[media] vivid: fix CROP_BOUNDS typo for video output
[deliverable/linux.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
473e87ce
JB
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
1da177e4 68
79ef3a8a 69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
e8096360 71static void lower_barrier(struct r1conf *conf);
1da177e4 72
dd0fc66f 73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
74{
75 struct pool_info *pi = data;
9f2c9d12 76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 79 return kzalloc(size, gfp_flags);
1da177e4
LT
80}
81
82static void r1bio_pool_free(void *r1_bio, void *data)
83{
84 kfree(r1_bio);
85}
86
87#define RESYNC_BLOCK_SIZE (64*1024)
8e005f7c 88#define RESYNC_DEPTH 32
1da177e4
LT
89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
8e005f7c 91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
1da177e4 94
dd0fc66f 95static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
96{
97 struct pool_info *pi = data;
9f2c9d12 98 struct r1bio *r1_bio;
1da177e4 99 struct bio *bio;
da1aab3d 100 int need_pages;
1da177e4
LT
101 int i, j;
102
103 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 104 if (!r1_bio)
1da177e4 105 return NULL;
1da177e4
LT
106
107 /*
108 * Allocate bios : 1 for reading, n-1 for writing
109 */
110 for (j = pi->raid_disks ; j-- ; ) {
6746557f 111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
112 if (!bio)
113 goto out_free_bio;
114 r1_bio->bios[j] = bio;
115 }
116 /*
117 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
118 * the first bio.
119 * If this is a user-requested check/repair, allocate
120 * RESYNC_PAGES for each bio.
1da177e4 121 */
d11c171e 122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 123 need_pages = pi->raid_disks;
d11c171e 124 else
da1aab3d
N
125 need_pages = 1;
126 for (j = 0; j < need_pages; j++) {
d11c171e 127 bio = r1_bio->bios[j];
a0787606 128 bio->bi_vcnt = RESYNC_PAGES;
d11c171e 129
a0787606 130 if (bio_alloc_pages(bio, gfp_flags))
da1aab3d 131 goto out_free_pages;
d11c171e
N
132 }
133 /* If not user-requests, copy the page pointers to all bios */
134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 for (i=0; i<RESYNC_PAGES ; i++)
136 for (j=1; j<pi->raid_disks; j++)
137 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
139 }
140
141 r1_bio->master_bio = NULL;
142
143 return r1_bio;
144
da1aab3d
N
145out_free_pages:
146 while (--j >= 0) {
147 struct bio_vec *bv;
148
149 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 __free_page(bv->bv_page);
151 }
152
1da177e4 153out_free_bio:
8f19ccb2 154 while (++j < pi->raid_disks)
1da177e4
LT
155 bio_put(r1_bio->bios[j]);
156 r1bio_pool_free(r1_bio, data);
157 return NULL;
158}
159
160static void r1buf_pool_free(void *__r1_bio, void *data)
161{
162 struct pool_info *pi = data;
d11c171e 163 int i,j;
9f2c9d12 164 struct r1bio *r1bio = __r1_bio;
1da177e4 165
d11c171e
N
166 for (i = 0; i < RESYNC_PAGES; i++)
167 for (j = pi->raid_disks; j-- ;) {
168 if (j == 0 ||
169 r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 172 }
1da177e4
LT
173 for (i=0 ; i < pi->raid_disks; i++)
174 bio_put(r1bio->bios[i]);
175
176 r1bio_pool_free(r1bio, data);
177}
178
e8096360 179static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
180{
181 int i;
182
8f19ccb2 183 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 184 struct bio **bio = r1_bio->bios + i;
4367af55 185 if (!BIO_SPECIAL(*bio))
1da177e4
LT
186 bio_put(*bio);
187 *bio = NULL;
188 }
189}
190
9f2c9d12 191static void free_r1bio(struct r1bio *r1_bio)
1da177e4 192{
e8096360 193 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 194
1da177e4
LT
195 put_all_bios(conf, r1_bio);
196 mempool_free(r1_bio, conf->r1bio_pool);
197}
198
9f2c9d12 199static void put_buf(struct r1bio *r1_bio)
1da177e4 200{
e8096360 201 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
202 int i;
203
8f19ccb2 204 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
205 struct bio *bio = r1_bio->bios[i];
206 if (bio->bi_end_io)
207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 }
1da177e4
LT
209
210 mempool_free(r1_bio, conf->r1buf_pool);
211
17999be4 212 lower_barrier(conf);
1da177e4
LT
213}
214
9f2c9d12 215static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
216{
217 unsigned long flags;
fd01b88c 218 struct mddev *mddev = r1_bio->mddev;
e8096360 219 struct r1conf *conf = mddev->private;
1da177e4
LT
220
221 spin_lock_irqsave(&conf->device_lock, flags);
222 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 223 conf->nr_queued ++;
1da177e4
LT
224 spin_unlock_irqrestore(&conf->device_lock, flags);
225
17999be4 226 wake_up(&conf->wait_barrier);
1da177e4
LT
227 md_wakeup_thread(mddev->thread);
228}
229
230/*
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
234 */
9f2c9d12 235static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
236{
237 struct bio *bio = r1_bio->master_bio;
238 int done;
e8096360 239 struct r1conf *conf = r1_bio->mddev->private;
79ef3a8a 240 sector_t start_next_window = r1_bio->start_next_window;
4f024f37 241 sector_t bi_sector = bio->bi_iter.bi_sector;
d2eb35ac
N
242
243 if (bio->bi_phys_segments) {
244 unsigned long flags;
245 spin_lock_irqsave(&conf->device_lock, flags);
246 bio->bi_phys_segments--;
247 done = (bio->bi_phys_segments == 0);
248 spin_unlock_irqrestore(&conf->device_lock, flags);
79ef3a8a 249 /*
250 * make_request() might be waiting for
251 * bi_phys_segments to decrease
252 */
253 wake_up(&conf->wait_barrier);
d2eb35ac
N
254 } else
255 done = 1;
256
257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 if (done) {
260 bio_endio(bio, 0);
261 /*
262 * Wake up any possible resync thread that waits for the device
263 * to go idle.
264 */
79ef3a8a 265 allow_barrier(conf, start_next_window, bi_sector);
d2eb35ac
N
266 }
267}
268
9f2c9d12 269static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
270{
271 struct bio *bio = r1_bio->master_bio;
272
4b6d287f
N
273 /* if nobody has done the final endio yet, do it now */
274 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
277 (unsigned long long) bio->bi_iter.bi_sector,
278 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 279
d2eb35ac 280 call_bio_endio(r1_bio);
4b6d287f 281 }
1da177e4
LT
282 free_r1bio(r1_bio);
283}
284
285/*
286 * Update disk head position estimator based on IRQ completion info.
287 */
9f2c9d12 288static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 289{
e8096360 290 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
291
292 conf->mirrors[disk].head_position =
293 r1_bio->sector + (r1_bio->sectors);
294}
295
ba3ae3be
NK
296/*
297 * Find the disk number which triggered given bio
298 */
9f2c9d12 299static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
300{
301 int mirror;
30194636
N
302 struct r1conf *conf = r1_bio->mddev->private;
303 int raid_disks = conf->raid_disks;
ba3ae3be 304
8f19ccb2 305 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
306 if (r1_bio->bios[mirror] == bio)
307 break;
308
8f19ccb2 309 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
310 update_head_pos(mirror, r1_bio);
311
312 return mirror;
313}
314
6712ecf8 315static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
316{
317 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 318 struct r1bio *r1_bio = bio->bi_private;
1da177e4 319 int mirror;
e8096360 320 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 321
1da177e4
LT
322 mirror = r1_bio->read_disk;
323 /*
324 * this branch is our 'one mirror IO has finished' event handler:
325 */
ddaf22ab
N
326 update_head_pos(mirror, r1_bio);
327
dd00a99e
N
328 if (uptodate)
329 set_bit(R1BIO_Uptodate, &r1_bio->state);
330 else {
331 /* If all other devices have failed, we want to return
332 * the error upwards rather than fail the last device.
333 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 334 */
dd00a99e
N
335 unsigned long flags;
336 spin_lock_irqsave(&conf->device_lock, flags);
337 if (r1_bio->mddev->degraded == conf->raid_disks ||
338 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340 uptodate = 1;
341 spin_unlock_irqrestore(&conf->device_lock, flags);
342 }
1da177e4 343
7ad4d4a6 344 if (uptodate) {
1da177e4 345 raid_end_bio_io(r1_bio);
7ad4d4a6
N
346 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 } else {
1da177e4
LT
348 /*
349 * oops, read error:
350 */
351 char b[BDEVNAME_SIZE];
8bda470e
CD
352 printk_ratelimited(
353 KERN_ERR "md/raid1:%s: %s: "
354 "rescheduling sector %llu\n",
355 mdname(conf->mddev),
356 bdevname(conf->mirrors[mirror].rdev->bdev,
357 b),
358 (unsigned long long)r1_bio->sector);
d2eb35ac 359 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 360 reschedule_retry(r1_bio);
7ad4d4a6 361 /* don't drop the reference on read_disk yet */
1da177e4 362 }
1da177e4
LT
363}
364
9f2c9d12 365static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
366{
367 /* it really is the end of this request */
368 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 /* free extra copy of the data pages */
370 int i = r1_bio->behind_page_count;
371 while (i--)
372 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 kfree(r1_bio->behind_bvecs);
374 r1_bio->behind_bvecs = NULL;
375 }
376 /* clear the bitmap if all writes complete successfully */
377 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 r1_bio->sectors,
379 !test_bit(R1BIO_Degraded, &r1_bio->state),
380 test_bit(R1BIO_BehindIO, &r1_bio->state));
381 md_write_end(r1_bio->mddev);
382}
383
9f2c9d12 384static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 385{
cd5ff9a1
N
386 if (!atomic_dec_and_test(&r1_bio->remaining))
387 return;
388
389 if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 reschedule_retry(r1_bio);
391 else {
392 close_write(r1_bio);
4367af55
N
393 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 reschedule_retry(r1_bio);
395 else
396 raid_end_bio_io(r1_bio);
4e78064f
N
397 }
398}
399
6712ecf8 400static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
401{
402 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 403 struct r1bio *r1_bio = bio->bi_private;
a9701a30 404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 405 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 406 struct bio *to_put = NULL;
1da177e4 407
ba3ae3be 408 mirror = find_bio_disk(r1_bio, bio);
1da177e4 409
e9c7469b
TH
410 /*
411 * 'one mirror IO has finished' event handler:
412 */
e9c7469b 413 if (!uptodate) {
cd5ff9a1
N
414 set_bit(WriteErrorSeen,
415 &conf->mirrors[mirror].rdev->flags);
19d67169
N
416 if (!test_and_set_bit(WantReplacement,
417 &conf->mirrors[mirror].rdev->flags))
418 set_bit(MD_RECOVERY_NEEDED, &
419 conf->mddev->recovery);
420
cd5ff9a1 421 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 422 } else {
1da177e4 423 /*
e9c7469b
TH
424 * Set R1BIO_Uptodate in our master bio, so that we
425 * will return a good error code for to the higher
426 * levels even if IO on some other mirrored buffer
427 * fails.
428 *
429 * The 'master' represents the composite IO operation
430 * to user-side. So if something waits for IO, then it
431 * will wait for the 'master' bio.
1da177e4 432 */
4367af55
N
433 sector_t first_bad;
434 int bad_sectors;
435
cd5ff9a1
N
436 r1_bio->bios[mirror] = NULL;
437 to_put = bio;
3056e3ae
AL
438 /*
439 * Do not set R1BIO_Uptodate if the current device is
440 * rebuilding or Faulty. This is because we cannot use
441 * such device for properly reading the data back (we could
442 * potentially use it, if the current write would have felt
443 * before rdev->recovery_offset, but for simplicity we don't
444 * check this here.
445 */
446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 449
4367af55
N
450 /* Maybe we can clear some bad blocks. */
451 if (is_badblock(conf->mirrors[mirror].rdev,
452 r1_bio->sector, r1_bio->sectors,
453 &first_bad, &bad_sectors)) {
454 r1_bio->bios[mirror] = IO_MADE_GOOD;
455 set_bit(R1BIO_MadeGood, &r1_bio->state);
456 }
457 }
458
e9c7469b
TH
459 if (behind) {
460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 atomic_dec(&r1_bio->behind_remaining);
462
463 /*
464 * In behind mode, we ACK the master bio once the I/O
465 * has safely reached all non-writemostly
466 * disks. Setting the Returned bit ensures that this
467 * gets done only once -- we don't ever want to return
468 * -EIO here, instead we'll wait
469 */
470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 /* Maybe we can return now */
473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
475 pr_debug("raid1: behind end write sectors"
476 " %llu-%llu\n",
4f024f37
KO
477 (unsigned long long) mbio->bi_iter.bi_sector,
478 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 479 call_bio_endio(r1_bio);
4b6d287f
N
480 }
481 }
482 }
4367af55
N
483 if (r1_bio->bios[mirror] == NULL)
484 rdev_dec_pending(conf->mirrors[mirror].rdev,
485 conf->mddev);
e9c7469b 486
1da177e4 487 /*
1da177e4
LT
488 * Let's see if all mirrored write operations have finished
489 * already.
490 */
af6d7b76 491 r1_bio_write_done(r1_bio);
c70810b3 492
04b857f7
N
493 if (to_put)
494 bio_put(to_put);
1da177e4
LT
495}
496
1da177e4
LT
497/*
498 * This routine returns the disk from which the requested read should
499 * be done. There is a per-array 'next expected sequential IO' sector
500 * number - if this matches on the next IO then we use the last disk.
501 * There is also a per-disk 'last know head position' sector that is
502 * maintained from IRQ contexts, both the normal and the resync IO
503 * completion handlers update this position correctly. If there is no
504 * perfect sequential match then we pick the disk whose head is closest.
505 *
506 * If there are 2 mirrors in the same 2 devices, performance degrades
507 * because position is mirror, not device based.
