md/raid10: handle merge_bvec_fn in member devices.
[deliverable/linux.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
34db0cd6
N
49/* When there are this many requests queue to be written by
50 * the raid1 thread, we become 'congested' to provide back-pressure
51 * for writeback.
52 */
53static int max_queued_requests = 1024;
1da177e4 54
e8096360
N
55static void allow_barrier(struct r1conf *conf);
56static void lower_barrier(struct r1conf *conf);
1da177e4 57
dd0fc66f 58static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
59{
60 struct pool_info *pi = data;
9f2c9d12 61 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
62
63 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 64 return kzalloc(size, gfp_flags);
1da177e4
LT
65}
66
67static void r1bio_pool_free(void *r1_bio, void *data)
68{
69 kfree(r1_bio);
70}
71
72#define RESYNC_BLOCK_SIZE (64*1024)
73//#define RESYNC_BLOCK_SIZE PAGE_SIZE
74#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76#define RESYNC_WINDOW (2048*1024)
77
dd0fc66f 78static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
79{
80 struct pool_info *pi = data;
81 struct page *page;
9f2c9d12 82 struct r1bio *r1_bio;
1da177e4
LT
83 struct bio *bio;
84 int i, j;
85
86 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 87 if (!r1_bio)
1da177e4 88 return NULL;
1da177e4
LT
89
90 /*
91 * Allocate bios : 1 for reading, n-1 for writing
92 */
93 for (j = pi->raid_disks ; j-- ; ) {
6746557f 94 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
95 if (!bio)
96 goto out_free_bio;
97 r1_bio->bios[j] = bio;
98 }
99 /*
100 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
101 * the first bio.
102 * If this is a user-requested check/repair, allocate
103 * RESYNC_PAGES for each bio.
1da177e4 104 */
d11c171e
N
105 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
106 j = pi->raid_disks;
107 else
108 j = 1;
109 while(j--) {
110 bio = r1_bio->bios[j];
111 for (i = 0; i < RESYNC_PAGES; i++) {
112 page = alloc_page(gfp_flags);
113 if (unlikely(!page))
114 goto out_free_pages;
115
116 bio->bi_io_vec[i].bv_page = page;
303a0e11 117 bio->bi_vcnt = i+1;
d11c171e
N
118 }
119 }
120 /* If not user-requests, copy the page pointers to all bios */
121 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
122 for (i=0; i<RESYNC_PAGES ; i++)
123 for (j=1; j<pi->raid_disks; j++)
124 r1_bio->bios[j]->bi_io_vec[i].bv_page =
125 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
126 }
127
128 r1_bio->master_bio = NULL;
129
130 return r1_bio;
131
132out_free_pages:
303a0e11
N
133 for (j=0 ; j < pi->raid_disks; j++)
134 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
135 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 136 j = -1;
1da177e4 137out_free_bio:
8f19ccb2 138 while (++j < pi->raid_disks)
1da177e4
LT
139 bio_put(r1_bio->bios[j]);
140 r1bio_pool_free(r1_bio, data);
141 return NULL;
142}
143
144static void r1buf_pool_free(void *__r1_bio, void *data)
145{
146 struct pool_info *pi = data;
d11c171e 147 int i,j;
9f2c9d12 148 struct r1bio *r1bio = __r1_bio;
1da177e4 149
d11c171e
N
150 for (i = 0; i < RESYNC_PAGES; i++)
151 for (j = pi->raid_disks; j-- ;) {
152 if (j == 0 ||
153 r1bio->bios[j]->bi_io_vec[i].bv_page !=
154 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 155 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 156 }
1da177e4
LT
157 for (i=0 ; i < pi->raid_disks; i++)
158 bio_put(r1bio->bios[i]);
159
160 r1bio_pool_free(r1bio, data);
161}
162
e8096360 163static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
164{
165 int i;
166
8f19ccb2 167 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 168 struct bio **bio = r1_bio->bios + i;
4367af55 169 if (!BIO_SPECIAL(*bio))
1da177e4
LT
170 bio_put(*bio);
171 *bio = NULL;
172 }
173}
174
9f2c9d12 175static void free_r1bio(struct r1bio *r1_bio)
1da177e4 176{
e8096360 177 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 178
1da177e4
LT
179 put_all_bios(conf, r1_bio);
180 mempool_free(r1_bio, conf->r1bio_pool);
181}
182
9f2c9d12 183static void put_buf(struct r1bio *r1_bio)
1da177e4 184{
e8096360 185 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
186 int i;
187
8f19ccb2 188 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
189 struct bio *bio = r1_bio->bios[i];
190 if (bio->bi_end_io)
191 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
192 }
1da177e4
LT
193
194 mempool_free(r1_bio, conf->r1buf_pool);
195
17999be4 196 lower_barrier(conf);
1da177e4
LT
197}
198
9f2c9d12 199static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
200{
201 unsigned long flags;
fd01b88c 202 struct mddev *mddev = r1_bio->mddev;
e8096360 203 struct r1conf *conf = mddev->private;
1da177e4
LT
204
205 spin_lock_irqsave(&conf->device_lock, flags);
206 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 207 conf->nr_queued ++;
1da177e4
LT
208 spin_unlock_irqrestore(&conf->device_lock, flags);
209
17999be4 210 wake_up(&conf->wait_barrier);
1da177e4
LT
211 md_wakeup_thread(mddev->thread);
212}
213
214/*
215 * raid_end_bio_io() is called when we have finished servicing a mirrored
216 * operation and are ready to return a success/failure code to the buffer
217 * cache layer.
218 */
9f2c9d12 219static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
220{
221 struct bio *bio = r1_bio->master_bio;
222 int done;
e8096360 223 struct r1conf *conf = r1_bio->mddev->private;
d2eb35ac
N
224
225 if (bio->bi_phys_segments) {
226 unsigned long flags;
227 spin_lock_irqsave(&conf->device_lock, flags);
228 bio->bi_phys_segments--;
229 done = (bio->bi_phys_segments == 0);
230 spin_unlock_irqrestore(&conf->device_lock, flags);
231 } else
232 done = 1;
233
234 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
235 clear_bit(BIO_UPTODATE, &bio->bi_flags);
236 if (done) {
237 bio_endio(bio, 0);
238 /*
239 * Wake up any possible resync thread that waits for the device
240 * to go idle.
241 */
242 allow_barrier(conf);
243 }
244}
245
9f2c9d12 246static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
247{
248 struct bio *bio = r1_bio->master_bio;
249
4b6d287f
N
250 /* if nobody has done the final endio yet, do it now */
251 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
252 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
253 (bio_data_dir(bio) == WRITE) ? "write" : "read",
254 (unsigned long long) bio->bi_sector,
255 (unsigned long long) bio->bi_sector +
256 (bio->bi_size >> 9) - 1);
4b6d287f 257
d2eb35ac 258 call_bio_endio(r1_bio);
4b6d287f 259 }
1da177e4
LT
260 free_r1bio(r1_bio);
261}
262
263/*
264 * Update disk head position estimator based on IRQ completion info.
265 */
9f2c9d12 266static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 267{
e8096360 268 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
269
270 conf->mirrors[disk].head_position =
271 r1_bio->sector + (r1_bio->sectors);
272}
273
ba3ae3be
NK
274/*
275 * Find the disk number which triggered given bio
276 */
9f2c9d12 277static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
278{
279 int mirror;
30194636
N
280 struct r1conf *conf = r1_bio->mddev->private;
281 int raid_disks = conf->raid_disks;
ba3ae3be 282
8f19ccb2 283 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
284 if (r1_bio->bios[mirror] == bio)
285 break;
286
8f19ccb2 287 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
288 update_head_pos(mirror, r1_bio);
289
290 return mirror;
291}
292
6712ecf8 293static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
294{
295 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 296 struct r1bio *r1_bio = bio->bi_private;
1da177e4 297 int mirror;
e8096360 298 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 299
1da177e4
LT
300 mirror = r1_bio->read_disk;
301 /*
302 * this branch is our 'one mirror IO has finished' event handler:
303 */
ddaf22ab
N
304 update_head_pos(mirror, r1_bio);
305
dd00a99e
N
306 if (uptodate)
307 set_bit(R1BIO_Uptodate, &r1_bio->state);
308 else {
309 /* If all other devices have failed, we want to return
310 * the error upwards rather than fail the last device.
311 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 312 */
dd00a99e
N
313 unsigned long flags;
314 spin_lock_irqsave(&conf->device_lock, flags);
315 if (r1_bio->mddev->degraded == conf->raid_disks ||
316 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
317 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
318 uptodate = 1;
319 spin_unlock_irqrestore(&conf->device_lock, flags);
320 }
1da177e4 321
dd00a99e 322 if (uptodate)
1da177e4 323 raid_end_bio_io(r1_bio);
dd00a99e 324 else {
1da177e4
LT
325 /*
326 * oops, read error:
327 */
328 char b[BDEVNAME_SIZE];
8bda470e
CD
329 printk_ratelimited(
330 KERN_ERR "md/raid1:%s: %s: "
331 "rescheduling sector %llu\n",
332 mdname(conf->mddev),
333 bdevname(conf->mirrors[mirror].rdev->bdev,
334 b),
335 (unsigned long long)r1_bio->sector);
d2eb35ac 336 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4
LT
337 reschedule_retry(r1_bio);
338 }
339
340 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
1da177e4
LT
341}
342
9f2c9d12 343static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
344{
345 /* it really is the end of this request */
346 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
347 /* free extra copy of the data pages */
348 int i = r1_bio->behind_page_count;
349 while (i--)
350 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
351 kfree(r1_bio->behind_bvecs);
352 r1_bio->behind_bvecs = NULL;
353 }
354 /* clear the bitmap if all writes complete successfully */
355 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
356 r1_bio->sectors,
357 !test_bit(R1BIO_Degraded, &r1_bio->state),
358 test_bit(R1BIO_BehindIO, &r1_bio->state));
359 md_write_end(r1_bio->mddev);
360}
361
9f2c9d12 362static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 363{
cd5ff9a1
N
364 if (!atomic_dec_and_test(&r1_bio->remaining))
365 return;
366
367 if (test_bit(R1BIO_WriteError, &r1_bio->state))
368 reschedule_retry(r1_bio);
369 else {
370 close_write(r1_bio);
4367af55
N
371 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
372 reschedule_retry(r1_bio);
373 else
374 raid_end_bio_io(r1_bio);
4e78064f
N
375 }
376}
377
6712ecf8 378static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
379{
380 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 381 struct r1bio *r1_bio = bio->bi_private;
a9701a30 382 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 383 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 384 struct bio *to_put = NULL;
1da177e4 385
ba3ae3be 386 mirror = find_bio_disk(r1_bio, bio);
1da177e4 387
e9c7469b
TH
388 /*
389 * 'one mirror IO has finished' event handler:
390 */
e9c7469b 391 if (!uptodate) {
cd5ff9a1
N
392 set_bit(WriteErrorSeen,
393 &conf->mirrors[mirror].rdev->flags);
19d67169
N
394 if (!test_and_set_bit(WantReplacement,
395 &conf->mirrors[mirror].rdev->flags))
396 set_bit(MD_RECOVERY_NEEDED, &
397 conf->mddev->recovery);
398
cd5ff9a1 399 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 400 } else {
1da177e4 401 /*
e9c7469b
TH
402 * Set R1BIO_Uptodate in our master bio, so that we
403 * will return a good error code for to the higher
404 * levels even if IO on some other mirrored buffer
405 * fails.
406 *
407 * The 'master' represents the composite IO operation
408 * to user-side. So if something waits for IO, then it
409 * will wait for the 'master' bio.
1da177e4 410 */
4367af55
N
411 sector_t first_bad;
412 int bad_sectors;
413
cd5ff9a1
N
414 r1_bio->bios[mirror] = NULL;
415 to_put = bio;
e9c7469b
TH
416 set_bit(R1BIO_Uptodate, &r1_bio->state);
417
4367af55
N
418 /* Maybe we can clear some bad blocks. */
419 if (is_badblock(conf->mirrors[mirror].rdev,
420 r1_bio->sector, r1_bio->sectors,
421 &first_bad, &bad_sectors)) {
422 r1_bio->bios[mirror] = IO_MADE_GOOD;
423 set_bit(R1BIO_MadeGood, &r1_bio->state);
424 }
425 }
426
e9c7469b
TH
427 if (behind) {
428 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
429 atomic_dec(&r1_bio->behind_remaining);
430
431 /*
432 * In behind mode, we ACK the master bio once the I/O
433 * has safely reached all non-writemostly
434 * disks. Setting the Returned bit ensures that this
435 * gets done only once -- we don't ever want to return
436 * -EIO here, instead we'll wait
437 */
438 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
439 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
440 /* Maybe we can return now */
441 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
442 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
443 pr_debug("raid1: behind end write sectors"
444 " %llu-%llu\n",
445 (unsigned long long) mbio->bi_sector,
446 (unsigned long long) mbio->bi_sector +
447 (mbio->bi_size >> 9) - 1);
d2eb35ac 448 call_bio_endio(r1_bio);
4b6d287f
N
449 }
450 }
451 }
4367af55
N
452 if (r1_bio->bios[mirror] == NULL)
453 rdev_dec_pending(conf->mirrors[mirror].rdev,
454 conf->mddev);
e9c7469b 455
1da177e4 456 /*
1da177e4
LT
457 * Let's see if all mirrored write operations have finished
458 * already.
