rtc: rtc-pm8xxx: Add support for pm8018 rtc
[deliverable/linux.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
473e87ce
JB
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
1da177e4 68
79ef3a8a 69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
e8096360 71static void lower_barrier(struct r1conf *conf);
1da177e4 72
dd0fc66f 73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
74{
75 struct pool_info *pi = data;
9f2c9d12 76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 79 return kzalloc(size, gfp_flags);
1da177e4
LT
80}
81
82static void r1bio_pool_free(void *r1_bio, void *data)
83{
84 kfree(r1_bio);
85}
86
87#define RESYNC_BLOCK_SIZE (64*1024)
8e005f7c 88#define RESYNC_DEPTH 32
1da177e4
LT
89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
8e005f7c 91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
93#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
8e005f7c 95#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
1da177e4 96
dd0fc66f 97static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
98{
99 struct pool_info *pi = data;
9f2c9d12 100 struct r1bio *r1_bio;
1da177e4 101 struct bio *bio;
da1aab3d 102 int need_pages;
1da177e4
LT
103 int i, j;
104
105 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 106 if (!r1_bio)
1da177e4 107 return NULL;
1da177e4
LT
108
109 /*
110 * Allocate bios : 1 for reading, n-1 for writing
111 */
112 for (j = pi->raid_disks ; j-- ; ) {
6746557f 113 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
114 if (!bio)
115 goto out_free_bio;
116 r1_bio->bios[j] = bio;
117 }
118 /*
119 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
120 * the first bio.
121 * If this is a user-requested check/repair, allocate
122 * RESYNC_PAGES for each bio.
1da177e4 123 */
d11c171e 124 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 125 need_pages = pi->raid_disks;
d11c171e 126 else
da1aab3d
N
127 need_pages = 1;
128 for (j = 0; j < need_pages; j++) {
d11c171e 129 bio = r1_bio->bios[j];
a0787606 130 bio->bi_vcnt = RESYNC_PAGES;
d11c171e 131
a0787606 132 if (bio_alloc_pages(bio, gfp_flags))
da1aab3d 133 goto out_free_pages;
d11c171e
N
134 }
135 /* If not user-requests, copy the page pointers to all bios */
136 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137 for (i=0; i<RESYNC_PAGES ; i++)
138 for (j=1; j<pi->raid_disks; j++)
139 r1_bio->bios[j]->bi_io_vec[i].bv_page =
140 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
141 }
142
143 r1_bio->master_bio = NULL;
144
145 return r1_bio;
146
da1aab3d
N
147out_free_pages:
148 while (--j >= 0) {
149 struct bio_vec *bv;
150
151 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
152 __free_page(bv->bv_page);
153 }
154
1da177e4 155out_free_bio:
8f19ccb2 156 while (++j < pi->raid_disks)
1da177e4
LT
157 bio_put(r1_bio->bios[j]);
158 r1bio_pool_free(r1_bio, data);
159 return NULL;
160}
161
162static void r1buf_pool_free(void *__r1_bio, void *data)
163{
164 struct pool_info *pi = data;
d11c171e 165 int i,j;
9f2c9d12 166 struct r1bio *r1bio = __r1_bio;
1da177e4 167
d11c171e
N
168 for (i = 0; i < RESYNC_PAGES; i++)
169 for (j = pi->raid_disks; j-- ;) {
170 if (j == 0 ||
171 r1bio->bios[j]->bi_io_vec[i].bv_page !=
172 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 173 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 174 }
1da177e4
LT
175 for (i=0 ; i < pi->raid_disks; i++)
176 bio_put(r1bio->bios[i]);
177
178 r1bio_pool_free(r1bio, data);
179}
180
e8096360 181static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
182{
183 int i;
184
8f19ccb2 185 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 186 struct bio **bio = r1_bio->bios + i;
4367af55 187 if (!BIO_SPECIAL(*bio))
1da177e4
LT
188 bio_put(*bio);
189 *bio = NULL;
190 }
191}
192
9f2c9d12 193static void free_r1bio(struct r1bio *r1_bio)
1da177e4 194{
e8096360 195 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 196
1da177e4
LT
197 put_all_bios(conf, r1_bio);
198 mempool_free(r1_bio, conf->r1bio_pool);
199}
200
9f2c9d12 201static void put_buf(struct r1bio *r1_bio)
1da177e4 202{
e8096360 203 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
204 int i;
205
8f19ccb2 206 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
207 struct bio *bio = r1_bio->bios[i];
208 if (bio->bi_end_io)
209 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
210 }
1da177e4
LT
211
212 mempool_free(r1_bio, conf->r1buf_pool);
213
17999be4 214 lower_barrier(conf);
1da177e4
LT
215}
216
9f2c9d12 217static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
218{
219 unsigned long flags;
fd01b88c 220 struct mddev *mddev = r1_bio->mddev;
e8096360 221 struct r1conf *conf = mddev->private;
1da177e4
LT
222
223 spin_lock_irqsave(&conf->device_lock, flags);
224 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 225 conf->nr_queued ++;
1da177e4
LT
226 spin_unlock_irqrestore(&conf->device_lock, flags);
227
17999be4 228 wake_up(&conf->wait_barrier);
1da177e4
LT
229 md_wakeup_thread(mddev->thread);
230}
231
232/*
233 * raid_end_bio_io() is called when we have finished servicing a mirrored
234 * operation and are ready to return a success/failure code to the buffer
235 * cache layer.
236 */
9f2c9d12 237static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
238{
239 struct bio *bio = r1_bio->master_bio;
240 int done;
e8096360 241 struct r1conf *conf = r1_bio->mddev->private;
79ef3a8a 242 sector_t start_next_window = r1_bio->start_next_window;
4f024f37 243 sector_t bi_sector = bio->bi_iter.bi_sector;
d2eb35ac
N
244
245 if (bio->bi_phys_segments) {
246 unsigned long flags;
247 spin_lock_irqsave(&conf->device_lock, flags);
248 bio->bi_phys_segments--;
249 done = (bio->bi_phys_segments == 0);
250 spin_unlock_irqrestore(&conf->device_lock, flags);
79ef3a8a 251 /*
252 * make_request() might be waiting for
253 * bi_phys_segments to decrease
254 */
255 wake_up(&conf->wait_barrier);
d2eb35ac
N
256 } else
257 done = 1;
258
259 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4246a0b6
CH
260 bio->bi_error = -EIO;
261
d2eb35ac 262 if (done) {
4246a0b6 263 bio_endio(bio);
d2eb35ac
N
264 /*
265 * Wake up any possible resync thread that waits for the device
266 * to go idle.
267 */
79ef3a8a 268 allow_barrier(conf, start_next_window, bi_sector);
d2eb35ac
N
269 }
270}
271
9f2c9d12 272static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
273{
274 struct bio *bio = r1_bio->master_bio;
275
4b6d287f
N
276 /* if nobody has done the final endio yet, do it now */
277 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
278 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
279 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
280 (unsigned long long) bio->bi_iter.bi_sector,
281 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 282
d2eb35ac 283 call_bio_endio(r1_bio);
4b6d287f 284 }
1da177e4
LT
285 free_r1bio(r1_bio);
286}
287
288/*
289 * Update disk head position estimator based on IRQ completion info.
290 */
9f2c9d12 291static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 292{
e8096360 293 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
294
295 conf->mirrors[disk].head_position =
296 r1_bio->sector + (r1_bio->sectors);
297}
298
ba3ae3be
NK
299/*
300 * Find the disk number which triggered given bio
301 */
9f2c9d12 302static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
303{
304 int mirror;
30194636
N
305 struct r1conf *conf = r1_bio->mddev->private;
306 int raid_disks = conf->raid_disks;
ba3ae3be 307
8f19ccb2 308 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
309 if (r1_bio->bios[mirror] == bio)
310 break;
311
8f19ccb2 312 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
313 update_head_pos(mirror, r1_bio);
314
315 return mirror;
316}
317
4246a0b6 318static void raid1_end_read_request(struct bio *bio)
1da177e4 319{
4246a0b6 320 int uptodate = !bio->bi_error;
9f2c9d12 321 struct r1bio *r1_bio = bio->bi_private;
e8096360 322 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 323 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 324
1da177e4
LT
325 /*
326 * this branch is our 'one mirror IO has finished' event handler:
327 */
e5872d58 328 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 329
dd00a99e
N
330 if (uptodate)
331 set_bit(R1BIO_Uptodate, &r1_bio->state);
332 else {
333 /* If all other devices have failed, we want to return
334 * the error upwards rather than fail the last device.
335 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 336 */
dd00a99e
N
337 unsigned long flags;
338 spin_lock_irqsave(&conf->device_lock, flags);
339 if (r1_bio->mddev->degraded == conf->raid_disks ||
340 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 341 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
342 uptodate = 1;
343 spin_unlock_irqrestore(&conf->device_lock, flags);
344 }
1da177e4 345
7ad4d4a6 346 if (uptodate) {
1da177e4 347 raid_end_bio_io(r1_bio);
e5872d58 348 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 349 } else {
1da177e4
LT
350 /*
351 * oops, read error:
352 */
353 char b[BDEVNAME_SIZE];
8bda470e
CD
354 printk_ratelimited(
355 KERN_ERR "md/raid1:%s: %s: "
356 "rescheduling sector %llu\n",
357 mdname(conf->mddev),
e5872d58 358 bdevname(rdev->bdev,
8bda470e
CD
359 b),
360 (unsigned long long)r1_bio->sector);
d2eb35ac 361 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 362 reschedule_retry(r1_bio);
7ad4d4a6 363 /* don't drop the reference on read_disk yet */
1da177e4 364 }
1da177e4
LT
365}
366
9f2c9d12 367static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
368{
369 /* it really is the end of this request */
370 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
371 /* free extra copy of the data pages */
372 int i = r1_bio->behind_page_count;
373 while (i--)
374 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
375 kfree(r1_bio->behind_bvecs);
376 r1_bio->behind_bvecs = NULL;
377 }
378 /* clear the bitmap if all writes complete successfully */
379 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
380 r1_bio->sectors,
381 !test_bit(R1BIO_Degraded, &r1_bio->state),
382 test_bit(R1BIO_BehindIO, &r1_bio->state));
383 md_write_end(r1_bio->mddev);
384}
385
9f2c9d12 386static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 387{
cd5ff9a1
N
388 if (!atomic_dec_and_test(&r1_bio->remaining))
389 return;
390
391 if (test_bit(R1BIO_WriteError, &r1_bio->state))
392 reschedule_retry(r1_bio);
393 else {
394 close_write(r1_bio);
4367af55
N
395 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
396 reschedule_retry(r1_bio);
397 else
398 raid_end_bio_io(r1_bio);
4e78064f
N
399 }
400}
401
4246a0b6 402static void raid1_end_write_request(struct bio *bio)
1da177e4 403{
9f2c9d12 404 struct r1bio *r1_bio = bio->bi_private;
e5872d58 405 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 406 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 407 struct bio *to_put = NULL;
e5872d58
N
408 int mirror = find_bio_disk(r1_bio, bio);
409 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
1da177e4 410
e9c7469b
TH
411 /*
412 * 'one mirror IO has finished' event handler:
413 */
4246a0b6 414 if (bio->bi_error) {
e5872d58
N
415 set_bit(WriteErrorSeen, &rdev->flags);
416 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
417 set_bit(MD_RECOVERY_NEEDED, &
418 conf->mddev->recovery);
419
cd5ff9a1 420 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 421 } else {
1da177e4 422 /*
e9c7469b
TH
423 * Set R1BIO_Uptodate in our master bio, so that we
424 * will return a good error code for to the higher
425 * levels even if IO on some other mirrored buffer
426 * fails.
427 *
428 * The 'master' represents the composite IO operation
429 * to user-side. So if something waits for IO, then it
430 * will wait for the 'master' bio.
1da177e4 431 */
4367af55
N
432 sector_t first_bad;
433 int bad_sectors;
434
cd5ff9a1
N
435 r1_bio->bios[mirror] = NULL;
436 to_put = bio;
3056e3ae
AL
437 /*
438 * Do not set R1BIO_Uptodate if the current device is
439 * rebuilding or Faulty. This is because we cannot use
440 * such device for properly reading the data back (we could
441 * potentially use it, if the current write would have felt
442 * before rdev->recovery_offset, but for simplicity we don't
443 * check this here.
444 */
e5872d58
N
445 if (test_bit(In_sync, &rdev->flags) &&
446 !test_bit(Faulty, &rdev->flags))
3056e3ae 447 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 448
4367af55 449 /* Maybe we can clear some bad blocks. */
e5872d58 450 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
4367af55
N
451 &first_bad, &bad_sectors)) {
452 r1_bio->bios[mirror] = IO_MADE_GOOD;
453 set_bit(R1BIO_MadeGood, &r1_bio->state);
454 }
455 }
456
e9c7469b 457 if (behind) {
e5872d58 458 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
459 atomic_dec(&r1_bio->behind_remaining);
460
461 /*
462 * In behind mode, we ACK the master bio once the I/O
463 * has safely reached all non-writemostly
464 * disks. Setting the Returned bit ensures that this
465 * gets done only once -- we don't ever want to return
466 * -EIO here, instead we'll wait
467 */
468 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
469 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
470 /* Maybe we can return now */
471 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
472 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
473 pr_debug("raid1: behind end write sectors"
474 " %llu-%llu\n",
4f024f37
KO
475 (unsigned long long) mbio->bi_iter.bi_sector,
476 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 477 call_bio_endio(r1_bio);
4b6d287f
N
478 }
479 }
480 }
4367af55 481 if (r1_bio->bios[mirror] == NULL)
e5872d58 482 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 483
1da177e4 484 /*
1da177e4
LT
485 * Let's see if all mirrored write operations have finished
486 * already.
487 */
af6d7b76 488 r1_bio_write_done(r1_bio);
c70810b3 489
04b857f7
N
490 if (to_put)
491 bio_put(to_put);
1da177e4
LT
492}
493
1da177e4
LT
494/*
495 * This routine returns the disk from which the requested read should
496 * be done. There is a per-array 'next expected sequential IO' sector
497 * number - if this matches on the next IO then we use the last disk.
