433
434static void ds_dec(struct deferred_entry *entry, struct list_head *head)
435{
436 unsigned long flags;
437
438 spin_lock_irqsave(&entry->ds->lock, flags);
439 BUG_ON(!entry->count);
440 --entry->count;
441 __sweep(entry->ds, head);
442 spin_unlock_irqrestore(&entry->ds->lock, flags);
443}
444
445/*
446 * Returns 1 if deferred or 0 if no pending items to delay job.
447 */
448static int ds_add_work(struct deferred_set *ds, struct list_head *work)
449{
450 int r = 1;
451 unsigned long flags;
452 unsigned next_entry;
453
454 spin_lock_irqsave(&ds->lock, flags);
455 if ((ds->sweeper == ds->current_entry) &&
456 !ds->entries[ds->current_entry].count)
457 r = 0;
458 else {
459 list_add(work, &ds->entries[ds->current_entry].work_items);
460 next_entry = ds_next(ds->current_entry);
461 if (!ds->entries[next_entry].count)
462 ds->current_entry = next_entry;
463 }
464 spin_unlock_irqrestore(&ds->lock, flags);
465
466 return r;
467}
468
469/*----------------------------------------------------------------*/
470
471/*
472 * Key building.
473 */
474static void build_data_key(struct dm_thin_device *td,
475 dm_block_t b, struct cell_key *key)
476{
477 key->virtual = 0;
478 key->dev = dm_thin_dev_id(td);
479 key->block = b;
480}
481
482static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
483 struct cell_key *key)
484{
485 key->virtual = 1;
486 key->dev = dm_thin_dev_id(td);
487 key->block = b;
488}
489
490/*----------------------------------------------------------------*/
491
492/*
493 * A pool device ties together a metadata device and a data device. It
494 * also provides the interface for creating and destroying internal
495 * devices.
496 */
a24c2569 497struct dm_thin_new_mapping;
67e2e2b2 498
e49e5829
JT
499/*
500 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
501 */
502enum pool_mode {
503 PM_WRITE, /* metadata may be changed */
504 PM_READ_ONLY, /* metadata may not be changed */
505 PM_FAIL, /* all I/O fails */
506};
507
67e2e2b2 508struct pool_features {
e49e5829
JT
509 enum pool_mode mode;
510
67e2e2b2
JT
511 unsigned zero_new_blocks:1;
512 unsigned discard_enabled:1;
513 unsigned discard_passdown:1;
514};
515
e49e5829
JT
516struct thin_c;
517typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
518typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
519
991d9fa0
JT
520struct pool {
521 struct list_head list;
522 struct dm_target *ti; /* Only set if a pool target is bound */
523
524 struct mapped_device *pool_md;
525 struct block_device *md_dev;
526 struct dm_pool_metadata *pmd;
527
991d9fa0 528 dm_block_t low_water_blocks;
55f2b8bd 529 uint32_t sectors_per_block;
f9a8e0cd 530 int sectors_per_block_shift;
991d9fa0 531
67e2e2b2 532 struct pool_features pf;
991d9fa0
JT
533 unsigned low_water_triggered:1; /* A dm event has been sent */
534 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
535
536 struct bio_prison *prison;
537 struct dm_kcopyd_client *copier;
538
539 struct workqueue_struct *wq;
540 struct work_struct worker;
905e51b3 541 struct delayed_work waker;
991d9fa0 542
905e51b3 543 unsigned long last_commit_jiffies;
55f2b8bd 544 unsigned ref_count;
991d9fa0
JT
545
546 spinlock_t lock;
547 struct bio_list deferred_bios;
548 struct bio_list deferred_flush_bios;
549 struct list_head prepared_mappings;
104655fd 550 struct list_head prepared_discards;
991d9fa0
JT
551
552 struct bio_list retry_on_resume_list;
553
eb2aa48d 554 struct deferred_set shared_read_ds;
104655fd 555 struct deferred_set all_io_ds;
991d9fa0 556
a24c2569 557 struct dm_thin_new_mapping *next_mapping;
991d9fa0
JT
558 mempool_t *mapping_pool;
559 mempool_t *endio_hook_pool;
e49e5829
JT
560
561 process_bio_fn process_bio;
562 process_bio_fn process_discard;
563
564 process_mapping_fn process_prepared_mapping;
565 process_mapping_fn process_prepared_discard;
991d9fa0
JT
566};
567
e49e5829
JT
568static enum pool_mode get_pool_mode(struct pool *pool);
569static void set_pool_mode(struct pool *pool, enum pool_mode mode);
570
991d9fa0
JT
571/*
572 * Target context for a pool.
573 */
574struct pool_c {
575 struct dm_target *ti;
576 struct pool *pool;
577 struct dm_dev *data_dev;
578 struct dm_dev *metadata_dev;
579 struct dm_target_callbacks callbacks;
580
581 dm_block_t low_water_blocks;
67e2e2b2 582 struct pool_features pf;
991d9fa0
JT
583};
584
585/*
586 * Target context for a thin.
587 */
588struct thin_c {
589 struct dm_dev *pool_dev;
2dd9c257 590 struct dm_dev *origin_dev;
991d9fa0
JT
591 dm_thin_id dev_id;
592
593 struct pool *pool;
594 struct dm_thin_device *td;
595};
596
597/*----------------------------------------------------------------*/
598
599/*
600 * A global list of pools that uses a struct mapped_device as a key.
601 */
602static struct dm_thin_pool_table {
603 struct mutex mutex;
604 struct list_head pools;
605} dm_thin_pool_table;
606
607static void pool_table_init(void)
608{
609 mutex_init(&dm_thin_pool_table.mutex);
610 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
611}
612
613static void __pool_table_insert(struct pool *pool)
614{
615 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
616 list_add(&pool->list, &dm_thin_pool_table.pools);
617}
618
619static void __pool_table_remove(struct pool *pool)
620{
621 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
622 list_del(&pool->list);
623}
624
625static struct pool *__pool_table_lookup(struct mapped_device *md)
626{
627 struct pool *pool = NULL, *tmp;
628
629 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
630
631 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
632 if (tmp->pool_md == md) {
633 pool = tmp;
634 break;
635 }
636 }
637
638 return pool;
639}
640
641static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
642{
643 struct pool *pool = NULL, *tmp;
644
645 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
646
647 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
648 if (tmp->md_dev == md_dev) {
649 pool = tmp;
650 break;
651 }
652 }
653
654 return pool;
655}
656
657/*----------------------------------------------------------------*/
658
a24c2569 659struct dm_thin_endio_hook {
eb2aa48d
JT
660 struct thin_c *tc;
661 struct deferred_entry *shared_read_entry;
104655fd 662 struct deferred_entry *all_io_entry;
a24c2569 663 struct dm_thin_new_mapping *overwrite_mapping;
eb2aa48d
JT
664};
665
991d9fa0
JT
666static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
667{
668 struct bio *bio;
669 struct bio_list bios;
670
671 bio_list_init(&bios);
672 bio_list_merge(&bios, master);
673 bio_list_init(master);
674
675 while ((bio = bio_list_pop(&bios))) {
a24c2569
MS
676 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
677
eb2aa48d 678 if (h->tc == tc)
991d9fa0
JT
679 bio_endio(bio, DM_ENDIO_REQUEUE);
680 else
681 bio_list_add(master, bio);
682 }
683}
684
685static void requeue_io(struct thin_c *tc)
686{
687 struct pool *pool = tc->pool;
688 unsigned long flags;
689
690 spin_lock_irqsave(&pool->lock, flags);
691 __requeue_bio_list(tc, &pool->deferred_bios);
692 __requeue_bio_list(tc, &pool->retry_on_resume_list);
693 spin_unlock_irqrestore(&pool->lock, flags);
694}
695
696/*
697 * This section of code contains the logic for processing a thin device's IO.
698 * Much of the code depends on pool object resources (lists, workqueues, etc)
699 * but most is exclusively called from the thin target rather than the thin-pool
700 * target.
701 */
702
703static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
704{
55f2b8bd
MS
705 sector_t block_nr = bio->bi_sector;
706
f9a8e0cd
MP
707 if (tc->pool->sectors_per_block_shift < 0)
708 (void) sector_div(block_nr, tc->pool->sectors_per_block);
709 else
710 block_nr >>= tc->pool->sectors_per_block_shift;
55f2b8bd
MS
711
712 return block_nr;
991d9fa0
JT
713}
714
715static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
716{
717 struct pool *pool = tc->pool;
55f2b8bd 718 sector_t bi_sector = bio->bi_sector;
991d9fa0
JT
719
720 bio->bi_bdev = tc->pool_dev->bdev;
f9a8e0cd
MP
721 if (tc->pool->sectors_per_block_shift < 0)
722 bio->bi_sector = (block * pool->sectors_per_block) +
723 sector_div(bi_sector, pool->sectors_per_block);
724 else
725 bio->bi_sector = (block << pool->sectors_per_block_shift) |
726 (bi_sector & (pool->sectors_per_block - 1));
991d9fa0
JT
727}
728
2dd9c257
JT
729static void remap_to_origin(struct thin_c *tc, struct bio *bio)
730{
731 bio->bi_bdev = tc->origin_dev->bdev;
732}
733
4afdd680
JT
734static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
735{
736 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
737 dm_thin_changed_this_transaction(tc->td);
738}
739
2dd9c257 740static void issue(struct thin_c *tc, struct bio *bio)
991d9fa0
JT
741{
742 struct pool *pool = tc->pool;
743 unsigned long flags;
744
e49e5829
JT
745 if (!bio_triggers_commit(tc, bio)) {
746 generic_make_request(bio);
747 return;
748 }
749
991d9fa0 750 /*
e49e5829
JT
751 * Complete bio with an error if earlier I/O caused changes to
752 * the metadata that can't be committed e.g, due to I/O errors
753 * on the metadata device.
991d9fa0 754 */
e49e5829
JT
755 if (dm_thin_aborted_changes(tc->td)) {
756 bio_io_error(bio);
757 return;
758 }
759
760 /*
761 * Batch together any bios that trigger commits and then issue a
762 * single commit for them in process_deferred_bios().
763 */
764 spin_lock_irqsave(&pool->lock, flags);
765 bio_list_add(&pool->deferred_flush_bios, bio);
766 spin_unlock_irqrestore(&pool->lock, flags);
991d9fa0
JT
767}
768
2dd9c257
JT
769static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
770{
771 remap_to_origin(tc, bio);
772 issue(tc, bio);
773}
774
775static void remap_and_issue(struct thin_c *tc, struct bio *bio,
776 dm_block_t block)
777{
778 remap(tc, bio, block);
779 issue(tc, bio);
780}
781
991d9fa0
JT
782/*
783 * wake_worker() is used when new work is queued and when pool_resume is
784 * ready to continue deferred IO processing.
