Suspend writes in RAID1 if within range
[deliverable/linux.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
473e87ce
JB
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
1da177e4 68
79ef3a8a 69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
e8096360 71static void lower_barrier(struct r1conf *conf);
1da177e4 72
dd0fc66f 73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
74{
75 struct pool_info *pi = data;
9f2c9d12 76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 79 return kzalloc(size, gfp_flags);
1da177e4
LT
80}
81
82static void r1bio_pool_free(void *r1_bio, void *data)
83{
84 kfree(r1_bio);
85}
86
87#define RESYNC_BLOCK_SIZE (64*1024)
8e005f7c 88#define RESYNC_DEPTH 32
1da177e4
LT
89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
8e005f7c 91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
1da177e4 94
dd0fc66f 95static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
96{
97 struct pool_info *pi = data;
9f2c9d12 98 struct r1bio *r1_bio;
1da177e4 99 struct bio *bio;
da1aab3d 100 int need_pages;
1da177e4
LT
101 int i, j;
102
103 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 104 if (!r1_bio)
1da177e4 105 return NULL;
1da177e4
LT
106
107 /*
108 * Allocate bios : 1 for reading, n-1 for writing
109 */
110 for (j = pi->raid_disks ; j-- ; ) {
6746557f 111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
112 if (!bio)
113 goto out_free_bio;
114 r1_bio->bios[j] = bio;
115 }
116 /*
117 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
118 * the first bio.
119 * If this is a user-requested check/repair, allocate
120 * RESYNC_PAGES for each bio.
1da177e4 121 */
d11c171e 122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 123 need_pages = pi->raid_disks;
d11c171e 124 else
da1aab3d
N
125 need_pages = 1;
126 for (j = 0; j < need_pages; j++) {
d11c171e 127 bio = r1_bio->bios[j];
a0787606 128 bio->bi_vcnt = RESYNC_PAGES;
d11c171e 129
a0787606 130 if (bio_alloc_pages(bio, gfp_flags))
da1aab3d 131 goto out_free_pages;
d11c171e
N
132 }
133 /* If not user-requests, copy the page pointers to all bios */
134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 for (i=0; i<RESYNC_PAGES ; i++)
136 for (j=1; j<pi->raid_disks; j++)
137 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
139 }
140
141 r1_bio->master_bio = NULL;
142
143 return r1_bio;
144
da1aab3d
N
145out_free_pages:
146 while (--j >= 0) {
147 struct bio_vec *bv;
148
149 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 __free_page(bv->bv_page);
151 }
152
1da177e4 153out_free_bio:
8f19ccb2 154 while (++j < pi->raid_disks)
1da177e4
LT
155 bio_put(r1_bio->bios[j]);
156 r1bio_pool_free(r1_bio, data);
157 return NULL;
158}
159
160static void r1buf_pool_free(void *__r1_bio, void *data)
161{
162 struct pool_info *pi = data;
d11c171e 163 int i,j;
9f2c9d12 164 struct r1bio *r1bio = __r1_bio;
1da177e4 165
d11c171e
N
166 for (i = 0; i < RESYNC_PAGES; i++)
167 for (j = pi->raid_disks; j-- ;) {
168 if (j == 0 ||
169 r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 172 }
1da177e4
LT
173 for (i=0 ; i < pi->raid_disks; i++)
174 bio_put(r1bio->bios[i]);
175
176 r1bio_pool_free(r1bio, data);
177}
178
e8096360 179static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
180{
181 int i;
182
8f19ccb2 183 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 184 struct bio **bio = r1_bio->bios + i;
4367af55 185 if (!BIO_SPECIAL(*bio))
1da177e4
LT
186 bio_put(*bio);
187 *bio = NULL;
188 }
189}
190
9f2c9d12 191static void free_r1bio(struct r1bio *r1_bio)
1da177e4 192{
e8096360 193 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 194
1da177e4
LT
195 put_all_bios(conf, r1_bio);
196 mempool_free(r1_bio, conf->r1bio_pool);
197}
198
9f2c9d12 199static void put_buf(struct r1bio *r1_bio)
1da177e4 200{
e8096360 201 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
202 int i;
203
8f19ccb2 204 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
205 struct bio *bio = r1_bio->bios[i];
206 if (bio->bi_end_io)
207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 }
1da177e4
LT
209
210 mempool_free(r1_bio, conf->r1buf_pool);
211
17999be4 212 lower_barrier(conf);
1da177e4
LT
213}
214
9f2c9d12 215static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
216{
217 unsigned long flags;
fd01b88c 218 struct mddev *mddev = r1_bio->mddev;
e8096360 219 struct r1conf *conf = mddev->private;
1da177e4
LT
220
221 spin_lock_irqsave(&conf->device_lock, flags);
222 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 223 conf->nr_queued ++;
1da177e4
LT
224 spin_unlock_irqrestore(&conf->device_lock, flags);
225
17999be4 226 wake_up(&conf->wait_barrier);
1da177e4
LT
227 md_wakeup_thread(mddev->thread);
228}
229
230/*
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
234 */
9f2c9d12 235static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
236{
237 struct bio *bio = r1_bio->master_bio;
238 int done;
e8096360 239 struct r1conf *conf = r1_bio->mddev->private;
79ef3a8a 240 sector_t start_next_window = r1_bio->start_next_window;
4f024f37 241 sector_t bi_sector = bio->bi_iter.bi_sector;
d2eb35ac
N
242
243 if (bio->bi_phys_segments) {
244 unsigned long flags;
245 spin_lock_irqsave(&conf->device_lock, flags);
246 bio->bi_phys_segments--;
247 done = (bio->bi_phys_segments == 0);
248 spin_unlock_irqrestore(&conf->device_lock, flags);
79ef3a8a 249 /*
250 * make_request() might be waiting for
251 * bi_phys_segments to decrease
252 */
253 wake_up(&conf->wait_barrier);
d2eb35ac
N
254 } else
255 done = 1;
256
257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 if (done) {
260 bio_endio(bio, 0);
261 /*
262 * Wake up any possible resync thread that waits for the device
263 * to go idle.
264 */
79ef3a8a 265 allow_barrier(conf, start_next_window, bi_sector);
d2eb35ac
N
266 }
267}
268
9f2c9d12 269static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
270{
271 struct bio *bio = r1_bio->master_bio;
272
4b6d287f
N
273 /* if nobody has done the final endio yet, do it now */
274 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
277 (unsigned long long) bio->bi_iter.bi_sector,
278 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 279
d2eb35ac 280 call_bio_endio(r1_bio);
4b6d287f 281 }
1da177e4
LT
282 free_r1bio(r1_bio);
283}
284
285/*
286 * Update disk head position estimator based on IRQ completion info.
287 */
9f2c9d12 288static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 289{
e8096360 290 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
291
292 conf->mirrors[disk].head_position =
293 r1_bio->sector + (r1_bio->sectors);
294}
295
ba3ae3be
NK
296/*
297 * Find the disk number which triggered given bio
298 */
9f2c9d12 299static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
300{
301 int mirror;
30194636
N
302 struct r1conf *conf = r1_bio->mddev->private;
303 int raid_disks = conf->raid_disks;
ba3ae3be 304
8f19ccb2 305 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
306 if (r1_bio->bios[mirror] == bio)
307 break;
308
8f19ccb2 309 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
310 update_head_pos(mirror, r1_bio);
311
312 return mirror;
313}
314
6712ecf8 315static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
316{
317 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 318 struct r1bio *r1_bio = bio->bi_private;
1da177e4 319 int mirror;
e8096360 320 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 321
1da177e4
LT
322 mirror = r1_bio->read_disk;
323 /*
324 * this branch is our 'one mirror IO has finished' event handler:
325 */
ddaf22ab
N
326 update_head_pos(mirror, r1_bio);
327
dd00a99e
N
328 if (uptodate)
329 set_bit(R1BIO_Uptodate, &r1_bio->state);
330 else {
331 /* If all other devices have failed, we want to return
332 * the error upwards rather than fail the last device.
333 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 334 */
dd00a99e
N
335 unsigned long flags;
336 spin_lock_irqsave(&conf->device_lock, flags);
337 if (r1_bio->mddev->degraded == conf->raid_disks ||
338 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340 uptodate = 1;
341 spin_unlock_irqrestore(&conf->device_lock, flags);
342 }
1da177e4 343
7ad4d4a6 344 if (uptodate) {
1da177e4 345 raid_end_bio_io(r1_bio);
7ad4d4a6
N
346 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 } else {
1da177e4
LT
348 /*
349 * oops, read error:
350 */
351 char b[BDEVNAME_SIZE];
8bda470e
CD
352 printk_ratelimited(
353 KERN_ERR "md/raid1:%s: %s: "
354 "rescheduling sector %llu\n",
355 mdname(conf->mddev),
356 bdevname(conf->mirrors[mirror].rdev->bdev,
357 b),
358 (unsigned long long)r1_bio->sector);
d2eb35ac 359 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 360 reschedule_retry(r1_bio);
7ad4d4a6 361 /* don't drop the reference on read_disk yet */
1da177e4 362 }
1da177e4
LT
363}
364
9f2c9d12 365static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
366{
367 /* it really is the end of this request */
368 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 /* free extra copy of the data pages */
370 int i = r1_bio->behind_page_count;
371 while (i--)
372 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 kfree(r1_bio->behind_bvecs);
374 r1_bio->behind_bvecs = NULL;
375 }
376 /* clear the bitmap if all writes complete successfully */
377 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 r1_bio->sectors,
379 !test_bit(R1BIO_Degraded, &r1_bio->state),
380 test_bit(R1BIO_BehindIO, &r1_bio->state));
381 md_write_end(r1_bio->mddev);
382}
383
9f2c9d12 384static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 385{
cd5ff9a1
N
386 if (!atomic_dec_and_test(&r1_bio->remaining))
387 return;
388
389 if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 reschedule_retry(r1_bio);
391 else {
392 close_write(r1_bio);
4367af55
N
393 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 reschedule_retry(r1_bio);
395 else
396 raid_end_bio_io(r1_bio);
4e78064f
N
397 }
398}
399
6712ecf8 400static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
401{
402 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 403 struct r1bio *r1_bio = bio->bi_private;
a9701a30 404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 405 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 406 struct bio *to_put = NULL;
1da177e4 407
ba3ae3be 408 mirror = find_bio_disk(r1_bio, bio);
1da177e4 409
e9c7469b
TH
410 /*
411 * 'one mirror IO has finished' event handler:
412 */
e9c7469b 413 if (!uptodate) {
cd5ff9a1
N
414 set_bit(WriteErrorSeen,
415 &conf->mirrors[mirror].rdev->flags);
19d67169
N
416 if (!test_and_set_bit(WantReplacement,
417 &conf->mirrors[mirror].rdev->flags))
418 set_bit(MD_RECOVERY_NEEDED, &
419 conf->mddev->recovery);
420
cd5ff9a1 421 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 422 } else {
1da177e4 423 /*
e9c7469b
TH
424 * Set R1BIO_Uptodate in our master bio, so that we
425 * will return a good error code for to the higher
426 * levels even if IO on some other mirrored buffer
427 * fails.
428 *
429 * The 'master' represents the composite IO operation
430 * to user-side. So if something waits for IO, then it
431 * will wait for the 'master' bio.
