raid5: use bio_reset()
[deliverable/linux.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
473e87ce
JB
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
1da177e4 68
e8096360
N
69static void allow_barrier(struct r1conf *conf);
70static void lower_barrier(struct r1conf *conf);
1da177e4 71
dd0fc66f 72static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
73{
74 struct pool_info *pi = data;
9f2c9d12 75 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
76
77 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 78 return kzalloc(size, gfp_flags);
1da177e4
LT
79}
80
81static void r1bio_pool_free(void *r1_bio, void *data)
82{
83 kfree(r1_bio);
84}
85
86#define RESYNC_BLOCK_SIZE (64*1024)
87//#define RESYNC_BLOCK_SIZE PAGE_SIZE
88#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90#define RESYNC_WINDOW (2048*1024)
91
dd0fc66f 92static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
93{
94 struct pool_info *pi = data;
95 struct page *page;
9f2c9d12 96 struct r1bio *r1_bio;
1da177e4
LT
97 struct bio *bio;
98 int i, j;
99
100 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 101 if (!r1_bio)
1da177e4 102 return NULL;
1da177e4
LT
103
104 /*
105 * Allocate bios : 1 for reading, n-1 for writing
106 */
107 for (j = pi->raid_disks ; j-- ; ) {
6746557f 108 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
109 if (!bio)
110 goto out_free_bio;
111 r1_bio->bios[j] = bio;
112 }
113 /*
114 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
115 * the first bio.
116 * If this is a user-requested check/repair, allocate
117 * RESYNC_PAGES for each bio.
1da177e4 118 */
d11c171e
N
119 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
120 j = pi->raid_disks;
121 else
122 j = 1;
123 while(j--) {
124 bio = r1_bio->bios[j];
125 for (i = 0; i < RESYNC_PAGES; i++) {
126 page = alloc_page(gfp_flags);
127 if (unlikely(!page))
128 goto out_free_pages;
129
130 bio->bi_io_vec[i].bv_page = page;
303a0e11 131 bio->bi_vcnt = i+1;
d11c171e
N
132 }
133 }
134 /* If not user-requests, copy the page pointers to all bios */
135 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
136 for (i=0; i<RESYNC_PAGES ; i++)
137 for (j=1; j<pi->raid_disks; j++)
138 r1_bio->bios[j]->bi_io_vec[i].bv_page =
139 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
140 }
141
142 r1_bio->master_bio = NULL;
143
144 return r1_bio;
145
146out_free_pages:
303a0e11
N
147 for (j=0 ; j < pi->raid_disks; j++)
148 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
149 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 150 j = -1;
1da177e4 151out_free_bio:
8f19ccb2 152 while (++j < pi->raid_disks)
1da177e4
LT
153 bio_put(r1_bio->bios[j]);
154 r1bio_pool_free(r1_bio, data);
155 return NULL;
156}
157
158static void r1buf_pool_free(void *__r1_bio, void *data)
159{
160 struct pool_info *pi = data;
d11c171e 161 int i,j;
9f2c9d12 162 struct r1bio *r1bio = __r1_bio;
1da177e4 163
d11c171e
N
164 for (i = 0; i < RESYNC_PAGES; i++)
165 for (j = pi->raid_disks; j-- ;) {
166 if (j == 0 ||
167 r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 170 }
1da177e4
LT
171 for (i=0 ; i < pi->raid_disks; i++)
172 bio_put(r1bio->bios[i]);
173
174 r1bio_pool_free(r1bio, data);
175}
176
e8096360 177static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
178{
179 int i;
180
8f19ccb2 181 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 182 struct bio **bio = r1_bio->bios + i;
4367af55 183 if (!BIO_SPECIAL(*bio))
1da177e4
LT
184 bio_put(*bio);
185 *bio = NULL;
186 }
187}
188
9f2c9d12 189static void free_r1bio(struct r1bio *r1_bio)
1da177e4 190{
e8096360 191 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 192
1da177e4
LT
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
195}
196
9f2c9d12 197static void put_buf(struct r1bio *r1_bio)
1da177e4 198{
e8096360 199 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
200 int i;
201
8f19ccb2 202 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 }
1da177e4
LT
207
208 mempool_free(r1_bio, conf->r1buf_pool);
209
17999be4 210 lower_barrier(conf);
1da177e4
LT
211}
212
9f2c9d12 213static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
214{
215 unsigned long flags;
fd01b88c 216 struct mddev *mddev = r1_bio->mddev;
e8096360 217 struct r1conf *conf = mddev->private;
1da177e4
LT
218
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 221 conf->nr_queued ++;
1da177e4
LT
222 spin_unlock_irqrestore(&conf->device_lock, flags);
223
17999be4 224 wake_up(&conf->wait_barrier);
1da177e4
LT
225 md_wakeup_thread(mddev->thread);
226}
227
228/*
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
232 */
9f2c9d12 233static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
234{
235 struct bio *bio = r1_bio->master_bio;
236 int done;
e8096360 237 struct r1conf *conf = r1_bio->mddev->private;
d2eb35ac
N
238
239 if (bio->bi_phys_segments) {
240 unsigned long flags;
241 spin_lock_irqsave(&conf->device_lock, flags);
242 bio->bi_phys_segments--;
243 done = (bio->bi_phys_segments == 0);
244 spin_unlock_irqrestore(&conf->device_lock, flags);
245 } else
246 done = 1;
247
248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 clear_bit(BIO_UPTODATE, &bio->bi_flags);
250 if (done) {
251 bio_endio(bio, 0);
252 /*
253 * Wake up any possible resync thread that waits for the device
254 * to go idle.
255 */
256 allow_barrier(conf);
257 }
258}
259
9f2c9d12 260static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
261{
262 struct bio *bio = r1_bio->master_bio;
263
4b6d287f
N
264 /* if nobody has done the final endio yet, do it now */
265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 (unsigned long long) bio->bi_sector,
269 (unsigned long long) bio->bi_sector +
aa8b57aa 270 bio_sectors(bio) - 1);
4b6d287f 271
d2eb35ac 272 call_bio_endio(r1_bio);
4b6d287f 273 }
1da177e4
LT
274 free_r1bio(r1_bio);
275}
276
277/*
278 * Update disk head position estimator based on IRQ completion info.
279 */
9f2c9d12 280static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 281{
e8096360 282 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
283
284 conf->mirrors[disk].head_position =
285 r1_bio->sector + (r1_bio->sectors);
286}
287
ba3ae3be
NK
288/*
289 * Find the disk number which triggered given bio
290 */
9f2c9d12 291static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
292{
293 int mirror;
30194636
N
294 struct r1conf *conf = r1_bio->mddev->private;
295 int raid_disks = conf->raid_disks;
ba3ae3be 296
8f19ccb2 297 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
298 if (r1_bio->bios[mirror] == bio)
299 break;
300
8f19ccb2 301 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
302 update_head_pos(mirror, r1_bio);
303
304 return mirror;
305}
306
6712ecf8 307static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
308{
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 310 struct r1bio *r1_bio = bio->bi_private;
1da177e4 311 int mirror;
e8096360 312 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 313
1da177e4
LT
314 mirror = r1_bio->read_disk;
315 /*
316 * this branch is our 'one mirror IO has finished' event handler:
317 */
ddaf22ab
N
318 update_head_pos(mirror, r1_bio);
319
dd00a99e
N
320 if (uptodate)
321 set_bit(R1BIO_Uptodate, &r1_bio->state);
322 else {
323 /* If all other devices have failed, we want to return
324 * the error upwards rather than fail the last device.
325 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 326 */
dd00a99e
N
327 unsigned long flags;
328 spin_lock_irqsave(&conf->device_lock, flags);
329 if (r1_bio->mddev->degraded == conf->raid_disks ||
330 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
331 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
332 uptodate = 1;
333 spin_unlock_irqrestore(&conf->device_lock, flags);
334 }
1da177e4 335
7ad4d4a6 336 if (uptodate) {
1da177e4 337 raid_end_bio_io(r1_bio);
7ad4d4a6
N
338 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
339 } else {
1da177e4
LT
340 /*
341 * oops, read error:
342 */
343 char b[BDEVNAME_SIZE];
8bda470e
CD
344 printk_ratelimited(
345 KERN_ERR "md/raid1:%s: %s: "
346 "rescheduling sector %llu\n",
347 mdname(conf->mddev),
348 bdevname(conf->mirrors[mirror].rdev->bdev,
349 b),
350 (unsigned long long)r1_bio->sector);
d2eb35ac 351 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 352 reschedule_retry(r1_bio);
7ad4d4a6 353 /* don't drop the reference on read_disk yet */
1da177e4 354 }
1da177e4
LT
355}
356
9f2c9d12 357static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
358{
359 /* it really is the end of this request */
360 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
361 /* free extra copy of the data pages */
362 int i = r1_bio->behind_page_count;
363 while (i--)
364 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
365 kfree(r1_bio->behind_bvecs);
366 r1_bio->behind_bvecs = NULL;
367 }
368 /* clear the bitmap if all writes complete successfully */
369 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
370 r1_bio->sectors,
371 !test_bit(R1BIO_Degraded, &r1_bio->state),
372 test_bit(R1BIO_BehindIO, &r1_bio->state));
373 md_write_end(r1_bio->mddev);
374}
375
9f2c9d12 376static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 377{
cd5ff9a1
N
378 if (!atomic_dec_and_test(&r1_bio->remaining))
379 return;
380
381 if (test_bit(R1BIO_WriteError, &r1_bio->state))
382 reschedule_retry(r1_bio);
383 else {
384 close_write(r1_bio);
4367af55
N
385 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
386 reschedule_retry(r1_bio);
387 else
388 raid_end_bio_io(r1_bio);
4e78064f
N
389 }
390}
391
6712ecf8 392static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
393{
394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 395 struct r1bio *r1_bio = bio->bi_private;
a9701a30 396 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 397 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 398 struct bio *to_put = NULL;
1da177e4 399
ba3ae3be 400 mirror = find_bio_disk(r1_bio, bio);
1da177e4 401
e9c7469b
TH
402 /*
403 * 'one mirror IO has finished' event handler:
404 */
e9c7469b 405 if (!uptodate) {
cd5ff9a1
N
406 set_bit(WriteErrorSeen,
407 &conf->mirrors[mirror].rdev->flags);
19d67169
N
408 if (!test_and_set_bit(WantReplacement,
409 &conf->mirrors[mirror].rdev->flags))
410 set_bit(MD_RECOVERY_NEEDED, &
411 conf->mddev->recovery);
412
cd5ff9a1 413 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 414 } else {
1da177e4 415 /*
e9c7469b
TH
416 * Set R1BIO_Uptodate in our master bio, so that we
417 * will return a good error code for to the higher
418 * levels even if IO on some other mirrored buffer
419 * fails.
420 *
421 * The 'master' represents the composite IO operation
422 * to user-side. So if something waits for IO, then it
423 * will wait for the 'master' bio.
1da177e4 424 */
4367af55
N
425 sector_t first_bad;
426 int bad_sectors;
427
cd5ff9a1
N
428 r1_bio->bios[mirror] = NULL;
429 to_put = bio;
e9c7469b
TH
430 set_bit(R1BIO_Uptodate, &r1_bio->state);
431
4367af55
N
432 /* Maybe we can clear some bad blocks. */
433 if (is_badblock(conf->mirrors[mirror].rdev,
434 r1_bio->sector, r1_bio->sectors,
435 &first_bad, &bad_sectors)) {
436 r1_bio->bios[mirror] = IO_MADE_GOOD;
437 set_bit(R1BIO_MadeGood, &r1_bio->state);
438 }
439 }
440
e9c7469b
TH
441 if (behind) {
442 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
443 atomic_dec(&r1_bio->behind_remaining);
444
445 /*
446 * In behind mode, we ACK the master bio once the I/O
447 * has safely reached all non-writemostly
448 * disks. Setting the Returned bit ensures that this
449 * gets done only once -- we don't ever want to return
450 * -EIO here, instead we'll wait
451 */
452 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
453 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
454 /* Maybe we can return now */
455 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
456 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
457 pr_debug("raid1: behind end write sectors"
458 " %llu-%llu\n",
459 (unsigned long long) mbio->bi_sector,
460 (unsigned long long) mbio->bi_sector +
aa8b57aa 461 bio_sectors(mbio) - 1);
d2eb35ac 462 call_bio_endio(r1_bio);
4b6d287f
N
463 }
464 }
465 }
4367af55
N
466 if (r1_bio->bios[mirror] == NULL)
467 rdev_dec_pending(conf->mirrors[mirror].rdev,
468 conf->mddev);
e9c7469b 469
1da177e4 470 /*
1da177e4
LT
471 * Let's see if all mirrored write operations have finished
472 * already.
473 */
af6d7b76 474 r1_bio_write_done(r1_bio);
c70810b3 475
04b857f7
N
476 if (to_put)
477 bio_put(to_put);
1da177e4
LT
478}
479
480
481/*
482 * This routine returns the disk from which the requested read should
483 * be done. There is a per-array 'next expected sequential IO' sector
484 * number - if this matches on the next IO then we use the last disk.
485 * There is also a per-disk 'last know head position' sector that is
486 * maintained from IRQ contexts, both the normal and the resync IO
487 * completion handlers update this position correctly. If there is no
488 * perfect sequential match then we pick the disk whose head is closest.
