drm/i915: Stop tracking last calculated Sink CRC.
[deliverable/linux.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
473e87ce
JB
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
1da177e4 68
79ef3a8a 69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
e8096360 71static void lower_barrier(struct r1conf *conf);
1da177e4 72
dd0fc66f 73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
74{
75 struct pool_info *pi = data;
9f2c9d12 76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 79 return kzalloc(size, gfp_flags);
1da177e4
LT
80}
81
82static void r1bio_pool_free(void *r1_bio, void *data)
83{
84 kfree(r1_bio);
85}
86
87#define RESYNC_BLOCK_SIZE (64*1024)
8e005f7c 88#define RESYNC_DEPTH 32
1da177e4
LT
89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
8e005f7c 91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
1da177e4 94
dd0fc66f 95static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
96{
97 struct pool_info *pi = data;
9f2c9d12 98 struct r1bio *r1_bio;
1da177e4 99 struct bio *bio;
da1aab3d 100 int need_pages;
1da177e4
LT
101 int i, j;
102
103 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 104 if (!r1_bio)
1da177e4 105 return NULL;
1da177e4
LT
106
107 /*
108 * Allocate bios : 1 for reading, n-1 for writing
109 */
110 for (j = pi->raid_disks ; j-- ; ) {
6746557f 111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
112 if (!bio)
113 goto out_free_bio;
114 r1_bio->bios[j] = bio;
115 }
116 /*
117 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
118 * the first bio.
119 * If this is a user-requested check/repair, allocate
120 * RESYNC_PAGES for each bio.
1da177e4 121 */
d11c171e 122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 123 need_pages = pi->raid_disks;
d11c171e 124 else
da1aab3d
N
125 need_pages = 1;
126 for (j = 0; j < need_pages; j++) {
d11c171e 127 bio = r1_bio->bios[j];
a0787606 128 bio->bi_vcnt = RESYNC_PAGES;
d11c171e 129
a0787606 130 if (bio_alloc_pages(bio, gfp_flags))
da1aab3d 131 goto out_free_pages;
d11c171e
N
132 }
133 /* If not user-requests, copy the page pointers to all bios */
134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 for (i=0; i<RESYNC_PAGES ; i++)
136 for (j=1; j<pi->raid_disks; j++)
137 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
139 }
140
141 r1_bio->master_bio = NULL;
142
143 return r1_bio;
144
da1aab3d
N
145out_free_pages:
146 while (--j >= 0) {
147 struct bio_vec *bv;
148
149 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 __free_page(bv->bv_page);
151 }
152
1da177e4 153out_free_bio:
8f19ccb2 154 while (++j < pi->raid_disks)
1da177e4
LT
155 bio_put(r1_bio->bios[j]);
156 r1bio_pool_free(r1_bio, data);
157 return NULL;
158}
159
160static void r1buf_pool_free(void *__r1_bio, void *data)
161{
162 struct pool_info *pi = data;
d11c171e 163 int i,j;
9f2c9d12 164 struct r1bio *r1bio = __r1_bio;
1da177e4 165
d11c171e
N
166 for (i = 0; i < RESYNC_PAGES; i++)
167 for (j = pi->raid_disks; j-- ;) {
168 if (j == 0 ||
169 r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 172 }
1da177e4
LT
173 for (i=0 ; i < pi->raid_disks; i++)
174 bio_put(r1bio->bios[i]);
175
176 r1bio_pool_free(r1bio, data);
177}
178
e8096360 179static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
180{
181 int i;
182
8f19ccb2 183 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 184 struct bio **bio = r1_bio->bios + i;
4367af55 185 if (!BIO_SPECIAL(*bio))
1da177e4
LT
186 bio_put(*bio);
187 *bio = NULL;
188 }
189}
190
9f2c9d12 191static void free_r1bio(struct r1bio *r1_bio)
1da177e4 192{
e8096360 193 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 194
1da177e4
LT
195 put_all_bios(conf, r1_bio);
196 mempool_free(r1_bio, conf->r1bio_pool);
197}
198
9f2c9d12 199static void put_buf(struct r1bio *r1_bio)
1da177e4 200{
e8096360 201 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
202 int i;
203
8f19ccb2 204 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
205 struct bio *bio = r1_bio->bios[i];
206 if (bio->bi_end_io)
207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 }
1da177e4
LT
209
210 mempool_free(r1_bio, conf->r1buf_pool);
211
17999be4 212 lower_barrier(conf);
1da177e4
LT
213}
214
9f2c9d12 215static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
216{
217 unsigned long flags;
fd01b88c 218 struct mddev *mddev = r1_bio->mddev;
e8096360 219 struct r1conf *conf = mddev->private;
1da177e4
LT
220
221 spin_lock_irqsave(&conf->device_lock, flags);
222 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 223 conf->nr_queued ++;
1da177e4
LT
224 spin_unlock_irqrestore(&conf->device_lock, flags);
225
17999be4 226 wake_up(&conf->wait_barrier);
1da177e4
LT
227 md_wakeup_thread(mddev->thread);
228}
229
230/*
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
234 */
9f2c9d12 235static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
236{
237 struct bio *bio = r1_bio->master_bio;
238 int done;
e8096360 239 struct r1conf *conf = r1_bio->mddev->private;
79ef3a8a 240 sector_t start_next_window = r1_bio->start_next_window;
4f024f37 241 sector_t bi_sector = bio->bi_iter.bi_sector;
d2eb35ac
N
242
243 if (bio->bi_phys_segments) {
244 unsigned long flags;
245 spin_lock_irqsave(&conf->device_lock, flags);
246 bio->bi_phys_segments--;
247 done = (bio->bi_phys_segments == 0);
248 spin_unlock_irqrestore(&conf->device_lock, flags);
79ef3a8a 249 /*
250 * make_request() might be waiting for
251 * bi_phys_segments to decrease
252 */
253 wake_up(&conf->wait_barrier);
d2eb35ac
N
254 } else
255 done = 1;
256
257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4246a0b6
CH
258 bio->bi_error = -EIO;
259
d2eb35ac 260 if (done) {
4246a0b6 261 bio_endio(bio);
d2eb35ac
N
262 /*
263 * Wake up any possible resync thread that waits for the device
264 * to go idle.
265 */
79ef3a8a 266 allow_barrier(conf, start_next_window, bi_sector);
d2eb35ac
N
267 }
268}
269
9f2c9d12 270static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
271{
272 struct bio *bio = r1_bio->master_bio;
273
4b6d287f
N
274 /* if nobody has done the final endio yet, do it now */
275 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
276 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
277 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
278 (unsigned long long) bio->bi_iter.bi_sector,
279 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 280
d2eb35ac 281 call_bio_endio(r1_bio);
4b6d287f 282 }
1da177e4
LT
283 free_r1bio(r1_bio);
284}
285
286/*
287 * Update disk head position estimator based on IRQ completion info.
288 */
9f2c9d12 289static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 290{
e8096360 291 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
292
293 conf->mirrors[disk].head_position =
294 r1_bio->sector + (r1_bio->sectors);
295}
296
ba3ae3be
NK
297/*
298 * Find the disk number which triggered given bio
299 */
9f2c9d12 300static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
301{
302 int mirror;
30194636
N
303 struct r1conf *conf = r1_bio->mddev->private;
304 int raid_disks = conf->raid_disks;
ba3ae3be 305
8f19ccb2 306 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
307 if (r1_bio->bios[mirror] == bio)
308 break;
309
8f19ccb2 310 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
311 update_head_pos(mirror, r1_bio);
312
313 return mirror;
314}
315
4246a0b6 316static void raid1_end_read_request(struct bio *bio)
1da177e4 317{
4246a0b6 318 int uptodate = !bio->bi_error;
9f2c9d12 319 struct r1bio *r1_bio = bio->bi_private;
1da177e4 320 int mirror;
e8096360 321 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 322
1da177e4
LT
323 mirror = r1_bio->read_disk;
324 /*
325 * this branch is our 'one mirror IO has finished' event handler:
326 */
ddaf22ab
N
327 update_head_pos(mirror, r1_bio);
328
dd00a99e
N
329 if (uptodate)
330 set_bit(R1BIO_Uptodate, &r1_bio->state);
331 else {
332 /* If all other devices have failed, we want to return
333 * the error upwards rather than fail the last device.
334 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 335 */
dd00a99e
N
336 unsigned long flags;
337 spin_lock_irqsave(&conf->device_lock, flags);
338 if (r1_bio->mddev->degraded == conf->raid_disks ||
339 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
34cab6f4 340 test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
dd00a99e
N
341 uptodate = 1;
342 spin_unlock_irqrestore(&conf->device_lock, flags);
343 }
1da177e4 344
7ad4d4a6 345 if (uptodate) {
1da177e4 346 raid_end_bio_io(r1_bio);
7ad4d4a6
N
347 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
348 } else {
1da177e4
LT
349 /*
350 * oops, read error:
351 */
352 char b[BDEVNAME_SIZE];
8bda470e
CD
353 printk_ratelimited(
354 KERN_ERR "md/raid1:%s: %s: "
355 "rescheduling sector %llu\n",
356 mdname(conf->mddev),
357 bdevname(conf->mirrors[mirror].rdev->bdev,
358 b),
359 (unsigned long long)r1_bio->sector);
d2eb35ac 360 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 361 reschedule_retry(r1_bio);
7ad4d4a6 362 /* don't drop the reference on read_disk yet */
1da177e4 363 }
1da177e4
LT
364}
365
9f2c9d12 366static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
367{
368 /* it really is the end of this request */
369 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
370 /* free extra copy of the data pages */
371 int i = r1_bio->behind_page_count;
372 while (i--)
373 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
374 kfree(r1_bio->behind_bvecs);
375 r1_bio->behind_bvecs = NULL;
376 }
377 /* clear the bitmap if all writes complete successfully */
378 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
379 r1_bio->sectors,
380 !test_bit(R1BIO_Degraded, &r1_bio->state),
381 test_bit(R1BIO_BehindIO, &r1_bio->state));
382 md_write_end(r1_bio->mddev);
383}
384
9f2c9d12 385static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 386{
cd5ff9a1
N
387 if (!atomic_dec_and_test(&r1_bio->remaining))
388 return;
389
390 if (test_bit(R1BIO_WriteError, &r1_bio->state))
391 reschedule_retry(r1_bio);
392 else {
393 close_write(r1_bio);
4367af55
N
394 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
395 reschedule_retry(r1_bio);
396 else
397 raid_end_bio_io(r1_bio);
4e78064f
N
398 }
399}
400
4246a0b6 401static void raid1_end_write_request(struct bio *bio)
1da177e4 402{
9f2c9d12 403 struct r1bio *r1_bio = bio->bi_private;
a9701a30 404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 405 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 406 struct bio *to_put = NULL;
1da177e4 407
ba3ae3be 408 mirror = find_bio_disk(r1_bio, bio);
1da177e4 409
e9c7469b
TH
410 /*
411 * 'one mirror IO has finished' event handler:
412 */
4246a0b6 413 if (bio->bi_error) {
cd5ff9a1
N
414 set_bit(WriteErrorSeen,
415 &conf->mirrors[mirror].rdev->flags);
19d67169
N
416 if (!test_and_set_bit(WantReplacement,
417 &conf->mirrors[mirror].rdev->flags))
418 set_bit(MD_RECOVERY_NEEDED, &
419 conf->mddev->recovery);
420
cd5ff9a1 421 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 422 } else {
1da177e4 423 /*
e9c7469b
TH
424 * Set R1BIO_Uptodate in our master bio, so that we
425 * will return a good error code for to the higher
426 * levels even if IO on some other mirrored buffer
427 * fails.
428 *
429 * The 'master' represents the composite IO operation
430 * to user-side. So if something waits for IO, then it
431 * will wait for the 'master' bio.
1da177e4 432 */
4367af55
N
433 sector_t first_bad;
434 int bad_sectors;
435
cd5ff9a1
N
436 r1_bio->bios[mirror] = NULL;
437 to_put = bio;
3056e3ae
AL
438 /*
439 * Do not set R1BIO_Uptodate if the current device is
440 * rebuilding or Faulty. This is because we cannot use
441 * such device for properly reading the data back (we could
442 * potentially use it, if the current write would have felt
443 * before rdev->recovery_offset, but for simplicity we don't
444 * check this here.
445 */
446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 449
4367af55
N
450 /* Maybe we can clear some bad blocks. */
451 if (is_badblock(conf->mirrors[mirror].rdev,
452 r1_bio->sector, r1_bio->sectors,
453 &first_bad, &bad_sectors)) {
454 r1_bio->bios[mirror] = IO_MADE_GOOD;
455 set_bit(R1BIO_MadeGood, &r1_bio->state);
456 }
457 }
458
e9c7469b
TH
459 if (behind) {
460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 atomic_dec(&r1_bio->behind_remaining);
462
463 /*
464 * In behind mode, we ACK the master bio once the I/O
465 * has safely reached all non-writemostly
466 * disks. Setting the Returned bit ensures that this
467 * gets done only once -- we don't ever want to return
468 * -EIO here, instead we'll wait
469 */
470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 /* Maybe we can return now */
473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
475 pr_debug("raid1: behind end write sectors"
476 " %llu-%llu\n",
4f024f37
KO
477 (unsigned long long) mbio->bi_iter.bi_sector,
478 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 479 call_bio_endio(r1_bio);
4b6d287f
N
480 }
481 }
482 }
4367af55
N
483 if (r1_bio->bios[mirror] == NULL)
484 rdev_dec_pending(conf->mirrors[mirror].rdev,
485 conf->mddev);
e9c7469b 486
1da177e4 487 /*
1da177e4
LT
488 * Let's see if all mirrored write operations have finished
489 * already.