498 * There is also a per-disk 'last know head position' sector that is
499 * maintained from IRQ contexts, both the normal and the resync IO
500 * completion handlers update this position correctly. If there is no
501 * perfect sequential match then we pick the disk whose head is closest.
502 *
503 * If there are 2 mirrors in the same 2 devices, performance degrades
504 * because position is mirror, not device based.
505 *
506 * The rdev for the device selected will have nr_pending incremented.
507 */
e8096360 508static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 509{
af3a2cd6 510 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
511 int sectors;
512 int best_good_sectors;
9dedf603
SL
513 int best_disk, best_dist_disk, best_pending_disk;
514 int has_nonrot_disk;
be4d3280 515 int disk;
76073054 516 sector_t best_dist;
9dedf603 517 unsigned int min_pending;
3cb03002 518 struct md_rdev *rdev;
f3ac8bf7 519 int choose_first;
12cee5a8 520 int choose_next_idle;
1da177e4
LT
521
522 rcu_read_lock();
523 /*
8ddf9efe 524 * Check if we can balance. We can balance on the whole
1da177e4
LT
525 * device if no resync is going on, or below the resync window.
526 * We take the first readable disk when above the resync window.
527 */
528 retry:
d2eb35ac 529 sectors = r1_bio->sectors;
76073054 530 best_disk = -1;
9dedf603 531 best_dist_disk = -1;
76073054 532 best_dist = MaxSector;
9dedf603
SL
533 best_pending_disk = -1;
534 min_pending = UINT_MAX;
d2eb35ac 535 best_good_sectors = 0;
9dedf603 536 has_nonrot_disk = 0;
12cee5a8 537 choose_next_idle = 0;
d2eb35ac 538
7d49ffcf
GR
539 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
540 (mddev_is_clustered(conf->mddev) &&
90382ed9 541 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
542 this_sector + sectors)))
543 choose_first = 1;
544 else
545 choose_first = 0;
1da177e4 546
be4d3280 547 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 548 sector_t dist;
d2eb35ac
N
549 sector_t first_bad;
550 int bad_sectors;
9dedf603 551 unsigned int pending;
12cee5a8 552 bool nonrot;
d2eb35ac 553
f3ac8bf7
N
554 rdev = rcu_dereference(conf->mirrors[disk].rdev);
555 if (r1_bio->bios[disk] == IO_BLOCKED
556 || rdev == NULL
76073054 557 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 558 continue;
76073054
N
559 if (!test_bit(In_sync, &rdev->flags) &&
560 rdev->recovery_offset < this_sector + sectors)
1da177e4 561 continue;
76073054
N
562 if (test_bit(WriteMostly, &rdev->flags)) {
563 /* Don't balance among write-mostly, just
564 * use the first as a last resort */
d1901ef0 565 if (best_dist_disk < 0) {
307729c8
N
566 if (is_badblock(rdev, this_sector, sectors,
567 &first_bad, &bad_sectors)) {
816b0acf 568 if (first_bad <= this_sector)
307729c8
N
569 /* Cannot use this */
570 continue;
571 best_good_sectors = first_bad - this_sector;
572 } else
573 best_good_sectors = sectors;
d1901ef0
TH
574 best_dist_disk = disk;
575 best_pending_disk = disk;
307729c8 576 }
76073054
N
577 continue;
578 }
579 /* This is a reasonable device to use. It might
580 * even be best.
581 */
d2eb35ac
N
582 if (is_badblock(rdev, this_sector, sectors,
583 &first_bad, &bad_sectors)) {
584 if (best_dist < MaxSector)
585 /* already have a better device */
586 continue;
587 if (first_bad <= this_sector) {
588 /* cannot read here. If this is the 'primary'
589 * device, then we must not read beyond
590 * bad_sectors from another device..
591 */
592 bad_sectors -= (this_sector - first_bad);
593 if (choose_first && sectors > bad_sectors)
594 sectors = bad_sectors;
595 if (best_good_sectors > sectors)
596 best_good_sectors = sectors;
597
598 } else {
599 sector_t good_sectors = first_bad - this_sector;
600 if (good_sectors > best_good_sectors) {
601 best_good_sectors = good_sectors;
602 best_disk = disk;
603 }
604 if (choose_first)
605 break;
606 }
607 continue;
608 } else
609 best_good_sectors = sectors;
610
12cee5a8
SL
611 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
612 has_nonrot_disk |= nonrot;
9dedf603 613 pending = atomic_read(&rdev->nr_pending);
76073054 614 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 615 if (choose_first) {
76073054 616 best_disk = disk;
1da177e4
LT
617 break;
618 }
12cee5a8
SL
619 /* Don't change to another disk for sequential reads */
620 if (conf->mirrors[disk].next_seq_sect == this_sector
621 || dist == 0) {
622 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
623 struct raid1_info *mirror = &conf->mirrors[disk];
624
625 best_disk = disk;
626 /*
627 * If buffered sequential IO size exceeds optimal
628 * iosize, check if there is idle disk. If yes, choose
629 * the idle disk. read_balance could already choose an
630 * idle disk before noticing it's a sequential IO in
631 * this disk. This doesn't matter because this disk
632 * will idle, next time it will be utilized after the
633 * first disk has IO size exceeds optimal iosize. In
634 * this way, iosize of the first disk will be optimal
635 * iosize at least. iosize of the second disk might be
636 * small, but not a big deal since when the second disk
637 * starts IO, the first disk is likely still busy.
638 */
639 if (nonrot && opt_iosize > 0 &&
640 mirror->seq_start != MaxSector &&
641 mirror->next_seq_sect > opt_iosize &&
642 mirror->next_seq_sect - opt_iosize >=
643 mirror->seq_start) {
644 choose_next_idle = 1;
645 continue;
646 }
647 break;
648 }
649 /* If device is idle, use it */
650 if (pending == 0) {
651 best_disk = disk;
652 break;
653 }
654
655 if (choose_next_idle)
656 continue;
9dedf603
SL
657
658 if (min_pending > pending) {
659 min_pending = pending;
660 best_pending_disk = disk;
661 }
662
76073054
N
663 if (dist < best_dist) {
664 best_dist = dist;
9dedf603 665 best_dist_disk = disk;
1da177e4 666 }
f3ac8bf7 667 }
1da177e4 668
9dedf603
SL
669 /*
670 * If all disks are rotational, choose the closest disk. If any disk is
671 * non-rotational, choose the disk with less pending request even the
672 * disk is rotational, which might/might not be optimal for raids with
673 * mixed ratation/non-rotational disks depending on workload.
674 */
675 if (best_disk == -1) {
676 if (has_nonrot_disk)
677 best_disk = best_pending_disk;
678 else
679 best_disk = best_dist_disk;
680 }
681
76073054
N
682 if (best_disk >= 0) {
683 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
684 if (!rdev)
685 goto retry;
686 atomic_inc(&rdev->nr_pending);
d2eb35ac 687 sectors = best_good_sectors;
12cee5a8
SL
688
689 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
690 conf->mirrors[best_disk].seq_start = this_sector;
691
be4d3280 692 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
693 }
694 rcu_read_unlock();
d2eb35ac 695 *max_sectors = sectors;
1da177e4 696
76073054 697 return best_disk;
1da177e4
LT
698}
699
5c675f83 700static int raid1_congested(struct mddev *mddev, int bits)
0d129228 701{
e8096360 702 struct r1conf *conf = mddev->private;
0d129228
N
703 int i, ret = 0;
704
4452226e 705 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
706 conf->pending_count >= max_queued_requests)
707 return 1;
708
0d129228 709 rcu_read_lock();
f53e29fc 710 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 711 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 712 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 713 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 714
1ed7242e
JB
715 BUG_ON(!q);
716
0d129228
N
717 /* Note the '|| 1' - when read_balance prefers
718 * non-congested targets, it can be removed
719 */
4452226e 720 if ((bits & (1 << WB_async_congested)) || 1)
0d129228
N
721 ret |= bdi_congested(&q->backing_dev_info, bits);
722 else
723 ret &= bdi_congested(&q->backing_dev_info, bits);
724 }
725 }
726 rcu_read_unlock();
727 return ret;
728}
0d129228 729
e8096360 730static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
731{
732 /* Any writes that have been queued but are awaiting
733 * bitmap updates get flushed here.
a35e63ef 734 */
a35e63ef
N
735 spin_lock_irq(&conf->device_lock);
736
737 if (conf->pending_bio_list.head) {
738 struct bio *bio;
739 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 740 conf->pending_count = 0;
a35e63ef
N
741 spin_unlock_irq(&conf->device_lock);
742 /* flush any pending bitmap writes to
743 * disk before proceeding w/ I/O */
744 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 745 wake_up(&conf->wait_barrier);
a35e63ef
N
746
747 while (bio) { /* submit pending writes */
748 struct bio *next = bio->bi_next;
749 bio->bi_next = NULL;
796a5cf0 750 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
2ff8cc2c
SL
751 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
752 /* Just ignore it */
4246a0b6 753 bio_endio(bio);
2ff8cc2c
SL
754 else
755 generic_make_request(bio);
a35e63ef
N
756 bio = next;
757 }
a35e63ef
N
758 } else
759 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
760}
761
17999be4
N
762/* Barriers....
763 * Sometimes we need to suspend IO while we do something else,
764 * either some resync/recovery, or reconfigure the array.
765 * To do this we raise a 'barrier'.
766 * The 'barrier' is a counter that can be raised multiple times
767 * to count how many activities are happening which preclude
768 * normal IO.
769 * We can only raise the barrier if there is no pending IO.
770 * i.e. if nr_pending == 0.
771 * We choose only to raise the barrier if no-one is waiting for the
772 * barrier to go down. This means that as soon as an IO request
773 * is ready, no other operations which require a barrier will start
774 * until the IO request has had a chance.
775 *
776 * So: regular IO calls 'wait_barrier'. When that returns there
777 * is no backgroup IO happening, It must arrange to call
778 * allow_barrier when it has finished its IO.
779 * backgroup IO calls must call raise_barrier. Once that returns
780 * there is no normal IO happeing. It must arrange to call
781 * lower_barrier when the particular background IO completes.
1da177e4 782 */
c2fd4c94 783static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4
LT
784{
785 spin_lock_irq(&conf->resync_lock);
17999be4
N
786
787 /* Wait until no block IO is waiting */
788 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
eed8c02e 789 conf->resync_lock);
17999be4
N
790
791 /* block any new IO from starting */
792 conf->barrier++;
c2fd4c94 793 conf->next_resync = sector_nr;
17999be4 794
79ef3a8a 795 /* For these conditions we must wait:
796 * A: while the array is in frozen state
797 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
798 * the max count which allowed.
799 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
800 * next resync will reach to the window which normal bios are
801 * handling.
2f73d3c5 802 * D: while there are any active requests in the current window.
79ef3a8a 803 */
17999be4 804 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 805 !conf->array_frozen &&
79ef3a8a 806 conf->barrier < RESYNC_DEPTH &&
2f73d3c5 807 conf->current_window_requests == 0 &&
79ef3a8a 808 (conf->start_next_window >=
809 conf->next_resync + RESYNC_SECTORS),
eed8c02e 810 conf->resync_lock);
17999be4 811
34e97f17 812 conf->nr_pending++;
17999be4
N
813 spin_unlock_irq(&conf->resync_lock);
814}
815
e8096360 816static void lower_barrier(struct r1conf *conf)
17999be4
N
817{
818 unsigned long flags;
709ae487 819 BUG_ON(conf->barrier <= 0);
17999be4
N
820 spin_lock_irqsave(&conf->resync_lock, flags);
821 conf->barrier--;
34e97f17 822 conf->nr_pending--;
17999be4
N
823 spin_unlock_irqrestore(&conf->resync_lock, flags);
824 wake_up(&conf->wait_barrier);
825}
826
79ef3a8a 827static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
17999be4 828{
79ef3a8a 829 bool wait = false;
830
831 if (conf->array_frozen || !bio)
832 wait = true;
833 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
23554960
N
834 if ((conf->mddev->curr_resync_completed
835 >= bio_end_sector(bio)) ||
836 (conf->next_resync + NEXT_NORMALIO_DISTANCE
837 <= bio->bi_iter.bi_sector))
79ef3a8a 838 wait = false;
839 else
840 wait = true;
841 }
842
843 return wait;
844}
845
846static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
847{
848 sector_t sector = 0;
849
17999be4 850 spin_lock_irq(&conf->resync_lock);
79ef3a8a 851 if (need_to_wait_for_sync(conf, bio)) {
17999be4 852 conf->nr_waiting++;
d6b42dcb
N
853 /* Wait for the barrier to drop.