459 */
af6d7b76 460 r1_bio_write_done(r1_bio);
c70810b3 461
04b857f7
N
462 if (to_put)
463 bio_put(to_put);
1da177e4
LT
464}
465
466
467/*
468 * This routine returns the disk from which the requested read should
469 * be done. There is a per-array 'next expected sequential IO' sector
470 * number - if this matches on the next IO then we use the last disk.
471 * There is also a per-disk 'last know head position' sector that is
472 * maintained from IRQ contexts, both the normal and the resync IO
473 * completion handlers update this position correctly. If there is no
474 * perfect sequential match then we pick the disk whose head is closest.
475 *
476 * If there are 2 mirrors in the same 2 devices, performance degrades
477 * because position is mirror, not device based.
478 *
479 * The rdev for the device selected will have nr_pending incremented.
480 */
e8096360 481static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 482{
af3a2cd6 483 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
484 int sectors;
485 int best_good_sectors;
f3ac8bf7 486 int start_disk;
76073054 487 int best_disk;
f3ac8bf7 488 int i;
76073054 489 sector_t best_dist;
3cb03002 490 struct md_rdev *rdev;
f3ac8bf7 491 int choose_first;
1da177e4
LT
492
493 rcu_read_lock();
494 /*
8ddf9efe 495 * Check if we can balance. We can balance on the whole
1da177e4
LT
496 * device if no resync is going on, or below the resync window.
497 * We take the first readable disk when above the resync window.
498 */
499 retry:
d2eb35ac 500 sectors = r1_bio->sectors;
76073054
N
501 best_disk = -1;
502 best_dist = MaxSector;
d2eb35ac
N
503 best_good_sectors = 0;
504
1da177e4
LT
505 if (conf->mddev->recovery_cp < MaxSector &&
506 (this_sector + sectors >= conf->next_resync)) {
f3ac8bf7
N
507 choose_first = 1;
508 start_disk = 0;
509 } else {
510 choose_first = 0;
511 start_disk = conf->last_used;
1da177e4
LT
512 }
513
8f19ccb2 514 for (i = 0 ; i < conf->raid_disks * 2 ; i++) {
76073054 515 sector_t dist;
d2eb35ac
N
516 sector_t first_bad;
517 int bad_sectors;
518
f3ac8bf7
N
519 int disk = start_disk + i;
520 if (disk >= conf->raid_disks)
521 disk -= conf->raid_disks;
522
523 rdev = rcu_dereference(conf->mirrors[disk].rdev);
524 if (r1_bio->bios[disk] == IO_BLOCKED
525 || rdev == NULL
76073054 526 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 527 continue;
76073054
N
528 if (!test_bit(In_sync, &rdev->flags) &&
529 rdev->recovery_offset < this_sector + sectors)
1da177e4 530 continue;
76073054
N
531 if (test_bit(WriteMostly, &rdev->flags)) {
532 /* Don't balance among write-mostly, just
533 * use the first as a last resort */
307729c8
N
534 if (best_disk < 0) {
535 if (is_badblock(rdev, this_sector, sectors,
536 &first_bad, &bad_sectors)) {
537 if (first_bad < this_sector)
538 /* Cannot use this */
539 continue;
540 best_good_sectors = first_bad - this_sector;
541 } else
542 best_good_sectors = sectors;
76073054 543 best_disk = disk;
307729c8 544 }
76073054
N
545 continue;
546 }
547 /* This is a reasonable device to use. It might
548 * even be best.
549 */
d2eb35ac
N
550 if (is_badblock(rdev, this_sector, sectors,
551 &first_bad, &bad_sectors)) {
552 if (best_dist < MaxSector)
553 /* already have a better device */
554 continue;
555 if (first_bad <= this_sector) {
556 /* cannot read here. If this is the 'primary'
557 * device, then we must not read beyond
558 * bad_sectors from another device..
559 */
560 bad_sectors -= (this_sector - first_bad);
561 if (choose_first && sectors > bad_sectors)
562 sectors = bad_sectors;
563 if (best_good_sectors > sectors)
564 best_good_sectors = sectors;
565
566 } else {
567 sector_t good_sectors = first_bad - this_sector;
568 if (good_sectors > best_good_sectors) {
569 best_good_sectors = good_sectors;
570 best_disk = disk;
571 }
572 if (choose_first)
573 break;
574 }
575 continue;
576 } else
577 best_good_sectors = sectors;
578
76073054
N
579 dist = abs(this_sector - conf->mirrors[disk].head_position);
580 if (choose_first
581 /* Don't change to another disk for sequential reads */
582 || conf->next_seq_sect == this_sector
583 || dist == 0
584 /* If device is idle, use it */
585 || atomic_read(&rdev->nr_pending) == 0) {
586 best_disk = disk;
1da177e4
LT
587 break;
588 }
76073054
N
589 if (dist < best_dist) {
590 best_dist = dist;
591 best_disk = disk;
1da177e4 592 }
f3ac8bf7 593 }
1da177e4 594
76073054
N
595 if (best_disk >= 0) {
596 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
597 if (!rdev)
598 goto retry;
599 atomic_inc(&rdev->nr_pending);
76073054 600 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
601 /* cannot risk returning a device that failed
602 * before we inc'ed nr_pending
603 */
03c902e1 604 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
605 goto retry;
606 }
d2eb35ac 607 sectors = best_good_sectors;
8ddf9efe 608 conf->next_seq_sect = this_sector + sectors;
76073054 609 conf->last_used = best_disk;
1da177e4
LT
610 }
611 rcu_read_unlock();
d2eb35ac 612 *max_sectors = sectors;
1da177e4 613
76073054 614 return best_disk;
1da177e4
LT
615}
616
fd01b88c 617int md_raid1_congested(struct mddev *mddev, int bits)
0d129228 618{
e8096360 619 struct r1conf *conf = mddev->private;
0d129228
N
620 int i, ret = 0;
621
34db0cd6
N
622 if ((bits & (1 << BDI_async_congested)) &&
623 conf->pending_count >= max_queued_requests)
624 return 1;
625
0d129228 626 rcu_read_lock();
f53e29fc 627 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 628 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 629 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 630 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 631
1ed7242e
JB
632 BUG_ON(!q);
633
0d129228
N
634 /* Note the '|| 1' - when read_balance prefers
635 * non-congested targets, it can be removed
636 */
91a9e99d 637 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
638 ret |= bdi_congested(&q->backing_dev_info, bits);
639 else
640 ret &= bdi_congested(&q->backing_dev_info, bits);
641 }
642 }
643 rcu_read_unlock();
644 return ret;
645}
1ed7242e 646EXPORT_SYMBOL_GPL(md_raid1_congested);
0d129228 647
1ed7242e
JB
648static int raid1_congested(void *data, int bits)
649{
fd01b88c 650 struct mddev *mddev = data;
1ed7242e
JB
651
652 return mddev_congested(mddev, bits) ||
653 md_raid1_congested(mddev, bits);
654}
0d129228 655
e8096360 656static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
657{
658 /* Any writes that have been queued but are awaiting
659 * bitmap updates get flushed here.
a35e63ef 660 */
a35e63ef
N
661 spin_lock_irq(&conf->device_lock);
662
663 if (conf->pending_bio_list.head) {
664 struct bio *bio;
665 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 666 conf->pending_count = 0;
a35e63ef
N
667 spin_unlock_irq(&conf->device_lock);
668 /* flush any pending bitmap writes to
669 * disk before proceeding w/ I/O */
670 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 671 wake_up(&conf->wait_barrier);
a35e63ef
N
672
673 while (bio) { /* submit pending writes */
674 struct bio *next = bio->bi_next;
675 bio->bi_next = NULL;
676 generic_make_request(bio);
677 bio = next;
678 }
a35e63ef
N
679 } else
680 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
681}
682
17999be4
N
683/* Barriers....
684 * Sometimes we need to suspend IO while we do something else,
685 * either some resync/recovery, or reconfigure the array.
686 * To do this we raise a 'barrier'.
687 * The 'barrier' is a counter that can be raised multiple times
688 * to count how many activities are happening which preclude
689 * normal IO.
690 * We can only raise the barrier if there is no pending IO.
691 * i.e. if nr_pending == 0.
692 * We choose only to raise the barrier if no-one is waiting for the
693 * barrier to go down. This means that as soon as an IO request
694 * is ready, no other operations which require a barrier will start
695 * until the IO request has had a chance.
696 *
697 * So: regular IO calls 'wait_barrier'. When that returns there
698 * is no backgroup IO happening, It must arrange to call
699 * allow_barrier when it has finished its IO.
700 * backgroup IO calls must call raise_barrier. Once that returns
701 * there is no normal IO happeing. It must arrange to call
702 * lower_barrier when the particular background IO completes.
1da177e4
LT
703 */
704#define RESYNC_DEPTH 32
705
e8096360 706static void raise_barrier(struct r1conf *conf)
1da177e4
LT
707{
708 spin_lock_irq(&conf->resync_lock);
17999be4
N
709
710 /* Wait until no block IO is waiting */
711 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
c3b328ac 712 conf->resync_lock, );
17999be4
N
713
714 /* block any new IO from starting */
715 conf->barrier++;
716
046abeed 717 /* Now wait for all pending IO to complete */
17999be4
N
718 wait_event_lock_irq(conf->wait_barrier,
719 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
c3b328ac 720 conf->resync_lock, );
17999be4
N
721
722 spin_unlock_irq(&conf->resync_lock);
723}
724
e8096360 725static void lower_barrier(struct r1conf *conf)
17999be4
N
726{
727 unsigned long flags;
709ae487 728 BUG_ON(conf->barrier <= 0);
17999be4
N
729 spin_lock_irqsave(&conf->resync_lock, flags);
730 conf->barrier--;
731 spin_unlock_irqrestore(&conf->resync_lock, flags);
732 wake_up(&conf->wait_barrier);
733}
734
e8096360 735static void wait_barrier(struct r1conf *conf)
17999be4
N
736{
737 spin_lock_irq(&conf->resync_lock);
738 if (conf->barrier) {
739 conf->nr_waiting++;
d6b42dcb
N
740 /* Wait for the barrier to drop.
741 * However if there are already pending
742 * requests (preventing the barrier from
743 * rising completely), and the
744 * pre-process bio queue isn't empty,
745 * then don't wait, as we need to empty
746 * that queue to get the nr_pending
747 * count down.
748 */
749 wait_event_lock_irq(conf->wait_barrier,
750 !conf->barrier ||
751 (conf->nr_pending &&
752 current->bio_list &&
753 !bio_list_empty(current->bio_list)),
17999be4 754 conf->resync_lock,
d6b42dcb 755 );
17999be4 756 conf->nr_waiting--;
1da177e4 757 }
17999be4 758 conf->nr_pending++;
1da177e4
LT
759 spin_unlock_irq(&conf->resync_lock);
760}
761
e8096360 762static void allow_barrier(struct r1conf *conf)
17999be4
N
763{
764 unsigned long flags;
765 spin_lock_irqsave(&conf->resync_lock, flags);
766 conf->nr_pending--;
767 spin_unlock_irqrestore(&conf->resync_lock, flags);
768 wake_up(&conf->wait_barrier);
769}
770
e8096360 771static void freeze_array(struct r1conf *conf)
ddaf22ab
N
772{
773 /* stop syncio and normal IO and wait for everything to
774 * go quite.
775 * We increment barrier and nr_waiting, and then
1c830532
N
776 * wait until nr_pending match nr_queued+1
777 * This is called in the context of one normal IO request
778 * that has failed. Thus any sync request that might be pending
779 * will be blocked by nr_pending, and we need to wait for
780 * pending IO requests to complete or be queued for re-try.