490 */
af6d7b76 491 r1_bio_write_done(r1_bio);
c70810b3 492
04b857f7
N
493 if (to_put)
494 bio_put(to_put);
1da177e4
LT
495}
496
1da177e4
LT
497/*
498 * This routine returns the disk from which the requested read should
499 * be done. There is a per-array 'next expected sequential IO' sector
500 * number - if this matches on the next IO then we use the last disk.
501 * There is also a per-disk 'last know head position' sector that is
502 * maintained from IRQ contexts, both the normal and the resync IO
503 * completion handlers update this position correctly. If there is no
504 * perfect sequential match then we pick the disk whose head is closest.
505 *
506 * If there are 2 mirrors in the same 2 devices, performance degrades
507 * because position is mirror, not device based.
508 *
509 * The rdev for the device selected will have nr_pending incremented.
510 */
e8096360 511static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 512{
af3a2cd6 513 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
514 int sectors;
515 int best_good_sectors;
9dedf603
SL
516 int best_disk, best_dist_disk, best_pending_disk;
517 int has_nonrot_disk;
be4d3280 518 int disk;
76073054 519 sector_t best_dist;
9dedf603 520 unsigned int min_pending;
3cb03002 521 struct md_rdev *rdev;
f3ac8bf7 522 int choose_first;
12cee5a8 523 int choose_next_idle;
1da177e4
LT
524
525 rcu_read_lock();
526 /*
8ddf9efe 527 * Check if we can balance. We can balance on the whole
1da177e4
LT
528 * device if no resync is going on, or below the resync window.
529 * We take the first readable disk when above the resync window.
530 */
531 retry:
d2eb35ac 532 sectors = r1_bio->sectors;
76073054 533 best_disk = -1;
9dedf603 534 best_dist_disk = -1;
76073054 535 best_dist = MaxSector;
9dedf603
SL
536 best_pending_disk = -1;
537 min_pending = UINT_MAX;
d2eb35ac 538 best_good_sectors = 0;
9dedf603 539 has_nonrot_disk = 0;
12cee5a8 540 choose_next_idle = 0;
d2eb35ac 541
7d49ffcf
GR
542 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
543 (mddev_is_clustered(conf->mddev) &&
90382ed9 544 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
545 this_sector + sectors)))
546 choose_first = 1;
547 else
548 choose_first = 0;
1da177e4 549
be4d3280 550 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 551 sector_t dist;
d2eb35ac
N
552 sector_t first_bad;
553 int bad_sectors;
9dedf603 554 unsigned int pending;
12cee5a8 555 bool nonrot;
d2eb35ac 556
f3ac8bf7
N
557 rdev = rcu_dereference(conf->mirrors[disk].rdev);
558 if (r1_bio->bios[disk] == IO_BLOCKED
559 || rdev == NULL
76073054 560 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 561 continue;
76073054
N
562 if (!test_bit(In_sync, &rdev->flags) &&
563 rdev->recovery_offset < this_sector + sectors)
1da177e4 564 continue;
76073054
N
565 if (test_bit(WriteMostly, &rdev->flags)) {
566 /* Don't balance among write-mostly, just
567 * use the first as a last resort */
d1901ef0 568 if (best_dist_disk < 0) {
307729c8
N
569 if (is_badblock(rdev, this_sector, sectors,
570 &first_bad, &bad_sectors)) {
571 if (first_bad < this_sector)
572 /* Cannot use this */
573 continue;
574 best_good_sectors = first_bad - this_sector;
575 } else
576 best_good_sectors = sectors;
d1901ef0
TH
577 best_dist_disk = disk;
578 best_pending_disk = disk;
307729c8 579 }
76073054
N
580 continue;
581 }
582 /* This is a reasonable device to use. It might
583 * even be best.
584 */
d2eb35ac
N
585 if (is_badblock(rdev, this_sector, sectors,
586 &first_bad, &bad_sectors)) {
587 if (best_dist < MaxSector)
588 /* already have a better device */
589 continue;
590 if (first_bad <= this_sector) {
591 /* cannot read here. If this is the 'primary'
592 * device, then we must not read beyond
593 * bad_sectors from another device..
594 */
595 bad_sectors -= (this_sector - first_bad);
596 if (choose_first && sectors > bad_sectors)
597 sectors = bad_sectors;
598 if (best_good_sectors > sectors)
599 best_good_sectors = sectors;
600
601 } else {
602 sector_t good_sectors = first_bad - this_sector;
603 if (good_sectors > best_good_sectors) {
604 best_good_sectors = good_sectors;
605 best_disk = disk;
606 }
607 if (choose_first)
608 break;
609 }
610 continue;
611 } else
612 best_good_sectors = sectors;
613
12cee5a8
SL
614 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
615 has_nonrot_disk |= nonrot;
9dedf603 616 pending = atomic_read(&rdev->nr_pending);
76073054 617 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 618 if (choose_first) {
76073054 619 best_disk = disk;
1da177e4
LT
620 break;
621 }
12cee5a8
SL
622 /* Don't change to another disk for sequential reads */
623 if (conf->mirrors[disk].next_seq_sect == this_sector
624 || dist == 0) {
625 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
626 struct raid1_info *mirror = &conf->mirrors[disk];
627
628 best_disk = disk;
629 /*
630 * If buffered sequential IO size exceeds optimal
631 * iosize, check if there is idle disk. If yes, choose
632 * the idle disk. read_balance could already choose an
633 * idle disk before noticing it's a sequential IO in
634 * this disk. This doesn't matter because this disk
635 * will idle, next time it will be utilized after the
636 * first disk has IO size exceeds optimal iosize. In
637 * this way, iosize of the first disk will be optimal
638 * iosize at least. iosize of the second disk might be
639 * small, but not a big deal since when the second disk
640 * starts IO, the first disk is likely still busy.
641 */
642 if (nonrot && opt_iosize > 0 &&
643 mirror->seq_start != MaxSector &&
644 mirror->next_seq_sect > opt_iosize &&
645 mirror->next_seq_sect - opt_iosize >=
646 mirror->seq_start) {
647 choose_next_idle = 1;
648 continue;
649 }
650 break;
651 }
652 /* If device is idle, use it */
653 if (pending == 0) {
654 best_disk = disk;
655 break;
656 }
657
658 if (choose_next_idle)
659 continue;
9dedf603
SL
660
661 if (min_pending > pending) {
662 min_pending = pending;
663 best_pending_disk = disk;
664 }
665
76073054
N
666 if (dist < best_dist) {
667 best_dist = dist;
9dedf603 668 best_dist_disk = disk;
1da177e4 669 }
f3ac8bf7 670 }
1da177e4 671
9dedf603
SL
672 /*
673 * If all disks are rotational, choose the closest disk. If any disk is
674 * non-rotational, choose the disk with less pending request even the
675 * disk is rotational, which might/might not be optimal for raids with
676 * mixed ratation/non-rotational disks depending on workload.
677 */
678 if (best_disk == -1) {
679 if (has_nonrot_disk)
680 best_disk = best_pending_disk;
681 else
682 best_disk = best_dist_disk;
683 }
684
76073054
N
685 if (best_disk >= 0) {
686 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
687 if (!rdev)
688 goto retry;
689 atomic_inc(&rdev->nr_pending);
76073054 690 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
691 /* cannot risk returning a device that failed
692 * before we inc'ed nr_pending
693 */
03c902e1 694 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
695 goto retry;
696 }
d2eb35ac 697 sectors = best_good_sectors;
12cee5a8
SL
698
699 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
700 conf->mirrors[best_disk].seq_start = this_sector;
701
be4d3280 702 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
703 }
704 rcu_read_unlock();
d2eb35ac 705 *max_sectors = sectors;
1da177e4 706
76073054 707 return best_disk;
1da177e4
LT
708}
709
5c675f83 710static int raid1_congested(struct mddev *mddev, int bits)
0d129228 711{
e8096360 712 struct r1conf *conf = mddev->private;
0d129228
N
713 int i, ret = 0;
714
4452226e 715 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
716 conf->pending_count >= max_queued_requests)
717 return 1;
718
0d129228 719 rcu_read_lock();
f53e29fc 720 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 721 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 722 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 723 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 724
1ed7242e
JB
725 BUG_ON(!q);
726
0d129228
N
727 /* Note the '|| 1' - when read_balance prefers
728 * non-congested targets, it can be removed
729 */
4452226e 730 if ((bits & (1 << WB_async_congested)) || 1)
0d129228
N
731 ret |= bdi_congested(&q->backing_dev_info, bits);
732 else
733 ret &= bdi_congested(&q->backing_dev_info, bits);
734 }
735 }
736 rcu_read_unlock();
737 return ret;
738}
0d129228 739
e8096360 740static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
741{
742 /* Any writes that have been queued but are awaiting
743 * bitmap updates get flushed here.
a35e63ef 744 */
a35e63ef
N
745 spin_lock_irq(&conf->device_lock);
746
747 if (conf->pending_bio_list.head) {
748 struct bio *bio;
749 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 750 conf->pending_count = 0;
a35e63ef
N
751 spin_unlock_irq(&conf->device_lock);
752 /* flush any pending bitmap writes to
753 * disk before proceeding w/ I/O */
754 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 755 wake_up(&conf->wait_barrier);
a35e63ef
N
756
757 while (bio) { /* submit pending writes */
758 struct bio *next = bio->bi_next;
759 bio->bi_next = NULL;
2ff8cc2c
SL
760 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
761 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
762 /* Just ignore it */
4246a0b6 763 bio_endio(bio);
2ff8cc2c
SL
764 else
765 generic_make_request(bio);
a35e63ef
N
766 bio = next;
767 }
a35e63ef
N
768 } else
769 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
770}
771
17999be4
N
772/* Barriers....
773 * Sometimes we need to suspend IO while we do something else,
774 * either some resync/recovery, or reconfigure the array.
775 * To do this we raise a 'barrier'.
776 * The 'barrier' is a counter that can be raised multiple times
777 * to count how many activities are happening which preclude
778 * normal IO.
779 * We can only raise the barrier if there is no pending IO.
780 * i.e. if nr_pending == 0.
781 * We choose only to raise the barrier if no-one is waiting for the
782 * barrier to go down. This means that as soon as an IO request
783 * is ready, no other operations which require a barrier will start
784 * until the IO request has had a chance.
785 *
786 * So: regular IO calls 'wait_barrier'. When that returns there
787 * is no backgroup IO happening, It must arrange to call
788 * allow_barrier when it has finished its IO.
789 * backgroup IO calls must call raise_barrier. Once that returns
790 * there is no normal IO happeing. It must arrange to call
791 * lower_barrier when the particular background IO completes.
1da177e4 792 */
c2fd4c94 793static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4
LT
794{
795 spin_lock_irq(&conf->resync_lock);
17999be4
N
796
797 /* Wait until no block IO is waiting */
798 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
eed8c02e 799 conf->resync_lock);
17999be4
N
800
801 /* block any new IO from starting */
802 conf->barrier++;
c2fd4c94 803 conf->next_resync = sector_nr;
17999be4 804
79ef3a8a 805 /* For these conditions we must wait:
806 * A: while the array is in frozen state
807 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
808 * the max count which allowed.
809 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
810 * next resync will reach to the window which normal bios are
811 * handling.
2f73d3c5 812 * D: while there are any active requests in the current window.
79ef3a8a 813 */
17999be4 814 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 815 !conf->array_frozen &&
79ef3a8a 816 conf->barrier < RESYNC_DEPTH &&
2f73d3c5 817 conf->current_window_requests == 0 &&
79ef3a8a 818 (conf->start_next_window >=
819 conf->next_resync + RESYNC_SECTORS),
eed8c02e 820 conf->resync_lock);
17999be4 821
34e97f17 822 conf->nr_pending++;
17999be4
N
823 spin_unlock_irq(&conf->resync_lock);
824}
825
e8096360 826static void lower_barrier(struct r1conf *conf)
17999be4
N
827{
828 unsigned long flags;
709ae487 829 BUG_ON(conf->barrier <= 0);
17999be4
N
830 spin_lock_irqsave(&conf->resync_lock, flags);
831 conf->barrier--;
34e97f17 832 conf->nr_pending--;
17999be4
N
833 spin_unlock_irqrestore(&conf->resync_lock, flags);
834 wake_up(&conf->wait_barrier);
835}
836
79ef3a8a 837static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
17999be4 838{
79ef3a8a 839 bool wait = false;
840
841 if (conf->array_frozen || !bio)
842 wait = true;
843 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
23554960
N
844 if ((conf->mddev->curr_resync_completed
845 >= bio_end_sector(bio)) ||
846 (conf->next_resync + NEXT_NORMALIO_DISTANCE
847 <= bio->bi_iter.bi_sector))
79ef3a8a 848 wait = false;
849 else
850 wait = true;
851 }
852
853 return wait;
854}
855
856static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
857{
858 sector_t sector = 0;
859
17999be4 860 spin_lock_irq(&conf->resync_lock);
79ef3a8a 861 if (need_to_wait_for_sync(conf, bio)) {
17999be4 862 conf->nr_waiting++;
d6b42dcb
N
863 /* Wait for the barrier to drop.