489 *
490 * If there are 2 mirrors in the same 2 devices, performance degrades
491 * because position is mirror, not device based.
492 *
493 * The rdev for the device selected will have nr_pending incremented.
494 */
e8096360 495static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 496{
af3a2cd6 497 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
498 int sectors;
499 int best_good_sectors;
9dedf603
SL
500 int best_disk, best_dist_disk, best_pending_disk;
501 int has_nonrot_disk;
be4d3280 502 int disk;
76073054 503 sector_t best_dist;
9dedf603 504 unsigned int min_pending;
3cb03002 505 struct md_rdev *rdev;
f3ac8bf7 506 int choose_first;
12cee5a8 507 int choose_next_idle;
1da177e4
LT
508
509 rcu_read_lock();
510 /*
8ddf9efe 511 * Check if we can balance. We can balance on the whole
1da177e4
LT
512 * device if no resync is going on, or below the resync window.
513 * We take the first readable disk when above the resync window.
514 */
515 retry:
d2eb35ac 516 sectors = r1_bio->sectors;
76073054 517 best_disk = -1;
9dedf603 518 best_dist_disk = -1;
76073054 519 best_dist = MaxSector;
9dedf603
SL
520 best_pending_disk = -1;
521 min_pending = UINT_MAX;
d2eb35ac 522 best_good_sectors = 0;
9dedf603 523 has_nonrot_disk = 0;
12cee5a8 524 choose_next_idle = 0;
d2eb35ac 525
1da177e4 526 if (conf->mddev->recovery_cp < MaxSector &&
be4d3280 527 (this_sector + sectors >= conf->next_resync))
f3ac8bf7 528 choose_first = 1;
be4d3280 529 else
f3ac8bf7 530 choose_first = 0;
1da177e4 531
be4d3280 532 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 533 sector_t dist;
d2eb35ac
N
534 sector_t first_bad;
535 int bad_sectors;
9dedf603 536 unsigned int pending;
12cee5a8 537 bool nonrot;
d2eb35ac 538
f3ac8bf7
N
539 rdev = rcu_dereference(conf->mirrors[disk].rdev);
540 if (r1_bio->bios[disk] == IO_BLOCKED
541 || rdev == NULL
6b740b8d 542 || test_bit(Unmerged, &rdev->flags)
76073054 543 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 544 continue;
76073054
N
545 if (!test_bit(In_sync, &rdev->flags) &&
546 rdev->recovery_offset < this_sector + sectors)
1da177e4 547 continue;
76073054
N
548 if (test_bit(WriteMostly, &rdev->flags)) {
549 /* Don't balance among write-mostly, just
550 * use the first as a last resort */
307729c8
N
551 if (best_disk < 0) {
552 if (is_badblock(rdev, this_sector, sectors,
553 &first_bad, &bad_sectors)) {
554 if (first_bad < this_sector)
555 /* Cannot use this */
556 continue;
557 best_good_sectors = first_bad - this_sector;
558 } else
559 best_good_sectors = sectors;
76073054 560 best_disk = disk;
307729c8 561 }
76073054
N
562 continue;
563 }
564 /* This is a reasonable device to use. It might
565 * even be best.
566 */
d2eb35ac
N
567 if (is_badblock(rdev, this_sector, sectors,
568 &first_bad, &bad_sectors)) {
569 if (best_dist < MaxSector)
570 /* already have a better device */
571 continue;
572 if (first_bad <= this_sector) {
573 /* cannot read here. If this is the 'primary'
574 * device, then we must not read beyond
575 * bad_sectors from another device..
576 */
577 bad_sectors -= (this_sector - first_bad);
578 if (choose_first && sectors > bad_sectors)
579 sectors = bad_sectors;
580 if (best_good_sectors > sectors)
581 best_good_sectors = sectors;
582
583 } else {
584 sector_t good_sectors = first_bad - this_sector;
585 if (good_sectors > best_good_sectors) {
586 best_good_sectors = good_sectors;
587 best_disk = disk;
588 }
589 if (choose_first)
590 break;
591 }
592 continue;
593 } else
594 best_good_sectors = sectors;
595
12cee5a8
SL
596 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
597 has_nonrot_disk |= nonrot;
9dedf603 598 pending = atomic_read(&rdev->nr_pending);
76073054 599 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 600 if (choose_first) {
76073054 601 best_disk = disk;
1da177e4
LT
602 break;
603 }
12cee5a8
SL
604 /* Don't change to another disk for sequential reads */
605 if (conf->mirrors[disk].next_seq_sect == this_sector
606 || dist == 0) {
607 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
608 struct raid1_info *mirror = &conf->mirrors[disk];
609
610 best_disk = disk;
611 /*
612 * If buffered sequential IO size exceeds optimal
613 * iosize, check if there is idle disk. If yes, choose
614 * the idle disk. read_balance could already choose an
615 * idle disk before noticing it's a sequential IO in
616 * this disk. This doesn't matter because this disk
617 * will idle, next time it will be utilized after the
618 * first disk has IO size exceeds optimal iosize. In
619 * this way, iosize of the first disk will be optimal
620 * iosize at least. iosize of the second disk might be
621 * small, but not a big deal since when the second disk
622 * starts IO, the first disk is likely still busy.
623 */
624 if (nonrot && opt_iosize > 0 &&
625 mirror->seq_start != MaxSector &&
626 mirror->next_seq_sect > opt_iosize &&
627 mirror->next_seq_sect - opt_iosize >=
628 mirror->seq_start) {
629 choose_next_idle = 1;
630 continue;
631 }
632 break;
633 }
634 /* If device is idle, use it */
635 if (pending == 0) {
636 best_disk = disk;
637 break;
638 }
639
640 if (choose_next_idle)
641 continue;
9dedf603
SL
642
643 if (min_pending > pending) {
644 min_pending = pending;
645 best_pending_disk = disk;
646 }
647
76073054
N
648 if (dist < best_dist) {
649 best_dist = dist;
9dedf603 650 best_dist_disk = disk;
1da177e4 651 }
f3ac8bf7 652 }
1da177e4 653
9dedf603
SL
654 /*
655 * If all disks are rotational, choose the closest disk. If any disk is
656 * non-rotational, choose the disk with less pending request even the
657 * disk is rotational, which might/might not be optimal for raids with
658 * mixed ratation/non-rotational disks depending on workload.
659 */
660 if (best_disk == -1) {
661 if (has_nonrot_disk)
662 best_disk = best_pending_disk;
663 else
664 best_disk = best_dist_disk;
665 }
666
76073054
N
667 if (best_disk >= 0) {
668 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
669 if (!rdev)
670 goto retry;
671 atomic_inc(&rdev->nr_pending);
76073054 672 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
673 /* cannot risk returning a device that failed
674 * before we inc'ed nr_pending
675 */
03c902e1 676 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
677 goto retry;
678 }
d2eb35ac 679 sectors = best_good_sectors;
12cee5a8
SL
680
681 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
682 conf->mirrors[best_disk].seq_start = this_sector;
683
be4d3280 684 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
685 }
686 rcu_read_unlock();
d2eb35ac 687 *max_sectors = sectors;
1da177e4 688
76073054 689 return best_disk;
1da177e4
LT
690}
691
6b740b8d
N
692static int raid1_mergeable_bvec(struct request_queue *q,
693 struct bvec_merge_data *bvm,
694 struct bio_vec *biovec)
695{
696 struct mddev *mddev = q->queuedata;
697 struct r1conf *conf = mddev->private;
698 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
699 int max = biovec->bv_len;
700
701 if (mddev->merge_check_needed) {
702 int disk;
703 rcu_read_lock();
704 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
705 struct md_rdev *rdev = rcu_dereference(
706 conf->mirrors[disk].rdev);
707 if (rdev && !test_bit(Faulty, &rdev->flags)) {
708 struct request_queue *q =
709 bdev_get_queue(rdev->bdev);
710 if (q->merge_bvec_fn) {
711 bvm->bi_sector = sector +
712 rdev->data_offset;
713 bvm->bi_bdev = rdev->bdev;
714 max = min(max, q->merge_bvec_fn(
715 q, bvm, biovec));
716 }
717 }
718 }
719 rcu_read_unlock();
720 }
721 return max;
722
723}
724
fd01b88c 725int md_raid1_congested(struct mddev *mddev, int bits)
0d129228 726{
e8096360 727 struct r1conf *conf = mddev->private;
0d129228
N
728 int i, ret = 0;
729
34db0cd6
N
730 if ((bits & (1 << BDI_async_congested)) &&
731 conf->pending_count >= max_queued_requests)
732 return 1;
733
0d129228 734 rcu_read_lock();
f53e29fc 735 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 736 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 737 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 738 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 739
1ed7242e
JB
740 BUG_ON(!q);
741
0d129228
N
742 /* Note the '|| 1' - when read_balance prefers
743 * non-congested targets, it can be removed
744 */
91a9e99d 745 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
746 ret |= bdi_congested(&q->backing_dev_info, bits);
747 else
748 ret &= bdi_congested(&q->backing_dev_info, bits);
749 }
750 }
751 rcu_read_unlock();
752 return ret;
753}
1ed7242e 754EXPORT_SYMBOL_GPL(md_raid1_congested);
0d129228 755
1ed7242e
JB
756static int raid1_congested(void *data, int bits)
757{
fd01b88c 758 struct mddev *mddev = data;
1ed7242e
JB
759
760 return mddev_congested(mddev, bits) ||
761 md_raid1_congested(mddev, bits);
762}
0d129228 763
e8096360 764static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
765{
766 /* Any writes that have been queued but are awaiting
767 * bitmap updates get flushed here.
a35e63ef 768 */
a35e63ef
N
769 spin_lock_irq(&conf->device_lock);
770
771 if (conf->pending_bio_list.head) {
772 struct bio *bio;
773 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 774 conf->pending_count = 0;
a35e63ef
N
775 spin_unlock_irq(&conf->device_lock);
776 /* flush any pending bitmap writes to
777 * disk before proceeding w/ I/O */
778 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 779 wake_up(&conf->wait_barrier);
a35e63ef
N
780
781 while (bio) { /* submit pending writes */
782 struct bio *next = bio->bi_next;
783 bio->bi_next = NULL;
2ff8cc2c
SL
784 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
785 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
786 /* Just ignore it */
787 bio_endio(bio, 0);
788 else
789 generic_make_request(bio);
a35e63ef
N
790 bio = next;
791 }
a35e63ef
N
792 } else
793 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
794}
795
17999be4
N
796/* Barriers....
797 * Sometimes we need to suspend IO while we do something else,
798 * either some resync/recovery, or reconfigure the array.
799 * To do this we raise a 'barrier'.
800 * The 'barrier' is a counter that can be raised multiple times
801 * to count how many activities are happening which preclude
802 * normal IO.
803 * We can only raise the barrier if there is no pending IO.
804 * i.e. if nr_pending == 0.
805 * We choose only to raise the barrier if no-one is waiting for the
806 * barrier to go down. This means that as soon as an IO request
807 * is ready, no other operations which require a barrier will start
808 * until the IO request has had a chance.
809 *
810 * So: regular IO calls 'wait_barrier'. When that returns there
811 * is no backgroup IO happening, It must arrange to call
812 * allow_barrier when it has finished its IO.
813 * backgroup IO calls must call raise_barrier. Once that returns
814 * there is no normal IO happeing. It must arrange to call
815 * lower_barrier when the particular background IO completes.
1da177e4
LT
816 */
817#define RESYNC_DEPTH 32
818
e8096360 819static void raise_barrier(struct r1conf *conf)
1da177e4
LT
820{
821 spin_lock_irq(&conf->resync_lock);
17999be4
N
822
823 /* Wait until no block IO is waiting */
824 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
eed8c02e 825 conf->resync_lock);
17999be4
N
826
827 /* block any new IO from starting */
828 conf->barrier++;
829
046abeed 830 /* Now wait for all pending IO to complete */
17999be4
N
831 wait_event_lock_irq(conf->wait_barrier,
832 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
eed8c02e 833 conf->resync_lock);
17999be4
N
834
835 spin_unlock_irq(&conf->resync_lock);
836}
837
e8096360 838static void lower_barrier(struct r1conf *conf)
17999be4
N
839{
840 unsigned long flags;
709ae487 841 BUG_ON(conf->barrier <= 0);
17999be4
N
842 spin_lock_irqsave(&conf->resync_lock, flags);
843 conf->barrier--;
844 spin_unlock_irqrestore(&conf->resync_lock, flags);
845 wake_up(&conf->wait_barrier);
846}
847
e8096360 848static void wait_barrier(struct r1conf *conf)
17999be4
N
849{
850 spin_lock_irq(&conf->resync_lock);
851 if (conf->barrier) {
852 conf->nr_waiting++;
d6b42dcb
N
853 /* Wait for the barrier to drop.
854 * However if there are already pending
855 * requests (preventing the barrier from
856 * rising completely), and the
857 * pre-process bio queue isn't empty,
858 * then don't wait, as we need to empty
859 * that queue to get the nr_pending
860 * count down.