508 *
509 * The rdev for the device selected will have nr_pending incremented.
510 */
e8096360 511static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 512{
af3a2cd6 513 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
514 int sectors;
515 int best_good_sectors;
9dedf603
SL
516 int best_disk, best_dist_disk, best_pending_disk;
517 int has_nonrot_disk;
be4d3280 518 int disk;
76073054 519 sector_t best_dist;
9dedf603 520 unsigned int min_pending;
3cb03002 521 struct md_rdev *rdev;
f3ac8bf7 522 int choose_first;
12cee5a8 523 int choose_next_idle;
1da177e4
LT
524
525 rcu_read_lock();
526 /*
8ddf9efe 527 * Check if we can balance. We can balance on the whole
1da177e4
LT
528 * device if no resync is going on, or below the resync window.
529 * We take the first readable disk when above the resync window.
530 */
531 retry:
d2eb35ac 532 sectors = r1_bio->sectors;
76073054 533 best_disk = -1;
9dedf603 534 best_dist_disk = -1;
76073054 535 best_dist = MaxSector;
9dedf603
SL
536 best_pending_disk = -1;
537 min_pending = UINT_MAX;
d2eb35ac 538 best_good_sectors = 0;
9dedf603 539 has_nonrot_disk = 0;
12cee5a8 540 choose_next_idle = 0;
d2eb35ac 541
c6d119cf 542 choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
1da177e4 543
be4d3280 544 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 545 sector_t dist;
d2eb35ac
N
546 sector_t first_bad;
547 int bad_sectors;
9dedf603 548 unsigned int pending;
12cee5a8 549 bool nonrot;
d2eb35ac 550
f3ac8bf7
N
551 rdev = rcu_dereference(conf->mirrors[disk].rdev);
552 if (r1_bio->bios[disk] == IO_BLOCKED
553 || rdev == NULL
6b740b8d 554 || test_bit(Unmerged, &rdev->flags)
76073054 555 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 556 continue;
76073054
N
557 if (!test_bit(In_sync, &rdev->flags) &&
558 rdev->recovery_offset < this_sector + sectors)
1da177e4 559 continue;
76073054
N
560 if (test_bit(WriteMostly, &rdev->flags)) {
561 /* Don't balance among write-mostly, just
562 * use the first as a last resort */
307729c8
N
563 if (best_disk < 0) {
564 if (is_badblock(rdev, this_sector, sectors,
565 &first_bad, &bad_sectors)) {
566 if (first_bad < this_sector)
567 /* Cannot use this */
568 continue;
569 best_good_sectors = first_bad - this_sector;
570 } else
571 best_good_sectors = sectors;
76073054 572 best_disk = disk;
307729c8 573 }
76073054
N
574 continue;
575 }
576 /* This is a reasonable device to use. It might
577 * even be best.
578 */
d2eb35ac
N
579 if (is_badblock(rdev, this_sector, sectors,
580 &first_bad, &bad_sectors)) {
581 if (best_dist < MaxSector)
582 /* already have a better device */
583 continue;
584 if (first_bad <= this_sector) {
585 /* cannot read here. If this is the 'primary'
586 * device, then we must not read beyond
587 * bad_sectors from another device..
588 */
589 bad_sectors -= (this_sector - first_bad);
590 if (choose_first && sectors > bad_sectors)
591 sectors = bad_sectors;
592 if (best_good_sectors > sectors)
593 best_good_sectors = sectors;
594
595 } else {
596 sector_t good_sectors = first_bad - this_sector;
597 if (good_sectors > best_good_sectors) {
598 best_good_sectors = good_sectors;
599 best_disk = disk;
600 }
601 if (choose_first)
602 break;
603 }
604 continue;
605 } else
606 best_good_sectors = sectors;
607
12cee5a8
SL
608 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
609 has_nonrot_disk |= nonrot;
9dedf603 610 pending = atomic_read(&rdev->nr_pending);
76073054 611 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 612 if (choose_first) {
76073054 613 best_disk = disk;
1da177e4
LT
614 break;
615 }
12cee5a8
SL
616 /* Don't change to another disk for sequential reads */
617 if (conf->mirrors[disk].next_seq_sect == this_sector
618 || dist == 0) {
619 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
620 struct raid1_info *mirror = &conf->mirrors[disk];
621
622 best_disk = disk;
623 /*
624 * If buffered sequential IO size exceeds optimal
625 * iosize, check if there is idle disk. If yes, choose
626 * the idle disk. read_balance could already choose an
627 * idle disk before noticing it's a sequential IO in
628 * this disk. This doesn't matter because this disk
629 * will idle, next time it will be utilized after the
630 * first disk has IO size exceeds optimal iosize. In
631 * this way, iosize of the first disk will be optimal
632 * iosize at least. iosize of the second disk might be
633 * small, but not a big deal since when the second disk
634 * starts IO, the first disk is likely still busy.
635 */
636 if (nonrot && opt_iosize > 0 &&
637 mirror->seq_start != MaxSector &&
638 mirror->next_seq_sect > opt_iosize &&
639 mirror->next_seq_sect - opt_iosize >=
640 mirror->seq_start) {
641 choose_next_idle = 1;
642 continue;
643 }
644 break;
645 }
646 /* If device is idle, use it */
647 if (pending == 0) {
648 best_disk = disk;
649 break;
650 }
651
652 if (choose_next_idle)
653 continue;
9dedf603
SL
654
655 if (min_pending > pending) {
656 min_pending = pending;
657 best_pending_disk = disk;
658 }
659
76073054
N
660 if (dist < best_dist) {
661 best_dist = dist;
9dedf603 662 best_dist_disk = disk;
1da177e4 663 }
f3ac8bf7 664 }
1da177e4 665
9dedf603
SL
666 /*
667 * If all disks are rotational, choose the closest disk. If any disk is
668 * non-rotational, choose the disk with less pending request even the
669 * disk is rotational, which might/might not be optimal for raids with
670 * mixed ratation/non-rotational disks depending on workload.
671 */
672 if (best_disk == -1) {
673 if (has_nonrot_disk)
674 best_disk = best_pending_disk;
675 else
676 best_disk = best_dist_disk;
677 }
678
76073054
N
679 if (best_disk >= 0) {
680 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
681 if (!rdev)
682 goto retry;
683 atomic_inc(&rdev->nr_pending);
76073054 684 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
685 /* cannot risk returning a device that failed
686 * before we inc'ed nr_pending
687 */
03c902e1 688 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
689 goto retry;
690 }
d2eb35ac 691 sectors = best_good_sectors;
12cee5a8
SL
692
693 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
694 conf->mirrors[best_disk].seq_start = this_sector;
695
be4d3280 696 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
697 }
698 rcu_read_unlock();
d2eb35ac 699 *max_sectors = sectors;
1da177e4 700
76073054 701 return best_disk;
1da177e4
LT
702}
703
6b740b8d
N
704static int raid1_mergeable_bvec(struct request_queue *q,
705 struct bvec_merge_data *bvm,
706 struct bio_vec *biovec)
707{
708 struct mddev *mddev = q->queuedata;
709 struct r1conf *conf = mddev->private;
710 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
711 int max = biovec->bv_len;
712
713 if (mddev->merge_check_needed) {
714 int disk;
715 rcu_read_lock();
716 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
717 struct md_rdev *rdev = rcu_dereference(
718 conf->mirrors[disk].rdev);
719 if (rdev && !test_bit(Faulty, &rdev->flags)) {
720 struct request_queue *q =
721 bdev_get_queue(rdev->bdev);
722 if (q->merge_bvec_fn) {
723 bvm->bi_sector = sector +
724 rdev->data_offset;
725 bvm->bi_bdev = rdev->bdev;
726 max = min(max, q->merge_bvec_fn(
727 q, bvm, biovec));
728 }
729 }
730 }
731 rcu_read_unlock();
732 }
733 return max;
734
735}
736
fd01b88c 737int md_raid1_congested(struct mddev *mddev, int bits)
0d129228 738{
e8096360 739 struct r1conf *conf = mddev->private;
0d129228
N
740 int i, ret = 0;
741
34db0cd6
N
742 if ((bits & (1 << BDI_async_congested)) &&
743 conf->pending_count >= max_queued_requests)
744 return 1;
745
0d129228 746 rcu_read_lock();
f53e29fc 747 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 748 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 749 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 750 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 751
1ed7242e
JB
752 BUG_ON(!q);
753
0d129228
N
754 /* Note the '|| 1' - when read_balance prefers
755 * non-congested targets, it can be removed
756 */
91a9e99d 757 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
758 ret |= bdi_congested(&q->backing_dev_info, bits);
759 else
760 ret &= bdi_congested(&q->backing_dev_info, bits);
761 }
762 }
763 rcu_read_unlock();
764 return ret;
765}
1ed7242e 766EXPORT_SYMBOL_GPL(md_raid1_congested);
0d129228 767
1ed7242e
JB
768static int raid1_congested(void *data, int bits)
769{
fd01b88c 770 struct mddev *mddev = data;
1ed7242e
JB
771
772 return mddev_congested(mddev, bits) ||
773 md_raid1_congested(mddev, bits);
774}
0d129228 775
e8096360 776static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
777{
778 /* Any writes that have been queued but are awaiting
779 * bitmap updates get flushed here.
a35e63ef 780 */
a35e63ef
N
781 spin_lock_irq(&conf->device_lock);
782
783 if (conf->pending_bio_list.head) {
784 struct bio *bio;
785 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 786 conf->pending_count = 0;
a35e63ef
N
787 spin_unlock_irq(&conf->device_lock);
788 /* flush any pending bitmap writes to
789 * disk before proceeding w/ I/O */
790 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 791 wake_up(&conf->wait_barrier);
a35e63ef
N
792
793 while (bio) { /* submit pending writes */
794 struct bio *next = bio->bi_next;
795 bio->bi_next = NULL;
2ff8cc2c
SL
796 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
797 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
798 /* Just ignore it */
799 bio_endio(bio, 0);
800 else
801 generic_make_request(bio);
a35e63ef
N
802 bio = next;
803 }
a35e63ef
N
804 } else
805 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
806}
807
17999be4
N
808/* Barriers....
809 * Sometimes we need to suspend IO while we do something else,
810 * either some resync/recovery, or reconfigure the array.
811 * To do this we raise a 'barrier'.
812 * The 'barrier' is a counter that can be raised multiple times
813 * to count how many activities are happening which preclude
814 * normal IO.
815 * We can only raise the barrier if there is no pending IO.
816 * i.e. if nr_pending == 0.
817 * We choose only to raise the barrier if no-one is waiting for the
818 * barrier to go down. This means that as soon as an IO request
819 * is ready, no other operations which require a barrier will start
820 * until the IO request has had a chance.
821 *
822 * So: regular IO calls 'wait_barrier'. When that returns there
823 * is no backgroup IO happening, It must arrange to call
824 * allow_barrier when it has finished its IO.
825 * backgroup IO calls must call raise_barrier. Once that returns
826 * there is no normal IO happeing. It must arrange to call
827 * lower_barrier when the particular background IO completes.
1da177e4 828 */
c2fd4c94 829static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4
LT
830{
831 spin_lock_irq(&conf->resync_lock);
17999be4
N
832
833 /* Wait until no block IO is waiting */
834 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
eed8c02e 835 conf->resync_lock);
17999be4
N
836
837 /* block any new IO from starting */
838 conf->barrier++;
c2fd4c94 839 conf->next_resync = sector_nr;
17999be4 840
79ef3a8a 841 /* For these conditions we must wait:
842 * A: while the array is in frozen state
843 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
844 * the max count which allowed.
845 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
846 * next resync will reach to the window which normal bios are
847 * handling.
2f73d3c5 848 * D: while there are any active requests in the current window.
79ef3a8a 849 */
17999be4 850 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 851 !conf->array_frozen &&
79ef3a8a 852 conf->barrier < RESYNC_DEPTH &&
2f73d3c5 853 conf->current_window_requests == 0 &&
79ef3a8a 854 (conf->start_next_window >=
855 conf->next_resync + RESYNC_SECTORS),
eed8c02e 856 conf->resync_lock);
17999be4 857
34e97f17 858 conf->nr_pending++;
17999be4
N
859 spin_unlock_irq(&conf->resync_lock);
860}
861
e8096360 862static void lower_barrier(struct r1conf *conf)
17999be4
N
863{
864 unsigned long flags;
709ae487 865 BUG_ON(conf->barrier <= 0);
17999be4
N
866 spin_lock_irqsave(&conf->resync_lock, flags);
867 conf->barrier--;
34e97f17 868 conf->nr_pending--;
17999be4
N
869 spin_unlock_irqrestore(&conf->resync_lock, flags);
870 wake_up(&conf->wait_barrier);
871}
872
79ef3a8a 873static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
17999be4 874{
79ef3a8a 875 bool wait = false;
876
877 if (conf->array_frozen || !bio)
878 wait = true;
879 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
23554960
N
880 if ((conf->mddev->curr_resync_completed
881 >= bio_end_sector(bio)) ||
882 (conf->next_resync + NEXT_NORMALIO_DISTANCE
883 <= bio->bi_iter.bi_sector))
79ef3a8a 884 wait = false;
885 else
886 wait = true;
887 }
888
889 return wait;
890}
891
892static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
893{
894 sector_t sector = 0;
895
17999be4 896 spin_lock_irq(&conf->resync_lock);
79ef3a8a 897 if (need_to_wait_for_sync(conf, bio)) {
17999be4 898 conf->nr_waiting++;
d6b42dcb
N
899 /* Wait for the barrier to drop.