864 * However if there are already pending
865 * requests (preventing the barrier from
866 * rising completely), and the
5965b642 867 * per-process bio queue isn't empty,
d6b42dcb 868 * then don't wait, as we need to empty
5965b642
N
869 * that queue to allow conf->start_next_window
870 * to increase.
d6b42dcb
N
871 */
872 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 873 !conf->array_frozen &&
874 (!conf->barrier ||
5965b642
N
875 ((conf->start_next_window <
876 conf->next_resync + RESYNC_SECTORS) &&
877 current->bio_list &&
878 !bio_list_empty(current->bio_list))),
eed8c02e 879 conf->resync_lock);
17999be4 880 conf->nr_waiting--;
1da177e4 881 }
79ef3a8a 882
883 if (bio && bio_data_dir(bio) == WRITE) {
2f73d3c5 884 if (bio->bi_iter.bi_sector >=
23554960 885 conf->mddev->curr_resync_completed) {
79ef3a8a 886 if (conf->start_next_window == MaxSector)
887 conf->start_next_window =
888 conf->next_resync +
889 NEXT_NORMALIO_DISTANCE;
890
891 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
4f024f37 892 <= bio->bi_iter.bi_sector)
79ef3a8a 893 conf->next_window_requests++;
894 else
895 conf->current_window_requests++;
79ef3a8a 896 sector = conf->start_next_window;
41a336e0 897 }
79ef3a8a 898 }
899
17999be4 900 conf->nr_pending++;
1da177e4 901 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 902 return sector;
1da177e4
LT
903}
904
79ef3a8a 905static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
906 sector_t bi_sector)
17999be4
N
907{
908 unsigned long flags;
79ef3a8a 909
17999be4
N
910 spin_lock_irqsave(&conf->resync_lock, flags);
911 conf->nr_pending--;
79ef3a8a 912 if (start_next_window) {
913 if (start_next_window == conf->start_next_window) {
914 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
915 <= bi_sector)
916 conf->next_window_requests--;
917 else
918 conf->current_window_requests--;
919 } else
920 conf->current_window_requests--;
921
922 if (!conf->current_window_requests) {
923 if (conf->next_window_requests) {
924 conf->current_window_requests =
925 conf->next_window_requests;
926 conf->next_window_requests = 0;
927 conf->start_next_window +=
928 NEXT_NORMALIO_DISTANCE;
929 } else
930 conf->start_next_window = MaxSector;
931 }
932 }
17999be4
N
933 spin_unlock_irqrestore(&conf->resync_lock, flags);
934 wake_up(&conf->wait_barrier);
935}
936
e2d59925 937static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab
N
938{
939 /* stop syncio and normal IO and wait for everything to
940 * go quite.
b364e3d0 941 * We wait until nr_pending match nr_queued+extra
1c830532
N
942 * This is called in the context of one normal IO request
943 * that has failed. Thus any sync request that might be pending
944 * will be blocked by nr_pending, and we need to wait for
945 * pending IO requests to complete or be queued for re-try.
e2d59925 946 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
947 * must match the number of pending IOs (nr_pending) before
948 * we continue.
ddaf22ab
N
949 */
950 spin_lock_irq(&conf->resync_lock);
b364e3d0 951 conf->array_frozen = 1;
eed8c02e 952 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 953 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
954 conf->resync_lock,
955 flush_pending_writes(conf));
ddaf22ab
N
956 spin_unlock_irq(&conf->resync_lock);
957}
e8096360 958static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
959{
960 /* reverse the effect of the freeze */
961 spin_lock_irq(&conf->resync_lock);
b364e3d0 962 conf->array_frozen = 0;
ddaf22ab
N
963 wake_up(&conf->wait_barrier);
964 spin_unlock_irq(&conf->resync_lock);
965}
966
f72ffdd6 967/* duplicate the data pages for behind I/O
4e78064f 968 */
9f2c9d12 969static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
970{
971 int i;
972 struct bio_vec *bvec;
2ca68f5e 973 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 974 GFP_NOIO);
2ca68f5e 975 if (unlikely(!bvecs))
af6d7b76 976 return;
4b6d287f 977
cb34e057 978 bio_for_each_segment_all(bvec, bio, i) {
2ca68f5e
N
979 bvecs[i] = *bvec;
980 bvecs[i].bv_page = alloc_page(GFP_NOIO);
981 if (unlikely(!bvecs[i].bv_page))
4b6d287f 982 goto do_sync_io;
2ca68f5e
N
983 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
984 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
985 kunmap(bvecs[i].bv_page);
4b6d287f
N
986 kunmap(bvec->bv_page);
987 }
2ca68f5e 988 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
989 r1_bio->behind_page_count = bio->bi_vcnt;
990 set_bit(R1BIO_BehindIO, &r1_bio->state);
991 return;
4b6d287f
N
992
993do_sync_io:
af6d7b76 994 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
995 if (bvecs[i].bv_page)
996 put_page(bvecs[i].bv_page);
997 kfree(bvecs);
4f024f37
KO
998 pr_debug("%dB behind alloc failed, doing sync I/O\n",
999 bio->bi_iter.bi_size);
4b6d287f
N
1000}
1001
f54a9d0e
N
1002struct raid1_plug_cb {
1003 struct blk_plug_cb cb;
1004 struct bio_list pending;
1005 int pending_cnt;
1006};
1007
1008static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1009{
1010 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1011 cb);
1012 struct mddev *mddev = plug->cb.data;
1013 struct r1conf *conf = mddev->private;
1014 struct bio *bio;
1015
874807a8 1016 if (from_schedule || current->bio_list) {
f54a9d0e
N
1017 spin_lock_irq(&conf->device_lock);
1018 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1019 conf->pending_count += plug->pending_cnt;
1020 spin_unlock_irq(&conf->device_lock);
ee0b0244 1021 wake_up(&conf->wait_barrier);
f54a9d0e
N
1022 md_wakeup_thread(mddev->thread);
1023 kfree(plug);
1024 return;
1025 }
1026
1027 /* we aren't scheduling, so we can do the write-out directly. */
1028 bio = bio_list_get(&plug->pending);
1029 bitmap_unplug(mddev->bitmap);
1030 wake_up(&conf->wait_barrier);
1031
1032 while (bio) { /* submit pending writes */
1033 struct bio *next = bio->bi_next;
1034 bio->bi_next = NULL;
32f9f570
SL
1035 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1036 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1037 /* Just ignore it */
4246a0b6 1038 bio_endio(bio);
32f9f570
SL
1039 else
1040 generic_make_request(bio);
f54a9d0e
N
1041 bio = next;
1042 }
1043 kfree(plug);
1044}
1045
b4fdcb02 1046static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1047{
e8096360 1048 struct r1conf *conf = mddev->private;
0eaf822c 1049 struct raid1_info *mirror;
9f2c9d12 1050 struct r1bio *r1_bio;
1da177e4 1051 struct bio *read_bio;
1f68f0c4 1052 int i, disks;
84255d10 1053 struct bitmap *bitmap;
191ea9b2 1054 unsigned long flags;
a362357b 1055 const int rw = bio_data_dir(bio);
2c7d46ec 1056 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1057 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
2ff8cc2c
SL
1058 const unsigned long do_discard = (bio->bi_rw
1059 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1060 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
3cb03002 1061 struct md_rdev *blocked_rdev;
f54a9d0e
N
1062 struct blk_plug_cb *cb;
1063 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
1064 int first_clone;
1065 int sectors_handled;
1066 int max_sectors;
79ef3a8a 1067 sector_t start_next_window;
191ea9b2 1068
1da177e4
LT
1069 /*
1070 * Register the new request and wait if the reconstruction
1071 * thread has put up a bar for new requests.
1072 * Continue immediately if no resync is active currently.
1073 */
62de608d 1074
3d310eb7
N
1075 md_write_start(mddev, bio); /* wait on superblock update early */
1076
6eef4b21 1077 if (bio_data_dir(bio) == WRITE &&
589a1c49
GR
1078 ((bio_end_sector(bio) > mddev->suspend_lo &&
1079 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1080 (mddev_is_clustered(mddev) &&
90382ed9
GR
1081 md_cluster_ops->area_resyncing(mddev, WRITE,
1082 bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
6eef4b21
N
1083 /* As the suspend_* range is controlled by
1084 * userspace, we want an interruptible
1085 * wait.
1086 */
1087 DEFINE_WAIT(w);
1088 for (;;) {
1089 flush_signals(current);
1090 prepare_to_wait(&conf->wait_barrier,
1091 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1092 if (bio_end_sector(bio) <= mddev->suspend_lo ||
589a1c49
GR
1093 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1094 (mddev_is_clustered(mddev) &&
90382ed9 1095 !md_cluster_ops->area_resyncing(mddev, WRITE,
589a1c49 1096 bio->bi_iter.bi_sector, bio_end_sector(bio))))
6eef4b21
N
1097 break;
1098 schedule();
1099 }
1100 finish_wait(&conf->wait_barrier, &w);
1101 }
62de608d 1102
79ef3a8a 1103 start_next_window = wait_barrier(conf, bio);
1da177e4 1104
84255d10
N
1105 bitmap = mddev->bitmap;
1106
1da177e4
LT
1107 /*
1108 * make_request() can abort the operation when READA is being
1109 * used and no empty request is available.
1110 *
1111 */
1112 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1113
1114 r1_bio->master_bio = bio;
aa8b57aa 1115 r1_bio->sectors = bio_sectors(bio);
191ea9b2 1116 r1_bio->state = 0;
1da177e4 1117 r1_bio->mddev = mddev;
4f024f37 1118 r1_bio->sector = bio->bi_iter.bi_sector;
1da177e4 1119
d2eb35ac
N
1120 /* We might need to issue multiple reads to different
1121 * devices if there are bad blocks around, so we keep
1122 * track of the number of reads in bio->bi_phys_segments.
1123 * If this is 0, there is only one r1_bio and no locking
1124 * will be needed when requests complete. If it is
1125 * non-zero, then it is the number of not-completed requests.
1126 */
1127 bio->bi_phys_segments = 0;
b7c44ed9 1128 bio_clear_flag(bio, BIO_SEG_VALID);
d2eb35ac 1129
a362357b 1130 if (rw == READ) {
1da177e4
LT
1131 /*
1132 * read balancing logic:
1133 */
d2eb35ac
N
1134 int rdisk;
1135
1136read_again:
1137 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
1138
1139 if (rdisk < 0) {
1140 /* couldn't find anywhere to read from */
1141 raid_end_bio_io(r1_bio);
5a7bbad2 1142 return;
1da177e4
LT
1143 }
1144 mirror = conf->mirrors + rdisk;
1145
e555190d
N
1146 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1147 bitmap) {
1148 /* Reading from a write-mostly device must
1149 * take care not to over-take any writes
1150 * that are 'behind'
1151 */
1152 wait_event(bitmap->behind_wait,
1153 atomic_read(&bitmap->behind_writes) == 0);
1154 }
1da177e4 1155 r1_bio->read_disk = rdisk;
f0cc9a05 1156 r1_bio->start_next_window = 0;
1da177e4 1157
a167f663 1158 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1159 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1160 max_sectors);
1da177e4
LT
1161
1162 r1_bio->bios[rdisk] = read_bio;
1163
4f024f37
KO
1164 read_bio->bi_iter.bi_sector = r1_bio->sector +
1165 mirror->rdev->data_offset;
1da177e4
LT
1166 read_bio->bi_bdev = mirror->rdev->bdev;
1167 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 1168 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1169 read_bio->bi_private = r1_bio;
1170
d2eb35ac
N
1171 if (max_sectors < r1_bio->sectors) {
1172 /* could not read all from this device, so we will
1173 * need another r1_bio.
1174 */
d2eb35ac
N
1175
1176 sectors_handled = (r1_bio->sector + max_sectors
4f024f37 1177 - bio->bi_iter.bi_sector);
d2eb35ac
N
1178 r1_bio->sectors = max_sectors;
1179 spin_lock_irq(&conf->device_lock);
1180 if (bio->bi_phys_segments == 0)
1181 bio->bi_phys_segments = 2;
1182 else
1183 bio->bi_phys_segments++;
1184 spin_unlock_irq(&conf->device_lock);
1185 /* Cannot call generic_make_request directly
1186 * as that will be queued in __make_request
1187 * and subsequent mempool_alloc might block waiting
1188 * for it. So hand bio over to raid1d.
1189 */
1190 reschedule_retry(r1_bio);
1191
1192 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1193
1194 r1_bio->master_bio = bio;
aa8b57aa 1195 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
d2eb35ac
N
1196 r1_bio->state = 0;
1197 r1_bio->mddev = mddev;
4f024f37
KO
1198 r1_bio->sector = bio->bi_iter.bi_sector +
1199 sectors_handled;
d2eb35ac
N
1200 goto read_again;
1201 } else
1202 generic_make_request(read_bio);
5a7bbad2 1203 return;
1da177e4
LT
1204 }
1205
1206 /*
1207 * WRITE:
1208 */
34db0cd6
N
1209 if (conf->pending_count >= max_queued_requests) {
1210 md_wakeup_thread(mddev->thread);
1211 wait_event(conf->wait_barrier,
1212 conf->pending_count < max_queued_requests);
1213 }
1f68f0c4 1214 /* first select target devices under rcu_lock and
1da177e4
LT
1215 * inc refcount on their rdev. Record them by setting
1216 * bios[x] to bio
1f68f0c4
N
1217 * If there are known/acknowledged bad blocks on any device on
1218 * which we have seen a write error, we want to avoid writing those
1219 * blocks.
1220 * This potentially requires several writes to write around
1221 * the bad blocks. Each set of writes gets it's own r1bio
1222 * with a set of bios attached.
1da177e4 1223 */
c3b328ac 1224
8f19ccb2 1225 disks = conf->raid_disks * 2;
6bfe0b49 1226 retry_write:
79ef3a8a 1227 r1_bio->start_next_window = start_next_window;
6bfe0b49 1228 blocked_rdev = NULL;
1da177e4 1229 rcu_read_lock();
1f68f0c4 1230 max_sectors = r1_bio->sectors;
1da177e4 1231 for (i = 0; i < disks; i++) {
3cb03002 1232 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1233 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1234 atomic_inc(&rdev->nr_pending);
1235 blocked_rdev = rdev;
1236 break;
1237 }
1f68f0c4 1238 r1_bio->bios[i] = NULL;
8ae12666 1239 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1240 if (i < conf->raid_disks)
1241 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1242 continue;
1243 }
1244
1245 atomic_inc(&rdev->nr_pending);
1246 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1247 sector_t first_bad;
1248 int bad_sectors;
1249 int is_bad;
1250
1251 is_bad = is_badblock(rdev, r1_bio->sector,
1252 max_sectors,
1253 &first_bad, &bad_sectors);
1254 if (is_bad < 0) {
1255 /* mustn't write here until the bad block is
1256 * acknowledged*/
1257 set_bit(BlockedBadBlocks, &rdev->flags);
1258 blocked_rdev = rdev;
1259 break;
1260 }
1261 if (is_bad && first_bad <= r1_bio->sector) {
1262 /* Cannot write here at all */
1263 bad_sectors -= (r1_bio->sector - first_bad);
1264 if (bad_sectors < max_sectors)
1265 /* mustn't write more than bad_sectors
1266 * to other devices yet
1267 */
1268 max_sectors = bad_sectors;
03c902e1 1269 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1270 /* We don't set R1BIO_Degraded as that
1271 * only applies if the disk is
1272 * missing, so it might be re-added,
1273 * and we want to know to recover this
1274 * chunk.