861 */
862 wait_event_lock_irq(conf->wait_barrier,
863 !conf->barrier ||
864 (conf->nr_pending &&
865 current->bio_list &&
866 !bio_list_empty(current->bio_list)),
eed8c02e 867 conf->resync_lock);
17999be4 868 conf->nr_waiting--;
1da177e4 869 }
17999be4 870 conf->nr_pending++;
1da177e4
LT
871 spin_unlock_irq(&conf->resync_lock);
872}
873
e8096360 874static void allow_barrier(struct r1conf *conf)
17999be4
N
875{
876 unsigned long flags;
877 spin_lock_irqsave(&conf->resync_lock, flags);
878 conf->nr_pending--;
879 spin_unlock_irqrestore(&conf->resync_lock, flags);
880 wake_up(&conf->wait_barrier);
881}
882
e8096360 883static void freeze_array(struct r1conf *conf)
ddaf22ab
N
884{
885 /* stop syncio and normal IO and wait for everything to
886 * go quite.
887 * We increment barrier and nr_waiting, and then
1c830532
N
888 * wait until nr_pending match nr_queued+1
889 * This is called in the context of one normal IO request
890 * that has failed. Thus any sync request that might be pending
891 * will be blocked by nr_pending, and we need to wait for
892 * pending IO requests to complete or be queued for re-try.
893 * Thus the number queued (nr_queued) plus this request (1)
894 * must match the number of pending IOs (nr_pending) before
895 * we continue.
ddaf22ab
N
896 */
897 spin_lock_irq(&conf->resync_lock);
898 conf->barrier++;
899 conf->nr_waiting++;
eed8c02e
LC
900 wait_event_lock_irq_cmd(conf->wait_barrier,
901 conf->nr_pending == conf->nr_queued+1,
902 conf->resync_lock,
903 flush_pending_writes(conf));
ddaf22ab
N
904 spin_unlock_irq(&conf->resync_lock);
905}
e8096360 906static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
907{
908 /* reverse the effect of the freeze */
909 spin_lock_irq(&conf->resync_lock);
910 conf->barrier--;
911 conf->nr_waiting--;
912 wake_up(&conf->wait_barrier);
913 spin_unlock_irq(&conf->resync_lock);
914}
915
17999be4 916
4e78064f 917/* duplicate the data pages for behind I/O
4e78064f 918 */
9f2c9d12 919static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
920{
921 int i;
922 struct bio_vec *bvec;
2ca68f5e 923 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 924 GFP_NOIO);
2ca68f5e 925 if (unlikely(!bvecs))
af6d7b76 926 return;
4b6d287f 927
4b6d287f 928 bio_for_each_segment(bvec, bio, i) {
2ca68f5e
N
929 bvecs[i] = *bvec;
930 bvecs[i].bv_page = alloc_page(GFP_NOIO);
931 if (unlikely(!bvecs[i].bv_page))
4b6d287f 932 goto do_sync_io;
2ca68f5e
N
933 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
934 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
935 kunmap(bvecs[i].bv_page);
4b6d287f
N
936 kunmap(bvec->bv_page);
937 }
2ca68f5e 938 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
939 r1_bio->behind_page_count = bio->bi_vcnt;
940 set_bit(R1BIO_BehindIO, &r1_bio->state);
941 return;
4b6d287f
N
942
943do_sync_io:
af6d7b76 944 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
945 if (bvecs[i].bv_page)
946 put_page(bvecs[i].bv_page);
947 kfree(bvecs);
36a4e1fe 948 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
4b6d287f
N
949}
950
f54a9d0e
N
951struct raid1_plug_cb {
952 struct blk_plug_cb cb;
953 struct bio_list pending;
954 int pending_cnt;
955};
956
957static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
958{
959 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
960 cb);
961 struct mddev *mddev = plug->cb.data;
962 struct r1conf *conf = mddev->private;
963 struct bio *bio;
964
874807a8 965 if (from_schedule || current->bio_list) {
f54a9d0e
N
966 spin_lock_irq(&conf->device_lock);
967 bio_list_merge(&conf->pending_bio_list, &plug->pending);
968 conf->pending_count += plug->pending_cnt;
969 spin_unlock_irq(&conf->device_lock);
ee0b0244 970 wake_up(&conf->wait_barrier);
f54a9d0e
N
971 md_wakeup_thread(mddev->thread);
972 kfree(plug);
973 return;
974 }
975
976 /* we aren't scheduling, so we can do the write-out directly. */
977 bio = bio_list_get(&plug->pending);
978 bitmap_unplug(mddev->bitmap);
979 wake_up(&conf->wait_barrier);
980
981 while (bio) { /* submit pending writes */
982 struct bio *next = bio->bi_next;
983 bio->bi_next = NULL;
984 generic_make_request(bio);
985 bio = next;
986 }
987 kfree(plug);
988}
989
b4fdcb02 990static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 991{
e8096360 992 struct r1conf *conf = mddev->private;
0eaf822c 993 struct raid1_info *mirror;
9f2c9d12 994 struct r1bio *r1_bio;
1da177e4 995 struct bio *read_bio;
1f68f0c4 996 int i, disks;
84255d10 997 struct bitmap *bitmap;
191ea9b2 998 unsigned long flags;
a362357b 999 const int rw = bio_data_dir(bio);
2c7d46ec 1000 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1001 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
2ff8cc2c
SL
1002 const unsigned long do_discard = (bio->bi_rw
1003 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1004 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
3cb03002 1005 struct md_rdev *blocked_rdev;
f54a9d0e
N
1006 struct blk_plug_cb *cb;
1007 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
1008 int first_clone;
1009 int sectors_handled;
1010 int max_sectors;
191ea9b2 1011
1da177e4
LT
1012 /*
1013 * Register the new request and wait if the reconstruction
1014 * thread has put up a bar for new requests.
1015 * Continue immediately if no resync is active currently.
1016 */
62de608d 1017
3d310eb7
N
1018 md_write_start(mddev, bio); /* wait on superblock update early */
1019
6eef4b21 1020 if (bio_data_dir(bio) == WRITE &&
f73a1c7d 1021 bio_end_sector(bio) > mddev->suspend_lo &&
6eef4b21
N
1022 bio->bi_sector < mddev->suspend_hi) {
1023 /* As the suspend_* range is controlled by
1024 * userspace, we want an interruptible
1025 * wait.
1026 */
1027 DEFINE_WAIT(w);
1028 for (;;) {
1029 flush_signals(current);
1030 prepare_to_wait(&conf->wait_barrier,
1031 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1032 if (bio_end_sector(bio) <= mddev->suspend_lo ||
6eef4b21
N
1033 bio->bi_sector >= mddev->suspend_hi)
1034 break;
1035 schedule();
1036 }
1037 finish_wait(&conf->wait_barrier, &w);
1038 }
62de608d 1039
17999be4 1040 wait_barrier(conf);
1da177e4 1041
84255d10
N
1042 bitmap = mddev->bitmap;
1043
1da177e4
LT
1044 /*
1045 * make_request() can abort the operation when READA is being
1046 * used and no empty request is available.
1047 *
1048 */
1049 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1050
1051 r1_bio->master_bio = bio;
aa8b57aa 1052 r1_bio->sectors = bio_sectors(bio);
191ea9b2 1053 r1_bio->state = 0;
1da177e4
LT
1054 r1_bio->mddev = mddev;
1055 r1_bio->sector = bio->bi_sector;
1056
d2eb35ac
N
1057 /* We might need to issue multiple reads to different
1058 * devices if there are bad blocks around, so we keep
1059 * track of the number of reads in bio->bi_phys_segments.
1060 * If this is 0, there is only one r1_bio and no locking
1061 * will be needed when requests complete. If it is
1062 * non-zero, then it is the number of not-completed requests.
1063 */
1064 bio->bi_phys_segments = 0;
1065 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1066
a362357b 1067 if (rw == READ) {
1da177e4
LT
1068 /*
1069 * read balancing logic:
1070 */
d2eb35ac
N
1071 int rdisk;
1072
1073read_again:
1074 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
1075
1076 if (rdisk < 0) {
1077 /* couldn't find anywhere to read from */
1078 raid_end_bio_io(r1_bio);
5a7bbad2 1079 return;
1da177e4
LT
1080 }
1081 mirror = conf->mirrors + rdisk;
1082
e555190d
N
1083 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1084 bitmap) {
1085 /* Reading from a write-mostly device must
1086 * take care not to over-take any writes
1087 * that are 'behind'
1088 */
1089 wait_event(bitmap->behind_wait,
1090 atomic_read(&bitmap->behind_writes) == 0);
1091 }
1da177e4
LT
1092 r1_bio->read_disk = rdisk;
1093
a167f663 1094 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d2eb35ac
N
1095 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
1096 max_sectors);
1da177e4
LT
1097
1098 r1_bio->bios[rdisk] = read_bio;
1099
1100 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1101 read_bio->bi_bdev = mirror->rdev->bdev;
1102 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 1103 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1104 read_bio->bi_private = r1_bio;
1105
d2eb35ac
N
1106 if (max_sectors < r1_bio->sectors) {
1107 /* could not read all from this device, so we will
1108 * need another r1_bio.
1109 */
d2eb35ac
N
1110
1111 sectors_handled = (r1_bio->sector + max_sectors
1112 - bio->bi_sector);
1113 r1_bio->sectors = max_sectors;
1114 spin_lock_irq(&conf->device_lock);
1115 if (bio->bi_phys_segments == 0)
1116 bio->bi_phys_segments = 2;
1117 else
1118 bio->bi_phys_segments++;
1119 spin_unlock_irq(&conf->device_lock);
1120 /* Cannot call generic_make_request directly
1121 * as that will be queued in __make_request
1122 * and subsequent mempool_alloc might block waiting
1123 * for it. So hand bio over to raid1d.
1124 */
1125 reschedule_retry(r1_bio);
1126
1127 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1128
1129 r1_bio->master_bio = bio;
aa8b57aa 1130 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
d2eb35ac
N
1131 r1_bio->state = 0;
1132 r1_bio->mddev = mddev;
1133 r1_bio->sector = bio->bi_sector + sectors_handled;
1134 goto read_again;
1135 } else
1136 generic_make_request(read_bio);
5a7bbad2 1137 return;
1da177e4
LT
1138 }
1139
1140 /*
1141 * WRITE:
1142 */
34db0cd6
N
1143 if (conf->pending_count >= max_queued_requests) {
1144 md_wakeup_thread(mddev->thread);
1145 wait_event(conf->wait_barrier,
1146 conf->pending_count < max_queued_requests);
1147 }
1f68f0c4 1148 /* first select target devices under rcu_lock and
1da177e4
LT
1149 * inc refcount on their rdev. Record them by setting
1150 * bios[x] to bio
1f68f0c4
N
1151 * If there are known/acknowledged bad blocks on any device on
1152 * which we have seen a write error, we want to avoid writing those
1153 * blocks.
1154 * This potentially requires several writes to write around
1155 * the bad blocks. Each set of writes gets it's own r1bio
1156 * with a set of bios attached.
1da177e4 1157 */
c3b328ac 1158
8f19ccb2 1159 disks = conf->raid_disks * 2;
6bfe0b49
DW
1160 retry_write:
1161 blocked_rdev = NULL;
1da177e4 1162 rcu_read_lock();
1f68f0c4 1163 max_sectors = r1_bio->sectors;
1da177e4 1164 for (i = 0; i < disks; i++) {
3cb03002 1165 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1166 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1167 atomic_inc(&rdev->nr_pending);
1168 blocked_rdev = rdev;
1169 break;
1170 }
1f68f0c4 1171 r1_bio->bios[i] = NULL;
6b740b8d
N
1172 if (!rdev || test_bit(Faulty, &rdev->flags)
1173 || test_bit(Unmerged, &rdev->flags)) {
8f19ccb2
N
1174 if (i < conf->raid_disks)
1175 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1176 continue;
1177 }
1178
1179 atomic_inc(&rdev->nr_pending);
1180 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1181 sector_t first_bad;
1182 int bad_sectors;
1183 int is_bad;
1184
1185 is_bad = is_badblock(rdev, r1_bio->sector,
1186 max_sectors,
1187 &first_bad, &bad_sectors);
1188 if (is_bad < 0) {
1189 /* mustn't write here until the bad block is
1190 * acknowledged*/
1191 set_bit(BlockedBadBlocks, &rdev->flags);
1192 blocked_rdev = rdev;
1193 break;
1194 }
1195 if (is_bad && first_bad <= r1_bio->sector) {
1196 /* Cannot write here at all */
1197 bad_sectors -= (r1_bio->sector - first_bad);
1198 if (bad_sectors < max_sectors)
1199 /* mustn't write more than bad_sectors
1200 * to other devices yet
1201 */
1202 max_sectors = bad_sectors;
03c902e1 1203 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1204 /* We don't set R1BIO_Degraded as that
1205 * only applies if the disk is
1206 * missing, so it might be re-added,
1207 * and we want to know to recover this
1208 * chunk.