781 * Thus the number queued (nr_queued) plus this request (1)
782 * must match the number of pending IOs (nr_pending) before
783 * we continue.
ddaf22ab
N
784 */
785 spin_lock_irq(&conf->resync_lock);
786 conf->barrier++;
787 conf->nr_waiting++;
788 wait_event_lock_irq(conf->wait_barrier,
1c830532 789 conf->nr_pending == conf->nr_queued+1,
ddaf22ab 790 conf->resync_lock,
c3b328ac 791 flush_pending_writes(conf));
ddaf22ab
N
792 spin_unlock_irq(&conf->resync_lock);
793}
e8096360 794static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
795{
796 /* reverse the effect of the freeze */
797 spin_lock_irq(&conf->resync_lock);
798 conf->barrier--;
799 conf->nr_waiting--;
800 wake_up(&conf->wait_barrier);
801 spin_unlock_irq(&conf->resync_lock);
802}
803
17999be4 804
4e78064f 805/* duplicate the data pages for behind I/O
4e78064f 806 */
9f2c9d12 807static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
808{
809 int i;
810 struct bio_vec *bvec;
2ca68f5e 811 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 812 GFP_NOIO);
2ca68f5e 813 if (unlikely(!bvecs))
af6d7b76 814 return;
4b6d287f 815
4b6d287f 816 bio_for_each_segment(bvec, bio, i) {
2ca68f5e
N
817 bvecs[i] = *bvec;
818 bvecs[i].bv_page = alloc_page(GFP_NOIO);
819 if (unlikely(!bvecs[i].bv_page))
4b6d287f 820 goto do_sync_io;
2ca68f5e
N
821 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
822 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
823 kunmap(bvecs[i].bv_page);
4b6d287f
N
824 kunmap(bvec->bv_page);
825 }
2ca68f5e 826 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
827 r1_bio->behind_page_count = bio->bi_vcnt;
828 set_bit(R1BIO_BehindIO, &r1_bio->state);
829 return;
4b6d287f
N
830
831do_sync_io:
af6d7b76 832 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
833 if (bvecs[i].bv_page)
834 put_page(bvecs[i].bv_page);
835 kfree(bvecs);
36a4e1fe 836 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
4b6d287f
N
837}
838
b4fdcb02 839static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 840{
e8096360 841 struct r1conf *conf = mddev->private;
0f6d02d5 842 struct mirror_info *mirror;
9f2c9d12 843 struct r1bio *r1_bio;
1da177e4 844 struct bio *read_bio;
1f68f0c4 845 int i, disks;
84255d10 846 struct bitmap *bitmap;
191ea9b2 847 unsigned long flags;
a362357b 848 const int rw = bio_data_dir(bio);
2c7d46ec 849 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 850 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
3cb03002 851 struct md_rdev *blocked_rdev;
c3b328ac 852 int plugged;
1f68f0c4
N
853 int first_clone;
854 int sectors_handled;
855 int max_sectors;
191ea9b2 856
1da177e4
LT
857 /*
858 * Register the new request and wait if the reconstruction
859 * thread has put up a bar for new requests.
860 * Continue immediately if no resync is active currently.
861 */
62de608d 862
3d310eb7
N
863 md_write_start(mddev, bio); /* wait on superblock update early */
864
6eef4b21
N
865 if (bio_data_dir(bio) == WRITE &&
866 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
867 bio->bi_sector < mddev->suspend_hi) {
868 /* As the suspend_* range is controlled by
869 * userspace, we want an interruptible
870 * wait.
871 */
872 DEFINE_WAIT(w);
873 for (;;) {
874 flush_signals(current);
875 prepare_to_wait(&conf->wait_barrier,
876 &w, TASK_INTERRUPTIBLE);
877 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
878 bio->bi_sector >= mddev->suspend_hi)
879 break;
880 schedule();
881 }
882 finish_wait(&conf->wait_barrier, &w);
883 }
62de608d 884
17999be4 885 wait_barrier(conf);
1da177e4 886
84255d10
N
887 bitmap = mddev->bitmap;
888
1da177e4
LT
889 /*
890 * make_request() can abort the operation when READA is being
891 * used and no empty request is available.
892 *
893 */
894 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
895
896 r1_bio->master_bio = bio;
897 r1_bio->sectors = bio->bi_size >> 9;
191ea9b2 898 r1_bio->state = 0;
1da177e4
LT
899 r1_bio->mddev = mddev;
900 r1_bio->sector = bio->bi_sector;
901
d2eb35ac
N
902 /* We might need to issue multiple reads to different
903 * devices if there are bad blocks around, so we keep
904 * track of the number of reads in bio->bi_phys_segments.
905 * If this is 0, there is only one r1_bio and no locking
906 * will be needed when requests complete. If it is
907 * non-zero, then it is the number of not-completed requests.
908 */
909 bio->bi_phys_segments = 0;
910 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
911
a362357b 912 if (rw == READ) {
1da177e4
LT
913 /*
914 * read balancing logic:
915 */
d2eb35ac
N
916 int rdisk;
917
918read_again:
919 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
920
921 if (rdisk < 0) {
922 /* couldn't find anywhere to read from */
923 raid_end_bio_io(r1_bio);
5a7bbad2 924 return;
1da177e4
LT
925 }
926 mirror = conf->mirrors + rdisk;
927
e555190d
N
928 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
929 bitmap) {
930 /* Reading from a write-mostly device must
931 * take care not to over-take any writes
932 * that are 'behind'
933 */
934 wait_event(bitmap->behind_wait,
935 atomic_read(&bitmap->behind_writes) == 0);
936 }
1da177e4
LT
937 r1_bio->read_disk = rdisk;
938
a167f663 939 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d2eb35ac
N
940 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
941 max_sectors);
1da177e4
LT
942
943 r1_bio->bios[rdisk] = read_bio;
944
945 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
946 read_bio->bi_bdev = mirror->rdev->bdev;
947 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 948 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
949 read_bio->bi_private = r1_bio;
950
d2eb35ac
N
951 if (max_sectors < r1_bio->sectors) {
952 /* could not read all from this device, so we will
953 * need another r1_bio.
954 */
d2eb35ac
N
955
956 sectors_handled = (r1_bio->sector + max_sectors
957 - bio->bi_sector);
958 r1_bio->sectors = max_sectors;
959 spin_lock_irq(&conf->device_lock);
960 if (bio->bi_phys_segments == 0)
961 bio->bi_phys_segments = 2;
962 else
963 bio->bi_phys_segments++;
964 spin_unlock_irq(&conf->device_lock);
965 /* Cannot call generic_make_request directly
966 * as that will be queued in __make_request
967 * and subsequent mempool_alloc might block waiting
968 * for it. So hand bio over to raid1d.
969 */
970 reschedule_retry(r1_bio);
971
972 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
973
974 r1_bio->master_bio = bio;
975 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
976 r1_bio->state = 0;
977 r1_bio->mddev = mddev;
978 r1_bio->sector = bio->bi_sector + sectors_handled;
979 goto read_again;
980 } else
981 generic_make_request(read_bio);
5a7bbad2 982 return;
1da177e4
LT
983 }
984
985 /*
986 * WRITE:
987 */
34db0cd6
N
988 if (conf->pending_count >= max_queued_requests) {
989 md_wakeup_thread(mddev->thread);
990 wait_event(conf->wait_barrier,
991 conf->pending_count < max_queued_requests);
992 }
1f68f0c4 993 /* first select target devices under rcu_lock and
1da177e4
LT
994 * inc refcount on their rdev. Record them by setting
995 * bios[x] to bio
1f68f0c4
N
996 * If there are known/acknowledged bad blocks on any device on
997 * which we have seen a write error, we want to avoid writing those
998 * blocks.
999 * This potentially requires several writes to write around
1000 * the bad blocks. Each set of writes gets it's own r1bio
1001 * with a set of bios attached.
1da177e4 1002 */
c3b328ac
N
1003 plugged = mddev_check_plugged(mddev);
1004
8f19ccb2 1005 disks = conf->raid_disks * 2;
6bfe0b49
DW
1006 retry_write:
1007 blocked_rdev = NULL;
1da177e4 1008 rcu_read_lock();
1f68f0c4 1009 max_sectors = r1_bio->sectors;
1da177e4 1010 for (i = 0; i < disks; i++) {
3cb03002 1011 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1012 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1013 atomic_inc(&rdev->nr_pending);
1014 blocked_rdev = rdev;
1015 break;
1016 }
1f68f0c4
N
1017 r1_bio->bios[i] = NULL;
1018 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1019 if (i < conf->raid_disks)
1020 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1021 continue;
1022 }
1023
1024 atomic_inc(&rdev->nr_pending);
1025 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1026 sector_t first_bad;
1027 int bad_sectors;
1028 int is_bad;
1029
1030 is_bad = is_badblock(rdev, r1_bio->sector,
1031 max_sectors,
1032 &first_bad, &bad_sectors);
1033 if (is_bad < 0) {
1034 /* mustn't write here until the bad block is
1035 * acknowledged*/
1036 set_bit(BlockedBadBlocks, &rdev->flags);
1037 blocked_rdev = rdev;
1038 break;
1039 }
1040 if (is_bad && first_bad <= r1_bio->sector) {
1041 /* Cannot write here at all */
1042 bad_sectors -= (r1_bio->sector - first_bad);
1043 if (bad_sectors < max_sectors)
1044 /* mustn't write more than bad_sectors
1045 * to other devices yet
1046 */
1047 max_sectors = bad_sectors;
03c902e1 1048 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1049 /* We don't set R1BIO_Degraded as that
1050 * only applies if the disk is
1051 * missing, so it might be re-added,
1052 * and we want to know to recover this
1053 * chunk.
1054 * In this case the device is here,
1055 * and the fact that this chunk is not
1056 * in-sync is recorded in the bad
1057 * block log
1058 */
1059 continue;
964147d5 1060 }
1f68f0c4
N
1061 if (is_bad) {
1062 int good_sectors = first_bad - r1_bio->sector;
1063 if (good_sectors < max_sectors)
1064 max_sectors = good_sectors;
1065 }
1066 }
1067 r1_bio->bios[i] = bio;
1da177e4
LT
1068 }
1069 rcu_read_unlock();
1070
6bfe0b49
DW
1071 if (unlikely(blocked_rdev)) {
1072 /* Wait for this device to become unblocked */
1073 int j;
1074
1075 for (j = 0; j < i; j++)
1076 if (r1_bio->bios[j])
1077 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1078 r1_bio->state = 0;
6bfe0b49
DW
1079 allow_barrier(conf);
1080 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1081 wait_barrier(conf);
1082 goto retry_write;
1083 }
1084
1f68f0c4
N
1085 if (max_sectors < r1_bio->sectors) {
1086 /* We are splitting this write into multiple parts, so
1087 * we need to prepare for allocating another r1_bio.
1088 */
1089 r1_bio->sectors = max_sectors;
1090 spin_lock_irq(&conf->device_lock);
1091 if (bio->bi_phys_segments == 0)
1092 bio->bi_phys_segments = 2;
1093 else
1094 bio->bi_phys_segments++;
1095 spin_unlock_irq(&conf->device_lock);
191ea9b2 1096 }
1f68f0c4 1097 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
4b6d287f 1098
4e78064f 1099 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1100 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1101
1f68f0c4 1102 first_clone = 1;
1da177e4
LT
1103 for (i = 0; i < disks; i++) {
1104 struct bio *mbio;
1105 if (!r1_bio->bios[i])
1106 continue;
1107
a167f663 1108 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1f68f0c4
N
1109 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1110
1111 if (first_clone) {
1112 /* do behind I/O ?
1113 * Not if there are too many, or cannot
1114 * allocate memory, or a reader on WriteMostly
1115 * is waiting for behind writes to flush */
1116 if (bitmap &&
1117 (atomic_read(&bitmap->behind_writes)
1118 < mddev->bitmap_info.max_write_behind) &&
1119 !waitqueue_active(&bitmap->behind_wait))
1120 alloc_behind_pages(mbio, r1_bio);
1121
1122 bitmap_startwrite(bitmap, r1_bio->sector,
1123 r1_bio->sectors,
1124 test_bit(R1BIO_BehindIO,
1125 &r1_bio->state));
1126 first_clone = 0;
1127 }
2ca68f5e 1128 if (r1_bio->behind_bvecs) {
4b6d287f
N
1129 struct bio_vec *bvec;
1130 int j;
1131
1132 /* Yes, I really want the '__' version so that
1133 * we clear any unused pointer in the io_vec, rather
1134 * than leave them unchanged. This is important
1135 * because when we come to free the pages, we won't
046abeed 1136 * know the original bi_idx, so we just free
4b6d287f
N
1137 * them all
1138 */
1139 __bio_for_each_segment(bvec, mbio, j, 0)
2ca68f5e 1140 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1141 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1142 atomic_inc(&r1_bio->behind_remaining);
1143 }
1144
1f68f0c4
N
1145 r1_bio->bios[i] = mbio;
1146
1147 mbio->bi_sector = (r1_bio->sector +
1148 conf->mirrors[i].rdev->data_offset);
1149 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1150 mbio->bi_end_io = raid1_end_write_request;
1151 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1152 mbio->bi_private = r1_bio;
1153
1da177e4 1154 atomic_inc(&r1_bio->remaining);
4e78064f
N
1155 spin_lock_irqsave(&conf->device_lock, flags);
1156 bio_list_add(&conf->pending_bio_list, mbio);
34db0cd6 1157 conf->pending_count++;
4e78064f 1158 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1159 }
079fa166
N
1160 /* Mustn't call r1_bio_write_done before this next test,
1161 * as it could result in the bio being freed.