1275 * In this case the device is here,
1276 * and the fact that this chunk is not
1277 * in-sync is recorded in the bad
1278 * block log
1279 */
1280 continue;
964147d5 1281 }
1f68f0c4
N
1282 if (is_bad) {
1283 int good_sectors = first_bad - r1_bio->sector;
1284 if (good_sectors < max_sectors)
1285 max_sectors = good_sectors;
1286 }
1287 }
1288 r1_bio->bios[i] = bio;
1da177e4
LT
1289 }
1290 rcu_read_unlock();
1291
6bfe0b49
DW
1292 if (unlikely(blocked_rdev)) {
1293 /* Wait for this device to become unblocked */
1294 int j;
79ef3a8a 1295 sector_t old = start_next_window;
6bfe0b49
DW
1296
1297 for (j = 0; j < i; j++)
1298 if (r1_bio->bios[j])
1299 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1300 r1_bio->state = 0;
4f024f37 1301 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
6bfe0b49 1302 md_wait_for_blocked_rdev(blocked_rdev, mddev);
79ef3a8a 1303 start_next_window = wait_barrier(conf, bio);
1304 /*
1305 * We must make sure the multi r1bios of bio have
1306 * the same value of bi_phys_segments
1307 */
1308 if (bio->bi_phys_segments && old &&
1309 old != start_next_window)
1310 /* Wait for the former r1bio(s) to complete */
1311 wait_event(conf->wait_barrier,
1312 bio->bi_phys_segments == 1);
6bfe0b49
DW
1313 goto retry_write;
1314 }
1315
1f68f0c4
N
1316 if (max_sectors < r1_bio->sectors) {
1317 /* We are splitting this write into multiple parts, so
1318 * we need to prepare for allocating another r1_bio.
1319 */
1320 r1_bio->sectors = max_sectors;
1321 spin_lock_irq(&conf->device_lock);
1322 if (bio->bi_phys_segments == 0)
1323 bio->bi_phys_segments = 2;
1324 else
1325 bio->bi_phys_segments++;
1326 spin_unlock_irq(&conf->device_lock);
191ea9b2 1327 }
4f024f37 1328 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
4b6d287f 1329
4e78064f 1330 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1331 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1332
1f68f0c4 1333 first_clone = 1;
1da177e4
LT
1334 for (i = 0; i < disks; i++) {
1335 struct bio *mbio;
1336 if (!r1_bio->bios[i])
1337 continue;
1338
a167f663 1339 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1340 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1f68f0c4
N
1341
1342 if (first_clone) {
1343 /* do behind I/O ?
1344 * Not if there are too many, or cannot
1345 * allocate memory, or a reader on WriteMostly
1346 * is waiting for behind writes to flush */
1347 if (bitmap &&
1348 (atomic_read(&bitmap->behind_writes)
1349 < mddev->bitmap_info.max_write_behind) &&
1350 !waitqueue_active(&bitmap->behind_wait))
1351 alloc_behind_pages(mbio, r1_bio);
1352
1353 bitmap_startwrite(bitmap, r1_bio->sector,
1354 r1_bio->sectors,
1355 test_bit(R1BIO_BehindIO,
1356 &r1_bio->state));
1357 first_clone = 0;
1358 }
2ca68f5e 1359 if (r1_bio->behind_bvecs) {
4b6d287f
N
1360 struct bio_vec *bvec;
1361 int j;
1362
cb34e057
KO
1363 /*
1364 * We trimmed the bio, so _all is legit
4b6d287f 1365 */
d74c6d51 1366 bio_for_each_segment_all(bvec, mbio, j)
2ca68f5e 1367 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1368 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1369 atomic_inc(&r1_bio->behind_remaining);
1370 }
1371
1f68f0c4
N
1372 r1_bio->bios[i] = mbio;
1373
4f024f37 1374 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4
N
1375 conf->mirrors[i].rdev->data_offset);
1376 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1377 mbio->bi_end_io = raid1_end_write_request;
c8dc9c65
JL
1378 mbio->bi_rw =
1379 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1f68f0c4
N
1380 mbio->bi_private = r1_bio;
1381
1da177e4 1382 atomic_inc(&r1_bio->remaining);
f54a9d0e
N
1383
1384 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1385 if (cb)
1386 plug = container_of(cb, struct raid1_plug_cb, cb);
1387 else
1388 plug = NULL;
4e78064f 1389 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1390 if (plug) {
1391 bio_list_add(&plug->pending, mbio);
1392 plug->pending_cnt++;
1393 } else {
1394 bio_list_add(&conf->pending_bio_list, mbio);
1395 conf->pending_count++;
1396 }
4e78064f 1397 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1398 if (!plug)
b357f04a 1399 md_wakeup_thread(mddev->thread);
1da177e4 1400 }
079fa166
N
1401 /* Mustn't call r1_bio_write_done before this next test,
1402 * as it could result in the bio being freed.
1403 */
aa8b57aa 1404 if (sectors_handled < bio_sectors(bio)) {
079fa166 1405 r1_bio_write_done(r1_bio);
1f68f0c4
N
1406 /* We need another r1_bio. It has already been counted
1407 * in bio->bi_phys_segments
1408 */
1409 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1410 r1_bio->master_bio = bio;
aa8b57aa 1411 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1f68f0c4
N
1412 r1_bio->state = 0;
1413 r1_bio->mddev = mddev;
4f024f37 1414 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1f68f0c4
N
1415 goto retry_write;
1416 }
1417
079fa166
N
1418 r1_bio_write_done(r1_bio);
1419
1420 /* In case raid1d snuck in to freeze_array */
1421 wake_up(&conf->wait_barrier);
1da177e4
LT
1422}
1423
fd01b88c 1424static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1425{
e8096360 1426 struct r1conf *conf = mddev->private;
1da177e4
LT
1427 int i;
1428
1429 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1430 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1431 rcu_read_lock();
1432 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1433 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1434 seq_printf(seq, "%s",
ddac7c7e
N
1435 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1436 }
1437 rcu_read_unlock();
1da177e4
LT
1438 seq_printf(seq, "]");
1439}
1440
fd01b88c 1441static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1442{
1443 char b[BDEVNAME_SIZE];
e8096360 1444 struct r1conf *conf = mddev->private;
423f04d6 1445 unsigned long flags;
1da177e4
LT
1446
1447 /*
1448 * If it is not operational, then we have already marked it as dead
1449 * else if it is the last working disks, ignore the error, let the
1450 * next level up know.
1451 * else mark the drive as failed
1452 */
b2d444d7 1453 if (test_bit(In_sync, &rdev->flags)
4044ba58 1454 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1455 /*
1456 * Don't fail the drive, act as though we were just a
4044ba58
N
1457 * normal single drive.
1458 * However don't try a recovery from this drive as
1459 * it is very likely to fail.
1da177e4 1460 */
5389042f 1461 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1462 return;
4044ba58 1463 }
de393cde 1464 set_bit(Blocked, &rdev->flags);
423f04d6 1465 spin_lock_irqsave(&conf->device_lock, flags);
c04be0aa 1466 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1da177e4 1467 mddev->degraded++;
dd00a99e 1468 set_bit(Faulty, &rdev->flags);
dd00a99e
N
1469 } else
1470 set_bit(Faulty, &rdev->flags);
423f04d6 1471 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1472 /*
1473 * if recovery is running, make sure it aborts.
1474 */
1475 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
850b2b42 1476 set_bit(MD_CHANGE_DEVS, &mddev->flags);
55ce74d4 1477 set_bit(MD_CHANGE_PENDING, &mddev->flags);
067032bc
JP
1478 printk(KERN_ALERT
1479 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1480 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1481 mdname(mddev), bdevname(rdev->bdev, b),
1482 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1483}
1484
e8096360 1485static void print_conf(struct r1conf *conf)
1da177e4
LT
1486{
1487 int i;
1da177e4 1488
9dd1e2fa 1489 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1490 if (!conf) {
9dd1e2fa 1491 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1492 return;
1493 }
9dd1e2fa 1494 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1495 conf->raid_disks);
1496
ddac7c7e 1497 rcu_read_lock();
1da177e4
LT
1498 for (i = 0; i < conf->raid_disks; i++) {
1499 char b[BDEVNAME_SIZE];
3cb03002 1500 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1501 if (rdev)
9dd1e2fa 1502 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1503 i, !test_bit(In_sync, &rdev->flags),
1504 !test_bit(Faulty, &rdev->flags),
1505 bdevname(rdev->bdev,b));
1da177e4 1506 }
ddac7c7e 1507 rcu_read_unlock();
1da177e4
LT
1508}
1509
e8096360 1510static void close_sync(struct r1conf *conf)
1da177e4 1511{
79ef3a8a 1512 wait_barrier(conf, NULL);
1513 allow_barrier(conf, 0, 0);
1da177e4
LT
1514
1515 mempool_destroy(conf->r1buf_pool);
1516 conf->r1buf_pool = NULL;
79ef3a8a 1517
669cc7ba 1518 spin_lock_irq(&conf->resync_lock);
79ef3a8a 1519 conf->next_resync = 0;
1520 conf->start_next_window = MaxSector;
669cc7ba
N
1521 conf->current_window_requests +=
1522 conf->next_window_requests;
1523 conf->next_window_requests = 0;
1524 spin_unlock_irq(&conf->resync_lock);
1da177e4
LT
1525}
1526
fd01b88c 1527static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1528{
1529 int i;
e8096360 1530 struct r1conf *conf = mddev->private;
6b965620
N
1531 int count = 0;
1532 unsigned long flags;
1da177e4
LT
1533
1534 /*
f72ffdd6 1535 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1536 * and mark them readable.
1537 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1538 * device_lock used to avoid races with raid1_end_read_request
1539 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1540 */
423f04d6 1541 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1542 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1543 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1544 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1545 if (repl
1aee41f6 1546 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1547 && repl->recovery_offset == MaxSector
1548 && !test_bit(Faulty, &repl->flags)
1549 && !test_and_set_bit(In_sync, &repl->flags)) {
1550 /* replacement has just become active */
1551 if (!rdev ||
1552 !test_and_clear_bit(In_sync, &rdev->flags))
1553 count++;
1554 if (rdev) {
1555 /* Replaced device not technically
1556 * faulty, but we need to be sure
1557 * it gets removed and never re-added
1558 */
1559 set_bit(Faulty, &rdev->flags);
1560 sysfs_notify_dirent_safe(
1561 rdev->sysfs_state);
1562 }
1563 }
ddac7c7e 1564 if (rdev
61e4947c 1565 && rdev->recovery_offset == MaxSector
ddac7c7e 1566 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1567 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1568 count++;
654e8b5a 1569 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1570 }
1571 }
6b965620
N
1572 mddev->degraded -= count;
1573 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1574
1575 print_conf(conf);
6b965620 1576 return count;
1da177e4
LT
1577}
1578
fd01b88c 1579static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1580{
e8096360 1581 struct r1conf *conf = mddev->private;
199050ea 1582 int err = -EEXIST;
41158c7e 1583 int mirror = 0;
0eaf822c 1584 struct raid1_info *p;
6c2fce2e 1585 int first = 0;
30194636 1586 int last = conf->raid_disks - 1;
1da177e4 1587
5389042f
N
1588 if (mddev->recovery_disabled == conf->recovery_disabled)
1589 return -EBUSY;
1590
6c2fce2e
NB
1591 if (rdev->raid_disk >= 0)
1592 first = last = rdev->raid_disk;
1593
7ef449d1
N
1594 for (mirror = first; mirror <= last; mirror++) {
1595 p = conf->mirrors+mirror;
1596 if (!p->rdev) {
1da177e4 1597
9092c02d
JB
1598 if (mddev->gendisk)
1599 disk_stack_limits(mddev->gendisk, rdev->bdev,
1600 rdev->data_offset << 9);
1da177e4
LT
1601
1602 p->head_position = 0;
1603 rdev->raid_disk = mirror;
199050ea 1604 err = 0;
6aea114a
N
1605 /* As all devices are equivalent, we don't need a full recovery
1606 * if this was recently any drive of the array
1607 */
1608 if (rdev->saved_raid_disk < 0)
41158c7e 1609 conf->fullsync = 1;
d6065f7b 1610 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1611 break;
1612 }
7ef449d1
N
1613 if (test_bit(WantReplacement, &p->rdev->flags) &&
1614 p[conf->raid_disks].rdev == NULL) {
1615 /* Add this device as a replacement */
1616 clear_bit(In_sync, &rdev->flags);
1617 set_bit(Replacement, &rdev->flags);
1618 rdev->raid_disk = mirror;
1619 err = 0;
1620 conf->fullsync = 1;
1621 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1622 break;
1623 }
1624 }
ac5e7113 1625 md_integrity_add_rdev(rdev, mddev);
9092c02d 1626 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1627 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1628 print_conf(conf);
199050ea 1629 return err;
1da177e4
LT
1630}
1631
b8321b68 1632static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1633{
e8096360 1634 struct r1conf *conf = mddev->private;
1da177e4 1635 int err = 0;
b8321b68 1636 int number = rdev->raid_disk;
0eaf822c 1637 struct raid1_info *p = conf->mirrors + number;
1da177e4 1638
b014f14c
N
1639 if (rdev != p->rdev)
1640 p = conf->mirrors + conf->raid_disks + number;
1641
1da177e4 1642 print_conf(conf);
b8321b68 1643 if (rdev == p->rdev) {
b2d444d7 1644 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1645 atomic_read(&rdev->nr_pending)) {
1646 err = -EBUSY;
1647 goto abort;
1648 }
046abeed 1649 /* Only remove non-faulty devices if recovery
dfc70645
N
1650 * is not possible.