1209 * In this case the device is here,
1210 * and the fact that this chunk is not
1211 * in-sync is recorded in the bad
1212 * block log
1213 */
1214 continue;
964147d5 1215 }
1f68f0c4
N
1216 if (is_bad) {
1217 int good_sectors = first_bad - r1_bio->sector;
1218 if (good_sectors < max_sectors)
1219 max_sectors = good_sectors;
1220 }
1221 }
1222 r1_bio->bios[i] = bio;
1da177e4
LT
1223 }
1224 rcu_read_unlock();
1225
6bfe0b49
DW
1226 if (unlikely(blocked_rdev)) {
1227 /* Wait for this device to become unblocked */
1228 int j;
1229
1230 for (j = 0; j < i; j++)
1231 if (r1_bio->bios[j])
1232 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1233 r1_bio->state = 0;
6bfe0b49
DW
1234 allow_barrier(conf);
1235 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1236 wait_barrier(conf);
1237 goto retry_write;
1238 }
1239
1f68f0c4
N
1240 if (max_sectors < r1_bio->sectors) {
1241 /* We are splitting this write into multiple parts, so
1242 * we need to prepare for allocating another r1_bio.
1243 */
1244 r1_bio->sectors = max_sectors;
1245 spin_lock_irq(&conf->device_lock);
1246 if (bio->bi_phys_segments == 0)
1247 bio->bi_phys_segments = 2;
1248 else
1249 bio->bi_phys_segments++;
1250 spin_unlock_irq(&conf->device_lock);
191ea9b2 1251 }
1f68f0c4 1252 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
4b6d287f 1253
4e78064f 1254 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1255 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1256
1f68f0c4 1257 first_clone = 1;
1da177e4
LT
1258 for (i = 0; i < disks; i++) {
1259 struct bio *mbio;
1260 if (!r1_bio->bios[i])
1261 continue;
1262
a167f663 1263 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1f68f0c4
N
1264 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1265
1266 if (first_clone) {
1267 /* do behind I/O ?
1268 * Not if there are too many, or cannot
1269 * allocate memory, or a reader on WriteMostly
1270 * is waiting for behind writes to flush */
1271 if (bitmap &&
1272 (atomic_read(&bitmap->behind_writes)
1273 < mddev->bitmap_info.max_write_behind) &&
1274 !waitqueue_active(&bitmap->behind_wait))
1275 alloc_behind_pages(mbio, r1_bio);
1276
1277 bitmap_startwrite(bitmap, r1_bio->sector,
1278 r1_bio->sectors,
1279 test_bit(R1BIO_BehindIO,
1280 &r1_bio->state));
1281 first_clone = 0;
1282 }
2ca68f5e 1283 if (r1_bio->behind_bvecs) {
4b6d287f
N
1284 struct bio_vec *bvec;
1285 int j;
1286
1287 /* Yes, I really want the '__' version so that
1288 * we clear any unused pointer in the io_vec, rather
1289 * than leave them unchanged. This is important
1290 * because when we come to free the pages, we won't
046abeed 1291 * know the original bi_idx, so we just free
4b6d287f
N
1292 * them all
1293 */
1294 __bio_for_each_segment(bvec, mbio, j, 0)
2ca68f5e 1295 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1296 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1297 atomic_inc(&r1_bio->behind_remaining);
1298 }
1299
1f68f0c4
N
1300 r1_bio->bios[i] = mbio;
1301
1302 mbio->bi_sector = (r1_bio->sector +
1303 conf->mirrors[i].rdev->data_offset);
1304 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1305 mbio->bi_end_io = raid1_end_write_request;
c8dc9c65
JL
1306 mbio->bi_rw =
1307 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1f68f0c4
N
1308 mbio->bi_private = r1_bio;
1309
1da177e4 1310 atomic_inc(&r1_bio->remaining);
f54a9d0e
N
1311
1312 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1313 if (cb)
1314 plug = container_of(cb, struct raid1_plug_cb, cb);
1315 else
1316 plug = NULL;
4e78064f 1317 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1318 if (plug) {
1319 bio_list_add(&plug->pending, mbio);
1320 plug->pending_cnt++;
1321 } else {
1322 bio_list_add(&conf->pending_bio_list, mbio);
1323 conf->pending_count++;
1324 }
4e78064f 1325 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1326 if (!plug)
b357f04a 1327 md_wakeup_thread(mddev->thread);
1da177e4 1328 }
079fa166
N
1329 /* Mustn't call r1_bio_write_done before this next test,
1330 * as it could result in the bio being freed.
1331 */
aa8b57aa 1332 if (sectors_handled < bio_sectors(bio)) {
079fa166 1333 r1_bio_write_done(r1_bio);
1f68f0c4
N
1334 /* We need another r1_bio. It has already been counted
1335 * in bio->bi_phys_segments
1336 */
1337 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1338 r1_bio->master_bio = bio;
aa8b57aa 1339 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1f68f0c4
N
1340 r1_bio->state = 0;
1341 r1_bio->mddev = mddev;
1342 r1_bio->sector = bio->bi_sector + sectors_handled;
1343 goto retry_write;
1344 }
1345
079fa166
N
1346 r1_bio_write_done(r1_bio);
1347
1348 /* In case raid1d snuck in to freeze_array */
1349 wake_up(&conf->wait_barrier);
1da177e4
LT
1350}
1351
fd01b88c 1352static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1353{
e8096360 1354 struct r1conf *conf = mddev->private;
1da177e4
LT
1355 int i;
1356
1357 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1358 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1359 rcu_read_lock();
1360 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1361 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1362 seq_printf(seq, "%s",
ddac7c7e
N
1363 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1364 }
1365 rcu_read_unlock();
1da177e4
LT
1366 seq_printf(seq, "]");
1367}
1368
1369
fd01b88c 1370static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1371{
1372 char b[BDEVNAME_SIZE];
e8096360 1373 struct r1conf *conf = mddev->private;
1da177e4
LT
1374
1375 /*
1376 * If it is not operational, then we have already marked it as dead
1377 * else if it is the last working disks, ignore the error, let the
1378 * next level up know.
1379 * else mark the drive as failed
1380 */
b2d444d7 1381 if (test_bit(In_sync, &rdev->flags)
4044ba58 1382 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1383 /*
1384 * Don't fail the drive, act as though we were just a
4044ba58
N
1385 * normal single drive.
1386 * However don't try a recovery from this drive as
1387 * it is very likely to fail.
1da177e4 1388 */
5389042f 1389 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1390 return;
4044ba58 1391 }
de393cde 1392 set_bit(Blocked, &rdev->flags);
c04be0aa
N
1393 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1394 unsigned long flags;
1395 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1396 mddev->degraded++;
dd00a99e 1397 set_bit(Faulty, &rdev->flags);
c04be0aa 1398 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1399 /*
1400 * if recovery is running, make sure it aborts.
1401 */
dfc70645 1402 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
dd00a99e
N
1403 } else
1404 set_bit(Faulty, &rdev->flags);
850b2b42 1405 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1406 printk(KERN_ALERT
1407 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1408 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1409 mdname(mddev), bdevname(rdev->bdev, b),
1410 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1411}
1412
e8096360 1413static void print_conf(struct r1conf *conf)
1da177e4
LT
1414{
1415 int i;
1da177e4 1416
9dd1e2fa 1417 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1418 if (!conf) {
9dd1e2fa 1419 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1420 return;
1421 }
9dd1e2fa 1422 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1423 conf->raid_disks);
1424
ddac7c7e 1425 rcu_read_lock();
1da177e4
LT
1426 for (i = 0; i < conf->raid_disks; i++) {
1427 char b[BDEVNAME_SIZE];
3cb03002 1428 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1429 if (rdev)
9dd1e2fa 1430 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1431 i, !test_bit(In_sync, &rdev->flags),
1432 !test_bit(Faulty, &rdev->flags),
1433 bdevname(rdev->bdev,b));
1da177e4 1434 }
ddac7c7e 1435 rcu_read_unlock();
1da177e4
LT
1436}
1437
e8096360 1438static void close_sync(struct r1conf *conf)
1da177e4 1439{
17999be4
N
1440 wait_barrier(conf);
1441 allow_barrier(conf);
1da177e4
LT
1442
1443 mempool_destroy(conf->r1buf_pool);
1444 conf->r1buf_pool = NULL;
1445}
1446
fd01b88c 1447static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1448{
1449 int i;
e8096360 1450 struct r1conf *conf = mddev->private;
6b965620
N
1451 int count = 0;
1452 unsigned long flags;
1da177e4
LT
1453
1454 /*
1455 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1456 * and mark them readable.
1457 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1458 */
1459 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1460 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1461 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1462 if (repl
1463 && repl->recovery_offset == MaxSector
1464 && !test_bit(Faulty, &repl->flags)
1465 && !test_and_set_bit(In_sync, &repl->flags)) {
1466 /* replacement has just become active */
1467 if (!rdev ||
1468 !test_and_clear_bit(In_sync, &rdev->flags))
1469 count++;
1470 if (rdev) {
1471 /* Replaced device not technically
1472 * faulty, but we need to be sure
1473 * it gets removed and never re-added
1474 */
1475 set_bit(Faulty, &rdev->flags);
1476 sysfs_notify_dirent_safe(
1477 rdev->sysfs_state);
1478 }
1479 }
ddac7c7e
N
1480 if (rdev
1481 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1482 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1483 count++;
654e8b5a 1484 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1485 }
1486 }
6b965620
N
1487 spin_lock_irqsave(&conf->device_lock, flags);
1488 mddev->degraded -= count;
1489 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1490
1491 print_conf(conf);
6b965620 1492 return count;
1da177e4
LT
1493}
1494
1495
fd01b88c 1496static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1497{
e8096360 1498 struct r1conf *conf = mddev->private;
199050ea 1499 int err = -EEXIST;
41158c7e 1500 int mirror = 0;
0eaf822c 1501 struct raid1_info *p;
6c2fce2e 1502 int first = 0;
30194636 1503 int last = conf->raid_disks - 1;
6b740b8d 1504 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4 1505
5389042f
N
1506 if (mddev->recovery_disabled == conf->recovery_disabled)
1507 return -EBUSY;
1508
6c2fce2e
NB
1509 if (rdev->raid_disk >= 0)
1510 first = last = rdev->raid_disk;
1511
6b740b8d
N
1512 if (q->merge_bvec_fn) {
1513 set_bit(Unmerged, &rdev->flags);
1514 mddev->merge_check_needed = 1;
1515 }
1516
7ef449d1
N
1517 for (mirror = first; mirror <= last; mirror++) {
1518 p = conf->mirrors+mirror;
1519 if (!p->rdev) {
1da177e4 1520
8f6c2e4b
MP
1521 disk_stack_limits(mddev->gendisk, rdev->bdev,
1522 rdev->data_offset << 9);
1da177e4
LT
1523
1524 p->head_position = 0;
1525 rdev->raid_disk = mirror;
199050ea 1526 err = 0;
6aea114a
N
1527 /* As all devices are equivalent, we don't need a full recovery
1528 * if this was recently any drive of the array
1529 */
1530 if (rdev->saved_raid_disk < 0)
41158c7e 1531 conf->fullsync = 1;
d6065f7b 1532 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1533 break;
1534 }
7ef449d1
N
1535 if (test_bit(WantReplacement, &p->rdev->flags) &&
1536 p[conf->raid_disks].rdev == NULL) {
1537 /* Add this device as a replacement */
1538 clear_bit(In_sync, &rdev->flags);
1539 set_bit(Replacement, &rdev->flags);
1540 rdev->raid_disk = mirror;
1541 err = 0;
1542 conf->fullsync = 1;
1543 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1544 break;
1545 }
1546 }
6b740b8d
N
1547 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1548 /* Some requests might not have seen this new
1549 * merge_bvec_fn. We must wait for them to complete
1550 * before merging the device fully.
1551 * First we make sure any code which has tested
1552 * our function has submitted the request, then
1553 * we wait for all outstanding requests to complete.
1554 */
1555 synchronize_sched();
1556 raise_barrier(conf);
1557 lower_barrier(conf);
1558 clear_bit(Unmerged, &rdev->flags);
1559 }
ac5e7113 1560 md_integrity_add_rdev(rdev, mddev);
2ff8cc2c
SL
1561 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
1562 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1563 print_conf(conf);
199050ea 1564 return err;
1da177e4
LT
1565}
1566
b8321b68 1567static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1568{
e8096360 1569 struct r1conf *conf = mddev->private;
1da177e4 1570 int err = 0;
b8321b68 1571 int number = rdev->raid_disk;
0eaf822c 1572 struct raid1_info *p = conf->mirrors + number;
1da177e4 1573
b014f14c
N
1574 if (rdev != p->rdev)
1575 p = conf->mirrors + conf->raid_disks + number;
1576
1da177e4 1577 print_conf(conf);
b8321b68 1578 if (rdev == p->rdev) {
b2d444d7 1579 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1580 atomic_read(&rdev->nr_pending)) {
1581 err = -EBUSY;
1582 goto abort;
1583 }
046abeed 1584 /* Only remove non-faulty devices if recovery
dfc70645
N
1585 * is not possible.
1586 */
1587 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1588 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1589 mddev->degraded < conf->raid_disks) {
1590 err = -EBUSY;
1591 goto abort;
1592 }
1da177e4 1593 p->rdev = NULL;
fbd568a3 1594 synchronize_rcu();
1da177e4
LT
1595 if (atomic_read(&rdev->nr_pending)) {
1596 /* lost the race, try later */
1597 err = -EBUSY;
1598 p->rdev = rdev;
ac5e7113 1599 goto abort;
8c7a2c2b
N
1600 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1601 /* We just removed a device that is being replaced.
