dm thin: prepare to support discard
[deliverable/linux.git] / drivers / md / dm-thin.c
CommitLineData
991d9fa0
JT
1/*
2 * Copyright (C) 2011 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-thin-metadata.h"
8
9#include <linux/device-mapper.h>
10#include <linux/dm-io.h>
11#include <linux/dm-kcopyd.h>
12#include <linux/list.h>
13#include <linux/init.h>
14#include <linux/module.h>
15#include <linux/slab.h>
16
17#define DM_MSG_PREFIX "thin"
18
19/*
20 * Tunable constants
21 */
22#define ENDIO_HOOK_POOL_SIZE 10240
23#define DEFERRED_SET_SIZE 64
24#define MAPPING_POOL_SIZE 1024
25#define PRISON_CELLS 1024
905e51b3 26#define COMMIT_PERIOD HZ
991d9fa0
JT
27
28/*
29 * The block size of the device holding pool data must be
30 * between 64KB and 1GB.
31 */
32#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
33#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
34
991d9fa0
JT
35/*
36 * Device id is restricted to 24 bits.
37 */
38#define MAX_DEV_ID ((1 << 24) - 1)
39
40/*
41 * How do we handle breaking sharing of data blocks?
42 * =================================================
43 *
44 * We use a standard copy-on-write btree to store the mappings for the
45 * devices (note I'm talking about copy-on-write of the metadata here, not
46 * the data). When you take an internal snapshot you clone the root node
47 * of the origin btree. After this there is no concept of an origin or a
48 * snapshot. They are just two device trees that happen to point to the
49 * same data blocks.
50 *
51 * When we get a write in we decide if it's to a shared data block using
52 * some timestamp magic. If it is, we have to break sharing.
53 *
54 * Let's say we write to a shared block in what was the origin. The
55 * steps are:
56 *
57 * i) plug io further to this physical block. (see bio_prison code).
58 *
59 * ii) quiesce any read io to that shared data block. Obviously
60 * including all devices that share this block. (see deferred_set code)
61 *
62 * iii) copy the data block to a newly allocate block. This step can be
63 * missed out if the io covers the block. (schedule_copy).
64 *
65 * iv) insert the new mapping into the origin's btree
fe878f34 66 * (process_prepared_mapping). This act of inserting breaks some
991d9fa0
JT
67 * sharing of btree nodes between the two devices. Breaking sharing only
68 * effects the btree of that specific device. Btrees for the other
69 * devices that share the block never change. The btree for the origin
70 * device as it was after the last commit is untouched, ie. we're using
71 * persistent data structures in the functional programming sense.
72 *
73 * v) unplug io to this physical block, including the io that triggered
74 * the breaking of sharing.
75 *
76 * Steps (ii) and (iii) occur in parallel.
77 *
78 * The metadata _doesn't_ need to be committed before the io continues. We
79 * get away with this because the io is always written to a _new_ block.
80 * If there's a crash, then:
81 *
82 * - The origin mapping will point to the old origin block (the shared
83 * one). This will contain the data as it was before the io that triggered
84 * the breaking of sharing came in.
85 *
86 * - The snap mapping still points to the old block. As it would after
87 * the commit.
88 *
89 * The downside of this scheme is the timestamp magic isn't perfect, and
90 * will continue to think that data block in the snapshot device is shared
91 * even after the write to the origin has broken sharing. I suspect data
92 * blocks will typically be shared by many different devices, so we're
93 * breaking sharing n + 1 times, rather than n, where n is the number of
94 * devices that reference this data block. At the moment I think the
95 * benefits far, far outweigh the disadvantages.
96 */
97
98/*----------------------------------------------------------------*/
99
100/*
101 * Sometimes we can't deal with a bio straight away. We put them in prison
102 * where they can't cause any mischief. Bios are put in a cell identified
103 * by a key, multiple bios can be in the same cell. When the cell is
104 * subsequently unlocked the bios become available.
105 */
106struct bio_prison;
107
108struct cell_key {
109 int virtual;
110 dm_thin_id dev;
111 dm_block_t block;
112};
113
114struct cell {
115 struct hlist_node list;
116 struct bio_prison *prison;
117 struct cell_key key;
6f94a4c4 118 struct bio *holder;
991d9fa0
JT
119 struct bio_list bios;
120};
121
122struct bio_prison {
123 spinlock_t lock;
124 mempool_t *cell_pool;
125
126 unsigned nr_buckets;
127 unsigned hash_mask;
128 struct hlist_head *cells;
129};
130
131static uint32_t calc_nr_buckets(unsigned nr_cells)
132{
133 uint32_t n = 128;
134
135 nr_cells /= 4;
136 nr_cells = min(nr_cells, 8192u);
137
138 while (n < nr_cells)
139 n <<= 1;
140
141 return n;
142}
143
144/*
145 * @nr_cells should be the number of cells you want in use _concurrently_.
146 * Don't confuse it with the number of distinct keys.
147 */
148static struct bio_prison *prison_create(unsigned nr_cells)
149{
150 unsigned i;
151 uint32_t nr_buckets = calc_nr_buckets(nr_cells);
152 size_t len = sizeof(struct bio_prison) +
153 (sizeof(struct hlist_head) * nr_buckets);
154 struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
155
156 if (!prison)
157 return NULL;
158
159 spin_lock_init(&prison->lock);
160 prison->cell_pool = mempool_create_kmalloc_pool(nr_cells,
161 sizeof(struct cell));
162 if (!prison->cell_pool) {
163 kfree(prison);
164 return NULL;
165 }
166
167 prison->nr_buckets = nr_buckets;
168 prison->hash_mask = nr_buckets - 1;
169 prison->cells = (struct hlist_head *) (prison + 1);
170 for (i = 0; i < nr_buckets; i++)
171 INIT_HLIST_HEAD(prison->cells + i);
172
173 return prison;
174}
175
176static void prison_destroy(struct bio_prison *prison)
177{
178 mempool_destroy(prison->cell_pool);
179 kfree(prison);
180}
181
182static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
183{
184 const unsigned long BIG_PRIME = 4294967291UL;
185 uint64_t hash = key->block * BIG_PRIME;
186
187 return (uint32_t) (hash & prison->hash_mask);
188}
189
190static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
191{
192 return (lhs->virtual == rhs->virtual) &&
193 (lhs->dev == rhs->dev) &&
194 (lhs->block == rhs->block);
195}
196
197static struct cell *__search_bucket(struct hlist_head *bucket,
198 struct cell_key *key)
199{
200 struct cell *cell;
201 struct hlist_node *tmp;
202
203 hlist_for_each_entry(cell, tmp, bucket, list)
204 if (keys_equal(&cell->key, key))
205 return cell;
206
207 return NULL;
208}
209
210/*
211 * This may block if a new cell needs allocating. You must ensure that
212 * cells will be unlocked even if the calling thread is blocked.
213 *
6f94a4c4 214 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
991d9fa0
JT
215 */
216static int bio_detain(struct bio_prison *prison, struct cell_key *key,
217 struct bio *inmate, struct cell **ref)
218{
6f94a4c4 219 int r = 1;
991d9fa0
JT
220 unsigned long flags;
221 uint32_t hash = hash_key(prison, key);
6f94a4c4 222 struct cell *cell, *cell2;
991d9fa0
JT
223
224 BUG_ON(hash > prison->nr_buckets);
225
226 spin_lock_irqsave(&prison->lock, flags);
991d9fa0 227
6f94a4c4
JT
228 cell = __search_bucket(prison->cells + hash, key);
229 if (cell) {
230 bio_list_add(&cell->bios, inmate);
231 goto out;
991d9fa0
JT
232 }
233
6f94a4c4
JT
234 /*
235 * Allocate a new cell
236 */
991d9fa0 237 spin_unlock_irqrestore(&prison->lock, flags);
6f94a4c4
JT
238 cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
239 spin_lock_irqsave(&prison->lock, flags);
991d9fa0 240
6f94a4c4
JT
241 /*
242 * We've been unlocked, so we have to double check that
243 * nobody else has inserted this cell in the meantime.
244 */
245 cell = __search_bucket(prison->cells + hash, key);
246 if (cell) {
991d9fa0 247 mempool_free(cell2, prison->cell_pool);
6f94a4c4
JT
248 bio_list_add(&cell->bios, inmate);
249 goto out;
250 }
251
252 /*
253 * Use new cell.
254 */
255 cell = cell2;
256
257 cell->prison = prison;
258 memcpy(&cell->key, key, sizeof(cell->key));
259 cell->holder = inmate;
260 bio_list_init(&cell->bios);
261 hlist_add_head(&cell->list, prison->cells + hash);
262
263 r = 0;
264
265out:
266 spin_unlock_irqrestore(&prison->lock, flags);
991d9fa0
JT
267
268 *ref = cell;
269
270 return r;
271}
272
273/*
274 * @inmates must have been initialised prior to this call
275 */
276static void __cell_release(struct cell *cell, struct bio_list *inmates)
277{
278 struct bio_prison *prison = cell->prison;
279
280 hlist_del(&cell->list);
281
6f94a4c4
JT
282 bio_list_add(inmates, cell->holder);
283 bio_list_merge(inmates, &cell->bios);
991d9fa0
JT
284
285 mempool_free(cell, prison->cell_pool);
286}
287
288static void cell_release(struct cell *cell, struct bio_list *bios)
289{
290 unsigned long flags;
291 struct bio_prison *prison = cell->prison;
292
293 spin_lock_irqsave(&prison->lock, flags);
294 __cell_release(cell, bios);
295 spin_unlock_irqrestore(&prison->lock, flags);
296}
297
298/*
299 * There are a couple of places where we put a bio into a cell briefly
300 * before taking it out again. In these situations we know that no other
301 * bio may be in the cell. This function releases the cell, and also does
302 * a sanity check.