1651 */
1652 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1653 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1654 mddev->degraded < conf->raid_disks) {
1655 err = -EBUSY;
1656 goto abort;
1657 }
1da177e4 1658 p->rdev = NULL;
fbd568a3 1659 synchronize_rcu();
1da177e4
LT
1660 if (atomic_read(&rdev->nr_pending)) {
1661 /* lost the race, try later */
1662 err = -EBUSY;
1663 p->rdev = rdev;
ac5e7113 1664 goto abort;
8c7a2c2b
N
1665 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1666 /* We just removed a device that is being replaced.
1667 * Move down the replacement. We drain all IO before
1668 * doing this to avoid confusion.
1669 */
1670 struct md_rdev *repl =
1671 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1672 freeze_array(conf, 0);
8c7a2c2b
N
1673 clear_bit(Replacement, &repl->flags);
1674 p->rdev = repl;
1675 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1676 unfreeze_array(conf);
8c7a2c2b
N
1677 clear_bit(WantReplacement, &rdev->flags);
1678 } else
b014f14c 1679 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1680 err = md_integrity_register(mddev);
1da177e4
LT
1681 }
1682abort:
1683
1684 print_conf(conf);
1685 return err;
1686}
1687
4246a0b6 1688static void end_sync_read(struct bio *bio)
1da177e4 1689{
9f2c9d12 1690 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1691
0fc280f6 1692 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1693
1da177e4
LT
1694 /*
1695 * we have read a block, now it needs to be re-written,
1696 * or re-read if the read failed.
1697 * We don't do much here, just schedule handling by raid1d
1698 */
4246a0b6 1699 if (!bio->bi_error)
1da177e4 1700 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1701
1702 if (atomic_dec_and_test(&r1_bio->remaining))
1703 reschedule_retry(r1_bio);
1da177e4
LT
1704}
1705
4246a0b6 1706static void end_sync_write(struct bio *bio)
1da177e4 1707{
4246a0b6 1708 int uptodate = !bio->bi_error;
9f2c9d12 1709 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1710 struct mddev *mddev = r1_bio->mddev;
e8096360 1711 struct r1conf *conf = mddev->private;
1da177e4 1712 int mirror=0;
4367af55
N
1713 sector_t first_bad;
1714 int bad_sectors;
1da177e4 1715
ba3ae3be
NK
1716 mirror = find_bio_disk(r1_bio, bio);
1717
6b1117d5 1718 if (!uptodate) {
57dab0bd 1719 sector_t sync_blocks = 0;
6b1117d5
N
1720 sector_t s = r1_bio->sector;
1721 long sectors_to_go = r1_bio->sectors;
1722 /* make sure these bits doesn't get cleared. */
1723 do {
5e3db645 1724 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1725 &sync_blocks, 1);
1726 s += sync_blocks;
1727 sectors_to_go -= sync_blocks;
1728 } while (sectors_to_go > 0);
d8f05d29
N
1729 set_bit(WriteErrorSeen,
1730 &conf->mirrors[mirror].rdev->flags);
19d67169
N
1731 if (!test_and_set_bit(WantReplacement,
1732 &conf->mirrors[mirror].rdev->flags))
1733 set_bit(MD_RECOVERY_NEEDED, &
1734 mddev->recovery);
d8f05d29 1735 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1736 } else if (is_badblock(conf->mirrors[mirror].rdev,
1737 r1_bio->sector,
1738 r1_bio->sectors,
3a9f28a5
N
1739 &first_bad, &bad_sectors) &&
1740 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1741 r1_bio->sector,
1742 r1_bio->sectors,
1743 &first_bad, &bad_sectors)
1744 )
4367af55 1745 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1746
1da177e4 1747 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1748 int s = r1_bio->sectors;
d8f05d29
N
1749 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1750 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1751 reschedule_retry(r1_bio);
1752 else {
1753 put_buf(r1_bio);
1754 md_done_sync(mddev, s, uptodate);
1755 }
1da177e4 1756 }
1da177e4
LT
1757}
1758
3cb03002 1759static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1760 int sectors, struct page *page, int rw)
1761{
1762 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1763 /* success */
1764 return 1;
19d67169 1765 if (rw == WRITE) {
d8f05d29 1766 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1767 if (!test_and_set_bit(WantReplacement,
1768 &rdev->flags))
1769 set_bit(MD_RECOVERY_NEEDED, &
1770 rdev->mddev->recovery);
1771 }
d8f05d29
N
1772 /* need to record an error - either for the block or the device */
1773 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1774 md_error(rdev->mddev, rdev);
1775 return 0;
1776}
1777
9f2c9d12 1778static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1779{
a68e5870
N
1780 /* Try some synchronous reads of other devices to get
1781 * good data, much like with normal read errors. Only
1782 * read into the pages we already have so we don't
1783 * need to re-issue the read request.
1784 * We don't need to freeze the array, because being in an
1785 * active sync request, there is no normal IO, and
1786 * no overlapping syncs.
06f60385
N
1787 * We don't need to check is_badblock() again as we
1788 * made sure that anything with a bad block in range
1789 * will have bi_end_io clear.
a68e5870 1790 */
fd01b88c 1791 struct mddev *mddev = r1_bio->mddev;
e8096360 1792 struct r1conf *conf = mddev->private;
a68e5870
N
1793 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1794 sector_t sect = r1_bio->sector;
1795 int sectors = r1_bio->sectors;
1796 int idx = 0;
1797
1798 while(sectors) {
1799 int s = sectors;
1800 int d = r1_bio->read_disk;
1801 int success = 0;
3cb03002 1802 struct md_rdev *rdev;
78d7f5f7 1803 int start;
a68e5870
N
1804
1805 if (s > (PAGE_SIZE>>9))
1806 s = PAGE_SIZE >> 9;
1807 do {
1808 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1809 /* No rcu protection needed here devices
1810 * can only be removed when no resync is
1811 * active, and resync is currently active
1812 */
1813 rdev = conf->mirrors[d].rdev;
9d3d8011 1814 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1815 bio->bi_io_vec[idx].bv_page,
1816 READ, false)) {
1817 success = 1;
1818 break;
1819 }
1820 }
1821 d++;
8f19ccb2 1822 if (d == conf->raid_disks * 2)
a68e5870
N
1823 d = 0;
1824 } while (!success && d != r1_bio->read_disk);
1825
78d7f5f7 1826 if (!success) {
a68e5870 1827 char b[BDEVNAME_SIZE];
3a9f28a5
N
1828 int abort = 0;
1829 /* Cannot read from anywhere, this block is lost.
1830 * Record a bad block on each device. If that doesn't
1831 * work just disable and interrupt the recovery.
1832 * Don't fail devices as that won't really help.
1833 */
a68e5870
N
1834 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1835 " for block %llu\n",
1836 mdname(mddev),
1837 bdevname(bio->bi_bdev, b),
1838 (unsigned long long)r1_bio->sector);
8f19ccb2 1839 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1840 rdev = conf->mirrors[d].rdev;
1841 if (!rdev || test_bit(Faulty, &rdev->flags))
1842 continue;
1843 if (!rdev_set_badblocks(rdev, sect, s, 0))
1844 abort = 1;
1845 }
1846 if (abort) {
d890fa2b
N
1847 conf->recovery_disabled =
1848 mddev->recovery_disabled;
3a9f28a5
N
1849 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1850 md_done_sync(mddev, r1_bio->sectors, 0);
1851 put_buf(r1_bio);
1852 return 0;
1853 }
1854 /* Try next page */
1855 sectors -= s;
1856 sect += s;
1857 idx++;
1858 continue;
d11c171e 1859 }
78d7f5f7
N
1860
1861 start = d;
1862 /* write it back and re-read */
1863 while (d != r1_bio->read_disk) {
1864 if (d == 0)
8f19ccb2 1865 d = conf->raid_disks * 2;
78d7f5f7
N
1866 d--;
1867 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1868 continue;
1869 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1870 if (r1_sync_page_io(rdev, sect, s,
1871 bio->bi_io_vec[idx].bv_page,
1872 WRITE) == 0) {
78d7f5f7
N
1873 r1_bio->bios[d]->bi_end_io = NULL;
1874 rdev_dec_pending(rdev, mddev);
9d3d8011 1875 }
78d7f5f7
N
1876 }
1877 d = start;
1878 while (d != r1_bio->read_disk) {
1879 if (d == 0)
8f19ccb2 1880 d = conf->raid_disks * 2;
78d7f5f7
N
1881 d--;
1882 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1883 continue;
1884 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1885 if (r1_sync_page_io(rdev, sect, s,
1886 bio->bi_io_vec[idx].bv_page,
1887 READ) != 0)
9d3d8011 1888 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1889 }
a68e5870
N
1890 sectors -= s;
1891 sect += s;
1892 idx ++;
1893 }
78d7f5f7 1894 set_bit(R1BIO_Uptodate, &r1_bio->state);
4246a0b6 1895 bio->bi_error = 0;
a68e5870
N
1896 return 1;
1897}
1898
c95e6385 1899static void process_checks(struct r1bio *r1_bio)
a68e5870
N
1900{
1901 /* We have read all readable devices. If we haven't
1902 * got the block, then there is no hope left.
1903 * If we have, then we want to do a comparison
1904 * and skip the write if everything is the same.
1905 * If any blocks failed to read, then we need to
1906 * attempt an over-write
1907 */
fd01b88c 1908 struct mddev *mddev = r1_bio->mddev;
e8096360 1909 struct r1conf *conf = mddev->private;
a68e5870
N
1910 int primary;
1911 int i;
f4380a91 1912 int vcnt;
a68e5870 1913
30bc9b53
N
1914 /* Fix variable parts of all bios */
1915 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1916 for (i = 0; i < conf->raid_disks * 2; i++) {
1917 int j;
1918 int size;
4246a0b6 1919 int error;
30bc9b53
N
1920 struct bio *b = r1_bio->bios[i];
1921 if (b->bi_end_io != end_sync_read)
1922 continue;
4246a0b6
CH
1923 /* fixup the bio for reuse, but preserve errno */
1924 error = b->bi_error;
30bc9b53 1925 bio_reset(b);
4246a0b6 1926 b->bi_error = error;
30bc9b53 1927 b->bi_vcnt = vcnt;
4f024f37
KO
1928 b->bi_iter.bi_size = r1_bio->sectors << 9;
1929 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53
N
1930 conf->mirrors[i].rdev->data_offset;
1931 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1932 b->bi_end_io = end_sync_read;
1933 b->bi_private = r1_bio;
1934
4f024f37 1935 size = b->bi_iter.bi_size;
30bc9b53
N
1936 for (j = 0; j < vcnt ; j++) {
1937 struct bio_vec *bi;
1938 bi = &b->bi_io_vec[j];
1939 bi->bv_offset = 0;
1940 if (size > PAGE_SIZE)
1941 bi->bv_len = PAGE_SIZE;
1942 else
1943 bi->bv_len = size;
1944 size -= PAGE_SIZE;
1945 }
1946 }
8f19ccb2 1947 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 1948 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4246a0b6 1949 !r1_bio->bios[primary]->bi_error) {
a68e5870
N
1950 r1_bio->bios[primary]->bi_end_io = NULL;
1951 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1952 break;
1953 }
1954 r1_bio->read_disk = primary;
8f19ccb2 1955 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 1956 int j;
78d7f5f7
N
1957 struct bio *pbio = r1_bio->bios[primary];
1958 struct bio *sbio = r1_bio->bios[i];
4246a0b6 1959 int error = sbio->bi_error;
a68e5870 1960
2aabaa65 1961 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 1962 continue;
4246a0b6
CH
1963 /* Now we can 'fixup' the error value */
1964 sbio->bi_error = 0;
78d7f5f7 1965
4246a0b6 1966 if (!error) {
78d7f5f7
N
1967 for (j = vcnt; j-- ; ) {
1968 struct page *p, *s;
1969 p = pbio->bi_io_vec[j].bv_page;
1970 s = sbio->bi_io_vec[j].bv_page;
1971 if (memcmp(page_address(p),
1972 page_address(s),
5020ad7d 1973 sbio->bi_io_vec[j].bv_len))
78d7f5f7 1974 break;
69382e85 1975 }
78d7f5f7
N
1976 } else
1977 j = 0;
1978 if (j >= 0)
7f7583d4 1979 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 1980 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4246a0b6 1981 && !error)) {
78d7f5f7
N
1982 /* No need to write to this device. */
1983 sbio->bi_end_io = NULL;
1984 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1985 continue;
1986 }
d3b45c2a
KO
1987
1988 bio_copy_data(sbio, pbio);
78d7f5f7 1989 }
a68e5870
N
1990}
1991
9f2c9d12 1992static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 1993{
e8096360 1994 struct r1conf *conf = mddev->private;
a68e5870 1995 int i;
8f19ccb2 1996 int disks = conf->raid_disks * 2;
a68e5870
N
1997 struct bio *bio, *wbio;
1998
1999 bio = r1_bio->bios[r1_bio->read_disk];
2000
a68e5870
N
2001 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2002 /* ouch - failed to read all of that. */
2003 if (!fix_sync_read_error(r1_bio))
2004 return;
7ca78d57
N
2005
2006 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2007 process_checks(r1_bio);
2008
d11c171e
N
2009 /*
2010 * schedule writes
2011 */
1da177e4
LT
2012 atomic_set(&r1_bio->remaining, 1);
2013 for (i = 0; i < disks ; i++) {
2014 wbio = r1_bio->bios[i];
3e198f78
N
2015 if (wbio->bi_end_io == NULL ||
2016 (wbio->bi_end_io == end_sync_read &&
2017 (i == r1_bio->read_disk ||
2018 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
2019 continue;
2020
3e198f78
N
2021 wbio->bi_rw = WRITE;
2022 wbio->bi_end_io = end_sync_write;
1da177e4 2023 atomic_inc(&r1_bio->remaining);
aa8b57aa 2024 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2025
1da177e4
LT
2026 generic_make_request(wbio);
2027 }
2028
2029 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2030 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2031 int s = r1_bio->sectors;
2032 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2033 test_bit(R1BIO_WriteError, &r1_bio->state))
2034 reschedule_retry(r1_bio);
2035 else {
2036 put_buf(r1_bio);
2037 md_done_sync(mddev, s, 1);
2038 }
1da177e4
LT
2039 }
2040}
2041
2042/*
2043 * This is a kernel thread which:
2044 *
2045 * 1. Retries failed read operations on working mirrors.