1162 */
1f68f0c4 1163 if (sectors_handled < (bio->bi_size >> 9)) {
079fa166 1164 r1_bio_write_done(r1_bio);
1f68f0c4
N
1165 /* We need another r1_bio. It has already been counted
1166 * in bio->bi_phys_segments
1167 */
1168 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1169 r1_bio->master_bio = bio;
1170 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1171 r1_bio->state = 0;
1172 r1_bio->mddev = mddev;
1173 r1_bio->sector = bio->bi_sector + sectors_handled;
1174 goto retry_write;
1175 }
1176
079fa166
N
1177 r1_bio_write_done(r1_bio);
1178
1179 /* In case raid1d snuck in to freeze_array */
1180 wake_up(&conf->wait_barrier);
1181
c3b328ac 1182 if (do_sync || !bitmap || !plugged)
e3881a68 1183 md_wakeup_thread(mddev->thread);
1da177e4
LT
1184}
1185
fd01b88c 1186static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1187{
e8096360 1188 struct r1conf *conf = mddev->private;
1da177e4
LT
1189 int i;
1190
1191 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1192 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1193 rcu_read_lock();
1194 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1195 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1196 seq_printf(seq, "%s",
ddac7c7e
N
1197 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1198 }
1199 rcu_read_unlock();
1da177e4
LT
1200 seq_printf(seq, "]");
1201}
1202
1203
fd01b88c 1204static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1205{
1206 char b[BDEVNAME_SIZE];
e8096360 1207 struct r1conf *conf = mddev->private;
1da177e4
LT
1208
1209 /*
1210 * If it is not operational, then we have already marked it as dead
1211 * else if it is the last working disks, ignore the error, let the
1212 * next level up know.
1213 * else mark the drive as failed
1214 */
b2d444d7 1215 if (test_bit(In_sync, &rdev->flags)
4044ba58 1216 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1217 /*
1218 * Don't fail the drive, act as though we were just a
4044ba58
N
1219 * normal single drive.
1220 * However don't try a recovery from this drive as
1221 * it is very likely to fail.
1da177e4 1222 */
5389042f 1223 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1224 return;
4044ba58 1225 }
de393cde 1226 set_bit(Blocked, &rdev->flags);
c04be0aa
N
1227 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1228 unsigned long flags;
1229 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1230 mddev->degraded++;
dd00a99e 1231 set_bit(Faulty, &rdev->flags);
c04be0aa 1232 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1233 /*
1234 * if recovery is running, make sure it aborts.
1235 */
dfc70645 1236 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
dd00a99e
N
1237 } else
1238 set_bit(Faulty, &rdev->flags);
850b2b42 1239 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1240 printk(KERN_ALERT
1241 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1242 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1243 mdname(mddev), bdevname(rdev->bdev, b),
1244 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1245}
1246
e8096360 1247static void print_conf(struct r1conf *conf)
1da177e4
LT
1248{
1249 int i;
1da177e4 1250
9dd1e2fa 1251 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1252 if (!conf) {
9dd1e2fa 1253 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1254 return;
1255 }
9dd1e2fa 1256 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1257 conf->raid_disks);
1258
ddac7c7e 1259 rcu_read_lock();
1da177e4
LT
1260 for (i = 0; i < conf->raid_disks; i++) {
1261 char b[BDEVNAME_SIZE];
3cb03002 1262 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1263 if (rdev)
9dd1e2fa 1264 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1265 i, !test_bit(In_sync, &rdev->flags),
1266 !test_bit(Faulty, &rdev->flags),
1267 bdevname(rdev->bdev,b));
1da177e4 1268 }
ddac7c7e 1269 rcu_read_unlock();
1da177e4
LT
1270}
1271
e8096360 1272static void close_sync(struct r1conf *conf)
1da177e4 1273{
17999be4
N
1274 wait_barrier(conf);
1275 allow_barrier(conf);
1da177e4
LT
1276
1277 mempool_destroy(conf->r1buf_pool);
1278 conf->r1buf_pool = NULL;
1279}
1280
fd01b88c 1281static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1282{
1283 int i;
e8096360 1284 struct r1conf *conf = mddev->private;
6b965620
N
1285 int count = 0;
1286 unsigned long flags;
1da177e4
LT
1287
1288 /*
1289 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1290 * and mark them readable.
1291 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1292 */
1293 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1294 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1295 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1296 if (repl
1297 && repl->recovery_offset == MaxSector
1298 && !test_bit(Faulty, &repl->flags)
1299 && !test_and_set_bit(In_sync, &repl->flags)) {
1300 /* replacement has just become active */
1301 if (!rdev ||
1302 !test_and_clear_bit(In_sync, &rdev->flags))
1303 count++;
1304 if (rdev) {
1305 /* Replaced device not technically
1306 * faulty, but we need to be sure
1307 * it gets removed and never re-added
1308 */
1309 set_bit(Faulty, &rdev->flags);
1310 sysfs_notify_dirent_safe(
1311 rdev->sysfs_state);
1312 }
1313 }
ddac7c7e
N
1314 if (rdev
1315 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1316 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1317 count++;
654e8b5a 1318 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1319 }
1320 }
6b965620
N
1321 spin_lock_irqsave(&conf->device_lock, flags);
1322 mddev->degraded -= count;
1323 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1324
1325 print_conf(conf);
6b965620 1326 return count;
1da177e4
LT
1327}
1328
1329
fd01b88c 1330static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1331{
e8096360 1332 struct r1conf *conf = mddev->private;
199050ea 1333 int err = -EEXIST;
41158c7e 1334 int mirror = 0;
0f6d02d5 1335 struct mirror_info *p;
6c2fce2e 1336 int first = 0;
30194636 1337 int last = conf->raid_disks - 1;
1da177e4 1338
5389042f
N
1339 if (mddev->recovery_disabled == conf->recovery_disabled)
1340 return -EBUSY;
1341
6c2fce2e
NB
1342 if (rdev->raid_disk >= 0)
1343 first = last = rdev->raid_disk;
1344
7ef449d1
N
1345 for (mirror = first; mirror <= last; mirror++) {
1346 p = conf->mirrors+mirror;
1347 if (!p->rdev) {
1da177e4 1348
8f6c2e4b
MP
1349 disk_stack_limits(mddev->gendisk, rdev->bdev,
1350 rdev->data_offset << 9);
627a2d3c
N
1351 /* as we don't honour merge_bvec_fn, we must
1352 * never risk violating it, so limit
1353 * ->max_segments to one lying with a single
1354 * page, as a one page request is never in
1355 * violation.
1da177e4 1356 */
627a2d3c
N
1357 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1358 blk_queue_max_segments(mddev->queue, 1);
1359 blk_queue_segment_boundary(mddev->queue,
1360 PAGE_CACHE_SIZE - 1);
1361 }
1da177e4
LT
1362
1363 p->head_position = 0;
1364 rdev->raid_disk = mirror;
199050ea 1365 err = 0;
6aea114a
N
1366 /* As all devices are equivalent, we don't need a full recovery
1367 * if this was recently any drive of the array
1368 */
1369 if (rdev->saved_raid_disk < 0)
41158c7e 1370 conf->fullsync = 1;
d6065f7b 1371 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1372 break;
1373 }
7ef449d1
N
1374 if (test_bit(WantReplacement, &p->rdev->flags) &&
1375 p[conf->raid_disks].rdev == NULL) {
1376 /* Add this device as a replacement */
1377 clear_bit(In_sync, &rdev->flags);
1378 set_bit(Replacement, &rdev->flags);
1379 rdev->raid_disk = mirror;
1380 err = 0;
1381 conf->fullsync = 1;
1382 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1383 break;
1384 }
1385 }
ac5e7113 1386 md_integrity_add_rdev(rdev, mddev);
1da177e4 1387 print_conf(conf);
199050ea 1388 return err;
1da177e4
LT
1389}
1390
b8321b68 1391static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1392{
e8096360 1393 struct r1conf *conf = mddev->private;
1da177e4 1394 int err = 0;
b8321b68 1395 int number = rdev->raid_disk;
0f6d02d5 1396 struct mirror_info *p = conf->mirrors+ number;
1da177e4 1397
b014f14c
N
1398 if (rdev != p->rdev)
1399 p = conf->mirrors + conf->raid_disks + number;
1400
1da177e4 1401 print_conf(conf);
b8321b68 1402 if (rdev == p->rdev) {
b2d444d7 1403 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1404 atomic_read(&rdev->nr_pending)) {
1405 err = -EBUSY;
1406 goto abort;
1407 }
046abeed 1408 /* Only remove non-faulty devices if recovery
dfc70645
N
1409 * is not possible.
1410 */
1411 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1412 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1413 mddev->degraded < conf->raid_disks) {
1414 err = -EBUSY;
1415 goto abort;
1416 }
1da177e4 1417 p->rdev = NULL;
fbd568a3 1418 synchronize_rcu();
1da177e4
LT
1419 if (atomic_read(&rdev->nr_pending)) {
1420 /* lost the race, try later */
1421 err = -EBUSY;
1422 p->rdev = rdev;
ac5e7113 1423 goto abort;
8c7a2c2b
N
1424 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1425 /* We just removed a device that is being replaced.
1426 * Move down the replacement. We drain all IO before
1427 * doing this to avoid confusion.
1428 */
1429 struct md_rdev *repl =
1430 conf->mirrors[conf->raid_disks + number].rdev;
1431 raise_barrier(conf);
1432 clear_bit(Replacement, &repl->flags);
1433 p->rdev = repl;
1434 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1435 lower_barrier(conf);
1436 clear_bit(WantReplacement, &rdev->flags);
1437 } else
b014f14c 1438 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1439 err = md_integrity_register(mddev);
1da177e4
LT
1440 }
1441abort:
1442
1443 print_conf(conf);
1444 return err;
1445}
1446
1447
6712ecf8 1448static void end_sync_read(struct bio *bio, int error)
1da177e4 1449{
9f2c9d12 1450 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1451
0fc280f6 1452 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1453
1da177e4
LT
1454 /*
1455 * we have read a block, now it needs to be re-written,
1456 * or re-read if the read failed.
1457 * We don't do much here, just schedule handling by raid1d
1458 */
69382e85 1459 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1460 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1461
1462 if (atomic_dec_and_test(&r1_bio->remaining))
1463 reschedule_retry(r1_bio);
1da177e4
LT
1464}
1465
6712ecf8 1466static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1467{
1468 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1469 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1470 struct mddev *mddev = r1_bio->mddev;
e8096360 1471 struct r1conf *conf = mddev->private;
1da177e4 1472 int mirror=0;
4367af55
N
1473 sector_t first_bad;
1474 int bad_sectors;
1da177e4 1475
ba3ae3be
NK
1476 mirror = find_bio_disk(r1_bio, bio);
1477
6b1117d5 1478 if (!uptodate) {
57dab0bd 1479 sector_t sync_blocks = 0;
6b1117d5
N
1480 sector_t s = r1_bio->sector;
1481 long sectors_to_go = r1_bio->sectors;
1482 /* make sure these bits doesn't get cleared. */
1483 do {
5e3db645 1484 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1485 &sync_blocks, 1);
1486 s += sync_blocks;
1487 sectors_to_go -= sync_blocks;
1488 } while (sectors_to_go > 0);
d8f05d29
N
1489 set_bit(WriteErrorSeen,
1490 &conf->mirrors[mirror].rdev->flags);
19d67169
N
1491 if (!test_and_set_bit(WantReplacement,
1492 &conf->mirrors[mirror].rdev->flags))
1493 set_bit(MD_RECOVERY_NEEDED, &
1494 mddev->recovery);
d8f05d29 1495 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1496 } else if (is_badblock(conf->mirrors[mirror].rdev,
1497 r1_bio->sector,
1498 r1_bio->sectors,
3a9f28a5
N
1499 &first_bad, &bad_sectors) &&
1500 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1501 r1_bio->sector,
1502 r1_bio->sectors,
1503 &first_bad, &bad_sectors)
1504 )
4367af55 1505 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1506
1da177e4 1507 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1508 int s = r1_bio->sectors;
d8f05d29
N
1509 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1510 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1511 reschedule_retry(r1_bio);
1512 else {
1513 put_buf(r1_bio);
1514 md_done_sync(mddev, s, uptodate);
1515 }
1da177e4 1516 }
1da177e4
LT
1517}
1518
3cb03002 1519static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1520 int sectors, struct page *page, int rw)
1521{
1522 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1523 /* success */
1524 return 1;
19d67169 1525 if (rw == WRITE) {
d8f05d29 1526 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1527 if (!test_and_set_bit(WantReplacement,
1528 &rdev->flags))
1529 set_bit(MD_RECOVERY_NEEDED, &
1530 rdev->mddev->recovery);
1531 }
d8f05d29
N
1532 /* need to record an error - either for the block or the device */
1533 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1534 md_error(rdev->mddev, rdev);
1535 return 0;
1536}
1537
9f2c9d12 1538static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1539{
a68e5870
N
1540 /* Try some synchronous reads of other devices to get
1541 * good data, much like with normal read errors. Only
1542 * read into the pages we already have so we don't
1543 * need to re-issue the read request.