303 */
6f94a4c4
JT
304static void __cell_release_singleton(struct cell *cell, struct bio *bio)
305{
306 hlist_del(&cell->list);
307 BUG_ON(cell->holder != bio);
308 BUG_ON(!bio_list_empty(&cell->bios));
309}
310
991d9fa0
JT
311static void cell_release_singleton(struct cell *cell, struct bio *bio)
312{
991d9fa0 313 unsigned long flags;
6f94a4c4 314 struct bio_prison *prison = cell->prison;
991d9fa0
JT
315
316 spin_lock_irqsave(&prison->lock, flags);
6f94a4c4 317 __cell_release_singleton(cell, bio);
991d9fa0 318 spin_unlock_irqrestore(&prison->lock, flags);
6f94a4c4
JT
319}
320
321/*
322 * Sometimes we don't want the holder, just the additional bios.
323 */
324static void __cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
325{
326 struct bio_prison *prison = cell->prison;
327
328 hlist_del(&cell->list);
329 bio_list_merge(inmates, &cell->bios);
330
331 mempool_free(cell, prison->cell_pool);
332}
333
334static void cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
335{
336 unsigned long flags;
337 struct bio_prison *prison = cell->prison;
991d9fa0 338
6f94a4c4
JT
339 spin_lock_irqsave(&prison->lock, flags);
340 __cell_release_no_holder(cell, inmates);
341 spin_unlock_irqrestore(&prison->lock, flags);
991d9fa0
JT
342}
343
344static void cell_error(struct cell *cell)
345{
346 struct bio_prison *prison = cell->prison;
347 struct bio_list bios;
348 struct bio *bio;
349 unsigned long flags;
350
351 bio_list_init(&bios);
352
353 spin_lock_irqsave(&prison->lock, flags);
354 __cell_release(cell, &bios);
355 spin_unlock_irqrestore(&prison->lock, flags);
356
357 while ((bio = bio_list_pop(&bios)))
358 bio_io_error(bio);
359}
360
361/*----------------------------------------------------------------*/
362
363/*
364 * We use the deferred set to keep track of pending reads to shared blocks.
365 * We do this to ensure the new mapping caused by a write isn't performed
366 * until these prior reads have completed. Otherwise the insertion of the
367 * new mapping could free the old block that the read bios are mapped to.
368 */
369
370struct deferred_set;
371struct deferred_entry {
372 struct deferred_set *ds;
373 unsigned count;
374 struct list_head work_items;
375};
376
377struct deferred_set {
378 spinlock_t lock;
379 unsigned current_entry;
380 unsigned sweeper;
381 struct deferred_entry entries[DEFERRED_SET_SIZE];
382};
383
384static void ds_init(struct deferred_set *ds)
385{
386 int i;
387
388 spin_lock_init(&ds->lock);
389 ds->current_entry = 0;
390 ds->sweeper = 0;
391 for (i = 0; i < DEFERRED_SET_SIZE; i++) {
392 ds->entries[i].ds = ds;
393 ds->entries[i].count = 0;
394 INIT_LIST_HEAD(&ds->entries[i].work_items);
395 }
396}
397
398static struct deferred_entry *ds_inc(struct deferred_set *ds)
399{
400 unsigned long flags;
401 struct deferred_entry *entry;
402
403 spin_lock_irqsave(&ds->lock, flags);
404 entry = ds->entries + ds->current_entry;
405 entry->count++;
406 spin_unlock_irqrestore(&ds->lock, flags);
407
408 return entry;
409}
410
411static unsigned ds_next(unsigned index)
412{
413 return (index + 1) % DEFERRED_SET_SIZE;
414}
415
416static void __sweep(struct deferred_set *ds, struct list_head *head)
417{
418 while ((ds->sweeper != ds->current_entry) &&
419 !ds->entries[ds->sweeper].count) {
420 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
421 ds->sweeper = ds_next(ds->sweeper);
422 }
423
424 if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
425 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
426}
427
428static void ds_dec(struct deferred_entry *entry, struct list_head *head)
429{
430 unsigned long flags;
431
432 spin_lock_irqsave(&entry->ds->lock, flags);
433 BUG_ON(!entry->count);
434 --entry->count;
435 __sweep(entry->ds, head);
436 spin_unlock_irqrestore(&entry->ds->lock, flags);
437}
438
439/*
440 * Returns 1 if deferred or 0 if no pending items to delay job.
441 */
442static int ds_add_work(struct deferred_set *ds, struct list_head *work)
443{
444 int r = 1;
445 unsigned long flags;
446 unsigned next_entry;
447
448 spin_lock_irqsave(&ds->lock, flags);
449 if ((ds->sweeper == ds->current_entry) &&
450 !ds->entries[ds->current_entry].count)
451 r = 0;
452 else {
453 list_add(work, &ds->entries[ds->current_entry].work_items);
454 next_entry = ds_next(ds->current_entry);
455 if (!ds->entries[next_entry].count)
456 ds->current_entry = next_entry;
457 }
458 spin_unlock_irqrestore(&ds->lock, flags);
459
460 return r;
461}
462
463/*----------------------------------------------------------------*/
464
465/*
466 * Key building.
467 */
468static void build_data_key(struct dm_thin_device *td,
469 dm_block_t b, struct cell_key *key)
470{
471 key->virtual = 0;
472 key->dev = dm_thin_dev_id(td);
473 key->block = b;
474}
475
476static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
477 struct cell_key *key)
478{
479 key->virtual = 1;
480 key->dev = dm_thin_dev_id(td);
481 key->block = b;
482}
483
484/*----------------------------------------------------------------*/
485
486/*
487 * A pool device ties together a metadata device and a data device. It
488 * also provides the interface for creating and destroying internal
489 * devices.
490 */
491struct new_mapping;
492struct pool {
493 struct list_head list;
494 struct dm_target *ti; /* Only set if a pool target is bound */
495
496 struct mapped_device *pool_md;
497 struct block_device *md_dev;
498 struct dm_pool_metadata *pmd;
499
500 uint32_t sectors_per_block;
501 unsigned block_shift;
502 dm_block_t offset_mask;
503 dm_block_t low_water_blocks;
504
505 unsigned zero_new_blocks:1;
506 unsigned low_water_triggered:1; /* A dm event has been sent */
507 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
508
509 struct bio_prison *prison;
510 struct dm_kcopyd_client *copier;
511
512 struct workqueue_struct *wq;
513 struct work_struct worker;
905e51b3 514 struct delayed_work waker;
991d9fa0
JT
515
516 unsigned ref_count;
905e51b3 517 unsigned long last_commit_jiffies;
991d9fa0
JT
518
519 spinlock_t lock;
520 struct bio_list deferred_bios;
521 struct bio_list deferred_flush_bios;
522 struct list_head prepared_mappings;
523
524 struct bio_list retry_on_resume_list;
525
eb2aa48d 526 struct deferred_set shared_read_ds;
991d9fa0
JT
527
528 struct new_mapping *next_mapping;
529 mempool_t *mapping_pool;
530 mempool_t *endio_hook_pool;
531};
532
533/*
534 * Target context for a pool.
535 */
536struct pool_c {
537 struct dm_target *ti;
538 struct pool *pool;
539 struct dm_dev *data_dev;
540 struct dm_dev *metadata_dev;
541 struct dm_target_callbacks callbacks;
542
543 dm_block_t low_water_blocks;
544 unsigned zero_new_blocks:1;
545};
546
547/*
548 * Target context for a thin.
549 */
550struct thin_c {
551 struct dm_dev *pool_dev;
2dd9c257 552 struct dm_dev *origin_dev;
991d9fa0
JT
553 dm_thin_id dev_id;
554
555 struct pool *pool;
556 struct dm_thin_device *td;
557};
558
559/*----------------------------------------------------------------*/
560
561/*
562 * A global list of pools that uses a struct mapped_device as a key.
563 */
564static struct dm_thin_pool_table {
565 struct mutex mutex;
566 struct list_head pools;
567} dm_thin_pool_table;
568
569static void pool_table_init(void)
570{
571 mutex_init(&dm_thin_pool_table.mutex);
572 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
573}
574
575static void __pool_table_insert(struct pool *pool)
576{
577 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
578 list_add(&pool->list, &dm_thin_pool_table.pools);
579}
580
581static void __pool_table_remove(struct pool *pool)
582{
583 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
584 list_del(&pool->list);
585}
586
587static struct pool *__pool_table_lookup(struct mapped_device *md)
588{
589 struct pool *pool = NULL, *tmp;
590
591 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
592
593 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
594 if (tmp->pool_md == md) {
595 pool = tmp;
596 break;
597 }
598 }
599
600 return pool;
601}
602
603static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
604{
605 struct pool *pool = NULL, *tmp;
606
607 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
608
609 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
610 if (tmp->md_dev == md_dev) {
611 pool = tmp;
612 break;
613 }
614 }
615
616 return pool;
617}
618
619/*----------------------------------------------------------------*/
620
eb2aa48d
JT
621struct endio_hook {
622 struct thin_c *tc;
623 struct deferred_entry *shared_read_entry;
624 struct new_mapping *overwrite_mapping;
625};
626
991d9fa0
JT
627static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
628{
629 struct bio *bio;
630 struct bio_list bios;
631
632 bio_list_init(&bios);
633 bio_list_merge(&bios, master);
634 bio_list_init(master);
635
636 while ((bio = bio_list_pop(&bios))) {
eb2aa48d
JT
637 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
638 if (h->tc == tc)
991d9fa0
JT
639 bio_endio(bio, DM_ENDIO_REQUEUE);
640 else
641 bio_list_add(master, bio);
642 }
643}
644
645static void requeue_io(struct thin_c *tc)
646{
647 struct pool *pool = tc->pool;
648 unsigned long flags;
649
650 spin_lock_irqsave(&pool->lock, flags);
651 __requeue_bio_list(tc, &pool->deferred_bios);
652 __requeue_bio_list(tc, &pool->retry_on_resume_list);
653 spin_unlock_irqrestore(&pool->lock, flags);
654}
655
656/*
657 * This section of code contains the logic for processing a thin device's IO.