900 * However if there are already pending
901 * requests (preventing the barrier from
902 * rising completely), and the
5965b642 903 * per-process bio queue isn't empty,
d6b42dcb 904 * then don't wait, as we need to empty
5965b642
N
905 * that queue to allow conf->start_next_window
906 * to increase.
d6b42dcb
N
907 */
908 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 909 !conf->array_frozen &&
910 (!conf->barrier ||
5965b642
N
911 ((conf->start_next_window <
912 conf->next_resync + RESYNC_SECTORS) &&
913 current->bio_list &&
914 !bio_list_empty(current->bio_list))),
eed8c02e 915 conf->resync_lock);
17999be4 916 conf->nr_waiting--;
1da177e4 917 }
79ef3a8a 918
919 if (bio && bio_data_dir(bio) == WRITE) {
2f73d3c5 920 if (bio->bi_iter.bi_sector >=
23554960 921 conf->mddev->curr_resync_completed) {
79ef3a8a 922 if (conf->start_next_window == MaxSector)
923 conf->start_next_window =
924 conf->next_resync +
925 NEXT_NORMALIO_DISTANCE;
926
927 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
4f024f37 928 <= bio->bi_iter.bi_sector)
79ef3a8a 929 conf->next_window_requests++;
930 else
931 conf->current_window_requests++;
79ef3a8a 932 sector = conf->start_next_window;
41a336e0 933 }
79ef3a8a 934 }
935
17999be4 936 conf->nr_pending++;
1da177e4 937 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 938 return sector;
1da177e4
LT
939}
940
79ef3a8a 941static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
942 sector_t bi_sector)
17999be4
N
943{
944 unsigned long flags;
79ef3a8a 945
17999be4
N
946 spin_lock_irqsave(&conf->resync_lock, flags);
947 conf->nr_pending--;
79ef3a8a 948 if (start_next_window) {
949 if (start_next_window == conf->start_next_window) {
950 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
951 <= bi_sector)
952 conf->next_window_requests--;
953 else
954 conf->current_window_requests--;
955 } else
956 conf->current_window_requests--;
957
958 if (!conf->current_window_requests) {
959 if (conf->next_window_requests) {
960 conf->current_window_requests =
961 conf->next_window_requests;
962 conf->next_window_requests = 0;
963 conf->start_next_window +=
964 NEXT_NORMALIO_DISTANCE;
965 } else
966 conf->start_next_window = MaxSector;
967 }
968 }
17999be4
N
969 spin_unlock_irqrestore(&conf->resync_lock, flags);
970 wake_up(&conf->wait_barrier);
971}
972
e2d59925 973static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab
N
974{
975 /* stop syncio and normal IO and wait for everything to
976 * go quite.
b364e3d0 977 * We wait until nr_pending match nr_queued+extra
1c830532
N
978 * This is called in the context of one normal IO request
979 * that has failed. Thus any sync request that might be pending
980 * will be blocked by nr_pending, and we need to wait for
981 * pending IO requests to complete or be queued for re-try.
e2d59925 982 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
983 * must match the number of pending IOs (nr_pending) before
984 * we continue.
ddaf22ab
N
985 */
986 spin_lock_irq(&conf->resync_lock);
b364e3d0 987 conf->array_frozen = 1;
eed8c02e 988 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 989 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
990 conf->resync_lock,
991 flush_pending_writes(conf));
ddaf22ab
N
992 spin_unlock_irq(&conf->resync_lock);
993}
e8096360 994static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
995{
996 /* reverse the effect of the freeze */
997 spin_lock_irq(&conf->resync_lock);
b364e3d0 998 conf->array_frozen = 0;
ddaf22ab
N
999 wake_up(&conf->wait_barrier);
1000 spin_unlock_irq(&conf->resync_lock);
1001}
1002
f72ffdd6 1003/* duplicate the data pages for behind I/O
4e78064f 1004 */
9f2c9d12 1005static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
1006{
1007 int i;
1008 struct bio_vec *bvec;
2ca68f5e 1009 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 1010 GFP_NOIO);
2ca68f5e 1011 if (unlikely(!bvecs))
af6d7b76 1012 return;
4b6d287f 1013
cb34e057 1014 bio_for_each_segment_all(bvec, bio, i) {
2ca68f5e
N
1015 bvecs[i] = *bvec;
1016 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1017 if (unlikely(!bvecs[i].bv_page))
4b6d287f 1018 goto do_sync_io;
2ca68f5e
N
1019 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1020 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1021 kunmap(bvecs[i].bv_page);
4b6d287f
N
1022 kunmap(bvec->bv_page);
1023 }
2ca68f5e 1024 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
1025 r1_bio->behind_page_count = bio->bi_vcnt;
1026 set_bit(R1BIO_BehindIO, &r1_bio->state);
1027 return;
4b6d287f
N
1028
1029do_sync_io:
af6d7b76 1030 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
1031 if (bvecs[i].bv_page)
1032 put_page(bvecs[i].bv_page);
1033 kfree(bvecs);
4f024f37
KO
1034 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1035 bio->bi_iter.bi_size);
4b6d287f
N
1036}
1037
f54a9d0e
N
1038struct raid1_plug_cb {
1039 struct blk_plug_cb cb;
1040 struct bio_list pending;
1041 int pending_cnt;
1042};
1043
1044static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1045{
1046 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1047 cb);
1048 struct mddev *mddev = plug->cb.data;
1049 struct r1conf *conf = mddev->private;
1050 struct bio *bio;
1051
874807a8 1052 if (from_schedule || current->bio_list) {
f54a9d0e
N
1053 spin_lock_irq(&conf->device_lock);
1054 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1055 conf->pending_count += plug->pending_cnt;
1056 spin_unlock_irq(&conf->device_lock);
ee0b0244 1057 wake_up(&conf->wait_barrier);
f54a9d0e
N
1058 md_wakeup_thread(mddev->thread);
1059 kfree(plug);
1060 return;
1061 }
1062
1063 /* we aren't scheduling, so we can do the write-out directly. */
1064 bio = bio_list_get(&plug->pending);
1065 bitmap_unplug(mddev->bitmap);
1066 wake_up(&conf->wait_barrier);
1067
1068 while (bio) { /* submit pending writes */
1069 struct bio *next = bio->bi_next;
1070 bio->bi_next = NULL;
32f9f570
SL
1071 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1072 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1073 /* Just ignore it */
1074 bio_endio(bio, 0);
1075 else
1076 generic_make_request(bio);
f54a9d0e
N
1077 bio = next;
1078 }
1079 kfree(plug);
1080}
1081
b4fdcb02 1082static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1083{
e8096360 1084 struct r1conf *conf = mddev->private;
0eaf822c 1085 struct raid1_info *mirror;
9f2c9d12 1086 struct r1bio *r1_bio;
1da177e4 1087 struct bio *read_bio;
1f68f0c4 1088 int i, disks;
84255d10 1089 struct bitmap *bitmap;
191ea9b2 1090 unsigned long flags;
a362357b 1091 const int rw = bio_data_dir(bio);
2c7d46ec 1092 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1093 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
2ff8cc2c
SL
1094 const unsigned long do_discard = (bio->bi_rw
1095 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1096 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
3cb03002 1097 struct md_rdev *blocked_rdev;
f54a9d0e
N
1098 struct blk_plug_cb *cb;
1099 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
1100 int first_clone;
1101 int sectors_handled;
1102 int max_sectors;
79ef3a8a 1103 sector_t start_next_window;
191ea9b2 1104
1da177e4
LT
1105 /*
1106 * Register the new request and wait if the reconstruction
1107 * thread has put up a bar for new requests.
1108 * Continue immediately if no resync is active currently.
1109 */
62de608d 1110
3d310eb7
N
1111 md_write_start(mddev, bio); /* wait on superblock update early */
1112
6eef4b21 1113 if (bio_data_dir(bio) == WRITE &&
f73a1c7d 1114 bio_end_sector(bio) > mddev->suspend_lo &&
4f024f37 1115 bio->bi_iter.bi_sector < mddev->suspend_hi) {
6eef4b21
N
1116 /* As the suspend_* range is controlled by
1117 * userspace, we want an interruptible
1118 * wait.
1119 */
1120 DEFINE_WAIT(w);
1121 for (;;) {
1122 flush_signals(current);
1123 prepare_to_wait(&conf->wait_barrier,
1124 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1125 if (bio_end_sector(bio) <= mddev->suspend_lo ||
4f024f37 1126 bio->bi_iter.bi_sector >= mddev->suspend_hi)
6eef4b21
N
1127 break;
1128 schedule();
1129 }
1130 finish_wait(&conf->wait_barrier, &w);
1131 }
62de608d 1132
79ef3a8a 1133 start_next_window = wait_barrier(conf, bio);
1da177e4 1134
84255d10
N
1135 bitmap = mddev->bitmap;
1136
1da177e4
LT
1137 /*
1138 * make_request() can abort the operation when READA is being
1139 * used and no empty request is available.
1140 *
1141 */
1142 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1143
1144 r1_bio->master_bio = bio;
aa8b57aa 1145 r1_bio->sectors = bio_sectors(bio);
191ea9b2 1146 r1_bio->state = 0;
1da177e4 1147 r1_bio->mddev = mddev;
4f024f37 1148 r1_bio->sector = bio->bi_iter.bi_sector;
1da177e4 1149
d2eb35ac
N
1150 /* We might need to issue multiple reads to different
1151 * devices if there are bad blocks around, so we keep
1152 * track of the number of reads in bio->bi_phys_segments.
1153 * If this is 0, there is only one r1_bio and no locking
1154 * will be needed when requests complete. If it is
1155 * non-zero, then it is the number of not-completed requests.
1156 */
1157 bio->bi_phys_segments = 0;
1158 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1159
a362357b 1160 if (rw == READ) {
1da177e4
LT
1161 /*
1162 * read balancing logic:
1163 */
d2eb35ac
N
1164 int rdisk;
1165
1166read_again:
1167 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
1168
1169 if (rdisk < 0) {
1170 /* couldn't find anywhere to read from */
1171 raid_end_bio_io(r1_bio);
5a7bbad2 1172 return;
1da177e4
LT
1173 }
1174 mirror = conf->mirrors + rdisk;
1175
e555190d
N
1176 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1177 bitmap) {
1178 /* Reading from a write-mostly device must
1179 * take care not to over-take any writes
1180 * that are 'behind'
1181 */
1182 wait_event(bitmap->behind_wait,
1183 atomic_read(&bitmap->behind_writes) == 0);
1184 }
1da177e4 1185 r1_bio->read_disk = rdisk;
f0cc9a05 1186 r1_bio->start_next_window = 0;
1da177e4 1187
a167f663 1188 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1189 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1190 max_sectors);
1da177e4
LT
1191
1192 r1_bio->bios[rdisk] = read_bio;
1193
4f024f37
KO
1194 read_bio->bi_iter.bi_sector = r1_bio->sector +
1195 mirror->rdev->data_offset;
1da177e4
LT
1196 read_bio->bi_bdev = mirror->rdev->bdev;
1197 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 1198 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1199 read_bio->bi_private = r1_bio;
1200
d2eb35ac
N
1201 if (max_sectors < r1_bio->sectors) {
1202 /* could not read all from this device, so we will
1203 * need another r1_bio.
1204 */
d2eb35ac
N
1205
1206 sectors_handled = (r1_bio->sector + max_sectors
4f024f37 1207 - bio->bi_iter.bi_sector);
d2eb35ac
N
1208 r1_bio->sectors = max_sectors;
1209 spin_lock_irq(&conf->device_lock);
1210 if (bio->bi_phys_segments == 0)
1211 bio->bi_phys_segments = 2;
1212 else
1213 bio->bi_phys_segments++;
1214 spin_unlock_irq(&conf->device_lock);
1215 /* Cannot call generic_make_request directly
1216 * as that will be queued in __make_request
1217 * and subsequent mempool_alloc might block waiting
1218 * for it. So hand bio over to raid1d.
1219 */
1220 reschedule_retry(r1_bio);
1221
1222 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1223
1224 r1_bio->master_bio = bio;
aa8b57aa 1225 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
d2eb35ac
N
1226 r1_bio->state = 0;
1227 r1_bio->mddev = mddev;
4f024f37
KO
1228 r1_bio->sector = bio->bi_iter.bi_sector +
1229 sectors_handled;
d2eb35ac
N
1230 goto read_again;
1231 } else
1232 generic_make_request(read_bio);
5a7bbad2 1233 return;
1da177e4
LT
1234 }
1235
1236 /*
1237 * WRITE:
1238 */
34db0cd6
N
1239 if (conf->pending_count >= max_queued_requests) {
1240 md_wakeup_thread(mddev->thread);
1241 wait_event(conf->wait_barrier,
1242 conf->pending_count < max_queued_requests);
1243 }
1f68f0c4 1244 /* first select target devices under rcu_lock and
1da177e4
LT
1245 * inc refcount on their rdev. Record them by setting
1246 * bios[x] to bio
1f68f0c4
N
1247 * If there are known/acknowledged bad blocks on any device on
1248 * which we have seen a write error, we want to avoid writing those
1249 * blocks.
1250 * This potentially requires several writes to write around
1251 * the bad blocks. Each set of writes gets it's own r1bio
1252 * with a set of bios attached.