854 * However if there are already pending
855 * requests (preventing the barrier from
856 * rising completely), and the
5965b642 857 * per-process bio queue isn't empty,
d6b42dcb 858 * then don't wait, as we need to empty
5965b642
N
859 * that queue to allow conf->start_next_window
860 * to increase.
d6b42dcb
N
861 */
862 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 863 !conf->array_frozen &&
864 (!conf->barrier ||
5965b642
N
865 ((conf->start_next_window <
866 conf->next_resync + RESYNC_SECTORS) &&
867 current->bio_list &&
868 !bio_list_empty(current->bio_list))),
eed8c02e 869 conf->resync_lock);
17999be4 870 conf->nr_waiting--;
1da177e4 871 }
79ef3a8a 872
873 if (bio && bio_data_dir(bio) == WRITE) {
e8ff8bf0 874 if (bio->bi_iter.bi_sector >= conf->next_resync) {
79ef3a8a 875 if (conf->start_next_window == MaxSector)
876 conf->start_next_window =
877 conf->next_resync +
878 NEXT_NORMALIO_DISTANCE;
879
880 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
4f024f37 881 <= bio->bi_iter.bi_sector)
79ef3a8a 882 conf->next_window_requests++;
883 else
884 conf->current_window_requests++;
79ef3a8a 885 sector = conf->start_next_window;
41a336e0 886 }
79ef3a8a 887 }
888
17999be4 889 conf->nr_pending++;
1da177e4 890 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 891 return sector;
1da177e4
LT
892}
893
79ef3a8a 894static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
895 sector_t bi_sector)
17999be4
N
896{
897 unsigned long flags;
79ef3a8a 898
17999be4
N
899 spin_lock_irqsave(&conf->resync_lock, flags);
900 conf->nr_pending--;
79ef3a8a 901 if (start_next_window) {
902 if (start_next_window == conf->start_next_window) {
903 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
904 <= bi_sector)
905 conf->next_window_requests--;
906 else
907 conf->current_window_requests--;
908 } else
909 conf->current_window_requests--;
910
911 if (!conf->current_window_requests) {
912 if (conf->next_window_requests) {
913 conf->current_window_requests =
914 conf->next_window_requests;
915 conf->next_window_requests = 0;
916 conf->start_next_window +=
917 NEXT_NORMALIO_DISTANCE;
918 } else
919 conf->start_next_window = MaxSector;
920 }
921 }
17999be4
N
922 spin_unlock_irqrestore(&conf->resync_lock, flags);
923 wake_up(&conf->wait_barrier);
924}
925
e2d59925 926static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab
N
927{
928 /* stop syncio and normal IO and wait for everything to
929 * go quite.
b364e3d0 930 * We wait until nr_pending match nr_queued+extra
1c830532
N
931 * This is called in the context of one normal IO request
932 * that has failed. Thus any sync request that might be pending
933 * will be blocked by nr_pending, and we need to wait for
934 * pending IO requests to complete or be queued for re-try.
e2d59925 935 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
936 * must match the number of pending IOs (nr_pending) before
937 * we continue.
ddaf22ab
N
938 */
939 spin_lock_irq(&conf->resync_lock);
b364e3d0 940 conf->array_frozen = 1;
eed8c02e 941 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 942 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
943 conf->resync_lock,
944 flush_pending_writes(conf));
ddaf22ab
N
945 spin_unlock_irq(&conf->resync_lock);
946}
e8096360 947static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
948{
949 /* reverse the effect of the freeze */
950 spin_lock_irq(&conf->resync_lock);
b364e3d0 951 conf->array_frozen = 0;
ddaf22ab
N
952 wake_up(&conf->wait_barrier);
953 spin_unlock_irq(&conf->resync_lock);
954}
955
f72ffdd6 956/* duplicate the data pages for behind I/O
4e78064f 957 */
9f2c9d12 958static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
959{
960 int i;
961 struct bio_vec *bvec;
2ca68f5e 962 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 963 GFP_NOIO);
2ca68f5e 964 if (unlikely(!bvecs))
af6d7b76 965 return;
4b6d287f 966
cb34e057 967 bio_for_each_segment_all(bvec, bio, i) {
2ca68f5e
N
968 bvecs[i] = *bvec;
969 bvecs[i].bv_page = alloc_page(GFP_NOIO);
970 if (unlikely(!bvecs[i].bv_page))
4b6d287f 971 goto do_sync_io;
2ca68f5e
N
972 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
973 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
974 kunmap(bvecs[i].bv_page);
4b6d287f
N
975 kunmap(bvec->bv_page);
976 }
2ca68f5e 977 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
978 r1_bio->behind_page_count = bio->bi_vcnt;
979 set_bit(R1BIO_BehindIO, &r1_bio->state);
980 return;
4b6d287f
N
981
982do_sync_io:
af6d7b76 983 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
984 if (bvecs[i].bv_page)
985 put_page(bvecs[i].bv_page);
986 kfree(bvecs);
4f024f37
KO
987 pr_debug("%dB behind alloc failed, doing sync I/O\n",
988 bio->bi_iter.bi_size);
4b6d287f
N
989}
990
f54a9d0e
N
991struct raid1_plug_cb {
992 struct blk_plug_cb cb;
993 struct bio_list pending;
994 int pending_cnt;
995};
996
997static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
998{
999 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1000 cb);
1001 struct mddev *mddev = plug->cb.data;
1002 struct r1conf *conf = mddev->private;
1003 struct bio *bio;
1004
874807a8 1005 if (from_schedule || current->bio_list) {
f54a9d0e
N
1006 spin_lock_irq(&conf->device_lock);
1007 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1008 conf->pending_count += plug->pending_cnt;
1009 spin_unlock_irq(&conf->device_lock);
ee0b0244 1010 wake_up(&conf->wait_barrier);
f54a9d0e
N
1011 md_wakeup_thread(mddev->thread);
1012 kfree(plug);
1013 return;
1014 }
1015
1016 /* we aren't scheduling, so we can do the write-out directly. */
1017 bio = bio_list_get(&plug->pending);
1018 bitmap_unplug(mddev->bitmap);
1019 wake_up(&conf->wait_barrier);
1020
1021 while (bio) { /* submit pending writes */
1022 struct bio *next = bio->bi_next;
1023 bio->bi_next = NULL;
796a5cf0 1024 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
32f9f570
SL
1025 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1026 /* Just ignore it */
4246a0b6 1027 bio_endio(bio);
32f9f570
SL
1028 else
1029 generic_make_request(bio);
f54a9d0e
N
1030 bio = next;
1031 }
1032 kfree(plug);
1033}
1034
849674e4 1035static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1036{
e8096360 1037 struct r1conf *conf = mddev->private;
0eaf822c 1038 struct raid1_info *mirror;
9f2c9d12 1039 struct r1bio *r1_bio;
1da177e4 1040 struct bio *read_bio;
1f68f0c4 1041 int i, disks;
84255d10 1042 struct bitmap *bitmap;
191ea9b2 1043 unsigned long flags;
796a5cf0 1044 const int op = bio_op(bio);
a362357b 1045 const int rw = bio_data_dir(bio);
1eff9d32
JA
1046 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1047 const unsigned long do_flush_fua = (bio->bi_opf &
28a8f0d3 1048 (REQ_PREFLUSH | REQ_FUA));
3cb03002 1049 struct md_rdev *blocked_rdev;
f54a9d0e
N
1050 struct blk_plug_cb *cb;
1051 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
1052 int first_clone;
1053 int sectors_handled;
1054 int max_sectors;
79ef3a8a 1055 sector_t start_next_window;
191ea9b2 1056
1da177e4
LT
1057 /*
1058 * Register the new request and wait if the reconstruction
1059 * thread has put up a bar for new requests.
1060 * Continue immediately if no resync is active currently.
1061 */
62de608d 1062
3d310eb7
N
1063 md_write_start(mddev, bio); /* wait on superblock update early */
1064
6eef4b21 1065 if (bio_data_dir(bio) == WRITE &&
589a1c49
GR
1066 ((bio_end_sector(bio) > mddev->suspend_lo &&
1067 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1068 (mddev_is_clustered(mddev) &&
90382ed9
GR
1069 md_cluster_ops->area_resyncing(mddev, WRITE,
1070 bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
6eef4b21
N
1071 /* As the suspend_* range is controlled by
1072 * userspace, we want an interruptible
1073 * wait.
1074 */
1075 DEFINE_WAIT(w);
1076 for (;;) {
1077 flush_signals(current);
1078 prepare_to_wait(&conf->wait_barrier,
1079 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1080 if (bio_end_sector(bio) <= mddev->suspend_lo ||
589a1c49
GR
1081 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1082 (mddev_is_clustered(mddev) &&
90382ed9 1083 !md_cluster_ops->area_resyncing(mddev, WRITE,
589a1c49 1084 bio->bi_iter.bi_sector, bio_end_sector(bio))))
6eef4b21
N
1085 break;
1086 schedule();
1087 }
1088 finish_wait(&conf->wait_barrier, &w);
1089 }
62de608d 1090
79ef3a8a 1091 start_next_window = wait_barrier(conf, bio);
1da177e4 1092
84255d10
N
1093 bitmap = mddev->bitmap;
1094
1da177e4 1095 /*
70246286 1096 * make_request() can abort the operation when read-ahead is being
1da177e4
LT
1097 * used and no empty request is available.
1098 *
1099 */
1100 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1101
1102 r1_bio->master_bio = bio;
aa8b57aa 1103 r1_bio->sectors = bio_sectors(bio);
191ea9b2 1104 r1_bio->state = 0;
1da177e4 1105 r1_bio->mddev = mddev;
4f024f37 1106 r1_bio->sector = bio->bi_iter.bi_sector;
1da177e4 1107
d2eb35ac
N
1108 /* We might need to issue multiple reads to different
1109 * devices if there are bad blocks around, so we keep
1110 * track of the number of reads in bio->bi_phys_segments.
1111 * If this is 0, there is only one r1_bio and no locking
1112 * will be needed when requests complete. If it is
1113 * non-zero, then it is the number of not-completed requests.
1114 */
1115 bio->bi_phys_segments = 0;
b7c44ed9 1116 bio_clear_flag(bio, BIO_SEG_VALID);
d2eb35ac 1117
a362357b 1118 if (rw == READ) {
1da177e4
LT
1119 /*
1120 * read balancing logic:
1121 */
d2eb35ac
N
1122 int rdisk;
1123
1124read_again:
1125 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
1126
1127 if (rdisk < 0) {
1128 /* couldn't find anywhere to read from */
1129 raid_end_bio_io(r1_bio);
5a7bbad2 1130 return;
1da177e4
LT
1131 }
1132 mirror = conf->mirrors + rdisk;
1133
e555190d
N
1134 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1135 bitmap) {
1136 /* Reading from a write-mostly device must
1137 * take care not to over-take any writes
1138 * that are 'behind'
1139 */
1140 wait_event(bitmap->behind_wait,
1141 atomic_read(&bitmap->behind_writes) == 0);
1142 }
1da177e4 1143 r1_bio->read_disk = rdisk;
f0cc9a05 1144 r1_bio->start_next_window = 0;
1da177e4 1145
a167f663 1146 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1147 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1148 max_sectors);
1da177e4
LT
1149
1150 r1_bio->bios[rdisk] = read_bio;
1151
4f024f37
KO
1152 read_bio->bi_iter.bi_sector = r1_bio->sector +
1153 mirror->rdev->data_offset;
1da177e4
LT
1154 read_bio->bi_bdev = mirror->rdev->bdev;
1155 read_bio->bi_end_io = raid1_end_read_request;
796a5cf0 1156 bio_set_op_attrs(read_bio, op, do_sync);
1da177e4
LT
1157 read_bio->bi_private = r1_bio;
1158
d2eb35ac
N
1159 if (max_sectors < r1_bio->sectors) {
1160 /* could not read all from this device, so we will
1161 * need another r1_bio.
1162 */
d2eb35ac
N
1163
1164 sectors_handled = (r1_bio->sector + max_sectors
4f024f37 1165 - bio->bi_iter.bi_sector);
d2eb35ac
N
1166 r1_bio->sectors = max_sectors;
1167 spin_lock_irq(&conf->device_lock);
1168 if (bio->bi_phys_segments == 0)
1169 bio->bi_phys_segments = 2;
1170 else
1171 bio->bi_phys_segments++;
1172 spin_unlock_irq(&conf->device_lock);
1173 /* Cannot call generic_make_request directly
1174 * as that will be queued in __make_request
1175 * and subsequent mempool_alloc might block waiting
1176 * for it. So hand bio over to raid1d.
1177 */
1178 reschedule_retry(r1_bio);
1179
1180 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1181
1182 r1_bio->master_bio = bio;
aa8b57aa 1183 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
d2eb35ac
N
1184 r1_bio->state = 0;
1185 r1_bio->mddev = mddev;
4f024f37
KO
1186 r1_bio->sector = bio->bi_iter.bi_sector +
1187 sectors_handled;
d2eb35ac
N
1188 goto read_again;
1189 } else
1190 generic_make_request(read_bio);
5a7bbad2 1191 return;
1da177e4
LT
1192 }
1193
1194 /*
1195 * WRITE:
1196 */
34db0cd6
N
1197 if (conf->pending_count >= max_queued_requests) {
1198 md_wakeup_thread(mddev->thread);
1199 wait_event(conf->wait_barrier,
1200 conf->pending_count < max_queued_requests);
1201 }
1f68f0c4 1202 /* first select target devices under rcu_lock and
1da177e4
LT
1203 * inc refcount on their rdev. Record them by setting
1204 * bios[x] to bio
1f68f0c4
N
1205 * If there are known/acknowledged bad blocks on any device on
1206 * which we have seen a write error, we want to avoid writing those
1207 * blocks.
1208 * This potentially requires several writes to write around
1209 * the bad blocks. Each set of writes gets it's own r1bio
1210 * with a set of bios attached.
1da177e4 1211 */
c3b328ac 1212
8f19ccb2 1213 disks = conf->raid_disks * 2;
6bfe0b49 1214 retry_write:
79ef3a8a 1215 r1_bio->start_next_window = start_next_window;
6bfe0b49 1216 blocked_rdev = NULL;
1da177e4 1217 rcu_read_lock();
1f68f0c4 1218 max_sectors = r1_bio->sectors;
1da177e4 1219 for (i = 0; i < disks; i++) {
3cb03002 1220 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1221 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1222 atomic_inc(&rdev->nr_pending);
1223 blocked_rdev = rdev;
1224 break;
1225 }
1f68f0c4 1226 r1_bio->bios[i] = NULL;
8ae12666 1227 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1228 if (i < conf->raid_disks)
1229 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1230 continue;
1231 }
1232
1233 atomic_inc(&rdev->nr_pending);
1234 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1235 sector_t first_bad;
1236 int bad_sectors;
1237 int is_bad;
1238
1239 is_bad = is_badblock(rdev, r1_bio->sector,
1240 max_sectors,
1241 &first_bad, &bad_sectors);
1242 if (is_bad < 0) {
1243 /* mustn't write here until the bad block is
1244 * acknowledged*/
1245 set_bit(BlockedBadBlocks, &rdev->flags);
1246 blocked_rdev = rdev;
1247 break;
1248 }
1249 if (is_bad && first_bad <= r1_bio->sector) {
1250 /* Cannot write here at all */
1251 bad_sectors -= (r1_bio->sector - first_bad);
1252 if (bad_sectors < max_sectors)
1253 /* mustn't write more than bad_sectors
1254 * to other devices yet
1255 */
1256 max_sectors = bad_sectors;
03c902e1 1257 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1258 /* We don't set R1BIO_Degraded as that
1259 * only applies if the disk is
1260 * missing, so it might be re-added,
1261 * and we want to know to recover this
1262 * chunk.