658 * Much of the code depends on pool object resources (lists, workqueues, etc)
659 * but most is exclusively called from the thin target rather than the thin-pool
660 * target.
661 */
662
663static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
664{
665 return bio->bi_sector >> tc->pool->block_shift;
666}
667
668static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
669{
670 struct pool *pool = tc->pool;
671
672 bio->bi_bdev = tc->pool_dev->bdev;
673 bio->bi_sector = (block << pool->block_shift) +
674 (bio->bi_sector & pool->offset_mask);
675}
676
2dd9c257
JT
677static void remap_to_origin(struct thin_c *tc, struct bio *bio)
678{
679 bio->bi_bdev = tc->origin_dev->bdev;
680}
681
682static void issue(struct thin_c *tc, struct bio *bio)
991d9fa0
JT
683{
684 struct pool *pool = tc->pool;
685 unsigned long flags;
686
991d9fa0
JT
687 /*
688 * Batch together any FUA/FLUSH bios we find and then issue
689 * a single commit for them in process_deferred_bios().
690 */
691 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
692 spin_lock_irqsave(&pool->lock, flags);
693 bio_list_add(&pool->deferred_flush_bios, bio);
694 spin_unlock_irqrestore(&pool->lock, flags);
695 } else
696 generic_make_request(bio);
697}
698
2dd9c257
JT
699static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
700{
701 remap_to_origin(tc, bio);
702 issue(tc, bio);
703}
704
705static void remap_and_issue(struct thin_c *tc, struct bio *bio,
706 dm_block_t block)
707{
708 remap(tc, bio, block);
709 issue(tc, bio);
710}
711
991d9fa0
JT
712/*
713 * wake_worker() is used when new work is queued and when pool_resume is
714 * ready to continue deferred IO processing.
715 */
716static void wake_worker(struct pool *pool)
717{
718 queue_work(pool->wq, &pool->worker);
719}
720
721/*----------------------------------------------------------------*/
722
723/*
724 * Bio endio functions.
725 */
991d9fa0
JT
726struct new_mapping {
727 struct list_head list;
728
eb2aa48d
JT
729 unsigned quiesced:1;
730 unsigned prepared:1;
991d9fa0
JT
731
732 struct thin_c *tc;
733 dm_block_t virt_block;
734 dm_block_t data_block;
735 struct cell *cell;
736 int err;
737
738 /*
739 * If the bio covers the whole area of a block then we can avoid
740 * zeroing or copying. Instead this bio is hooked. The bio will
741 * still be in the cell, so care has to be taken to avoid issuing
742 * the bio twice.
743 */
744 struct bio *bio;
745 bio_end_io_t *saved_bi_end_io;
746};
747
748static void __maybe_add_mapping(struct new_mapping *m)
749{
750 struct pool *pool = m->tc->pool;
751
eb2aa48d 752 if (m->quiesced && m->prepared) {
991d9fa0
JT
753 list_add(&m->list, &pool->prepared_mappings);
754 wake_worker(pool);
755 }
756}
757
758static void copy_complete(int read_err, unsigned long write_err, void *context)
759{
760 unsigned long flags;
761 struct new_mapping *m = context;
762 struct pool *pool = m->tc->pool;
763
764 m->err = read_err || write_err ? -EIO : 0;
765
766 spin_lock_irqsave(&pool->lock, flags);
767 m->prepared = 1;
768 __maybe_add_mapping(m);
769 spin_unlock_irqrestore(&pool->lock, flags);
770}
771
772static void overwrite_endio(struct bio *bio, int err)
773{
774 unsigned long flags;
eb2aa48d
JT
775 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
776 struct new_mapping *m = h->overwrite_mapping;
991d9fa0
JT
777 struct pool *pool = m->tc->pool;
778
779 m->err = err;
780
781 spin_lock_irqsave(&pool->lock, flags);
782 m->prepared = 1;
783 __maybe_add_mapping(m);
784 spin_unlock_irqrestore(&pool->lock, flags);
785}
786
991d9fa0
JT
787/*----------------------------------------------------------------*/
788
789/*
790 * Workqueue.
791 */
792
793/*
794 * Prepared mapping jobs.
795 */
796
797/*
798 * This sends the bios in the cell back to the deferred_bios list.
799 */
800static void cell_defer(struct thin_c *tc, struct cell *cell,
801 dm_block_t data_block)
802{
803 struct pool *pool = tc->pool;
804 unsigned long flags;
805
806 spin_lock_irqsave(&pool->lock, flags);
807 cell_release(cell, &pool->deferred_bios);
808 spin_unlock_irqrestore(&tc->pool->lock, flags);
809
810 wake_worker(pool);
811}
812
813/*
814 * Same as cell_defer above, except it omits one particular detainee,
815 * a write bio that covers the block and has already been processed.
816 */
6f94a4c4 817static void cell_defer_except(struct thin_c *tc, struct cell *cell)
991d9fa0
JT
818{
819 struct bio_list bios;
991d9fa0
JT
820 struct pool *pool = tc->pool;
821 unsigned long flags;
822
823 bio_list_init(&bios);
991d9fa0
JT
824
825 spin_lock_irqsave(&pool->lock, flags);
6f94a4c4 826 cell_release_no_holder(cell, &pool->deferred_bios);
991d9fa0
JT
827 spin_unlock_irqrestore(&pool->lock, flags);
828
829 wake_worker(pool);
830}
831
832static void process_prepared_mapping(struct new_mapping *m)
833{
834 struct thin_c *tc = m->tc;
835 struct bio *bio;
836 int r;
837
838 bio = m->bio;
839 if (bio)
840 bio->bi_end_io = m->saved_bi_end_io;
841
842 if (m->err) {
843 cell_error(m->cell);
844 return;
845 }
846
847 /*
848 * Commit the prepared block into the mapping btree.
849 * Any I/O for this block arriving after this point will get
850 * remapped to it directly.
851 */
852 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
853 if (r) {
854 DMERR("dm_thin_insert_block() failed");
855 cell_error(m->cell);
856 return;
857 }
858
859 /*
860 * Release any bios held while the block was being provisioned.
861 * If we are processing a write bio that completely covers the block,
862 * we already processed it so can ignore it now when processing
863 * the bios in the cell.
864 */
865 if (bio) {
6f94a4c4 866 cell_defer_except(tc, m->cell);
991d9fa0
JT
867 bio_endio(bio, 0);
868 } else
869 cell_defer(tc, m->cell, m->data_block);
870
871 list_del(&m->list);
872 mempool_free(m, tc->pool->mapping_pool);
873}
874
875static void process_prepared_mappings(struct pool *pool)
876{
877 unsigned long flags;
878 struct list_head maps;
879 struct new_mapping *m, *tmp;
880
881 INIT_LIST_HEAD(&maps);
882 spin_lock_irqsave(&pool->lock, flags);
883 list_splice_init(&pool->prepared_mappings, &maps);
884 spin_unlock_irqrestore(&pool->lock, flags);
885
886 list_for_each_entry_safe(m, tmp, &maps, list)
887 process_prepared_mapping(m);
888}
889
890/*
891 * Deferred bio jobs.
892 */
893static int io_overwrites_block(struct pool *pool, struct bio *bio)
894{
895 return ((bio_data_dir(bio) == WRITE) &&
896 !(bio->bi_sector & pool->offset_mask)) &&
897 (bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
898}
899
900static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
901 bio_end_io_t *fn)
902{
903 *save = bio->bi_end_io;
904 bio->bi_end_io = fn;
905}
906
907static int ensure_next_mapping(struct pool *pool)
908{
909 if (pool->next_mapping)
910 return 0;
911
912 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
913
914 return pool->next_mapping ? 0 : -ENOMEM;
915}
916
917static struct new_mapping *get_next_mapping(struct pool *pool)
918{
919 struct new_mapping *r = pool->next_mapping;
920
921 BUG_ON(!pool->next_mapping);
922
923 pool->next_mapping = NULL;
924
925 return r;
926}
927
928static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
2dd9c257
JT
929 struct dm_dev *origin, dm_block_t data_origin,
930 dm_block_t data_dest,
991d9fa0
JT
931 struct cell *cell, struct bio *bio)
932{
933 int r;
934 struct pool *pool = tc->pool;
935 struct new_mapping *m = get_next_mapping(pool);
936
937 INIT_LIST_HEAD(&m->list);
eb2aa48d 938 m->quiesced = 0;
991d9fa0
JT
939 m->prepared = 0;
940 m->tc = tc;
941 m->virt_block = virt_block;
942 m->data_block = data_dest;
943 m->cell = cell;
944 m->err = 0;
945 m->bio = NULL;
946
eb2aa48d
JT
947 if (!ds_add_work(&pool->shared_read_ds, &m->list))
948 m->quiesced = 1;
991d9fa0
JT
949
950 /*
951 * IO to pool_dev remaps to the pool target's data_dev.