1da177e4 1253 */
c3b328ac 1254
8f19ccb2 1255 disks = conf->raid_disks * 2;
6bfe0b49 1256 retry_write:
79ef3a8a 1257 r1_bio->start_next_window = start_next_window;
6bfe0b49 1258 blocked_rdev = NULL;
1da177e4 1259 rcu_read_lock();
1f68f0c4 1260 max_sectors = r1_bio->sectors;
1da177e4 1261 for (i = 0; i < disks; i++) {
3cb03002 1262 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1263 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1264 atomic_inc(&rdev->nr_pending);
1265 blocked_rdev = rdev;
1266 break;
1267 }
1f68f0c4 1268 r1_bio->bios[i] = NULL;
6b740b8d
N
1269 if (!rdev || test_bit(Faulty, &rdev->flags)
1270 || test_bit(Unmerged, &rdev->flags)) {
8f19ccb2
N
1271 if (i < conf->raid_disks)
1272 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1273 continue;
1274 }
1275
1276 atomic_inc(&rdev->nr_pending);
1277 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1278 sector_t first_bad;
1279 int bad_sectors;
1280 int is_bad;
1281
1282 is_bad = is_badblock(rdev, r1_bio->sector,
1283 max_sectors,
1284 &first_bad, &bad_sectors);
1285 if (is_bad < 0) {
1286 /* mustn't write here until the bad block is
1287 * acknowledged*/
1288 set_bit(BlockedBadBlocks, &rdev->flags);
1289 blocked_rdev = rdev;
1290 break;
1291 }
1292 if (is_bad && first_bad <= r1_bio->sector) {
1293 /* Cannot write here at all */
1294 bad_sectors -= (r1_bio->sector - first_bad);
1295 if (bad_sectors < max_sectors)
1296 /* mustn't write more than bad_sectors
1297 * to other devices yet
1298 */
1299 max_sectors = bad_sectors;
03c902e1 1300 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1301 /* We don't set R1BIO_Degraded as that
1302 * only applies if the disk is
1303 * missing, so it might be re-added,
1304 * and we want to know to recover this
1305 * chunk.
1306 * In this case the device is here,
1307 * and the fact that this chunk is not
1308 * in-sync is recorded in the bad
1309 * block log
1310 */
1311 continue;
964147d5 1312 }
1f68f0c4
N
1313 if (is_bad) {
1314 int good_sectors = first_bad - r1_bio->sector;
1315 if (good_sectors < max_sectors)
1316 max_sectors = good_sectors;
1317 }
1318 }
1319 r1_bio->bios[i] = bio;
1da177e4
LT
1320 }
1321 rcu_read_unlock();
1322
6bfe0b49
DW
1323 if (unlikely(blocked_rdev)) {
1324 /* Wait for this device to become unblocked */
1325 int j;
79ef3a8a 1326 sector_t old = start_next_window;
6bfe0b49
DW
1327
1328 for (j = 0; j < i; j++)
1329 if (r1_bio->bios[j])
1330 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1331 r1_bio->state = 0;
4f024f37 1332 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
6bfe0b49 1333 md_wait_for_blocked_rdev(blocked_rdev, mddev);
79ef3a8a 1334 start_next_window = wait_barrier(conf, bio);
1335 /*
1336 * We must make sure the multi r1bios of bio have
1337 * the same value of bi_phys_segments
1338 */
1339 if (bio->bi_phys_segments && old &&
1340 old != start_next_window)
1341 /* Wait for the former r1bio(s) to complete */
1342 wait_event(conf->wait_barrier,
1343 bio->bi_phys_segments == 1);
6bfe0b49
DW
1344 goto retry_write;
1345 }
1346
1f68f0c4
N
1347 if (max_sectors < r1_bio->sectors) {
1348 /* We are splitting this write into multiple parts, so
1349 * we need to prepare for allocating another r1_bio.
1350 */
1351 r1_bio->sectors = max_sectors;
1352 spin_lock_irq(&conf->device_lock);
1353 if (bio->bi_phys_segments == 0)
1354 bio->bi_phys_segments = 2;
1355 else
1356 bio->bi_phys_segments++;
1357 spin_unlock_irq(&conf->device_lock);
191ea9b2 1358 }
4f024f37 1359 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
4b6d287f 1360
4e78064f 1361 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1362 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1363
1f68f0c4 1364 first_clone = 1;
1da177e4
LT
1365 for (i = 0; i < disks; i++) {
1366 struct bio *mbio;
1367 if (!r1_bio->bios[i])
1368 continue;
1369
a167f663 1370 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1371 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1f68f0c4
N
1372
1373 if (first_clone) {
1374 /* do behind I/O ?
1375 * Not if there are too many, or cannot
1376 * allocate memory, or a reader on WriteMostly
1377 * is waiting for behind writes to flush */
1378 if (bitmap &&
1379 (atomic_read(&bitmap->behind_writes)
1380 < mddev->bitmap_info.max_write_behind) &&
1381 !waitqueue_active(&bitmap->behind_wait))
1382 alloc_behind_pages(mbio, r1_bio);
1383
1384 bitmap_startwrite(bitmap, r1_bio->sector,
1385 r1_bio->sectors,
1386 test_bit(R1BIO_BehindIO,
1387 &r1_bio->state));
1388 first_clone = 0;
1389 }
2ca68f5e 1390 if (r1_bio->behind_bvecs) {
4b6d287f
N
1391 struct bio_vec *bvec;
1392 int j;
1393
cb34e057
KO
1394 /*
1395 * We trimmed the bio, so _all is legit
4b6d287f 1396 */
d74c6d51 1397 bio_for_each_segment_all(bvec, mbio, j)
2ca68f5e 1398 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1399 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1400 atomic_inc(&r1_bio->behind_remaining);
1401 }
1402
1f68f0c4
N
1403 r1_bio->bios[i] = mbio;
1404
4f024f37 1405 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4
N
1406 conf->mirrors[i].rdev->data_offset);
1407 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1408 mbio->bi_end_io = raid1_end_write_request;
c8dc9c65
JL
1409 mbio->bi_rw =
1410 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1f68f0c4
N
1411 mbio->bi_private = r1_bio;
1412
1da177e4 1413 atomic_inc(&r1_bio->remaining);
f54a9d0e
N
1414
1415 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1416 if (cb)
1417 plug = container_of(cb, struct raid1_plug_cb, cb);
1418 else
1419 plug = NULL;
4e78064f 1420 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1421 if (plug) {
1422 bio_list_add(&plug->pending, mbio);
1423 plug->pending_cnt++;
1424 } else {
1425 bio_list_add(&conf->pending_bio_list, mbio);
1426 conf->pending_count++;
1427 }
4e78064f 1428 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1429 if (!plug)
b357f04a 1430 md_wakeup_thread(mddev->thread);
1da177e4 1431 }
079fa166
N
1432 /* Mustn't call r1_bio_write_done before this next test,
1433 * as it could result in the bio being freed.
1434 */
aa8b57aa 1435 if (sectors_handled < bio_sectors(bio)) {
079fa166 1436 r1_bio_write_done(r1_bio);
1f68f0c4
N
1437 /* We need another r1_bio. It has already been counted
1438 * in bio->bi_phys_segments
1439 */
1440 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1441 r1_bio->master_bio = bio;
aa8b57aa 1442 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1f68f0c4
N
1443 r1_bio->state = 0;
1444 r1_bio->mddev = mddev;
4f024f37 1445 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1f68f0c4
N
1446 goto retry_write;
1447 }
1448
079fa166
N
1449 r1_bio_write_done(r1_bio);
1450
1451 /* In case raid1d snuck in to freeze_array */
1452 wake_up(&conf->wait_barrier);
1da177e4
LT
1453}
1454
fd01b88c 1455static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1456{
e8096360 1457 struct r1conf *conf = mddev->private;
1da177e4
LT
1458 int i;
1459
1460 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1461 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1462 rcu_read_lock();
1463 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1464 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1465 seq_printf(seq, "%s",
ddac7c7e
N
1466 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1467 }
1468 rcu_read_unlock();
1da177e4
LT
1469 seq_printf(seq, "]");
1470}
1471
fd01b88c 1472static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1473{
1474 char b[BDEVNAME_SIZE];
e8096360 1475 struct r1conf *conf = mddev->private;
1da177e4
LT
1476
1477 /*
1478 * If it is not operational, then we have already marked it as dead
1479 * else if it is the last working disks, ignore the error, let the
1480 * next level up know.
1481 * else mark the drive as failed
1482 */
b2d444d7 1483 if (test_bit(In_sync, &rdev->flags)
4044ba58 1484 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1485 /*
1486 * Don't fail the drive, act as though we were just a
4044ba58
N
1487 * normal single drive.
1488 * However don't try a recovery from this drive as
1489 * it is very likely to fail.
1da177e4 1490 */
5389042f 1491 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1492 return;
4044ba58 1493 }
de393cde 1494 set_bit(Blocked, &rdev->flags);
c04be0aa
N
1495 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1496 unsigned long flags;
1497 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1498 mddev->degraded++;
dd00a99e 1499 set_bit(Faulty, &rdev->flags);
c04be0aa 1500 spin_unlock_irqrestore(&conf->device_lock, flags);
dd00a99e
N
1501 } else
1502 set_bit(Faulty, &rdev->flags);
2446dba0
N
1503 /*
1504 * if recovery is running, make sure it aborts.
1505 */
1506 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
850b2b42 1507 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1508 printk(KERN_ALERT
1509 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1510 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1511 mdname(mddev), bdevname(rdev->bdev, b),
1512 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1513}
1514
e8096360 1515static void print_conf(struct r1conf *conf)
1da177e4
LT
1516{
1517 int i;
1da177e4 1518
9dd1e2fa 1519 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1520 if (!conf) {
9dd1e2fa 1521 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1522 return;
1523 }
9dd1e2fa 1524 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1525 conf->raid_disks);
1526
ddac7c7e 1527 rcu_read_lock();
1da177e4
LT
1528 for (i = 0; i < conf->raid_disks; i++) {
1529 char b[BDEVNAME_SIZE];
3cb03002 1530 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1531 if (rdev)
9dd1e2fa 1532 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1533 i, !test_bit(In_sync, &rdev->flags),
1534 !test_bit(Faulty, &rdev->flags),
1535 bdevname(rdev->bdev,b));
1da177e4 1536 }
ddac7c7e 1537 rcu_read_unlock();
1da177e4
LT
1538}
1539
e8096360 1540static void close_sync(struct r1conf *conf)
1da177e4 1541{
79ef3a8a 1542 wait_barrier(conf, NULL);
1543 allow_barrier(conf, 0, 0);
1da177e4
LT
1544
1545 mempool_destroy(conf->r1buf_pool);
1546 conf->r1buf_pool = NULL;
79ef3a8a 1547
669cc7ba 1548 spin_lock_irq(&conf->resync_lock);
79ef3a8a 1549 conf->next_resync = 0;
1550 conf->start_next_window = MaxSector;
669cc7ba
N
1551 conf->current_window_requests +=
1552 conf->next_window_requests;
1553 conf->next_window_requests = 0;
1554 spin_unlock_irq(&conf->resync_lock);
1da177e4
LT
1555}
1556
fd01b88c 1557static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1558{
1559 int i;
e8096360 1560 struct r1conf *conf = mddev->private;
6b965620
N
1561 int count = 0;
1562 unsigned long flags;
1da177e4
LT
1563
1564 /*
f72ffdd6 1565 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1566 * and mark them readable.
1567 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1568 */
1569 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1570 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1571 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1572 if (repl
1573 && repl->recovery_offset == MaxSector
1574 && !test_bit(Faulty, &repl->flags)
1575 && !test_and_set_bit(In_sync, &repl->flags)) {
1576 /* replacement has just become active */
1577 if (!rdev ||
1578 !test_and_clear_bit(In_sync, &rdev->flags))
1579 count++;
1580 if (rdev) {
1581 /* Replaced device not technically
1582 * faulty, but we need to be sure
1583 * it gets removed and never re-added
1584 */
1585 set_bit(Faulty, &rdev->flags);
1586 sysfs_notify_dirent_safe(
1587 rdev->sysfs_state);
1588 }
1589 }
ddac7c7e 1590 if (rdev
61e4947c 1591 && rdev->recovery_offset == MaxSector
ddac7c7e 1592 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1593 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1594 count++;
654e8b5a 1595 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1596 }
1597 }
6b965620
N
1598 spin_lock_irqsave(&conf->device_lock, flags);
1599 mddev->degraded -= count;
1600 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1601
1602 print_conf(conf);
6b965620 1603 return count;
1da177e4
LT
1604}
1605
fd01b88c 1606static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1607{
e8096360 1608 struct r1conf *conf = mddev->private;
199050ea 1609 int err = -EEXIST;
41158c7e 1610 int mirror = 0;
0eaf822c 1611 struct raid1_info *p;
6c2fce2e 1612 int first = 0;
30194636 1613 int last = conf->raid_disks - 1;
6b740b8d 1614 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4 1615
5389042f
N
1616 if (mddev->recovery_disabled == conf->recovery_disabled)
1617 return -EBUSY;
1618
6c2fce2e
NB
1619 if (rdev->raid_disk >= 0)
1620 first = last = rdev->raid_disk;
1621
6b740b8d
N
1622 if (q->merge_bvec_fn) {
1623 set_bit(Unmerged, &rdev->flags);
1624 mddev->merge_check_needed = 1;
1625 }
1626
7ef449d1
N
1627 for (mirror = first; mirror <= last; mirror++) {
1628 p = conf->mirrors+mirror;
1629 if (!p->rdev) {
1da177e4 1630
9092c02d
JB
1631 if (mddev->gendisk)
1632 disk_stack_limits(mddev->gendisk, rdev->bdev,
1633 rdev->data_offset << 9);
1da177e4
LT
1634
1635 p->head_position = 0;
1636 rdev->raid_disk = mirror;
199050ea 1637 err = 0;
6aea114a
N
1638 /* As all devices are equivalent, we don't need a full recovery
1639 * if this was recently any drive of the array
1640 */
1641 if (rdev->saved_raid_disk < 0)
41158c7e 1642 conf->fullsync = 1;
d6065f7b 1643 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1644 break;
1645 }
7ef449d1
N
1646 if (test_bit(WantReplacement, &p->rdev->flags) &&
1647 p[conf->raid_disks].rdev == NULL) {
1648 /* Add this device as a replacement */
1649 clear_bit(In_sync, &rdev->flags);
1650 set_bit(Replacement, &rdev->flags);
1651 rdev->raid_disk = mirror;
1652 err = 0;
1653 conf->fullsync = 1;
1654 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1655 break;
1656 }
1657 }
6b740b8d
N
1658 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1659 /* Some requests might not have seen this new
1660 * merge_bvec_fn. We must wait for them to complete
1661 * before merging the device fully.