1544 * We don't need to freeze the array, because being in an
1545 * active sync request, there is no normal IO, and
1546 * no overlapping syncs.
06f60385
N
1547 * We don't need to check is_badblock() again as we
1548 * made sure that anything with a bad block in range
1549 * will have bi_end_io clear.
a68e5870 1550 */
fd01b88c 1551 struct mddev *mddev = r1_bio->mddev;
e8096360 1552 struct r1conf *conf = mddev->private;
a68e5870
N
1553 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1554 sector_t sect = r1_bio->sector;
1555 int sectors = r1_bio->sectors;
1556 int idx = 0;
1557
1558 while(sectors) {
1559 int s = sectors;
1560 int d = r1_bio->read_disk;
1561 int success = 0;
3cb03002 1562 struct md_rdev *rdev;
78d7f5f7 1563 int start;
a68e5870
N
1564
1565 if (s > (PAGE_SIZE>>9))
1566 s = PAGE_SIZE >> 9;
1567 do {
1568 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1569 /* No rcu protection needed here devices
1570 * can only be removed when no resync is
1571 * active, and resync is currently active
1572 */
1573 rdev = conf->mirrors[d].rdev;
9d3d8011 1574 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1575 bio->bi_io_vec[idx].bv_page,
1576 READ, false)) {
1577 success = 1;
1578 break;
1579 }
1580 }
1581 d++;
8f19ccb2 1582 if (d == conf->raid_disks * 2)
a68e5870
N
1583 d = 0;
1584 } while (!success && d != r1_bio->read_disk);
1585
78d7f5f7 1586 if (!success) {
a68e5870 1587 char b[BDEVNAME_SIZE];
3a9f28a5
N
1588 int abort = 0;
1589 /* Cannot read from anywhere, this block is lost.
1590 * Record a bad block on each device. If that doesn't
1591 * work just disable and interrupt the recovery.
1592 * Don't fail devices as that won't really help.
1593 */
a68e5870
N
1594 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1595 " for block %llu\n",
1596 mdname(mddev),
1597 bdevname(bio->bi_bdev, b),
1598 (unsigned long long)r1_bio->sector);
8f19ccb2 1599 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1600 rdev = conf->mirrors[d].rdev;
1601 if (!rdev || test_bit(Faulty, &rdev->flags))
1602 continue;
1603 if (!rdev_set_badblocks(rdev, sect, s, 0))
1604 abort = 1;
1605 }
1606 if (abort) {
d890fa2b
N
1607 conf->recovery_disabled =
1608 mddev->recovery_disabled;
3a9f28a5
N
1609 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1610 md_done_sync(mddev, r1_bio->sectors, 0);
1611 put_buf(r1_bio);
1612 return 0;
1613 }
1614 /* Try next page */
1615 sectors -= s;
1616 sect += s;
1617 idx++;
1618 continue;
d11c171e 1619 }
78d7f5f7
N
1620
1621 start = d;
1622 /* write it back and re-read */
1623 while (d != r1_bio->read_disk) {
1624 if (d == 0)
8f19ccb2 1625 d = conf->raid_disks * 2;
78d7f5f7
N
1626 d--;
1627 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1628 continue;
1629 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1630 if (r1_sync_page_io(rdev, sect, s,
1631 bio->bi_io_vec[idx].bv_page,
1632 WRITE) == 0) {
78d7f5f7
N
1633 r1_bio->bios[d]->bi_end_io = NULL;
1634 rdev_dec_pending(rdev, mddev);
9d3d8011 1635 }
78d7f5f7
N
1636 }
1637 d = start;
1638 while (d != r1_bio->read_disk) {
1639 if (d == 0)
8f19ccb2 1640 d = conf->raid_disks * 2;
78d7f5f7
N
1641 d--;
1642 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1643 continue;
1644 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1645 if (r1_sync_page_io(rdev, sect, s,
1646 bio->bi_io_vec[idx].bv_page,
1647 READ) != 0)
9d3d8011 1648 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1649 }
a68e5870
N
1650 sectors -= s;
1651 sect += s;
1652 idx ++;
1653 }
78d7f5f7 1654 set_bit(R1BIO_Uptodate, &r1_bio->state);
7ca78d57 1655 set_bit(BIO_UPTODATE, &bio->bi_flags);
a68e5870
N
1656 return 1;
1657}
1658
9f2c9d12 1659static int process_checks(struct r1bio *r1_bio)
a68e5870
N
1660{
1661 /* We have read all readable devices. If we haven't
1662 * got the block, then there is no hope left.
1663 * If we have, then we want to do a comparison
1664 * and skip the write if everything is the same.
1665 * If any blocks failed to read, then we need to
1666 * attempt an over-write
1667 */
fd01b88c 1668 struct mddev *mddev = r1_bio->mddev;
e8096360 1669 struct r1conf *conf = mddev->private;
a68e5870
N
1670 int primary;
1671 int i;
1672
8f19ccb2 1673 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870
N
1674 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1675 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1676 r1_bio->bios[primary]->bi_end_io = NULL;
1677 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1678 break;
1679 }
1680 r1_bio->read_disk = primary;
8f19ccb2 1681 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7
N
1682 int j;
1683 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1684 struct bio *pbio = r1_bio->bios[primary];
1685 struct bio *sbio = r1_bio->bios[i];
1686 int size;
a68e5870 1687
78d7f5f7
N
1688 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1689 continue;
1690
1691 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1692 for (j = vcnt; j-- ; ) {
1693 struct page *p, *s;
1694 p = pbio->bi_io_vec[j].bv_page;
1695 s = sbio->bi_io_vec[j].bv_page;
1696 if (memcmp(page_address(p),
1697 page_address(s),
1698 PAGE_SIZE))
1699 break;
69382e85 1700 }
78d7f5f7
N
1701 } else
1702 j = 0;
1703 if (j >= 0)
1704 mddev->resync_mismatches += r1_bio->sectors;
1705 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1706 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1707 /* No need to write to this device. */
1708 sbio->bi_end_io = NULL;
1709 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1710 continue;
1711 }
1712 /* fixup the bio for reuse */
1713 sbio->bi_vcnt = vcnt;
1714 sbio->bi_size = r1_bio->sectors << 9;
1715 sbio->bi_idx = 0;
1716 sbio->bi_phys_segments = 0;
1717 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1718 sbio->bi_flags |= 1 << BIO_UPTODATE;
1719 sbio->bi_next = NULL;
1720 sbio->bi_sector = r1_bio->sector +
1721 conf->mirrors[i].rdev->data_offset;
1722 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1723 size = sbio->bi_size;
1724 for (j = 0; j < vcnt ; j++) {
1725 struct bio_vec *bi;
1726 bi = &sbio->bi_io_vec[j];
1727 bi->bv_offset = 0;
1728 if (size > PAGE_SIZE)
1729 bi->bv_len = PAGE_SIZE;
1730 else
1731 bi->bv_len = size;
1732 size -= PAGE_SIZE;
1733 memcpy(page_address(bi->bv_page),
1734 page_address(pbio->bi_io_vec[j].bv_page),
1735 PAGE_SIZE);
69382e85 1736 }
78d7f5f7 1737 }
a68e5870
N
1738 return 0;
1739}
1740
9f2c9d12 1741static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 1742{
e8096360 1743 struct r1conf *conf = mddev->private;
a68e5870 1744 int i;
8f19ccb2 1745 int disks = conf->raid_disks * 2;
a68e5870
N
1746 struct bio *bio, *wbio;
1747
1748 bio = r1_bio->bios[r1_bio->read_disk];
1749
a68e5870
N
1750 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1751 /* ouch - failed to read all of that. */
1752 if (!fix_sync_read_error(r1_bio))
1753 return;
7ca78d57
N
1754
1755 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1756 if (process_checks(r1_bio) < 0)
1757 return;
d11c171e
N
1758 /*
1759 * schedule writes
1760 */
1da177e4
LT
1761 atomic_set(&r1_bio->remaining, 1);
1762 for (i = 0; i < disks ; i++) {
1763 wbio = r1_bio->bios[i];
3e198f78
N
1764 if (wbio->bi_end_io == NULL ||
1765 (wbio->bi_end_io == end_sync_read &&
1766 (i == r1_bio->read_disk ||
1767 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
1768 continue;
1769
3e198f78
N
1770 wbio->bi_rw = WRITE;
1771 wbio->bi_end_io = end_sync_write;
1da177e4
LT
1772 atomic_inc(&r1_bio->remaining);
1773 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
191ea9b2 1774
1da177e4
LT
1775 generic_make_request(wbio);
1776 }
1777
1778 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 1779 /* if we're here, all write(s) have completed, so clean up */
1da177e4
LT
1780 md_done_sync(mddev, r1_bio->sectors, 1);
1781 put_buf(r1_bio);
1782 }
1783}
1784
1785/*
1786 * This is a kernel thread which:
1787 *
1788 * 1. Retries failed read operations on working mirrors.
1789 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 1790 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1791 */
1792
e8096360 1793static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
1794 sector_t sect, int sectors)
1795{
fd01b88c 1796 struct mddev *mddev = conf->mddev;
867868fb
N
1797 while(sectors) {
1798 int s = sectors;
1799 int d = read_disk;
1800 int success = 0;
1801 int start;
3cb03002 1802 struct md_rdev *rdev;
867868fb
N
1803
1804 if (s > (PAGE_SIZE>>9))
1805 s = PAGE_SIZE >> 9;
1806
1807 do {
1808 /* Note: no rcu protection needed here
1809 * as this is synchronous in the raid1d thread
1810 * which is the thread that might remove
1811 * a device. If raid1d ever becomes multi-threaded....
1812 */
d2eb35ac
N
1813 sector_t first_bad;
1814 int bad_sectors;
1815
867868fb
N
1816 rdev = conf->mirrors[d].rdev;
1817 if (rdev &&
1818 test_bit(In_sync, &rdev->flags) &&
d2eb35ac
N
1819 is_badblock(rdev, sect, s,
1820 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
1821 sync_page_io(rdev, sect, s<<9,
1822 conf->tmppage, READ, false))
867868fb
N
1823 success = 1;
1824 else {
1825 d++;
8f19ccb2 1826 if (d == conf->raid_disks * 2)
867868fb
N
1827 d = 0;
1828 }
1829 } while (!success && d != read_disk);
1830
1831 if (!success) {
d8f05d29 1832 /* Cannot read from anywhere - mark it bad */
3cb03002 1833 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
1834 if (!rdev_set_badblocks(rdev, sect, s, 0))
1835 md_error(mddev, rdev);
867868fb
N
1836 break;
1837 }
1838 /* write it back and re-read */
1839 start = d;
1840 while (d != read_disk) {
1841 if (d==0)
8f19ccb2 1842 d = conf->raid_disks * 2;
867868fb
N
1843 d--;
1844 rdev = conf->mirrors[d].rdev;
1845 if (rdev &&
d8f05d29
N
1846 test_bit(In_sync, &rdev->flags))
1847 r1_sync_page_io(rdev, sect, s,
1848 conf->tmppage, WRITE);
867868fb
N
1849 }
1850 d = start;
1851 while (d != read_disk) {
1852 char b[BDEVNAME_SIZE];
1853 if (d==0)
8f19ccb2 1854 d = conf->raid_disks * 2;
867868fb
N
1855 d--;
1856 rdev = conf->mirrors[d].rdev;
1857 if (rdev &&
1858 test_bit(In_sync, &rdev->flags)) {
d8f05d29
N
1859 if (r1_sync_page_io(rdev, sect, s,
1860 conf->tmppage, READ)) {
867868fb
N
1861 atomic_add(s, &rdev->corrected_errors);
1862 printk(KERN_INFO
9dd1e2fa 1863 "md/raid1:%s: read error corrected "
867868fb
N
1864 "(%d sectors at %llu on %s)\n",
1865 mdname(mddev), s,
969b755a
RD
1866 (unsigned long long)(sect +
1867 rdev->data_offset),
867868fb
N
1868 bdevname(rdev->bdev, b));
1869 }
1870 }
1871 }
1872 sectors -= s;
1873 sect += s;
1874 }
1875}
1876
cd5ff9a1
N
1877static void bi_complete(struct bio *bio, int error)
1878{
1879 complete((struct completion *)bio->bi_private);
1880}
1881
1882static int submit_bio_wait(int rw, struct bio *bio)
1883{
1884 struct completion event;
1885 rw |= REQ_SYNC;
1886
1887 init_completion(&event);
1888 bio->bi_private = &event;
1889 bio->bi_end_io = bi_complete;
1890 submit_bio(rw, bio);
1891 wait_for_completion(&event);
1892
1893 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1894}
1895
9f2c9d12 1896static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 1897{
fd01b88c 1898 struct mddev *mddev = r1_bio->mddev;
e8096360 1899 struct r1conf *conf = mddev->private;
3cb03002 1900 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
1901 int vcnt, idx;
1902 struct bio_vec *vec;
1903
1904 /* bio has the data to be written to device 'i' where
1905 * we just recently had a write error.