1da177e4 432 */
4367af55
N
433 sector_t first_bad;
434 int bad_sectors;
435
cd5ff9a1
N
436 r1_bio->bios[mirror] = NULL;
437 to_put = bio;
3056e3ae
AL
438 /*
439 * Do not set R1BIO_Uptodate if the current device is
440 * rebuilding or Faulty. This is because we cannot use
441 * such device for properly reading the data back (we could
442 * potentially use it, if the current write would have felt
443 * before rdev->recovery_offset, but for simplicity we don't
444 * check this here.
445 */
446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 449
4367af55
N
450 /* Maybe we can clear some bad blocks. */
451 if (is_badblock(conf->mirrors[mirror].rdev,
452 r1_bio->sector, r1_bio->sectors,
453 &first_bad, &bad_sectors)) {
454 r1_bio->bios[mirror] = IO_MADE_GOOD;
455 set_bit(R1BIO_MadeGood, &r1_bio->state);
456 }
457 }
458
e9c7469b
TH
459 if (behind) {
460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 atomic_dec(&r1_bio->behind_remaining);
462
463 /*
464 * In behind mode, we ACK the master bio once the I/O
465 * has safely reached all non-writemostly
466 * disks. Setting the Returned bit ensures that this
467 * gets done only once -- we don't ever want to return
468 * -EIO here, instead we'll wait
469 */
470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 /* Maybe we can return now */
473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
475 pr_debug("raid1: behind end write sectors"
476 " %llu-%llu\n",
4f024f37
KO
477 (unsigned long long) mbio->bi_iter.bi_sector,
478 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 479 call_bio_endio(r1_bio);
4b6d287f
N
480 }
481 }
482 }
4367af55
N
483 if (r1_bio->bios[mirror] == NULL)
484 rdev_dec_pending(conf->mirrors[mirror].rdev,
485 conf->mddev);
e9c7469b 486
1da177e4 487 /*
1da177e4
LT
488 * Let's see if all mirrored write operations have finished
489 * already.
490 */
af6d7b76 491 r1_bio_write_done(r1_bio);
c70810b3 492
04b857f7
N
493 if (to_put)
494 bio_put(to_put);
1da177e4
LT
495}
496
1da177e4
LT
497/*
498 * This routine returns the disk from which the requested read should
499 * be done. There is a per-array 'next expected sequential IO' sector
500 * number - if this matches on the next IO then we use the last disk.
501 * There is also a per-disk 'last know head position' sector that is
502 * maintained from IRQ contexts, both the normal and the resync IO
503 * completion handlers update this position correctly. If there is no
504 * perfect sequential match then we pick the disk whose head is closest.
505 *
506 * If there are 2 mirrors in the same 2 devices, performance degrades
507 * because position is mirror, not device based.
508 *
509 * The rdev for the device selected will have nr_pending incremented.
510 */
e8096360 511static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 512{
af3a2cd6 513 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
514 int sectors;
515 int best_good_sectors;
9dedf603
SL
516 int best_disk, best_dist_disk, best_pending_disk;
517 int has_nonrot_disk;
be4d3280 518 int disk;
76073054 519 sector_t best_dist;
9dedf603 520 unsigned int min_pending;
3cb03002 521 struct md_rdev *rdev;
f3ac8bf7 522 int choose_first;
12cee5a8 523 int choose_next_idle;
1da177e4
LT
524
525 rcu_read_lock();
526 /*
8ddf9efe 527 * Check if we can balance. We can balance on the whole
1da177e4
LT
528 * device if no resync is going on, or below the resync window.
529 * We take the first readable disk when above the resync window.
530 */
531 retry:
d2eb35ac 532 sectors = r1_bio->sectors;
76073054 533 best_disk = -1;
9dedf603 534 best_dist_disk = -1;
76073054 535 best_dist = MaxSector;
9dedf603
SL
536 best_pending_disk = -1;
537 min_pending = UINT_MAX;
d2eb35ac 538 best_good_sectors = 0;
9dedf603 539 has_nonrot_disk = 0;
12cee5a8 540 choose_next_idle = 0;
d2eb35ac 541
c6d119cf 542 choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
1da177e4 543
be4d3280 544 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 545 sector_t dist;
d2eb35ac
N
546 sector_t first_bad;
547 int bad_sectors;
9dedf603 548 unsigned int pending;
12cee5a8 549 bool nonrot;
d2eb35ac 550
f3ac8bf7
N
551 rdev = rcu_dereference(conf->mirrors[disk].rdev);
552 if (r1_bio->bios[disk] == IO_BLOCKED
553 || rdev == NULL
6b740b8d 554 || test_bit(Unmerged, &rdev->flags)
76073054 555 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 556 continue;
76073054
N
557 if (!test_bit(In_sync, &rdev->flags) &&
558 rdev->recovery_offset < this_sector + sectors)
1da177e4 559 continue;
76073054
N
560 if (test_bit(WriteMostly, &rdev->flags)) {
561 /* Don't balance among write-mostly, just
562 * use the first as a last resort */
307729c8
N
563 if (best_disk < 0) {
564 if (is_badblock(rdev, this_sector, sectors,
565 &first_bad, &bad_sectors)) {
566 if (first_bad < this_sector)
567 /* Cannot use this */
568 continue;
569 best_good_sectors = first_bad - this_sector;
570 } else
571 best_good_sectors = sectors;
76073054 572 best_disk = disk;
307729c8 573 }
76073054
N
574 continue;
575 }
576 /* This is a reasonable device to use. It might
577 * even be best.
578 */
d2eb35ac
N
579 if (is_badblock(rdev, this_sector, sectors,
580 &first_bad, &bad_sectors)) {
581 if (best_dist < MaxSector)
582 /* already have a better device */
583 continue;
584 if (first_bad <= this_sector) {
585 /* cannot read here. If this is the 'primary'
586 * device, then we must not read beyond
587 * bad_sectors from another device..
588 */
589 bad_sectors -= (this_sector - first_bad);
590 if (choose_first && sectors > bad_sectors)
591 sectors = bad_sectors;
592 if (best_good_sectors > sectors)
593 best_good_sectors = sectors;
594
595 } else {
596 sector_t good_sectors = first_bad - this_sector;
597 if (good_sectors > best_good_sectors) {
598 best_good_sectors = good_sectors;
599 best_disk = disk;
600 }
601 if (choose_first)
602 break;
603 }
604 continue;
605 } else
606 best_good_sectors = sectors;
607
12cee5a8
SL
608 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
609 has_nonrot_disk |= nonrot;
9dedf603 610 pending = atomic_read(&rdev->nr_pending);
76073054 611 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 612 if (choose_first) {
76073054 613 best_disk = disk;
1da177e4
LT
614 break;
615 }
12cee5a8
SL
616 /* Don't change to another disk for sequential reads */
617 if (conf->mirrors[disk].next_seq_sect == this_sector
618 || dist == 0) {
619 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
620 struct raid1_info *mirror = &conf->mirrors[disk];
621
622 best_disk = disk;
623 /*
624 * If buffered sequential IO size exceeds optimal
625 * iosize, check if there is idle disk. If yes, choose
626 * the idle disk. read_balance could already choose an
627 * idle disk before noticing it's a sequential IO in
628 * this disk. This doesn't matter because this disk
629 * will idle, next time it will be utilized after the
630 * first disk has IO size exceeds optimal iosize. In
631 * this way, iosize of the first disk will be optimal
632 * iosize at least. iosize of the second disk might be
633 * small, but not a big deal since when the second disk
634 * starts IO, the first disk is likely still busy.
635 */
636 if (nonrot && opt_iosize > 0 &&
637 mirror->seq_start != MaxSector &&
638 mirror->next_seq_sect > opt_iosize &&
639 mirror->next_seq_sect - opt_iosize >=
640 mirror->seq_start) {
641 choose_next_idle = 1;
642 continue;
643 }
644 break;
645 }
646 /* If device is idle, use it */
647 if (pending == 0) {
648 best_disk = disk;
649 break;
650 }
651
652 if (choose_next_idle)
653 continue;
9dedf603
SL
654
655 if (min_pending > pending) {
656 min_pending = pending;
657 best_pending_disk = disk;
658 }
659
76073054
N
660 if (dist < best_dist) {
661 best_dist = dist;
9dedf603 662 best_dist_disk = disk;
1da177e4 663 }
f3ac8bf7 664 }
1da177e4 665
9dedf603
SL
666 /*
667 * If all disks are rotational, choose the closest disk. If any disk is
668 * non-rotational, choose the disk with less pending request even the
669 * disk is rotational, which might/might not be optimal for raids with
670 * mixed ratation/non-rotational disks depending on workload.
671 */
672 if (best_disk == -1) {
673 if (has_nonrot_disk)
674 best_disk = best_pending_disk;
675 else
676 best_disk = best_dist_disk;
677 }
678
76073054
N
679 if (best_disk >= 0) {
680 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
681 if (!rdev)
682 goto retry;
683 atomic_inc(&rdev->nr_pending);
76073054 684 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
685 /* cannot risk returning a device that failed
686 * before we inc'ed nr_pending
687 */
03c902e1 688 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
689 goto retry;
690 }
d2eb35ac 691 sectors = best_good_sectors;
12cee5a8
SL
692
693 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
694 conf->mirrors[best_disk].seq_start = this_sector;
695
be4d3280 696 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
697 }
698 rcu_read_unlock();
d2eb35ac 699 *max_sectors = sectors;
1da177e4 700
76073054 701 return best_disk;
1da177e4
LT
702}
703
64590f45 704static int raid1_mergeable_bvec(struct mddev *mddev,
6b740b8d
N
705 struct bvec_merge_data *bvm,
706 struct bio_vec *biovec)
707{
6b740b8d
N
708 struct r1conf *conf = mddev->private;
709 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
710 int max = biovec->bv_len;
711
712 if (mddev->merge_check_needed) {
713 int disk;
714 rcu_read_lock();
715 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
716 struct md_rdev *rdev = rcu_dereference(
717 conf->mirrors[disk].rdev);
718 if (rdev && !test_bit(Faulty, &rdev->flags)) {
719 struct request_queue *q =
720 bdev_get_queue(rdev->bdev);
721 if (q->merge_bvec_fn) {
722 bvm->bi_sector = sector +
723 rdev->data_offset;
724 bvm->bi_bdev = rdev->bdev;
725 max = min(max, q->merge_bvec_fn(
726 q, bvm, biovec));
727 }
728 }
729 }
730 rcu_read_unlock();
731 }
732 return max;
733
734}
735
5c675f83 736static int raid1_congested(struct mddev *mddev, int bits)
0d129228 737{
e8096360 738 struct r1conf *conf = mddev->private;
0d129228
N
739 int i, ret = 0;
740
34db0cd6
N
741 if ((bits & (1 << BDI_async_congested)) &&
742 conf->pending_count >= max_queued_requests)
743 return 1;
744
0d129228 745 rcu_read_lock();
f53e29fc 746 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 747 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 748 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 749 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 750
1ed7242e
JB
751 BUG_ON(!q);
752
0d129228
N
753 /* Note the '|| 1' - when read_balance prefers
754 * non-congested targets, it can be removed
755 */
91a9e99d 756 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
757 ret |= bdi_congested(&q->backing_dev_info, bits);
758 else
759 ret &= bdi_congested(&q->backing_dev_info, bits);
760 }
761 }
762 rcu_read_unlock();
763 return ret;
764}
0d129228 765
e8096360 766static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
767{
768 /* Any writes that have been queued but are awaiting
769 * bitmap updates get flushed here.
a35e63ef 770 */
a35e63ef
N
771 spin_lock_irq(&conf->device_lock);
772
773 if (conf->pending_bio_list.head) {
774 struct bio *bio;
775 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 776 conf->pending_count = 0;
a35e63ef
N
777 spin_unlock_irq(&conf->device_lock);
778 /* flush any pending bitmap writes to
779 * disk before proceeding w/ I/O */
780 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 781 wake_up(&conf->wait_barrier);
a35e63ef
N
782
783 while (bio) { /* submit pending writes */
784 struct bio *next = bio->bi_next;
785 bio->bi_next = NULL;
2ff8cc2c
SL
786 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
787 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
788 /* Just ignore it */
789 bio_endio(bio, 0);
790 else
791 generic_make_request(bio);
a35e63ef
N
792 bio = next;
793 }
a35e63ef
N
794 } else
795 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
796}
797
17999be4
N
798/* Barriers....