1602 * Move down the replacement. We drain all IO before
1603 * doing this to avoid confusion.
1604 */
1605 struct md_rdev *repl =
1606 conf->mirrors[conf->raid_disks + number].rdev;
1607 raise_barrier(conf);
1608 clear_bit(Replacement, &repl->flags);
1609 p->rdev = repl;
1610 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1611 lower_barrier(conf);
1612 clear_bit(WantReplacement, &rdev->flags);
1613 } else
b014f14c 1614 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1615 err = md_integrity_register(mddev);
1da177e4
LT
1616 }
1617abort:
1618
1619 print_conf(conf);
1620 return err;
1621}
1622
1623
6712ecf8 1624static void end_sync_read(struct bio *bio, int error)
1da177e4 1625{
9f2c9d12 1626 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1627
0fc280f6 1628 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1629
1da177e4
LT
1630 /*
1631 * we have read a block, now it needs to be re-written,
1632 * or re-read if the read failed.
1633 * We don't do much here, just schedule handling by raid1d
1634 */
69382e85 1635 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1636 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1637
1638 if (atomic_dec_and_test(&r1_bio->remaining))
1639 reschedule_retry(r1_bio);
1da177e4
LT
1640}
1641
6712ecf8 1642static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1643{
1644 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1645 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1646 struct mddev *mddev = r1_bio->mddev;
e8096360 1647 struct r1conf *conf = mddev->private;
1da177e4 1648 int mirror=0;
4367af55
N
1649 sector_t first_bad;
1650 int bad_sectors;
1da177e4 1651
ba3ae3be
NK
1652 mirror = find_bio_disk(r1_bio, bio);
1653
6b1117d5 1654 if (!uptodate) {
57dab0bd 1655 sector_t sync_blocks = 0;
6b1117d5
N
1656 sector_t s = r1_bio->sector;
1657 long sectors_to_go = r1_bio->sectors;
1658 /* make sure these bits doesn't get cleared. */
1659 do {
5e3db645 1660 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1661 &sync_blocks, 1);
1662 s += sync_blocks;
1663 sectors_to_go -= sync_blocks;
1664 } while (sectors_to_go > 0);
d8f05d29
N
1665 set_bit(WriteErrorSeen,
1666 &conf->mirrors[mirror].rdev->flags);
19d67169
N
1667 if (!test_and_set_bit(WantReplacement,
1668 &conf->mirrors[mirror].rdev->flags))
1669 set_bit(MD_RECOVERY_NEEDED, &
1670 mddev->recovery);
d8f05d29 1671 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1672 } else if (is_badblock(conf->mirrors[mirror].rdev,
1673 r1_bio->sector,
1674 r1_bio->sectors,
3a9f28a5
N
1675 &first_bad, &bad_sectors) &&
1676 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1677 r1_bio->sector,
1678 r1_bio->sectors,
1679 &first_bad, &bad_sectors)
1680 )
4367af55 1681 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1682
1da177e4 1683 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1684 int s = r1_bio->sectors;
d8f05d29
N
1685 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1686 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1687 reschedule_retry(r1_bio);
1688 else {
1689 put_buf(r1_bio);
1690 md_done_sync(mddev, s, uptodate);
1691 }
1da177e4 1692 }
1da177e4
LT
1693}
1694
3cb03002 1695static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1696 int sectors, struct page *page, int rw)
1697{
1698 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1699 /* success */
1700 return 1;
19d67169 1701 if (rw == WRITE) {
d8f05d29 1702 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1703 if (!test_and_set_bit(WantReplacement,
1704 &rdev->flags))
1705 set_bit(MD_RECOVERY_NEEDED, &
1706 rdev->mddev->recovery);
1707 }
d8f05d29
N
1708 /* need to record an error - either for the block or the device */
1709 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1710 md_error(rdev->mddev, rdev);
1711 return 0;
1712}
1713
9f2c9d12 1714static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1715{
a68e5870
N
1716 /* Try some synchronous reads of other devices to get
1717 * good data, much like with normal read errors. Only
1718 * read into the pages we already have so we don't
1719 * need to re-issue the read request.
1720 * We don't need to freeze the array, because being in an
1721 * active sync request, there is no normal IO, and
1722 * no overlapping syncs.
06f60385
N
1723 * We don't need to check is_badblock() again as we
1724 * made sure that anything with a bad block in range
1725 * will have bi_end_io clear.
a68e5870 1726 */
fd01b88c 1727 struct mddev *mddev = r1_bio->mddev;
e8096360 1728 struct r1conf *conf = mddev->private;
a68e5870
N
1729 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1730 sector_t sect = r1_bio->sector;
1731 int sectors = r1_bio->sectors;
1732 int idx = 0;
1733
1734 while(sectors) {
1735 int s = sectors;
1736 int d = r1_bio->read_disk;
1737 int success = 0;
3cb03002 1738 struct md_rdev *rdev;
78d7f5f7 1739 int start;
a68e5870
N
1740
1741 if (s > (PAGE_SIZE>>9))
1742 s = PAGE_SIZE >> 9;
1743 do {
1744 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1745 /* No rcu protection needed here devices
1746 * can only be removed when no resync is
1747 * active, and resync is currently active
1748 */
1749 rdev = conf->mirrors[d].rdev;
9d3d8011 1750 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1751 bio->bi_io_vec[idx].bv_page,
1752 READ, false)) {
1753 success = 1;
1754 break;
1755 }
1756 }
1757 d++;
8f19ccb2 1758 if (d == conf->raid_disks * 2)
a68e5870
N
1759 d = 0;
1760 } while (!success && d != r1_bio->read_disk);
1761
78d7f5f7 1762 if (!success) {
a68e5870 1763 char b[BDEVNAME_SIZE];
3a9f28a5
N
1764 int abort = 0;
1765 /* Cannot read from anywhere, this block is lost.
1766 * Record a bad block on each device. If that doesn't
1767 * work just disable and interrupt the recovery.
1768 * Don't fail devices as that won't really help.
1769 */
a68e5870
N
1770 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1771 " for block %llu\n",
1772 mdname(mddev),
1773 bdevname(bio->bi_bdev, b),
1774 (unsigned long long)r1_bio->sector);
8f19ccb2 1775 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1776 rdev = conf->mirrors[d].rdev;
1777 if (!rdev || test_bit(Faulty, &rdev->flags))
1778 continue;
1779 if (!rdev_set_badblocks(rdev, sect, s, 0))
1780 abort = 1;
1781 }
1782 if (abort) {
d890fa2b
N
1783 conf->recovery_disabled =
1784 mddev->recovery_disabled;
3a9f28a5
N
1785 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1786 md_done_sync(mddev, r1_bio->sectors, 0);
1787 put_buf(r1_bio);
1788 return 0;
1789 }
1790 /* Try next page */
1791 sectors -= s;
1792 sect += s;
1793 idx++;
1794 continue;
d11c171e 1795 }
78d7f5f7
N
1796
1797 start = d;
1798 /* write it back and re-read */
1799 while (d != r1_bio->read_disk) {
1800 if (d == 0)
8f19ccb2 1801 d = conf->raid_disks * 2;
78d7f5f7
N
1802 d--;
1803 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1804 continue;
1805 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1806 if (r1_sync_page_io(rdev, sect, s,
1807 bio->bi_io_vec[idx].bv_page,
1808 WRITE) == 0) {
78d7f5f7
N
1809 r1_bio->bios[d]->bi_end_io = NULL;
1810 rdev_dec_pending(rdev, mddev);
9d3d8011 1811 }
78d7f5f7
N
1812 }
1813 d = start;
1814 while (d != r1_bio->read_disk) {
1815 if (d == 0)
8f19ccb2 1816 d = conf->raid_disks * 2;
78d7f5f7
N
1817 d--;
1818 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1819 continue;
1820 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1821 if (r1_sync_page_io(rdev, sect, s,
1822 bio->bi_io_vec[idx].bv_page,
1823 READ) != 0)
9d3d8011 1824 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1825 }
a68e5870
N
1826 sectors -= s;
1827 sect += s;
1828 idx ++;
1829 }
78d7f5f7 1830 set_bit(R1BIO_Uptodate, &r1_bio->state);
7ca78d57 1831 set_bit(BIO_UPTODATE, &bio->bi_flags);
a68e5870
N
1832 return 1;
1833}
1834
9f2c9d12 1835static int process_checks(struct r1bio *r1_bio)
a68e5870
N
1836{
1837 /* We have read all readable devices. If we haven't
1838 * got the block, then there is no hope left.
1839 * If we have, then we want to do a comparison
1840 * and skip the write if everything is the same.
1841 * If any blocks failed to read, then we need to
1842 * attempt an over-write
1843 */
fd01b88c 1844 struct mddev *mddev = r1_bio->mddev;
e8096360 1845 struct r1conf *conf = mddev->private;
a68e5870
N
1846 int primary;
1847 int i;
f4380a91 1848 int vcnt;
a68e5870 1849
8f19ccb2 1850 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870
N
1851 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1852 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1853 r1_bio->bios[primary]->bi_end_io = NULL;
1854 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1855 break;
1856 }
1857 r1_bio->read_disk = primary;
f4380a91 1858 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
8f19ccb2 1859 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 1860 int j;
78d7f5f7
N
1861 struct bio *pbio = r1_bio->bios[primary];
1862 struct bio *sbio = r1_bio->bios[i];
1863 int size;
a68e5870 1864
2aabaa65 1865 if (sbio->bi_end_io != end_sync_read)
78d7f5f7
N
1866 continue;
1867
1868 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1869 for (j = vcnt; j-- ; ) {
1870 struct page *p, *s;
1871 p = pbio->bi_io_vec[j].bv_page;
1872 s = sbio->bi_io_vec[j].bv_page;
1873 if (memcmp(page_address(p),
1874 page_address(s),
5020ad7d 1875 sbio->bi_io_vec[j].bv_len))
78d7f5f7 1876 break;
69382e85 1877 }
78d7f5f7
N
1878 } else
1879 j = 0;
1880 if (j >= 0)
7f7583d4 1881 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7
N
1882 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1883 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1884 /* No need to write to this device. */
1885 sbio->bi_end_io = NULL;
1886 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1887 continue;
1888 }
1889 /* fixup the bio for reuse */
2aabaa65 1890 bio_reset(sbio);
78d7f5f7
N
1891 sbio->bi_vcnt = vcnt;
1892 sbio->bi_size = r1_bio->sectors << 9;
78d7f5f7
N
1893 sbio->bi_sector = r1_bio->sector +
1894 conf->mirrors[i].rdev->data_offset;
1895 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
2aabaa65
KO
1896 sbio->bi_end_io = end_sync_read;
1897 sbio->bi_private = r1_bio;
1898
78d7f5f7
N
1899 size = sbio->bi_size;
1900 for (j = 0; j < vcnt ; j++) {
1901 struct bio_vec *bi;
1902 bi = &sbio->bi_io_vec[j];
1903 bi->bv_offset = 0;
1904 if (size > PAGE_SIZE)
1905 bi->bv_len = PAGE_SIZE;
1906 else
1907 bi->bv_len = size;
1908 size -= PAGE_SIZE;
1909 memcpy(page_address(bi->bv_page),
1910 page_address(pbio->bi_io_vec[j].bv_page),
1911 PAGE_SIZE);
69382e85 1912 }
78d7f5f7 1913 }
a68e5870
N
1914 return 0;
1915}
1916
9f2c9d12 1917static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 1918{
e8096360 1919 struct r1conf *conf = mddev->private;
a68e5870 1920 int i;
8f19ccb2 1921 int disks = conf->raid_disks * 2;
a68e5870
N
1922 struct bio *bio, *wbio;
1923
1924 bio = r1_bio->bios[r1_bio->read_disk];
1925
a68e5870
N
1926 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1927 /* ouch - failed to read all of that. */
1928 if (!fix_sync_read_error(r1_bio))
1929 return;
7ca78d57
N
1930
1931 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1932 if (process_checks(r1_bio) < 0)
1933 return;
d11c171e
N
1934 /*
1935 * schedule writes
1936 */
1da177e4
LT
1937 atomic_set(&r1_bio->remaining, 1);
1938 for (i = 0; i < disks ; i++) {
1939 wbio = r1_bio->bios[i];
3e198f78
N
1940 if (wbio->bi_end_io == NULL ||
1941 (wbio->bi_end_io == end_sync_read &&
1942 (i == r1_bio->read_disk ||
1943 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
1944 continue;
1945
3e198f78
N
1946 wbio->bi_rw = WRITE;
1947 wbio->bi_end_io = end_sync_write;
1da177e4 1948 atomic_inc(&r1_bio->remaining);
aa8b57aa 1949 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 1950
1da177e4
LT
1951 generic_make_request(wbio);
1952 }
1953
1954 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 1955 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
1956 int s = r1_bio->sectors;
1957 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1958 test_bit(R1BIO_WriteError, &r1_bio->state))
1959 reschedule_retry(r1_bio);
1960 else {
1961 put_buf(r1_bio);
1962 md_done_sync(mddev, s, 1);
1963 }
1da177e4
LT
1964 }
1965}
1966
1967/*
1968 * This is a kernel thread which:
1969 *
1970 * 1. Retries failed read operations on working mirrors.