1263 * In this case the device is here,
1264 * and the fact that this chunk is not
1265 * in-sync is recorded in the bad
1266 * block log
1267 */
1268 continue;
964147d5 1269 }
1f68f0c4
N
1270 if (is_bad) {
1271 int good_sectors = first_bad - r1_bio->sector;
1272 if (good_sectors < max_sectors)
1273 max_sectors = good_sectors;
1274 }
1275 }
1276 r1_bio->bios[i] = bio;
1da177e4
LT
1277 }
1278 rcu_read_unlock();
1279
6bfe0b49
DW
1280 if (unlikely(blocked_rdev)) {
1281 /* Wait for this device to become unblocked */
1282 int j;
79ef3a8a 1283 sector_t old = start_next_window;
6bfe0b49
DW
1284
1285 for (j = 0; j < i; j++)
1286 if (r1_bio->bios[j])
1287 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1288 r1_bio->state = 0;
4f024f37 1289 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
6bfe0b49 1290 md_wait_for_blocked_rdev(blocked_rdev, mddev);
79ef3a8a 1291 start_next_window = wait_barrier(conf, bio);
1292 /*
1293 * We must make sure the multi r1bios of bio have
1294 * the same value of bi_phys_segments
1295 */
1296 if (bio->bi_phys_segments && old &&
1297 old != start_next_window)
1298 /* Wait for the former r1bio(s) to complete */
1299 wait_event(conf->wait_barrier,
1300 bio->bi_phys_segments == 1);
6bfe0b49
DW
1301 goto retry_write;
1302 }
1303
1f68f0c4
N
1304 if (max_sectors < r1_bio->sectors) {
1305 /* We are splitting this write into multiple parts, so
1306 * we need to prepare for allocating another r1_bio.
1307 */
1308 r1_bio->sectors = max_sectors;
1309 spin_lock_irq(&conf->device_lock);
1310 if (bio->bi_phys_segments == 0)
1311 bio->bi_phys_segments = 2;
1312 else
1313 bio->bi_phys_segments++;
1314 spin_unlock_irq(&conf->device_lock);
191ea9b2 1315 }
4f024f37 1316 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
4b6d287f 1317
4e78064f 1318 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1319 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1320
1f68f0c4 1321 first_clone = 1;
1da177e4
LT
1322 for (i = 0; i < disks; i++) {
1323 struct bio *mbio;
1324 if (!r1_bio->bios[i])
1325 continue;
1326
a167f663 1327 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1328 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1f68f0c4
N
1329
1330 if (first_clone) {
1331 /* do behind I/O ?
1332 * Not if there are too many, or cannot
1333 * allocate memory, or a reader on WriteMostly
1334 * is waiting for behind writes to flush */
1335 if (bitmap &&
1336 (atomic_read(&bitmap->behind_writes)
1337 < mddev->bitmap_info.max_write_behind) &&
1338 !waitqueue_active(&bitmap->behind_wait))
1339 alloc_behind_pages(mbio, r1_bio);
1340
1341 bitmap_startwrite(bitmap, r1_bio->sector,
1342 r1_bio->sectors,
1343 test_bit(R1BIO_BehindIO,
1344 &r1_bio->state));
1345 first_clone = 0;
1346 }
2ca68f5e 1347 if (r1_bio->behind_bvecs) {
4b6d287f
N
1348 struct bio_vec *bvec;
1349 int j;
1350
cb34e057
KO
1351 /*
1352 * We trimmed the bio, so _all is legit
4b6d287f 1353 */
d74c6d51 1354 bio_for_each_segment_all(bvec, mbio, j)
2ca68f5e 1355 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1356 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1357 atomic_inc(&r1_bio->behind_remaining);
1358 }
1359
1f68f0c4
N
1360 r1_bio->bios[i] = mbio;
1361
4f024f37 1362 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4
N
1363 conf->mirrors[i].rdev->data_offset);
1364 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1365 mbio->bi_end_io = raid1_end_write_request;
288dab8a 1366 bio_set_op_attrs(mbio, op, do_flush_fua | do_sync);
1f68f0c4
N
1367 mbio->bi_private = r1_bio;
1368
1da177e4 1369 atomic_inc(&r1_bio->remaining);
f54a9d0e
N
1370
1371 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1372 if (cb)
1373 plug = container_of(cb, struct raid1_plug_cb, cb);
1374 else
1375 plug = NULL;
4e78064f 1376 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1377 if (plug) {
1378 bio_list_add(&plug->pending, mbio);
1379 plug->pending_cnt++;
1380 } else {
1381 bio_list_add(&conf->pending_bio_list, mbio);
1382 conf->pending_count++;
1383 }
4e78064f 1384 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1385 if (!plug)
b357f04a 1386 md_wakeup_thread(mddev->thread);
1da177e4 1387 }
079fa166
N
1388 /* Mustn't call r1_bio_write_done before this next test,
1389 * as it could result in the bio being freed.
1390 */
aa8b57aa 1391 if (sectors_handled < bio_sectors(bio)) {
079fa166 1392 r1_bio_write_done(r1_bio);
1f68f0c4
N
1393 /* We need another r1_bio. It has already been counted
1394 * in bio->bi_phys_segments
1395 */
1396 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1397 r1_bio->master_bio = bio;
aa8b57aa 1398 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1f68f0c4
N
1399 r1_bio->state = 0;
1400 r1_bio->mddev = mddev;
4f024f37 1401 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1f68f0c4
N
1402 goto retry_write;
1403 }
1404
079fa166
N
1405 r1_bio_write_done(r1_bio);
1406
1407 /* In case raid1d snuck in to freeze_array */
1408 wake_up(&conf->wait_barrier);
1da177e4
LT
1409}
1410
849674e4 1411static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1412{
e8096360 1413 struct r1conf *conf = mddev->private;
1da177e4
LT
1414 int i;
1415
1416 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1417 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1418 rcu_read_lock();
1419 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1420 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1421 seq_printf(seq, "%s",
ddac7c7e
N
1422 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1423 }
1424 rcu_read_unlock();
1da177e4
LT
1425 seq_printf(seq, "]");
1426}
1427
849674e4 1428static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1429{
1430 char b[BDEVNAME_SIZE];
e8096360 1431 struct r1conf *conf = mddev->private;
423f04d6 1432 unsigned long flags;
1da177e4
LT
1433
1434 /*
1435 * If it is not operational, then we have already marked it as dead
1436 * else if it is the last working disks, ignore the error, let the
1437 * next level up know.
1438 * else mark the drive as failed
1439 */
b2d444d7 1440 if (test_bit(In_sync, &rdev->flags)
4044ba58 1441 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1442 /*
1443 * Don't fail the drive, act as though we were just a
4044ba58
N
1444 * normal single drive.
1445 * However don't try a recovery from this drive as
1446 * it is very likely to fail.
1da177e4 1447 */
5389042f 1448 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1449 return;
4044ba58 1450 }
de393cde 1451 set_bit(Blocked, &rdev->flags);
423f04d6 1452 spin_lock_irqsave(&conf->device_lock, flags);
c04be0aa 1453 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1da177e4 1454 mddev->degraded++;
dd00a99e 1455 set_bit(Faulty, &rdev->flags);
dd00a99e
N
1456 } else
1457 set_bit(Faulty, &rdev->flags);
423f04d6 1458 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1459 /*
1460 * if recovery is running, make sure it aborts.
1461 */
1462 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
85ad1d13
GJ
1463 set_mask_bits(&mddev->flags, 0,
1464 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
067032bc
JP
1465 printk(KERN_ALERT
1466 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1467 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1468 mdname(mddev), bdevname(rdev->bdev, b),
1469 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1470}
1471
e8096360 1472static void print_conf(struct r1conf *conf)
1da177e4
LT
1473{
1474 int i;
1da177e4 1475
9dd1e2fa 1476 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1477 if (!conf) {
9dd1e2fa 1478 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1479 return;
1480 }
9dd1e2fa 1481 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1482 conf->raid_disks);
1483
ddac7c7e 1484 rcu_read_lock();
1da177e4
LT
1485 for (i = 0; i < conf->raid_disks; i++) {
1486 char b[BDEVNAME_SIZE];
3cb03002 1487 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1488 if (rdev)
9dd1e2fa 1489 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1490 i, !test_bit(In_sync, &rdev->flags),
1491 !test_bit(Faulty, &rdev->flags),
1492 bdevname(rdev->bdev,b));
1da177e4 1493 }
ddac7c7e 1494 rcu_read_unlock();
1da177e4
LT
1495}
1496
e8096360 1497static void close_sync(struct r1conf *conf)
1da177e4 1498{
79ef3a8a 1499 wait_barrier(conf, NULL);
1500 allow_barrier(conf, 0, 0);
1da177e4
LT
1501
1502 mempool_destroy(conf->r1buf_pool);
1503 conf->r1buf_pool = NULL;
79ef3a8a 1504
669cc7ba 1505 spin_lock_irq(&conf->resync_lock);
e8ff8bf0 1506 conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
79ef3a8a 1507 conf->start_next_window = MaxSector;
669cc7ba
N
1508 conf->current_window_requests +=
1509 conf->next_window_requests;
1510 conf->next_window_requests = 0;
1511 spin_unlock_irq(&conf->resync_lock);
1da177e4
LT
1512}
1513
fd01b88c 1514static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1515{
1516 int i;
e8096360 1517 struct r1conf *conf = mddev->private;
6b965620
N
1518 int count = 0;
1519 unsigned long flags;
1da177e4
LT
1520
1521 /*
f72ffdd6 1522 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1523 * and mark them readable.
1524 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1525 * device_lock used to avoid races with raid1_end_read_request
1526 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1527 */
423f04d6 1528 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1529 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1530 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1531 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1532 if (repl
1aee41f6 1533 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1534 && repl->recovery_offset == MaxSector
1535 && !test_bit(Faulty, &repl->flags)
1536 && !test_and_set_bit(In_sync, &repl->flags)) {
1537 /* replacement has just become active */
1538 if (!rdev ||
1539 !test_and_clear_bit(In_sync, &rdev->flags))
1540 count++;
1541 if (rdev) {
1542 /* Replaced device not technically
1543 * faulty, but we need to be sure
1544 * it gets removed and never re-added
1545 */
1546 set_bit(Faulty, &rdev->flags);
1547 sysfs_notify_dirent_safe(
1548 rdev->sysfs_state);
1549 }
1550 }
ddac7c7e 1551 if (rdev
61e4947c 1552 && rdev->recovery_offset == MaxSector
ddac7c7e 1553 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1554 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1555 count++;
654e8b5a 1556 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1557 }
1558 }
6b965620
N
1559 mddev->degraded -= count;
1560 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1561
1562 print_conf(conf);
6b965620 1563 return count;
1da177e4
LT
1564}
1565
fd01b88c 1566static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1567{
e8096360 1568 struct r1conf *conf = mddev->private;
199050ea 1569 int err = -EEXIST;
41158c7e 1570 int mirror = 0;
0eaf822c 1571 struct raid1_info *p;
6c2fce2e 1572 int first = 0;
30194636 1573 int last = conf->raid_disks - 1;
1da177e4 1574
5389042f
N
1575 if (mddev->recovery_disabled == conf->recovery_disabled)
1576 return -EBUSY;
1577
1501efad
DW
1578 if (md_integrity_add_rdev(rdev, mddev))
1579 return -ENXIO;
1580
6c2fce2e
NB
1581 if (rdev->raid_disk >= 0)
1582 first = last = rdev->raid_disk;
1583
70bcecdb
GR
1584 /*
1585 * find the disk ... but prefer rdev->saved_raid_disk
1586 * if possible.
1587 */
1588 if (rdev->saved_raid_disk >= 0 &&
1589 rdev->saved_raid_disk >= first &&
1590 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1591 first = last = rdev->saved_raid_disk;
1592
7ef449d1
N
1593 for (mirror = first; mirror <= last; mirror++) {
1594 p = conf->mirrors+mirror;
1595 if (!p->rdev) {
1da177e4 1596
9092c02d
JB
1597 if (mddev->gendisk)
1598 disk_stack_limits(mddev->gendisk, rdev->bdev,
1599 rdev->data_offset << 9);
1da177e4
LT
1600
1601 p->head_position = 0;
1602 rdev->raid_disk = mirror;
199050ea 1603 err = 0;
6aea114a
N
1604 /* As all devices are equivalent, we don't need a full recovery
1605 * if this was recently any drive of the array
1606 */
1607 if (rdev->saved_raid_disk < 0)
41158c7e 1608 conf->fullsync = 1;
d6065f7b 1609 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1610 break;
1611 }
7ef449d1
N
1612 if (test_bit(WantReplacement, &p->rdev->flags) &&
1613 p[conf->raid_disks].rdev == NULL) {
1614 /* Add this device as a replacement */
1615 clear_bit(In_sync, &rdev->flags);
1616 set_bit(Replacement, &rdev->flags);
1617 rdev->raid_disk = mirror;
1618 err = 0;
1619 conf->fullsync = 1;
1620 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1621 break;
1622 }
1623 }
9092c02d 1624 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1625 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1626 print_conf(conf);
199050ea 1627 return err;
1da177e4
LT
1628}
1629
b8321b68 1630static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1631{
e8096360 1632 struct r1conf *conf = mddev->private;
1da177e4 1633 int err = 0;
b8321b68 1634 int number = rdev->raid_disk;
0eaf822c 1635 struct raid1_info *p = conf->mirrors + number;
1da177e4 1636
b014f14c
N
1637 if (rdev != p->rdev)
1638 p = conf->mirrors + conf->raid_disks + number;
1639
1da177e4 1640 print_conf(conf);
b8321b68 1641 if (rdev == p->rdev) {
b2d444d7 1642 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1643 atomic_read(&rdev->nr_pending)) {
1644 err = -EBUSY;
1645 goto abort;
1646 }
046abeed 1647 /* Only remove non-faulty devices if recovery
dfc70645
N
1648 * is not possible.