799 * Sometimes we need to suspend IO while we do something else,
800 * either some resync/recovery, or reconfigure the array.
801 * To do this we raise a 'barrier'.
802 * The 'barrier' is a counter that can be raised multiple times
803 * to count how many activities are happening which preclude
804 * normal IO.
805 * We can only raise the barrier if there is no pending IO.
806 * i.e. if nr_pending == 0.
807 * We choose only to raise the barrier if no-one is waiting for the
808 * barrier to go down. This means that as soon as an IO request
809 * is ready, no other operations which require a barrier will start
810 * until the IO request has had a chance.
811 *
812 * So: regular IO calls 'wait_barrier'. When that returns there
813 * is no backgroup IO happening, It must arrange to call
814 * allow_barrier when it has finished its IO.
815 * backgroup IO calls must call raise_barrier. Once that returns
816 * there is no normal IO happeing. It must arrange to call
817 * lower_barrier when the particular background IO completes.
1da177e4 818 */
c2fd4c94 819static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4
LT
820{
821 spin_lock_irq(&conf->resync_lock);
17999be4
N
822
823 /* Wait until no block IO is waiting */
824 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
eed8c02e 825 conf->resync_lock);
17999be4
N
826
827 /* block any new IO from starting */
828 conf->barrier++;
c2fd4c94 829 conf->next_resync = sector_nr;
17999be4 830
79ef3a8a 831 /* For these conditions we must wait:
832 * A: while the array is in frozen state
833 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
834 * the max count which allowed.
835 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
836 * next resync will reach to the window which normal bios are
837 * handling.
2f73d3c5 838 * D: while there are any active requests in the current window.
79ef3a8a 839 */
17999be4 840 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 841 !conf->array_frozen &&
79ef3a8a 842 conf->barrier < RESYNC_DEPTH &&
2f73d3c5 843 conf->current_window_requests == 0 &&
79ef3a8a 844 (conf->start_next_window >=
845 conf->next_resync + RESYNC_SECTORS),
eed8c02e 846 conf->resync_lock);
17999be4 847
34e97f17 848 conf->nr_pending++;
17999be4
N
849 spin_unlock_irq(&conf->resync_lock);
850}
851
e8096360 852static void lower_barrier(struct r1conf *conf)
17999be4
N
853{
854 unsigned long flags;
709ae487 855 BUG_ON(conf->barrier <= 0);
17999be4
N
856 spin_lock_irqsave(&conf->resync_lock, flags);
857 conf->barrier--;
34e97f17 858 conf->nr_pending--;
17999be4
N
859 spin_unlock_irqrestore(&conf->resync_lock, flags);
860 wake_up(&conf->wait_barrier);
861}
862
79ef3a8a 863static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
17999be4 864{
79ef3a8a 865 bool wait = false;
866
867 if (conf->array_frozen || !bio)
868 wait = true;
869 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
23554960
N
870 if ((conf->mddev->curr_resync_completed
871 >= bio_end_sector(bio)) ||
872 (conf->next_resync + NEXT_NORMALIO_DISTANCE
873 <= bio->bi_iter.bi_sector))
79ef3a8a 874 wait = false;
875 else
876 wait = true;
877 }
878
879 return wait;
880}
881
882static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
883{
884 sector_t sector = 0;
885
17999be4 886 spin_lock_irq(&conf->resync_lock);
79ef3a8a 887 if (need_to_wait_for_sync(conf, bio)) {
17999be4 888 conf->nr_waiting++;
d6b42dcb
N
889 /* Wait for the barrier to drop.
890 * However if there are already pending
891 * requests (preventing the barrier from
892 * rising completely), and the
5965b642 893 * per-process bio queue isn't empty,
d6b42dcb 894 * then don't wait, as we need to empty
5965b642
N
895 * that queue to allow conf->start_next_window
896 * to increase.
d6b42dcb
N
897 */
898 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 899 !conf->array_frozen &&
900 (!conf->barrier ||
5965b642
N
901 ((conf->start_next_window <
902 conf->next_resync + RESYNC_SECTORS) &&
903 current->bio_list &&
904 !bio_list_empty(current->bio_list))),
eed8c02e 905 conf->resync_lock);
17999be4 906 conf->nr_waiting--;
1da177e4 907 }
79ef3a8a 908
909 if (bio && bio_data_dir(bio) == WRITE) {
2f73d3c5 910 if (bio->bi_iter.bi_sector >=
23554960 911 conf->mddev->curr_resync_completed) {
79ef3a8a 912 if (conf->start_next_window == MaxSector)
913 conf->start_next_window =
914 conf->next_resync +
915 NEXT_NORMALIO_DISTANCE;
916
917 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
4f024f37 918 <= bio->bi_iter.bi_sector)
79ef3a8a 919 conf->next_window_requests++;
920 else
921 conf->current_window_requests++;
79ef3a8a 922 sector = conf->start_next_window;
41a336e0 923 }
79ef3a8a 924 }
925
17999be4 926 conf->nr_pending++;
1da177e4 927 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 928 return sector;
1da177e4
LT
929}
930
79ef3a8a 931static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
932 sector_t bi_sector)
17999be4
N
933{
934 unsigned long flags;
79ef3a8a 935
17999be4
N
936 spin_lock_irqsave(&conf->resync_lock, flags);
937 conf->nr_pending--;
79ef3a8a 938 if (start_next_window) {
939 if (start_next_window == conf->start_next_window) {
940 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
941 <= bi_sector)
942 conf->next_window_requests--;
943 else
944 conf->current_window_requests--;
945 } else
946 conf->current_window_requests--;
947
948 if (!conf->current_window_requests) {
949 if (conf->next_window_requests) {
950 conf->current_window_requests =
951 conf->next_window_requests;
952 conf->next_window_requests = 0;
953 conf->start_next_window +=
954 NEXT_NORMALIO_DISTANCE;
955 } else
956 conf->start_next_window = MaxSector;
957 }
958 }
17999be4
N
959 spin_unlock_irqrestore(&conf->resync_lock, flags);
960 wake_up(&conf->wait_barrier);
961}
962
e2d59925 963static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab
N
964{
965 /* stop syncio and normal IO and wait for everything to
966 * go quite.
b364e3d0 967 * We wait until nr_pending match nr_queued+extra
1c830532
N
968 * This is called in the context of one normal IO request
969 * that has failed. Thus any sync request that might be pending
970 * will be blocked by nr_pending, and we need to wait for
971 * pending IO requests to complete or be queued for re-try.
e2d59925 972 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
973 * must match the number of pending IOs (nr_pending) before
974 * we continue.
ddaf22ab
N
975 */
976 spin_lock_irq(&conf->resync_lock);
b364e3d0 977 conf->array_frozen = 1;
eed8c02e 978 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 979 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
980 conf->resync_lock,
981 flush_pending_writes(conf));
ddaf22ab
N
982 spin_unlock_irq(&conf->resync_lock);
983}
e8096360 984static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
985{
986 /* reverse the effect of the freeze */
987 spin_lock_irq(&conf->resync_lock);
b364e3d0 988 conf->array_frozen = 0;
ddaf22ab
N
989 wake_up(&conf->wait_barrier);
990 spin_unlock_irq(&conf->resync_lock);
991}
992
f72ffdd6 993/* duplicate the data pages for behind I/O
4e78064f 994 */
9f2c9d12 995static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
996{
997 int i;
998 struct bio_vec *bvec;
2ca68f5e 999 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 1000 GFP_NOIO);
2ca68f5e 1001 if (unlikely(!bvecs))
af6d7b76 1002 return;
4b6d287f 1003
cb34e057 1004 bio_for_each_segment_all(bvec, bio, i) {
2ca68f5e
N
1005 bvecs[i] = *bvec;
1006 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1007 if (unlikely(!bvecs[i].bv_page))
4b6d287f 1008 goto do_sync_io;
2ca68f5e
N
1009 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1010 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1011 kunmap(bvecs[i].bv_page);
4b6d287f
N
1012 kunmap(bvec->bv_page);
1013 }
2ca68f5e 1014 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
1015 r1_bio->behind_page_count = bio->bi_vcnt;
1016 set_bit(R1BIO_BehindIO, &r1_bio->state);
1017 return;
4b6d287f
N
1018
1019do_sync_io:
af6d7b76 1020 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
1021 if (bvecs[i].bv_page)
1022 put_page(bvecs[i].bv_page);
1023 kfree(bvecs);
4f024f37
KO
1024 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1025 bio->bi_iter.bi_size);
4b6d287f
N
1026}
1027
f54a9d0e
N
1028struct raid1_plug_cb {
1029 struct blk_plug_cb cb;
1030 struct bio_list pending;
1031 int pending_cnt;
1032};
1033
1034static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1035{
1036 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1037 cb);
1038 struct mddev *mddev = plug->cb.data;
1039 struct r1conf *conf = mddev->private;
1040 struct bio *bio;
1041
874807a8 1042 if (from_schedule || current->bio_list) {
f54a9d0e
N
1043 spin_lock_irq(&conf->device_lock);
1044 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1045 conf->pending_count += plug->pending_cnt;
1046 spin_unlock_irq(&conf->device_lock);
ee0b0244 1047 wake_up(&conf->wait_barrier);
f54a9d0e
N
1048 md_wakeup_thread(mddev->thread);
1049 kfree(plug);
1050 return;
1051 }
1052
1053 /* we aren't scheduling, so we can do the write-out directly. */
1054 bio = bio_list_get(&plug->pending);
1055 bitmap_unplug(mddev->bitmap);
1056 wake_up(&conf->wait_barrier);
1057
1058 while (bio) { /* submit pending writes */
1059 struct bio *next = bio->bi_next;
1060 bio->bi_next = NULL;
32f9f570
SL
1061 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1062 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1063 /* Just ignore it */
1064 bio_endio(bio, 0);
1065 else
1066 generic_make_request(bio);
f54a9d0e
N
1067 bio = next;
1068 }
1069 kfree(plug);
1070}
1071
b4fdcb02 1072static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1073{
e8096360 1074 struct r1conf *conf = mddev->private;
0eaf822c 1075 struct raid1_info *mirror;
9f2c9d12 1076 struct r1bio *r1_bio;
1da177e4 1077 struct bio *read_bio;
1f68f0c4 1078 int i, disks;
84255d10 1079 struct bitmap *bitmap;
191ea9b2 1080 unsigned long flags;
a362357b 1081 const int rw = bio_data_dir(bio);
2c7d46ec 1082 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1083 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
2ff8cc2c
SL
1084 const unsigned long do_discard = (bio->bi_rw
1085 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1086 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
3cb03002 1087 struct md_rdev *blocked_rdev;
f54a9d0e
N
1088 struct blk_plug_cb *cb;
1089 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
1090 int first_clone;
1091 int sectors_handled;
1092 int max_sectors;
79ef3a8a 1093 sector_t start_next_window;
191ea9b2 1094
1da177e4
LT
1095 /*
1096 * Register the new request and wait if the reconstruction
1097 * thread has put up a bar for new requests.