952 *
953 * If the whole block of data is being overwritten, we can issue the
954 * bio immediately. Otherwise we use kcopyd to clone the data first.
955 */
956 if (io_overwrites_block(pool, bio)) {
eb2aa48d
JT
957 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
958 h->overwrite_mapping = m;
991d9fa0
JT
959 m->bio = bio;
960 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
991d9fa0
JT
961 remap_and_issue(tc, bio, data_dest);
962 } else {
963 struct dm_io_region from, to;
964
2dd9c257 965 from.bdev = origin->bdev;
991d9fa0
JT
966 from.sector = data_origin * pool->sectors_per_block;
967 from.count = pool->sectors_per_block;
968
969 to.bdev = tc->pool_dev->bdev;
970 to.sector = data_dest * pool->sectors_per_block;
971 to.count = pool->sectors_per_block;
972
973 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
974 0, copy_complete, m);
975 if (r < 0) {
976 mempool_free(m, pool->mapping_pool);
977 DMERR("dm_kcopyd_copy() failed");
978 cell_error(cell);
979 }
980 }
981}
982
2dd9c257
JT
983static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
984 dm_block_t data_origin, dm_block_t data_dest,
985 struct cell *cell, struct bio *bio)
986{
987 schedule_copy(tc, virt_block, tc->pool_dev,
988 data_origin, data_dest, cell, bio);
989}
990
991static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
992 dm_block_t data_dest,
993 struct cell *cell, struct bio *bio)
994{
995 schedule_copy(tc, virt_block, tc->origin_dev,
996 virt_block, data_dest, cell, bio);
997}
998
991d9fa0
JT
999static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1000 dm_block_t data_block, struct cell *cell,
1001 struct bio *bio)
1002{
1003 struct pool *pool = tc->pool;
1004 struct new_mapping *m = get_next_mapping(pool);
1005
1006 INIT_LIST_HEAD(&m->list);
eb2aa48d 1007 m->quiesced = 1;
991d9fa0
JT
1008 m->prepared = 0;
1009 m->tc = tc;
1010 m->virt_block = virt_block;
1011 m->data_block = data_block;
1012 m->cell = cell;
1013 m->err = 0;
1014 m->bio = NULL;
1015
1016 /*
1017 * If the whole block of data is being overwritten or we are not
1018 * zeroing pre-existing data, we can issue the bio immediately.
1019 * Otherwise we use kcopyd to zero the data first.
1020 */
1021 if (!pool->zero_new_blocks)
1022 process_prepared_mapping(m);
1023
1024 else if (io_overwrites_block(pool, bio)) {
eb2aa48d
JT
1025 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1026 h->overwrite_mapping = m;
991d9fa0
JT
1027 m->bio = bio;
1028 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
991d9fa0
JT
1029 remap_and_issue(tc, bio, data_block);
1030
1031 } else {
1032 int r;
1033 struct dm_io_region to;
1034
1035 to.bdev = tc->pool_dev->bdev;
1036 to.sector = data_block * pool->sectors_per_block;
1037 to.count = pool->sectors_per_block;
1038
1039 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1040 if (r < 0) {
1041 mempool_free(m, pool->mapping_pool);
1042 DMERR("dm_kcopyd_zero() failed");
1043 cell_error(cell);
1044 }
1045 }
1046}
1047
1048static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1049{
1050 int r;
1051 dm_block_t free_blocks;
1052 unsigned long flags;
1053 struct pool *pool = tc->pool;
1054
1055 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1056 if (r)
1057 return r;
1058
1059 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1060 DMWARN("%s: reached low water mark, sending event.",
1061 dm_device_name(pool->pool_md));
1062 spin_lock_irqsave(&pool->lock, flags);
1063 pool->low_water_triggered = 1;
1064 spin_unlock_irqrestore(&pool->lock, flags);
1065 dm_table_event(pool->ti->table);
1066 }
1067
1068 if (!free_blocks) {
1069 if (pool->no_free_space)
1070 return -ENOSPC;
1071 else {
1072 /*
1073 * Try to commit to see if that will free up some
1074 * more space.
1075 */
1076 r = dm_pool_commit_metadata(pool->pmd);
1077 if (r) {
1078 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1079 __func__, r);
1080 return r;
1081 }
1082
1083 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1084 if (r)
1085 return r;
1086
1087 /*
1088 * If we still have no space we set a flag to avoid
1089 * doing all this checking and return -ENOSPC.
1090 */
1091 if (!free_blocks) {
1092 DMWARN("%s: no free space available.",
1093 dm_device_name(pool->pool_md));
1094 spin_lock_irqsave(&pool->lock, flags);
1095 pool->no_free_space = 1;
1096 spin_unlock_irqrestore(&pool->lock, flags);
1097 return -ENOSPC;
1098 }
1099 }
1100 }
1101
1102 r = dm_pool_alloc_data_block(pool->pmd, result);
1103 if (r)
1104 return r;
1105
1106 return 0;
1107}
1108
1109/*
1110 * If we have run out of space, queue bios until the device is
1111 * resumed, presumably after having been reloaded with more space.
1112 */
1113static void retry_on_resume(struct bio *bio)
1114{
eb2aa48d
JT
1115 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1116 struct thin_c *tc = h->tc;
991d9fa0
JT
1117 struct pool *pool = tc->pool;
1118 unsigned long flags;
1119
1120 spin_lock_irqsave(&pool->lock, flags);
1121 bio_list_add(&pool->retry_on_resume_list, bio);
1122 spin_unlock_irqrestore(&pool->lock, flags);
1123}
1124
1125static void no_space(struct cell *cell)
1126{
1127 struct bio *bio;
1128 struct bio_list bios;
1129
1130 bio_list_init(&bios);
1131 cell_release(cell, &bios);
1132
1133 while ((bio = bio_list_pop(&bios)))
1134 retry_on_resume(bio);
1135}
1136
1137static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1138 struct cell_key *key,
1139 struct dm_thin_lookup_result *lookup_result,
1140 struct cell *cell)
1141{
1142 int r;
1143 dm_block_t data_block;
1144
1145 r = alloc_data_block(tc, &data_block);
1146 switch (r) {
1147 case 0:
2dd9c257
JT
1148 schedule_internal_copy(tc, block, lookup_result->block,
1149 data_block, cell, bio);
991d9fa0
JT
1150 break;
1151
1152 case -ENOSPC:
1153 no_space(cell);
1154 break;
1155
1156 default:
1157 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1158 cell_error(cell);
1159 break;
1160 }
1161}
1162
1163static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1164 dm_block_t block,
1165 struct dm_thin_lookup_result *lookup_result)
1166{
1167 struct cell *cell;
1168 struct pool *pool = tc->pool;
1169 struct cell_key key;
1170
1171 /*
1172 * If cell is already occupied, then sharing is already in the process
1173 * of being broken so we have nothing further to do here.
1174 */
1175 build_data_key(tc->td, lookup_result->block, &key);
1176 if (bio_detain(pool->prison, &key, bio, &cell))
1177 return;
1178
1179 if (bio_data_dir(bio) == WRITE)
1180 break_sharing(tc, bio, block, &key, lookup_result, cell);
1181 else {
eb2aa48d 1182 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
991d9fa0 1183
eb2aa48d 1184 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
991d9fa0
JT
1185
1186 cell_release_singleton(cell, bio);
1187 remap_and_issue(tc, bio, lookup_result->block);
1188 }
1189}
1190
1191static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1192 struct cell *cell)
1193{
1194 int r;
1195 dm_block_t data_block;
1196
1197 /*
1198 * Remap empty bios (flushes) immediately, without provisioning.
1199 */
1200 if (!bio->bi_size) {
1201 cell_release_singleton(cell, bio);
1202 remap_and_issue(tc, bio, 0);
1203 return;
1204 }
1205
1206 /*
1207 * Fill read bios with zeroes and complete them immediately.
1208 */
1209 if (bio_data_dir(bio) == READ) {
1210 zero_fill_bio(bio);
1211 cell_release_singleton(cell, bio);
1212 bio_endio(bio, 0);
1213 return;
1214 }
1215
1216 r = alloc_data_block(tc, &data_block);
1217 switch (r) {
1218 case 0:
2dd9c257
JT
1219 if (tc->origin_dev)
1220 schedule_external_copy(tc, block, data_block, cell, bio);
1221 else
1222 schedule_zero(tc, block, data_block, cell, bio);
991d9fa0
JT
1223 break;
1224
1225 case -ENOSPC:
1226 no_space(cell);
1227 break;
1228
1229 default:
1230 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1231 cell_error(cell);
1232 break;
1233 }
1234}
1235
1236static void process_bio(struct thin_c *tc, struct bio *bio)
1237{
1238 int r;
1239 dm_block_t block = get_bio_block(tc, bio);
1240 struct cell *cell;
1241 struct cell_key key;
1242 struct dm_thin_lookup_result lookup_result;
1243
1244 /*
1245 * If cell is already occupied, then the block is already
1246 * being provisioned so we have nothing further to do here.
1247 */
1248 build_virtual_key(tc->td, block, &key);
1249 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1250 return;
1251
1252 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1253 switch (r) {
1254 case 0:
1255 /*
1256 * We can release this cell now. This thread is the only
1257 * one that puts bios into a cell, and we know there were
1258 * no preceding bios.