1649 */
1650 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1651 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1652 mddev->degraded < conf->raid_disks) {
1653 err = -EBUSY;
1654 goto abort;
1655 }
1da177e4 1656 p->rdev = NULL;
d787be40
N
1657 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1658 synchronize_rcu();
1659 if (atomic_read(&rdev->nr_pending)) {
1660 /* lost the race, try later */
1661 err = -EBUSY;
1662 p->rdev = rdev;
1663 goto abort;
1664 }
1665 }
1666 if (conf->mirrors[conf->raid_disks + number].rdev) {
8c7a2c2b
N
1667 /* We just removed a device that is being replaced.
1668 * Move down the replacement. We drain all IO before
1669 * doing this to avoid confusion.
1670 */
1671 struct md_rdev *repl =
1672 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1673 freeze_array(conf, 0);
8c7a2c2b
N
1674 clear_bit(Replacement, &repl->flags);
1675 p->rdev = repl;
1676 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1677 unfreeze_array(conf);
8c7a2c2b
N
1678 clear_bit(WantReplacement, &rdev->flags);
1679 } else
b014f14c 1680 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1681 err = md_integrity_register(mddev);
1da177e4
LT
1682 }
1683abort:
1684
1685 print_conf(conf);
1686 return err;
1687}
1688
4246a0b6 1689static void end_sync_read(struct bio *bio)
1da177e4 1690{
9f2c9d12 1691 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1692
0fc280f6 1693 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1694
1da177e4
LT
1695 /*
1696 * we have read a block, now it needs to be re-written,
1697 * or re-read if the read failed.
1698 * We don't do much here, just schedule handling by raid1d
1699 */
4246a0b6 1700 if (!bio->bi_error)
1da177e4 1701 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1702
1703 if (atomic_dec_and_test(&r1_bio->remaining))
1704 reschedule_retry(r1_bio);
1da177e4
LT
1705}
1706
4246a0b6 1707static void end_sync_write(struct bio *bio)
1da177e4 1708{
4246a0b6 1709 int uptodate = !bio->bi_error;
9f2c9d12 1710 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1711 struct mddev *mddev = r1_bio->mddev;
e8096360 1712 struct r1conf *conf = mddev->private;
4367af55
N
1713 sector_t first_bad;
1714 int bad_sectors;
854abd75 1715 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
ba3ae3be 1716
6b1117d5 1717 if (!uptodate) {
57dab0bd 1718 sector_t sync_blocks = 0;
6b1117d5
N
1719 sector_t s = r1_bio->sector;
1720 long sectors_to_go = r1_bio->sectors;
1721 /* make sure these bits doesn't get cleared. */
1722 do {
5e3db645 1723 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1724 &sync_blocks, 1);
1725 s += sync_blocks;
1726 sectors_to_go -= sync_blocks;
1727 } while (sectors_to_go > 0);
854abd75
N
1728 set_bit(WriteErrorSeen, &rdev->flags);
1729 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
1730 set_bit(MD_RECOVERY_NEEDED, &
1731 mddev->recovery);
d8f05d29 1732 set_bit(R1BIO_WriteError, &r1_bio->state);
854abd75 1733 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
3a9f28a5
N
1734 &first_bad, &bad_sectors) &&
1735 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1736 r1_bio->sector,
1737 r1_bio->sectors,
1738 &first_bad, &bad_sectors)
1739 )
4367af55 1740 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1741
1da177e4 1742 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1743 int s = r1_bio->sectors;
d8f05d29
N
1744 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1745 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1746 reschedule_retry(r1_bio);
1747 else {
1748 put_buf(r1_bio);
1749 md_done_sync(mddev, s, uptodate);
1750 }
1da177e4 1751 }
1da177e4
LT
1752}
1753
3cb03002 1754static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1755 int sectors, struct page *page, int rw)
1756{
796a5cf0 1757 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
d8f05d29
N
1758 /* success */
1759 return 1;
19d67169 1760 if (rw == WRITE) {
d8f05d29 1761 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1762 if (!test_and_set_bit(WantReplacement,
1763 &rdev->flags))
1764 set_bit(MD_RECOVERY_NEEDED, &
1765 rdev->mddev->recovery);
1766 }
d8f05d29
N
1767 /* need to record an error - either for the block or the device */
1768 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1769 md_error(rdev->mddev, rdev);
1770 return 0;
1771}
1772
9f2c9d12 1773static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1774{
a68e5870
N
1775 /* Try some synchronous reads of other devices to get
1776 * good data, much like with normal read errors. Only
1777 * read into the pages we already have so we don't
1778 * need to re-issue the read request.
1779 * We don't need to freeze the array, because being in an
1780 * active sync request, there is no normal IO, and
1781 * no overlapping syncs.
06f60385
N
1782 * We don't need to check is_badblock() again as we
1783 * made sure that anything with a bad block in range
1784 * will have bi_end_io clear.
a68e5870 1785 */
fd01b88c 1786 struct mddev *mddev = r1_bio->mddev;
e8096360 1787 struct r1conf *conf = mddev->private;
a68e5870
N
1788 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1789 sector_t sect = r1_bio->sector;
1790 int sectors = r1_bio->sectors;
1791 int idx = 0;
1792
1793 while(sectors) {
1794 int s = sectors;
1795 int d = r1_bio->read_disk;
1796 int success = 0;
3cb03002 1797 struct md_rdev *rdev;
78d7f5f7 1798 int start;
a68e5870
N
1799
1800 if (s > (PAGE_SIZE>>9))
1801 s = PAGE_SIZE >> 9;
1802 do {
1803 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1804 /* No rcu protection needed here devices
1805 * can only be removed when no resync is
1806 * active, and resync is currently active
1807 */
1808 rdev = conf->mirrors[d].rdev;
9d3d8011 1809 if (sync_page_io(rdev, sect, s<<9,
a68e5870 1810 bio->bi_io_vec[idx].bv_page,
796a5cf0 1811 REQ_OP_READ, 0, false)) {
a68e5870
N
1812 success = 1;
1813 break;
1814 }
1815 }
1816 d++;
8f19ccb2 1817 if (d == conf->raid_disks * 2)
a68e5870
N
1818 d = 0;
1819 } while (!success && d != r1_bio->read_disk);
1820
78d7f5f7 1821 if (!success) {
a68e5870 1822 char b[BDEVNAME_SIZE];
3a9f28a5
N
1823 int abort = 0;
1824 /* Cannot read from anywhere, this block is lost.
1825 * Record a bad block on each device. If that doesn't
1826 * work just disable and interrupt the recovery.
1827 * Don't fail devices as that won't really help.
1828 */
a68e5870
N
1829 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1830 " for block %llu\n",
1831 mdname(mddev),
1832 bdevname(bio->bi_bdev, b),
1833 (unsigned long long)r1_bio->sector);
8f19ccb2 1834 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1835 rdev = conf->mirrors[d].rdev;
1836 if (!rdev || test_bit(Faulty, &rdev->flags))
1837 continue;
1838 if (!rdev_set_badblocks(rdev, sect, s, 0))
1839 abort = 1;
1840 }
1841 if (abort) {
d890fa2b
N
1842 conf->recovery_disabled =
1843 mddev->recovery_disabled;
3a9f28a5
N
1844 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1845 md_done_sync(mddev, r1_bio->sectors, 0);
1846 put_buf(r1_bio);
1847 return 0;
1848 }
1849 /* Try next page */
1850 sectors -= s;
1851 sect += s;
1852 idx++;
1853 continue;
d11c171e 1854 }
78d7f5f7
N
1855
1856 start = d;
1857 /* write it back and re-read */
1858 while (d != r1_bio->read_disk) {
1859 if (d == 0)
8f19ccb2 1860 d = conf->raid_disks * 2;
78d7f5f7
N
1861 d--;
1862 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1863 continue;
1864 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1865 if (r1_sync_page_io(rdev, sect, s,
1866 bio->bi_io_vec[idx].bv_page,
1867 WRITE) == 0) {
78d7f5f7
N
1868 r1_bio->bios[d]->bi_end_io = NULL;
1869 rdev_dec_pending(rdev, mddev);
9d3d8011 1870 }
78d7f5f7
N
1871 }
1872 d = start;
1873 while (d != r1_bio->read_disk) {
1874 if (d == 0)
8f19ccb2 1875 d = conf->raid_disks * 2;
78d7f5f7
N
1876 d--;
1877 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1878 continue;
1879 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1880 if (r1_sync_page_io(rdev, sect, s,
1881 bio->bi_io_vec[idx].bv_page,
1882 READ) != 0)
9d3d8011 1883 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1884 }
a68e5870
N
1885 sectors -= s;
1886 sect += s;
1887 idx ++;
1888 }
78d7f5f7 1889 set_bit(R1BIO_Uptodate, &r1_bio->state);
4246a0b6 1890 bio->bi_error = 0;
a68e5870
N
1891 return 1;
1892}
1893
c95e6385 1894static void process_checks(struct r1bio *r1_bio)
a68e5870
N
1895{
1896 /* We have read all readable devices. If we haven't
1897 * got the block, then there is no hope left.
1898 * If we have, then we want to do a comparison
1899 * and skip the write if everything is the same.
1900 * If any blocks failed to read, then we need to
1901 * attempt an over-write
1902 */
fd01b88c 1903 struct mddev *mddev = r1_bio->mddev;
e8096360 1904 struct r1conf *conf = mddev->private;
a68e5870
N
1905 int primary;
1906 int i;
f4380a91 1907 int vcnt;
a68e5870 1908
30bc9b53
N
1909 /* Fix variable parts of all bios */
1910 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1911 for (i = 0; i < conf->raid_disks * 2; i++) {
1912 int j;
1913 int size;
4246a0b6 1914 int error;
30bc9b53
N
1915 struct bio *b = r1_bio->bios[i];
1916 if (b->bi_end_io != end_sync_read)
1917 continue;
4246a0b6
CH
1918 /* fixup the bio for reuse, but preserve errno */
1919 error = b->bi_error;
30bc9b53 1920 bio_reset(b);
4246a0b6 1921 b->bi_error = error;
30bc9b53 1922 b->bi_vcnt = vcnt;
4f024f37
KO
1923 b->bi_iter.bi_size = r1_bio->sectors << 9;
1924 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53
N
1925 conf->mirrors[i].rdev->data_offset;
1926 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1927 b->bi_end_io = end_sync_read;
1928 b->bi_private = r1_bio;
1929
4f024f37 1930 size = b->bi_iter.bi_size;
30bc9b53
N
1931 for (j = 0; j < vcnt ; j++) {
1932 struct bio_vec *bi;
1933 bi = &b->bi_io_vec[j];
1934 bi->bv_offset = 0;
1935 if (size > PAGE_SIZE)
1936 bi->bv_len = PAGE_SIZE;
1937 else
1938 bi->bv_len = size;
1939 size -= PAGE_SIZE;
1940 }
1941 }
8f19ccb2 1942 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 1943 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4246a0b6 1944 !r1_bio->bios[primary]->bi_error) {
a68e5870
N
1945 r1_bio->bios[primary]->bi_end_io = NULL;
1946 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1947 break;
1948 }
1949 r1_bio->read_disk = primary;
8f19ccb2 1950 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 1951 int j;
78d7f5f7
N
1952 struct bio *pbio = r1_bio->bios[primary];
1953 struct bio *sbio = r1_bio->bios[i];
4246a0b6 1954 int error = sbio->bi_error;
a68e5870 1955
2aabaa65 1956 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 1957 continue;
4246a0b6
CH
1958 /* Now we can 'fixup' the error value */
1959 sbio->bi_error = 0;
78d7f5f7 1960
4246a0b6 1961 if (!error) {
78d7f5f7
N
1962 for (j = vcnt; j-- ; ) {
1963 struct page *p, *s;
1964 p = pbio->bi_io_vec[j].bv_page;
1965 s = sbio->bi_io_vec[j].bv_page;
1966 if (memcmp(page_address(p),
1967 page_address(s),
5020ad7d 1968 sbio->bi_io_vec[j].bv_len))
78d7f5f7 1969 break;
69382e85 1970 }
78d7f5f7
N
1971 } else
1972 j = 0;
1973 if (j >= 0)
7f7583d4 1974 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 1975 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4246a0b6 1976 && !error)) {
78d7f5f7
N
1977 /* No need to write to this device. */
1978 sbio->bi_end_io = NULL;
1979 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1980 continue;
1981 }
d3b45c2a
KO
1982
1983 bio_copy_data(sbio, pbio);
78d7f5f7 1984 }
a68e5870
N
1985}
1986
9f2c9d12 1987static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 1988{
e8096360 1989 struct r1conf *conf = mddev->private;
a68e5870 1990 int i;
8f19ccb2 1991 int disks = conf->raid_disks * 2;
a68e5870
N
1992 struct bio *bio, *wbio;
1993
1994 bio = r1_bio->bios[r1_bio->read_disk];
1995
a68e5870
N
1996 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1997 /* ouch - failed to read all of that. */
1998 if (!fix_sync_read_error(r1_bio))
1999 return;
7ca78d57
N
2000
2001 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2002 process_checks(r1_bio);
2003
d11c171e
N
2004 /*
2005 * schedule writes
2006 */
1da177e4
LT
2007 atomic_set(&r1_bio->remaining, 1);
2008 for (i = 0; i < disks ; i++) {
2009 wbio = r1_bio->bios[i];
3e198f78
N
2010 if (wbio->bi_end_io == NULL ||
2011 (wbio->bi_end_io == end_sync_read &&
2012 (i == r1_bio->read_disk ||
2013 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
2014 continue;
2015
796a5cf0 2016 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
3e198f78 2017 wbio->bi_end_io = end_sync_write;
1da177e4 2018 atomic_inc(&r1_bio->remaining);
aa8b57aa 2019 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2020
1da177e4
LT
2021 generic_make_request(wbio);
2022 }
2023
2024 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2025 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2026 int s = r1_bio->sectors;
2027 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2028 test_bit(R1BIO_WriteError, &r1_bio->state))
2029 reschedule_retry(r1_bio);
2030 else {
2031 put_buf(r1_bio);
2032 md_done_sync(mddev, s, 1);
2033 }
1da177e4
LT
2034 }
2035}
2036
2037/*
2038 * This is a kernel thread which:
2039 *
2040 * 1. Retries failed read operations on working mirrors.