785 */
786static void wake_worker(struct pool *pool)
787{
788 queue_work(pool->wq, &pool->worker);
789}
790
791/*----------------------------------------------------------------*/
792
793/*
794 * Bio endio functions.
795 */
a24c2569 796struct dm_thin_new_mapping {
991d9fa0
JT
797 struct list_head list;
798
eb2aa48d
JT
799 unsigned quiesced:1;
800 unsigned prepared:1;
104655fd 801 unsigned pass_discard:1;
991d9fa0
JT
802
803 struct thin_c *tc;
804 dm_block_t virt_block;
805 dm_block_t data_block;
a24c2569 806 struct dm_bio_prison_cell *cell, *cell2;
991d9fa0
JT
807 int err;
808
809 /*
810 * If the bio covers the whole area of a block then we can avoid
811 * zeroing or copying. Instead this bio is hooked. The bio will
812 * still be in the cell, so care has to be taken to avoid issuing
813 * the bio twice.
814 */
815 struct bio *bio;
816 bio_end_io_t *saved_bi_end_io;
817};
818
a24c2569 819static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
991d9fa0
JT
820{
821 struct pool *pool = m->tc->pool;
822
eb2aa48d 823 if (m->quiesced && m->prepared) {
991d9fa0
JT
824 list_add(&m->list, &pool->prepared_mappings);
825 wake_worker(pool);
826 }
827}
828
829static void copy_complete(int read_err, unsigned long write_err, void *context)
830{
831 unsigned long flags;
a24c2569 832 struct dm_thin_new_mapping *m = context;
991d9fa0
JT
833 struct pool *pool = m->tc->pool;
834
835 m->err = read_err || write_err ? -EIO : 0;
836
837 spin_lock_irqsave(&pool->lock, flags);
838 m->prepared = 1;
839 __maybe_add_mapping(m);
840 spin_unlock_irqrestore(&pool->lock, flags);
841}
842
843static void overwrite_endio(struct bio *bio, int err)
844{
845 unsigned long flags;
a24c2569
MS
846 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
847 struct dm_thin_new_mapping *m = h->overwrite_mapping;
991d9fa0
JT
848 struct pool *pool = m->tc->pool;
849
850 m->err = err;
851
852 spin_lock_irqsave(&pool->lock, flags);
853 m->prepared = 1;
854 __maybe_add_mapping(m);
855 spin_unlock_irqrestore(&pool->lock, flags);
856}
857
991d9fa0
JT
858/*----------------------------------------------------------------*/
859
860/*
861 * Workqueue.
862 */
863
864/*
865 * Prepared mapping jobs.
866 */
867
868/*
869 * This sends the bios in the cell back to the deferred_bios list.
870 */
a24c2569 871static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
991d9fa0
JT
872 dm_block_t data_block)
873{
874 struct pool *pool = tc->pool;
875 unsigned long flags;
876
877 spin_lock_irqsave(&pool->lock, flags);
878 cell_release(cell, &pool->deferred_bios);
879 spin_unlock_irqrestore(&tc->pool->lock, flags);
880
881 wake_worker(pool);
882}
883
884/*
885 * Same as cell_defer above, except it omits one particular detainee,
886 * a write bio that covers the block and has already been processed.
887 */
a24c2569 888static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
991d9fa0
JT
889{
890 struct bio_list bios;
991d9fa0
JT
891 struct pool *pool = tc->pool;
892 unsigned long flags;
893
894 bio_list_init(&bios);
991d9fa0
JT
895
896 spin_lock_irqsave(&pool->lock, flags);
6f94a4c4 897 cell_release_no_holder(cell, &pool->deferred_bios);
991d9fa0
JT
898 spin_unlock_irqrestore(&pool->lock, flags);
899
900 wake_worker(pool);
901}
902
e49e5829
JT
903static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
904{
905 if (m->bio)
906 m->bio->bi_end_io = m->saved_bi_end_io;
907 cell_error(m->cell);
908 list_del(&m->list);
909 mempool_free(m, m->tc->pool->mapping_pool);
910}
a24c2569 911static void process_prepared_mapping(struct dm_thin_new_mapping *m)
991d9fa0
JT
912{
913 struct thin_c *tc = m->tc;
914 struct bio *bio;
915 int r;
916
917 bio = m->bio;
918 if (bio)
919 bio->bi_end_io = m->saved_bi_end_io;
920
921 if (m->err) {
922 cell_error(m->cell);
905386f8 923 goto out;
991d9fa0
JT
924 }
925
926 /*
927 * Commit the prepared block into the mapping btree.
928 * Any I/O for this block arriving after this point will get
929 * remapped to it directly.
930 */
931 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
932 if (r) {
933 DMERR("dm_thin_insert_block() failed");
934 cell_error(m->cell);
905386f8 935 goto out;
991d9fa0
JT
936 }
937
938 /*
939 * Release any bios held while the block was being provisioned.
940 * If we are processing a write bio that completely covers the block,
941 * we already processed it so can ignore it now when processing
942 * the bios in the cell.
943 */
944 if (bio) {
6f94a4c4 945 cell_defer_except(tc, m->cell);
991d9fa0
JT
946 bio_endio(bio, 0);
947 } else
948 cell_defer(tc, m->cell, m->data_block);
949
905386f8 950out:
991d9fa0
JT
951 list_del(&m->list);
952 mempool_free(m, tc->pool->mapping_pool);
953}
954
e49e5829 955static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
104655fd 956{
104655fd
JT
957 struct thin_c *tc = m->tc;
958
e49e5829
JT
959 bio_io_error(m->bio);
960 cell_defer_except(tc, m->cell);
961 cell_defer_except(tc, m->cell2);
962 mempool_free(m, tc->pool->mapping_pool);
963}
964
965static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
966{
967 struct thin_c *tc = m->tc;
104655fd 968
104655fd
JT
969 if (m->pass_discard)
970 remap_and_issue(tc, m->bio, m->data_block);
971 else
972 bio_endio(m->bio, 0);
973
974 cell_defer_except(tc, m->cell);
975 cell_defer_except(tc, m->cell2);
976 mempool_free(m, tc->pool->mapping_pool);
977}
978
e49e5829
JT
979static void process_prepared_discard(struct dm_thin_new_mapping *m)
980{
981 int r;
982 struct thin_c *tc = m->tc;
983
984 r = dm_thin_remove_block(tc->td, m->virt_block);
985 if (r)
986 DMERR("dm_thin_remove_block() failed");
987
988 process_prepared_discard_passdown(m);
989}
990
104655fd 991static void process_prepared(struct pool *pool, struct list_head *head,
e49e5829 992 process_mapping_fn *fn)
991d9fa0
JT
993{
994 unsigned long flags;
995 struct list_head maps;
a24c2569 996 struct dm_thin_new_mapping *m, *tmp;
991d9fa0
JT
997
998 INIT_LIST_HEAD(&maps);
999 spin_lock_irqsave(&pool->lock, flags);
104655fd 1000 list_splice_init(head, &maps);
991d9fa0
JT
1001 spin_unlock_irqrestore(&pool->lock, flags);
1002
1003 list_for_each_entry_safe(m, tmp, &maps, list)
e49e5829 1004 (*fn)(m);
991d9fa0
JT
1005}
1006
1007/*
1008 * Deferred bio jobs.
1009 */
104655fd 1010static int io_overlaps_block(struct pool *pool, struct bio *bio)
991d9fa0 1011{
f9a8e0cd 1012 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
104655fd
JT
1013}
1014
1015static int io_overwrites_block(struct pool *pool, struct bio *bio)
1016{
1017 return (bio_data_dir(bio) == WRITE) &&
1018 io_overlaps_block(pool, bio);
991d9fa0
JT
1019}
1020
1021static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1022 bio_end_io_t *fn)
1023{
1024 *save = bio->bi_end_io;
1025 bio->bi_end_io = fn;
1026}
1027
1028static int ensure_next_mapping(struct pool *pool)
1029{
1030 if (pool->next_mapping)
1031 return 0;
1032
1033 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1034
1035 return pool->next_mapping ? 0 : -ENOMEM;
1036}
1037
a24c2569 1038static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
991d9fa0 1039{
a24c2569 1040 struct dm_thin_new_mapping *r = pool->next_mapping;
991d9fa0
JT
1041
1042 BUG_ON(!pool->next_mapping);
1043
1044 pool->next_mapping = NULL;
1045
1046 return r;
1047}
1048
1049static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
2dd9c257
JT
1050 struct dm_dev *origin, dm_block_t data_origin,
1051 dm_block_t data_dest,
a24c2569 1052 struct dm_bio_prison_cell *cell, struct bio *bio)
991d9fa0
JT
1053{
1054 int r;
1055 struct pool *pool = tc->pool;
a24c2569 1056 struct dm_thin_new_mapping *m = get_next_mapping(pool);
991d9fa0
JT
1057
1058 INIT_LIST_HEAD(&m->list);
eb2aa48d 1059 m->quiesced = 0;
991d9fa0
JT
1060 m->prepared = 0;
1061 m->tc = tc;
1062 m->virt_block = virt_block;
1063 m->data_block = data_dest;
1064 m->cell = cell;
1065 m->err = 0;
1066 m->bio = NULL;
1067
eb2aa48d
JT
1068 if (!ds_add_work(&pool->shared_read_ds, &m->list))
1069 m->quiesced = 1;
991d9fa0
JT
1070
1071 /*
1072 * IO to pool_dev remaps to the pool target's data_dev.
1073 *
1074 * If the whole block of data is being overwritten, we can issue the
1075 * bio immediately. Otherwise we use kcopyd to clone the data first.
1076 */
1077 if (io_overwrites_block(pool, bio)) {
a24c2569
MS
1078 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1079
eb2aa48d 1080 h->overwrite_mapping = m;
991d9fa0
JT
1081 m->bio = bio;
1082 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
991d9fa0
JT
1083 remap_and_issue(tc, bio, data_dest);
1084 } else {
1085 struct dm_io_region from, to;
1086
2dd9c257 1087 from.bdev = origin->bdev;
991d9fa0
JT
1088 from.sector = data_origin * pool->sectors_per_block;
1089 from.count = pool->sectors_per_block;
1090
1091 to.bdev = tc->pool_dev->bdev;
1092 to.sector = data_dest * pool->sectors_per_block;
1093 to.count = pool->sectors_per_block;
1094
1095 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1096 0, copy_complete, m);
1097 if (r < 0) {
1098 mempool_free(m, pool->mapping_pool);
1099 DMERR("dm_kcopyd_copy() failed");
1100 cell_error(cell);
1101 }
1102 }
1103}
1104
2dd9c257
JT
1105static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1106 dm_block_t data_origin, dm_block_t data_dest,
a24c2569 1107 struct dm_bio_prison_cell *cell, struct bio *bio)
2dd9c257
JT
1108{
1109 schedule_copy(tc, virt_block, tc->pool_dev,
1110 data_origin, data_dest, cell, bio);
1111}
1112
1113static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1114 dm_block_t data_dest,
a24c2569 1115 struct dm_bio_prison_cell *cell, struct bio *bio)
2dd9c257
JT
1116{
1117 schedule_copy(tc, virt_block, tc->origin_dev,
1118 virt_block, data_dest, cell, bio);
1119}
1120
991d9fa0 1121static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
a24c2569 1122 dm_block_t data_block, struct dm_bio_prison_cell *cell,
991d9fa0
JT
1123 struct bio *bio)
1124{
1125 struct pool *pool = tc->pool;
a24c2569 1126 struct dm_thin_new_mapping *m = get_next_mapping(pool);
991d9fa0
JT
1127
1128 INIT_LIST_HEAD(&m->list);
eb2aa48d 1129 m->quiesced = 1;
991d9fa0
JT
1130 m->prepared = 0;
1131 m->tc = tc;
1132 m->virt_block = virt_block;
1133 m->data_block = data_block;
1134 m->cell = cell;
1135 m->err = 0;
1136 m->bio = NULL;
1137
1138 /*
1139 * If the whole block of data is being overwritten or we are not
1140 * zeroing pre-existing data, we can issue the bio immediately.