1098 * Continue immediately if no resync is active currently.
1099 */
62de608d 1100
3d310eb7
N
1101 md_write_start(mddev, bio); /* wait on superblock update early */
1102
6eef4b21 1103 if (bio_data_dir(bio) == WRITE &&
589a1c49
GR
1104 ((bio_end_sector(bio) > mddev->suspend_lo &&
1105 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1106 (mddev_is_clustered(mddev) &&
1107 md_cluster_ops->area_resyncing(mddev, bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
6eef4b21
N
1108 /* As the suspend_* range is controlled by
1109 * userspace, we want an interruptible
1110 * wait.
1111 */
1112 DEFINE_WAIT(w);
1113 for (;;) {
1114 flush_signals(current);
1115 prepare_to_wait(&conf->wait_barrier,
1116 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1117 if (bio_end_sector(bio) <= mddev->suspend_lo ||
589a1c49
GR
1118 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1119 (mddev_is_clustered(mddev) &&
1120 !md_cluster_ops->area_resyncing(mddev,
1121 bio->bi_iter.bi_sector, bio_end_sector(bio))))
6eef4b21
N
1122 break;
1123 schedule();
1124 }
1125 finish_wait(&conf->wait_barrier, &w);
1126 }
62de608d 1127
79ef3a8a 1128 start_next_window = wait_barrier(conf, bio);
1da177e4 1129
84255d10
N
1130 bitmap = mddev->bitmap;
1131
1da177e4
LT
1132 /*
1133 * make_request() can abort the operation when READA is being
1134 * used and no empty request is available.
1135 *
1136 */
1137 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1138
1139 r1_bio->master_bio = bio;
aa8b57aa 1140 r1_bio->sectors = bio_sectors(bio);
191ea9b2 1141 r1_bio->state = 0;
1da177e4 1142 r1_bio->mddev = mddev;
4f024f37 1143 r1_bio->sector = bio->bi_iter.bi_sector;
1da177e4 1144
d2eb35ac
N
1145 /* We might need to issue multiple reads to different
1146 * devices if there are bad blocks around, so we keep
1147 * track of the number of reads in bio->bi_phys_segments.
1148 * If this is 0, there is only one r1_bio and no locking
1149 * will be needed when requests complete. If it is
1150 * non-zero, then it is the number of not-completed requests.
1151 */
1152 bio->bi_phys_segments = 0;
1153 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1154
a362357b 1155 if (rw == READ) {
1da177e4
LT
1156 /*
1157 * read balancing logic:
1158 */
d2eb35ac
N
1159 int rdisk;
1160
1161read_again:
1162 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
1163
1164 if (rdisk < 0) {
1165 /* couldn't find anywhere to read from */
1166 raid_end_bio_io(r1_bio);
5a7bbad2 1167 return;
1da177e4
LT
1168 }
1169 mirror = conf->mirrors + rdisk;
1170
e555190d
N
1171 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1172 bitmap) {
1173 /* Reading from a write-mostly device must
1174 * take care not to over-take any writes
1175 * that are 'behind'
1176 */
1177 wait_event(bitmap->behind_wait,
1178 atomic_read(&bitmap->behind_writes) == 0);
1179 }
1da177e4 1180 r1_bio->read_disk = rdisk;
f0cc9a05 1181 r1_bio->start_next_window = 0;
1da177e4 1182
a167f663 1183 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1184 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1185 max_sectors);
1da177e4
LT
1186
1187 r1_bio->bios[rdisk] = read_bio;
1188
4f024f37
KO
1189 read_bio->bi_iter.bi_sector = r1_bio->sector +
1190 mirror->rdev->data_offset;
1da177e4
LT
1191 read_bio->bi_bdev = mirror->rdev->bdev;
1192 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 1193 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1194 read_bio->bi_private = r1_bio;
1195
d2eb35ac
N
1196 if (max_sectors < r1_bio->sectors) {
1197 /* could not read all from this device, so we will
1198 * need another r1_bio.
1199 */
d2eb35ac
N
1200
1201 sectors_handled = (r1_bio->sector + max_sectors
4f024f37 1202 - bio->bi_iter.bi_sector);
d2eb35ac
N
1203 r1_bio->sectors = max_sectors;
1204 spin_lock_irq(&conf->device_lock);
1205 if (bio->bi_phys_segments == 0)
1206 bio->bi_phys_segments = 2;
1207 else
1208 bio->bi_phys_segments++;
1209 spin_unlock_irq(&conf->device_lock);
1210 /* Cannot call generic_make_request directly
1211 * as that will be queued in __make_request
1212 * and subsequent mempool_alloc might block waiting
1213 * for it. So hand bio over to raid1d.
1214 */
1215 reschedule_retry(r1_bio);
1216
1217 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1218
1219 r1_bio->master_bio = bio;
aa8b57aa 1220 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
d2eb35ac
N
1221 r1_bio->state = 0;
1222 r1_bio->mddev = mddev;
4f024f37
KO
1223 r1_bio->sector = bio->bi_iter.bi_sector +
1224 sectors_handled;
d2eb35ac
N
1225 goto read_again;
1226 } else
1227 generic_make_request(read_bio);
5a7bbad2 1228 return;
1da177e4
LT
1229 }
1230
1231 /*
1232 * WRITE:
1233 */
34db0cd6
N
1234 if (conf->pending_count >= max_queued_requests) {
1235 md_wakeup_thread(mddev->thread);
1236 wait_event(conf->wait_barrier,
1237 conf->pending_count < max_queued_requests);
1238 }
1f68f0c4 1239 /* first select target devices under rcu_lock and
1da177e4
LT
1240 * inc refcount on their rdev. Record them by setting
1241 * bios[x] to bio
1f68f0c4
N
1242 * If there are known/acknowledged bad blocks on any device on
1243 * which we have seen a write error, we want to avoid writing those
1244 * blocks.
1245 * This potentially requires several writes to write around
1246 * the bad blocks. Each set of writes gets it's own r1bio
1247 * with a set of bios attached.
1da177e4 1248 */
c3b328ac 1249
8f19ccb2 1250 disks = conf->raid_disks * 2;
6bfe0b49 1251 retry_write:
79ef3a8a 1252 r1_bio->start_next_window = start_next_window;
6bfe0b49 1253 blocked_rdev = NULL;
1da177e4 1254 rcu_read_lock();
1f68f0c4 1255 max_sectors = r1_bio->sectors;
1da177e4 1256 for (i = 0; i < disks; i++) {
3cb03002 1257 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1258 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1259 atomic_inc(&rdev->nr_pending);
1260 blocked_rdev = rdev;
1261 break;
1262 }
1f68f0c4 1263 r1_bio->bios[i] = NULL;
6b740b8d
N
1264 if (!rdev || test_bit(Faulty, &rdev->flags)
1265 || test_bit(Unmerged, &rdev->flags)) {
8f19ccb2
N
1266 if (i < conf->raid_disks)
1267 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1268 continue;
1269 }
1270
1271 atomic_inc(&rdev->nr_pending);
1272 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1273 sector_t first_bad;
1274 int bad_sectors;
1275 int is_bad;
1276
1277 is_bad = is_badblock(rdev, r1_bio->sector,
1278 max_sectors,
1279 &first_bad, &bad_sectors);
1280 if (is_bad < 0) {
1281 /* mustn't write here until the bad block is
1282 * acknowledged*/
1283 set_bit(BlockedBadBlocks, &rdev->flags);
1284 blocked_rdev = rdev;
1285 break;
1286 }
1287 if (is_bad && first_bad <= r1_bio->sector) {
1288 /* Cannot write here at all */
1289 bad_sectors -= (r1_bio->sector - first_bad);
1290 if (bad_sectors < max_sectors)
1291 /* mustn't write more than bad_sectors
1292 * to other devices yet
1293 */
1294 max_sectors = bad_sectors;
03c902e1 1295 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1296 /* We don't set R1BIO_Degraded as that
1297 * only applies if the disk is
1298 * missing, so it might be re-added,
1299 * and we want to know to recover this
1300 * chunk.
1301 * In this case the device is here,
1302 * and the fact that this chunk is not
1303 * in-sync is recorded in the bad
1304 * block log
1305 */
1306 continue;
964147d5 1307 }
1f68f0c4
N
1308 if (is_bad) {
1309 int good_sectors = first_bad - r1_bio->sector;
1310 if (good_sectors < max_sectors)
1311 max_sectors = good_sectors;
1312 }
1313 }
1314 r1_bio->bios[i] = bio;
1da177e4
LT
1315 }
1316 rcu_read_unlock();
1317
6bfe0b49
DW
1318 if (unlikely(blocked_rdev)) {
1319 /* Wait for this device to become unblocked */
1320 int j;
79ef3a8a 1321 sector_t old = start_next_window;
6bfe0b49
DW
1322
1323 for (j = 0; j < i; j++)
1324 if (r1_bio->bios[j])
1325 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1326 r1_bio->state = 0;
4f024f37 1327 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
6bfe0b49 1328 md_wait_for_blocked_rdev(blocked_rdev, mddev);
79ef3a8a 1329 start_next_window = wait_barrier(conf, bio);
1330 /*
1331 * We must make sure the multi r1bios of bio have
1332 * the same value of bi_phys_segments
1333 */
1334 if (bio->bi_phys_segments && old &&
1335 old != start_next_window)
1336 /* Wait for the former r1bio(s) to complete */
1337 wait_event(conf->wait_barrier,
1338 bio->bi_phys_segments == 1);
6bfe0b49
DW
1339 goto retry_write;
1340 }
1341
1f68f0c4
N
1342 if (max_sectors < r1_bio->sectors) {
1343 /* We are splitting this write into multiple parts, so
1344 * we need to prepare for allocating another r1_bio.
1345 */
1346 r1_bio->sectors = max_sectors;
1347 spin_lock_irq(&conf->device_lock);
1348 if (bio->bi_phys_segments == 0)
1349 bio->bi_phys_segments = 2;
1350 else
1351 bio->bi_phys_segments++;
1352 spin_unlock_irq(&conf->device_lock);
191ea9b2 1353 }
4f024f37 1354 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
4b6d287f 1355
4e78064f 1356 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1357 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1358
1f68f0c4 1359 first_clone = 1;
1da177e4
LT
1360 for (i = 0; i < disks; i++) {
1361 struct bio *mbio;
1362 if (!r1_bio->bios[i])
1363 continue;
1364
a167f663 1365 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1366 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1f68f0c4
N
1367
1368 if (first_clone) {
1369 /* do behind I/O ?