2041 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2042 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2043 */
2044
e8096360 2045static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2046 sector_t sect, int sectors)
2047{
fd01b88c 2048 struct mddev *mddev = conf->mddev;
867868fb
N
2049 while(sectors) {
2050 int s = sectors;
2051 int d = read_disk;
2052 int success = 0;
2053 int start;
3cb03002 2054 struct md_rdev *rdev;
867868fb
N
2055
2056 if (s > (PAGE_SIZE>>9))
2057 s = PAGE_SIZE >> 9;
2058
2059 do {
d2eb35ac
N
2060 sector_t first_bad;
2061 int bad_sectors;
2062
707a6a42
N
2063 rcu_read_lock();
2064 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2065 if (rdev &&
da8840a7 2066 (test_bit(In_sync, &rdev->flags) ||
2067 (!test_bit(Faulty, &rdev->flags) &&
2068 rdev->recovery_offset >= sect + s)) &&
d2eb35ac 2069 is_badblock(rdev, sect, s,
707a6a42
N
2070 &first_bad, &bad_sectors) == 0) {
2071 atomic_inc(&rdev->nr_pending);
2072 rcu_read_unlock();
2073 if (sync_page_io(rdev, sect, s<<9,
796a5cf0 2074 conf->tmppage, REQ_OP_READ, 0, false))
707a6a42
N
2075 success = 1;
2076 rdev_dec_pending(rdev, mddev);
2077 if (success)
2078 break;
2079 } else
2080 rcu_read_unlock();
2081 d++;
2082 if (d == conf->raid_disks * 2)
2083 d = 0;
867868fb
N
2084 } while (!success && d != read_disk);
2085
2086 if (!success) {
d8f05d29 2087 /* Cannot read from anywhere - mark it bad */
3cb03002 2088 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2089 if (!rdev_set_badblocks(rdev, sect, s, 0))
2090 md_error(mddev, rdev);
867868fb
N
2091 break;
2092 }
2093 /* write it back and re-read */
2094 start = d;
2095 while (d != read_disk) {
2096 if (d==0)
8f19ccb2 2097 d = conf->raid_disks * 2;
867868fb 2098 d--;
707a6a42
N
2099 rcu_read_lock();
2100 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2101 if (rdev &&
707a6a42
N
2102 !test_bit(Faulty, &rdev->flags)) {
2103 atomic_inc(&rdev->nr_pending);
2104 rcu_read_unlock();
d8f05d29
N
2105 r1_sync_page_io(rdev, sect, s,
2106 conf->tmppage, WRITE);
707a6a42
N
2107 rdev_dec_pending(rdev, mddev);
2108 } else
2109 rcu_read_unlock();
867868fb
N
2110 }
2111 d = start;
2112 while (d != read_disk) {
2113 char b[BDEVNAME_SIZE];
2114 if (d==0)
8f19ccb2 2115 d = conf->raid_disks * 2;
867868fb 2116 d--;
707a6a42
N
2117 rcu_read_lock();
2118 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2119 if (rdev &&
b8cb6b4c 2120 !test_bit(Faulty, &rdev->flags)) {
707a6a42
N
2121 atomic_inc(&rdev->nr_pending);
2122 rcu_read_unlock();
d8f05d29
N
2123 if (r1_sync_page_io(rdev, sect, s,
2124 conf->tmppage, READ)) {
867868fb
N
2125 atomic_add(s, &rdev->corrected_errors);
2126 printk(KERN_INFO
9dd1e2fa 2127 "md/raid1:%s: read error corrected "
867868fb
N
2128 "(%d sectors at %llu on %s)\n",
2129 mdname(mddev), s,
969b755a 2130 (unsigned long long)(sect +
707a6a42 2131 rdev->data_offset),
867868fb
N
2132 bdevname(rdev->bdev, b));
2133 }
707a6a42
N
2134 rdev_dec_pending(rdev, mddev);
2135 } else
2136 rcu_read_unlock();
867868fb
N
2137 }
2138 sectors -= s;
2139 sect += s;
2140 }
2141}
2142
9f2c9d12 2143static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2144{
fd01b88c 2145 struct mddev *mddev = r1_bio->mddev;
e8096360 2146 struct r1conf *conf = mddev->private;
3cb03002 2147 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2148
2149 /* bio has the data to be written to device 'i' where
2150 * we just recently had a write error.
2151 * We repeatedly clone the bio and trim down to one block,
2152 * then try the write. Where the write fails we record
2153 * a bad block.
2154 * It is conceivable that the bio doesn't exactly align with
2155 * blocks. We must handle this somehow.
2156 *
2157 * We currently own a reference on the rdev.
2158 */
2159
2160 int block_sectors;
2161 sector_t sector;
2162 int sectors;
2163 int sect_to_write = r1_bio->sectors;
2164 int ok = 1;
2165
2166 if (rdev->badblocks.shift < 0)
2167 return 0;
2168
ab713cdc
ND
2169 block_sectors = roundup(1 << rdev->badblocks.shift,
2170 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2171 sector = r1_bio->sector;
2172 sectors = ((sector + block_sectors)
2173 & ~(sector_t)(block_sectors - 1))
2174 - sector;
2175
cd5ff9a1
N
2176 while (sect_to_write) {
2177 struct bio *wbio;
2178 if (sectors > sect_to_write)
2179 sectors = sect_to_write;
2180 /* Write at 'sector' for 'sectors'*/
2181
b783863f
KO
2182 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2183 unsigned vcnt = r1_bio->behind_page_count;
2184 struct bio_vec *vec = r1_bio->behind_bvecs;
2185
2186 while (!vec->bv_page) {
2187 vec++;
2188 vcnt--;
2189 }
2190
2191 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2192 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2193
2194 wbio->bi_vcnt = vcnt;
2195 } else {
2196 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2197 }
2198
796a5cf0 2199 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4f024f37
KO
2200 wbio->bi_iter.bi_sector = r1_bio->sector;
2201 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2202
6678d83f 2203 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2204 wbio->bi_iter.bi_sector += rdev->data_offset;
cd5ff9a1 2205 wbio->bi_bdev = rdev->bdev;
4e49ea4a
MC
2206
2207 if (submit_bio_wait(wbio) < 0)
cd5ff9a1
N
2208 /* failure! */
2209 ok = rdev_set_badblocks(rdev, sector,
2210 sectors, 0)
2211 && ok;
2212
2213 bio_put(wbio);
2214 sect_to_write -= sectors;
2215 sector += sectors;
2216 sectors = block_sectors;
2217 }
2218 return ok;
2219}
2220
e8096360 2221static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2222{
2223 int m;
2224 int s = r1_bio->sectors;
8f19ccb2 2225 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2226 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2227 struct bio *bio = r1_bio->bios[m];
2228 if (bio->bi_end_io == NULL)
2229 continue;
4246a0b6 2230 if (!bio->bi_error &&
62096bce 2231 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2232 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2233 }
4246a0b6 2234 if (bio->bi_error &&
62096bce
N
2235 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2236 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2237 md_error(conf->mddev, rdev);
2238 }
2239 }
2240 put_buf(r1_bio);
2241 md_done_sync(conf->mddev, s, 1);
2242}
2243
e8096360 2244static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2245{
2246 int m;
55ce74d4 2247 bool fail = false;
8f19ccb2 2248 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2249 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2250 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2251 rdev_clear_badblocks(rdev,
2252 r1_bio->sector,
c6563a8c 2253 r1_bio->sectors, 0);
62096bce
N
2254 rdev_dec_pending(rdev, conf->mddev);
2255 } else if (r1_bio->bios[m] != NULL) {
2256 /* This drive got a write error. We need to
2257 * narrow down and record precise write
2258 * errors.
2259 */
55ce74d4 2260 fail = true;
62096bce
N
2261 if (!narrow_write_error(r1_bio, m)) {
2262 md_error(conf->mddev,
2263 conf->mirrors[m].rdev);
2264 /* an I/O failed, we can't clear the bitmap */
2265 set_bit(R1BIO_Degraded, &r1_bio->state);
2266 }
2267 rdev_dec_pending(conf->mirrors[m].rdev,
2268 conf->mddev);
2269 }
55ce74d4
N
2270 if (fail) {
2271 spin_lock_irq(&conf->device_lock);
2272 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
ccfc7bf1 2273 conf->nr_queued++;
55ce74d4
N
2274 spin_unlock_irq(&conf->device_lock);
2275 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2276 } else {
2277 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2278 close_write(r1_bio);
55ce74d4 2279 raid_end_bio_io(r1_bio);
bd8688a1 2280 }
62096bce
N
2281}
2282
e8096360 2283static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2284{
2285 int disk;
2286 int max_sectors;
fd01b88c 2287 struct mddev *mddev = conf->mddev;
62096bce
N
2288 struct bio *bio;
2289 char b[BDEVNAME_SIZE];
3cb03002 2290 struct md_rdev *rdev;
62096bce
N
2291
2292 clear_bit(R1BIO_ReadError, &r1_bio->state);
2293 /* we got a read error. Maybe the drive is bad. Maybe just
2294 * the block and we can fix it.
2295 * We freeze all other IO, and try reading the block from
2296 * other devices. When we find one, we re-write
2297 * and check it that fixes the read error.
2298 * This is all done synchronously while the array is
2299 * frozen
2300 */
2301 if (mddev->ro == 0) {
e2d59925 2302 freeze_array(conf, 1);
62096bce
N
2303 fix_read_error(conf, r1_bio->read_disk,
2304 r1_bio->sector, r1_bio->sectors);
2305 unfreeze_array(conf);
2306 } else
2307 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
7ad4d4a6 2308 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
62096bce
N
2309
2310 bio = r1_bio->bios[r1_bio->read_disk];
2311 bdevname(bio->bi_bdev, b);
2312read_more:
2313 disk = read_balance(conf, r1_bio, &max_sectors);
2314 if (disk == -1) {
2315 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2316 " read error for block %llu\n",
2317 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2318 raid_end_bio_io(r1_bio);
2319 } else {
2320 const unsigned long do_sync
1eff9d32 2321 = r1_bio->master_bio->bi_opf & REQ_SYNC;
62096bce
N
2322 if (bio) {
2323 r1_bio->bios[r1_bio->read_disk] =
2324 mddev->ro ? IO_BLOCKED : NULL;
2325 bio_put(bio);
2326 }
2327 r1_bio->read_disk = disk;
2328 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
4f024f37
KO
2329 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2330 max_sectors);
62096bce
N
2331 r1_bio->bios[r1_bio->read_disk] = bio;
2332 rdev = conf->mirrors[disk].rdev;
2333 printk_ratelimited(KERN_ERR
2334 "md/raid1:%s: redirecting sector %llu"
2335 " to other mirror: %s\n",
2336 mdname(mddev),
2337 (unsigned long long)r1_bio->sector,
2338 bdevname(rdev->bdev, b));
4f024f37 2339 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
62096bce
N
2340 bio->bi_bdev = rdev->bdev;
2341 bio->bi_end_io = raid1_end_read_request;
796a5cf0 2342 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
62096bce
N
2343 bio->bi_private = r1_bio;
2344 if (max_sectors < r1_bio->sectors) {
2345 /* Drat - have to split this up more */
2346 struct bio *mbio = r1_bio->master_bio;
2347 int sectors_handled = (r1_bio->sector + max_sectors
4f024f37 2348 - mbio->bi_iter.bi_sector);
62096bce
N
2349 r1_bio->sectors = max_sectors;
2350 spin_lock_irq(&conf->device_lock);
2351 if (mbio->bi_phys_segments == 0)
2352 mbio->bi_phys_segments = 2;
2353 else
2354 mbio->bi_phys_segments++;
2355 spin_unlock_irq(&conf->device_lock);
2356 generic_make_request(bio);
2357 bio = NULL;
2358
2359 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2360
2361 r1_bio->master_bio = mbio;
aa8b57aa 2362 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
62096bce
N
2363 r1_bio->state = 0;
2364 set_bit(R1BIO_ReadError, &r1_bio->state);
2365 r1_bio->mddev = mddev;
4f024f37
KO
2366 r1_bio->sector = mbio->bi_iter.bi_sector +
2367 sectors_handled;
62096bce
N
2368
2369 goto read_more;
2370 } else
2371 generic_make_request(bio);
2372 }
2373}
2374
4ed8731d 2375static void raid1d(struct md_thread *thread)
1da177e4 2376{
4ed8731d 2377 struct mddev *mddev = thread->mddev;
9f2c9d12 2378 struct r1bio *r1_bio;
1da177e4 2379 unsigned long flags;
e8096360 2380 struct r1conf *conf = mddev->private;
1da177e4 2381 struct list_head *head = &conf->retry_list;
e1dfa0a2 2382 struct blk_plug plug;
1da177e4
LT
2383
2384 md_check_recovery(mddev);
e1dfa0a2 2385
55ce74d4
N
2386 if (!list_empty_careful(&conf->bio_end_io_list) &&
2387 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2388 LIST_HEAD(tmp);
2389 spin_lock_irqsave(&conf->device_lock, flags);
2390 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
ccfc7bf1
ND
2391 while (!list_empty(&conf->bio_end_io_list)) {
2392 list_move(conf->bio_end_io_list.prev, &tmp);
2393 conf->nr_queued--;
2394 }
55ce74d4
N
2395 }
2396 spin_unlock_irqrestore(&conf->device_lock, flags);
2397 while (!list_empty(&tmp)) {
a452744b
MP
2398 r1_bio = list_first_entry(&tmp, struct r1bio,
2399 retry_list);
55ce74d4 2400 list_del(&r1_bio->retry_list);
bd8688a1
N
2401 if (mddev->degraded)
2402 set_bit(R1BIO_Degraded, &r1_bio->state);
2403 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2404 close_write(r1_bio);
55ce74d4
N
2405 raid_end_bio_io(r1_bio);
2406 }
2407 }
2408
e1dfa0a2 2409 blk_start_plug(&plug);
1da177e4 2410 for (;;) {
191ea9b2 2411
0021b7bc 2412 flush_pending_writes(conf);
191ea9b2 2413
a35e63ef
N
2414 spin_lock_irqsave(&conf->device_lock, flags);
2415 if (list_empty(head)) {
2416 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2417 break;
a35e63ef 2418 }
9f2c9d12 2419 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2420 list_del(head->prev);
ddaf22ab 2421 conf->nr_queued--;
1da177e4
LT
2422 spin_unlock_irqrestore(&conf->device_lock, flags);
2423
2424 mddev = r1_bio->mddev;
070ec55d 2425 conf = mddev->private;
4367af55 2426 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2427 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2428 test_bit(R1BIO_WriteError, &r1_bio->state))
2429 handle_sync_write_finished(conf, r1_bio);
2430 else
4367af55 2431 sync_request_write(mddev, r1_bio);
cd5ff9a1 2432 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2433 test_bit(R1BIO_WriteError, &r1_bio->state))
2434 handle_write_finished(conf, r1_bio);
2435 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2436 handle_read_error(conf, r1_bio);
2437 else
d2eb35ac
N
2438 /* just a partial read to be scheduled from separate
2439 * context
2440 */
2441 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2442
1d9d5241 2443 cond_resched();
de393cde
N
2444 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2445 md_check_recovery(mddev);
1da177e4 2446 }
e1dfa0a2 2447 blk_finish_plug(&plug);
1da177e4
LT
2448}
2449
e8096360 2450static int init_resync(struct r1conf *conf)
1da177e4
LT
2451{
2452 int buffs;
2453
2454 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2455 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2456 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2457 conf->poolinfo);
2458 if (!conf->r1buf_pool)
2459 return -ENOMEM;
2460 conf->next_resync = 0;
2461 return 0;
2462}
2463
2464/*
2465 * perform a "sync" on one "block"
2466 *
2467 * We need to make sure that no normal I/O request - particularly write
2468 * requests - conflict with active sync requests.