1662 * First we make sure any code which has tested
1663 * our function has submitted the request, then
1664 * we wait for all outstanding requests to complete.
1665 */
1666 synchronize_sched();
e2d59925
N
1667 freeze_array(conf, 0);
1668 unfreeze_array(conf);
6b740b8d
N
1669 clear_bit(Unmerged, &rdev->flags);
1670 }
ac5e7113 1671 md_integrity_add_rdev(rdev, mddev);
9092c02d 1672 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1673 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1674 print_conf(conf);
199050ea 1675 return err;
1da177e4
LT
1676}
1677
b8321b68 1678static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1679{
e8096360 1680 struct r1conf *conf = mddev->private;
1da177e4 1681 int err = 0;
b8321b68 1682 int number = rdev->raid_disk;
0eaf822c 1683 struct raid1_info *p = conf->mirrors + number;
1da177e4 1684
b014f14c
N
1685 if (rdev != p->rdev)
1686 p = conf->mirrors + conf->raid_disks + number;
1687
1da177e4 1688 print_conf(conf);
b8321b68 1689 if (rdev == p->rdev) {
b2d444d7 1690 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1691 atomic_read(&rdev->nr_pending)) {
1692 err = -EBUSY;
1693 goto abort;
1694 }
046abeed 1695 /* Only remove non-faulty devices if recovery
dfc70645
N
1696 * is not possible.
1697 */
1698 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1699 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1700 mddev->degraded < conf->raid_disks) {
1701 err = -EBUSY;
1702 goto abort;
1703 }
1da177e4 1704 p->rdev = NULL;
fbd568a3 1705 synchronize_rcu();
1da177e4
LT
1706 if (atomic_read(&rdev->nr_pending)) {
1707 /* lost the race, try later */
1708 err = -EBUSY;
1709 p->rdev = rdev;
ac5e7113 1710 goto abort;
8c7a2c2b
N
1711 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1712 /* We just removed a device that is being replaced.
1713 * Move down the replacement. We drain all IO before
1714 * doing this to avoid confusion.
1715 */
1716 struct md_rdev *repl =
1717 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1718 freeze_array(conf, 0);
8c7a2c2b
N
1719 clear_bit(Replacement, &repl->flags);
1720 p->rdev = repl;
1721 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1722 unfreeze_array(conf);
8c7a2c2b
N
1723 clear_bit(WantReplacement, &rdev->flags);
1724 } else
b014f14c 1725 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1726 err = md_integrity_register(mddev);
1da177e4
LT
1727 }
1728abort:
1729
1730 print_conf(conf);
1731 return err;
1732}
1733
6712ecf8 1734static void end_sync_read(struct bio *bio, int error)
1da177e4 1735{
9f2c9d12 1736 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1737
0fc280f6 1738 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1739
1da177e4
LT
1740 /*
1741 * we have read a block, now it needs to be re-written,
1742 * or re-read if the read failed.
1743 * We don't do much here, just schedule handling by raid1d
1744 */
69382e85 1745 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1746 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1747
1748 if (atomic_dec_and_test(&r1_bio->remaining))
1749 reschedule_retry(r1_bio);
1da177e4
LT
1750}
1751
6712ecf8 1752static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1753{
1754 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1755 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1756 struct mddev *mddev = r1_bio->mddev;
e8096360 1757 struct r1conf *conf = mddev->private;
1da177e4 1758 int mirror=0;
4367af55
N
1759 sector_t first_bad;
1760 int bad_sectors;
1da177e4 1761
ba3ae3be
NK
1762 mirror = find_bio_disk(r1_bio, bio);
1763
6b1117d5 1764 if (!uptodate) {
57dab0bd 1765 sector_t sync_blocks = 0;
6b1117d5
N
1766 sector_t s = r1_bio->sector;
1767 long sectors_to_go = r1_bio->sectors;
1768 /* make sure these bits doesn't get cleared. */
1769 do {
5e3db645 1770 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1771 &sync_blocks, 1);
1772 s += sync_blocks;
1773 sectors_to_go -= sync_blocks;
1774 } while (sectors_to_go > 0);
d8f05d29
N
1775 set_bit(WriteErrorSeen,
1776 &conf->mirrors[mirror].rdev->flags);
19d67169
N
1777 if (!test_and_set_bit(WantReplacement,
1778 &conf->mirrors[mirror].rdev->flags))
1779 set_bit(MD_RECOVERY_NEEDED, &
1780 mddev->recovery);
d8f05d29 1781 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1782 } else if (is_badblock(conf->mirrors[mirror].rdev,
1783 r1_bio->sector,
1784 r1_bio->sectors,
3a9f28a5
N
1785 &first_bad, &bad_sectors) &&
1786 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1787 r1_bio->sector,
1788 r1_bio->sectors,
1789 &first_bad, &bad_sectors)
1790 )
4367af55 1791 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1792
1da177e4 1793 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1794 int s = r1_bio->sectors;
d8f05d29
N
1795 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1796 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1797 reschedule_retry(r1_bio);
1798 else {
1799 put_buf(r1_bio);
1800 md_done_sync(mddev, s, uptodate);
1801 }
1da177e4 1802 }
1da177e4
LT
1803}
1804
3cb03002 1805static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1806 int sectors, struct page *page, int rw)
1807{
1808 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1809 /* success */
1810 return 1;
19d67169 1811 if (rw == WRITE) {
d8f05d29 1812 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1813 if (!test_and_set_bit(WantReplacement,
1814 &rdev->flags))
1815 set_bit(MD_RECOVERY_NEEDED, &
1816 rdev->mddev->recovery);
1817 }
d8f05d29
N
1818 /* need to record an error - either for the block or the device */
1819 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1820 md_error(rdev->mddev, rdev);
1821 return 0;
1822}
1823
9f2c9d12 1824static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1825{
a68e5870
N
1826 /* Try some synchronous reads of other devices to get
1827 * good data, much like with normal read errors. Only
1828 * read into the pages we already have so we don't
1829 * need to re-issue the read request.
1830 * We don't need to freeze the array, because being in an
1831 * active sync request, there is no normal IO, and
1832 * no overlapping syncs.
06f60385
N
1833 * We don't need to check is_badblock() again as we
1834 * made sure that anything with a bad block in range
1835 * will have bi_end_io clear.
a68e5870 1836 */
fd01b88c 1837 struct mddev *mddev = r1_bio->mddev;
e8096360 1838 struct r1conf *conf = mddev->private;
a68e5870
N
1839 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1840 sector_t sect = r1_bio->sector;
1841 int sectors = r1_bio->sectors;
1842 int idx = 0;
1843
1844 while(sectors) {
1845 int s = sectors;
1846 int d = r1_bio->read_disk;
1847 int success = 0;
3cb03002 1848 struct md_rdev *rdev;
78d7f5f7 1849 int start;
a68e5870
N
1850
1851 if (s > (PAGE_SIZE>>9))
1852 s = PAGE_SIZE >> 9;
1853 do {
1854 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1855 /* No rcu protection needed here devices
1856 * can only be removed when no resync is
1857 * active, and resync is currently active
1858 */
1859 rdev = conf->mirrors[d].rdev;
9d3d8011 1860 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1861 bio->bi_io_vec[idx].bv_page,
1862 READ, false)) {
1863 success = 1;
1864 break;
1865 }
1866 }
1867 d++;
8f19ccb2 1868 if (d == conf->raid_disks * 2)
a68e5870
N
1869 d = 0;
1870 } while (!success && d != r1_bio->read_disk);
1871
78d7f5f7 1872 if (!success) {
a68e5870 1873 char b[BDEVNAME_SIZE];
3a9f28a5
N
1874 int abort = 0;
1875 /* Cannot read from anywhere, this block is lost.
1876 * Record a bad block on each device. If that doesn't
1877 * work just disable and interrupt the recovery.
1878 * Don't fail devices as that won't really help.
1879 */
a68e5870
N
1880 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1881 " for block %llu\n",
1882 mdname(mddev),
1883 bdevname(bio->bi_bdev, b),
1884 (unsigned long long)r1_bio->sector);
8f19ccb2 1885 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1886 rdev = conf->mirrors[d].rdev;
1887 if (!rdev || test_bit(Faulty, &rdev->flags))
1888 continue;
1889 if (!rdev_set_badblocks(rdev, sect, s, 0))
1890 abort = 1;
1891 }
1892 if (abort) {
d890fa2b
N
1893 conf->recovery_disabled =
1894 mddev->recovery_disabled;
3a9f28a5
N
1895 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1896 md_done_sync(mddev, r1_bio->sectors, 0);
1897 put_buf(r1_bio);
1898 return 0;
1899 }
1900 /* Try next page */
1901 sectors -= s;
1902 sect += s;
1903 idx++;
1904 continue;
d11c171e 1905 }
78d7f5f7
N
1906
1907 start = d;
1908 /* write it back and re-read */
1909 while (d != r1_bio->read_disk) {
1910 if (d == 0)
8f19ccb2 1911 d = conf->raid_disks * 2;
78d7f5f7
N
1912 d--;
1913 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1914 continue;
1915 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1916 if (r1_sync_page_io(rdev, sect, s,
1917 bio->bi_io_vec[idx].bv_page,
1918 WRITE) == 0) {
78d7f5f7
N
1919 r1_bio->bios[d]->bi_end_io = NULL;
1920 rdev_dec_pending(rdev, mddev);
9d3d8011 1921 }
78d7f5f7
N
1922 }
1923 d = start;
1924 while (d != r1_bio->read_disk) {
1925 if (d == 0)
8f19ccb2 1926 d = conf->raid_disks * 2;
78d7f5f7
N
1927 d--;
1928 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1929 continue;
1930 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1931 if (r1_sync_page_io(rdev, sect, s,
1932 bio->bi_io_vec[idx].bv_page,
1933 READ) != 0)
9d3d8011 1934 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1935 }
a68e5870
N
1936 sectors -= s;
1937 sect += s;
1938 idx ++;
1939 }
78d7f5f7 1940 set_bit(R1BIO_Uptodate, &r1_bio->state);
7ca78d57 1941 set_bit(BIO_UPTODATE, &bio->bi_flags);
a68e5870
N
1942 return 1;
1943}
1944
c95e6385 1945static void process_checks(struct r1bio *r1_bio)
a68e5870
N
1946{
1947 /* We have read all readable devices. If we haven't
1948 * got the block, then there is no hope left.
1949 * If we have, then we want to do a comparison
1950 * and skip the write if everything is the same.
1951 * If any blocks failed to read, then we need to
1952 * attempt an over-write
1953 */
fd01b88c 1954 struct mddev *mddev = r1_bio->mddev;
e8096360 1955 struct r1conf *conf = mddev->private;
a68e5870
N
1956 int primary;
1957 int i;
f4380a91 1958 int vcnt;
a68e5870 1959
30bc9b53
N
1960 /* Fix variable parts of all bios */
1961 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1962 for (i = 0; i < conf->raid_disks * 2; i++) {
1963 int j;
1964 int size;
1877db75 1965 int uptodate;
30bc9b53
N
1966 struct bio *b = r1_bio->bios[i];
1967 if (b->bi_end_io != end_sync_read)
1968 continue;
1877db75
N
1969 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1970 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
30bc9b53 1971 bio_reset(b);
1877db75
N
1972 if (!uptodate)
1973 clear_bit(BIO_UPTODATE, &b->bi_flags);
30bc9b53 1974 b->bi_vcnt = vcnt;
4f024f37
KO
1975 b->bi_iter.bi_size = r1_bio->sectors << 9;
1976 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53
N
1977 conf->mirrors[i].rdev->data_offset;
1978 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1979 b->bi_end_io = end_sync_read;
1980 b->bi_private = r1_bio;
1981
4f024f37 1982 size = b->bi_iter.bi_size;
30bc9b53
N
1983 for (j = 0; j < vcnt ; j++) {
1984 struct bio_vec *bi;
1985 bi = &b->bi_io_vec[j];
1986 bi->bv_offset = 0;
1987 if (size > PAGE_SIZE)
1988 bi->bv_len = PAGE_SIZE;
1989 else
1990 bi->bv_len = size;
1991 size -= PAGE_SIZE;
1992 }
1993 }
8f19ccb2 1994 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870
N
1995 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1996 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1997 r1_bio->bios[primary]->bi_end_io = NULL;
1998 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1999 break;
2000 }
2001 r1_bio->read_disk = primary;
8f19ccb2 2002 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 2003 int j;
78d7f5f7
N
2004 struct bio *pbio = r1_bio->bios[primary];
2005 struct bio *sbio = r1_bio->bios[i];
1877db75 2006 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
a68e5870 2007
2aabaa65 2008 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2009 continue;
1877db75
N
2010 /* Now we can 'fixup' the BIO_UPTODATE flag */
2011 set_bit(BIO_UPTODATE, &sbio->bi_flags);
78d7f5f7 2012
1877db75 2013 if (uptodate) {
78d7f5f7
N
2014 for (j = vcnt; j-- ; ) {
2015 struct page *p, *s;
2016 p = pbio->bi_io_vec[j].bv_page;
2017 s = sbio->bi_io_vec[j].bv_page;
2018 if (memcmp(page_address(p),
2019 page_address(s),
5020ad7d 2020 sbio->bi_io_vec[j].bv_len))
78d7f5f7 2021 break;
69382e85 2022 }
78d7f5f7
N
2023 } else
2024 j = 0;
2025 if (j >= 0)
7f7583d4 2026 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2027 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1877db75 2028 && uptodate)) {
78d7f5f7
N
2029 /* No need to write to this device. */
2030 sbio->bi_end_io = NULL;
2031 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2032 continue;
2033 }
d3b45c2a
KO
2034
2035 bio_copy_data(sbio, pbio);
78d7f5f7 2036 }
a68e5870
N
2037}
2038
9f2c9d12 2039static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2040{
e8096360 2041 struct r1conf *conf = mddev->private;
a68e5870 2042 int i;
8f19ccb2 2043 int disks = conf->raid_disks * 2;
a68e5870
N
2044 struct bio *bio, *wbio;
2045
2046 bio = r1_bio->bios[r1_bio->read_disk];
2047
a68e5870
N
2048 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2049 /* ouch - failed to read all of that. */
2050 if (!fix_sync_read_error(r1_bio))
2051 return;
7ca78d57
N
2052
2053 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2054 process_checks(r1_bio);
2055
d11c171e
N
2056 /*
2057 * schedule writes
2058 */
1da177e4
LT
2059 atomic_set(&r1_bio->remaining, 1);
2060 for (i = 0; i < disks ; i++) {
2061 wbio = r1_bio->bios[i];
3e198f78
N
2062 if (wbio->bi_end_io == NULL ||
2063 (wbio->bi_end_io == end_sync_read &&
2064 (i == r1_bio->read_disk ||
2065 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
2066 continue;
2067
3e198f78
N
2068 wbio->bi_rw = WRITE;
2069 wbio->bi_end_io = end_sync_write;
1da177e4 2070 atomic_inc(&r1_bio->remaining);
aa8b57aa 2071 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2072
1da177e4
LT
2073 generic_make_request(wbio);
2074 }
2075
2076 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2077 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2078 int s = r1_bio->sectors;
2079 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2080 test_bit(R1BIO_WriteError, &r1_bio->state))
2081 reschedule_retry(r1_bio);
2082 else {
2083 put_buf(r1_bio);
2084 md_done_sync(mddev, s, 1);
2085 }
1da177e4
LT
2086 }
2087}
2088
2089/*
2090 * This is a kernel thread which:
2091 *
2092 * 1. Retries failed read operations on working mirrors.