1370 * Not if there are too many, or cannot
1371 * allocate memory, or a reader on WriteMostly
1372 * is waiting for behind writes to flush */
1373 if (bitmap &&
1374 (atomic_read(&bitmap->behind_writes)
1375 < mddev->bitmap_info.max_write_behind) &&
1376 !waitqueue_active(&bitmap->behind_wait))
1377 alloc_behind_pages(mbio, r1_bio);
1378
1379 bitmap_startwrite(bitmap, r1_bio->sector,
1380 r1_bio->sectors,
1381 test_bit(R1BIO_BehindIO,
1382 &r1_bio->state));
1383 first_clone = 0;
1384 }
2ca68f5e 1385 if (r1_bio->behind_bvecs) {
4b6d287f
N
1386 struct bio_vec *bvec;
1387 int j;
1388
cb34e057
KO
1389 /*
1390 * We trimmed the bio, so _all is legit
4b6d287f 1391 */
d74c6d51 1392 bio_for_each_segment_all(bvec, mbio, j)
2ca68f5e 1393 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1394 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1395 atomic_inc(&r1_bio->behind_remaining);
1396 }
1397
1f68f0c4
N
1398 r1_bio->bios[i] = mbio;
1399
4f024f37 1400 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4
N
1401 conf->mirrors[i].rdev->data_offset);
1402 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1403 mbio->bi_end_io = raid1_end_write_request;
c8dc9c65
JL
1404 mbio->bi_rw =
1405 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1f68f0c4
N
1406 mbio->bi_private = r1_bio;
1407
1da177e4 1408 atomic_inc(&r1_bio->remaining);
f54a9d0e
N
1409
1410 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1411 if (cb)
1412 plug = container_of(cb, struct raid1_plug_cb, cb);
1413 else
1414 plug = NULL;
4e78064f 1415 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1416 if (plug) {
1417 bio_list_add(&plug->pending, mbio);
1418 plug->pending_cnt++;
1419 } else {
1420 bio_list_add(&conf->pending_bio_list, mbio);
1421 conf->pending_count++;
1422 }
4e78064f 1423 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1424 if (!plug)
b357f04a 1425 md_wakeup_thread(mddev->thread);
1da177e4 1426 }
079fa166
N
1427 /* Mustn't call r1_bio_write_done before this next test,
1428 * as it could result in the bio being freed.
1429 */
aa8b57aa 1430 if (sectors_handled < bio_sectors(bio)) {
079fa166 1431 r1_bio_write_done(r1_bio);
1f68f0c4
N
1432 /* We need another r1_bio. It has already been counted
1433 * in bio->bi_phys_segments
1434 */
1435 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1436 r1_bio->master_bio = bio;
aa8b57aa 1437 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1f68f0c4
N
1438 r1_bio->state = 0;
1439 r1_bio->mddev = mddev;
4f024f37 1440 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1f68f0c4
N
1441 goto retry_write;
1442 }
1443
079fa166
N
1444 r1_bio_write_done(r1_bio);
1445
1446 /* In case raid1d snuck in to freeze_array */
1447 wake_up(&conf->wait_barrier);
1da177e4
LT
1448}
1449
fd01b88c 1450static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1451{
e8096360 1452 struct r1conf *conf = mddev->private;
1da177e4
LT
1453 int i;
1454
1455 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1456 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1457 rcu_read_lock();
1458 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1459 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1460 seq_printf(seq, "%s",
ddac7c7e
N
1461 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1462 }
1463 rcu_read_unlock();
1da177e4
LT
1464 seq_printf(seq, "]");
1465}
1466
fd01b88c 1467static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1468{
1469 char b[BDEVNAME_SIZE];
e8096360 1470 struct r1conf *conf = mddev->private;
1da177e4
LT
1471
1472 /*
1473 * If it is not operational, then we have already marked it as dead
1474 * else if it is the last working disks, ignore the error, let the
1475 * next level up know.
1476 * else mark the drive as failed
1477 */
b2d444d7 1478 if (test_bit(In_sync, &rdev->flags)
4044ba58 1479 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1480 /*
1481 * Don't fail the drive, act as though we were just a
4044ba58
N
1482 * normal single drive.
1483 * However don't try a recovery from this drive as
1484 * it is very likely to fail.
1da177e4 1485 */
5389042f 1486 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1487 return;
4044ba58 1488 }
de393cde 1489 set_bit(Blocked, &rdev->flags);
c04be0aa
N
1490 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1491 unsigned long flags;
1492 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1493 mddev->degraded++;
dd00a99e 1494 set_bit(Faulty, &rdev->flags);
c04be0aa 1495 spin_unlock_irqrestore(&conf->device_lock, flags);
dd00a99e
N
1496 } else
1497 set_bit(Faulty, &rdev->flags);
2446dba0
N
1498 /*
1499 * if recovery is running, make sure it aborts.
1500 */
1501 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
850b2b42 1502 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1503 printk(KERN_ALERT
1504 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1505 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1506 mdname(mddev), bdevname(rdev->bdev, b),
1507 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1508}
1509
e8096360 1510static void print_conf(struct r1conf *conf)
1da177e4
LT
1511{
1512 int i;
1da177e4 1513
9dd1e2fa 1514 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1515 if (!conf) {
9dd1e2fa 1516 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1517 return;
1518 }
9dd1e2fa 1519 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1520 conf->raid_disks);
1521
ddac7c7e 1522 rcu_read_lock();
1da177e4
LT
1523 for (i = 0; i < conf->raid_disks; i++) {
1524 char b[BDEVNAME_SIZE];
3cb03002 1525 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1526 if (rdev)
9dd1e2fa 1527 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1528 i, !test_bit(In_sync, &rdev->flags),
1529 !test_bit(Faulty, &rdev->flags),
1530 bdevname(rdev->bdev,b));
1da177e4 1531 }
ddac7c7e 1532 rcu_read_unlock();
1da177e4
LT
1533}
1534
e8096360 1535static void close_sync(struct r1conf *conf)
1da177e4 1536{
79ef3a8a 1537 wait_barrier(conf, NULL);
1538 allow_barrier(conf, 0, 0);
1da177e4
LT
1539
1540 mempool_destroy(conf->r1buf_pool);
1541 conf->r1buf_pool = NULL;
79ef3a8a 1542
669cc7ba 1543 spin_lock_irq(&conf->resync_lock);
79ef3a8a 1544 conf->next_resync = 0;
1545 conf->start_next_window = MaxSector;
669cc7ba
N
1546 conf->current_window_requests +=
1547 conf->next_window_requests;
1548 conf->next_window_requests = 0;
1549 spin_unlock_irq(&conf->resync_lock);
1da177e4
LT
1550}
1551
fd01b88c 1552static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1553{
1554 int i;
e8096360 1555 struct r1conf *conf = mddev->private;
6b965620
N
1556 int count = 0;
1557 unsigned long flags;
1da177e4
LT
1558
1559 /*
f72ffdd6 1560 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1561 * and mark them readable.
1562 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1563 */
1564 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1565 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1566 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1567 if (repl
1568 && repl->recovery_offset == MaxSector
1569 && !test_bit(Faulty, &repl->flags)
1570 && !test_and_set_bit(In_sync, &repl->flags)) {
1571 /* replacement has just become active */
1572 if (!rdev ||
1573 !test_and_clear_bit(In_sync, &rdev->flags))
1574 count++;
1575 if (rdev) {
1576 /* Replaced device not technically
1577 * faulty, but we need to be sure
1578 * it gets removed and never re-added
1579 */
1580 set_bit(Faulty, &rdev->flags);
1581 sysfs_notify_dirent_safe(
1582 rdev->sysfs_state);
1583 }
1584 }
ddac7c7e 1585 if (rdev
61e4947c 1586 && rdev->recovery_offset == MaxSector
ddac7c7e 1587 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1588 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1589 count++;
654e8b5a 1590 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1591 }
1592 }
6b965620
N
1593 spin_lock_irqsave(&conf->device_lock, flags);
1594 mddev->degraded -= count;
1595 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1596
1597 print_conf(conf);
6b965620 1598 return count;
1da177e4
LT
1599}
1600
fd01b88c 1601static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1602{
e8096360 1603 struct r1conf *conf = mddev->private;
199050ea 1604 int err = -EEXIST;
41158c7e 1605 int mirror = 0;
0eaf822c 1606 struct raid1_info *p;
6c2fce2e 1607 int first = 0;
30194636 1608 int last = conf->raid_disks - 1;
6b740b8d 1609 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4 1610
5389042f
N
1611 if (mddev->recovery_disabled == conf->recovery_disabled)
1612 return -EBUSY;
1613
6c2fce2e
NB
1614 if (rdev->raid_disk >= 0)
1615 first = last = rdev->raid_disk;
1616
6b740b8d
N
1617 if (q->merge_bvec_fn) {
1618 set_bit(Unmerged, &rdev->flags);
1619 mddev->merge_check_needed = 1;
1620 }
1621
7ef449d1
N
1622 for (mirror = first; mirror <= last; mirror++) {
1623 p = conf->mirrors+mirror;
1624 if (!p->rdev) {
1da177e4 1625
9092c02d
JB
1626 if (mddev->gendisk)
1627 disk_stack_limits(mddev->gendisk, rdev->bdev,
1628 rdev->data_offset << 9);
1da177e4
LT
1629
1630 p->head_position = 0;
1631 rdev->raid_disk = mirror;
199050ea 1632 err = 0;
6aea114a
N
1633 /* As all devices are equivalent, we don't need a full recovery
1634 * if this was recently any drive of the array
1635 */
1636 if (rdev->saved_raid_disk < 0)
41158c7e 1637 conf->fullsync = 1;
d6065f7b 1638 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1639 break;
1640 }
7ef449d1
N
1641 if (test_bit(WantReplacement, &p->rdev->flags) &&
1642 p[conf->raid_disks].rdev == NULL) {
1643 /* Add this device as a replacement */
1644 clear_bit(In_sync, &rdev->flags);
1645 set_bit(Replacement, &rdev->flags);
1646 rdev->raid_disk = mirror;
1647 err = 0;
1648 conf->fullsync = 1;
1649 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1650 break;
1651 }
1652 }
6b740b8d
N
1653 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1654 /* Some requests might not have seen this new
1655 * merge_bvec_fn. We must wait for them to complete
1656 * before merging the device fully.
1657 * First we make sure any code which has tested
1658 * our function has submitted the request, then
1659 * we wait for all outstanding requests to complete.
1660 */
1661 synchronize_sched();
e2d59925
N
1662 freeze_array(conf, 0);
1663 unfreeze_array(conf);
6b740b8d
N
1664 clear_bit(Unmerged, &rdev->flags);
1665 }
ac5e7113 1666 md_integrity_add_rdev(rdev, mddev);
9092c02d 1667 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1668 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1669 print_conf(conf);
199050ea 1670 return err;
1da177e4
LT
1671}
1672
b8321b68 1673static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1674{
e8096360 1675 struct r1conf *conf = mddev->private;
1da177e4 1676 int err = 0;
b8321b68 1677 int number = rdev->raid_disk;
0eaf822c 1678 struct raid1_info *p = conf->mirrors + number;
1da177e4 1679
b014f14c
N
1680 if (rdev != p->rdev)
1681 p = conf->mirrors + conf->raid_disks + number;
1682
1da177e4 1683 print_conf(conf);
b8321b68 1684 if (rdev == p->rdev) {
b2d444d7 1685 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1686 atomic_read(&rdev->nr_pending)) {
1687 err = -EBUSY;
1688 goto abort;
1689 }
046abeed 1690 /* Only remove non-faulty devices if recovery
dfc70645
N
1691 * is not possible.