1141 * Otherwise we use kcopyd to zero the data first.
1142 */
67e2e2b2 1143 if (!pool->pf.zero_new_blocks)
991d9fa0
JT
1144 process_prepared_mapping(m);
1145
1146 else if (io_overwrites_block(pool, bio)) {
a24c2569
MS
1147 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1148
eb2aa48d 1149 h->overwrite_mapping = m;
991d9fa0
JT
1150 m->bio = bio;
1151 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
991d9fa0 1152 remap_and_issue(tc, bio, data_block);
991d9fa0
JT
1153 } else {
1154 int r;
1155 struct dm_io_region to;
1156
1157 to.bdev = tc->pool_dev->bdev;
1158 to.sector = data_block * pool->sectors_per_block;
1159 to.count = pool->sectors_per_block;
1160
1161 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1162 if (r < 0) {
1163 mempool_free(m, pool->mapping_pool);
1164 DMERR("dm_kcopyd_zero() failed");
1165 cell_error(cell);
1166 }
1167 }
1168}
1169
e49e5829
JT
1170static int commit(struct pool *pool)
1171{
1172 int r;
1173
1174 r = dm_pool_commit_metadata(pool->pmd);
1175 if (r)
1176 DMERR("commit failed, error = %d", r);
1177
1178 return r;
1179}
1180
1181/*
1182 * A non-zero return indicates read_only or fail_io mode.
1183 * Many callers don't care about the return value.
1184 */
1185static int commit_or_fallback(struct pool *pool)
1186{
1187 int r;
1188
1189 if (get_pool_mode(pool) != PM_WRITE)
1190 return -EINVAL;
1191
1192 r = commit(pool);
1193 if (r)
1194 set_pool_mode(pool, PM_READ_ONLY);
1195
1196 return r;
1197}
1198
991d9fa0
JT
1199static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1200{
1201 int r;
1202 dm_block_t free_blocks;
1203 unsigned long flags;
1204 struct pool *pool = tc->pool;
1205
1206 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1207 if (r)
1208 return r;
1209
1210 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1211 DMWARN("%s: reached low water mark, sending event.",
1212 dm_device_name(pool->pool_md));
1213 spin_lock_irqsave(&pool->lock, flags);
1214 pool->low_water_triggered = 1;
1215 spin_unlock_irqrestore(&pool->lock, flags);
1216 dm_table_event(pool->ti->table);
1217 }
1218
1219 if (!free_blocks) {
1220 if (pool->no_free_space)
1221 return -ENOSPC;
1222 else {
1223 /*
1224 * Try to commit to see if that will free up some
1225 * more space.
1226 */
e49e5829 1227 (void) commit_or_fallback(pool);
991d9fa0
JT
1228
1229 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1230 if (r)
1231 return r;
1232
1233 /*
1234 * If we still have no space we set a flag to avoid
1235 * doing all this checking and return -ENOSPC.
1236 */
1237 if (!free_blocks) {
1238 DMWARN("%s: no free space available.",
1239 dm_device_name(pool->pool_md));
1240 spin_lock_irqsave(&pool->lock, flags);
1241 pool->no_free_space = 1;
1242 spin_unlock_irqrestore(&pool->lock, flags);
1243 return -ENOSPC;
1244 }
1245 }
1246 }
1247
1248 r = dm_pool_alloc_data_block(pool->pmd, result);
1249 if (r)
1250 return r;
1251
1252 return 0;
1253}
1254
1255/*
1256 * If we have run out of space, queue bios until the device is
1257 * resumed, presumably after having been reloaded with more space.
1258 */
1259static void retry_on_resume(struct bio *bio)
1260{
a24c2569 1261 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
eb2aa48d 1262 struct thin_c *tc = h->tc;
991d9fa0
JT
1263 struct pool *pool = tc->pool;
1264 unsigned long flags;
1265
1266 spin_lock_irqsave(&pool->lock, flags);
1267 bio_list_add(&pool->retry_on_resume_list, bio);
1268 spin_unlock_irqrestore(&pool->lock, flags);
1269}
1270
a24c2569 1271static void no_space(struct dm_bio_prison_cell *cell)
991d9fa0
JT
1272{
1273 struct bio *bio;
1274 struct bio_list bios;
1275
1276 bio_list_init(&bios);
1277 cell_release(cell, &bios);
1278
1279 while ((bio = bio_list_pop(&bios)))
1280 retry_on_resume(bio);
1281}
1282
104655fd
JT
1283static void process_discard(struct thin_c *tc, struct bio *bio)
1284{
1285 int r;
c3a0ce2e 1286 unsigned long flags;
104655fd 1287 struct pool *pool = tc->pool;
a24c2569 1288 struct dm_bio_prison_cell *cell, *cell2;
104655fd
JT
1289 struct cell_key key, key2;
1290 dm_block_t block = get_bio_block(tc, bio);
1291 struct dm_thin_lookup_result lookup_result;
a24c2569 1292 struct dm_thin_new_mapping *m;
104655fd
JT
1293
1294 build_virtual_key(tc->td, block, &key);
1295 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1296 return;
1297
1298 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1299 switch (r) {
1300 case 0:
1301 /*
1302 * Check nobody is fiddling with this pool block. This can
1303 * happen if someone's in the process of breaking sharing
1304 * on this block.
1305 */
1306 build_data_key(tc->td, lookup_result.block, &key2);
1307 if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1308 cell_release_singleton(cell, bio);
1309 break;
1310 }
1311
1312 if (io_overlaps_block(pool, bio)) {
1313 /*
1314 * IO may still be going to the destination block. We must
1315 * quiesce before we can do the removal.
1316 */
1317 m = get_next_mapping(pool);
1318 m->tc = tc;
17b7d63f 1319 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
104655fd
JT
1320 m->virt_block = block;
1321 m->data_block = lookup_result.block;
1322 m->cell = cell;
1323 m->cell2 = cell2;
1324 m->err = 0;
1325 m->bio = bio;
1326
1327 if (!ds_add_work(&pool->all_io_ds, &m->list)) {
c3a0ce2e 1328 spin_lock_irqsave(&pool->lock, flags);
104655fd 1329 list_add(&m->list, &pool->prepared_discards);
c3a0ce2e 1330 spin_unlock_irqrestore(&pool->lock, flags);
104655fd
JT
1331 wake_worker(pool);
1332 }
1333 } else {
1334 /*
49296309
MP
1335 * The DM core makes sure that the discard doesn't span
1336 * a block boundary. So we submit the discard of a
1337 * partial block appropriately.
104655fd 1338 */
104655fd
JT
1339 cell_release_singleton(cell, bio);
1340 cell_release_singleton(cell2, bio);
650d2a06
MP
1341 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1342 remap_and_issue(tc, bio, lookup_result.block);
1343 else
1344 bio_endio(bio, 0);
104655fd
JT
1345 }
1346 break;
1347
1348 case -ENODATA:
1349 /*
1350 * It isn't provisioned, just forget it.
1351 */
1352 cell_release_singleton(cell, bio);
1353 bio_endio(bio, 0);
1354 break;
1355
1356 default:
1357 DMERR("discard: find block unexpectedly returned %d", r);
1358 cell_release_singleton(cell, bio);
1359 bio_io_error(bio);
1360 break;
1361 }
1362}
1363
991d9fa0
JT
1364static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1365 struct cell_key *key,
1366 struct dm_thin_lookup_result *lookup_result,
a24c2569 1367 struct dm_bio_prison_cell *cell)
991d9fa0
JT
1368{
1369 int r;
1370 dm_block_t data_block;
1371
1372 r = alloc_data_block(tc, &data_block);
1373 switch (r) {
1374 case 0:
2dd9c257
JT
1375 schedule_internal_copy(tc, block, lookup_result->block,
1376 data_block, cell, bio);
991d9fa0
JT
1377 break;
1378
1379 case -ENOSPC:
1380 no_space(cell);
1381 break;
1382
1383 default:
1384 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1385 cell_error(cell);
1386 break;
1387 }
1388}
1389
1390static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1391 dm_block_t block,
1392 struct dm_thin_lookup_result *lookup_result)
1393{
a24c2569 1394 struct dm_bio_prison_cell *cell;
991d9fa0
JT
1395 struct pool *pool = tc->pool;
1396 struct cell_key key;
1397
1398 /*
1399 * If cell is already occupied, then sharing is already in the process
1400 * of being broken so we have nothing further to do here.
1401 */
1402 build_data_key(tc->td, lookup_result->block, &key);
1403 if (bio_detain(pool->prison, &key, bio, &cell))
1404 return;
1405
60049701 1406 if (bio_data_dir(bio) == WRITE && bio->bi_size)
991d9fa0
JT
1407 break_sharing(tc, bio, block, &key, lookup_result, cell);
1408 else {
a24c2569 1409 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
991d9fa0 1410
eb2aa48d 1411 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
991d9fa0
JT
1412
1413 cell_release_singleton(cell, bio);
1414 remap_and_issue(tc, bio, lookup_result->block);
1415 }
1416}
1417
1418static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
a24c2569 1419 struct dm_bio_prison_cell *cell)
991d9fa0
JT
1420{
1421 int r;
1422 dm_block_t data_block;
1423
1424 /*
1425 * Remap empty bios (flushes) immediately, without provisioning.
1426 */
1427 if (!bio->bi_size) {
1428 cell_release_singleton(cell, bio);
1429 remap_and_issue(tc, bio, 0);
1430 return;
1431 }
1432
1433 /*
1434 * Fill read bios with zeroes and complete them immediately.