2046 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2047 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2048 */
2049
e8096360 2050static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2051 sector_t sect, int sectors)
2052{
fd01b88c 2053 struct mddev *mddev = conf->mddev;
867868fb
N
2054 while(sectors) {
2055 int s = sectors;
2056 int d = read_disk;
2057 int success = 0;
2058 int start;
3cb03002 2059 struct md_rdev *rdev;
867868fb
N
2060
2061 if (s > (PAGE_SIZE>>9))
2062 s = PAGE_SIZE >> 9;
2063
2064 do {
2065 /* Note: no rcu protection needed here
2066 * as this is synchronous in the raid1d thread
2067 * which is the thread that might remove
2068 * a device. If raid1d ever becomes multi-threaded....
2069 */
d2eb35ac
N
2070 sector_t first_bad;
2071 int bad_sectors;
2072
867868fb
N
2073 rdev = conf->mirrors[d].rdev;
2074 if (rdev &&
da8840a7 2075 (test_bit(In_sync, &rdev->flags) ||
2076 (!test_bit(Faulty, &rdev->flags) &&
2077 rdev->recovery_offset >= sect + s)) &&
d2eb35ac
N
2078 is_badblock(rdev, sect, s,
2079 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
2080 sync_page_io(rdev, sect, s<<9,
2081 conf->tmppage, READ, false))
867868fb
N
2082 success = 1;
2083 else {
2084 d++;
8f19ccb2 2085 if (d == conf->raid_disks * 2)
867868fb
N
2086 d = 0;
2087 }
2088 } while (!success && d != read_disk);
2089
2090 if (!success) {
d8f05d29 2091 /* Cannot read from anywhere - mark it bad */
3cb03002 2092 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2093 if (!rdev_set_badblocks(rdev, sect, s, 0))
2094 md_error(mddev, rdev);
867868fb
N
2095 break;
2096 }
2097 /* write it back and re-read */
2098 start = d;
2099 while (d != read_disk) {
2100 if (d==0)
8f19ccb2 2101 d = conf->raid_disks * 2;
867868fb
N
2102 d--;
2103 rdev = conf->mirrors[d].rdev;
2104 if (rdev &&
b8cb6b4c 2105 !test_bit(Faulty, &rdev->flags))
d8f05d29
N
2106 r1_sync_page_io(rdev, sect, s,
2107 conf->tmppage, WRITE);
867868fb
N
2108 }
2109 d = start;
2110 while (d != read_disk) {
2111 char b[BDEVNAME_SIZE];
2112 if (d==0)
8f19ccb2 2113 d = conf->raid_disks * 2;
867868fb
N
2114 d--;
2115 rdev = conf->mirrors[d].rdev;
2116 if (rdev &&
b8cb6b4c 2117 !test_bit(Faulty, &rdev->flags)) {
d8f05d29
N
2118 if (r1_sync_page_io(rdev, sect, s,
2119 conf->tmppage, READ)) {
867868fb
N
2120 atomic_add(s, &rdev->corrected_errors);
2121 printk(KERN_INFO
9dd1e2fa 2122 "md/raid1:%s: read error corrected "
867868fb
N
2123 "(%d sectors at %llu on %s)\n",
2124 mdname(mddev), s,
969b755a
RD
2125 (unsigned long long)(sect +
2126 rdev->data_offset),
867868fb
N
2127 bdevname(rdev->bdev, b));
2128 }
2129 }
2130 }
2131 sectors -= s;
2132 sect += s;
2133 }
2134}
2135
9f2c9d12 2136static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2137{
fd01b88c 2138 struct mddev *mddev = r1_bio->mddev;
e8096360 2139 struct r1conf *conf = mddev->private;
3cb03002 2140 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2141
2142 /* bio has the data to be written to device 'i' where
2143 * we just recently had a write error.
2144 * We repeatedly clone the bio and trim down to one block,
2145 * then try the write. Where the write fails we record
2146 * a bad block.
2147 * It is conceivable that the bio doesn't exactly align with
2148 * blocks. We must handle this somehow.
2149 *
2150 * We currently own a reference on the rdev.
2151 */
2152
2153 int block_sectors;
2154 sector_t sector;
2155 int sectors;
2156 int sect_to_write = r1_bio->sectors;
2157 int ok = 1;
2158
2159 if (rdev->badblocks.shift < 0)
2160 return 0;
2161
ab713cdc
ND
2162 block_sectors = roundup(1 << rdev->badblocks.shift,
2163 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2164 sector = r1_bio->sector;
2165 sectors = ((sector + block_sectors)
2166 & ~(sector_t)(block_sectors - 1))
2167 - sector;
2168
cd5ff9a1
N
2169 while (sect_to_write) {
2170 struct bio *wbio;
2171 if (sectors > sect_to_write)
2172 sectors = sect_to_write;
2173 /* Write at 'sector' for 'sectors'*/
2174
b783863f
KO
2175 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2176 unsigned vcnt = r1_bio->behind_page_count;
2177 struct bio_vec *vec = r1_bio->behind_bvecs;
2178
2179 while (!vec->bv_page) {
2180 vec++;
2181 vcnt--;
2182 }
2183
2184 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2185 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2186
2187 wbio->bi_vcnt = vcnt;
2188 } else {
2189 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2190 }
2191
cd5ff9a1 2192 wbio->bi_rw = WRITE;
4f024f37
KO
2193 wbio->bi_iter.bi_sector = r1_bio->sector;
2194 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2195
6678d83f 2196 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2197 wbio->bi_iter.bi_sector += rdev->data_offset;
cd5ff9a1
N
2198 wbio->bi_bdev = rdev->bdev;
2199 if (submit_bio_wait(WRITE, wbio) == 0)
2200 /* failure! */
2201 ok = rdev_set_badblocks(rdev, sector,
2202 sectors, 0)
2203 && ok;
2204
2205 bio_put(wbio);
2206 sect_to_write -= sectors;
2207 sector += sectors;
2208 sectors = block_sectors;
2209 }
2210 return ok;
2211}
2212
e8096360 2213static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2214{
2215 int m;
2216 int s = r1_bio->sectors;
8f19ccb2 2217 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2218 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2219 struct bio *bio = r1_bio->bios[m];
2220 if (bio->bi_end_io == NULL)
2221 continue;
4246a0b6 2222 if (!bio->bi_error &&
62096bce 2223 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2224 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2225 }
4246a0b6 2226 if (bio->bi_error &&
62096bce
N
2227 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2228 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2229 md_error(conf->mddev, rdev);
2230 }
2231 }
2232 put_buf(r1_bio);
2233 md_done_sync(conf->mddev, s, 1);
2234}
2235
e8096360 2236static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2237{
2238 int m;
55ce74d4 2239 bool fail = false;
8f19ccb2 2240 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2241 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2242 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2243 rdev_clear_badblocks(rdev,
2244 r1_bio->sector,
c6563a8c 2245 r1_bio->sectors, 0);
62096bce
N
2246 rdev_dec_pending(rdev, conf->mddev);
2247 } else if (r1_bio->bios[m] != NULL) {
2248 /* This drive got a write error. We need to
2249 * narrow down and record precise write
2250 * errors.
2251 */
55ce74d4 2252 fail = true;
62096bce
N
2253 if (!narrow_write_error(r1_bio, m)) {
2254 md_error(conf->mddev,
2255 conf->mirrors[m].rdev);
2256 /* an I/O failed, we can't clear the bitmap */
2257 set_bit(R1BIO_Degraded, &r1_bio->state);
2258 }
2259 rdev_dec_pending(conf->mirrors[m].rdev,
2260 conf->mddev);
2261 }
2262 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2263 close_write(r1_bio);
55ce74d4
N
2264 if (fail) {
2265 spin_lock_irq(&conf->device_lock);
2266 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2267 spin_unlock_irq(&conf->device_lock);
2268 md_wakeup_thread(conf->mddev->thread);
2269 } else
2270 raid_end_bio_io(r1_bio);
62096bce
N
2271}
2272
e8096360 2273static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2274{
2275 int disk;
2276 int max_sectors;
fd01b88c 2277 struct mddev *mddev = conf->mddev;
62096bce
N
2278 struct bio *bio;
2279 char b[BDEVNAME_SIZE];
3cb03002 2280 struct md_rdev *rdev;
62096bce
N
2281
2282 clear_bit(R1BIO_ReadError, &r1_bio->state);
2283 /* we got a read error. Maybe the drive is bad. Maybe just
2284 * the block and we can fix it.
2285 * We freeze all other IO, and try reading the block from
2286 * other devices. When we find one, we re-write
2287 * and check it that fixes the read error.
2288 * This is all done synchronously while the array is
2289 * frozen
2290 */
2291 if (mddev->ro == 0) {
e2d59925 2292 freeze_array(conf, 1);
62096bce
N
2293 fix_read_error(conf, r1_bio->read_disk,
2294 r1_bio->sector, r1_bio->sectors);
2295 unfreeze_array(conf);
2296 } else
2297 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
7ad4d4a6 2298 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
62096bce
N
2299
2300 bio = r1_bio->bios[r1_bio->read_disk];
2301 bdevname(bio->bi_bdev, b);
2302read_more:
2303 disk = read_balance(conf, r1_bio, &max_sectors);
2304 if (disk == -1) {
2305 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2306 " read error for block %llu\n",
2307 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2308 raid_end_bio_io(r1_bio);
2309 } else {
2310 const unsigned long do_sync
2311 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2312 if (bio) {
2313 r1_bio->bios[r1_bio->read_disk] =
2314 mddev->ro ? IO_BLOCKED : NULL;
2315 bio_put(bio);
2316 }
2317 r1_bio->read_disk = disk;
2318 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
4f024f37
KO
2319 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2320 max_sectors);
62096bce
N
2321 r1_bio->bios[r1_bio->read_disk] = bio;
2322 rdev = conf->mirrors[disk].rdev;
2323 printk_ratelimited(KERN_ERR
2324 "md/raid1:%s: redirecting sector %llu"
2325 " to other mirror: %s\n",
2326 mdname(mddev),
2327 (unsigned long long)r1_bio->sector,
2328 bdevname(rdev->bdev, b));
4f024f37 2329 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
62096bce
N
2330 bio->bi_bdev = rdev->bdev;
2331 bio->bi_end_io = raid1_end_read_request;
2332 bio->bi_rw = READ | do_sync;
2333 bio->bi_private = r1_bio;
2334 if (max_sectors < r1_bio->sectors) {
2335 /* Drat - have to split this up more */
2336 struct bio *mbio = r1_bio->master_bio;
2337 int sectors_handled = (r1_bio->sector + max_sectors
4f024f37 2338 - mbio->bi_iter.bi_sector);
62096bce
N
2339 r1_bio->sectors = max_sectors;
2340 spin_lock_irq(&conf->device_lock);
2341 if (mbio->bi_phys_segments == 0)
2342 mbio->bi_phys_segments = 2;
2343 else
2344 mbio->bi_phys_segments++;
2345 spin_unlock_irq(&conf->device_lock);
2346 generic_make_request(bio);
2347 bio = NULL;
2348
2349 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2350
2351 r1_bio->master_bio = mbio;
aa8b57aa 2352 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
62096bce
N
2353 r1_bio->state = 0;
2354 set_bit(R1BIO_ReadError, &r1_bio->state);
2355 r1_bio->mddev = mddev;
4f024f37
KO
2356 r1_bio->sector = mbio->bi_iter.bi_sector +
2357 sectors_handled;
62096bce
N
2358
2359 goto read_more;
2360 } else
2361 generic_make_request(bio);
2362 }
2363}
2364
4ed8731d 2365static void raid1d(struct md_thread *thread)
1da177e4 2366{
4ed8731d 2367 struct mddev *mddev = thread->mddev;
9f2c9d12 2368 struct r1bio *r1_bio;
1da177e4 2369 unsigned long flags;
e8096360 2370 struct r1conf *conf = mddev->private;
1da177e4 2371 struct list_head *head = &conf->retry_list;
e1dfa0a2 2372 struct blk_plug plug;
1da177e4
LT
2373
2374 md_check_recovery(mddev);
e1dfa0a2 2375
55ce74d4
N
2376 if (!list_empty_careful(&conf->bio_end_io_list) &&
2377 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2378 LIST_HEAD(tmp);
2379 spin_lock_irqsave(&conf->device_lock, flags);
2380 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2381 list_add(&tmp, &conf->bio_end_io_list);
2382 list_del_init(&conf->bio_end_io_list);
2383 }
2384 spin_unlock_irqrestore(&conf->device_lock, flags);
2385 while (!list_empty(&tmp)) {
2386 r1_bio = list_first_entry(&conf->bio_end_io_list,
2387 struct r1bio, retry_list);
2388 list_del(&r1_bio->retry_list);
2389 raid_end_bio_io(r1_bio);
2390 }
2391 }
2392
e1dfa0a2 2393 blk_start_plug(&plug);
1da177e4 2394 for (;;) {
191ea9b2 2395
0021b7bc 2396 flush_pending_writes(conf);
191ea9b2 2397
a35e63ef
N
2398 spin_lock_irqsave(&conf->device_lock, flags);
2399 if (list_empty(head)) {
2400 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2401 break;
a35e63ef 2402 }
9f2c9d12 2403 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2404 list_del(head->prev);
ddaf22ab 2405 conf->nr_queued--;
1da177e4
LT
2406 spin_unlock_irqrestore(&conf->device_lock, flags);
2407
2408 mddev = r1_bio->mddev;
070ec55d 2409 conf = mddev->private;
4367af55 2410 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2411 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2412 test_bit(R1BIO_WriteError, &r1_bio->state))
2413 handle_sync_write_finished(conf, r1_bio);
2414 else
4367af55 2415 sync_request_write(mddev, r1_bio);
cd5ff9a1 2416 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2417 test_bit(R1BIO_WriteError, &r1_bio->state))
2418 handle_write_finished(conf, r1_bio);
2419 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2420 handle_read_error(conf, r1_bio);
2421 else
d2eb35ac
N
2422 /* just a partial read to be scheduled from separate
2423 * context
2424 */
2425 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2426
1d9d5241 2427 cond_resched();
de393cde
N
2428 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2429 md_check_recovery(mddev);
1da177e4 2430 }
e1dfa0a2 2431 blk_finish_plug(&plug);
1da177e4
LT
2432}
2433
e8096360 2434static int init_resync(struct r1conf *conf)
1da177e4
LT
2435{
2436 int buffs;
2437
2438 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2439 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2440 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2441 conf->poolinfo);
2442 if (!conf->r1buf_pool)
2443 return -ENOMEM;
2444 conf->next_resync = 0;
2445 return 0;
2446}
2447
2448/*
2449 * perform a "sync" on one "block"
2450 *
2451 * We need to make sure that no normal I/O request - particularly write
2452 * requests - conflict with active sync requests.