1692 */
1693 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1694 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1695 mddev->degraded < conf->raid_disks) {
1696 err = -EBUSY;
1697 goto abort;
1698 }
1da177e4 1699 p->rdev = NULL;
fbd568a3 1700 synchronize_rcu();
1da177e4
LT
1701 if (atomic_read(&rdev->nr_pending)) {
1702 /* lost the race, try later */
1703 err = -EBUSY;
1704 p->rdev = rdev;
ac5e7113 1705 goto abort;
8c7a2c2b
N
1706 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1707 /* We just removed a device that is being replaced.
1708 * Move down the replacement. We drain all IO before
1709 * doing this to avoid confusion.
1710 */
1711 struct md_rdev *repl =
1712 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1713 freeze_array(conf, 0);
8c7a2c2b
N
1714 clear_bit(Replacement, &repl->flags);
1715 p->rdev = repl;
1716 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1717 unfreeze_array(conf);
8c7a2c2b
N
1718 clear_bit(WantReplacement, &rdev->flags);
1719 } else
b014f14c 1720 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1721 err = md_integrity_register(mddev);
1da177e4
LT
1722 }
1723abort:
1724
1725 print_conf(conf);
1726 return err;
1727}
1728
6712ecf8 1729static void end_sync_read(struct bio *bio, int error)
1da177e4 1730{
9f2c9d12 1731 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1732
0fc280f6 1733 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1734
1da177e4
LT
1735 /*
1736 * we have read a block, now it needs to be re-written,
1737 * or re-read if the read failed.
1738 * We don't do much here, just schedule handling by raid1d
1739 */
69382e85 1740 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1741 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1742
1743 if (atomic_dec_and_test(&r1_bio->remaining))
1744 reschedule_retry(r1_bio);
1da177e4
LT
1745}
1746
6712ecf8 1747static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1748{
1749 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1750 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1751 struct mddev *mddev = r1_bio->mddev;
e8096360 1752 struct r1conf *conf = mddev->private;
1da177e4 1753 int mirror=0;
4367af55
N
1754 sector_t first_bad;
1755 int bad_sectors;
1da177e4 1756
ba3ae3be
NK
1757 mirror = find_bio_disk(r1_bio, bio);
1758
6b1117d5 1759 if (!uptodate) {
57dab0bd 1760 sector_t sync_blocks = 0;
6b1117d5
N
1761 sector_t s = r1_bio->sector;
1762 long sectors_to_go = r1_bio->sectors;
1763 /* make sure these bits doesn't get cleared. */
1764 do {
5e3db645 1765 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1766 &sync_blocks, 1);
1767 s += sync_blocks;
1768 sectors_to_go -= sync_blocks;
1769 } while (sectors_to_go > 0);
d8f05d29
N
1770 set_bit(WriteErrorSeen,
1771 &conf->mirrors[mirror].rdev->flags);
19d67169
N
1772 if (!test_and_set_bit(WantReplacement,
1773 &conf->mirrors[mirror].rdev->flags))
1774 set_bit(MD_RECOVERY_NEEDED, &
1775 mddev->recovery);
d8f05d29 1776 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1777 } else if (is_badblock(conf->mirrors[mirror].rdev,
1778 r1_bio->sector,
1779 r1_bio->sectors,
3a9f28a5
N
1780 &first_bad, &bad_sectors) &&
1781 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1782 r1_bio->sector,
1783 r1_bio->sectors,
1784 &first_bad, &bad_sectors)
1785 )
4367af55 1786 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1787
1da177e4 1788 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1789 int s = r1_bio->sectors;
d8f05d29
N
1790 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1791 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1792 reschedule_retry(r1_bio);
1793 else {
1794 put_buf(r1_bio);
1795 md_done_sync(mddev, s, uptodate);
1796 }
1da177e4 1797 }
1da177e4
LT
1798}
1799
3cb03002 1800static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1801 int sectors, struct page *page, int rw)
1802{
1803 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1804 /* success */
1805 return 1;
19d67169 1806 if (rw == WRITE) {
d8f05d29 1807 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1808 if (!test_and_set_bit(WantReplacement,
1809 &rdev->flags))
1810 set_bit(MD_RECOVERY_NEEDED, &
1811 rdev->mddev->recovery);
1812 }
d8f05d29
N
1813 /* need to record an error - either for the block or the device */
1814 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1815 md_error(rdev->mddev, rdev);
1816 return 0;
1817}
1818
9f2c9d12 1819static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1820{
a68e5870
N
1821 /* Try some synchronous reads of other devices to get
1822 * good data, much like with normal read errors. Only
1823 * read into the pages we already have so we don't
1824 * need to re-issue the read request.
1825 * We don't need to freeze the array, because being in an
1826 * active sync request, there is no normal IO, and
1827 * no overlapping syncs.
06f60385
N
1828 * We don't need to check is_badblock() again as we
1829 * made sure that anything with a bad block in range
1830 * will have bi_end_io clear.
a68e5870 1831 */
fd01b88c 1832 struct mddev *mddev = r1_bio->mddev;
e8096360 1833 struct r1conf *conf = mddev->private;
a68e5870
N
1834 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1835 sector_t sect = r1_bio->sector;
1836 int sectors = r1_bio->sectors;
1837 int idx = 0;
1838
1839 while(sectors) {
1840 int s = sectors;
1841 int d = r1_bio->read_disk;
1842 int success = 0;
3cb03002 1843 struct md_rdev *rdev;
78d7f5f7 1844 int start;
a68e5870
N
1845
1846 if (s > (PAGE_SIZE>>9))
1847 s = PAGE_SIZE >> 9;
1848 do {
1849 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1850 /* No rcu protection needed here devices
1851 * can only be removed when no resync is
1852 * active, and resync is currently active
1853 */
1854 rdev = conf->mirrors[d].rdev;
9d3d8011 1855 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1856 bio->bi_io_vec[idx].bv_page,
1857 READ, false)) {
1858 success = 1;
1859 break;
1860 }
1861 }
1862 d++;
8f19ccb2 1863 if (d == conf->raid_disks * 2)
a68e5870
N
1864 d = 0;
1865 } while (!success && d != r1_bio->read_disk);
1866
78d7f5f7 1867 if (!success) {
a68e5870 1868 char b[BDEVNAME_SIZE];
3a9f28a5
N
1869 int abort = 0;
1870 /* Cannot read from anywhere, this block is lost.
1871 * Record a bad block on each device. If that doesn't
1872 * work just disable and interrupt the recovery.
1873 * Don't fail devices as that won't really help.
1874 */
a68e5870
N
1875 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1876 " for block %llu\n",
1877 mdname(mddev),
1878 bdevname(bio->bi_bdev, b),
1879 (unsigned long long)r1_bio->sector);
8f19ccb2 1880 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1881 rdev = conf->mirrors[d].rdev;
1882 if (!rdev || test_bit(Faulty, &rdev->flags))
1883 continue;
1884 if (!rdev_set_badblocks(rdev, sect, s, 0))
1885 abort = 1;
1886 }
1887 if (abort) {
d890fa2b
N
1888 conf->recovery_disabled =
1889 mddev->recovery_disabled;
3a9f28a5
N
1890 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1891 md_done_sync(mddev, r1_bio->sectors, 0);
1892 put_buf(r1_bio);
1893 return 0;
1894 }
1895 /* Try next page */
1896 sectors -= s;
1897 sect += s;
1898 idx++;
1899 continue;
d11c171e 1900 }
78d7f5f7
N
1901
1902 start = d;
1903 /* write it back and re-read */
1904 while (d != r1_bio->read_disk) {
1905 if (d == 0)
8f19ccb2 1906 d = conf->raid_disks * 2;
78d7f5f7
N
1907 d--;
1908 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1909 continue;
1910 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1911 if (r1_sync_page_io(rdev, sect, s,
1912 bio->bi_io_vec[idx].bv_page,
1913 WRITE) == 0) {
78d7f5f7
N
1914 r1_bio->bios[d]->bi_end_io = NULL;
1915 rdev_dec_pending(rdev, mddev);
9d3d8011 1916 }
78d7f5f7
N
1917 }
1918 d = start;
1919 while (d != r1_bio->read_disk) {
1920 if (d == 0)
8f19ccb2 1921 d = conf->raid_disks * 2;
78d7f5f7
N
1922 d--;
1923 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1924 continue;
1925 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1926 if (r1_sync_page_io(rdev, sect, s,
1927 bio->bi_io_vec[idx].bv_page,
1928 READ) != 0)
9d3d8011 1929 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1930 }
a68e5870
N
1931 sectors -= s;
1932 sect += s;
1933 idx ++;
1934 }
78d7f5f7 1935 set_bit(R1BIO_Uptodate, &r1_bio->state);
7ca78d57 1936 set_bit(BIO_UPTODATE, &bio->bi_flags);
a68e5870
N
1937 return 1;
1938}
1939
c95e6385 1940static void process_checks(struct r1bio *r1_bio)
a68e5870
N
1941{
1942 /* We have read all readable devices. If we haven't
1943 * got the block, then there is no hope left.
1944 * If we have, then we want to do a comparison
1945 * and skip the write if everything is the same.