1435 */
1436 if (bio_data_dir(bio) == READ) {
1437 zero_fill_bio(bio);
1438 cell_release_singleton(cell, bio);
1439 bio_endio(bio, 0);
1440 return;
1441 }
1442
1443 r = alloc_data_block(tc, &data_block);
1444 switch (r) {
1445 case 0:
2dd9c257
JT
1446 if (tc->origin_dev)
1447 schedule_external_copy(tc, block, data_block, cell, bio);
1448 else
1449 schedule_zero(tc, block, data_block, cell, bio);
991d9fa0
JT
1450 break;
1451
1452 case -ENOSPC:
1453 no_space(cell);
1454 break;
1455
1456 default:
1457 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
e49e5829 1458 set_pool_mode(tc->pool, PM_READ_ONLY);
991d9fa0
JT
1459 cell_error(cell);
1460 break;
1461 }
1462}
1463
1464static void process_bio(struct thin_c *tc, struct bio *bio)
1465{
1466 int r;
1467 dm_block_t block = get_bio_block(tc, bio);
a24c2569 1468 struct dm_bio_prison_cell *cell;
991d9fa0
JT
1469 struct cell_key key;
1470 struct dm_thin_lookup_result lookup_result;
1471
1472 /*
1473 * If cell is already occupied, then the block is already
1474 * being provisioned so we have nothing further to do here.
1475 */
1476 build_virtual_key(tc->td, block, &key);
1477 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1478 return;
1479
1480 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1481 switch (r) {
1482 case 0:
1483 /*
1484 * We can release this cell now. This thread is the only
1485 * one that puts bios into a cell, and we know there were
1486 * no preceding bios.
1487 */
1488 /*
1489 * TODO: this will probably have to change when discard goes
1490 * back in.
1491 */
1492 cell_release_singleton(cell, bio);
1493
1494 if (lookup_result.shared)
1495 process_shared_bio(tc, bio, block, &lookup_result);
1496 else
1497 remap_and_issue(tc, bio, lookup_result.block);
1498 break;
1499
1500 case -ENODATA:
2dd9c257
JT
1501 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1502 cell_release_singleton(cell, bio);
1503 remap_to_origin_and_issue(tc, bio);
1504 } else
1505 provision_block(tc, bio, block, cell);
991d9fa0
JT
1506 break;
1507
1508 default:
1509 DMERR("dm_thin_find_block() failed, error = %d", r);
104655fd 1510 cell_release_singleton(cell, bio);
991d9fa0
JT
1511 bio_io_error(bio);
1512 break;
1513 }
1514}
1515
e49e5829
JT
1516static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1517{
1518 int r;
1519 int rw = bio_data_dir(bio);
1520 dm_block_t block = get_bio_block(tc, bio);
1521 struct dm_thin_lookup_result lookup_result;
1522
1523 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1524 switch (r) {
1525 case 0:
1526 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1527 bio_io_error(bio);
1528 else
1529 remap_and_issue(tc, bio, lookup_result.block);
1530 break;
1531
1532 case -ENODATA:
1533 if (rw != READ) {
1534 bio_io_error(bio);
1535 break;
1536 }
1537
1538 if (tc->origin_dev) {
1539 remap_to_origin_and_issue(tc, bio);
1540 break;
1541 }
1542
1543 zero_fill_bio(bio);
1544 bio_endio(bio, 0);
1545 break;
1546
1547 default:
1548 DMERR("dm_thin_find_block() failed, error = %d", r);
1549 bio_io_error(bio);
1550 break;
1551 }
1552}
1553
1554static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1555{
1556 bio_io_error(bio);
1557}
1558
905e51b3
JT
1559static int need_commit_due_to_time(struct pool *pool)
1560{
1561 return jiffies < pool->last_commit_jiffies ||
1562 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1563}
1564
991d9fa0
JT
1565static void process_deferred_bios(struct pool *pool)
1566{
1567 unsigned long flags;
1568 struct bio *bio;
1569 struct bio_list bios;
991d9fa0
JT
1570
1571 bio_list_init(&bios);
1572
1573 spin_lock_irqsave(&pool->lock, flags);
1574 bio_list_merge(&bios, &pool->deferred_bios);
1575 bio_list_init(&pool->deferred_bios);
1576 spin_unlock_irqrestore(&pool->lock, flags);
1577
1578 while ((bio = bio_list_pop(&bios))) {
a24c2569 1579 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
eb2aa48d
JT
1580 struct thin_c *tc = h->tc;
1581
991d9fa0
JT
1582 /*
1583 * If we've got no free new_mapping structs, and processing
1584 * this bio might require one, we pause until there are some
1585 * prepared mappings to process.
1586 */
1587 if (ensure_next_mapping(pool)) {
1588 spin_lock_irqsave(&pool->lock, flags);
1589 bio_list_merge(&pool->deferred_bios, &bios);
1590 spin_unlock_irqrestore(&pool->lock, flags);
1591
1592 break;
1593 }
104655fd
JT
1594
1595 if (bio->bi_rw & REQ_DISCARD)
e49e5829 1596 pool->process_discard(tc, bio);
104655fd 1597 else
e49e5829 1598 pool->process_bio(tc, bio);
991d9fa0
JT
1599 }
1600
1601 /*
1602 * If there are any deferred flush bios, we must commit
1603 * the metadata before issuing them.
1604 */
1605 bio_list_init(&bios);
1606 spin_lock_irqsave(&pool->lock, flags);
1607 bio_list_merge(&bios, &pool->deferred_flush_bios);
1608 bio_list_init(&pool->deferred_flush_bios);
1609 spin_unlock_irqrestore(&pool->lock, flags);
1610
905e51b3 1611 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
991d9fa0
JT
1612 return;
1613
e49e5829 1614 if (commit_or_fallback(pool)) {
991d9fa0
JT
1615 while ((bio = bio_list_pop(&bios)))
1616 bio_io_error(bio);
1617 return;
1618 }
905e51b3 1619 pool->last_commit_jiffies = jiffies;
991d9fa0
JT
1620
1621 while ((bio = bio_list_pop(&bios)))
1622 generic_make_request(bio);
1623}
1624
1625static void do_worker(struct work_struct *ws)
1626{
1627 struct pool *pool = container_of(ws, struct pool, worker);
1628
e49e5829
JT
1629 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1630 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
991d9fa0
JT
1631 process_deferred_bios(pool);
1632}
1633
905e51b3
JT
1634/*
1635 * We want to commit periodically so that not too much
1636 * unwritten data builds up.
1637 */
1638static void do_waker(struct work_struct *ws)
1639{
1640 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1641 wake_worker(pool);
1642 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1643}
1644
991d9fa0
JT
1645/*----------------------------------------------------------------*/
1646
e49e5829
JT
1647static enum pool_mode get_pool_mode(struct pool *pool)
1648{
1649 return pool->pf.mode;
1650}
1651
1652static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1653{
1654 int r;
1655
1656 pool->pf.mode = mode;
1657
1658 switch (mode) {
1659 case PM_FAIL:
1660 DMERR("switching pool to failure mode");
1661 pool->process_bio = process_bio_fail;
1662 pool->process_discard = process_bio_fail;
1663 pool->process_prepared_mapping = process_prepared_mapping_fail;
1664 pool->process_prepared_discard = process_prepared_discard_fail;
1665 break;
1666
1667 case PM_READ_ONLY:
1668 DMERR("switching pool to read-only mode");
1669 r = dm_pool_abort_metadata(pool->pmd);
1670 if (r) {
1671 DMERR("aborting transaction failed");
1672 set_pool_mode(pool, PM_FAIL);
1673 } else {
1674 dm_pool_metadata_read_only(pool->pmd);
1675 pool->process_bio = process_bio_read_only;
1676 pool->process_discard = process_discard;
1677 pool->process_prepared_mapping = process_prepared_mapping_fail;
1678 pool->process_prepared_discard = process_prepared_discard_passdown;
1679 }
1680 break;
1681
1682 case PM_WRITE:
1683 pool->process_bio = process_bio;
1684 pool->process_discard = process_discard;
1685 pool->process_prepared_mapping = process_prepared_mapping;
1686 pool->process_prepared_discard = process_prepared_discard;
1687 break;
1688 }
1689}
1690
1691/*----------------------------------------------------------------*/
1692
991d9fa0
JT
1693/*
1694 * Mapping functions.
1695 */
1696
1697/*
1698 * Called only while mapping a thin bio to hand it over to the workqueue.
1699 */
1700static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1701{
1702 unsigned long flags;
1703 struct pool *pool = tc->pool;
1704
1705 spin_lock_irqsave(&pool->lock, flags);
1706 bio_list_add(&pool->deferred_bios, bio);
1707 spin_unlock_irqrestore(&pool->lock, flags);
1708
1709 wake_worker(pool);
1710}
1711
a24c2569 1712static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
eb2aa48d
JT
1713{
1714 struct pool *pool = tc->pool;
a24c2569 1715 struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
eb2aa48d
JT
1716
1717 h->tc = tc;
1718 h->shared_read_entry = NULL;
104655fd 1719 h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
eb2aa48d
JT
1720 h->overwrite_mapping = NULL;
1721
1722 return h;
1723}
1724
991d9fa0
JT
1725/*
1726 * Non-blocking function called from the thin target's map function.
1727 */
1728static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1729 union map_info *map_context)
1730{
1731 int r;
1732 struct thin_c *tc = ti->private;
1733 dm_block_t block = get_bio_block(tc, bio);
1734 struct dm_thin_device *td = tc->td;
1735 struct dm_thin_lookup_result result;
1736
eb2aa48d 1737 map_context->ptr = thin_hook_bio(tc, bio);
e49e5829
JT
1738
1739 if (get_pool_mode(tc->pool) == PM_FAIL) {
1740 bio_io_error(bio);
1741 return DM_MAPIO_SUBMITTED;
1742 }
1743
104655fd 1744 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
991d9fa0
JT
1745 thin_defer_bio(tc, bio);
1746 return DM_MAPIO_SUBMITTED;
1747 }
1748
1749 r = dm_thin_find_block(td, block, 0, &result);
1750
1751 /*
1752 * Note that we defer readahead too.
1753 */
1754 switch (r) {
1755 case 0:
1756 if (unlikely(result.shared)) {
1757 /*
1758 * We have a race condition here between the
1759 * result.shared value returned by the lookup and
1760 * snapshot creation, which may cause new
1761 * sharing.
1762 *
1763 * To avoid this always quiesce the origin before
1764 * taking the snap. You want to do this anyway to
1765 * ensure a consistent application view
1766 * (i.e. lockfs).
1767 *
1768 * More distant ancestors are irrelevant. The
1769 * shared flag will be set in their case.
1770 */
1771 thin_defer_bio(tc, bio);
1772 r = DM_MAPIO_SUBMITTED;
1773 } else {
1774 remap(tc, bio, result.block);
1775 r = DM_MAPIO_REMAPPED;
1776 }
1777 break;
1778
1779 case -ENODATA:
e49e5829
JT
1780 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1781 /*
1782 * This block isn't provisioned, and we have no way
1783 * of doing so. Just error it.