1971 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 1972 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1973 */
1974
e8096360 1975static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
1976 sector_t sect, int sectors)
1977{
fd01b88c 1978 struct mddev *mddev = conf->mddev;
867868fb
N
1979 while(sectors) {
1980 int s = sectors;
1981 int d = read_disk;
1982 int success = 0;
1983 int start;
3cb03002 1984 struct md_rdev *rdev;
867868fb
N
1985
1986 if (s > (PAGE_SIZE>>9))
1987 s = PAGE_SIZE >> 9;
1988
1989 do {
1990 /* Note: no rcu protection needed here
1991 * as this is synchronous in the raid1d thread
1992 * which is the thread that might remove
1993 * a device. If raid1d ever becomes multi-threaded....
1994 */
d2eb35ac
N
1995 sector_t first_bad;
1996 int bad_sectors;
1997
867868fb
N
1998 rdev = conf->mirrors[d].rdev;
1999 if (rdev &&
da8840a7 2000 (test_bit(In_sync, &rdev->flags) ||
2001 (!test_bit(Faulty, &rdev->flags) &&
2002 rdev->recovery_offset >= sect + s)) &&
d2eb35ac
N
2003 is_badblock(rdev, sect, s,
2004 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
2005 sync_page_io(rdev, sect, s<<9,
2006 conf->tmppage, READ, false))
867868fb
N
2007 success = 1;
2008 else {
2009 d++;
8f19ccb2 2010 if (d == conf->raid_disks * 2)
867868fb
N
2011 d = 0;
2012 }
2013 } while (!success && d != read_disk);
2014
2015 if (!success) {
d8f05d29 2016 /* Cannot read from anywhere - mark it bad */
3cb03002 2017 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2018 if (!rdev_set_badblocks(rdev, sect, s, 0))
2019 md_error(mddev, rdev);
867868fb
N
2020 break;
2021 }
2022 /* write it back and re-read */
2023 start = d;
2024 while (d != read_disk) {
2025 if (d==0)
8f19ccb2 2026 d = conf->raid_disks * 2;
867868fb
N
2027 d--;
2028 rdev = conf->mirrors[d].rdev;
2029 if (rdev &&
d8f05d29
N
2030 test_bit(In_sync, &rdev->flags))
2031 r1_sync_page_io(rdev, sect, s,
2032 conf->tmppage, WRITE);
867868fb
N
2033 }
2034 d = start;
2035 while (d != read_disk) {
2036 char b[BDEVNAME_SIZE];
2037 if (d==0)
8f19ccb2 2038 d = conf->raid_disks * 2;
867868fb
N
2039 d--;
2040 rdev = conf->mirrors[d].rdev;
2041 if (rdev &&
2042 test_bit(In_sync, &rdev->flags)) {
d8f05d29
N
2043 if (r1_sync_page_io(rdev, sect, s,
2044 conf->tmppage, READ)) {
867868fb
N
2045 atomic_add(s, &rdev->corrected_errors);
2046 printk(KERN_INFO
9dd1e2fa 2047 "md/raid1:%s: read error corrected "
867868fb
N
2048 "(%d sectors at %llu on %s)\n",
2049 mdname(mddev), s,
969b755a
RD
2050 (unsigned long long)(sect +
2051 rdev->data_offset),
867868fb
N
2052 bdevname(rdev->bdev, b));
2053 }
2054 }
2055 }
2056 sectors -= s;
2057 sect += s;
2058 }
2059}
2060
9f2c9d12 2061static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2062{
fd01b88c 2063 struct mddev *mddev = r1_bio->mddev;
e8096360 2064 struct r1conf *conf = mddev->private;
3cb03002 2065 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2066 int vcnt, idx;
2067 struct bio_vec *vec;
2068
2069 /* bio has the data to be written to device 'i' where
2070 * we just recently had a write error.
2071 * We repeatedly clone the bio and trim down to one block,
2072 * then try the write. Where the write fails we record
2073 * a bad block.
2074 * It is conceivable that the bio doesn't exactly align with
2075 * blocks. We must handle this somehow.
2076 *
2077 * We currently own a reference on the rdev.
2078 */
2079
2080 int block_sectors;
2081 sector_t sector;
2082 int sectors;
2083 int sect_to_write = r1_bio->sectors;
2084 int ok = 1;
2085
2086 if (rdev->badblocks.shift < 0)
2087 return 0;
2088
2089 block_sectors = 1 << rdev->badblocks.shift;
2090 sector = r1_bio->sector;
2091 sectors = ((sector + block_sectors)
2092 & ~(sector_t)(block_sectors - 1))
2093 - sector;
2094
2095 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2096 vcnt = r1_bio->behind_page_count;
2097 vec = r1_bio->behind_bvecs;
2098 idx = 0;
2099 while (vec[idx].bv_page == NULL)
2100 idx++;
2101 } else {
2102 vcnt = r1_bio->master_bio->bi_vcnt;
2103 vec = r1_bio->master_bio->bi_io_vec;
2104 idx = r1_bio->master_bio->bi_idx;
2105 }
2106 while (sect_to_write) {
2107 struct bio *wbio;
2108 if (sectors > sect_to_write)
2109 sectors = sect_to_write;
2110 /* Write at 'sector' for 'sectors'*/
2111
2112 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2113 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2114 wbio->bi_sector = r1_bio->sector;
2115 wbio->bi_rw = WRITE;
2116 wbio->bi_vcnt = vcnt;
2117 wbio->bi_size = r1_bio->sectors << 9;
2118 wbio->bi_idx = idx;
2119
2120 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2121 wbio->bi_sector += rdev->data_offset;
2122 wbio->bi_bdev = rdev->bdev;
2123 if (submit_bio_wait(WRITE, wbio) == 0)
2124 /* failure! */
2125 ok = rdev_set_badblocks(rdev, sector,
2126 sectors, 0)
2127 && ok;
2128
2129 bio_put(wbio);
2130 sect_to_write -= sectors;
2131 sector += sectors;
2132 sectors = block_sectors;
2133 }
2134 return ok;
2135}
2136
e8096360 2137static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2138{
2139 int m;
2140 int s = r1_bio->sectors;
8f19ccb2 2141 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2142 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2143 struct bio *bio = r1_bio->bios[m];
2144 if (bio->bi_end_io == NULL)
2145 continue;
2146 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2147 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2148 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce
N
2149 }
2150 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2151 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2152 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2153 md_error(conf->mddev, rdev);
2154 }
2155 }
2156 put_buf(r1_bio);
2157 md_done_sync(conf->mddev, s, 1);
2158}
2159
e8096360 2160static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2161{
2162 int m;
8f19ccb2 2163 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2164 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2165 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2166 rdev_clear_badblocks(rdev,
2167 r1_bio->sector,
c6563a8c 2168 r1_bio->sectors, 0);
62096bce
N
2169 rdev_dec_pending(rdev, conf->mddev);
2170 } else if (r1_bio->bios[m] != NULL) {
2171 /* This drive got a write error. We need to
2172 * narrow down and record precise write
2173 * errors.
2174 */
2175 if (!narrow_write_error(r1_bio, m)) {
2176 md_error(conf->mddev,
2177 conf->mirrors[m].rdev);
2178 /* an I/O failed, we can't clear the bitmap */
2179 set_bit(R1BIO_Degraded, &r1_bio->state);
2180 }
2181 rdev_dec_pending(conf->mirrors[m].rdev,
2182 conf->mddev);
2183 }
2184 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2185 close_write(r1_bio);
2186 raid_end_bio_io(r1_bio);
2187}
2188
e8096360 2189static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2190{
2191 int disk;
2192 int max_sectors;
fd01b88c 2193 struct mddev *mddev = conf->mddev;
62096bce
N
2194 struct bio *bio;
2195 char b[BDEVNAME_SIZE];
3cb03002 2196 struct md_rdev *rdev;
62096bce
N
2197
2198 clear_bit(R1BIO_ReadError, &r1_bio->state);
2199 /* we got a read error. Maybe the drive is bad. Maybe just
2200 * the block and we can fix it.
2201 * We freeze all other IO, and try reading the block from
2202 * other devices. When we find one, we re-write
2203 * and check it that fixes the read error.
2204 * This is all done synchronously while the array is
2205 * frozen
2206 */
2207 if (mddev->ro == 0) {
2208 freeze_array(conf);
2209 fix_read_error(conf, r1_bio->read_disk,
2210 r1_bio->sector, r1_bio->sectors);
2211 unfreeze_array(conf);
2212 } else
2213 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
7ad4d4a6 2214 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
62096bce
N
2215
2216 bio = r1_bio->bios[r1_bio->read_disk];
2217 bdevname(bio->bi_bdev, b);
2218read_more:
2219 disk = read_balance(conf, r1_bio, &max_sectors);
2220 if (disk == -1) {
2221 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2222 " read error for block %llu\n",
2223 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2224 raid_end_bio_io(r1_bio);
2225 } else {
2226 const unsigned long do_sync
2227 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2228 if (bio) {
2229 r1_bio->bios[r1_bio->read_disk] =
2230 mddev->ro ? IO_BLOCKED : NULL;
2231 bio_put(bio);
2232 }
2233 r1_bio->read_disk = disk;
2234 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2235 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2236 r1_bio->bios[r1_bio->read_disk] = bio;
2237 rdev = conf->mirrors[disk].rdev;
2238 printk_ratelimited(KERN_ERR
2239 "md/raid1:%s: redirecting sector %llu"
2240 " to other mirror: %s\n",
2241 mdname(mddev),
2242 (unsigned long long)r1_bio->sector,
2243 bdevname(rdev->bdev, b));
2244 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2245 bio->bi_bdev = rdev->bdev;
2246 bio->bi_end_io = raid1_end_read_request;
2247 bio->bi_rw = READ | do_sync;
2248 bio->bi_private = r1_bio;
2249 if (max_sectors < r1_bio->sectors) {
2250 /* Drat - have to split this up more */
2251 struct bio *mbio = r1_bio->master_bio;
2252 int sectors_handled = (r1_bio->sector + max_sectors
2253 - mbio->bi_sector);
2254 r1_bio->sectors = max_sectors;
2255 spin_lock_irq(&conf->device_lock);
2256 if (mbio->bi_phys_segments == 0)
2257 mbio->bi_phys_segments = 2;
2258 else
2259 mbio->bi_phys_segments++;
2260 spin_unlock_irq(&conf->device_lock);
2261 generic_make_request(bio);
2262 bio = NULL;
2263
2264 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2265
2266 r1_bio->master_bio = mbio;
aa8b57aa 2267 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
62096bce
N
2268 r1_bio->state = 0;
2269 set_bit(R1BIO_ReadError, &r1_bio->state);
2270 r1_bio->mddev = mddev;
2271 r1_bio->sector = mbio->bi_sector + sectors_handled;
2272
2273 goto read_more;
2274 } else
2275 generic_make_request(bio);
2276 }
2277}
2278
4ed8731d 2279static void raid1d(struct md_thread *thread)
1da177e4 2280{
4ed8731d 2281 struct mddev *mddev = thread->mddev;
9f2c9d12 2282 struct r1bio *r1_bio;
1da177e4 2283 unsigned long flags;
e8096360 2284 struct r1conf *conf = mddev->private;
1da177e4 2285 struct list_head *head = &conf->retry_list;
e1dfa0a2 2286 struct blk_plug plug;
1da177e4
LT
2287
2288 md_check_recovery(mddev);
e1dfa0a2
N
2289
2290 blk_start_plug(&plug);
1da177e4 2291 for (;;) {
191ea9b2 2292
0021b7bc 2293 flush_pending_writes(conf);
191ea9b2 2294
a35e63ef
N
2295 spin_lock_irqsave(&conf->device_lock, flags);
2296 if (list_empty(head)) {
2297 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2298 break;
a35e63ef 2299 }
9f2c9d12 2300 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2301 list_del(head->prev);
ddaf22ab 2302 conf->nr_queued--;
1da177e4
LT
2303 spin_unlock_irqrestore(&conf->device_lock, flags);
2304
2305 mddev = r1_bio->mddev;
070ec55d 2306 conf = mddev->private;
4367af55 2307 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2308 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2309 test_bit(R1BIO_WriteError, &r1_bio->state))
2310 handle_sync_write_finished(conf, r1_bio);
2311 else
4367af55 2312 sync_request_write(mddev, r1_bio);
cd5ff9a1 2313 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2314 test_bit(R1BIO_WriteError, &r1_bio->state))
2315 handle_write_finished(conf, r1_bio);
2316 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2317 handle_read_error(conf, r1_bio);
2318 else
d2eb35ac
N
2319 /* just a partial read to be scheduled from separate
2320 * context
2321 */
2322 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2323
1d9d5241 2324 cond_resched();
de393cde
N
2325 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2326 md_check_recovery(mddev);
1da177e4 2327 }
e1dfa0a2 2328 blk_finish_plug(&plug);
1da177e4
LT
2329}
2330
2331
e8096360 2332static int init_resync(struct r1conf *conf)
1da177e4
LT
2333{
2334 int buffs;
2335
2336 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2337 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2338 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2339 conf->poolinfo);
2340 if (!conf->r1buf_pool)
2341 return -ENOMEM;
2342 conf->next_resync = 0;
2343 return 0;
2344}
2345
2346/*
2347 * perform a "sync" on one "block"
2348 *
2349 * We need to make sure that no normal I/O request - particularly write
2350 * requests - conflict with active sync requests.