1946 * If any blocks failed to read, then we need to
1947 * attempt an over-write
1948 */
fd01b88c 1949 struct mddev *mddev = r1_bio->mddev;
e8096360 1950 struct r1conf *conf = mddev->private;
a68e5870
N
1951 int primary;
1952 int i;
f4380a91 1953 int vcnt;
a68e5870 1954
30bc9b53
N
1955 /* Fix variable parts of all bios */
1956 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1957 for (i = 0; i < conf->raid_disks * 2; i++) {
1958 int j;
1959 int size;
1877db75 1960 int uptodate;
30bc9b53
N
1961 struct bio *b = r1_bio->bios[i];
1962 if (b->bi_end_io != end_sync_read)
1963 continue;
1877db75
N
1964 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1965 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
30bc9b53 1966 bio_reset(b);
1877db75
N
1967 if (!uptodate)
1968 clear_bit(BIO_UPTODATE, &b->bi_flags);
30bc9b53 1969 b->bi_vcnt = vcnt;
4f024f37
KO
1970 b->bi_iter.bi_size = r1_bio->sectors << 9;
1971 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53
N
1972 conf->mirrors[i].rdev->data_offset;
1973 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1974 b->bi_end_io = end_sync_read;
1975 b->bi_private = r1_bio;
1976
4f024f37 1977 size = b->bi_iter.bi_size;
30bc9b53
N
1978 for (j = 0; j < vcnt ; j++) {
1979 struct bio_vec *bi;
1980 bi = &b->bi_io_vec[j];
1981 bi->bv_offset = 0;
1982 if (size > PAGE_SIZE)
1983 bi->bv_len = PAGE_SIZE;
1984 else
1985 bi->bv_len = size;
1986 size -= PAGE_SIZE;
1987 }
1988 }
8f19ccb2 1989 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870
N
1990 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1991 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1992 r1_bio->bios[primary]->bi_end_io = NULL;
1993 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1994 break;
1995 }
1996 r1_bio->read_disk = primary;
8f19ccb2 1997 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 1998 int j;
78d7f5f7
N
1999 struct bio *pbio = r1_bio->bios[primary];
2000 struct bio *sbio = r1_bio->bios[i];
1877db75 2001 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
a68e5870 2002
2aabaa65 2003 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2004 continue;
1877db75
N
2005 /* Now we can 'fixup' the BIO_UPTODATE flag */
2006 set_bit(BIO_UPTODATE, &sbio->bi_flags);
78d7f5f7 2007
1877db75 2008 if (uptodate) {
78d7f5f7
N
2009 for (j = vcnt; j-- ; ) {
2010 struct page *p, *s;
2011 p = pbio->bi_io_vec[j].bv_page;
2012 s = sbio->bi_io_vec[j].bv_page;
2013 if (memcmp(page_address(p),
2014 page_address(s),
5020ad7d 2015 sbio->bi_io_vec[j].bv_len))
78d7f5f7 2016 break;
69382e85 2017 }
78d7f5f7
N
2018 } else
2019 j = 0;
2020 if (j >= 0)
7f7583d4 2021 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2022 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1877db75 2023 && uptodate)) {
78d7f5f7
N
2024 /* No need to write to this device. */
2025 sbio->bi_end_io = NULL;
2026 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2027 continue;
2028 }
d3b45c2a
KO
2029
2030 bio_copy_data(sbio, pbio);
78d7f5f7 2031 }
a68e5870
N
2032}
2033
9f2c9d12 2034static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2035{
e8096360 2036 struct r1conf *conf = mddev->private;
a68e5870 2037 int i;
8f19ccb2 2038 int disks = conf->raid_disks * 2;
a68e5870
N
2039 struct bio *bio, *wbio;
2040
2041 bio = r1_bio->bios[r1_bio->read_disk];
2042
a68e5870
N
2043 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2044 /* ouch - failed to read all of that. */
2045 if (!fix_sync_read_error(r1_bio))
2046 return;
7ca78d57
N
2047
2048 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2049 process_checks(r1_bio);
2050
d11c171e
N
2051 /*
2052 * schedule writes
2053 */
1da177e4
LT
2054 atomic_set(&r1_bio->remaining, 1);
2055 for (i = 0; i < disks ; i++) {
2056 wbio = r1_bio->bios[i];
3e198f78
N
2057 if (wbio->bi_end_io == NULL ||
2058 (wbio->bi_end_io == end_sync_read &&
2059 (i == r1_bio->read_disk ||
2060 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
2061 continue;
2062
3e198f78
N
2063 wbio->bi_rw = WRITE;
2064 wbio->bi_end_io = end_sync_write;
1da177e4 2065 atomic_inc(&r1_bio->remaining);
aa8b57aa 2066 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2067
1da177e4
LT
2068 generic_make_request(wbio);
2069 }
2070
2071 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2072 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2073 int s = r1_bio->sectors;
2074 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2075 test_bit(R1BIO_WriteError, &r1_bio->state))
2076 reschedule_retry(r1_bio);
2077 else {
2078 put_buf(r1_bio);
2079 md_done_sync(mddev, s, 1);
2080 }
1da177e4
LT
2081 }
2082}
2083
2084/*
2085 * This is a kernel thread which:
2086 *
2087 * 1. Retries failed read operations on working mirrors.
2088 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2089 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2090 */
2091
e8096360 2092static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2093 sector_t sect, int sectors)
2094{
fd01b88c 2095 struct mddev *mddev = conf->mddev;
867868fb
N
2096 while(sectors) {
2097 int s = sectors;
2098 int d = read_disk;
2099 int success = 0;
2100 int start;
3cb03002 2101 struct md_rdev *rdev;
867868fb
N
2102
2103 if (s > (PAGE_SIZE>>9))
2104 s = PAGE_SIZE >> 9;
2105
2106 do {
2107 /* Note: no rcu protection needed here
2108 * as this is synchronous in the raid1d thread
2109 * which is the thread that might remove
2110 * a device. If raid1d ever becomes multi-threaded....
2111 */
d2eb35ac
N
2112 sector_t first_bad;
2113 int bad_sectors;
2114
867868fb
N
2115 rdev = conf->mirrors[d].rdev;
2116 if (rdev &&
da8840a7 2117 (test_bit(In_sync, &rdev->flags) ||
2118 (!test_bit(Faulty, &rdev->flags) &&
2119 rdev->recovery_offset >= sect + s)) &&
d2eb35ac
N
2120 is_badblock(rdev, sect, s,
2121 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
2122 sync_page_io(rdev, sect, s<<9,
2123 conf->tmppage, READ, false))
867868fb
N
2124 success = 1;
2125 else {
2126 d++;
8f19ccb2 2127 if (d == conf->raid_disks * 2)
867868fb
N
2128 d = 0;
2129 }
2130 } while (!success && d != read_disk);
2131
2132 if (!success) {
d8f05d29 2133 /* Cannot read from anywhere - mark it bad */
3cb03002 2134 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2135 if (!rdev_set_badblocks(rdev, sect, s, 0))
2136 md_error(mddev, rdev);
867868fb
N
2137 break;
2138 }
2139 /* write it back and re-read */
2140 start = d;
2141 while (d != read_disk) {
2142 if (d==0)
8f19ccb2 2143 d = conf->raid_disks * 2;
867868fb
N
2144 d--;
2145 rdev = conf->mirrors[d].rdev;
2146 if (rdev &&
b8cb6b4c 2147 !test_bit(Faulty, &rdev->flags))
d8f05d29
N
2148 r1_sync_page_io(rdev, sect, s,
2149 conf->tmppage, WRITE);
867868fb
N
2150 }
2151 d = start;
2152 while (d != read_disk) {
2153 char b[BDEVNAME_SIZE];
2154 if (d==0)
8f19ccb2 2155 d = conf->raid_disks * 2;
867868fb
N
2156 d--;
2157 rdev = conf->mirrors[d].rdev;
2158 if (rdev &&
b8cb6b4c 2159 !test_bit(Faulty, &rdev->flags)) {
d8f05d29
N
2160 if (r1_sync_page_io(rdev, sect, s,
2161 conf->tmppage, READ)) {
867868fb
N
2162 atomic_add(s, &rdev->corrected_errors);
2163 printk(KERN_INFO
9dd1e2fa 2164 "md/raid1:%s: read error corrected "
867868fb
N
2165 "(%d sectors at %llu on %s)\n",
2166 mdname(mddev), s,
969b755a
RD
2167 (unsigned long long)(sect +
2168 rdev->data_offset),
867868fb
N
2169 bdevname(rdev->bdev, b));
2170 }
2171 }
2172 }
2173 sectors -= s;
2174 sect += s;
2175 }
2176}
2177
9f2c9d12 2178static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2179{
fd01b88c 2180 struct mddev *mddev = r1_bio->mddev;
e8096360 2181 struct r1conf *conf = mddev->private;
3cb03002 2182 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2183
2184 /* bio has the data to be written to device 'i' where
2185 * we just recently had a write error.
2186 * We repeatedly clone the bio and trim down to one block,
2187 * then try the write. Where the write fails we record
2188 * a bad block.
2189 * It is conceivable that the bio doesn't exactly align with
2190 * blocks. We must handle this somehow.
2191 *
2192 * We currently own a reference on the rdev.
2193 */
2194
2195 int block_sectors;
2196 sector_t sector;
2197 int sectors;
2198 int sect_to_write = r1_bio->sectors;
2199 int ok = 1;
2200
2201 if (rdev->badblocks.shift < 0)
2202 return 0;
2203
ab713cdc
ND
2204 block_sectors = roundup(1 << rdev->badblocks.shift,
2205 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2206 sector = r1_bio->sector;
2207 sectors = ((sector + block_sectors)
2208 & ~(sector_t)(block_sectors - 1))
2209 - sector;
2210
cd5ff9a1
N
2211 while (sect_to_write) {
2212 struct bio *wbio;
2213 if (sectors > sect_to_write)
2214 sectors = sect_to_write;
2215 /* Write at 'sector' for 'sectors'*/
2216
b783863f
KO
2217 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2218 unsigned vcnt = r1_bio->behind_page_count;
2219 struct bio_vec *vec = r1_bio->behind_bvecs;
2220
2221 while (!vec->bv_page) {
2222 vec++;
2223 vcnt--;
2224 }
2225
2226 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2227 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2228
2229 wbio->bi_vcnt = vcnt;
2230 } else {
2231 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2232 }
2233
cd5ff9a1 2234 wbio->bi_rw = WRITE;
4f024f37
KO
2235 wbio->bi_iter.bi_sector = r1_bio->sector;
2236 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2237
6678d83f 2238 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2239 wbio->bi_iter.bi_sector += rdev->data_offset;
cd5ff9a1
N
2240 wbio->bi_bdev = rdev->bdev;
2241 if (submit_bio_wait(WRITE, wbio) == 0)
2242 /* failure! */
2243 ok = rdev_set_badblocks(rdev, sector,
2244 sectors, 0)
2245 && ok;
2246
2247 bio_put(wbio);
2248 sect_to_write -= sectors;
2249 sector += sectors;
2250 sectors = block_sectors;
2251 }
2252 return ok;
2253}
2254
e8096360 2255static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2256{
2257 int m;
2258 int s = r1_bio->sectors;
8f19ccb2 2259 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2260 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2261 struct bio *bio = r1_bio->bios[m];
2262 if (bio->bi_end_io == NULL)
2263 continue;
2264 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2265 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2266 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce
N
2267 }
2268 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2269 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2270 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2271 md_error(conf->mddev, rdev);
2272 }
2273 }
2274 put_buf(r1_bio);
2275 md_done_sync(conf->mddev, s, 1);
2276}
2277
e8096360 2278static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2279{
2280 int m;
8f19ccb2 2281 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2282 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2283 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2284 rdev_clear_badblocks(rdev,
2285 r1_bio->sector,
c6563a8c 2286 r1_bio->sectors, 0);
62096bce
N
2287 rdev_dec_pending(rdev, conf->mddev);
2288 } else if (r1_bio->bios[m] != NULL) {
2289 /* This drive got a write error. We need to
2290 * narrow down and record precise write
2291 * errors.
2292 */
2293 if (!narrow_write_error(r1_bio, m)) {
2294 md_error(conf->mddev,
2295 conf->mirrors[m].rdev);
2296 /* an I/O failed, we can't clear the bitmap */
2297 set_bit(R1BIO_Degraded, &r1_bio->state);
2298 }
2299 rdev_dec_pending(conf->mirrors[m].rdev,
2300 conf->mddev);
2301 }
2302 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2303 close_write(r1_bio);
2304 raid_end_bio_io(r1_bio);
2305}
2306
e8096360 2307static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2308{
2309 int disk;
2310 int max_sectors;
fd01b88c 2311 struct mddev *mddev = conf->mddev;
62096bce
N
2312 struct bio *bio;
2313 char b[BDEVNAME_SIZE];
3cb03002 2314 struct md_rdev *rdev;
62096bce
N
2315
2316 clear_bit(R1BIO_ReadError, &r1_bio->state);
2317 /* we got a read error. Maybe the drive is bad. Maybe just
2318 * the block and we can fix it.
2319 * We freeze all other IO, and try reading the block from
2320 * other devices. When we find one, we re-write
2321 * and check it that fixes the read error.