1784 */
1785 bio_io_error(bio);
1786 r = DM_MAPIO_SUBMITTED;
1787 break;
1788 }
1789 /* fall through */
1790
1791 case -EWOULDBLOCK:
991d9fa0
JT
1792 /*
1793 * In future, the failed dm_thin_find_block above could
1794 * provide the hint to load the metadata into cache.
1795 */
991d9fa0
JT
1796 thin_defer_bio(tc, bio);
1797 r = DM_MAPIO_SUBMITTED;
1798 break;
e49e5829
JT
1799
1800 default:
1801 /*
1802 * Must always call bio_io_error on failure.
1803 * dm_thin_find_block can fail with -EINVAL if the
1804 * pool is switched to fail-io mode.
1805 */
1806 bio_io_error(bio);
1807 r = DM_MAPIO_SUBMITTED;
1808 break;
991d9fa0
JT
1809 }
1810
1811 return r;
1812}
1813
1814static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1815{
1816 int r;
1817 unsigned long flags;
1818 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1819
1820 spin_lock_irqsave(&pt->pool->lock, flags);
1821 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1822 spin_unlock_irqrestore(&pt->pool->lock, flags);
1823
1824 if (!r) {
1825 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1826 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1827 }
1828
1829 return r;
1830}
1831
1832static void __requeue_bios(struct pool *pool)
1833{
1834 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1835 bio_list_init(&pool->retry_on_resume_list);
1836}
1837
1838/*----------------------------------------------------------------
1839 * Binding of control targets to a pool object
1840 *--------------------------------------------------------------*/
1841static int bind_control_target(struct pool *pool, struct dm_target *ti)
1842{
1843 struct pool_c *pt = ti->private;
1844
e49e5829
JT
1845 /*
1846 * We want to make sure that degraded pools are never upgraded.
1847 */
1848 enum pool_mode old_mode = pool->pf.mode;
1849 enum pool_mode new_mode = pt->pf.mode;
1850
1851 if (old_mode > new_mode)
1852 new_mode = old_mode;
1853
991d9fa0
JT
1854 pool->ti = ti;
1855 pool->low_water_blocks = pt->low_water_blocks;
67e2e2b2 1856 pool->pf = pt->pf;
e49e5829 1857 set_pool_mode(pool, new_mode);
991d9fa0 1858
f402693d
MS
1859 /*
1860 * If discard_passdown was enabled verify that the data device
1861 * supports discards. Disable discard_passdown if not; otherwise
1862 * -EOPNOTSUPP will be returned.
1863 */
e49e5829 1864 /* FIXME: pull this out into a sep fn. */
f402693d
MS
1865 if (pt->pf.discard_passdown) {
1866 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1867 if (!q || !blk_queue_discard(q)) {
1868 char buf[BDEVNAME_SIZE];
1869 DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
1870 bdevname(pt->data_dev->bdev, buf));
1871 pool->pf.discard_passdown = 0;
1872 }
1873 }
1874
991d9fa0
JT
1875 return 0;
1876}
1877
1878static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1879{
1880 if (pool->ti == ti)
1881 pool->ti = NULL;
1882}
1883
1884/*----------------------------------------------------------------
1885 * Pool creation
1886 *--------------------------------------------------------------*/
67e2e2b2
JT
1887/* Initialize pool features. */
1888static void pool_features_init(struct pool_features *pf)
1889{
e49e5829 1890 pf->mode = PM_WRITE;
67e2e2b2
JT
1891 pf->zero_new_blocks = 1;
1892 pf->discard_enabled = 1;
1893 pf->discard_passdown = 1;
1894}
1895
991d9fa0
JT
1896static void __pool_destroy(struct pool *pool)
1897{
1898 __pool_table_remove(pool);
1899
1900 if (dm_pool_metadata_close(pool->pmd) < 0)
1901 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1902
1903 prison_destroy(pool->prison);
1904 dm_kcopyd_client_destroy(pool->copier);
1905
1906 if (pool->wq)
1907 destroy_workqueue(pool->wq);
1908
1909 if (pool->next_mapping)
1910 mempool_free(pool->next_mapping, pool->mapping_pool);
1911 mempool_destroy(pool->mapping_pool);
1912 mempool_destroy(pool->endio_hook_pool);
1913 kfree(pool);
1914}
1915
a24c2569
MS
1916static struct kmem_cache *_new_mapping_cache;
1917static struct kmem_cache *_endio_hook_cache;
1918
991d9fa0
JT
1919static struct pool *pool_create(struct mapped_device *pool_md,
1920 struct block_device *metadata_dev,
e49e5829
JT
1921 unsigned long block_size,
1922 int read_only, char **error)
991d9fa0
JT
1923{
1924 int r;
1925 void *err_p;
1926 struct pool *pool;
1927 struct dm_pool_metadata *pmd;
e49e5829 1928 bool format_device = read_only ? false : true;
991d9fa0 1929
e49e5829 1930 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
991d9fa0
JT
1931 if (IS_ERR(pmd)) {
1932 *error = "Error creating metadata object";
1933 return (struct pool *)pmd;
1934 }
1935
1936 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1937 if (!pool) {
1938 *error = "Error allocating memory for pool";
1939 err_p = ERR_PTR(-ENOMEM);
1940 goto bad_pool;
1941 }
1942
1943 pool->pmd = pmd;
1944 pool->sectors_per_block = block_size;
f9a8e0cd
MP
1945 if (block_size & (block_size - 1))
1946 pool->sectors_per_block_shift = -1;
1947 else
1948 pool->sectors_per_block_shift = __ffs(block_size);
991d9fa0 1949 pool->low_water_blocks = 0;
67e2e2b2 1950 pool_features_init(&pool->pf);
991d9fa0
JT
1951 pool->prison = prison_create(PRISON_CELLS);
1952 if (!pool->prison) {
1953 *error = "Error creating pool's bio prison";
1954 err_p = ERR_PTR(-ENOMEM);
1955 goto bad_prison;
1956 }
1957
1958 pool->copier = dm_kcopyd_client_create();
1959 if (IS_ERR(pool->copier)) {
1960 r = PTR_ERR(pool->copier);
1961 *error = "Error creating pool's kcopyd client";
1962 err_p = ERR_PTR(r);
1963 goto bad_kcopyd_client;
1964 }
1965
1966 /*
1967 * Create singlethreaded workqueue that will service all devices
1968 * that use this metadata.
1969 */
1970 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1971 if (!pool->wq) {
1972 *error = "Error creating pool's workqueue";
1973 err_p = ERR_PTR(-ENOMEM);
1974 goto bad_wq;
1975 }
1976
1977 INIT_WORK(&pool->worker, do_worker);
905e51b3 1978 INIT_DELAYED_WORK(&pool->waker, do_waker);
991d9fa0
JT
1979 spin_lock_init(&pool->lock);
1980 bio_list_init(&pool->deferred_bios);
1981 bio_list_init(&pool->deferred_flush_bios);
1982 INIT_LIST_HEAD(&pool->prepared_mappings);
104655fd 1983 INIT_LIST_HEAD(&pool->prepared_discards);
991d9fa0
JT
1984 pool->low_water_triggered = 0;
1985 pool->no_free_space = 0;
1986 bio_list_init(&pool->retry_on_resume_list);
eb2aa48d 1987 ds_init(&pool->shared_read_ds);
104655fd 1988 ds_init(&pool->all_io_ds);
991d9fa0
JT
1989
1990 pool->next_mapping = NULL;
a24c2569
MS
1991 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1992 _new_mapping_cache);
991d9fa0
JT
1993 if (!pool->mapping_pool) {
1994 *error = "Error creating pool's mapping mempool";
1995 err_p = ERR_PTR(-ENOMEM);
1996 goto bad_mapping_pool;
1997 }
1998
a24c2569
MS
1999 pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
2000 _endio_hook_cache);
991d9fa0
JT
2001 if (!pool->endio_hook_pool) {
2002 *error = "Error creating pool's endio_hook mempool";
2003 err_p = ERR_PTR(-ENOMEM);
2004 goto bad_endio_hook_pool;
2005 }
2006 pool->ref_count = 1;
905e51b3 2007 pool->last_commit_jiffies = jiffies;
991d9fa0
JT
2008 pool->pool_md = pool_md;
2009 pool->md_dev = metadata_dev;
2010 __pool_table_insert(pool);
2011
2012 return pool;
2013
2014bad_endio_hook_pool:
2015 mempool_destroy(pool->mapping_pool);
2016bad_mapping_pool:
2017 destroy_workqueue(pool->wq);
2018bad_wq:
2019 dm_kcopyd_client_destroy(pool->copier);
2020bad_kcopyd_client:
2021 prison_destroy(pool->prison);
2022bad_prison:
2023 kfree(pool);
2024bad_pool:
2025 if (dm_pool_metadata_close(pmd))
2026 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2027
2028 return err_p;
2029}
2030
2031static void __pool_inc(struct pool *pool)
2032{
2033 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2034 pool->ref_count++;
2035}
2036
2037static void __pool_dec(struct pool *pool)
2038{
2039 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2040 BUG_ON(!pool->ref_count);
2041 if (!--pool->ref_count)
2042 __pool_destroy(pool);
2043}
2044
2045static struct pool *__pool_find(struct mapped_device *pool_md,
2046 struct block_device *metadata_dev,
e49e5829
JT
2047 unsigned long block_size, int read_only,
2048 char **error, int *created)
991d9fa0
JT
2049{
2050 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2051
2052 if (pool) {
f09996c9
MS
2053 if (pool->pool_md != pool_md) {
2054 *error = "metadata device already in use by a pool";
991d9fa0 2055 return ERR_PTR(-EBUSY);
f09996c9 2056 }
991d9fa0
JT
2057 __pool_inc(pool);
2058
2059 } else {
2060 pool = __pool_table_lookup(pool_md);
2061 if (pool) {
f09996c9
MS
2062 if (pool->md_dev != metadata_dev) {
2063 *error = "different pool cannot replace a pool";
991d9fa0 2064 return ERR_PTR(-EINVAL);
f09996c9 2065 }
991d9fa0
JT
2066 __pool_inc(pool);
2067
67e2e2b2 2068 } else {
e49e5829 2069 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
67e2e2b2
JT
2070 *created = 1;
2071 }
991d9fa0
JT
2072 }
2073
2074 return pool;
2075}
2076
2077/*----------------------------------------------------------------
2078 * Pool target methods
2079 *--------------------------------------------------------------*/
2080static void pool_dtr(struct dm_target *ti)
2081{
2082 struct pool_c *pt = ti->private;
2083
2084 mutex_lock(&dm_thin_pool_table.mutex);
2085
2086 unbind_control_target(pt->pool, ti);
2087 __pool_dec(pt->pool);
2088 dm_put_device(ti, pt->metadata_dev);
2089 dm_put_device(ti, pt->data_dev);
2090 kfree(pt);
2091
2092 mutex_unlock(&dm_thin_pool_table.mutex);
2093}
2094
991d9fa0
JT
2095static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2096 struct dm_target *ti)
2097{
2098 int r;
2099 unsigned argc;
2100 const char *arg_name;
2101
2102 static struct dm_arg _args[] = {
67e2e2b2 2103 {0, 3, "Invalid number of pool feature arguments"},
991d9fa0
JT
2104 };
2105
2106 /*
2107 * No feature arguments supplied.