2351 *
2352 * This is achieved by tracking pending requests and a 'barrier' concept
2353 * that can be installed to exclude normal IO requests.
2354 */
2355
fd01b88c 2356static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 2357{
e8096360 2358 struct r1conf *conf = mddev->private;
9f2c9d12 2359 struct r1bio *r1_bio;
1da177e4
LT
2360 struct bio *bio;
2361 sector_t max_sector, nr_sectors;
3e198f78 2362 int disk = -1;
1da177e4 2363 int i;
3e198f78
N
2364 int wonly = -1;
2365 int write_targets = 0, read_targets = 0;
57dab0bd 2366 sector_t sync_blocks;
e3b9703e 2367 int still_degraded = 0;
06f60385
N
2368 int good_sectors = RESYNC_SECTORS;
2369 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2370
2371 if (!conf->r1buf_pool)
2372 if (init_resync(conf))
57afd89f 2373 return 0;
1da177e4 2374
58c0fed4 2375 max_sector = mddev->dev_sectors;
1da177e4 2376 if (sector_nr >= max_sector) {
191ea9b2
N
2377 /* If we aborted, we need to abort the
2378 * sync on the 'current' bitmap chunk (there will
2379 * only be one in raid1 resync.
2380 * We can find the current addess in mddev->curr_resync
2381 */
6a806c51
N
2382 if (mddev->curr_resync < max_sector) /* aborted */
2383 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2384 &sync_blocks, 1);
6a806c51 2385 else /* completed sync */
191ea9b2 2386 conf->fullsync = 0;
6a806c51
N
2387
2388 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2389 close_sync(conf);
2390 return 0;
2391 }
2392
07d84d10
N
2393 if (mddev->bitmap == NULL &&
2394 mddev->recovery_cp == MaxSector &&
6394cca5 2395 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2396 conf->fullsync == 0) {
2397 *skipped = 1;
2398 return max_sector - sector_nr;
2399 }
6394cca5
N
2400 /* before building a request, check if we can skip these blocks..
2401 * This call the bitmap_start_sync doesn't actually record anything
2402 */
e3b9703e 2403 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2404 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2405 /* We can skip this block, and probably several more */
2406 *skipped = 1;
2407 return sync_blocks;
2408 }
1da177e4 2409 /*
17999be4
N
2410 * If there is non-resync activity waiting for a turn,
2411 * and resync is going fast enough,
2412 * then let it though before starting on this new sync request.
1da177e4 2413 */
17999be4 2414 if (!go_faster && conf->nr_waiting)
1da177e4 2415 msleep_interruptible(1000);
17999be4 2416
b47490c9 2417 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2418 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4
N
2419 raise_barrier(conf);
2420
2421 conf->next_resync = sector_nr;
1da177e4 2422
3e198f78 2423 rcu_read_lock();
1da177e4 2424 /*
3e198f78
N
2425 * If we get a correctably read error during resync or recovery,
2426 * we might want to read from a different device. So we
2427 * flag all drives that could conceivably be read from for READ,
2428 * and any others (which will be non-In_sync devices) for WRITE.
2429 * If a read fails, we try reading from something else for which READ
2430 * is OK.
1da177e4 2431 */
1da177e4 2432
1da177e4
LT
2433 r1_bio->mddev = mddev;
2434 r1_bio->sector = sector_nr;
191ea9b2 2435 r1_bio->state = 0;
1da177e4 2436 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2437
8f19ccb2 2438 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2439 struct md_rdev *rdev;
1da177e4 2440 bio = r1_bio->bios[i];
2aabaa65 2441 bio_reset(bio);
1da177e4 2442
3e198f78
N
2443 rdev = rcu_dereference(conf->mirrors[i].rdev);
2444 if (rdev == NULL ||
06f60385 2445 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2446 if (i < conf->raid_disks)
2447 still_degraded = 1;
3e198f78 2448 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2449 bio->bi_rw = WRITE;
2450 bio->bi_end_io = end_sync_write;
2451 write_targets ++;
3e198f78
N
2452 } else {
2453 /* may need to read from here */
06f60385
N
2454 sector_t first_bad = MaxSector;
2455 int bad_sectors;
2456
2457 if (is_badblock(rdev, sector_nr, good_sectors,
2458 &first_bad, &bad_sectors)) {
2459 if (first_bad > sector_nr)
2460 good_sectors = first_bad - sector_nr;
2461 else {
2462 bad_sectors -= (sector_nr - first_bad);
2463 if (min_bad == 0 ||
2464 min_bad > bad_sectors)
2465 min_bad = bad_sectors;
2466 }
2467 }
2468 if (sector_nr < first_bad) {
2469 if (test_bit(WriteMostly, &rdev->flags)) {
2470 if (wonly < 0)
2471 wonly = i;
2472 } else {
2473 if (disk < 0)
2474 disk = i;
2475 }
2476 bio->bi_rw = READ;
2477 bio->bi_end_io = end_sync_read;
2478 read_targets++;
d57368af
AL
2479 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2480 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2481 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2482 /*
2483 * The device is suitable for reading (InSync),
2484 * but has bad block(s) here. Let's try to correct them,
2485 * if we are doing resync or repair. Otherwise, leave
2486 * this device alone for this sync request.
2487 */
2488 bio->bi_rw = WRITE;
2489 bio->bi_end_io = end_sync_write;
2490 write_targets++;
3e198f78 2491 }
3e198f78 2492 }
06f60385
N
2493 if (bio->bi_end_io) {
2494 atomic_inc(&rdev->nr_pending);
2495 bio->bi_sector = sector_nr + rdev->data_offset;
2496 bio->bi_bdev = rdev->bdev;
2497 bio->bi_private = r1_bio;
2498 }
1da177e4 2499 }
3e198f78
N
2500 rcu_read_unlock();
2501 if (disk < 0)
2502 disk = wonly;
2503 r1_bio->read_disk = disk;
191ea9b2 2504
06f60385
N
2505 if (read_targets == 0 && min_bad > 0) {
2506 /* These sectors are bad on all InSync devices, so we
2507 * need to mark them bad on all write targets
2508 */
2509 int ok = 1;
8f19ccb2 2510 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2511 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2512 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2513 ok = rdev_set_badblocks(rdev, sector_nr,
2514 min_bad, 0
2515 ) && ok;
2516 }
2517 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2518 *skipped = 1;
2519 put_buf(r1_bio);
2520
2521 if (!ok) {
2522 /* Cannot record the badblocks, so need to
2523 * abort the resync.
2524 * If there are multiple read targets, could just
2525 * fail the really bad ones ???
2526 */
2527 conf->recovery_disabled = mddev->recovery_disabled;
2528 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2529 return 0;
2530 } else
2531 return min_bad;
2532
2533 }
2534 if (min_bad > 0 && min_bad < good_sectors) {
2535 /* only resync enough to reach the next bad->good
2536 * transition */
2537 good_sectors = min_bad;
2538 }
2539
3e198f78
N
2540 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2541 /* extra read targets are also write targets */
2542 write_targets += read_targets-1;
2543
2544 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2545 /* There is nowhere to write, so all non-sync
2546 * drives must be failed - so we are finished
2547 */
b7219ccb
N
2548 sector_t rv;
2549 if (min_bad > 0)
2550 max_sector = sector_nr + min_bad;
2551 rv = max_sector - sector_nr;
57afd89f 2552 *skipped = 1;
1da177e4 2553 put_buf(r1_bio);
1da177e4
LT
2554 return rv;
2555 }
2556
c6207277
N
2557 if (max_sector > mddev->resync_max)
2558 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2559 if (max_sector > sector_nr + good_sectors)
2560 max_sector = sector_nr + good_sectors;
1da177e4 2561 nr_sectors = 0;
289e99e8 2562 sync_blocks = 0;
1da177e4
LT
2563 do {
2564 struct page *page;
2565 int len = PAGE_SIZE;
2566 if (sector_nr + (len>>9) > max_sector)
2567 len = (max_sector - sector_nr) << 9;
2568 if (len == 0)
2569 break;
6a806c51
N
2570 if (sync_blocks == 0) {
2571 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2572 &sync_blocks, still_degraded) &&
2573 !conf->fullsync &&
2574 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2575 break;
9e77c485 2576 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2577 if ((len >> 9) > sync_blocks)
6a806c51 2578 len = sync_blocks<<9;
ab7a30c7 2579 }
191ea9b2 2580
8f19ccb2 2581 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2582 bio = r1_bio->bios[i];
2583 if (bio->bi_end_io) {
d11c171e 2584 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2585 if (bio_add_page(bio, page, len, 0) == 0) {
2586 /* stop here */
d11c171e 2587 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2588 while (i > 0) {
2589 i--;
2590 bio = r1_bio->bios[i];
6a806c51
N
2591 if (bio->bi_end_io==NULL)
2592 continue;
1da177e4
LT
2593 /* remove last page from this bio */
2594 bio->bi_vcnt--;
2595 bio->bi_size -= len;
2596 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2597 }
2598 goto bio_full;
2599 }
2600 }
2601 }
2602 nr_sectors += len>>9;
2603 sector_nr += len>>9;
191ea9b2 2604 sync_blocks -= (len>>9);
1da177e4
LT
2605 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2606 bio_full:
1da177e4
LT
2607 r1_bio->sectors = nr_sectors;
2608
d11c171e
N
2609 /* For a user-requested sync, we read all readable devices and do a
2610 * compare
2611 */
2612 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2613 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2614 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2615 bio = r1_bio->bios[i];
2616 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2617 read_targets--;
ddac7c7e 2618 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2619 generic_make_request(bio);
2620 }
2621 }
2622 } else {
2623 atomic_set(&r1_bio->remaining, 1);
2624 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2625 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2626 generic_make_request(bio);
1da177e4 2627
d11c171e 2628 }
1da177e4
LT
2629 return nr_sectors;
2630}
2631
fd01b88c 2632static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2633{
2634 if (sectors)
2635 return sectors;
2636
2637 return mddev->dev_sectors;
2638}
2639
e8096360 2640static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2641{
e8096360 2642 struct r1conf *conf;
709ae487 2643 int i;
0eaf822c 2644 struct raid1_info *disk;
3cb03002 2645 struct md_rdev *rdev;
709ae487 2646 int err = -ENOMEM;
1da177e4 2647
e8096360 2648 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2649 if (!conf)
709ae487 2650 goto abort;
1da177e4 2651
0eaf822c 2652 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2653 * mddev->raid_disks * 2,
1da177e4
LT
2654 GFP_KERNEL);
2655 if (!conf->mirrors)
709ae487 2656 goto abort;
1da177e4 2657
ddaf22ab
N
2658 conf->tmppage = alloc_page(GFP_KERNEL);
2659 if (!conf->tmppage)
709ae487 2660 goto abort;
ddaf22ab 2661
709ae487 2662 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2663 if (!conf->poolinfo)
709ae487 2664 goto abort;
8f19ccb2 2665 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2666 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2667 r1bio_pool_free,
2668 conf->poolinfo);
2669 if (!conf->r1bio_pool)
709ae487
N
2670 goto abort;
2671
ed9bfdf1 2672 conf->poolinfo->mddev = mddev;
1da177e4 2673
c19d5798 2674 err = -EINVAL;
e7e72bf6 2675 spin_lock_init(&conf->device_lock);
dafb20fa 2676 rdev_for_each(rdev, mddev) {
aba336bd 2677 struct request_queue *q;
709ae487 2678 int disk_idx = rdev->raid_disk;
1da177e4
LT
2679 if (disk_idx >= mddev->raid_disks
2680 || disk_idx < 0)
2681 continue;
c19d5798 2682 if (test_bit(Replacement, &rdev->flags))
02b898f2 2683 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2684 else
2685 disk = conf->mirrors + disk_idx;
1da177e4 2686
c19d5798
N
2687 if (disk->rdev)
2688 goto abort;
1da177e4 2689 disk->rdev = rdev;
aba336bd
N
2690 q = bdev_get_queue(rdev->bdev);
2691 if (q->merge_bvec_fn)
2692 mddev->merge_check_needed = 1;
1da177e4
LT
2693
2694 disk->head_position = 0;
12cee5a8 2695 disk->seq_start = MaxSector;
1da177e4
LT
2696 }
2697 conf->raid_disks = mddev->raid_disks;
2698 conf->mddev = mddev;
1da177e4 2699 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2700
2701 spin_lock_init(&conf->resync_lock);
17999be4 2702 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2703
191ea9b2 2704 bio_list_init(&conf->pending_bio_list);
34db0cd6 2705 conf->pending_count = 0;
d890fa2b 2706 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2707
c19d5798 2708 err = -EIO;
8f19ccb2 2709 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2710
2711 disk = conf->mirrors + i;
2712
c19d5798
N
2713 if (i < conf->raid_disks &&
2714 disk[conf->raid_disks].rdev) {