1906 * We repeatedly clone the bio and trim down to one block,
1907 * then try the write. Where the write fails we record
1908 * a bad block.
1909 * It is conceivable that the bio doesn't exactly align with
1910 * blocks. We must handle this somehow.
1911 *
1912 * We currently own a reference on the rdev.
1913 */
1914
1915 int block_sectors;
1916 sector_t sector;
1917 int sectors;
1918 int sect_to_write = r1_bio->sectors;
1919 int ok = 1;
1920
1921 if (rdev->badblocks.shift < 0)
1922 return 0;
1923
1924 block_sectors = 1 << rdev->badblocks.shift;
1925 sector = r1_bio->sector;
1926 sectors = ((sector + block_sectors)
1927 & ~(sector_t)(block_sectors - 1))
1928 - sector;
1929
1930 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1931 vcnt = r1_bio->behind_page_count;
1932 vec = r1_bio->behind_bvecs;
1933 idx = 0;
1934 while (vec[idx].bv_page == NULL)
1935 idx++;
1936 } else {
1937 vcnt = r1_bio->master_bio->bi_vcnt;
1938 vec = r1_bio->master_bio->bi_io_vec;
1939 idx = r1_bio->master_bio->bi_idx;
1940 }
1941 while (sect_to_write) {
1942 struct bio *wbio;
1943 if (sectors > sect_to_write)
1944 sectors = sect_to_write;
1945 /* Write at 'sector' for 'sectors'*/
1946
1947 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1948 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1949 wbio->bi_sector = r1_bio->sector;
1950 wbio->bi_rw = WRITE;
1951 wbio->bi_vcnt = vcnt;
1952 wbio->bi_size = r1_bio->sectors << 9;
1953 wbio->bi_idx = idx;
1954
1955 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1956 wbio->bi_sector += rdev->data_offset;
1957 wbio->bi_bdev = rdev->bdev;
1958 if (submit_bio_wait(WRITE, wbio) == 0)
1959 /* failure! */
1960 ok = rdev_set_badblocks(rdev, sector,
1961 sectors, 0)
1962 && ok;
1963
1964 bio_put(wbio);
1965 sect_to_write -= sectors;
1966 sector += sectors;
1967 sectors = block_sectors;
1968 }
1969 return ok;
1970}
1971
e8096360 1972static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
1973{
1974 int m;
1975 int s = r1_bio->sectors;
8f19ccb2 1976 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 1977 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
1978 struct bio *bio = r1_bio->bios[m];
1979 if (bio->bi_end_io == NULL)
1980 continue;
1981 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1982 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1983 rdev_clear_badblocks(rdev, r1_bio->sector, s);
1984 }
1985 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1986 test_bit(R1BIO_WriteError, &r1_bio->state)) {
1987 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1988 md_error(conf->mddev, rdev);
1989 }
1990 }
1991 put_buf(r1_bio);
1992 md_done_sync(conf->mddev, s, 1);
1993}
1994
e8096360 1995static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
1996{
1997 int m;
8f19ccb2 1998 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 1999 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2000 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2001 rdev_clear_badblocks(rdev,
2002 r1_bio->sector,
2003 r1_bio->sectors);
2004 rdev_dec_pending(rdev, conf->mddev);
2005 } else if (r1_bio->bios[m] != NULL) {
2006 /* This drive got a write error. We need to
2007 * narrow down and record precise write
2008 * errors.
2009 */
2010 if (!narrow_write_error(r1_bio, m)) {
2011 md_error(conf->mddev,
2012 conf->mirrors[m].rdev);
2013 /* an I/O failed, we can't clear the bitmap */
2014 set_bit(R1BIO_Degraded, &r1_bio->state);
2015 }
2016 rdev_dec_pending(conf->mirrors[m].rdev,
2017 conf->mddev);
2018 }
2019 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2020 close_write(r1_bio);
2021 raid_end_bio_io(r1_bio);
2022}
2023
e8096360 2024static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2025{
2026 int disk;
2027 int max_sectors;
fd01b88c 2028 struct mddev *mddev = conf->mddev;
62096bce
N
2029 struct bio *bio;
2030 char b[BDEVNAME_SIZE];
3cb03002 2031 struct md_rdev *rdev;
62096bce
N
2032
2033 clear_bit(R1BIO_ReadError, &r1_bio->state);
2034 /* we got a read error. Maybe the drive is bad. Maybe just
2035 * the block and we can fix it.
2036 * We freeze all other IO, and try reading the block from
2037 * other devices. When we find one, we re-write
2038 * and check it that fixes the read error.
2039 * This is all done synchronously while the array is
2040 * frozen
2041 */
2042 if (mddev->ro == 0) {
2043 freeze_array(conf);
2044 fix_read_error(conf, r1_bio->read_disk,
2045 r1_bio->sector, r1_bio->sectors);
2046 unfreeze_array(conf);
2047 } else
2048 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2049
2050 bio = r1_bio->bios[r1_bio->read_disk];
2051 bdevname(bio->bi_bdev, b);
2052read_more:
2053 disk = read_balance(conf, r1_bio, &max_sectors);
2054 if (disk == -1) {
2055 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2056 " read error for block %llu\n",
2057 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2058 raid_end_bio_io(r1_bio);
2059 } else {
2060 const unsigned long do_sync
2061 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2062 if (bio) {
2063 r1_bio->bios[r1_bio->read_disk] =
2064 mddev->ro ? IO_BLOCKED : NULL;
2065 bio_put(bio);
2066 }
2067 r1_bio->read_disk = disk;
2068 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2069 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2070 r1_bio->bios[r1_bio->read_disk] = bio;
2071 rdev = conf->mirrors[disk].rdev;
2072 printk_ratelimited(KERN_ERR
2073 "md/raid1:%s: redirecting sector %llu"
2074 " to other mirror: %s\n",
2075 mdname(mddev),
2076 (unsigned long long)r1_bio->sector,
2077 bdevname(rdev->bdev, b));
2078 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2079 bio->bi_bdev = rdev->bdev;
2080 bio->bi_end_io = raid1_end_read_request;
2081 bio->bi_rw = READ | do_sync;
2082 bio->bi_private = r1_bio;
2083 if (max_sectors < r1_bio->sectors) {
2084 /* Drat - have to split this up more */
2085 struct bio *mbio = r1_bio->master_bio;
2086 int sectors_handled = (r1_bio->sector + max_sectors
2087 - mbio->bi_sector);
2088 r1_bio->sectors = max_sectors;
2089 spin_lock_irq(&conf->device_lock);
2090 if (mbio->bi_phys_segments == 0)
2091 mbio->bi_phys_segments = 2;
2092 else
2093 mbio->bi_phys_segments++;
2094 spin_unlock_irq(&conf->device_lock);
2095 generic_make_request(bio);
2096 bio = NULL;
2097
2098 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2099
2100 r1_bio->master_bio = mbio;
2101 r1_bio->sectors = (mbio->bi_size >> 9)
2102 - sectors_handled;
2103 r1_bio->state = 0;
2104 set_bit(R1BIO_ReadError, &r1_bio->state);
2105 r1_bio->mddev = mddev;
2106 r1_bio->sector = mbio->bi_sector + sectors_handled;
2107
2108 goto read_more;
2109 } else
2110 generic_make_request(bio);
2111 }
2112}
2113
fd01b88c 2114static void raid1d(struct mddev *mddev)
1da177e4 2115{
9f2c9d12 2116 struct r1bio *r1_bio;
1da177e4 2117 unsigned long flags;
e8096360 2118 struct r1conf *conf = mddev->private;
1da177e4 2119 struct list_head *head = &conf->retry_list;
e1dfa0a2 2120 struct blk_plug plug;
1da177e4
LT
2121
2122 md_check_recovery(mddev);
e1dfa0a2
N
2123
2124 blk_start_plug(&plug);
1da177e4 2125 for (;;) {
191ea9b2 2126
c3b328ac
N
2127 if (atomic_read(&mddev->plug_cnt) == 0)
2128 flush_pending_writes(conf);
191ea9b2 2129
a35e63ef
N
2130 spin_lock_irqsave(&conf->device_lock, flags);
2131 if (list_empty(head)) {
2132 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2133 break;
a35e63ef 2134 }
9f2c9d12 2135 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2136 list_del(head->prev);
ddaf22ab 2137 conf->nr_queued--;
1da177e4
LT
2138 spin_unlock_irqrestore(&conf->device_lock, flags);
2139
2140 mddev = r1_bio->mddev;
070ec55d 2141 conf = mddev->private;
4367af55 2142 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2143 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2144 test_bit(R1BIO_WriteError, &r1_bio->state))
2145 handle_sync_write_finished(conf, r1_bio);
2146 else
4367af55 2147 sync_request_write(mddev, r1_bio);
cd5ff9a1 2148 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2149 test_bit(R1BIO_WriteError, &r1_bio->state))
2150 handle_write_finished(conf, r1_bio);
2151 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2152 handle_read_error(conf, r1_bio);
2153 else
d2eb35ac
N
2154 /* just a partial read to be scheduled from separate
2155 * context
2156 */
2157 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2158
1d9d5241 2159 cond_resched();
de393cde
N
2160 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2161 md_check_recovery(mddev);
1da177e4 2162 }
e1dfa0a2 2163 blk_finish_plug(&plug);
1da177e4
LT
2164}
2165
2166
e8096360 2167static int init_resync(struct r1conf *conf)
1da177e4
LT
2168{
2169 int buffs;
2170
2171 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2172 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2173 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2174 conf->poolinfo);
2175 if (!conf->r1buf_pool)
2176 return -ENOMEM;
2177 conf->next_resync = 0;
2178 return 0;
2179}
2180
2181/*
2182 * perform a "sync" on one "block"
2183 *
2184 * We need to make sure that no normal I/O request - particularly write
2185 * requests - conflict with active sync requests.
2186 *
2187 * This is achieved by tracking pending requests and a 'barrier' concept
2188 * that can be installed to exclude normal IO requests.
2189 */
2190
fd01b88c 2191static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 2192{
e8096360 2193 struct r1conf *conf = mddev->private;
9f2c9d12 2194 struct r1bio *r1_bio;
1da177e4
LT
2195 struct bio *bio;
2196 sector_t max_sector, nr_sectors;
3e198f78 2197 int disk = -1;
1da177e4 2198 int i;
3e198f78
N
2199 int wonly = -1;
2200 int write_targets = 0, read_targets = 0;
57dab0bd 2201 sector_t sync_blocks;
e3b9703e 2202 int still_degraded = 0;
06f60385
N
2203 int good_sectors = RESYNC_SECTORS;
2204 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2205
2206 if (!conf->r1buf_pool)
2207 if (init_resync(conf))
57afd89f 2208 return 0;
1da177e4 2209
58c0fed4 2210 max_sector = mddev->dev_sectors;
1da177e4 2211 if (sector_nr >= max_sector) {
191ea9b2
N
2212 /* If we aborted, we need to abort the
2213 * sync on the 'current' bitmap chunk (there will
2214 * only be one in raid1 resync.