2453 *
2454 * This is achieved by tracking pending requests and a 'barrier' concept
2455 * that can be installed to exclude normal IO requests.
2456 */
2457
09314799 2458static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 2459{
e8096360 2460 struct r1conf *conf = mddev->private;
9f2c9d12 2461 struct r1bio *r1_bio;
1da177e4
LT
2462 struct bio *bio;
2463 sector_t max_sector, nr_sectors;
3e198f78 2464 int disk = -1;
1da177e4 2465 int i;
3e198f78
N
2466 int wonly = -1;
2467 int write_targets = 0, read_targets = 0;
57dab0bd 2468 sector_t sync_blocks;
e3b9703e 2469 int still_degraded = 0;
06f60385
N
2470 int good_sectors = RESYNC_SECTORS;
2471 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2472
2473 if (!conf->r1buf_pool)
2474 if (init_resync(conf))
57afd89f 2475 return 0;
1da177e4 2476
58c0fed4 2477 max_sector = mddev->dev_sectors;
1da177e4 2478 if (sector_nr >= max_sector) {
191ea9b2
N
2479 /* If we aborted, we need to abort the
2480 * sync on the 'current' bitmap chunk (there will
2481 * only be one in raid1 resync.
2482 * We can find the current addess in mddev->curr_resync
2483 */
6a806c51
N
2484 if (mddev->curr_resync < max_sector) /* aborted */
2485 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2486 &sync_blocks, 1);
6a806c51 2487 else /* completed sync */
191ea9b2 2488 conf->fullsync = 0;
6a806c51
N
2489
2490 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2491 close_sync(conf);
2492 return 0;
2493 }
2494
07d84d10
N
2495 if (mddev->bitmap == NULL &&
2496 mddev->recovery_cp == MaxSector &&
6394cca5 2497 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2498 conf->fullsync == 0) {
2499 *skipped = 1;
2500 return max_sector - sector_nr;
2501 }
6394cca5
N
2502 /* before building a request, check if we can skip these blocks..
2503 * This call the bitmap_start_sync doesn't actually record anything
2504 */
e3b9703e 2505 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2506 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2507 /* We can skip this block, and probably several more */
2508 *skipped = 1;
2509 return sync_blocks;
2510 }
17999be4 2511
b47490c9 2512 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2513 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4 2514
c2fd4c94 2515 raise_barrier(conf, sector_nr);
1da177e4 2516
3e198f78 2517 rcu_read_lock();
1da177e4 2518 /*
3e198f78
N
2519 * If we get a correctably read error during resync or recovery,
2520 * we might want to read from a different device. So we
2521 * flag all drives that could conceivably be read from for READ,
2522 * and any others (which will be non-In_sync devices) for WRITE.
2523 * If a read fails, we try reading from something else for which READ
2524 * is OK.
1da177e4 2525 */
1da177e4 2526
1da177e4
LT
2527 r1_bio->mddev = mddev;
2528 r1_bio->sector = sector_nr;
191ea9b2 2529 r1_bio->state = 0;
1da177e4 2530 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2531
8f19ccb2 2532 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2533 struct md_rdev *rdev;
1da177e4 2534 bio = r1_bio->bios[i];
2aabaa65 2535 bio_reset(bio);
1da177e4 2536
3e198f78
N
2537 rdev = rcu_dereference(conf->mirrors[i].rdev);
2538 if (rdev == NULL ||
06f60385 2539 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2540 if (i < conf->raid_disks)
2541 still_degraded = 1;
3e198f78 2542 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2543 bio->bi_rw = WRITE;
2544 bio->bi_end_io = end_sync_write;
2545 write_targets ++;
3e198f78
N
2546 } else {
2547 /* may need to read from here */
06f60385
N
2548 sector_t first_bad = MaxSector;
2549 int bad_sectors;
2550
2551 if (is_badblock(rdev, sector_nr, good_sectors,
2552 &first_bad, &bad_sectors)) {
2553 if (first_bad > sector_nr)
2554 good_sectors = first_bad - sector_nr;
2555 else {
2556 bad_sectors -= (sector_nr - first_bad);
2557 if (min_bad == 0 ||
2558 min_bad > bad_sectors)
2559 min_bad = bad_sectors;
2560 }
2561 }
2562 if (sector_nr < first_bad) {
2563 if (test_bit(WriteMostly, &rdev->flags)) {
2564 if (wonly < 0)
2565 wonly = i;
2566 } else {
2567 if (disk < 0)
2568 disk = i;
2569 }
2570 bio->bi_rw = READ;
2571 bio->bi_end_io = end_sync_read;
2572 read_targets++;
d57368af
AL
2573 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2574 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2575 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2576 /*
2577 * The device is suitable for reading (InSync),
2578 * but has bad block(s) here. Let's try to correct them,
2579 * if we are doing resync or repair. Otherwise, leave
2580 * this device alone for this sync request.
2581 */
2582 bio->bi_rw = WRITE;
2583 bio->bi_end_io = end_sync_write;
2584 write_targets++;
3e198f78 2585 }
3e198f78 2586 }
06f60385
N
2587 if (bio->bi_end_io) {
2588 atomic_inc(&rdev->nr_pending);
4f024f37 2589 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
06f60385
N
2590 bio->bi_bdev = rdev->bdev;
2591 bio->bi_private = r1_bio;
2592 }
1da177e4 2593 }
3e198f78
N
2594 rcu_read_unlock();
2595 if (disk < 0)
2596 disk = wonly;
2597 r1_bio->read_disk = disk;
191ea9b2 2598
06f60385
N
2599 if (read_targets == 0 && min_bad > 0) {
2600 /* These sectors are bad on all InSync devices, so we
2601 * need to mark them bad on all write targets
2602 */
2603 int ok = 1;
8f19ccb2 2604 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2605 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2606 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2607 ok = rdev_set_badblocks(rdev, sector_nr,
2608 min_bad, 0
2609 ) && ok;
2610 }
2611 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2612 *skipped = 1;
2613 put_buf(r1_bio);
2614
2615 if (!ok) {
2616 /* Cannot record the badblocks, so need to
2617 * abort the resync.
2618 * If there are multiple read targets, could just
2619 * fail the really bad ones ???
2620 */
2621 conf->recovery_disabled = mddev->recovery_disabled;
2622 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2623 return 0;
2624 } else
2625 return min_bad;
2626
2627 }
2628 if (min_bad > 0 && min_bad < good_sectors) {
2629 /* only resync enough to reach the next bad->good
2630 * transition */
2631 good_sectors = min_bad;
2632 }
2633
3e198f78
N
2634 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2635 /* extra read targets are also write targets */
2636 write_targets += read_targets-1;
2637
2638 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2639 /* There is nowhere to write, so all non-sync
2640 * drives must be failed - so we are finished
2641 */
b7219ccb
N
2642 sector_t rv;
2643 if (min_bad > 0)
2644 max_sector = sector_nr + min_bad;
2645 rv = max_sector - sector_nr;
57afd89f 2646 *skipped = 1;
1da177e4 2647 put_buf(r1_bio);
1da177e4
LT
2648 return rv;
2649 }
2650
c6207277
N
2651 if (max_sector > mddev->resync_max)
2652 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2653 if (max_sector > sector_nr + good_sectors)
2654 max_sector = sector_nr + good_sectors;
1da177e4 2655 nr_sectors = 0;
289e99e8 2656 sync_blocks = 0;
1da177e4
LT
2657 do {
2658 struct page *page;
2659 int len = PAGE_SIZE;
2660 if (sector_nr + (len>>9) > max_sector)
2661 len = (max_sector - sector_nr) << 9;
2662 if (len == 0)
2663 break;
6a806c51
N
2664 if (sync_blocks == 0) {
2665 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2666 &sync_blocks, still_degraded) &&
2667 !conf->fullsync &&
2668 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2669 break;
9e77c485 2670 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2671 if ((len >> 9) > sync_blocks)
6a806c51 2672 len = sync_blocks<<9;
ab7a30c7 2673 }
191ea9b2 2674
8f19ccb2 2675 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2676 bio = r1_bio->bios[i];
2677 if (bio->bi_end_io) {
d11c171e 2678 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2679 if (bio_add_page(bio, page, len, 0) == 0) {
2680 /* stop here */
d11c171e 2681 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2682 while (i > 0) {
2683 i--;
2684 bio = r1_bio->bios[i];
6a806c51
N
2685 if (bio->bi_end_io==NULL)
2686 continue;
1da177e4
LT
2687 /* remove last page from this bio */
2688 bio->bi_vcnt--;
4f024f37 2689 bio->bi_iter.bi_size -= len;
b7c44ed9 2690 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4
LT
2691 }
2692 goto bio_full;
2693 }
2694 }
2695 }
2696 nr_sectors += len>>9;
2697 sector_nr += len>>9;
191ea9b2 2698 sync_blocks -= (len>>9);
1da177e4
LT
2699 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2700 bio_full:
1da177e4
LT
2701 r1_bio->sectors = nr_sectors;
2702
d11c171e
N
2703 /* For a user-requested sync, we read all readable devices and do a
2704 * compare
2705 */
2706 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2707 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2708 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2709 bio = r1_bio->bios[i];
2710 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2711 read_targets--;
ddac7c7e 2712 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2713 generic_make_request(bio);
2714 }
2715 }
2716 } else {
2717 atomic_set(&r1_bio->remaining, 1);
2718 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2719 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2720 generic_make_request(bio);
1da177e4 2721
d11c171e 2722 }
1da177e4
LT
2723 return nr_sectors;
2724}
2725
fd01b88c 2726static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2727{
2728 if (sectors)
2729 return sectors;
2730
2731 return mddev->dev_sectors;
2732}
2733
e8096360 2734static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2735{
e8096360 2736 struct r1conf *conf;
709ae487 2737 int i;
0eaf822c 2738 struct raid1_info *disk;
3cb03002 2739 struct md_rdev *rdev;
709ae487 2740 int err = -ENOMEM;
1da177e4 2741
e8096360 2742 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2743 if (!conf)
709ae487 2744 goto abort;
1da177e4 2745
0eaf822c 2746 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2747 * mddev->raid_disks * 2,
1da177e4
LT
2748 GFP_KERNEL);
2749 if (!conf->mirrors)
709ae487 2750 goto abort;
1da177e4 2751
ddaf22ab
N
2752 conf->tmppage = alloc_page(GFP_KERNEL);
2753 if (!conf->tmppage)
709ae487 2754 goto abort;
ddaf22ab 2755
709ae487 2756 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2757 if (!conf->poolinfo)
709ae487 2758 goto abort;
8f19ccb2 2759 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2760 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2761 r1bio_pool_free,
2762 conf->poolinfo);
2763 if (!conf->r1bio_pool)
709ae487
N
2764 goto abort;
2765
ed9bfdf1 2766 conf->poolinfo->mddev = mddev;
1da177e4 2767
c19d5798 2768 err = -EINVAL;
e7e72bf6 2769 spin_lock_init(&conf->device_lock);
dafb20fa 2770 rdev_for_each(rdev, mddev) {
aba336bd 2771 struct request_queue *q;
709ae487 2772 int disk_idx = rdev->raid_disk;
1da177e4
LT
2773 if (disk_idx >= mddev->raid_disks
2774 || disk_idx < 0)
2775 continue;
c19d5798 2776 if (test_bit(Replacement, &rdev->flags))
02b898f2 2777 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2778 else
2779 disk = conf->mirrors + disk_idx;
1da177e4 2780
c19d5798
N
2781 if (disk->rdev)
2782 goto abort;
1da177e4 2783 disk->rdev = rdev;
aba336bd 2784 q = bdev_get_queue(rdev->bdev);
1da177e4
LT
2785
2786 disk->head_position = 0;
12cee5a8 2787 disk->seq_start = MaxSector;
1da177e4
LT
2788 }
2789 conf->raid_disks = mddev->raid_disks;
2790 conf->mddev = mddev;
1da177e4 2791 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 2792 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
2793
2794 spin_lock_init(&conf->resync_lock);
17999be4 2795 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2796
191ea9b2 2797 bio_list_init(&conf->pending_bio_list);
34db0cd6 2798 conf->pending_count = 0;
d890fa2b 2799 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2800
79ef3a8a 2801 conf->start_next_window = MaxSector;
2802 conf->current_window_requests = conf->next_window_requests = 0;
2803
c19d5798 2804 err = -EIO;
8f19ccb2 2805 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2806