1259 */
1260 /*
1261 * TODO: this will probably have to change when discard goes
1262 * back in.
1263 */
1264 cell_release_singleton(cell, bio);
1265
1266 if (lookup_result.shared)
1267 process_shared_bio(tc, bio, block, &lookup_result);
1268 else
1269 remap_and_issue(tc, bio, lookup_result.block);
1270 break;
1271
1272 case -ENODATA:
2dd9c257
JT
1273 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1274 cell_release_singleton(cell, bio);
1275 remap_to_origin_and_issue(tc, bio);
1276 } else
1277 provision_block(tc, bio, block, cell);
991d9fa0
JT
1278 break;
1279
1280 default:
1281 DMERR("dm_thin_find_block() failed, error = %d", r);
1282 bio_io_error(bio);
1283 break;
1284 }
1285}
1286
905e51b3
JT
1287static int need_commit_due_to_time(struct pool *pool)
1288{
1289 return jiffies < pool->last_commit_jiffies ||
1290 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1291}
1292
991d9fa0
JT
1293static void process_deferred_bios(struct pool *pool)
1294{
1295 unsigned long flags;
1296 struct bio *bio;
1297 struct bio_list bios;
1298 int r;
1299
1300 bio_list_init(&bios);
1301
1302 spin_lock_irqsave(&pool->lock, flags);
1303 bio_list_merge(&bios, &pool->deferred_bios);
1304 bio_list_init(&pool->deferred_bios);
1305 spin_unlock_irqrestore(&pool->lock, flags);
1306
1307 while ((bio = bio_list_pop(&bios))) {
eb2aa48d
JT
1308 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1309 struct thin_c *tc = h->tc;
1310
991d9fa0
JT
1311 /*
1312 * If we've got no free new_mapping structs, and processing
1313 * this bio might require one, we pause until there are some
1314 * prepared mappings to process.
1315 */
1316 if (ensure_next_mapping(pool)) {
1317 spin_lock_irqsave(&pool->lock, flags);
1318 bio_list_merge(&pool->deferred_bios, &bios);
1319 spin_unlock_irqrestore(&pool->lock, flags);
1320
1321 break;
1322 }
1323 process_bio(tc, bio);
1324 }
1325
1326 /*
1327 * If there are any deferred flush bios, we must commit
1328 * the metadata before issuing them.
1329 */
1330 bio_list_init(&bios);
1331 spin_lock_irqsave(&pool->lock, flags);
1332 bio_list_merge(&bios, &pool->deferred_flush_bios);
1333 bio_list_init(&pool->deferred_flush_bios);
1334 spin_unlock_irqrestore(&pool->lock, flags);
1335
905e51b3 1336 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
991d9fa0
JT
1337 return;
1338
1339 r = dm_pool_commit_metadata(pool->pmd);
1340 if (r) {
1341 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1342 __func__, r);
1343 while ((bio = bio_list_pop(&bios)))
1344 bio_io_error(bio);
1345 return;
1346 }
905e51b3 1347 pool->last_commit_jiffies = jiffies;
991d9fa0
JT
1348
1349 while ((bio = bio_list_pop(&bios)))
1350 generic_make_request(bio);
1351}
1352
1353static void do_worker(struct work_struct *ws)
1354{
1355 struct pool *pool = container_of(ws, struct pool, worker);
1356
1357 process_prepared_mappings(pool);
1358 process_deferred_bios(pool);
1359}
1360
905e51b3
JT
1361/*
1362 * We want to commit periodically so that not too much
1363 * unwritten data builds up.
1364 */
1365static void do_waker(struct work_struct *ws)
1366{
1367 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1368 wake_worker(pool);
1369 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1370}
1371
991d9fa0
JT
1372/*----------------------------------------------------------------*/
1373
1374/*
1375 * Mapping functions.
1376 */
1377
1378/*
1379 * Called only while mapping a thin bio to hand it over to the workqueue.
1380 */
1381static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1382{
1383 unsigned long flags;
1384 struct pool *pool = tc->pool;
1385
1386 spin_lock_irqsave(&pool->lock, flags);
1387 bio_list_add(&pool->deferred_bios, bio);
1388 spin_unlock_irqrestore(&pool->lock, flags);
1389
1390 wake_worker(pool);
1391}
1392
eb2aa48d
JT
1393static struct endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1394{
1395 struct pool *pool = tc->pool;
1396 struct endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1397
1398 h->tc = tc;
1399 h->shared_read_entry = NULL;
1400 h->overwrite_mapping = NULL;
1401
1402 return h;
1403}
1404
991d9fa0
JT
1405/*
1406 * Non-blocking function called from the thin target's map function.
1407 */
1408static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1409 union map_info *map_context)
1410{
1411 int r;
1412 struct thin_c *tc = ti->private;
1413 dm_block_t block = get_bio_block(tc, bio);
1414 struct dm_thin_device *td = tc->td;
1415 struct dm_thin_lookup_result result;
1416
eb2aa48d 1417 map_context->ptr = thin_hook_bio(tc, bio);
991d9fa0
JT
1418 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1419 thin_defer_bio(tc, bio);
1420 return DM_MAPIO_SUBMITTED;
1421 }
1422
1423 r = dm_thin_find_block(td, block, 0, &result);
1424
1425 /*
1426 * Note that we defer readahead too.
1427 */
1428 switch (r) {
1429 case 0:
1430 if (unlikely(result.shared)) {
1431 /*
1432 * We have a race condition here between the
1433 * result.shared value returned by the lookup and
1434 * snapshot creation, which may cause new
1435 * sharing.
1436 *
1437 * To avoid this always quiesce the origin before
1438 * taking the snap. You want to do this anyway to
1439 * ensure a consistent application view
1440 * (i.e. lockfs).
1441 *
1442 * More distant ancestors are irrelevant. The
1443 * shared flag will be set in their case.
1444 */
1445 thin_defer_bio(tc, bio);
1446 r = DM_MAPIO_SUBMITTED;
1447 } else {
1448 remap(tc, bio, result.block);
1449 r = DM_MAPIO_REMAPPED;
1450 }
1451 break;
1452
1453 case -ENODATA:
1454 /*
1455 * In future, the failed dm_thin_find_block above could
1456 * provide the hint to load the metadata into cache.
1457 */
1458 case -EWOULDBLOCK:
1459 thin_defer_bio(tc, bio);
1460 r = DM_MAPIO_SUBMITTED;
1461 break;
1462 }
1463
1464 return r;
1465}
1466
1467static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1468{
1469 int r;
1470 unsigned long flags;
1471 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1472
1473 spin_lock_irqsave(&pt->pool->lock, flags);
1474 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1475 spin_unlock_irqrestore(&pt->pool->lock, flags);
1476
1477 if (!r) {
1478 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1479 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1480 }
1481
1482 return r;
1483}
1484
1485static void __requeue_bios(struct pool *pool)
1486{
1487 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1488 bio_list_init(&pool->retry_on_resume_list);
1489}
1490
1491/*----------------------------------------------------------------
1492 * Binding of control targets to a pool object
1493 *--------------------------------------------------------------*/
1494static int bind_control_target(struct pool *pool, struct dm_target *ti)
1495{
1496 struct pool_c *pt = ti->private;
1497
1498 pool->ti = ti;
1499 pool->low_water_blocks = pt->low_water_blocks;
1500 pool->zero_new_blocks = pt->zero_new_blocks;
1501
1502 return 0;
1503}
1504
1505static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1506{
1507 if (pool->ti == ti)
1508 pool->ti = NULL;
1509}
1510
1511/*----------------------------------------------------------------
1512 * Pool creation
1513 *--------------------------------------------------------------*/
1514static void __pool_destroy(struct pool *pool)
1515{
1516 __pool_table_remove(pool);
1517
1518 if (dm_pool_metadata_close(pool->pmd) < 0)
1519 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1520
1521 prison_destroy(pool->prison);
1522 dm_kcopyd_client_destroy(pool->copier);
1523
1524 if (pool->wq)
1525 destroy_workqueue(pool->wq);
1526
1527 if (pool->next_mapping)
1528 mempool_free(pool->next_mapping, pool->mapping_pool);
1529 mempool_destroy(pool->mapping_pool);
1530 mempool_destroy(pool->endio_hook_pool);
1531 kfree(pool);
1532}
1533
1534static struct pool *pool_create(struct mapped_device *pool_md,
1535 struct block_device *metadata_dev,
1536 unsigned long block_size, char **error)
1537{
1538 int r;
1539 void *err_p;
1540 struct pool *pool;
1541 struct dm_pool_metadata *pmd;
1542
1543 pmd = dm_pool_metadata_open(metadata_dev, block_size);
1544 if (IS_ERR(pmd)) {
1545 *error = "Error creating metadata object";
1546 return (struct pool *)pmd;
1547 }
1548
1549 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1550 if (!pool) {
1551 *error = "Error allocating memory for pool";
1552 err_p = ERR_PTR(-ENOMEM);
1553 goto bad_pool;
1554 }
1555
1556 pool->pmd = pmd;
1557 pool->sectors_per_block = block_size;
1558 pool->block_shift = ffs(block_size) - 1;
1559 pool->offset_mask = block_size - 1;
1560 pool->low_water_blocks = 0;
1561 pool->zero_new_blocks = 1;
1562 pool->prison = prison_create(PRISON_CELLS);
1563 if (!pool->prison) {
1564 *error = "Error creating pool's bio prison";
1565 err_p = ERR_PTR(-ENOMEM);
1566 goto bad_prison;
1567 }
1568
1569 pool->copier = dm_kcopyd_client_create();
1570 if (IS_ERR(pool->copier)) {
1571 r = PTR_ERR(pool->copier);
1572 *error = "Error creating pool's kcopyd client";
1573 err_p = ERR_PTR(r);
1574 goto bad_kcopyd_client;
1575 }
1576
1577 /*
1578 * Create singlethreaded workqueue that will service all devices
1579 * that use this metadata.