2469 *
2470 * This is achieved by tracking pending requests and a 'barrier' concept
2471 * that can be installed to exclude normal IO requests.
2472 */
2473
849674e4
SL
2474static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2475 int *skipped)
1da177e4 2476{
e8096360 2477 struct r1conf *conf = mddev->private;
9f2c9d12 2478 struct r1bio *r1_bio;
1da177e4
LT
2479 struct bio *bio;
2480 sector_t max_sector, nr_sectors;
3e198f78 2481 int disk = -1;
1da177e4 2482 int i;
3e198f78
N
2483 int wonly = -1;
2484 int write_targets = 0, read_targets = 0;
57dab0bd 2485 sector_t sync_blocks;
e3b9703e 2486 int still_degraded = 0;
06f60385
N
2487 int good_sectors = RESYNC_SECTORS;
2488 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2489
2490 if (!conf->r1buf_pool)
2491 if (init_resync(conf))
57afd89f 2492 return 0;
1da177e4 2493
58c0fed4 2494 max_sector = mddev->dev_sectors;
1da177e4 2495 if (sector_nr >= max_sector) {
191ea9b2
N
2496 /* If we aborted, we need to abort the
2497 * sync on the 'current' bitmap chunk (there will
2498 * only be one in raid1 resync.
2499 * We can find the current addess in mddev->curr_resync
2500 */
6a806c51
N
2501 if (mddev->curr_resync < max_sector) /* aborted */
2502 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2503 &sync_blocks, 1);
6a806c51 2504 else /* completed sync */
191ea9b2 2505 conf->fullsync = 0;
6a806c51
N
2506
2507 bitmap_close_sync(mddev->bitmap);
1da177e4 2508 close_sync(conf);
c40f341f
GR
2509
2510 if (mddev_is_clustered(mddev)) {
2511 conf->cluster_sync_low = 0;
2512 conf->cluster_sync_high = 0;
c40f341f 2513 }
1da177e4
LT
2514 return 0;
2515 }
2516
07d84d10
N
2517 if (mddev->bitmap == NULL &&
2518 mddev->recovery_cp == MaxSector &&
6394cca5 2519 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2520 conf->fullsync == 0) {
2521 *skipped = 1;
2522 return max_sector - sector_nr;
2523 }
6394cca5
N
2524 /* before building a request, check if we can skip these blocks..
2525 * This call the bitmap_start_sync doesn't actually record anything
2526 */
e3b9703e 2527 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2528 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2529 /* We can skip this block, and probably several more */
2530 *skipped = 1;
2531 return sync_blocks;
2532 }
17999be4 2533
7ac50447
TM
2534 /*
2535 * If there is non-resync activity waiting for a turn, then let it
2536 * though before starting on this new sync request.
2537 */
2538 if (conf->nr_waiting)
2539 schedule_timeout_uninterruptible(1);
2540
c40f341f
GR
2541 /* we are incrementing sector_nr below. To be safe, we check against
2542 * sector_nr + two times RESYNC_SECTORS
2543 */
2544
2545 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2546 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
1c4588e9 2547 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4 2548
c2fd4c94 2549 raise_barrier(conf, sector_nr);
1da177e4 2550
3e198f78 2551 rcu_read_lock();
1da177e4 2552 /*
3e198f78
N
2553 * If we get a correctably read error during resync or recovery,
2554 * we might want to read from a different device. So we
2555 * flag all drives that could conceivably be read from for READ,
2556 * and any others (which will be non-In_sync devices) for WRITE.
2557 * If a read fails, we try reading from something else for which READ
2558 * is OK.
1da177e4 2559 */
1da177e4 2560
1da177e4
LT
2561 r1_bio->mddev = mddev;
2562 r1_bio->sector = sector_nr;
191ea9b2 2563 r1_bio->state = 0;
1da177e4 2564 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2565
8f19ccb2 2566 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2567 struct md_rdev *rdev;
1da177e4 2568 bio = r1_bio->bios[i];
2aabaa65 2569 bio_reset(bio);
1da177e4 2570
3e198f78
N
2571 rdev = rcu_dereference(conf->mirrors[i].rdev);
2572 if (rdev == NULL ||
06f60385 2573 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2574 if (i < conf->raid_disks)
2575 still_degraded = 1;
3e198f78 2576 } else if (!test_bit(In_sync, &rdev->flags)) {
796a5cf0 2577 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4
LT
2578 bio->bi_end_io = end_sync_write;
2579 write_targets ++;
3e198f78
N
2580 } else {
2581 /* may need to read from here */
06f60385
N
2582 sector_t first_bad = MaxSector;
2583 int bad_sectors;
2584
2585 if (is_badblock(rdev, sector_nr, good_sectors,
2586 &first_bad, &bad_sectors)) {
2587 if (first_bad > sector_nr)
2588 good_sectors = first_bad - sector_nr;
2589 else {
2590 bad_sectors -= (sector_nr - first_bad);
2591 if (min_bad == 0 ||
2592 min_bad > bad_sectors)
2593 min_bad = bad_sectors;
2594 }
2595 }
2596 if (sector_nr < first_bad) {
2597 if (test_bit(WriteMostly, &rdev->flags)) {
2598 if (wonly < 0)
2599 wonly = i;
2600 } else {
2601 if (disk < 0)
2602 disk = i;
2603 }
796a5cf0 2604 bio_set_op_attrs(bio, REQ_OP_READ, 0);
06f60385
N
2605 bio->bi_end_io = end_sync_read;
2606 read_targets++;
d57368af
AL
2607 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2608 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2609 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2610 /*
2611 * The device is suitable for reading (InSync),
2612 * but has bad block(s) here. Let's try to correct them,
2613 * if we are doing resync or repair. Otherwise, leave
2614 * this device alone for this sync request.
2615 */
796a5cf0 2616 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
d57368af
AL
2617 bio->bi_end_io = end_sync_write;
2618 write_targets++;
3e198f78 2619 }
3e198f78 2620 }
06f60385
N
2621 if (bio->bi_end_io) {
2622 atomic_inc(&rdev->nr_pending);
4f024f37 2623 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
06f60385
N
2624 bio->bi_bdev = rdev->bdev;
2625 bio->bi_private = r1_bio;
2626 }
1da177e4 2627 }
3e198f78
N
2628 rcu_read_unlock();
2629 if (disk < 0)
2630 disk = wonly;
2631 r1_bio->read_disk = disk;
191ea9b2 2632
06f60385
N
2633 if (read_targets == 0 && min_bad > 0) {
2634 /* These sectors are bad on all InSync devices, so we
2635 * need to mark them bad on all write targets
2636 */
2637 int ok = 1;
8f19ccb2 2638 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2639 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2640 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2641 ok = rdev_set_badblocks(rdev, sector_nr,
2642 min_bad, 0
2643 ) && ok;
2644 }
2645 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2646 *skipped = 1;
2647 put_buf(r1_bio);
2648
2649 if (!ok) {
2650 /* Cannot record the badblocks, so need to
2651 * abort the resync.
2652 * If there are multiple read targets, could just
2653 * fail the really bad ones ???
2654 */
2655 conf->recovery_disabled = mddev->recovery_disabled;
2656 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2657 return 0;
2658 } else
2659 return min_bad;
2660
2661 }
2662 if (min_bad > 0 && min_bad < good_sectors) {
2663 /* only resync enough to reach the next bad->good
2664 * transition */
2665 good_sectors = min_bad;
2666 }
2667
3e198f78
N
2668 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2669 /* extra read targets are also write targets */
2670 write_targets += read_targets-1;
2671
2672 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2673 /* There is nowhere to write, so all non-sync
2674 * drives must be failed - so we are finished
2675 */
b7219ccb
N
2676 sector_t rv;
2677 if (min_bad > 0)
2678 max_sector = sector_nr + min_bad;
2679 rv = max_sector - sector_nr;
57afd89f 2680 *skipped = 1;
1da177e4 2681 put_buf(r1_bio);
1da177e4
LT
2682 return rv;
2683 }
2684
c6207277
N
2685 if (max_sector > mddev->resync_max)
2686 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2687 if (max_sector > sector_nr + good_sectors)
2688 max_sector = sector_nr + good_sectors;
1da177e4 2689 nr_sectors = 0;
289e99e8 2690 sync_blocks = 0;
1da177e4
LT
2691 do {
2692 struct page *page;
2693 int len = PAGE_SIZE;
2694 if (sector_nr + (len>>9) > max_sector)
2695 len = (max_sector - sector_nr) << 9;
2696 if (len == 0)
2697 break;
6a806c51
N
2698 if (sync_blocks == 0) {
2699 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2700 &sync_blocks, still_degraded) &&
2701 !conf->fullsync &&
2702 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2703 break;
7571ae88 2704 if ((len >> 9) > sync_blocks)
6a806c51 2705 len = sync_blocks<<9;
ab7a30c7 2706 }
191ea9b2 2707
8f19ccb2 2708 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2709 bio = r1_bio->bios[i];
2710 if (bio->bi_end_io) {
d11c171e 2711 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2712 if (bio_add_page(bio, page, len, 0) == 0) {
2713 /* stop here */
d11c171e 2714 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2715 while (i > 0) {
2716 i--;
2717 bio = r1_bio->bios[i];
6a806c51
N
2718 if (bio->bi_end_io==NULL)
2719 continue;
1da177e4
LT
2720 /* remove last page from this bio */
2721 bio->bi_vcnt--;
4f024f37 2722 bio->bi_iter.bi_size -= len;
b7c44ed9 2723 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4
LT
2724 }
2725 goto bio_full;
2726 }
2727 }
2728 }
2729 nr_sectors += len>>9;
2730 sector_nr += len>>9;
191ea9b2 2731 sync_blocks -= (len>>9);
1da177e4
LT
2732 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2733 bio_full:
1da177e4
LT
2734 r1_bio->sectors = nr_sectors;
2735
c40f341f
GR
2736 if (mddev_is_clustered(mddev) &&
2737 conf->cluster_sync_high < sector_nr + nr_sectors) {
2738 conf->cluster_sync_low = mddev->curr_resync_completed;
2739 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2740 /* Send resync message */
2741 md_cluster_ops->resync_info_update(mddev,
2742 conf->cluster_sync_low,
2743 conf->cluster_sync_high);
2744 }
2745
d11c171e
N
2746 /* For a user-requested sync, we read all readable devices and do a
2747 * compare
2748 */
2749 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2750 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2751 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2752 bio = r1_bio->bios[i];
2753 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2754 read_targets--;
ddac7c7e 2755 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2756 generic_make_request(bio);
2757 }
2758 }
2759 } else {
2760 atomic_set(&r1_bio->remaining, 1);
2761 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2762 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2763 generic_make_request(bio);
1da177e4 2764
d11c171e 2765 }
1da177e4
LT
2766 return nr_sectors;
2767}
2768
fd01b88c 2769static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2770{
2771 if (sectors)
2772 return sectors;
2773
2774 return mddev->dev_sectors;
2775}
2776
e8096360 2777static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2778{
e8096360 2779 struct r1conf *conf;
709ae487 2780 int i;
0eaf822c 2781 struct raid1_info *disk;
3cb03002 2782 struct md_rdev *rdev;
709ae487 2783 int err = -ENOMEM;
1da177e4 2784
e8096360 2785 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2786 if (!conf)
709ae487 2787 goto abort;
1da177e4 2788
0eaf822c 2789 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2790 * mddev->raid_disks * 2,
1da177e4
LT
2791 GFP_KERNEL);
2792 if (!conf->mirrors)
709ae487 2793 goto abort;
1da177e4 2794
ddaf22ab
N
2795 conf->tmppage = alloc_page(GFP_KERNEL);
2796 if (!conf->tmppage)
709ae487 2797 goto abort;
ddaf22ab 2798
709ae487 2799 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2800 if (!conf->poolinfo)
709ae487 2801 goto abort;
8f19ccb2 2802 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2803 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2804 r1bio_pool_free,
2805 conf->poolinfo);
2806 if (!conf->r1bio_pool)
709ae487
N
2807 goto abort;
2808
ed9bfdf1 2809 conf->poolinfo->mddev = mddev;
1da177e4 2810
c19d5798 2811 err = -EINVAL;
e7e72bf6 2812 spin_lock_init(&conf->device_lock);
dafb20fa 2813 rdev_for_each(rdev, mddev) {
aba336bd 2814 struct request_queue *q;
709ae487 2815 int disk_idx = rdev->raid_disk;
1da177e4
LT
2816 if (disk_idx >= mddev->raid_disks
2817 || disk_idx < 0)
2818 continue;
c19d5798 2819 if (test_bit(Replacement, &rdev->flags))
02b898f2 2820 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2821 else
2822 disk = conf->mirrors + disk_idx;
1da177e4 2823
c19d5798
N
2824 if (disk->rdev)
2825 goto abort;
1da177e4 2826 disk->rdev = rdev;
aba336bd 2827 q = bdev_get_queue(rdev->bdev);
1da177e4
LT
2828
2829 disk->head_position = 0;
12cee5a8 2830 disk->seq_start = MaxSector;
1da177e4
LT
2831 }
2832 conf->raid_disks = mddev->raid_disks;
2833 conf->mddev = mddev;
1da177e4 2834 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 2835 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
2836