2093 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2094 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2095 */
2096
e8096360 2097static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2098 sector_t sect, int sectors)
2099{
fd01b88c 2100 struct mddev *mddev = conf->mddev;
867868fb
N
2101 while(sectors) {
2102 int s = sectors;
2103 int d = read_disk;
2104 int success = 0;
2105 int start;
3cb03002 2106 struct md_rdev *rdev;
867868fb
N
2107
2108 if (s > (PAGE_SIZE>>9))
2109 s = PAGE_SIZE >> 9;
2110
2111 do {
2112 /* Note: no rcu protection needed here
2113 * as this is synchronous in the raid1d thread
2114 * which is the thread that might remove
2115 * a device. If raid1d ever becomes multi-threaded....
2116 */
d2eb35ac
N
2117 sector_t first_bad;
2118 int bad_sectors;
2119
867868fb
N
2120 rdev = conf->mirrors[d].rdev;
2121 if (rdev &&
da8840a7 2122 (test_bit(In_sync, &rdev->flags) ||
2123 (!test_bit(Faulty, &rdev->flags) &&
2124 rdev->recovery_offset >= sect + s)) &&
d2eb35ac
N
2125 is_badblock(rdev, sect, s,
2126 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
2127 sync_page_io(rdev, sect, s<<9,
2128 conf->tmppage, READ, false))
867868fb
N
2129 success = 1;
2130 else {
2131 d++;
8f19ccb2 2132 if (d == conf->raid_disks * 2)
867868fb
N
2133 d = 0;
2134 }
2135 } while (!success && d != read_disk);
2136
2137 if (!success) {
d8f05d29 2138 /* Cannot read from anywhere - mark it bad */
3cb03002 2139 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2140 if (!rdev_set_badblocks(rdev, sect, s, 0))
2141 md_error(mddev, rdev);
867868fb
N
2142 break;
2143 }
2144 /* write it back and re-read */
2145 start = d;
2146 while (d != read_disk) {
2147 if (d==0)
8f19ccb2 2148 d = conf->raid_disks * 2;
867868fb
N
2149 d--;
2150 rdev = conf->mirrors[d].rdev;
2151 if (rdev &&
b8cb6b4c 2152 !test_bit(Faulty, &rdev->flags))
d8f05d29
N
2153 r1_sync_page_io(rdev, sect, s,
2154 conf->tmppage, WRITE);
867868fb
N
2155 }
2156 d = start;
2157 while (d != read_disk) {
2158 char b[BDEVNAME_SIZE];
2159 if (d==0)
8f19ccb2 2160 d = conf->raid_disks * 2;
867868fb
N
2161 d--;
2162 rdev = conf->mirrors[d].rdev;
2163 if (rdev &&
b8cb6b4c 2164 !test_bit(Faulty, &rdev->flags)) {
d8f05d29
N
2165 if (r1_sync_page_io(rdev, sect, s,
2166 conf->tmppage, READ)) {
867868fb
N
2167 atomic_add(s, &rdev->corrected_errors);
2168 printk(KERN_INFO
9dd1e2fa 2169 "md/raid1:%s: read error corrected "
867868fb
N
2170 "(%d sectors at %llu on %s)\n",
2171 mdname(mddev), s,
969b755a
RD
2172 (unsigned long long)(sect +
2173 rdev->data_offset),
867868fb
N
2174 bdevname(rdev->bdev, b));
2175 }
2176 }
2177 }
2178 sectors -= s;
2179 sect += s;
2180 }
2181}
2182
9f2c9d12 2183static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2184{
fd01b88c 2185 struct mddev *mddev = r1_bio->mddev;
e8096360 2186 struct r1conf *conf = mddev->private;
3cb03002 2187 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2188
2189 /* bio has the data to be written to device 'i' where
2190 * we just recently had a write error.
2191 * We repeatedly clone the bio and trim down to one block,
2192 * then try the write. Where the write fails we record
2193 * a bad block.
2194 * It is conceivable that the bio doesn't exactly align with
2195 * blocks. We must handle this somehow.
2196 *
2197 * We currently own a reference on the rdev.
2198 */
2199
2200 int block_sectors;
2201 sector_t sector;
2202 int sectors;
2203 int sect_to_write = r1_bio->sectors;
2204 int ok = 1;
2205
2206 if (rdev->badblocks.shift < 0)
2207 return 0;
2208
2209 block_sectors = 1 << rdev->badblocks.shift;
2210 sector = r1_bio->sector;
2211 sectors = ((sector + block_sectors)
2212 & ~(sector_t)(block_sectors - 1))
2213 - sector;
2214
cd5ff9a1
N
2215 while (sect_to_write) {
2216 struct bio *wbio;
2217 if (sectors > sect_to_write)
2218 sectors = sect_to_write;
2219 /* Write at 'sector' for 'sectors'*/
2220
b783863f
KO
2221 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2222 unsigned vcnt = r1_bio->behind_page_count;
2223 struct bio_vec *vec = r1_bio->behind_bvecs;
2224
2225 while (!vec->bv_page) {
2226 vec++;
2227 vcnt--;
2228 }
2229
2230 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2231 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2232
2233 wbio->bi_vcnt = vcnt;
2234 } else {
2235 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2236 }
2237
cd5ff9a1 2238 wbio->bi_rw = WRITE;
4f024f37
KO
2239 wbio->bi_iter.bi_sector = r1_bio->sector;
2240 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2241
6678d83f 2242 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2243 wbio->bi_iter.bi_sector += rdev->data_offset;
cd5ff9a1
N
2244 wbio->bi_bdev = rdev->bdev;
2245 if (submit_bio_wait(WRITE, wbio) == 0)
2246 /* failure! */
2247 ok = rdev_set_badblocks(rdev, sector,
2248 sectors, 0)
2249 && ok;
2250
2251 bio_put(wbio);
2252 sect_to_write -= sectors;
2253 sector += sectors;
2254 sectors = block_sectors;
2255 }
2256 return ok;
2257}
2258
e8096360 2259static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2260{
2261 int m;
2262 int s = r1_bio->sectors;
8f19ccb2 2263 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2264 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2265 struct bio *bio = r1_bio->bios[m];
2266 if (bio->bi_end_io == NULL)
2267 continue;
2268 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2269 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2270 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce
N
2271 }
2272 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2273 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2274 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2275 md_error(conf->mddev, rdev);
2276 }
2277 }
2278 put_buf(r1_bio);
2279 md_done_sync(conf->mddev, s, 1);
2280}
2281
e8096360 2282static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2283{
2284 int m;
8f19ccb2 2285 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2286 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2287 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2288 rdev_clear_badblocks(rdev,
2289 r1_bio->sector,
c6563a8c 2290 r1_bio->sectors, 0);
62096bce
N
2291 rdev_dec_pending(rdev, conf->mddev);
2292 } else if (r1_bio->bios[m] != NULL) {
2293 /* This drive got a write error. We need to
2294 * narrow down and record precise write
2295 * errors.
2296 */
2297 if (!narrow_write_error(r1_bio, m)) {
2298 md_error(conf->mddev,
2299 conf->mirrors[m].rdev);
2300 /* an I/O failed, we can't clear the bitmap */
2301 set_bit(R1BIO_Degraded, &r1_bio->state);
2302 }
2303 rdev_dec_pending(conf->mirrors[m].rdev,
2304 conf->mddev);
2305 }
2306 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2307 close_write(r1_bio);
2308 raid_end_bio_io(r1_bio);
2309}
2310
e8096360 2311static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2312{
2313 int disk;
2314 int max_sectors;
fd01b88c 2315 struct mddev *mddev = conf->mddev;
62096bce
N
2316 struct bio *bio;
2317 char b[BDEVNAME_SIZE];
3cb03002 2318 struct md_rdev *rdev;
62096bce
N
2319
2320 clear_bit(R1BIO_ReadError, &r1_bio->state);
2321 /* we got a read error. Maybe the drive is bad. Maybe just
2322 * the block and we can fix it.
2323 * We freeze all other IO, and try reading the block from
2324 * other devices. When we find one, we re-write
2325 * and check it that fixes the read error.
2326 * This is all done synchronously while the array is
2327 * frozen
2328 */
2329 if (mddev->ro == 0) {
e2d59925 2330 freeze_array(conf, 1);
62096bce
N
2331 fix_read_error(conf, r1_bio->read_disk,
2332 r1_bio->sector, r1_bio->sectors);
2333 unfreeze_array(conf);
2334 } else
2335 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
7ad4d4a6 2336 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
62096bce
N
2337
2338 bio = r1_bio->bios[r1_bio->read_disk];
2339 bdevname(bio->bi_bdev, b);
2340read_more:
2341 disk = read_balance(conf, r1_bio, &max_sectors);
2342 if (disk == -1) {
2343 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2344 " read error for block %llu\n",
2345 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2346 raid_end_bio_io(r1_bio);
2347 } else {
2348 const unsigned long do_sync
2349 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2350 if (bio) {
2351 r1_bio->bios[r1_bio->read_disk] =
2352 mddev->ro ? IO_BLOCKED : NULL;
2353 bio_put(bio);
2354 }
2355 r1_bio->read_disk = disk;
2356 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
4f024f37
KO
2357 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2358 max_sectors);
62096bce
N
2359 r1_bio->bios[r1_bio->read_disk] = bio;
2360 rdev = conf->mirrors[disk].rdev;
2361 printk_ratelimited(KERN_ERR
2362 "md/raid1:%s: redirecting sector %llu"
2363 " to other mirror: %s\n",
2364 mdname(mddev),
2365 (unsigned long long)r1_bio->sector,
2366 bdevname(rdev->bdev, b));
4f024f37 2367 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
62096bce
N
2368 bio->bi_bdev = rdev->bdev;
2369 bio->bi_end_io = raid1_end_read_request;
2370 bio->bi_rw = READ | do_sync;
2371 bio->bi_private = r1_bio;
2372 if (max_sectors < r1_bio->sectors) {
2373 /* Drat - have to split this up more */
2374 struct bio *mbio = r1_bio->master_bio;
2375 int sectors_handled = (r1_bio->sector + max_sectors
4f024f37 2376 - mbio->bi_iter.bi_sector);
62096bce
N
2377 r1_bio->sectors = max_sectors;
2378 spin_lock_irq(&conf->device_lock);
2379 if (mbio->bi_phys_segments == 0)
2380 mbio->bi_phys_segments = 2;
2381 else
2382 mbio->bi_phys_segments++;
2383 spin_unlock_irq(&conf->device_lock);
2384 generic_make_request(bio);
2385 bio = NULL;
2386
2387 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2388
2389 r1_bio->master_bio = mbio;
aa8b57aa 2390 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
62096bce
N
2391 r1_bio->state = 0;
2392 set_bit(R1BIO_ReadError, &r1_bio->state);
2393 r1_bio->mddev = mddev;
4f024f37
KO
2394 r1_bio->sector = mbio->bi_iter.bi_sector +
2395 sectors_handled;
62096bce
N
2396
2397 goto read_more;
2398 } else
2399 generic_make_request(bio);
2400 }
2401}
2402
4ed8731d 2403static void raid1d(struct md_thread *thread)
1da177e4 2404{
4ed8731d 2405 struct mddev *mddev = thread->mddev;
9f2c9d12 2406 struct r1bio *r1_bio;
1da177e4 2407 unsigned long flags;
e8096360 2408 struct r1conf *conf = mddev->private;
1da177e4 2409 struct list_head *head = &conf->retry_list;
e1dfa0a2 2410 struct blk_plug plug;
1da177e4
LT
2411
2412 md_check_recovery(mddev);
e1dfa0a2
N
2413
2414 blk_start_plug(&plug);
1da177e4 2415 for (;;) {
191ea9b2 2416
0021b7bc 2417 flush_pending_writes(conf);
191ea9b2 2418
a35e63ef
N
2419 spin_lock_irqsave(&conf->device_lock, flags);
2420 if (list_empty(head)) {
2421 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2422 break;
a35e63ef 2423 }
9f2c9d12 2424 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2425 list_del(head->prev);
ddaf22ab 2426 conf->nr_queued--;
1da177e4
LT
2427 spin_unlock_irqrestore(&conf->device_lock, flags);
2428
2429 mddev = r1_bio->mddev;
070ec55d 2430 conf = mddev->private;
4367af55 2431 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2432 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2433 test_bit(R1BIO_WriteError, &r1_bio->state))
2434 handle_sync_write_finished(conf, r1_bio);
2435 else
4367af55 2436 sync_request_write(mddev, r1_bio);
cd5ff9a1 2437 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2438 test_bit(R1BIO_WriteError, &r1_bio->state))
2439 handle_write_finished(conf, r1_bio);
2440 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2441 handle_read_error(conf, r1_bio);
2442 else
d2eb35ac
N
2443 /* just a partial read to be scheduled from separate
2444 * context
2445 */
2446 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2447
1d9d5241 2448 cond_resched();
de393cde
N
2449 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2450 md_check_recovery(mddev);
1da177e4 2451 }
e1dfa0a2 2452 blk_finish_plug(&plug);
1da177e4
LT
2453}
2454
e8096360 2455static int init_resync(struct r1conf *conf)
1da177e4
LT
2456{
2457 int buffs;
2458
2459 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2460 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2461 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2462 conf->poolinfo);
2463 if (!conf->r1buf_pool)
2464 return -ENOMEM;
2465 conf->next_resync = 0;
2466 return 0;
2467}
2468
2469/*
2470 * perform a "sync" on one "block"
2471 *
2472 * We need to make sure that no normal I/O request - particularly write
2473 * requests - conflict with active sync requests.