1580 */
1581 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1582 if (!pool->wq) {
1583 *error = "Error creating pool's workqueue";
1584 err_p = ERR_PTR(-ENOMEM);
1585 goto bad_wq;
1586 }
1587
1588 INIT_WORK(&pool->worker, do_worker);
905e51b3 1589 INIT_DELAYED_WORK(&pool->waker, do_waker);
991d9fa0
JT
1590 spin_lock_init(&pool->lock);
1591 bio_list_init(&pool->deferred_bios);
1592 bio_list_init(&pool->deferred_flush_bios);
1593 INIT_LIST_HEAD(&pool->prepared_mappings);
1594 pool->low_water_triggered = 0;
1595 pool->no_free_space = 0;
1596 bio_list_init(&pool->retry_on_resume_list);
eb2aa48d 1597 ds_init(&pool->shared_read_ds);
991d9fa0
JT
1598
1599 pool->next_mapping = NULL;
1600 pool->mapping_pool =
1601 mempool_create_kmalloc_pool(MAPPING_POOL_SIZE, sizeof(struct new_mapping));
1602 if (!pool->mapping_pool) {
1603 *error = "Error creating pool's mapping mempool";
1604 err_p = ERR_PTR(-ENOMEM);
1605 goto bad_mapping_pool;
1606 }
1607
1608 pool->endio_hook_pool =
1609 mempool_create_kmalloc_pool(ENDIO_HOOK_POOL_SIZE, sizeof(struct endio_hook));
1610 if (!pool->endio_hook_pool) {
1611 *error = "Error creating pool's endio_hook mempool";
1612 err_p = ERR_PTR(-ENOMEM);
1613 goto bad_endio_hook_pool;
1614 }
1615 pool->ref_count = 1;
905e51b3 1616 pool->last_commit_jiffies = jiffies;
991d9fa0
JT
1617 pool->pool_md = pool_md;
1618 pool->md_dev = metadata_dev;
1619 __pool_table_insert(pool);
1620
1621 return pool;
1622
1623bad_endio_hook_pool:
1624 mempool_destroy(pool->mapping_pool);
1625bad_mapping_pool:
1626 destroy_workqueue(pool->wq);
1627bad_wq:
1628 dm_kcopyd_client_destroy(pool->copier);
1629bad_kcopyd_client:
1630 prison_destroy(pool->prison);
1631bad_prison:
1632 kfree(pool);
1633bad_pool:
1634 if (dm_pool_metadata_close(pmd))
1635 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1636
1637 return err_p;
1638}
1639
1640static void __pool_inc(struct pool *pool)
1641{
1642 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1643 pool->ref_count++;
1644}
1645
1646static void __pool_dec(struct pool *pool)
1647{
1648 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1649 BUG_ON(!pool->ref_count);
1650 if (!--pool->ref_count)
1651 __pool_destroy(pool);
1652}
1653
1654static struct pool *__pool_find(struct mapped_device *pool_md,
1655 struct block_device *metadata_dev,
1656 unsigned long block_size, char **error)
1657{
1658 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1659
1660 if (pool) {
1661 if (pool->pool_md != pool_md)
1662 return ERR_PTR(-EBUSY);
1663 __pool_inc(pool);
1664
1665 } else {
1666 pool = __pool_table_lookup(pool_md);
1667 if (pool) {
1668 if (pool->md_dev != metadata_dev)
1669 return ERR_PTR(-EINVAL);
1670 __pool_inc(pool);
1671
1672 } else
1673 pool = pool_create(pool_md, metadata_dev, block_size, error);
1674 }
1675
1676 return pool;
1677}
1678
1679/*----------------------------------------------------------------
1680 * Pool target methods
1681 *--------------------------------------------------------------*/
1682static void pool_dtr(struct dm_target *ti)
1683{
1684 struct pool_c *pt = ti->private;
1685
1686 mutex_lock(&dm_thin_pool_table.mutex);
1687
1688 unbind_control_target(pt->pool, ti);
1689 __pool_dec(pt->pool);
1690 dm_put_device(ti, pt->metadata_dev);
1691 dm_put_device(ti, pt->data_dev);
1692 kfree(pt);
1693
1694 mutex_unlock(&dm_thin_pool_table.mutex);
1695}
1696
1697struct pool_features {
1698 unsigned zero_new_blocks:1;
1699};
1700
1701static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1702 struct dm_target *ti)
1703{
1704 int r;
1705 unsigned argc;
1706 const char *arg_name;
1707
1708 static struct dm_arg _args[] = {
1709 {0, 1, "Invalid number of pool feature arguments"},
1710 };
1711
1712 /*
1713 * No feature arguments supplied.
1714 */
1715 if (!as->argc)
1716 return 0;
1717
1718 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1719 if (r)
1720 return -EINVAL;
1721
1722 while (argc && !r) {
1723 arg_name = dm_shift_arg(as);
1724 argc--;
1725
1726 if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1727 pf->zero_new_blocks = 0;
1728 continue;
1729 }
1730
1731 ti->error = "Unrecognised pool feature requested";
1732 r = -EINVAL;
1733 }
1734
1735 return r;
1736}
1737
1738/*
1739 * thin-pool <metadata dev> <data dev>
1740 * <data block size (sectors)>
1741 * <low water mark (blocks)>
1742 * [<#feature args> [<arg>]*]
1743 *
1744 * Optional feature arguments are:
1745 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1746 */
1747static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1748{
1749 int r;
1750 struct pool_c *pt;
1751 struct pool *pool;
1752 struct pool_features pf;
1753 struct dm_arg_set as;
1754 struct dm_dev *data_dev;
1755 unsigned long block_size;
1756 dm_block_t low_water_blocks;
1757 struct dm_dev *metadata_dev;
1758 sector_t metadata_dev_size;
c4a69ecd 1759 char b[BDEVNAME_SIZE];
991d9fa0
JT
1760
1761 /*
1762 * FIXME Remove validation from scope of lock.
1763 */
1764 mutex_lock(&dm_thin_pool_table.mutex);
1765
1766 if (argc < 4) {
1767 ti->error = "Invalid argument count";
1768 r = -EINVAL;
1769 goto out_unlock;
1770 }
1771 as.argc = argc;
1772 as.argv = argv;
1773
1774 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1775 if (r) {
1776 ti->error = "Error opening metadata block device";
1777 goto out_unlock;
1778 }
1779
1780 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
c4a69ecd
MS
1781 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1782 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1783 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
991d9fa0
JT
1784
1785 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1786 if (r) {
1787 ti->error = "Error getting data device";
1788 goto out_metadata;
1789 }
1790
1791 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1792 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1793 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1794 !is_power_of_2(block_size)) {
1795 ti->error = "Invalid block size";
1796 r = -EINVAL;
1797 goto out;
1798 }
1799
1800 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1801 ti->error = "Invalid low water mark";
1802 r = -EINVAL;
1803 goto out;
1804 }
1805
1806 /*
1807 * Set default pool features.
1808 */
1809 memset(&pf, 0, sizeof(pf));
1810 pf.zero_new_blocks = 1;
1811
1812 dm_consume_args(&as, 4);
1813 r = parse_pool_features(&as, &pf, ti);
1814 if (r)
1815 goto out;
1816
1817 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1818 if (!pt) {
1819 r = -ENOMEM;
1820 goto out;
1821 }
1822
1823 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
1824 block_size, &ti->error);
1825 if (IS_ERR(pool)) {
1826 r = PTR_ERR(pool);
1827 goto out_free_pt;
1828 }
1829
1830 pt->pool = pool;
1831 pt->ti = ti;
1832 pt->metadata_dev = metadata_dev;
1833 pt->data_dev = data_dev;
1834 pt->low_water_blocks = low_water_blocks;
1835 pt->zero_new_blocks = pf.zero_new_blocks;
1836 ti->num_flush_requests = 1;
1837 ti->num_discard_requests = 0;
1838 ti->private = pt;
1839
1840 pt->callbacks.congested_fn = pool_is_congested;
1841 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
1842
1843 mutex_unlock(&dm_thin_pool_table.mutex);
1844
1845 return 0;
1846
1847out_free_pt:
1848 kfree(pt);
1849out:
1850 dm_put_device(ti, data_dev);
1851out_metadata:
1852 dm_put_device(ti, metadata_dev);
1853out_unlock:
1854 mutex_unlock(&dm_thin_pool_table.mutex);
1855
1856 return r;
1857}
1858
1859static int pool_map(struct dm_target *ti, struct bio *bio,
1860 union map_info *map_context)
1861{
1862 int r;
1863 struct pool_c *pt = ti->private;
1864 struct pool *pool = pt->pool;
1865 unsigned long flags;
1866
1867 /*
1868 * As this is a singleton target, ti->begin is always zero.
1869 */
1870 spin_lock_irqsave(&pool->lock, flags);
1871 bio->bi_bdev = pt->data_dev->bdev;
1872 r = DM_MAPIO_REMAPPED;
1873 spin_unlock_irqrestore(&pool->lock, flags);
1874
1875 return r;
1876}
1877
1878/*
1879 * Retrieves the number of blocks of the data device from
1880 * the superblock and compares it to the actual device size,
1881 * thus resizing the data device in case it has grown.