2215 * We can find the current addess in mddev->curr_resync
2216 */
6a806c51
N
2217 if (mddev->curr_resync < max_sector) /* aborted */
2218 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2219 &sync_blocks, 1);
6a806c51 2220 else /* completed sync */
191ea9b2 2221 conf->fullsync = 0;
6a806c51
N
2222
2223 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2224 close_sync(conf);
2225 return 0;
2226 }
2227
07d84d10
N
2228 if (mddev->bitmap == NULL &&
2229 mddev->recovery_cp == MaxSector &&
6394cca5 2230 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2231 conf->fullsync == 0) {
2232 *skipped = 1;
2233 return max_sector - sector_nr;
2234 }
6394cca5
N
2235 /* before building a request, check if we can skip these blocks..
2236 * This call the bitmap_start_sync doesn't actually record anything
2237 */
e3b9703e 2238 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2239 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2240 /* We can skip this block, and probably several more */
2241 *skipped = 1;
2242 return sync_blocks;
2243 }
1da177e4 2244 /*
17999be4
N
2245 * If there is non-resync activity waiting for a turn,
2246 * and resync is going fast enough,
2247 * then let it though before starting on this new sync request.
1da177e4 2248 */
17999be4 2249 if (!go_faster && conf->nr_waiting)
1da177e4 2250 msleep_interruptible(1000);
17999be4 2251
b47490c9 2252 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2253 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4
N
2254 raise_barrier(conf);
2255
2256 conf->next_resync = sector_nr;
1da177e4 2257
3e198f78 2258 rcu_read_lock();
1da177e4 2259 /*
3e198f78
N
2260 * If we get a correctably read error during resync or recovery,
2261 * we might want to read from a different device. So we
2262 * flag all drives that could conceivably be read from for READ,
2263 * and any others (which will be non-In_sync devices) for WRITE.
2264 * If a read fails, we try reading from something else for which READ
2265 * is OK.
1da177e4 2266 */
1da177e4 2267
1da177e4
LT
2268 r1_bio->mddev = mddev;
2269 r1_bio->sector = sector_nr;
191ea9b2 2270 r1_bio->state = 0;
1da177e4 2271 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2272
8f19ccb2 2273 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2274 struct md_rdev *rdev;
1da177e4
LT
2275 bio = r1_bio->bios[i];
2276
2277 /* take from bio_init */
2278 bio->bi_next = NULL;
db8d9d35 2279 bio->bi_flags &= ~(BIO_POOL_MASK-1);
1da177e4 2280 bio->bi_flags |= 1 << BIO_UPTODATE;
802ba064 2281 bio->bi_rw = READ;
1da177e4
LT
2282 bio->bi_vcnt = 0;
2283 bio->bi_idx = 0;
2284 bio->bi_phys_segments = 0;
1da177e4
LT
2285 bio->bi_size = 0;
2286 bio->bi_end_io = NULL;
2287 bio->bi_private = NULL;
2288
3e198f78
N
2289 rdev = rcu_dereference(conf->mirrors[i].rdev);
2290 if (rdev == NULL ||
06f60385 2291 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2292 if (i < conf->raid_disks)
2293 still_degraded = 1;
3e198f78 2294 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2295 bio->bi_rw = WRITE;
2296 bio->bi_end_io = end_sync_write;
2297 write_targets ++;
3e198f78
N
2298 } else {
2299 /* may need to read from here */
06f60385
N
2300 sector_t first_bad = MaxSector;
2301 int bad_sectors;
2302
2303 if (is_badblock(rdev, sector_nr, good_sectors,
2304 &first_bad, &bad_sectors)) {
2305 if (first_bad > sector_nr)
2306 good_sectors = first_bad - sector_nr;
2307 else {
2308 bad_sectors -= (sector_nr - first_bad);
2309 if (min_bad == 0 ||
2310 min_bad > bad_sectors)
2311 min_bad = bad_sectors;
2312 }
2313 }
2314 if (sector_nr < first_bad) {
2315 if (test_bit(WriteMostly, &rdev->flags)) {
2316 if (wonly < 0)
2317 wonly = i;
2318 } else {
2319 if (disk < 0)
2320 disk = i;
2321 }
2322 bio->bi_rw = READ;
2323 bio->bi_end_io = end_sync_read;
2324 read_targets++;
3e198f78 2325 }
3e198f78 2326 }
06f60385
N
2327 if (bio->bi_end_io) {
2328 atomic_inc(&rdev->nr_pending);
2329 bio->bi_sector = sector_nr + rdev->data_offset;
2330 bio->bi_bdev = rdev->bdev;
2331 bio->bi_private = r1_bio;
2332 }
1da177e4 2333 }
3e198f78
N
2334 rcu_read_unlock();
2335 if (disk < 0)
2336 disk = wonly;
2337 r1_bio->read_disk = disk;
191ea9b2 2338
06f60385
N
2339 if (read_targets == 0 && min_bad > 0) {
2340 /* These sectors are bad on all InSync devices, so we
2341 * need to mark them bad on all write targets
2342 */
2343 int ok = 1;
8f19ccb2 2344 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2345 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
3cb03002 2346 struct md_rdev *rdev =
06f60385
N
2347 rcu_dereference(conf->mirrors[i].rdev);
2348 ok = rdev_set_badblocks(rdev, sector_nr,
2349 min_bad, 0
2350 ) && ok;
2351 }
2352 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2353 *skipped = 1;
2354 put_buf(r1_bio);
2355
2356 if (!ok) {
2357 /* Cannot record the badblocks, so need to
2358 * abort the resync.
2359 * If there are multiple read targets, could just
2360 * fail the really bad ones ???
2361 */
2362 conf->recovery_disabled = mddev->recovery_disabled;
2363 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2364 return 0;
2365 } else
2366 return min_bad;
2367
2368 }
2369 if (min_bad > 0 && min_bad < good_sectors) {
2370 /* only resync enough to reach the next bad->good
2371 * transition */
2372 good_sectors = min_bad;
2373 }
2374
3e198f78
N
2375 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2376 /* extra read targets are also write targets */
2377 write_targets += read_targets-1;
2378
2379 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2380 /* There is nowhere to write, so all non-sync
2381 * drives must be failed - so we are finished
2382 */
57afd89f
N
2383 sector_t rv = max_sector - sector_nr;
2384 *skipped = 1;
1da177e4 2385 put_buf(r1_bio);
1da177e4
LT
2386 return rv;
2387 }
2388
c6207277
N
2389 if (max_sector > mddev->resync_max)
2390 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2391 if (max_sector > sector_nr + good_sectors)
2392 max_sector = sector_nr + good_sectors;
1da177e4 2393 nr_sectors = 0;
289e99e8 2394 sync_blocks = 0;
1da177e4
LT
2395 do {
2396 struct page *page;
2397 int len = PAGE_SIZE;
2398 if (sector_nr + (len>>9) > max_sector)
2399 len = (max_sector - sector_nr) << 9;
2400 if (len == 0)
2401 break;
6a806c51
N
2402 if (sync_blocks == 0) {
2403 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2404 &sync_blocks, still_degraded) &&
2405 !conf->fullsync &&
2406 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2407 break;
9e77c485 2408 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2409 if ((len >> 9) > sync_blocks)
6a806c51 2410 len = sync_blocks<<9;
ab7a30c7 2411 }
191ea9b2 2412
8f19ccb2 2413 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2414 bio = r1_bio->bios[i];
2415 if (bio->bi_end_io) {
d11c171e 2416 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2417 if (bio_add_page(bio, page, len, 0) == 0) {
2418 /* stop here */
d11c171e 2419 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2420 while (i > 0) {
2421 i--;
2422 bio = r1_bio->bios[i];
6a806c51
N
2423 if (bio->bi_end_io==NULL)
2424 continue;
1da177e4
LT
2425 /* remove last page from this bio */
2426 bio->bi_vcnt--;
2427 bio->bi_size -= len;
2428 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2429 }
2430 goto bio_full;
2431 }
2432 }
2433 }
2434 nr_sectors += len>>9;
2435 sector_nr += len>>9;
191ea9b2 2436 sync_blocks -= (len>>9);
1da177e4
LT
2437 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2438 bio_full:
1da177e4
LT
2439 r1_bio->sectors = nr_sectors;
2440
d11c171e
N
2441 /* For a user-requested sync, we read all readable devices and do a
2442 * compare
2443 */
2444 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2445 atomic_set(&r1_bio->remaining, read_targets);
8f19ccb2 2446 for (i = 0; i < conf->raid_disks * 2; i++) {
d11c171e
N
2447 bio = r1_bio->bios[i];
2448 if (bio->bi_end_io == end_sync_read) {
ddac7c7e 2449 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2450 generic_make_request(bio);
2451 }
2452 }
2453 } else {
2454 atomic_set(&r1_bio->remaining, 1);
2455 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2456 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2457 generic_make_request(bio);
1da177e4 2458
d11c171e 2459 }
1da177e4
LT
2460 return nr_sectors;
2461}
2462
fd01b88c 2463static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2464{
2465 if (sectors)
2466 return sectors;
2467
2468 return mddev->dev_sectors;
2469}
2470
e8096360 2471static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2472{
e8096360 2473 struct r1conf *conf;
709ae487 2474 int i;
0f6d02d5 2475 struct mirror_info *disk;
3cb03002 2476 struct md_rdev *rdev;
709ae487 2477 int err = -ENOMEM;
1da177e4 2478
e8096360 2479 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2480 if (!conf)
709ae487 2481 goto abort;
1da177e4 2482
8f19ccb2
N
2483 conf->mirrors = kzalloc(sizeof(struct mirror_info)
2484 * mddev->raid_disks * 2,
1da177e4
LT
2485 GFP_KERNEL);
2486 if (!conf->mirrors)
709ae487 2487 goto abort;
1da177e4 2488
ddaf22ab
N
2489 conf->tmppage = alloc_page(GFP_KERNEL);
2490 if (!conf->tmppage)
709ae487 2491 goto abort;
ddaf22ab 2492
709ae487 2493 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2494 if (!conf->poolinfo)
709ae487 2495 goto abort;
8f19ccb2 2496 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2497 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2498 r1bio_pool_free,
2499 conf->poolinfo);
2500 if (!conf->r1bio_pool)
709ae487
N
2501 goto abort;
2502
ed9bfdf1 2503 conf->poolinfo->mddev = mddev;
1da177e4 2504
c19d5798 2505 err = -EINVAL;
e7e72bf6 2506 spin_lock_init(&conf->device_lock);
dafb20fa 2507 rdev_for_each(rdev, mddev) {
709ae487 2508 int disk_idx = rdev->raid_disk;
1da177e4
LT
2509 if (disk_idx >= mddev->raid_disks
2510 || disk_idx < 0)
2511 continue;
c19d5798
N
2512 if (test_bit(Replacement, &rdev->flags))
2513 disk = conf->mirrors + conf->raid_disks + disk_idx;
2514 else
2515 disk = conf->mirrors + disk_idx;
1da177e4 2516
c19d5798
N
2517 if (disk->rdev)
2518 goto abort;
1da177e4 2519 disk->rdev = rdev;
1da177e4
LT
2520
2521 disk->head_position = 0;
1da177e4
LT
2522 }
2523 conf->raid_disks = mddev->raid_disks;
2524 conf->mddev = mddev;
1da177e4 2525 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2526
2527 spin_lock_init(&conf->resync_lock);
17999be4 2528 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2529
191ea9b2 2530 bio_list_init(&conf->pending_bio_list);
34db0cd6 2531 conf->pending_count = 0;
d890fa2b 2532 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2533
c19d5798 2534 err = -EIO;
709ae487 2535 conf->last_used = -1;
8f19ccb2 2536 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2537
2538 disk = conf->mirrors + i;
2539
c19d5798
N
2540 if (i < conf->raid_disks &&
2541 disk[conf->raid_disks].rdev) {
2542 /* This slot has a replacement. */
2543 if (!disk->rdev) {
2544 /* No original, just make the replacement
2545 * a recovering spare
2546 */
2547 disk->rdev =
2548 disk[conf->raid_disks].rdev;
2549 disk[conf->raid_disks].rdev = NULL;
2550 } else if (!test_bit(In_sync, &disk->rdev->flags))
2551 /* Original is not in_sync - bad */
2552 goto abort;
2553 }
2554
5fd6c1dc
N
2555 if (!disk->rdev ||
2556 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2557 disk->head_position = 0;
918f0238
N
2558 if (disk->rdev)
2559 conf->fullsync = 1;
709ae487
N
2560 } else if (conf->last_used < 0)
2561 /*
2562 * The first working device is used as a
2563 * starting point to read balancing.