2108 */
2109 if (!as->argc)
2110 return 0;
2111
2112 r = dm_read_arg_group(_args, as, &argc, &ti->error);
2113 if (r)
2114 return -EINVAL;
2115
2116 while (argc && !r) {
2117 arg_name = dm_shift_arg(as);
2118 argc--;
2119
e49e5829 2120 if (!strcasecmp(arg_name, "skip_block_zeroing"))
991d9fa0 2121 pf->zero_new_blocks = 0;
e49e5829
JT
2122
2123 else if (!strcasecmp(arg_name, "ignore_discard"))
67e2e2b2 2124 pf->discard_enabled = 0;
e49e5829
JT
2125
2126 else if (!strcasecmp(arg_name, "no_discard_passdown"))
67e2e2b2 2127 pf->discard_passdown = 0;
991d9fa0 2128
e49e5829
JT
2129 else if (!strcasecmp(arg_name, "read_only"))
2130 pf->mode = PM_READ_ONLY;
2131
2132 else {
2133 ti->error = "Unrecognised pool feature requested";
2134 r = -EINVAL;
2135 break;
2136 }
991d9fa0
JT
2137 }
2138
2139 return r;
2140}
2141
2142/*
2143 * thin-pool <metadata dev> <data dev>
2144 * <data block size (sectors)>
2145 * <low water mark (blocks)>
2146 * [<#feature args> [<arg>]*]
2147 *
2148 * Optional feature arguments are:
2149 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
67e2e2b2
JT
2150 * ignore_discard: disable discard
2151 * no_discard_passdown: don't pass discards down to the data device
991d9fa0
JT
2152 */
2153static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2154{
67e2e2b2 2155 int r, pool_created = 0;
991d9fa0
JT
2156 struct pool_c *pt;
2157 struct pool *pool;
2158 struct pool_features pf;
2159 struct dm_arg_set as;
2160 struct dm_dev *data_dev;
2161 unsigned long block_size;
2162 dm_block_t low_water_blocks;
2163 struct dm_dev *metadata_dev;
2164 sector_t metadata_dev_size;
c4a69ecd 2165 char b[BDEVNAME_SIZE];
991d9fa0
JT
2166
2167 /*
2168 * FIXME Remove validation from scope of lock.
2169 */
2170 mutex_lock(&dm_thin_pool_table.mutex);
2171
2172 if (argc < 4) {
2173 ti->error = "Invalid argument count";
2174 r = -EINVAL;
2175 goto out_unlock;
2176 }
2177 as.argc = argc;
2178 as.argv = argv;
2179
2180 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
2181 if (r) {
2182 ti->error = "Error opening metadata block device";
2183 goto out_unlock;
2184 }
2185
2186 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
c4a69ecd
MS
2187 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2188 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2189 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
991d9fa0
JT
2190
2191 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2192 if (r) {
2193 ti->error = "Error getting data device";
2194 goto out_metadata;
2195 }
2196
2197 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2198 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2199 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
55f2b8bd 2200 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
991d9fa0
JT
2201 ti->error = "Invalid block size";
2202 r = -EINVAL;
2203 goto out;
2204 }
2205
2206 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2207 ti->error = "Invalid low water mark";
2208 r = -EINVAL;
2209 goto out;
2210 }
2211
2212 /*
2213 * Set default pool features.
2214 */
67e2e2b2 2215 pool_features_init(&pf);
991d9fa0
JT
2216
2217 dm_consume_args(&as, 4);
2218 r = parse_pool_features(&as, &pf, ti);
2219 if (r)
2220 goto out;
2221
2222 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2223 if (!pt) {
2224 r = -ENOMEM;
2225 goto out;
2226 }
2227
2228 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
e49e5829 2229 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
991d9fa0
JT
2230 if (IS_ERR(pool)) {
2231 r = PTR_ERR(pool);
2232 goto out_free_pt;
2233 }
2234
67e2e2b2
JT
2235 /*
2236 * 'pool_created' reflects whether this is the first table load.
2237 * Top level discard support is not allowed to be changed after
2238 * initial load. This would require a pool reload to trigger thin
2239 * device changes.
2240 */
2241 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2242 ti->error = "Discard support cannot be disabled once enabled";
2243 r = -EINVAL;
2244 goto out_flags_changed;
2245 }
2246
55f2b8bd
MS
2247 /*
2248 * The block layer requires discard_granularity to be a power of 2.
2249 */
2250 if (pf.discard_enabled && !is_power_of_2(block_size)) {
2251 ti->error = "Discard support must be disabled when the block size is not a power of 2";
2252 r = -EINVAL;
2253 goto out_flags_changed;
2254 }
2255
991d9fa0
JT
2256 pt->pool = pool;
2257 pt->ti = ti;
2258 pt->metadata_dev = metadata_dev;
2259 pt->data_dev = data_dev;
2260 pt->low_water_blocks = low_water_blocks;
67e2e2b2 2261 pt->pf = pf;
991d9fa0 2262 ti->num_flush_requests = 1;
67e2e2b2
JT
2263 /*
2264 * Only need to enable discards if the pool should pass
2265 * them down to the data device. The thin device's discard
2266 * processing will cause mappings to be removed from the btree.
2267 */
2268 if (pf.discard_enabled && pf.discard_passdown) {
2269 ti->num_discard_requests = 1;
2270 /*
2271 * Setting 'discards_supported' circumvents the normal
2272 * stacking of discard limits (this keeps the pool and
2273 * thin devices' discard limits consistent).
2274 */
0ac55489 2275 ti->discards_supported = true;
67e2e2b2 2276 }
991d9fa0
JT
2277 ti->private = pt;
2278
2279 pt->callbacks.congested_fn = pool_is_congested;
2280 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2281
2282 mutex_unlock(&dm_thin_pool_table.mutex);
2283
2284 return 0;
2285
67e2e2b2
JT
2286out_flags_changed:
2287 __pool_dec(pool);
991d9fa0
JT
2288out_free_pt:
2289 kfree(pt);
2290out:
2291 dm_put_device(ti, data_dev);
2292out_metadata:
2293 dm_put_device(ti, metadata_dev);
2294out_unlock:
2295 mutex_unlock(&dm_thin_pool_table.mutex);
2296
2297 return r;
2298}
2299
2300static int pool_map(struct dm_target *ti, struct bio *bio,
2301 union map_info *map_context)
2302{
2303 int r;
2304 struct pool_c *pt = ti->private;
2305 struct pool *pool = pt->pool;
2306 unsigned long flags;
2307
2308 /*
2309 * As this is a singleton target, ti->begin is always zero.
2310 */
2311 spin_lock_irqsave(&pool->lock, flags);
2312 bio->bi_bdev = pt->data_dev->bdev;
2313 r = DM_MAPIO_REMAPPED;
2314 spin_unlock_irqrestore(&pool->lock, flags);
2315
2316 return r;
2317}
2318
2319/*
2320 * Retrieves the number of blocks of the data device from
2321 * the superblock and compares it to the actual device size,
2322 * thus resizing the data device in case it has grown.
2323 *
2324 * This both copes with opening preallocated data devices in the ctr
2325 * being followed by a resume
2326 * -and-
2327 * calling the resume method individually after userspace has
2328 * grown the data device in reaction to a table event.
2329 */
2330static int pool_preresume(struct dm_target *ti)
2331{
2332 int r;
2333 struct pool_c *pt = ti->private;
2334 struct pool *pool = pt->pool;
55f2b8bd
MS
2335 sector_t data_size = ti->len;
2336 dm_block_t sb_data_size;
991d9fa0
JT
2337
2338 /*
2339 * Take control of the pool object.