1882 *
1883 * This both copes with opening preallocated data devices in the ctr
1884 * being followed by a resume
1885 * -and-
1886 * calling the resume method individually after userspace has
1887 * grown the data device in reaction to a table event.
1888 */
1889static int pool_preresume(struct dm_target *ti)
1890{
1891 int r;
1892 struct pool_c *pt = ti->private;
1893 struct pool *pool = pt->pool;
1894 dm_block_t data_size, sb_data_size;
1895
1896 /*
1897 * Take control of the pool object.
1898 */
1899 r = bind_control_target(pool, ti);
1900 if (r)
1901 return r;
1902
1903 data_size = ti->len >> pool->block_shift;
1904 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
1905 if (r) {
1906 DMERR("failed to retrieve data device size");
1907 return r;
1908 }
1909
1910 if (data_size < sb_data_size) {
1911 DMERR("pool target too small, is %llu blocks (expected %llu)",
1912 data_size, sb_data_size);
1913 return -EINVAL;
1914
1915 } else if (data_size > sb_data_size) {
1916 r = dm_pool_resize_data_dev(pool->pmd, data_size);
1917 if (r) {
1918 DMERR("failed to resize data device");
1919 return r;
1920 }
1921
1922 r = dm_pool_commit_metadata(pool->pmd);
1923 if (r) {
1924 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1925 __func__, r);
1926 return r;
1927 }
1928 }
1929
1930 return 0;
1931}
1932
1933static void pool_resume(struct dm_target *ti)
1934{
1935 struct pool_c *pt = ti->private;
1936 struct pool *pool = pt->pool;
1937 unsigned long flags;
1938
1939 spin_lock_irqsave(&pool->lock, flags);
1940 pool->low_water_triggered = 0;
1941 pool->no_free_space = 0;
1942 __requeue_bios(pool);
1943 spin_unlock_irqrestore(&pool->lock, flags);
1944
905e51b3 1945 do_waker(&pool->waker.work);
991d9fa0
JT
1946}
1947
1948static void pool_postsuspend(struct dm_target *ti)
1949{
1950 int r;
1951 struct pool_c *pt = ti->private;
1952 struct pool *pool = pt->pool;
1953
905e51b3 1954 cancel_delayed_work(&pool->waker);
991d9fa0
JT
1955 flush_workqueue(pool->wq);
1956
1957 r = dm_pool_commit_metadata(pool->pmd);
1958 if (r < 0) {
1959 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1960 __func__, r);
1961 /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
1962 }
1963}
1964
1965static int check_arg_count(unsigned argc, unsigned args_required)
1966{
1967 if (argc != args_required) {
1968 DMWARN("Message received with %u arguments instead of %u.",
1969 argc, args_required);
1970 return -EINVAL;
1971 }
1972
1973 return 0;
1974}
1975
1976static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
1977{
1978 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
1979 *dev_id <= MAX_DEV_ID)
1980 return 0;
1981
1982 if (warning)
1983 DMWARN("Message received with invalid device id: %s", arg);
1984
1985 return -EINVAL;
1986}
1987
1988static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
1989{
1990 dm_thin_id dev_id;
1991 int r;
1992
1993 r = check_arg_count(argc, 2);
1994 if (r)
1995 return r;
1996
1997 r = read_dev_id(argv[1], &dev_id, 1);
1998 if (r)
1999 return r;
2000
2001 r = dm_pool_create_thin(pool->pmd, dev_id);
2002 if (r) {
2003 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2004 argv[1]);
2005 return r;
2006 }
2007
2008 return 0;
2009}
2010
2011static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2012{
2013 dm_thin_id dev_id;
2014 dm_thin_id origin_dev_id;
2015 int r;
2016
2017 r = check_arg_count(argc, 3);
2018 if (r)
2019 return r;
2020
2021 r = read_dev_id(argv[1], &dev_id, 1);
2022 if (r)
2023 return r;
2024
2025 r = read_dev_id(argv[2], &origin_dev_id, 1);
2026 if (r)
2027 return r;
2028
2029 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2030 if (r) {
2031 DMWARN("Creation of new snapshot %s of device %s failed.",
2032 argv[1], argv[2]);
2033 return r;
2034 }
2035
2036 return 0;
2037}
2038
2039static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2040{
2041 dm_thin_id dev_id;
2042 int r;
2043
2044 r = check_arg_count(argc, 2);
2045 if (r)
2046 return r;
2047
2048 r = read_dev_id(argv[1], &dev_id, 1);
2049 if (r)
2050 return r;
2051
2052 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2053 if (r)
2054 DMWARN("Deletion of thin device %s failed.", argv[1]);
2055
2056 return r;
2057}
2058
2059static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2060{
2061 dm_thin_id old_id, new_id;
2062 int r;
2063
2064 r = check_arg_count(argc, 3);
2065 if (r)
2066 return r;
2067
2068 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2069 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2070 return -EINVAL;
2071 }
2072
2073 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2074 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2075 return -EINVAL;
2076 }
2077
2078 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2079 if (r) {
2080 DMWARN("Failed to change transaction id from %s to %s.",
2081 argv[1], argv[2]);
2082 return r;
2083 }
2084
2085 return 0;
2086}
2087
2088/*
2089 * Messages supported:
2090 * create_thin <dev_id>
2091 * create_snap <dev_id> <origin_id>
2092 * delete <dev_id>
2093 * trim <dev_id> <new_size_in_sectors>
2094 * set_transaction_id <current_trans_id> <new_trans_id>
2095 */
2096static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2097{
2098 int r = -EINVAL;
2099 struct pool_c *pt = ti->private;
2100 struct pool *pool = pt->pool;
2101
2102 if (!strcasecmp(argv[0], "create_thin"))
2103 r = process_create_thin_mesg(argc, argv, pool);
2104
2105 else if (!strcasecmp(argv[0], "create_snap"))
2106 r = process_create_snap_mesg(argc, argv, pool);
2107
2108 else if (!strcasecmp(argv[0], "delete"))
2109 r = process_delete_mesg(argc, argv, pool);
2110
2111 else if (!strcasecmp(argv[0], "set_transaction_id"))
2112 r = process_set_transaction_id_mesg(argc, argv, pool);
2113
2114 else
2115 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2116
2117 if (!r) {
2118 r = dm_pool_commit_metadata(pool->pmd);
2119 if (r)
2120 DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2121 argv[0], r);
2122 }
2123
2124 return r;
2125}
2126
2127/*
2128 * Status line is:
2129 * <transaction id> <used metadata sectors>/<total metadata sectors>
2130 * <used data sectors>/<total data sectors> <held metadata root>
2131 */
2132static int pool_status(struct dm_target *ti, status_type_t type,
2133 char *result, unsigned maxlen)
2134{
2135 int r;
2136 unsigned sz = 0;
2137 uint64_t transaction_id;
2138 dm_block_t nr_free_blocks_data;
2139 dm_block_t nr_free_blocks_metadata;
2140 dm_block_t nr_blocks_data;
2141 dm_block_t nr_blocks_metadata;
2142 dm_block_t held_root;
2143 char buf[BDEVNAME_SIZE];
2144 char buf2[BDEVNAME_SIZE];
2145 struct pool_c *pt = ti->private;
2146 struct pool *pool = pt->pool;
2147
2148 switch (type) {
2149 case STATUSTYPE_INFO:
2150 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2151 &transaction_id);
2152 if (r)
2153 return r;
2154
2155 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2156 &nr_free_blocks_metadata);
2157 if (r)
2158 return r;
2159
2160 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2161 if (r)
2162 return r;
2163
2164 r = dm_pool_get_free_block_count(pool->pmd,
2165 &nr_free_blocks_data);
2166 if (r)
2167 return r;
2168
2169 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2170 if (r)
2171 return r;
2172
2173 r = dm_pool_get_held_metadata_root(pool->pmd, &held_root);
2174 if (r)
2175 return r;
2176
2177 DMEMIT("%llu %llu/%llu %llu/%llu ",
2178 (unsigned long long)transaction_id,
2179 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2180 (unsigned long long)nr_blocks_metadata,
2181 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2182 (unsigned long long)nr_blocks_data);
2183
2184 if (held_root)
2185 DMEMIT("%llu", held_root);
2186 else
2187 DMEMIT("-");
2188
2189 break;
2190
2191 case STATUSTYPE_TABLE:
2192 DMEMIT("%s %s %lu %llu ",
2193 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2194 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2195 (unsigned long)pool->sectors_per_block,
2196 (unsigned long long)pt->low_water_blocks);
2197
2198 DMEMIT("%u ", !pool->zero_new_blocks);
2199
2200 if (!pool->zero_new_blocks)
2201 DMEMIT("skip_block_zeroing ");
2202 break;
2203 }
2204
2205 return 0;
2206}
2207
2208static int pool_iterate_devices(struct dm_target *ti,
2209 iterate_devices_callout_fn fn, void *data)
2210{
2211 struct pool_c *pt = ti->private;
2212
2213 return fn(ti, pt->data_dev, 0, ti->len, data);
2214}
2215
2216static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2217 struct bio_vec *biovec, int max_size)
2218{
2219 struct pool_c *pt = ti->private;