2474 *
2475 * This is achieved by tracking pending requests and a 'barrier' concept
2476 * that can be installed to exclude normal IO requests.
2477 */
2478
fd01b88c 2479static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 2480{
e8096360 2481 struct r1conf *conf = mddev->private;
9f2c9d12 2482 struct r1bio *r1_bio;
1da177e4
LT
2483 struct bio *bio;
2484 sector_t max_sector, nr_sectors;
3e198f78 2485 int disk = -1;
1da177e4 2486 int i;
3e198f78
N
2487 int wonly = -1;
2488 int write_targets = 0, read_targets = 0;
57dab0bd 2489 sector_t sync_blocks;
e3b9703e 2490 int still_degraded = 0;
06f60385
N
2491 int good_sectors = RESYNC_SECTORS;
2492 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2493
2494 if (!conf->r1buf_pool)
2495 if (init_resync(conf))
57afd89f 2496 return 0;
1da177e4 2497
58c0fed4 2498 max_sector = mddev->dev_sectors;
1da177e4 2499 if (sector_nr >= max_sector) {
191ea9b2
N
2500 /* If we aborted, we need to abort the
2501 * sync on the 'current' bitmap chunk (there will
2502 * only be one in raid1 resync.
2503 * We can find the current addess in mddev->curr_resync
2504 */
6a806c51
N
2505 if (mddev->curr_resync < max_sector) /* aborted */
2506 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2507 &sync_blocks, 1);
6a806c51 2508 else /* completed sync */
191ea9b2 2509 conf->fullsync = 0;
6a806c51
N
2510
2511 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2512 close_sync(conf);
2513 return 0;
2514 }
2515
07d84d10
N
2516 if (mddev->bitmap == NULL &&
2517 mddev->recovery_cp == MaxSector &&
6394cca5 2518 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2519 conf->fullsync == 0) {
2520 *skipped = 1;
2521 return max_sector - sector_nr;
2522 }
6394cca5
N
2523 /* before building a request, check if we can skip these blocks..
2524 * This call the bitmap_start_sync doesn't actually record anything
2525 */
e3b9703e 2526 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2527 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2528 /* We can skip this block, and probably several more */
2529 *skipped = 1;
2530 return sync_blocks;
2531 }
1da177e4 2532 /*
17999be4
N
2533 * If there is non-resync activity waiting for a turn,
2534 * and resync is going fast enough,
2535 * then let it though before starting on this new sync request.
1da177e4 2536 */
17999be4 2537 if (!go_faster && conf->nr_waiting)
1da177e4 2538 msleep_interruptible(1000);
17999be4 2539
b47490c9 2540 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2541 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4 2542
c2fd4c94 2543 raise_barrier(conf, sector_nr);
1da177e4 2544
3e198f78 2545 rcu_read_lock();
1da177e4 2546 /*
3e198f78
N
2547 * If we get a correctably read error during resync or recovery,
2548 * we might want to read from a different device. So we
2549 * flag all drives that could conceivably be read from for READ,
2550 * and any others (which will be non-In_sync devices) for WRITE.
2551 * If a read fails, we try reading from something else for which READ
2552 * is OK.
1da177e4 2553 */
1da177e4 2554
1da177e4
LT
2555 r1_bio->mddev = mddev;
2556 r1_bio->sector = sector_nr;
191ea9b2 2557 r1_bio->state = 0;
1da177e4 2558 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2559
8f19ccb2 2560 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2561 struct md_rdev *rdev;
1da177e4 2562 bio = r1_bio->bios[i];
2aabaa65 2563 bio_reset(bio);
1da177e4 2564
3e198f78
N
2565 rdev = rcu_dereference(conf->mirrors[i].rdev);
2566 if (rdev == NULL ||
06f60385 2567 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2568 if (i < conf->raid_disks)
2569 still_degraded = 1;
3e198f78 2570 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2571 bio->bi_rw = WRITE;
2572 bio->bi_end_io = end_sync_write;
2573 write_targets ++;
3e198f78
N
2574 } else {
2575 /* may need to read from here */
06f60385
N
2576 sector_t first_bad = MaxSector;
2577 int bad_sectors;
2578
2579 if (is_badblock(rdev, sector_nr, good_sectors,
2580 &first_bad, &bad_sectors)) {
2581 if (first_bad > sector_nr)
2582 good_sectors = first_bad - sector_nr;
2583 else {
2584 bad_sectors -= (sector_nr - first_bad);
2585 if (min_bad == 0 ||
2586 min_bad > bad_sectors)
2587 min_bad = bad_sectors;
2588 }
2589 }
2590 if (sector_nr < first_bad) {
2591 if (test_bit(WriteMostly, &rdev->flags)) {
2592 if (wonly < 0)
2593 wonly = i;
2594 } else {
2595 if (disk < 0)
2596 disk = i;
2597 }
2598 bio->bi_rw = READ;
2599 bio->bi_end_io = end_sync_read;
2600 read_targets++;
d57368af
AL
2601 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2602 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2603 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2604 /*
2605 * The device is suitable for reading (InSync),
2606 * but has bad block(s) here. Let's try to correct them,
2607 * if we are doing resync or repair. Otherwise, leave
2608 * this device alone for this sync request.
2609 */
2610 bio->bi_rw = WRITE;
2611 bio->bi_end_io = end_sync_write;
2612 write_targets++;
3e198f78 2613 }
3e198f78 2614 }
06f60385
N
2615 if (bio->bi_end_io) {
2616 atomic_inc(&rdev->nr_pending);
4f024f37 2617 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
06f60385
N
2618 bio->bi_bdev = rdev->bdev;
2619 bio->bi_private = r1_bio;
2620 }
1da177e4 2621 }
3e198f78
N
2622 rcu_read_unlock();
2623 if (disk < 0)
2624 disk = wonly;
2625 r1_bio->read_disk = disk;
191ea9b2 2626
06f60385
N
2627 if (read_targets == 0 && min_bad > 0) {
2628 /* These sectors are bad on all InSync devices, so we
2629 * need to mark them bad on all write targets
2630 */
2631 int ok = 1;
8f19ccb2 2632 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2633 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2634 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2635 ok = rdev_set_badblocks(rdev, sector_nr,
2636 min_bad, 0
2637 ) && ok;
2638 }
2639 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2640 *skipped = 1;
2641 put_buf(r1_bio);
2642
2643 if (!ok) {
2644 /* Cannot record the badblocks, so need to
2645 * abort the resync.
2646 * If there are multiple read targets, could just
2647 * fail the really bad ones ???
2648 */
2649 conf->recovery_disabled = mddev->recovery_disabled;
2650 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2651 return 0;
2652 } else
2653 return min_bad;
2654
2655 }
2656 if (min_bad > 0 && min_bad < good_sectors) {
2657 /* only resync enough to reach the next bad->good
2658 * transition */
2659 good_sectors = min_bad;
2660 }
2661
3e198f78
N
2662 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2663 /* extra read targets are also write targets */
2664 write_targets += read_targets-1;
2665
2666 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2667 /* There is nowhere to write, so all non-sync
2668 * drives must be failed - so we are finished
2669 */
b7219ccb
N
2670 sector_t rv;
2671 if (min_bad > 0)
2672 max_sector = sector_nr + min_bad;
2673 rv = max_sector - sector_nr;
57afd89f 2674 *skipped = 1;
1da177e4 2675 put_buf(r1_bio);
1da177e4
LT
2676 return rv;
2677 }
2678
c6207277
N
2679 if (max_sector > mddev->resync_max)
2680 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2681 if (max_sector > sector_nr + good_sectors)
2682 max_sector = sector_nr + good_sectors;
1da177e4 2683 nr_sectors = 0;
289e99e8 2684 sync_blocks = 0;
1da177e4
LT
2685 do {
2686 struct page *page;
2687 int len = PAGE_SIZE;
2688 if (sector_nr + (len>>9) > max_sector)
2689 len = (max_sector - sector_nr) << 9;
2690 if (len == 0)
2691 break;
6a806c51
N
2692 if (sync_blocks == 0) {
2693 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2694 &sync_blocks, still_degraded) &&
2695 !conf->fullsync &&
2696 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2697 break;
9e77c485 2698 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2699 if ((len >> 9) > sync_blocks)
6a806c51 2700 len = sync_blocks<<9;
ab7a30c7 2701 }
191ea9b2 2702
8f19ccb2 2703 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2704 bio = r1_bio->bios[i];
2705 if (bio->bi_end_io) {
d11c171e 2706 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2707 if (bio_add_page(bio, page, len, 0) == 0) {
2708 /* stop here */
d11c171e 2709 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2710 while (i > 0) {
2711 i--;
2712 bio = r1_bio->bios[i];
6a806c51
N
2713 if (bio->bi_end_io==NULL)
2714 continue;
1da177e4
LT
2715 /* remove last page from this bio */
2716 bio->bi_vcnt--;
4f024f37 2717 bio->bi_iter.bi_size -= len;
3fd83717 2718 __clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1da177e4
LT
2719 }
2720 goto bio_full;
2721 }
2722 }
2723 }
2724 nr_sectors += len>>9;
2725 sector_nr += len>>9;
191ea9b2 2726 sync_blocks -= (len>>9);
1da177e4
LT
2727 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2728 bio_full:
1da177e4
LT
2729 r1_bio->sectors = nr_sectors;
2730
d11c171e
N
2731 /* For a user-requested sync, we read all readable devices and do a
2732 * compare
2733 */
2734 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2735 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2736 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2737 bio = r1_bio->bios[i];
2738 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2739 read_targets--;
ddac7c7e 2740 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2741 generic_make_request(bio);
2742 }
2743 }
2744 } else {
2745 atomic_set(&r1_bio->remaining, 1);
2746 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2747 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2748 generic_make_request(bio);
1da177e4 2749
d11c171e 2750 }
1da177e4
LT
2751 return nr_sectors;
2752}
2753
fd01b88c 2754static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2755{
2756 if (sectors)
2757 return sectors;
2758
2759 return mddev->dev_sectors;
2760}
2761
e8096360 2762static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2763{
e8096360 2764 struct r1conf *conf;
709ae487 2765 int i;
0eaf822c 2766 struct raid1_info *disk;
3cb03002 2767 struct md_rdev *rdev;
709ae487 2768 int err = -ENOMEM;
1da177e4 2769
e8096360 2770 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2771 if (!conf)
709ae487 2772 goto abort;
1da177e4 2773
0eaf822c 2774 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2775 * mddev->raid_disks * 2,
1da177e4
LT
2776 GFP_KERNEL);
2777 if (!conf->mirrors)
709ae487 2778 goto abort;
1da177e4 2779
ddaf22ab
N
2780 conf->tmppage = alloc_page(GFP_KERNEL);
2781 if (!conf->tmppage)
709ae487 2782 goto abort;
ddaf22ab 2783
709ae487 2784 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2785 if (!conf->poolinfo)
709ae487 2786 goto abort;
8f19ccb2 2787 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2788 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2789 r1bio_pool_free,
2790 conf->poolinfo);
2791 if (!conf->r1bio_pool)
709ae487
N
2792 goto abort;
2793
ed9bfdf1 2794 conf->poolinfo->mddev = mddev;
1da177e4 2795
c19d5798 2796 err = -EINVAL;
e7e72bf6 2797 spin_lock_init(&conf->device_lock);
dafb20fa 2798 rdev_for_each(rdev, mddev) {
aba336bd 2799 struct request_queue *q;
709ae487 2800 int disk_idx = rdev->raid_disk;
1da177e4
LT
2801 if (disk_idx >= mddev->raid_disks
2802 || disk_idx < 0)
2803 continue;
c19d5798 2804 if (test_bit(Replacement, &rdev->flags))
02b898f2 2805 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2806 else
2807 disk = conf->mirrors + disk_idx;
1da177e4 2808
c19d5798
N
2809 if (disk->rdev)
2810 goto abort;
1da177e4 2811 disk->rdev = rdev;
aba336bd
N
2812 q = bdev_get_queue(rdev->bdev);
2813 if (q->merge_bvec_fn)
2814 mddev->merge_check_needed = 1;
1da177e4
LT
2815
2816 disk->head_position = 0;
12cee5a8 2817 disk->seq_start = MaxSector;
1da177e4
LT
2818 }
2819 conf->raid_disks = mddev->raid_disks;
2820 conf->mddev = mddev;
1da177e4 2821 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2822
2823 spin_lock_init(&conf->resync_lock);
17999be4 2824 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2825
191ea9b2 2826 bio_list_init(&conf->pending_bio_list);
34db0cd6 2827 conf->pending_count = 0;
d890fa2b 2828 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2829
79ef3a8a 2830 conf->start_next_window = MaxSector;
2831 conf->current_window_requests = conf->next_window_requests = 0;
2832
c19d5798 2833 err = -EIO;
8f19ccb2 2834 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2835
2836 disk = conf->mirrors + i;
2837
c19d5798
N
2838 if (i < conf->raid_disks &&