2340 */
2341 r = bind_control_target(pool, ti);
2342 if (r)
2343 return r;
2344
55f2b8bd
MS
2345 (void) sector_div(data_size, pool->sectors_per_block);
2346
991d9fa0
JT
2347 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2348 if (r) {
2349 DMERR("failed to retrieve data device size");
2350 return r;
2351 }
2352
2353 if (data_size < sb_data_size) {
2354 DMERR("pool target too small, is %llu blocks (expected %llu)",
55f2b8bd 2355 (unsigned long long)data_size, sb_data_size);
991d9fa0
JT
2356 return -EINVAL;
2357
2358 } else if (data_size > sb_data_size) {
2359 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2360 if (r) {
2361 DMERR("failed to resize data device");
e49e5829
JT
2362 /* FIXME Stricter than necessary: Rollback transaction instead here */
2363 set_pool_mode(pool, PM_READ_ONLY);
991d9fa0
JT
2364 return r;
2365 }
2366
e49e5829 2367 (void) commit_or_fallback(pool);
991d9fa0
JT
2368 }
2369
2370 return 0;
2371}
2372
2373static void pool_resume(struct dm_target *ti)
2374{
2375 struct pool_c *pt = ti->private;
2376 struct pool *pool = pt->pool;
2377 unsigned long flags;
2378
2379 spin_lock_irqsave(&pool->lock, flags);
2380 pool->low_water_triggered = 0;
2381 pool->no_free_space = 0;
2382 __requeue_bios(pool);
2383 spin_unlock_irqrestore(&pool->lock, flags);
2384
905e51b3 2385 do_waker(&pool->waker.work);
991d9fa0
JT
2386}
2387
2388static void pool_postsuspend(struct dm_target *ti)
2389{
991d9fa0
JT
2390 struct pool_c *pt = ti->private;
2391 struct pool *pool = pt->pool;
2392
905e51b3 2393 cancel_delayed_work(&pool->waker);
991d9fa0 2394 flush_workqueue(pool->wq);
e49e5829 2395 (void) commit_or_fallback(pool);
991d9fa0
JT
2396}
2397
2398static int check_arg_count(unsigned argc, unsigned args_required)
2399{
2400 if (argc != args_required) {
2401 DMWARN("Message received with %u arguments instead of %u.",
2402 argc, args_required);
2403 return -EINVAL;
2404 }
2405
2406 return 0;
2407}
2408
2409static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2410{
2411 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2412 *dev_id <= MAX_DEV_ID)
2413 return 0;
2414
2415 if (warning)
2416 DMWARN("Message received with invalid device id: %s", arg);
2417
2418 return -EINVAL;
2419}
2420
2421static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2422{
2423 dm_thin_id dev_id;
2424 int r;
2425
2426 r = check_arg_count(argc, 2);
2427 if (r)
2428 return r;
2429
2430 r = read_dev_id(argv[1], &dev_id, 1);
2431 if (r)
2432 return r;
2433
2434 r = dm_pool_create_thin(pool->pmd, dev_id);
2435 if (r) {
2436 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2437 argv[1]);
2438 return r;
2439 }
2440
2441 return 0;
2442}
2443
2444static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2445{
2446 dm_thin_id dev_id;
2447 dm_thin_id origin_dev_id;
2448 int r;
2449
2450 r = check_arg_count(argc, 3);
2451 if (r)
2452 return r;
2453
2454 r = read_dev_id(argv[1], &dev_id, 1);
2455 if (r)
2456 return r;
2457
2458 r = read_dev_id(argv[2], &origin_dev_id, 1);
2459 if (r)
2460 return r;
2461
2462 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2463 if (r) {
2464 DMWARN("Creation of new snapshot %s of device %s failed.",
2465 argv[1], argv[2]);
2466 return r;
2467 }
2468
2469 return 0;
2470}
2471
2472static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2473{
2474 dm_thin_id dev_id;
2475 int r;
2476
2477 r = check_arg_count(argc, 2);
2478 if (r)
2479 return r;
2480
2481 r = read_dev_id(argv[1], &dev_id, 1);
2482 if (r)
2483 return r;
2484
2485 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2486 if (r)
2487 DMWARN("Deletion of thin device %s failed.", argv[1]);
2488
2489 return r;
2490}
2491
2492static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2493{
2494 dm_thin_id old_id, new_id;
2495 int r;
2496
2497 r = check_arg_count(argc, 3);
2498 if (r)
2499 return r;
2500
2501 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2502 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2503 return -EINVAL;
2504 }
2505
2506 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2507 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2508 return -EINVAL;
2509 }
2510
2511 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2512 if (r) {
2513 DMWARN("Failed to change transaction id from %s to %s.",
2514 argv[1], argv[2]);
2515 return r;
2516 }
2517
2518 return 0;
2519}
2520
cc8394d8
JT
2521static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2522{
2523 int r;
2524
2525 r = check_arg_count(argc, 1);
2526 if (r)
2527 return r;
2528
e49e5829 2529 (void) commit_or_fallback(pool);
0d200aef 2530
cc8394d8
JT
2531 r = dm_pool_reserve_metadata_snap(pool->pmd);
2532 if (r)
2533 DMWARN("reserve_metadata_snap message failed.");
2534
2535 return r;
2536}
2537
2538static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2539{
2540 int r;
2541
2542 r = check_arg_count(argc, 1);
2543 if (r)
2544 return r;
2545
2546 r = dm_pool_release_metadata_snap(pool->pmd);
2547 if (r)
2548 DMWARN("release_metadata_snap message failed.");
2549
2550 return r;
2551}
2552
991d9fa0
JT
2553/*
2554 * Messages supported:
2555 * create_thin <dev_id>
2556 * create_snap <dev_id> <origin_id>
2557 * delete <dev_id>
2558 * trim <dev_id> <new_size_in_sectors>
2559 * set_transaction_id <current_trans_id> <new_trans_id>
cc8394d8
JT
2560 * reserve_metadata_snap
2561 * release_metadata_snap
991d9fa0
JT
2562 */
2563static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2564{
2565 int r = -EINVAL;
2566 struct pool_c *pt = ti->private;
2567 struct pool *pool = pt->pool;
2568
2569 if (!strcasecmp(argv[0], "create_thin"))
2570 r = process_create_thin_mesg(argc, argv, pool);
2571
2572 else if (!strcasecmp(argv[0], "create_snap"))
2573 r = process_create_snap_mesg(argc, argv, pool);
2574
2575 else if (!strcasecmp(argv[0], "delete"))
2576 r = process_delete_mesg(argc, argv, pool);
2577
2578 else if (!strcasecmp(argv[0], "set_transaction_id"))
2579 r = process_set_transaction_id_mesg(argc, argv, pool);
2580
cc8394d8
JT
2581 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2582 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2583
2584 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2585 r = process_release_metadata_snap_mesg(argc, argv, pool);
2586
991d9fa0
JT
2587 else
2588 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2589
e49e5829
JT
2590 if (!r)
2591 (void) commit_or_fallback(pool);
991d9fa0
JT
2592
2593 return r;
2594}
2595
e49e5829
JT
2596static void emit_flags(struct pool_features *pf, char *result,
2597 unsigned sz, unsigned maxlen)
2598{
2599 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2600 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2601 DMEMIT("%u ", count);
2602
2603 if (!pf->zero_new_blocks)
2604 DMEMIT("skip_block_zeroing ");
2605
2606 if (!pf->discard_enabled)
2607 DMEMIT("ignore_discard ");
2608
2609 if (!pf->discard_passdown)
2610 DMEMIT("no_discard_passdown ");
2611
2612 if (pf->mode == PM_READ_ONLY)
2613 DMEMIT("read_only ");
2614}
2615
991d9fa0
JT
2616/*
2617 * Status line is:
2618 * <transaction id> <used metadata sectors>/<total metadata sectors>
2619 * <used data sectors>/<total data sectors> <held metadata root>
2620 */
2621static int pool_status(struct dm_target *ti, status_type_t type,
2622 char *result, unsigned maxlen)
2623{
e49e5829 2624 int r;
991d9fa0
JT
2625 unsigned sz = 0;
2626 uint64_t transaction_id;
2627 dm_block_t nr_free_blocks_data;
2628 dm_block_t nr_free_blocks_metadata;
2629 dm_block_t nr_blocks_data;
2630 dm_block_t nr_blocks_metadata;
2631 dm_block_t held_root;
2632 char buf[BDEVNAME_SIZE];
2633 char buf2[BDEVNAME_SIZE];
2634 struct pool_c *pt = ti->private;
2635 struct pool *pool = pt->pool;
2636
2637 switch (type) {
2638 case STATUSTYPE_INFO:
e49e5829
JT
2639 if (get_pool_mode(pool) == PM_FAIL) {
2640 DMEMIT("Fail");
2641 break;
2642 }
2643
991d9fa0
JT
2644 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2645 &transaction_id);
2646 if (r)
2647 return r;
2648
2649 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2650 &nr_free_blocks_metadata);
2651 if (r)
2652 return r;
2653
2654 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2655 if (r)
2656 return r;
2657
2658 r = dm_pool_get_free_block_count(pool->pmd,
2659 &nr_free_blocks_data);
2660 if (r)
2661 return r;
2662
2663 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2664 if (r)
2665 return r;
2666
cc8394d8 2667 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
991d9fa0
JT
2668 if (r)
2669 return r;
2670
2671 DMEMIT("%llu %llu/%llu %llu/%llu ",
2672 (unsigned long long)transaction_id,
2673 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2674 (unsigned long long)nr_blocks_metadata,
2675 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2676 (unsigned long long)nr_blocks_data);
2677
2678 if (held_root)
e49e5829
JT
2679 DMEMIT("%llu ", held_root);
2680 else
2681 DMEMIT("- ");
2682
2683 if (pool->pf.mode == PM_READ_ONLY)
2684 DMEMIT("ro ");
991d9fa0 2685 else
e49e5829
JT
2686 DMEMIT("rw ");
2687
2688 if (pool->pf.discard_enabled && pool->pf.discard_passdown)
2689 DMEMIT("discard_passdown");
2690 else
2691 DMEMIT("no_discard_passdown");
991d9fa0
JT
2692
2693 break;
2694
2695 case STATUSTYPE_TABLE:
2696 DMEMIT("%s %s %lu %llu ",
2697 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2698 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2699 (unsigned long)pool->sectors_per_block,
2700 (unsigned long long)pt->low_water_blocks);
e49e5829 2701 emit_flags(&pt->pf, result, sz, maxlen);
991d9fa0
JT
2702 break;
2703 }
2704
2705 return 0;
2706}
2707
2708static int pool_iterate_devices(struct dm_target *ti,
2709 iterate_devices_callout_fn fn, void *data)
2710{
2711 struct pool_c *pt = ti->private;
2712
2713 return fn(ti, pt->data_dev, 0, ti->len, data);
2714}
2715
2716static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2717 struct bio_vec *biovec, int max_size)
2718{
2719 struct pool_c *pt = ti->private;
2720 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2721
2722 if (!q->merge_bvec_fn)
2723 return max_size;
2724
2725 bvm->bi_bdev = pt->data_dev->bdev;
2726
2727 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2728}
2729
104655fd
JT
2730static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2731{
67e2e2b2
JT
2732 /*
2733 * FIXME: these limits may be incompatible with the pool's data device
2734 */
104655fd
JT
2735 limits->max_discard_sectors = pool->sectors_per_block;
2736
2737 /*
2738 * This is just a hint, and not enforced. We have to cope with
49296309
MP
2739 * bios that cover a block partially. A discard that spans a block
2740 * boundary is not sent to this target.
104655fd
JT
2741 */
2742 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
67e2e2b2 2743 limits->discard_zeroes_data = pool->pf.zero_new_blocks;
104655fd
JT
2744}
2745
991d9fa0
JT
2746static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2747{
2748 struct pool_c *pt = ti->private;
2749 struct pool *pool = pt->pool;
2750
2751 blk_limits_io_min(limits, 0);
2752 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
67e2e2b2
JT
2753 if (pool->pf.discard_enabled)
2754 set_discard_limits(pool, limits);
991d9fa0
JT
2755}
2756
2757static struct target_type pool_target = {
2758 .name = "thin-pool",
2759 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2760 DM_TARGET_IMMUTABLE,
e49e5829 2761 .version = {1, 3, 0},
991d9fa0
JT
2762 .module = THIS_MODULE,
2763 .ctr = pool_ctr,
2764 .dtr = pool_dtr,
2765 .map = pool_map,
2766 .postsuspend = pool_postsuspend,
2767 .preresume = pool_preresume,
2768 .resume = pool_resume,
2769 .message = pool_message,
2770 .status = pool_status,
2771 .merge = pool_merge,
2772 .iterate_devices = pool_iterate_devices,
2773 .io_hints = pool_io_hints,
2774};
2775
2776/*----------------------------------------------------------------
2777 * Thin target methods
2778 *--------------------------------------------------------------*/
2779static void thin_dtr(struct dm_target *ti)
2780{
2781 struct thin_c *tc = ti->private;
2782
2783 mutex_lock(&dm_thin_pool_table.mutex);
2784
2785 __pool_dec(tc->pool);
2786 dm_pool_close_thin_device(tc->td);
2787 dm_put_device(ti, tc->pool_dev);
2dd9c257
JT
2788 if (tc->origin_dev)
2789 dm_put_device(ti, tc->origin_dev);
991d9fa0
JT
2790 kfree(tc);
2791
2792 mutex_unlock(&dm_thin_pool_table.mutex);
2793}
2794
2795/*
2796 * Thin target parameters:
2797 *
2dd9c257 2798 * <pool_dev> <dev_id> [origin_dev]
991d9fa0
JT
2799 *
2800 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2801 * dev_id: the internal device identifier
2dd9c257 2802 * origin_dev: a device external to the pool that should act as the origin
67e2e2b2
JT
2803 *
2804 * If the pool device has discards disabled, they get disabled for the thin
2805 * device as well.