2715 /* This slot has a replacement. */
2716 if (!disk->rdev) {
2717 /* No original, just make the replacement
2718 * a recovering spare
2719 */
2720 disk->rdev =
2721 disk[conf->raid_disks].rdev;
2722 disk[conf->raid_disks].rdev = NULL;
2723 } else if (!test_bit(In_sync, &disk->rdev->flags))
2724 /* Original is not in_sync - bad */
2725 goto abort;
2726 }
2727
5fd6c1dc
N
2728 if (!disk->rdev ||
2729 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2730 disk->head_position = 0;
4f0a5e01
JB
2731 if (disk->rdev &&
2732 (disk->rdev->saved_raid_disk < 0))
918f0238 2733 conf->fullsync = 1;
be4d3280 2734 }
1da177e4 2735 }
709ae487 2736
709ae487 2737 err = -ENOMEM;
0232605d 2738 conf->thread = md_register_thread(raid1d, mddev, "raid1");
709ae487
N
2739 if (!conf->thread) {
2740 printk(KERN_ERR
9dd1e2fa 2741 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2742 mdname(mddev));
2743 goto abort;
11ce99e6 2744 }
1da177e4 2745
709ae487
N
2746 return conf;
2747
2748 abort:
2749 if (conf) {
2750 if (conf->r1bio_pool)
2751 mempool_destroy(conf->r1bio_pool);
2752 kfree(conf->mirrors);
2753 safe_put_page(conf->tmppage);
2754 kfree(conf->poolinfo);
2755 kfree(conf);
2756 }
2757 return ERR_PTR(err);
2758}
2759
5220ea1e 2760static int stop(struct mddev *mddev);
fd01b88c 2761static int run(struct mddev *mddev)
709ae487 2762{
e8096360 2763 struct r1conf *conf;
709ae487 2764 int i;
3cb03002 2765 struct md_rdev *rdev;
5220ea1e 2766 int ret;
2ff8cc2c 2767 bool discard_supported = false;
709ae487
N
2768
2769 if (mddev->level != 1) {
9dd1e2fa 2770 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2771 mdname(mddev), mddev->level);
2772 return -EIO;
2773 }
2774 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2775 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2776 mdname(mddev));
2777 return -EIO;
2778 }
1da177e4 2779 /*
709ae487
N
2780 * copy the already verified devices into our private RAID1
2781 * bookkeeping area. [whatever we allocate in run(),
2782 * should be freed in stop()]
1da177e4 2783 */
709ae487
N
2784 if (mddev->private == NULL)
2785 conf = setup_conf(mddev);
2786 else
2787 conf = mddev->private;
1da177e4 2788
709ae487
N
2789 if (IS_ERR(conf))
2790 return PTR_ERR(conf);
1da177e4 2791
c8dc9c65
JL
2792 if (mddev->queue)
2793 blk_queue_max_write_same_sectors(mddev->queue,
2794 mddev->chunk_sectors);
dafb20fa 2795 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2796 if (!mddev->gendisk)
2797 continue;
709ae487
N
2798 disk_stack_limits(mddev->gendisk, rdev->bdev,
2799 rdev->data_offset << 9);
2ff8cc2c
SL
2800 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2801 discard_supported = true;
1da177e4 2802 }
191ea9b2 2803
709ae487
N
2804 mddev->degraded = 0;
2805 for (i=0; i < conf->raid_disks; i++)
2806 if (conf->mirrors[i].rdev == NULL ||
2807 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2808 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2809 mddev->degraded++;
2810
2811 if (conf->raid_disks - mddev->degraded == 1)
2812 mddev->recovery_cp = MaxSector;
2813
8c6ac868 2814 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2815 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2816 " -- starting background reconstruction\n",
2817 mdname(mddev));
1da177e4 2818 printk(KERN_INFO
9dd1e2fa 2819 "md/raid1:%s: active with %d out of %d mirrors\n",
1da177e4
LT
2820 mdname(mddev), mddev->raid_disks - mddev->degraded,
2821 mddev->raid_disks);
709ae487 2822
1da177e4
LT
2823 /*
2824 * Ok, everything is just fine now
2825 */
709ae487
N
2826 mddev->thread = conf->thread;
2827 conf->thread = NULL;
2828 mddev->private = conf;
2829
1f403624 2830 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2831
1ed7242e
JB
2832 if (mddev->queue) {
2833 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2834 mddev->queue->backing_dev_info.congested_data = mddev;
6b740b8d 2835 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2ff8cc2c
SL
2836
2837 if (discard_supported)
2838 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2839 mddev->queue);
2840 else
2841 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2842 mddev->queue);
1ed7242e 2843 }
5220ea1e 2844
2845 ret = md_integrity_register(mddev);
2846 if (ret)
2847 stop(mddev);
2848 return ret;
1da177e4
LT
2849}
2850
fd01b88c 2851static int stop(struct mddev *mddev)
1da177e4 2852{
e8096360 2853 struct r1conf *conf = mddev->private;
4b6d287f 2854 struct bitmap *bitmap = mddev->bitmap;
4b6d287f
N
2855
2856 /* wait for behind writes to complete */
e555190d 2857 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
9dd1e2fa
N
2858 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2859 mdname(mddev));
4b6d287f 2860 /* need to kick something here to make sure I/O goes? */
e555190d
N
2861 wait_event(bitmap->behind_wait,
2862 atomic_read(&bitmap->behind_writes) == 0);
4b6d287f 2863 }
1da177e4 2864
409c57f3
N
2865 raise_barrier(conf);
2866 lower_barrier(conf);
2867
01f96c0a 2868 md_unregister_thread(&mddev->thread);
1da177e4
LT
2869 if (conf->r1bio_pool)
2870 mempool_destroy(conf->r1bio_pool);
990a8baf
JJ
2871 kfree(conf->mirrors);
2872 kfree(conf->poolinfo);
1da177e4
LT
2873 kfree(conf);
2874 mddev->private = NULL;
2875 return 0;
2876}
2877
fd01b88c 2878static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2879{
2880 /* no resync is happening, and there is enough space
2881 * on all devices, so we can resize.
2882 * We need to make sure resync covers any new space.
2883 * If the array is shrinking we should possibly wait until
2884 * any io in the removed space completes, but it hardly seems
2885 * worth it.
2886 */
a4a6125a
N
2887 sector_t newsize = raid1_size(mddev, sectors, 0);
2888 if (mddev->external_size &&
2889 mddev->array_sectors > newsize)
b522adcd 2890 return -EINVAL;
a4a6125a
N
2891 if (mddev->bitmap) {
2892 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2893 if (ret)
2894 return ret;
2895 }
2896 md_set_array_sectors(mddev, newsize);
f233ea5c 2897 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 2898 revalidate_disk(mddev->gendisk);
b522adcd 2899 if (sectors > mddev->dev_sectors &&
b098636c 2900 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 2901 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
2902 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2903 }
b522adcd 2904 mddev->dev_sectors = sectors;
4b5c7ae8 2905 mddev->resync_max_sectors = sectors;
1da177e4
LT
2906 return 0;
2907}
2908
fd01b88c 2909static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
2910{
2911 /* We need to:
2912 * 1/ resize the r1bio_pool
2913 * 2/ resize conf->mirrors
2914 *
2915 * We allocate a new r1bio_pool if we can.
2916 * Then raise a device barrier and wait until all IO stops.
2917 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
2918 *
2919 * At the same time, we "pack" the devices so that all the missing
2920 * devices have the higher raid_disk numbers.
1da177e4
LT
2921 */
2922 mempool_t *newpool, *oldpool;
2923 struct pool_info *newpoolinfo;
0eaf822c 2924 struct raid1_info *newmirrors;
e8096360 2925 struct r1conf *conf = mddev->private;
63c70c4f 2926 int cnt, raid_disks;
c04be0aa 2927 unsigned long flags;
b5470dc5 2928 int d, d2, err;
1da177e4 2929
63c70c4f 2930 /* Cannot change chunk_size, layout, or level */
664e7c41 2931 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
2932 mddev->layout != mddev->new_layout ||
2933 mddev->level != mddev->new_level) {
664e7c41 2934 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
2935 mddev->new_layout = mddev->layout;
2936 mddev->new_level = mddev->level;
2937 return -EINVAL;
2938 }
2939
b5470dc5
DW
2940 err = md_allow_write(mddev);
2941 if (err)
2942 return err;
2a2275d6 2943
63c70c4f
N
2944 raid_disks = mddev->raid_disks + mddev->delta_disks;
2945
6ea9c07c
N
2946 if (raid_disks < conf->raid_disks) {
2947 cnt=0;
2948 for (d= 0; d < conf->raid_disks; d++)
2949 if (conf->mirrors[d].rdev)
2950 cnt++;
2951 if (cnt > raid_disks)
1da177e4 2952 return -EBUSY;
6ea9c07c 2953 }
1da177e4
LT
2954
2955 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2956 if (!newpoolinfo)
2957 return -ENOMEM;
2958 newpoolinfo->mddev = mddev;
8f19ccb2 2959 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
2960
2961 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2962 r1bio_pool_free, newpoolinfo);
2963 if (!newpool) {
2964 kfree(newpoolinfo);
2965 return -ENOMEM;
2966 }
0eaf822c 2967 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 2968 GFP_KERNEL);
1da177e4
LT
2969 if (!newmirrors) {
2970 kfree(newpoolinfo);
2971 mempool_destroy(newpool);
2972 return -ENOMEM;
2973 }
1da177e4 2974
17999be4 2975 raise_barrier(conf);
1da177e4
LT
2976
2977 /* ok, everything is stopped */
2978 oldpool = conf->r1bio_pool;
2979 conf->r1bio_pool = newpool;
6ea9c07c 2980
a88aa786 2981 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 2982 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 2983 if (rdev && rdev->raid_disk != d2) {
36fad858 2984 sysfs_unlink_rdev(mddev, rdev);
a88aa786 2985 rdev->raid_disk = d2;
36fad858
NK
2986 sysfs_unlink_rdev(mddev, rdev);
2987 if (sysfs_link_rdev(mddev, rdev))
a88aa786 2988 printk(KERN_WARNING
36fad858
NK
2989 "md/raid1:%s: cannot register rd%d\n",
2990 mdname(mddev), rdev->raid_disk);
6ea9c07c 2991 }
a88aa786
N
2992 if (rdev)
2993 newmirrors[d2++].rdev = rdev;
2994 }
1da177e4
LT
2995 kfree(conf->mirrors);
2996 conf->mirrors = newmirrors;
2997 kfree(conf->poolinfo);
2998 conf->poolinfo = newpoolinfo;
2999
c04be0aa 3000 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3001 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3002 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3003 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3004 mddev->delta_disks = 0;
1da177e4 3005
17999be4 3006 lower_barrier(conf);
1da177e4
LT
3007
3008 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3009 md_wakeup_thread(mddev->thread);
3010
3011 mempool_destroy(oldpool);
3012 return 0;
3013}
3014
fd01b88c 3015static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3016{
e8096360 3017 struct r1conf *conf = mddev->private;
36fa3063
N
3018
3019 switch(state) {
6eef4b21
N
3020 case 2: /* wake for suspend */
3021 wake_up(&conf->wait_barrier);
3022 break;
9e6603da 3023 case 1:
17999be4 3024 raise_barrier(conf);
36fa3063 3025 break;
9e6603da 3026 case 0:
17999be4 3027 lower_barrier(conf);
36fa3063
N
3028 break;
3029 }
36fa3063
N
3030}
3031
fd01b88c 3032static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3033{
3034 /* raid1 can take over:
3035 * raid5 with 2 devices, any layout or chunk size
3036 */
3037 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3038 struct r1conf *conf;
709ae487
N
3039 mddev->new_level = 1;
3040 mddev->new_layout = 0;
3041 mddev->new_chunk_sectors = 0;
3042 conf = setup_conf(mddev);
3043 if (!IS_ERR(conf))
3044 conf->barrier = 1;
3045 return conf;
3046 }
3047 return ERR_PTR(-EINVAL);
3048}
1da177e4 3049
84fc4b56 3050static struct md_personality raid1_personality =
1da177e4
LT
3051{
3052 .name = "raid1",
2604b703 3053 .level = 1,
1da177e4
LT
3054 .owner = THIS_MODULE,
3055 .make_request = make_request,
3056 .run = run,
3057 .stop = stop,
3058 .status = status,
3059 .error_handler = error,
3060 .hot_add_disk = raid1_add_disk,
3061 .hot_remove_disk= raid1_remove_disk,
3062 .spare_active = raid1_spare_active,
3063 .sync_request = sync_request,
3064 .resize = raid1_resize,
80c3a6ce 3065 .size = raid1_size,
63c70c4f 3066 .check_reshape = raid1_reshape,
36fa3063 3067 .quiesce = raid1_quiesce,
709ae487 3068 .takeover = raid1_takeover,
1da177e4
LT
3069};
3070
3071static int __init raid_init(void)
3072{
2604b703 3073 return register_md_personality(&raid1_personality);
1da177e4
LT
3074}
3075
3076static void raid_exit(void)
3077{
2604b703 3078 unregister_md_personality(&raid1_personality);
1da177e4
LT
3079}
3080
3081module_init(raid_init);
3082module_exit(raid_exit);
3083MODULE_LICENSE("GPL");
0efb9e61 3084MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3085MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3086MODULE_ALIAS("md-raid1");
2604b703 3087MODULE_ALIAS("md-level-1");
34db0cd6
N
3088
3089module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.901441 seconds and 5 git commands to generate.