2839 disk[conf->raid_disks].rdev) {
2840 /* This slot has a replacement. */
2841 if (!disk->rdev) {
2842 /* No original, just make the replacement
2843 * a recovering spare
2844 */
2845 disk->rdev =
2846 disk[conf->raid_disks].rdev;
2847 disk[conf->raid_disks].rdev = NULL;
2848 } else if (!test_bit(In_sync, &disk->rdev->flags))
2849 /* Original is not in_sync - bad */
2850 goto abort;
2851 }
2852
5fd6c1dc
N
2853 if (!disk->rdev ||
2854 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2855 disk->head_position = 0;
4f0a5e01
JB
2856 if (disk->rdev &&
2857 (disk->rdev->saved_raid_disk < 0))
918f0238 2858 conf->fullsync = 1;
be4d3280 2859 }
1da177e4 2860 }
709ae487 2861
709ae487 2862 err = -ENOMEM;
0232605d 2863 conf->thread = md_register_thread(raid1d, mddev, "raid1");
709ae487
N
2864 if (!conf->thread) {
2865 printk(KERN_ERR
9dd1e2fa 2866 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2867 mdname(mddev));
2868 goto abort;
11ce99e6 2869 }
1da177e4 2870
709ae487
N
2871 return conf;
2872
2873 abort:
2874 if (conf) {
2875 if (conf->r1bio_pool)
2876 mempool_destroy(conf->r1bio_pool);
2877 kfree(conf->mirrors);
2878 safe_put_page(conf->tmppage);
2879 kfree(conf->poolinfo);
2880 kfree(conf);
2881 }
2882 return ERR_PTR(err);
2883}
2884
5220ea1e 2885static int stop(struct mddev *mddev);
fd01b88c 2886static int run(struct mddev *mddev)
709ae487 2887{
e8096360 2888 struct r1conf *conf;
709ae487 2889 int i;
3cb03002 2890 struct md_rdev *rdev;
5220ea1e 2891 int ret;
2ff8cc2c 2892 bool discard_supported = false;
709ae487
N
2893
2894 if (mddev->level != 1) {
9dd1e2fa 2895 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2896 mdname(mddev), mddev->level);
2897 return -EIO;
2898 }
2899 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2900 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2901 mdname(mddev));
2902 return -EIO;
2903 }
1da177e4 2904 /*
709ae487
N
2905 * copy the already verified devices into our private RAID1
2906 * bookkeeping area. [whatever we allocate in run(),
2907 * should be freed in stop()]
1da177e4 2908 */
709ae487
N
2909 if (mddev->private == NULL)
2910 conf = setup_conf(mddev);
2911 else
2912 conf = mddev->private;
1da177e4 2913
709ae487
N
2914 if (IS_ERR(conf))
2915 return PTR_ERR(conf);
1da177e4 2916
c8dc9c65 2917 if (mddev->queue)
5026d7a9
PA
2918 blk_queue_max_write_same_sectors(mddev->queue, 0);
2919
dafb20fa 2920 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2921 if (!mddev->gendisk)
2922 continue;
709ae487
N
2923 disk_stack_limits(mddev->gendisk, rdev->bdev,
2924 rdev->data_offset << 9);
2ff8cc2c
SL
2925 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2926 discard_supported = true;
1da177e4 2927 }
191ea9b2 2928
709ae487
N
2929 mddev->degraded = 0;
2930 for (i=0; i < conf->raid_disks; i++)
2931 if (conf->mirrors[i].rdev == NULL ||
2932 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2933 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2934 mddev->degraded++;
2935
2936 if (conf->raid_disks - mddev->degraded == 1)
2937 mddev->recovery_cp = MaxSector;
2938
8c6ac868 2939 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2940 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2941 " -- starting background reconstruction\n",
2942 mdname(mddev));
f72ffdd6 2943 printk(KERN_INFO
9dd1e2fa 2944 "md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 2945 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 2946 mddev->raid_disks);
709ae487 2947
1da177e4
LT
2948 /*
2949 * Ok, everything is just fine now
2950 */
709ae487
N
2951 mddev->thread = conf->thread;
2952 conf->thread = NULL;
2953 mddev->private = conf;
2954
1f403624 2955 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2956
1ed7242e
JB
2957 if (mddev->queue) {
2958 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2959 mddev->queue->backing_dev_info.congested_data = mddev;
6b740b8d 2960 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2ff8cc2c
SL
2961
2962 if (discard_supported)
2963 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2964 mddev->queue);
2965 else
2966 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2967 mddev->queue);
1ed7242e 2968 }
5220ea1e 2969
2970 ret = md_integrity_register(mddev);
2971 if (ret)
2972 stop(mddev);
2973 return ret;
1da177e4
LT
2974}
2975
fd01b88c 2976static int stop(struct mddev *mddev)
1da177e4 2977{
e8096360 2978 struct r1conf *conf = mddev->private;
4b6d287f 2979 struct bitmap *bitmap = mddev->bitmap;
4b6d287f
N
2980
2981 /* wait for behind writes to complete */
e555190d 2982 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
9dd1e2fa
N
2983 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2984 mdname(mddev));
4b6d287f 2985 /* need to kick something here to make sure I/O goes? */
e555190d
N
2986 wait_event(bitmap->behind_wait,
2987 atomic_read(&bitmap->behind_writes) == 0);
4b6d287f 2988 }
1da177e4 2989
07169fd4 2990 freeze_array(conf, 0);
2991 unfreeze_array(conf);
409c57f3 2992
01f96c0a 2993 md_unregister_thread(&mddev->thread);
1da177e4
LT
2994 if (conf->r1bio_pool)
2995 mempool_destroy(conf->r1bio_pool);
990a8baf 2996 kfree(conf->mirrors);
0fea7ed8 2997 safe_put_page(conf->tmppage);
990a8baf 2998 kfree(conf->poolinfo);
1da177e4
LT
2999 kfree(conf);
3000 mddev->private = NULL;
3001 return 0;
3002}
3003
fd01b88c 3004static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
3005{
3006 /* no resync is happening, and there is enough space
3007 * on all devices, so we can resize.
3008 * We need to make sure resync covers any new space.
3009 * If the array is shrinking we should possibly wait until
3010 * any io in the removed space completes, but it hardly seems
3011 * worth it.
3012 */
a4a6125a
N
3013 sector_t newsize = raid1_size(mddev, sectors, 0);
3014 if (mddev->external_size &&
3015 mddev->array_sectors > newsize)
b522adcd 3016 return -EINVAL;
a4a6125a
N
3017 if (mddev->bitmap) {
3018 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3019 if (ret)
3020 return ret;
3021 }
3022 md_set_array_sectors(mddev, newsize);
f233ea5c 3023 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 3024 revalidate_disk(mddev->gendisk);
b522adcd 3025 if (sectors > mddev->dev_sectors &&
b098636c 3026 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3027 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3028 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3029 }
b522adcd 3030 mddev->dev_sectors = sectors;
4b5c7ae8 3031 mddev->resync_max_sectors = sectors;
1da177e4
LT
3032 return 0;
3033}
3034
fd01b88c 3035static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3036{
3037 /* We need to:
3038 * 1/ resize the r1bio_pool
3039 * 2/ resize conf->mirrors
3040 *
3041 * We allocate a new r1bio_pool if we can.
3042 * Then raise a device barrier and wait until all IO stops.
3043 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3044 *
3045 * At the same time, we "pack" the devices so that all the missing
3046 * devices have the higher raid_disk numbers.
1da177e4
LT
3047 */
3048 mempool_t *newpool, *oldpool;
3049 struct pool_info *newpoolinfo;
0eaf822c 3050 struct raid1_info *newmirrors;
e8096360 3051 struct r1conf *conf = mddev->private;
63c70c4f 3052 int cnt, raid_disks;
c04be0aa 3053 unsigned long flags;
b5470dc5 3054 int d, d2, err;
1da177e4 3055
63c70c4f 3056 /* Cannot change chunk_size, layout, or level */
664e7c41 3057 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3058 mddev->layout != mddev->new_layout ||
3059 mddev->level != mddev->new_level) {
664e7c41 3060 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3061 mddev->new_layout = mddev->layout;
3062 mddev->new_level = mddev->level;
3063 return -EINVAL;
3064 }
3065
b5470dc5
DW
3066 err = md_allow_write(mddev);
3067 if (err)
3068 return err;
2a2275d6 3069
63c70c4f
N
3070 raid_disks = mddev->raid_disks + mddev->delta_disks;
3071
6ea9c07c
N
3072 if (raid_disks < conf->raid_disks) {
3073 cnt=0;
3074 for (d= 0; d < conf->raid_disks; d++)
3075 if (conf->mirrors[d].rdev)
3076 cnt++;
3077 if (cnt > raid_disks)
1da177e4 3078 return -EBUSY;
6ea9c07c 3079 }
1da177e4
LT
3080
3081 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3082 if (!newpoolinfo)
3083 return -ENOMEM;
3084 newpoolinfo->mddev = mddev;
8f19ccb2 3085 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3086
3087 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3088 r1bio_pool_free, newpoolinfo);
3089 if (!newpool) {
3090 kfree(newpoolinfo);
3091 return -ENOMEM;
3092 }
0eaf822c 3093 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3094 GFP_KERNEL);
1da177e4
LT
3095 if (!newmirrors) {
3096 kfree(newpoolinfo);
3097 mempool_destroy(newpool);
3098 return -ENOMEM;
3099 }
1da177e4 3100
e2d59925 3101 freeze_array(conf, 0);
1da177e4
LT
3102
3103 /* ok, everything is stopped */
3104 oldpool = conf->r1bio_pool;
3105 conf->r1bio_pool = newpool;
6ea9c07c 3106
a88aa786 3107 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3108 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3109 if (rdev && rdev->raid_disk != d2) {
36fad858 3110 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3111 rdev->raid_disk = d2;
36fad858
NK
3112 sysfs_unlink_rdev(mddev, rdev);
3113 if (sysfs_link_rdev(mddev, rdev))
a88aa786 3114 printk(KERN_WARNING
36fad858
NK
3115 "md/raid1:%s: cannot register rd%d\n",
3116 mdname(mddev), rdev->raid_disk);
6ea9c07c 3117 }
a88aa786
N
3118 if (rdev)
3119 newmirrors[d2++].rdev = rdev;
3120 }
1da177e4
LT
3121 kfree(conf->mirrors);
3122 conf->mirrors = newmirrors;
3123 kfree(conf->poolinfo);
3124 conf->poolinfo = newpoolinfo;
3125
c04be0aa 3126 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3127 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3128 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3129 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3130 mddev->delta_disks = 0;
1da177e4 3131
e2d59925 3132 unfreeze_array(conf);
1da177e4
LT
3133
3134 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3135 md_wakeup_thread(mddev->thread);
3136
3137 mempool_destroy(oldpool);
3138 return 0;
3139}
3140
fd01b88c 3141static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3142{
e8096360 3143 struct r1conf *conf = mddev->private;
36fa3063
N
3144
3145 switch(state) {
6eef4b21
N
3146 case 2: /* wake for suspend */
3147 wake_up(&conf->wait_barrier);
3148 break;
9e6603da 3149 case 1:
07169fd4 3150 freeze_array(conf, 0);
36fa3063 3151 break;
9e6603da 3152 case 0:
07169fd4 3153 unfreeze_array(conf);
36fa3063
N
3154 break;
3155 }
36fa3063
N
3156}
3157
fd01b88c 3158static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3159{
3160 /* raid1 can take over:
3161 * raid5 with 2 devices, any layout or chunk size
3162 */
3163 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3164 struct r1conf *conf;
709ae487
N
3165 mddev->new_level = 1;
3166 mddev->new_layout = 0;
3167 mddev->new_chunk_sectors = 0;
3168 conf = setup_conf(mddev);
3169 if (!IS_ERR(conf))
07169fd4 3170 /* Array must appear to be quiesced */
3171 conf->array_frozen = 1;
709ae487
N
3172 return conf;
3173 }
3174 return ERR_PTR(-EINVAL);
3175}
1da177e4 3176
84fc4b56 3177static struct md_personality raid1_personality =
1da177e4
LT
3178{
3179 .name = "raid1",
2604b703 3180 .level = 1,
1da177e4
LT
3181 .owner = THIS_MODULE,
3182 .make_request = make_request,
3183 .run = run,
3184 .stop = stop,
3185 .status = status,
3186 .error_handler = error,
3187 .hot_add_disk = raid1_add_disk,
3188 .hot_remove_disk= raid1_remove_disk,
3189 .spare_active = raid1_spare_active,
3190 .sync_request = sync_request,
3191 .resize = raid1_resize,
80c3a6ce 3192 .size = raid1_size,
63c70c4f 3193 .check_reshape = raid1_reshape,
36fa3063 3194 .quiesce = raid1_quiesce,
709ae487 3195 .takeover = raid1_takeover,
1da177e4
LT
3196};
3197
3198static int __init raid_init(void)
3199{
2604b703 3200 return register_md_personality(&raid1_personality);
1da177e4
LT
3201}
3202
3203static void raid_exit(void)
3204{
2604b703 3205 unregister_md_personality(&raid1_personality);
1da177e4
LT
3206}
3207
3208module_init(raid_init);
3209module_exit(raid_exit);
3210MODULE_LICENSE("GPL");
0efb9e61 3211MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3212MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3213MODULE_ALIAS("md-raid1");
2604b703 3214MODULE_ALIAS("md-level-1");
34db0cd6
N
3215
3216module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 1.04841 seconds and 5 git commands to generate.