2220 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2221
2222 if (!q->merge_bvec_fn)
2223 return max_size;
2224
2225 bvm->bi_bdev = pt->data_dev->bdev;
2226
2227 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2228}
2229
2230static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2231{
2232 struct pool_c *pt = ti->private;
2233 struct pool *pool = pt->pool;
2234
2235 blk_limits_io_min(limits, 0);
2236 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2237}
2238
2239static struct target_type pool_target = {
2240 .name = "thin-pool",
2241 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2242 DM_TARGET_IMMUTABLE,
2243 .version = {1, 0, 0},
2244 .module = THIS_MODULE,
2245 .ctr = pool_ctr,
2246 .dtr = pool_dtr,
2247 .map = pool_map,
2248 .postsuspend = pool_postsuspend,
2249 .preresume = pool_preresume,
2250 .resume = pool_resume,
2251 .message = pool_message,
2252 .status = pool_status,
2253 .merge = pool_merge,
2254 .iterate_devices = pool_iterate_devices,
2255 .io_hints = pool_io_hints,
2256};
2257
2258/*----------------------------------------------------------------
2259 * Thin target methods
2260 *--------------------------------------------------------------*/
2261static void thin_dtr(struct dm_target *ti)
2262{
2263 struct thin_c *tc = ti->private;
2264
2265 mutex_lock(&dm_thin_pool_table.mutex);
2266
2267 __pool_dec(tc->pool);
2268 dm_pool_close_thin_device(tc->td);
2269 dm_put_device(ti, tc->pool_dev);
2dd9c257
JT
2270 if (tc->origin_dev)
2271 dm_put_device(ti, tc->origin_dev);
991d9fa0
JT
2272 kfree(tc);
2273
2274 mutex_unlock(&dm_thin_pool_table.mutex);
2275}
2276
2277/*
2278 * Thin target parameters:
2279 *
2dd9c257 2280 * <pool_dev> <dev_id> [origin_dev]
991d9fa0
JT
2281 *
2282 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2283 * dev_id: the internal device identifier
2dd9c257 2284 * origin_dev: a device external to the pool that should act as the origin
991d9fa0
JT
2285 */
2286static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2287{
2288 int r;
2289 struct thin_c *tc;
2dd9c257 2290 struct dm_dev *pool_dev, *origin_dev;
991d9fa0
JT
2291 struct mapped_device *pool_md;
2292
2293 mutex_lock(&dm_thin_pool_table.mutex);
2294
2dd9c257 2295 if (argc != 2 && argc != 3) {
991d9fa0
JT
2296 ti->error = "Invalid argument count";
2297 r = -EINVAL;
2298 goto out_unlock;
2299 }
2300
2301 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2302 if (!tc) {
2303 ti->error = "Out of memory";
2304 r = -ENOMEM;
2305 goto out_unlock;
2306 }
2307
2dd9c257
JT
2308 if (argc == 3) {
2309 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2310 if (r) {
2311 ti->error = "Error opening origin device";
2312 goto bad_origin_dev;
2313 }
2314 tc->origin_dev = origin_dev;
2315 }
2316
991d9fa0
JT
2317 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2318 if (r) {
2319 ti->error = "Error opening pool device";
2320 goto bad_pool_dev;
2321 }
2322 tc->pool_dev = pool_dev;
2323
2324 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2325 ti->error = "Invalid device id";
2326 r = -EINVAL;
2327 goto bad_common;
2328 }
2329
2330 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2331 if (!pool_md) {
2332 ti->error = "Couldn't get pool mapped device";
2333 r = -EINVAL;
2334 goto bad_common;
2335 }
2336
2337 tc->pool = __pool_table_lookup(pool_md);
2338 if (!tc->pool) {
2339 ti->error = "Couldn't find pool object";
2340 r = -EINVAL;
2341 goto bad_pool_lookup;
2342 }
2343 __pool_inc(tc->pool);
2344
2345 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2346 if (r) {
2347 ti->error = "Couldn't open thin internal device";
2348 goto bad_thin_open;
2349 }
2350
2351 ti->split_io = tc->pool->sectors_per_block;
2352 ti->num_flush_requests = 1;
2353 ti->num_discard_requests = 0;
2354 ti->discards_supported = 0;
2355
2356 dm_put(pool_md);
2357
2358 mutex_unlock(&dm_thin_pool_table.mutex);
2359
2360 return 0;
2361
2362bad_thin_open:
2363 __pool_dec(tc->pool);
2364bad_pool_lookup:
2365 dm_put(pool_md);
2366bad_common:
2367 dm_put_device(ti, tc->pool_dev);
2368bad_pool_dev:
2dd9c257
JT
2369 if (tc->origin_dev)
2370 dm_put_device(ti, tc->origin_dev);
2371bad_origin_dev:
991d9fa0
JT
2372 kfree(tc);
2373out_unlock:
2374 mutex_unlock(&dm_thin_pool_table.mutex);
2375
2376 return r;
2377}
2378
2379static int thin_map(struct dm_target *ti, struct bio *bio,
2380 union map_info *map_context)
2381{
6efd6e83 2382 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
991d9fa0
JT
2383
2384 return thin_bio_map(ti, bio, map_context);
2385}
2386
eb2aa48d
JT
2387static int thin_endio(struct dm_target *ti,
2388 struct bio *bio, int err,
2389 union map_info *map_context)
2390{
2391 unsigned long flags;
2392 struct endio_hook *h = map_context->ptr;
2393 struct list_head work;
2394 struct new_mapping *m, *tmp;
2395 struct pool *pool = h->tc->pool;
2396
2397 if (h->shared_read_entry) {
2398 INIT_LIST_HEAD(&work);
2399 ds_dec(h->shared_read_entry, &work);
2400
2401 spin_lock_irqsave(&pool->lock, flags);
2402 list_for_each_entry_safe(m, tmp, &work, list) {
2403 list_del(&m->list);
2404 m->quiesced = 1;
2405 __maybe_add_mapping(m);
2406 }
2407 spin_unlock_irqrestore(&pool->lock, flags);
2408 }
2409
2410 mempool_free(h, pool->endio_hook_pool);
2411
2412 return 0;
2413}
2414
991d9fa0
JT
2415static void thin_postsuspend(struct dm_target *ti)
2416{
2417 if (dm_noflush_suspending(ti))
2418 requeue_io((struct thin_c *)ti->private);
2419}
2420
2421/*
2422 * <nr mapped sectors> <highest mapped sector>
2423 */
2424static int thin_status(struct dm_target *ti, status_type_t type,
2425 char *result, unsigned maxlen)
2426{
2427 int r;
2428 ssize_t sz = 0;
2429 dm_block_t mapped, highest;
2430 char buf[BDEVNAME_SIZE];
2431 struct thin_c *tc = ti->private;
2432
2433 if (!tc->td)
2434 DMEMIT("-");
2435 else {
2436 switch (type) {
2437 case STATUSTYPE_INFO:
2438 r = dm_thin_get_mapped_count(tc->td, &mapped);
2439 if (r)
2440 return r;
2441
2442 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2443 if (r < 0)
2444 return r;
2445
2446 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2447 if (r)
2448 DMEMIT("%llu", ((highest + 1) *
2449 tc->pool->sectors_per_block) - 1);
2450 else
2451 DMEMIT("-");
2452 break;
2453
2454 case STATUSTYPE_TABLE:
2455 DMEMIT("%s %lu",
2456 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2457 (unsigned long) tc->dev_id);
2dd9c257
JT
2458 if (tc->origin_dev)
2459 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
991d9fa0
JT
2460 break;
2461 }
2462 }
2463
2464 return 0;
2465}
2466
2467static int thin_iterate_devices(struct dm_target *ti,
2468 iterate_devices_callout_fn fn, void *data)
2469{
2470 dm_block_t blocks;
2471 struct thin_c *tc = ti->private;
2472
2473 /*
2474 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2475 * we follow a more convoluted path through to the pool's target.
2476 */
2477 if (!tc->pool->ti)
2478 return 0; /* nothing is bound */
2479
2480 blocks = tc->pool->ti->len >> tc->pool->block_shift;
2481 if (blocks)
2482 return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
2483
2484 return 0;
2485}
2486
2487static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2488{
2489 struct thin_c *tc = ti->private;
2490
2491 blk_limits_io_min(limits, 0);
2492 blk_limits_io_opt(limits, tc->pool->sectors_per_block << SECTOR_SHIFT);
2493}
2494
2495static struct target_type thin_target = {
2496 .name = "thin",
2dd9c257 2497 .version = {1, 1, 0},
991d9fa0
JT
2498 .module = THIS_MODULE,
2499 .ctr = thin_ctr,
2500 .dtr = thin_dtr,
2501 .map = thin_map,
eb2aa48d 2502 .end_io = thin_endio,
991d9fa0
JT
2503 .postsuspend = thin_postsuspend,
2504 .status = thin_status,
2505 .iterate_devices = thin_iterate_devices,
2506 .io_hints = thin_io_hints,
2507};
2508
2509/*----------------------------------------------------------------*/
2510
2511static int __init dm_thin_init(void)
2512{
2513 int r;
2514
2515 pool_table_init();
2516
2517 r = dm_register_target(&thin_target);
2518 if (r)
2519 return r;
2520
2521 r = dm_register_target(&pool_target);
2522 if (r)
2523 dm_unregister_target(&thin_target);
2524
2525 return r;
2526}
2527
2528static void dm_thin_exit(void)
2529{
2530 dm_unregister_target(&thin_target);
2531 dm_unregister_target(&pool_target);
2532}
2533
2534module_init(dm_thin_init);
2535module_exit(dm_thin_exit);
2536
2537MODULE_DESCRIPTION(DM_NAME "device-mapper thin provisioning target");
2538MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2539MODULE_LICENSE("GPL");
This page took 0.157094 seconds and 5 git commands to generate.