2564 */
2565 conf->last_used = i;
1da177e4 2566 }
709ae487 2567
709ae487 2568 if (conf->last_used < 0) {
9dd1e2fa 2569 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
709ae487
N
2570 mdname(mddev));
2571 goto abort;
2572 }
2573 err = -ENOMEM;
2574 conf->thread = md_register_thread(raid1d, mddev, NULL);
2575 if (!conf->thread) {
2576 printk(KERN_ERR
9dd1e2fa 2577 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2578 mdname(mddev));
2579 goto abort;
11ce99e6 2580 }
1da177e4 2581
709ae487
N
2582 return conf;
2583
2584 abort:
2585 if (conf) {
2586 if (conf->r1bio_pool)
2587 mempool_destroy(conf->r1bio_pool);
2588 kfree(conf->mirrors);
2589 safe_put_page(conf->tmppage);
2590 kfree(conf->poolinfo);
2591 kfree(conf);
2592 }
2593 return ERR_PTR(err);
2594}
2595
fd01b88c 2596static int run(struct mddev *mddev)
709ae487 2597{
e8096360 2598 struct r1conf *conf;
709ae487 2599 int i;
3cb03002 2600 struct md_rdev *rdev;
709ae487
N
2601
2602 if (mddev->level != 1) {
9dd1e2fa 2603 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2604 mdname(mddev), mddev->level);
2605 return -EIO;
2606 }
2607 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2608 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2609 mdname(mddev));
2610 return -EIO;
2611 }
1da177e4 2612 /*
709ae487
N
2613 * copy the already verified devices into our private RAID1
2614 * bookkeeping area. [whatever we allocate in run(),
2615 * should be freed in stop()]
1da177e4 2616 */
709ae487
N
2617 if (mddev->private == NULL)
2618 conf = setup_conf(mddev);
2619 else
2620 conf = mddev->private;
1da177e4 2621
709ae487
N
2622 if (IS_ERR(conf))
2623 return PTR_ERR(conf);
1da177e4 2624
dafb20fa 2625 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2626 if (!mddev->gendisk)
2627 continue;
709ae487
N
2628 disk_stack_limits(mddev->gendisk, rdev->bdev,
2629 rdev->data_offset << 9);
2630 /* as we don't honour merge_bvec_fn, we must never risk
627a2d3c
N
2631 * violating it, so limit ->max_segments to 1 lying within
2632 * a single page, as a one page request is never in violation.
709ae487 2633 */
627a2d3c
N
2634 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2635 blk_queue_max_segments(mddev->queue, 1);
2636 blk_queue_segment_boundary(mddev->queue,
2637 PAGE_CACHE_SIZE - 1);
2638 }
1da177e4 2639 }
191ea9b2 2640
709ae487
N
2641 mddev->degraded = 0;
2642 for (i=0; i < conf->raid_disks; i++)
2643 if (conf->mirrors[i].rdev == NULL ||
2644 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2645 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2646 mddev->degraded++;
2647
2648 if (conf->raid_disks - mddev->degraded == 1)
2649 mddev->recovery_cp = MaxSector;
2650
8c6ac868 2651 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2652 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2653 " -- starting background reconstruction\n",
2654 mdname(mddev));
1da177e4 2655 printk(KERN_INFO
9dd1e2fa 2656 "md/raid1:%s: active with %d out of %d mirrors\n",
1da177e4
LT
2657 mdname(mddev), mddev->raid_disks - mddev->degraded,
2658 mddev->raid_disks);
709ae487 2659
1da177e4
LT
2660 /*
2661 * Ok, everything is just fine now
2662 */
709ae487
N
2663 mddev->thread = conf->thread;
2664 conf->thread = NULL;
2665 mddev->private = conf;
2666
1f403624 2667 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2668
1ed7242e
JB
2669 if (mddev->queue) {
2670 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2671 mddev->queue->backing_dev_info.congested_data = mddev;
2672 }
a91a2785 2673 return md_integrity_register(mddev);
1da177e4
LT
2674}
2675
fd01b88c 2676static int stop(struct mddev *mddev)
1da177e4 2677{
e8096360 2678 struct r1conf *conf = mddev->private;
4b6d287f 2679 struct bitmap *bitmap = mddev->bitmap;
4b6d287f
N
2680
2681 /* wait for behind writes to complete */
e555190d 2682 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
9dd1e2fa
N
2683 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2684 mdname(mddev));
4b6d287f 2685 /* need to kick something here to make sure I/O goes? */
e555190d
N
2686 wait_event(bitmap->behind_wait,
2687 atomic_read(&bitmap->behind_writes) == 0);
4b6d287f 2688 }
1da177e4 2689
409c57f3
N
2690 raise_barrier(conf);
2691 lower_barrier(conf);
2692
01f96c0a 2693 md_unregister_thread(&mddev->thread);
1da177e4
LT
2694 if (conf->r1bio_pool)
2695 mempool_destroy(conf->r1bio_pool);
990a8baf
JJ
2696 kfree(conf->mirrors);
2697 kfree(conf->poolinfo);
1da177e4
LT
2698 kfree(conf);
2699 mddev->private = NULL;
2700 return 0;
2701}
2702
fd01b88c 2703static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2704{
2705 /* no resync is happening, and there is enough space
2706 * on all devices, so we can resize.
2707 * We need to make sure resync covers any new space.
2708 * If the array is shrinking we should possibly wait until
2709 * any io in the removed space completes, but it hardly seems
2710 * worth it.
2711 */
1f403624 2712 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
b522adcd
DW
2713 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2714 return -EINVAL;
f233ea5c 2715 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 2716 revalidate_disk(mddev->gendisk);
b522adcd 2717 if (sectors > mddev->dev_sectors &&
b098636c 2718 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 2719 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
2720 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2721 }
b522adcd 2722 mddev->dev_sectors = sectors;
4b5c7ae8 2723 mddev->resync_max_sectors = sectors;
1da177e4
LT
2724 return 0;
2725}
2726
fd01b88c 2727static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
2728{
2729 /* We need to:
2730 * 1/ resize the r1bio_pool
2731 * 2/ resize conf->mirrors
2732 *
2733 * We allocate a new r1bio_pool if we can.
2734 * Then raise a device barrier and wait until all IO stops.
2735 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
2736 *
2737 * At the same time, we "pack" the devices so that all the missing
2738 * devices have the higher raid_disk numbers.
1da177e4
LT
2739 */
2740 mempool_t *newpool, *oldpool;
2741 struct pool_info *newpoolinfo;
0f6d02d5 2742 struct mirror_info *newmirrors;
e8096360 2743 struct r1conf *conf = mddev->private;
63c70c4f 2744 int cnt, raid_disks;
c04be0aa 2745 unsigned long flags;
b5470dc5 2746 int d, d2, err;
1da177e4 2747
63c70c4f 2748 /* Cannot change chunk_size, layout, or level */
664e7c41 2749 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
2750 mddev->layout != mddev->new_layout ||
2751 mddev->level != mddev->new_level) {
664e7c41 2752 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
2753 mddev->new_layout = mddev->layout;
2754 mddev->new_level = mddev->level;
2755 return -EINVAL;
2756 }
2757
b5470dc5
DW
2758 err = md_allow_write(mddev);
2759 if (err)
2760 return err;
2a2275d6 2761
63c70c4f
N
2762 raid_disks = mddev->raid_disks + mddev->delta_disks;
2763
6ea9c07c
N
2764 if (raid_disks < conf->raid_disks) {
2765 cnt=0;
2766 for (d= 0; d < conf->raid_disks; d++)
2767 if (conf->mirrors[d].rdev)
2768 cnt++;
2769 if (cnt > raid_disks)
1da177e4 2770 return -EBUSY;
6ea9c07c 2771 }
1da177e4
LT
2772
2773 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2774 if (!newpoolinfo)
2775 return -ENOMEM;
2776 newpoolinfo->mddev = mddev;
8f19ccb2 2777 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
2778
2779 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2780 r1bio_pool_free, newpoolinfo);
2781 if (!newpool) {
2782 kfree(newpoolinfo);
2783 return -ENOMEM;
2784 }
8f19ccb2
N
2785 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2,
2786 GFP_KERNEL);
1da177e4
LT
2787 if (!newmirrors) {
2788 kfree(newpoolinfo);
2789 mempool_destroy(newpool);
2790 return -ENOMEM;
2791 }
1da177e4 2792
17999be4 2793 raise_barrier(conf);
1da177e4
LT
2794
2795 /* ok, everything is stopped */
2796 oldpool = conf->r1bio_pool;
2797 conf->r1bio_pool = newpool;
6ea9c07c 2798
a88aa786 2799 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 2800 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 2801 if (rdev && rdev->raid_disk != d2) {
36fad858 2802 sysfs_unlink_rdev(mddev, rdev);
a88aa786 2803 rdev->raid_disk = d2;
36fad858
NK
2804 sysfs_unlink_rdev(mddev, rdev);
2805 if (sysfs_link_rdev(mddev, rdev))
a88aa786 2806 printk(KERN_WARNING
36fad858
NK
2807 "md/raid1:%s: cannot register rd%d\n",
2808 mdname(mddev), rdev->raid_disk);
6ea9c07c 2809 }
a88aa786
N
2810 if (rdev)
2811 newmirrors[d2++].rdev = rdev;
2812 }
1da177e4
LT
2813 kfree(conf->mirrors);
2814 conf->mirrors = newmirrors;
2815 kfree(conf->poolinfo);
2816 conf->poolinfo = newpoolinfo;
2817
c04be0aa 2818 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 2819 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 2820 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2821 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 2822 mddev->delta_disks = 0;
1da177e4 2823
6ea9c07c 2824 conf->last_used = 0; /* just make sure it is in-range */
17999be4 2825 lower_barrier(conf);
1da177e4
LT
2826
2827 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2828 md_wakeup_thread(mddev->thread);
2829
2830 mempool_destroy(oldpool);
2831 return 0;
2832}
2833
fd01b88c 2834static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 2835{
e8096360 2836 struct r1conf *conf = mddev->private;
36fa3063
N
2837
2838 switch(state) {
6eef4b21
N
2839 case 2: /* wake for suspend */
2840 wake_up(&conf->wait_barrier);
2841 break;
9e6603da 2842 case 1:
17999be4 2843 raise_barrier(conf);
36fa3063 2844 break;
9e6603da 2845 case 0:
17999be4 2846 lower_barrier(conf);
36fa3063
N
2847 break;
2848 }
36fa3063
N
2849}
2850
fd01b88c 2851static void *raid1_takeover(struct mddev *mddev)
709ae487
N
2852{
2853 /* raid1 can take over:
2854 * raid5 with 2 devices, any layout or chunk size
2855 */
2856 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 2857 struct r1conf *conf;
709ae487
N
2858 mddev->new_level = 1;
2859 mddev->new_layout = 0;
2860 mddev->new_chunk_sectors = 0;
2861 conf = setup_conf(mddev);
2862 if (!IS_ERR(conf))
2863 conf->barrier = 1;
2864 return conf;
2865 }
2866 return ERR_PTR(-EINVAL);
2867}
1da177e4 2868
84fc4b56 2869static struct md_personality raid1_personality =
1da177e4
LT
2870{
2871 .name = "raid1",
2604b703 2872 .level = 1,
1da177e4
LT
2873 .owner = THIS_MODULE,
2874 .make_request = make_request,
2875 .run = run,
2876 .stop = stop,
2877 .status = status,
2878 .error_handler = error,
2879 .hot_add_disk = raid1_add_disk,
2880 .hot_remove_disk= raid1_remove_disk,
2881 .spare_active = raid1_spare_active,
2882 .sync_request = sync_request,
2883 .resize = raid1_resize,
80c3a6ce 2884 .size = raid1_size,
63c70c4f 2885 .check_reshape = raid1_reshape,
36fa3063 2886 .quiesce = raid1_quiesce,
709ae487 2887 .takeover = raid1_takeover,
1da177e4
LT
2888};
2889
2890static int __init raid_init(void)
2891{
2604b703 2892 return register_md_personality(&raid1_personality);
1da177e4
LT
2893}
2894
2895static void raid_exit(void)
2896{
2604b703 2897 unregister_md_personality(&raid1_personality);
1da177e4
LT
2898}
2899
2900module_init(raid_init);
2901module_exit(raid_exit);
2902MODULE_LICENSE("GPL");
0efb9e61 2903MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 2904MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 2905MODULE_ALIAS("md-raid1");
2604b703 2906MODULE_ALIAS("md-level-1");
34db0cd6
N
2907
2908module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.758199 seconds and 5 git commands to generate.