991d9fa0
JT
2806 */
2807static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2808{
2809 int r;
2810 struct thin_c *tc;
2dd9c257 2811 struct dm_dev *pool_dev, *origin_dev;
991d9fa0
JT
2812 struct mapped_device *pool_md;
2813
2814 mutex_lock(&dm_thin_pool_table.mutex);
2815
2dd9c257 2816 if (argc != 2 && argc != 3) {
991d9fa0
JT
2817 ti->error = "Invalid argument count";
2818 r = -EINVAL;
2819 goto out_unlock;
2820 }
2821
2822 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2823 if (!tc) {
2824 ti->error = "Out of memory";
2825 r = -ENOMEM;
2826 goto out_unlock;
2827 }
2828
2dd9c257
JT
2829 if (argc == 3) {
2830 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2831 if (r) {
2832 ti->error = "Error opening origin device";
2833 goto bad_origin_dev;
2834 }
2835 tc->origin_dev = origin_dev;
2836 }
2837
991d9fa0
JT
2838 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2839 if (r) {
2840 ti->error = "Error opening pool device";
2841 goto bad_pool_dev;
2842 }
2843 tc->pool_dev = pool_dev;
2844
2845 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2846 ti->error = "Invalid device id";
2847 r = -EINVAL;
2848 goto bad_common;
2849 }
2850
2851 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2852 if (!pool_md) {
2853 ti->error = "Couldn't get pool mapped device";
2854 r = -EINVAL;
2855 goto bad_common;
2856 }
2857
2858 tc->pool = __pool_table_lookup(pool_md);
2859 if (!tc->pool) {
2860 ti->error = "Couldn't find pool object";
2861 r = -EINVAL;
2862 goto bad_pool_lookup;
2863 }
2864 __pool_inc(tc->pool);
2865
e49e5829
JT
2866 if (get_pool_mode(tc->pool) == PM_FAIL) {
2867 ti->error = "Couldn't open thin device, Pool is in fail mode";
2868 goto bad_thin_open;
2869 }
2870
991d9fa0
JT
2871 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2872 if (r) {
2873 ti->error = "Couldn't open thin internal device";
2874 goto bad_thin_open;
2875 }
2876
542f9038
MS
2877 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2878 if (r)
2879 goto bad_thin_open;
2880
991d9fa0 2881 ti->num_flush_requests = 1;
16ad3d10 2882 ti->flush_supported = true;
67e2e2b2
JT
2883
2884 /* In case the pool supports discards, pass them on. */
2885 if (tc->pool->pf.discard_enabled) {
0ac55489 2886 ti->discards_supported = true;
67e2e2b2 2887 ti->num_discard_requests = 1;
0ac55489 2888 ti->discard_zeroes_data_unsupported = true;
49296309 2889 /* Discard requests must be split on a block boundary */
0ac55489 2890 ti->split_discard_requests = true;
67e2e2b2 2891 }
991d9fa0
JT
2892
2893 dm_put(pool_md);
2894
2895 mutex_unlock(&dm_thin_pool_table.mutex);
2896
2897 return 0;
2898
2899bad_thin_open:
2900 __pool_dec(tc->pool);
2901bad_pool_lookup:
2902 dm_put(pool_md);
2903bad_common:
2904 dm_put_device(ti, tc->pool_dev);
2905bad_pool_dev:
2dd9c257
JT
2906 if (tc->origin_dev)
2907 dm_put_device(ti, tc->origin_dev);
2908bad_origin_dev:
991d9fa0
JT
2909 kfree(tc);
2910out_unlock:
2911 mutex_unlock(&dm_thin_pool_table.mutex);
2912
2913 return r;
2914}
2915
2916static int thin_map(struct dm_target *ti, struct bio *bio,
2917 union map_info *map_context)
2918{
6efd6e83 2919 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
991d9fa0
JT
2920
2921 return thin_bio_map(ti, bio, map_context);
2922}
2923
eb2aa48d
JT
2924static int thin_endio(struct dm_target *ti,
2925 struct bio *bio, int err,
2926 union map_info *map_context)
2927{
2928 unsigned long flags;
a24c2569 2929 struct dm_thin_endio_hook *h = map_context->ptr;
eb2aa48d 2930 struct list_head work;
a24c2569 2931 struct dm_thin_new_mapping *m, *tmp;
eb2aa48d
JT
2932 struct pool *pool = h->tc->pool;
2933
2934 if (h->shared_read_entry) {
2935 INIT_LIST_HEAD(&work);
2936 ds_dec(h->shared_read_entry, &work);
2937
2938 spin_lock_irqsave(&pool->lock, flags);
2939 list_for_each_entry_safe(m, tmp, &work, list) {
2940 list_del(&m->list);
2941 m->quiesced = 1;
2942 __maybe_add_mapping(m);
2943 }
2944 spin_unlock_irqrestore(&pool->lock, flags);
2945 }
2946
104655fd
JT
2947 if (h->all_io_entry) {
2948 INIT_LIST_HEAD(&work);
2949 ds_dec(h->all_io_entry, &work);
c3a0ce2e 2950 spin_lock_irqsave(&pool->lock, flags);
104655fd
JT
2951 list_for_each_entry_safe(m, tmp, &work, list)
2952 list_add(&m->list, &pool->prepared_discards);
c3a0ce2e 2953 spin_unlock_irqrestore(&pool->lock, flags);
104655fd
JT
2954 }
2955
eb2aa48d
JT
2956 mempool_free(h, pool->endio_hook_pool);
2957
2958 return 0;
2959}
2960
991d9fa0
JT
2961static void thin_postsuspend(struct dm_target *ti)
2962{
2963 if (dm_noflush_suspending(ti))
2964 requeue_io((struct thin_c *)ti->private);
2965}
2966
2967/*
2968 * <nr mapped sectors> <highest mapped sector>
2969 */
2970static int thin_status(struct dm_target *ti, status_type_t type,
2971 char *result, unsigned maxlen)
2972{
2973 int r;
2974 ssize_t sz = 0;
2975 dm_block_t mapped, highest;
2976 char buf[BDEVNAME_SIZE];
2977 struct thin_c *tc = ti->private;
2978
e49e5829
JT
2979 if (get_pool_mode(tc->pool) == PM_FAIL) {
2980 DMEMIT("Fail");
2981 return 0;
2982 }
2983
991d9fa0
JT
2984 if (!tc->td)
2985 DMEMIT("-");
2986 else {
2987 switch (type) {
2988 case STATUSTYPE_INFO:
2989 r = dm_thin_get_mapped_count(tc->td, &mapped);
2990 if (r)
2991 return r;
2992
2993 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2994 if (r < 0)
2995 return r;
2996
2997 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2998 if (r)
2999 DMEMIT("%llu", ((highest + 1) *
3000 tc->pool->sectors_per_block) - 1);
3001 else
3002 DMEMIT("-");
3003 break;
3004
3005 case STATUSTYPE_TABLE:
3006 DMEMIT("%s %lu",
3007 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3008 (unsigned long) tc->dev_id);
2dd9c257
JT
3009 if (tc->origin_dev)
3010 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
991d9fa0
JT
3011 break;
3012 }
3013 }
3014
3015 return 0;
3016}
3017
3018static int thin_iterate_devices(struct dm_target *ti,
3019 iterate_devices_callout_fn fn, void *data)
3020{
55f2b8bd 3021 sector_t blocks;
991d9fa0 3022 struct thin_c *tc = ti->private;
55f2b8bd 3023 struct pool *pool = tc->pool;
991d9fa0
JT
3024
3025 /*
3026 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3027 * we follow a more convoluted path through to the pool's target.
3028 */
55f2b8bd 3029 if (!pool->ti)
991d9fa0
JT
3030 return 0; /* nothing is bound */
3031
55f2b8bd
MS
3032 blocks = pool->ti->len;
3033 (void) sector_div(blocks, pool->sectors_per_block);
991d9fa0 3034 if (blocks)
55f2b8bd 3035 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
991d9fa0
JT
3036
3037 return 0;
3038}
3039
3040static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
3041{
3042 struct thin_c *tc = ti->private;
104655fd 3043 struct pool *pool = tc->pool;
991d9fa0
JT
3044
3045 blk_limits_io_min(limits, 0);
104655fd
JT
3046 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3047 set_discard_limits(pool, limits);
991d9fa0
JT
3048}
3049
3050static struct target_type thin_target = {
3051 .name = "thin",
e49e5829 3052 .version = {1, 3, 0},
991d9fa0
JT
3053 .module = THIS_MODULE,
3054 .ctr = thin_ctr,
3055 .dtr = thin_dtr,
3056 .map = thin_map,
eb2aa48d 3057 .end_io = thin_endio,
991d9fa0
JT
3058 .postsuspend = thin_postsuspend,
3059 .status = thin_status,
3060 .iterate_devices = thin_iterate_devices,
3061 .io_hints = thin_io_hints,
3062};
3063
3064/*----------------------------------------------------------------*/
3065
3066static int __init dm_thin_init(void)
3067{
3068 int r;
3069
3070 pool_table_init();
3071
3072 r = dm_register_target(&thin_target);
3073 if (r)
3074 return r;
3075
3076 r = dm_register_target(&pool_target);
3077 if (r)
a24c2569
MS
3078 goto bad_pool_target;
3079
3080 r = -ENOMEM;
3081
3082 _cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
3083 if (!_cell_cache)
3084 goto bad_cell_cache;
3085
3086 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3087 if (!_new_mapping_cache)
3088 goto bad_new_mapping_cache;
3089
3090 _endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
3091 if (!_endio_hook_cache)
3092 goto bad_endio_hook_cache;
3093
3094 return 0;
3095
3096bad_endio_hook_cache:
3097 kmem_cache_destroy(_new_mapping_cache);
3098bad_new_mapping_cache:
3099 kmem_cache_destroy(_cell_cache);
3100bad_cell_cache:
3101 dm_unregister_target(&pool_target);
3102bad_pool_target:
3103 dm_unregister_target(&thin_target);
991d9fa0
JT
3104
3105 return r;
3106}
3107
3108static void dm_thin_exit(void)
3109{
3110 dm_unregister_target(&thin_target);
3111 dm_unregister_target(&pool_target);
a24c2569
MS
3112
3113 kmem_cache_destroy(_cell_cache);
3114 kmem_cache_destroy(_new_mapping_cache);
3115 kmem_cache_destroy(_endio_hook_cache);
991d9fa0
JT
3116}
3117
3118module_init(dm_thin_init);
3119module_exit(dm_thin_exit);
3120
7cab8bf1 3121MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
991d9fa0
JT
3122MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3123MODULE_LICENSE("GPL");
This page took 0.273987 seconds and 5 git commands to generate.