2807 disk = conf->mirrors + i;
2808
c19d5798
N
2809 if (i < conf->raid_disks &&
2810 disk[conf->raid_disks].rdev) {
2811 /* This slot has a replacement. */
2812 if (!disk->rdev) {
2813 /* No original, just make the replacement
2814 * a recovering spare
2815 */
2816 disk->rdev =
2817 disk[conf->raid_disks].rdev;
2818 disk[conf->raid_disks].rdev = NULL;
2819 } else if (!test_bit(In_sync, &disk->rdev->flags))
2820 /* Original is not in_sync - bad */
2821 goto abort;
2822 }
2823
5fd6c1dc
N
2824 if (!disk->rdev ||
2825 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2826 disk->head_position = 0;
4f0a5e01
JB
2827 if (disk->rdev &&
2828 (disk->rdev->saved_raid_disk < 0))
918f0238 2829 conf->fullsync = 1;
be4d3280 2830 }
1da177e4 2831 }
709ae487 2832
709ae487 2833 err = -ENOMEM;
0232605d 2834 conf->thread = md_register_thread(raid1d, mddev, "raid1");
709ae487
N
2835 if (!conf->thread) {
2836 printk(KERN_ERR
9dd1e2fa 2837 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2838 mdname(mddev));
2839 goto abort;
11ce99e6 2840 }
1da177e4 2841
709ae487
N
2842 return conf;
2843
2844 abort:
2845 if (conf) {
2846 if (conf->r1bio_pool)
2847 mempool_destroy(conf->r1bio_pool);
2848 kfree(conf->mirrors);
2849 safe_put_page(conf->tmppage);
2850 kfree(conf->poolinfo);
2851 kfree(conf);
2852 }
2853 return ERR_PTR(err);
2854}
2855
afa0f557 2856static void raid1_free(struct mddev *mddev, void *priv);
fd01b88c 2857static int run(struct mddev *mddev)
709ae487 2858{
e8096360 2859 struct r1conf *conf;
709ae487 2860 int i;
3cb03002 2861 struct md_rdev *rdev;
5220ea1e 2862 int ret;
2ff8cc2c 2863 bool discard_supported = false;
709ae487
N
2864
2865 if (mddev->level != 1) {
9dd1e2fa 2866 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2867 mdname(mddev), mddev->level);
2868 return -EIO;
2869 }
2870 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2871 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2872 mdname(mddev));
2873 return -EIO;
2874 }
1da177e4 2875 /*
709ae487
N
2876 * copy the already verified devices into our private RAID1
2877 * bookkeeping area. [whatever we allocate in run(),
afa0f557 2878 * should be freed in raid1_free()]
1da177e4 2879 */
709ae487
N
2880 if (mddev->private == NULL)
2881 conf = setup_conf(mddev);
2882 else
2883 conf = mddev->private;
1da177e4 2884
709ae487
N
2885 if (IS_ERR(conf))
2886 return PTR_ERR(conf);
1da177e4 2887
c8dc9c65 2888 if (mddev->queue)
5026d7a9
PA
2889 blk_queue_max_write_same_sectors(mddev->queue, 0);
2890
dafb20fa 2891 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2892 if (!mddev->gendisk)
2893 continue;
709ae487
N
2894 disk_stack_limits(mddev->gendisk, rdev->bdev,
2895 rdev->data_offset << 9);
2ff8cc2c
SL
2896 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2897 discard_supported = true;
1da177e4 2898 }
191ea9b2 2899
709ae487
N
2900 mddev->degraded = 0;
2901 for (i=0; i < conf->raid_disks; i++)
2902 if (conf->mirrors[i].rdev == NULL ||
2903 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2904 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2905 mddev->degraded++;
2906
2907 if (conf->raid_disks - mddev->degraded == 1)
2908 mddev->recovery_cp = MaxSector;
2909
8c6ac868 2910 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2911 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2912 " -- starting background reconstruction\n",
2913 mdname(mddev));
f72ffdd6 2914 printk(KERN_INFO
9dd1e2fa 2915 "md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 2916 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 2917 mddev->raid_disks);
709ae487 2918
1da177e4
LT
2919 /*
2920 * Ok, everything is just fine now
2921 */
709ae487
N
2922 mddev->thread = conf->thread;
2923 conf->thread = NULL;
2924 mddev->private = conf;
2925
1f403624 2926 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2927
1ed7242e 2928 if (mddev->queue) {
2ff8cc2c
SL
2929 if (discard_supported)
2930 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2931 mddev->queue);
2932 else
2933 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2934 mddev->queue);
1ed7242e 2935 }
5220ea1e 2936
2937 ret = md_integrity_register(mddev);
5aa61f42
N
2938 if (ret) {
2939 md_unregister_thread(&mddev->thread);
afa0f557 2940 raid1_free(mddev, conf);
5aa61f42 2941 }
5220ea1e 2942 return ret;
1da177e4
LT
2943}
2944
afa0f557 2945static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 2946{
afa0f557 2947 struct r1conf *conf = priv;
409c57f3 2948
1da177e4
LT
2949 if (conf->r1bio_pool)
2950 mempool_destroy(conf->r1bio_pool);
990a8baf 2951 kfree(conf->mirrors);
0fea7ed8 2952 safe_put_page(conf->tmppage);
990a8baf 2953 kfree(conf->poolinfo);
1da177e4 2954 kfree(conf);
1da177e4
LT
2955}
2956
fd01b88c 2957static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2958{
2959 /* no resync is happening, and there is enough space
2960 * on all devices, so we can resize.
2961 * We need to make sure resync covers any new space.
2962 * If the array is shrinking we should possibly wait until
2963 * any io in the removed space completes, but it hardly seems
2964 * worth it.
2965 */
a4a6125a
N
2966 sector_t newsize = raid1_size(mddev, sectors, 0);
2967 if (mddev->external_size &&
2968 mddev->array_sectors > newsize)
b522adcd 2969 return -EINVAL;
a4a6125a
N
2970 if (mddev->bitmap) {
2971 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2972 if (ret)
2973 return ret;
2974 }
2975 md_set_array_sectors(mddev, newsize);
f233ea5c 2976 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 2977 revalidate_disk(mddev->gendisk);
b522adcd 2978 if (sectors > mddev->dev_sectors &&
b098636c 2979 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 2980 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
2981 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2982 }
b522adcd 2983 mddev->dev_sectors = sectors;
4b5c7ae8 2984 mddev->resync_max_sectors = sectors;
1da177e4
LT
2985 return 0;
2986}
2987
fd01b88c 2988static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
2989{
2990 /* We need to:
2991 * 1/ resize the r1bio_pool
2992 * 2/ resize conf->mirrors
2993 *
2994 * We allocate a new r1bio_pool if we can.
2995 * Then raise a device barrier and wait until all IO stops.
2996 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
2997 *
2998 * At the same time, we "pack" the devices so that all the missing
2999 * devices have the higher raid_disk numbers.
1da177e4
LT
3000 */
3001 mempool_t *newpool, *oldpool;
3002 struct pool_info *newpoolinfo;
0eaf822c 3003 struct raid1_info *newmirrors;
e8096360 3004 struct r1conf *conf = mddev->private;
63c70c4f 3005 int cnt, raid_disks;
c04be0aa 3006 unsigned long flags;
b5470dc5 3007 int d, d2, err;
1da177e4 3008
63c70c4f 3009 /* Cannot change chunk_size, layout, or level */
664e7c41 3010 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3011 mddev->layout != mddev->new_layout ||
3012 mddev->level != mddev->new_level) {
664e7c41 3013 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3014 mddev->new_layout = mddev->layout;
3015 mddev->new_level = mddev->level;
3016 return -EINVAL;
3017 }
3018
b5470dc5
DW
3019 err = md_allow_write(mddev);
3020 if (err)
3021 return err;
2a2275d6 3022
63c70c4f
N
3023 raid_disks = mddev->raid_disks + mddev->delta_disks;
3024
6ea9c07c
N
3025 if (raid_disks < conf->raid_disks) {
3026 cnt=0;
3027 for (d= 0; d < conf->raid_disks; d++)
3028 if (conf->mirrors[d].rdev)
3029 cnt++;
3030 if (cnt > raid_disks)
1da177e4 3031 return -EBUSY;
6ea9c07c 3032 }
1da177e4
LT
3033
3034 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3035 if (!newpoolinfo)
3036 return -ENOMEM;
3037 newpoolinfo->mddev = mddev;
8f19ccb2 3038 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3039
3040 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3041 r1bio_pool_free, newpoolinfo);
3042 if (!newpool) {
3043 kfree(newpoolinfo);
3044 return -ENOMEM;
3045 }
0eaf822c 3046 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3047 GFP_KERNEL);
1da177e4
LT
3048 if (!newmirrors) {
3049 kfree(newpoolinfo);
3050 mempool_destroy(newpool);
3051 return -ENOMEM;
3052 }
1da177e4 3053
e2d59925 3054 freeze_array(conf, 0);
1da177e4
LT
3055
3056 /* ok, everything is stopped */
3057 oldpool = conf->r1bio_pool;
3058 conf->r1bio_pool = newpool;
6ea9c07c 3059
a88aa786 3060 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3061 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3062 if (rdev && rdev->raid_disk != d2) {
36fad858 3063 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3064 rdev->raid_disk = d2;
36fad858
NK
3065 sysfs_unlink_rdev(mddev, rdev);
3066 if (sysfs_link_rdev(mddev, rdev))
a88aa786 3067 printk(KERN_WARNING
36fad858
NK
3068 "md/raid1:%s: cannot register rd%d\n",
3069 mdname(mddev), rdev->raid_disk);
6ea9c07c 3070 }
a88aa786
N
3071 if (rdev)
3072 newmirrors[d2++].rdev = rdev;
3073 }
1da177e4
LT
3074 kfree(conf->mirrors);
3075 conf->mirrors = newmirrors;
3076 kfree(conf->poolinfo);
3077 conf->poolinfo = newpoolinfo;
3078
c04be0aa 3079 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3080 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3081 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3082 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3083 mddev->delta_disks = 0;
1da177e4 3084
e2d59925 3085 unfreeze_array(conf);
1da177e4 3086
985ca973 3087 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3088 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3089 md_wakeup_thread(mddev->thread);
3090
3091 mempool_destroy(oldpool);
3092 return 0;
3093}
3094
fd01b88c 3095static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3096{
e8096360 3097 struct r1conf *conf = mddev->private;
36fa3063
N
3098
3099 switch(state) {
6eef4b21
N
3100 case 2: /* wake for suspend */
3101 wake_up(&conf->wait_barrier);
3102 break;
9e6603da 3103 case 1:
07169fd4 3104 freeze_array(conf, 0);
36fa3063 3105 break;
9e6603da 3106 case 0:
07169fd4 3107 unfreeze_array(conf);
36fa3063
N
3108 break;
3109 }
36fa3063
N
3110}
3111
fd01b88c 3112static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3113{
3114 /* raid1 can take over:
3115 * raid5 with 2 devices, any layout or chunk size
3116 */
3117 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3118 struct r1conf *conf;
709ae487
N
3119 mddev->new_level = 1;
3120 mddev->new_layout = 0;
3121 mddev->new_chunk_sectors = 0;
3122 conf = setup_conf(mddev);
3123 if (!IS_ERR(conf))
07169fd4 3124 /* Array must appear to be quiesced */
3125 conf->array_frozen = 1;
709ae487
N
3126 return conf;
3127 }
3128 return ERR_PTR(-EINVAL);
3129}
1da177e4 3130
84fc4b56 3131static struct md_personality raid1_personality =
1da177e4
LT
3132{
3133 .name = "raid1",
2604b703 3134 .level = 1,
1da177e4
LT
3135 .owner = THIS_MODULE,
3136 .make_request = make_request,
3137 .run = run,
afa0f557 3138 .free = raid1_free,
1da177e4
LT
3139 .status = status,
3140 .error_handler = error,
3141 .hot_add_disk = raid1_add_disk,
3142 .hot_remove_disk= raid1_remove_disk,
3143 .spare_active = raid1_spare_active,
3144 .sync_request = sync_request,
3145 .resize = raid1_resize,
80c3a6ce 3146 .size = raid1_size,
63c70c4f 3147 .check_reshape = raid1_reshape,
36fa3063 3148 .quiesce = raid1_quiesce,
709ae487 3149 .takeover = raid1_takeover,
5c675f83 3150 .congested = raid1_congested,
1da177e4
LT
3151};
3152
3153static int __init raid_init(void)
3154{
2604b703 3155 return register_md_personality(&raid1_personality);
1da177e4
LT
3156}
3157
3158static void raid_exit(void)
3159{
2604b703 3160 unregister_md_personality(&raid1_personality);
1da177e4
LT
3161}
3162
3163module_init(raid_init);
3164module_exit(raid_exit);
3165MODULE_LICENSE("GPL");
0efb9e61 3166MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3167MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3168MODULE_ALIAS("md-raid1");
2604b703 3169MODULE_ALIAS("md-level-1");
34db0cd6
N
3170
3171module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 1.516506 seconds and 5 git commands to generate.