2837 spin_lock_init(&conf->resync_lock);
17999be4 2838 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2839
191ea9b2 2840 bio_list_init(&conf->pending_bio_list);
34db0cd6 2841 conf->pending_count = 0;
d890fa2b 2842 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2843
79ef3a8a 2844 conf->start_next_window = MaxSector;
2845 conf->current_window_requests = conf->next_window_requests = 0;
2846
c19d5798 2847 err = -EIO;
8f19ccb2 2848 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2849
2850 disk = conf->mirrors + i;
2851
c19d5798
N
2852 if (i < conf->raid_disks &&
2853 disk[conf->raid_disks].rdev) {
2854 /* This slot has a replacement. */
2855 if (!disk->rdev) {
2856 /* No original, just make the replacement
2857 * a recovering spare
2858 */
2859 disk->rdev =
2860 disk[conf->raid_disks].rdev;
2861 disk[conf->raid_disks].rdev = NULL;
2862 } else if (!test_bit(In_sync, &disk->rdev->flags))
2863 /* Original is not in_sync - bad */
2864 goto abort;
2865 }
2866
5fd6c1dc
N
2867 if (!disk->rdev ||
2868 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2869 disk->head_position = 0;
4f0a5e01
JB
2870 if (disk->rdev &&
2871 (disk->rdev->saved_raid_disk < 0))
918f0238 2872 conf->fullsync = 1;
be4d3280 2873 }
1da177e4 2874 }
709ae487 2875
709ae487 2876 err = -ENOMEM;
0232605d 2877 conf->thread = md_register_thread(raid1d, mddev, "raid1");
709ae487
N
2878 if (!conf->thread) {
2879 printk(KERN_ERR
9dd1e2fa 2880 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2881 mdname(mddev));
2882 goto abort;
11ce99e6 2883 }
1da177e4 2884
709ae487
N
2885 return conf;
2886
2887 abort:
2888 if (conf) {
644df1a8 2889 mempool_destroy(conf->r1bio_pool);
709ae487
N
2890 kfree(conf->mirrors);
2891 safe_put_page(conf->tmppage);
2892 kfree(conf->poolinfo);
2893 kfree(conf);
2894 }
2895 return ERR_PTR(err);
2896}
2897
afa0f557 2898static void raid1_free(struct mddev *mddev, void *priv);
849674e4 2899static int raid1_run(struct mddev *mddev)
709ae487 2900{
e8096360 2901 struct r1conf *conf;
709ae487 2902 int i;
3cb03002 2903 struct md_rdev *rdev;
5220ea1e 2904 int ret;
2ff8cc2c 2905 bool discard_supported = false;
709ae487
N
2906
2907 if (mddev->level != 1) {
9dd1e2fa 2908 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2909 mdname(mddev), mddev->level);
2910 return -EIO;
2911 }
2912 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2913 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2914 mdname(mddev));
2915 return -EIO;
2916 }
1da177e4 2917 /*
709ae487
N
2918 * copy the already verified devices into our private RAID1
2919 * bookkeeping area. [whatever we allocate in run(),
afa0f557 2920 * should be freed in raid1_free()]
1da177e4 2921 */
709ae487
N
2922 if (mddev->private == NULL)
2923 conf = setup_conf(mddev);
2924 else
2925 conf = mddev->private;
1da177e4 2926
709ae487
N
2927 if (IS_ERR(conf))
2928 return PTR_ERR(conf);
1da177e4 2929
c8dc9c65 2930 if (mddev->queue)
5026d7a9
PA
2931 blk_queue_max_write_same_sectors(mddev->queue, 0);
2932
dafb20fa 2933 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2934 if (!mddev->gendisk)
2935 continue;
709ae487
N
2936 disk_stack_limits(mddev->gendisk, rdev->bdev,
2937 rdev->data_offset << 9);
2ff8cc2c
SL
2938 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2939 discard_supported = true;
1da177e4 2940 }
191ea9b2 2941
709ae487
N
2942 mddev->degraded = 0;
2943 for (i=0; i < conf->raid_disks; i++)
2944 if (conf->mirrors[i].rdev == NULL ||
2945 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2946 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2947 mddev->degraded++;
2948
2949 if (conf->raid_disks - mddev->degraded == 1)
2950 mddev->recovery_cp = MaxSector;
2951
8c6ac868 2952 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2953 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2954 " -- starting background reconstruction\n",
2955 mdname(mddev));
f72ffdd6 2956 printk(KERN_INFO
9dd1e2fa 2957 "md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 2958 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 2959 mddev->raid_disks);
709ae487 2960
1da177e4
LT
2961 /*
2962 * Ok, everything is just fine now
2963 */
709ae487
N
2964 mddev->thread = conf->thread;
2965 conf->thread = NULL;
2966 mddev->private = conf;
2967
1f403624 2968 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2969
1ed7242e 2970 if (mddev->queue) {
2ff8cc2c
SL
2971 if (discard_supported)
2972 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2973 mddev->queue);
2974 else
2975 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2976 mddev->queue);
1ed7242e 2977 }
5220ea1e 2978
2979 ret = md_integrity_register(mddev);
5aa61f42
N
2980 if (ret) {
2981 md_unregister_thread(&mddev->thread);
afa0f557 2982 raid1_free(mddev, conf);
5aa61f42 2983 }
5220ea1e 2984 return ret;
1da177e4
LT
2985}
2986
afa0f557 2987static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 2988{
afa0f557 2989 struct r1conf *conf = priv;
409c57f3 2990
644df1a8 2991 mempool_destroy(conf->r1bio_pool);
990a8baf 2992 kfree(conf->mirrors);
0fea7ed8 2993 safe_put_page(conf->tmppage);
990a8baf 2994 kfree(conf->poolinfo);
1da177e4 2995 kfree(conf);
1da177e4
LT
2996}
2997
fd01b88c 2998static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2999{
3000 /* no resync is happening, and there is enough space
3001 * on all devices, so we can resize.
3002 * We need to make sure resync covers any new space.
3003 * If the array is shrinking we should possibly wait until
3004 * any io in the removed space completes, but it hardly seems
3005 * worth it.
3006 */
a4a6125a
N
3007 sector_t newsize = raid1_size(mddev, sectors, 0);
3008 if (mddev->external_size &&
3009 mddev->array_sectors > newsize)
b522adcd 3010 return -EINVAL;
a4a6125a
N
3011 if (mddev->bitmap) {
3012 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3013 if (ret)
3014 return ret;
3015 }
3016 md_set_array_sectors(mddev, newsize);
f233ea5c 3017 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 3018 revalidate_disk(mddev->gendisk);
b522adcd 3019 if (sectors > mddev->dev_sectors &&
b098636c 3020 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3021 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3022 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3023 }
b522adcd 3024 mddev->dev_sectors = sectors;
4b5c7ae8 3025 mddev->resync_max_sectors = sectors;
1da177e4
LT
3026 return 0;
3027}
3028
fd01b88c 3029static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3030{
3031 /* We need to:
3032 * 1/ resize the r1bio_pool
3033 * 2/ resize conf->mirrors
3034 *
3035 * We allocate a new r1bio_pool if we can.
3036 * Then raise a device barrier and wait until all IO stops.
3037 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3038 *
3039 * At the same time, we "pack" the devices so that all the missing
3040 * devices have the higher raid_disk numbers.
1da177e4
LT
3041 */
3042 mempool_t *newpool, *oldpool;
3043 struct pool_info *newpoolinfo;
0eaf822c 3044 struct raid1_info *newmirrors;
e8096360 3045 struct r1conf *conf = mddev->private;
63c70c4f 3046 int cnt, raid_disks;
c04be0aa 3047 unsigned long flags;
b5470dc5 3048 int d, d2, err;
1da177e4 3049
63c70c4f 3050 /* Cannot change chunk_size, layout, or level */
664e7c41 3051 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3052 mddev->layout != mddev->new_layout ||
3053 mddev->level != mddev->new_level) {
664e7c41 3054 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3055 mddev->new_layout = mddev->layout;
3056 mddev->new_level = mddev->level;
3057 return -EINVAL;
3058 }
3059
28c1b9fd
GR
3060 if (!mddev_is_clustered(mddev)) {
3061 err = md_allow_write(mddev);
3062 if (err)
3063 return err;
3064 }
2a2275d6 3065
63c70c4f
N
3066 raid_disks = mddev->raid_disks + mddev->delta_disks;
3067
6ea9c07c
N
3068 if (raid_disks < conf->raid_disks) {
3069 cnt=0;
3070 for (d= 0; d < conf->raid_disks; d++)
3071 if (conf->mirrors[d].rdev)
3072 cnt++;
3073 if (cnt > raid_disks)
1da177e4 3074 return -EBUSY;
6ea9c07c 3075 }
1da177e4
LT
3076
3077 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3078 if (!newpoolinfo)
3079 return -ENOMEM;
3080 newpoolinfo->mddev = mddev;
8f19ccb2 3081 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3082
3083 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3084 r1bio_pool_free, newpoolinfo);
3085 if (!newpool) {
3086 kfree(newpoolinfo);
3087 return -ENOMEM;
3088 }
0eaf822c 3089 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3090 GFP_KERNEL);
1da177e4
LT
3091 if (!newmirrors) {
3092 kfree(newpoolinfo);
3093 mempool_destroy(newpool);
3094 return -ENOMEM;
3095 }
1da177e4 3096
e2d59925 3097 freeze_array(conf, 0);
1da177e4
LT
3098
3099 /* ok, everything is stopped */
3100 oldpool = conf->r1bio_pool;
3101 conf->r1bio_pool = newpool;
6ea9c07c 3102
a88aa786 3103 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3104 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3105 if (rdev && rdev->raid_disk != d2) {
36fad858 3106 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3107 rdev->raid_disk = d2;
36fad858
NK
3108 sysfs_unlink_rdev(mddev, rdev);
3109 if (sysfs_link_rdev(mddev, rdev))
a88aa786 3110 printk(KERN_WARNING
36fad858
NK
3111 "md/raid1:%s: cannot register rd%d\n",
3112 mdname(mddev), rdev->raid_disk);
6ea9c07c 3113 }
a88aa786
N
3114 if (rdev)
3115 newmirrors[d2++].rdev = rdev;
3116 }
1da177e4
LT
3117 kfree(conf->mirrors);
3118 conf->mirrors = newmirrors;
3119 kfree(conf->poolinfo);
3120 conf->poolinfo = newpoolinfo;
3121
c04be0aa 3122 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3123 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3124 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3125 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3126 mddev->delta_disks = 0;
1da177e4 3127
e2d59925 3128 unfreeze_array(conf);
1da177e4 3129
985ca973 3130 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3131 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3132 md_wakeup_thread(mddev->thread);
3133
3134 mempool_destroy(oldpool);
3135 return 0;
3136}
3137
fd01b88c 3138static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3139{
e8096360 3140 struct r1conf *conf = mddev->private;
36fa3063
N
3141
3142 switch(state) {
6eef4b21
N
3143 case 2: /* wake for suspend */
3144 wake_up(&conf->wait_barrier);
3145 break;
9e6603da 3146 case 1:
07169fd4 3147 freeze_array(conf, 0);
36fa3063 3148 break;
9e6603da 3149 case 0:
07169fd4 3150 unfreeze_array(conf);
36fa3063
N
3151 break;
3152 }
36fa3063
N
3153}
3154
fd01b88c 3155static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3156{
3157 /* raid1 can take over:
3158 * raid5 with 2 devices, any layout or chunk size
3159 */
3160 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3161 struct r1conf *conf;
709ae487
N
3162 mddev->new_level = 1;
3163 mddev->new_layout = 0;
3164 mddev->new_chunk_sectors = 0;
3165 conf = setup_conf(mddev);
3166 if (!IS_ERR(conf))
07169fd4 3167 /* Array must appear to be quiesced */
3168 conf->array_frozen = 1;
709ae487
N
3169 return conf;
3170 }
3171 return ERR_PTR(-EINVAL);
3172}
1da177e4 3173
84fc4b56 3174static struct md_personality raid1_personality =
1da177e4
LT
3175{
3176 .name = "raid1",
2604b703 3177 .level = 1,
1da177e4 3178 .owner = THIS_MODULE,
849674e4
SL
3179 .make_request = raid1_make_request,
3180 .run = raid1_run,
afa0f557 3181 .free = raid1_free,
849674e4
SL
3182 .status = raid1_status,
3183 .error_handler = raid1_error,
1da177e4
LT
3184 .hot_add_disk = raid1_add_disk,
3185 .hot_remove_disk= raid1_remove_disk,
3186 .spare_active = raid1_spare_active,
849674e4 3187 .sync_request = raid1_sync_request,
1da177e4 3188 .resize = raid1_resize,
80c3a6ce 3189 .size = raid1_size,
63c70c4f 3190 .check_reshape = raid1_reshape,
36fa3063 3191 .quiesce = raid1_quiesce,
709ae487 3192 .takeover = raid1_takeover,
5c675f83 3193 .congested = raid1_congested,
1da177e4
LT
3194};
3195
3196static int __init raid_init(void)
3197{
2604b703 3198 return register_md_personality(&raid1_personality);
1da177e4
LT
3199}
3200
3201static void raid_exit(void)
3202{
2604b703 3203 unregister_md_personality(&raid1_personality);
1da177e4
LT
3204}
3205
3206module_init(raid_init);
3207module_exit(raid_exit);
3208MODULE_LICENSE("GPL");
0efb9e61 3209MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3210MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3211MODULE_ALIAS("md-raid1");
2604b703 3212MODULE_ALIAS("md-level-1");
34db0cd6
N
3213
3214module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 1.242015 seconds and 5 git commands to generate.