2322 * This is all done synchronously while the array is
2323 * frozen
2324 */
2325 if (mddev->ro == 0) {
e2d59925 2326 freeze_array(conf, 1);
62096bce
N
2327 fix_read_error(conf, r1_bio->read_disk,
2328 r1_bio->sector, r1_bio->sectors);
2329 unfreeze_array(conf);
2330 } else
2331 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
7ad4d4a6 2332 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
62096bce
N
2333
2334 bio = r1_bio->bios[r1_bio->read_disk];
2335 bdevname(bio->bi_bdev, b);
2336read_more:
2337 disk = read_balance(conf, r1_bio, &max_sectors);
2338 if (disk == -1) {
2339 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2340 " read error for block %llu\n",
2341 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2342 raid_end_bio_io(r1_bio);
2343 } else {
2344 const unsigned long do_sync
2345 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2346 if (bio) {
2347 r1_bio->bios[r1_bio->read_disk] =
2348 mddev->ro ? IO_BLOCKED : NULL;
2349 bio_put(bio);
2350 }
2351 r1_bio->read_disk = disk;
2352 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
4f024f37
KO
2353 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2354 max_sectors);
62096bce
N
2355 r1_bio->bios[r1_bio->read_disk] = bio;
2356 rdev = conf->mirrors[disk].rdev;
2357 printk_ratelimited(KERN_ERR
2358 "md/raid1:%s: redirecting sector %llu"
2359 " to other mirror: %s\n",
2360 mdname(mddev),
2361 (unsigned long long)r1_bio->sector,
2362 bdevname(rdev->bdev, b));
4f024f37 2363 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
62096bce
N
2364 bio->bi_bdev = rdev->bdev;
2365 bio->bi_end_io = raid1_end_read_request;
2366 bio->bi_rw = READ | do_sync;
2367 bio->bi_private = r1_bio;
2368 if (max_sectors < r1_bio->sectors) {
2369 /* Drat - have to split this up more */
2370 struct bio *mbio = r1_bio->master_bio;
2371 int sectors_handled = (r1_bio->sector + max_sectors
4f024f37 2372 - mbio->bi_iter.bi_sector);
62096bce
N
2373 r1_bio->sectors = max_sectors;
2374 spin_lock_irq(&conf->device_lock);
2375 if (mbio->bi_phys_segments == 0)
2376 mbio->bi_phys_segments = 2;
2377 else
2378 mbio->bi_phys_segments++;
2379 spin_unlock_irq(&conf->device_lock);
2380 generic_make_request(bio);
2381 bio = NULL;
2382
2383 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2384
2385 r1_bio->master_bio = mbio;
aa8b57aa 2386 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
62096bce
N
2387 r1_bio->state = 0;
2388 set_bit(R1BIO_ReadError, &r1_bio->state);
2389 r1_bio->mddev = mddev;
4f024f37
KO
2390 r1_bio->sector = mbio->bi_iter.bi_sector +
2391 sectors_handled;
62096bce
N
2392
2393 goto read_more;
2394 } else
2395 generic_make_request(bio);
2396 }
2397}
2398
4ed8731d 2399static void raid1d(struct md_thread *thread)
1da177e4 2400{
4ed8731d 2401 struct mddev *mddev = thread->mddev;
9f2c9d12 2402 struct r1bio *r1_bio;
1da177e4 2403 unsigned long flags;
e8096360 2404 struct r1conf *conf = mddev->private;
1da177e4 2405 struct list_head *head = &conf->retry_list;
e1dfa0a2 2406 struct blk_plug plug;
1da177e4
LT
2407
2408 md_check_recovery(mddev);
e1dfa0a2
N
2409
2410 blk_start_plug(&plug);
1da177e4 2411 for (;;) {
191ea9b2 2412
0021b7bc 2413 flush_pending_writes(conf);
191ea9b2 2414
a35e63ef
N
2415 spin_lock_irqsave(&conf->device_lock, flags);
2416 if (list_empty(head)) {
2417 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2418 break;
a35e63ef 2419 }
9f2c9d12 2420 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2421 list_del(head->prev);
ddaf22ab 2422 conf->nr_queued--;
1da177e4
LT
2423 spin_unlock_irqrestore(&conf->device_lock, flags);
2424
2425 mddev = r1_bio->mddev;
070ec55d 2426 conf = mddev->private;
4367af55 2427 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2428 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2429 test_bit(R1BIO_WriteError, &r1_bio->state))
2430 handle_sync_write_finished(conf, r1_bio);
2431 else
4367af55 2432 sync_request_write(mddev, r1_bio);
cd5ff9a1 2433 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2434 test_bit(R1BIO_WriteError, &r1_bio->state))
2435 handle_write_finished(conf, r1_bio);
2436 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2437 handle_read_error(conf, r1_bio);
2438 else
d2eb35ac
N
2439 /* just a partial read to be scheduled from separate
2440 * context
2441 */
2442 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2443
1d9d5241 2444 cond_resched();
de393cde
N
2445 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2446 md_check_recovery(mddev);
1da177e4 2447 }
e1dfa0a2 2448 blk_finish_plug(&plug);
1da177e4
LT
2449}
2450
e8096360 2451static int init_resync(struct r1conf *conf)
1da177e4
LT
2452{
2453 int buffs;
2454
2455 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2456 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2457 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2458 conf->poolinfo);
2459 if (!conf->r1buf_pool)
2460 return -ENOMEM;
2461 conf->next_resync = 0;
2462 return 0;
2463}
2464
2465/*
2466 * perform a "sync" on one "block"
2467 *
2468 * We need to make sure that no normal I/O request - particularly write
2469 * requests - conflict with active sync requests.
2470 *
2471 * This is achieved by tracking pending requests and a 'barrier' concept
2472 * that can be installed to exclude normal IO requests.
2473 */
2474
fd01b88c 2475static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 2476{
e8096360 2477 struct r1conf *conf = mddev->private;
9f2c9d12 2478 struct r1bio *r1_bio;
1da177e4
LT
2479 struct bio *bio;
2480 sector_t max_sector, nr_sectors;
3e198f78 2481 int disk = -1;
1da177e4 2482 int i;
3e198f78
N
2483 int wonly = -1;
2484 int write_targets = 0, read_targets = 0;
57dab0bd 2485 sector_t sync_blocks;
e3b9703e 2486 int still_degraded = 0;
06f60385
N
2487 int good_sectors = RESYNC_SECTORS;
2488 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2489
2490 if (!conf->r1buf_pool)
2491 if (init_resync(conf))
57afd89f 2492 return 0;
1da177e4 2493
58c0fed4 2494 max_sector = mddev->dev_sectors;
1da177e4 2495 if (sector_nr >= max_sector) {
191ea9b2
N
2496 /* If we aborted, we need to abort the
2497 * sync on the 'current' bitmap chunk (there will
2498 * only be one in raid1 resync.
2499 * We can find the current addess in mddev->curr_resync
2500 */
6a806c51
N
2501 if (mddev->curr_resync < max_sector) /* aborted */
2502 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2503 &sync_blocks, 1);
6a806c51 2504 else /* completed sync */
191ea9b2 2505 conf->fullsync = 0;
6a806c51
N
2506
2507 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2508 close_sync(conf);
2509 return 0;
2510 }
2511
07d84d10
N
2512 if (mddev->bitmap == NULL &&
2513 mddev->recovery_cp == MaxSector &&
6394cca5 2514 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2515 conf->fullsync == 0) {
2516 *skipped = 1;
2517 return max_sector - sector_nr;
2518 }
6394cca5
N
2519 /* before building a request, check if we can skip these blocks..
2520 * This call the bitmap_start_sync doesn't actually record anything
2521 */
e3b9703e 2522 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2523 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2524 /* We can skip this block, and probably several more */
2525 *skipped = 1;
2526 return sync_blocks;
2527 }
1da177e4 2528 /*
17999be4
N
2529 * If there is non-resync activity waiting for a turn,
2530 * and resync is going fast enough,
2531 * then let it though before starting on this new sync request.
1da177e4 2532 */
17999be4 2533 if (!go_faster && conf->nr_waiting)
1da177e4 2534 msleep_interruptible(1000);
17999be4 2535
b47490c9 2536 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2537 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4 2538
c2fd4c94 2539 raise_barrier(conf, sector_nr);
1da177e4 2540
3e198f78 2541 rcu_read_lock();
1da177e4 2542 /*
3e198f78
N
2543 * If we get a correctably read error during resync or recovery,
2544 * we might want to read from a different device. So we
2545 * flag all drives that could conceivably be read from for READ,
2546 * and any others (which will be non-In_sync devices) for WRITE.
2547 * If a read fails, we try reading from something else for which READ
2548 * is OK.
1da177e4 2549 */
1da177e4 2550
1da177e4
LT
2551 r1_bio->mddev = mddev;
2552 r1_bio->sector = sector_nr;
191ea9b2 2553 r1_bio->state = 0;
1da177e4 2554 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2555
8f19ccb2 2556 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2557 struct md_rdev *rdev;
1da177e4 2558 bio = r1_bio->bios[i];
2aabaa65 2559 bio_reset(bio);
1da177e4 2560
3e198f78
N
2561 rdev = rcu_dereference(conf->mirrors[i].rdev);
2562 if (rdev == NULL ||
06f60385 2563 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2564 if (i < conf->raid_disks)
2565 still_degraded = 1;
3e198f78 2566 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2567 bio->bi_rw = WRITE;
2568 bio->bi_end_io = end_sync_write;
2569 write_targets ++;
3e198f78
N
2570 } else {
2571 /* may need to read from here */
06f60385
N
2572 sector_t first_bad = MaxSector;
2573 int bad_sectors;
2574
2575 if (is_badblock(rdev, sector_nr, good_sectors,
2576 &first_bad, &bad_sectors)) {
2577 if (first_bad > sector_nr)
2578 good_sectors = first_bad - sector_nr;
2579 else {
2580 bad_sectors -= (sector_nr - first_bad);
2581 if (min_bad == 0 ||
2582 min_bad > bad_sectors)
2583 min_bad = bad_sectors;
2584 }
2585 }
2586 if (sector_nr < first_bad) {
2587 if (test_bit(WriteMostly, &rdev->flags)) {
2588 if (wonly < 0)
2589 wonly = i;
2590 } else {
2591 if (disk < 0)
2592 disk = i;
2593 }
2594 bio->bi_rw = READ;
2595 bio->bi_end_io = end_sync_read;
2596 read_targets++;
d57368af
AL
2597 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2598 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2599 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2600 /*
2601 * The device is suitable for reading (InSync),
2602 * but has bad block(s) here. Let's try to correct them,
2603 * if we are doing resync or repair. Otherwise, leave
2604 * this device alone for this sync request.
2605 */
2606 bio->bi_rw = WRITE;
2607 bio->bi_end_io = end_sync_write;
2608 write_targets++;
3e198f78 2609 }
3e198f78 2610 }
06f60385
N
2611 if (bio->bi_end_io) {
2612 atomic_inc(&rdev->nr_pending);
4f024f37 2613 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
06f60385
N
2614 bio->bi_bdev = rdev->bdev;
2615 bio->bi_private = r1_bio;
2616 }
1da177e4 2617 }
3e198f78
N
2618 rcu_read_unlock();
2619 if (disk < 0)
2620 disk = wonly;
2621 r1_bio->read_disk = disk;
191ea9b2 2622
06f60385
N
2623 if (read_targets == 0 && min_bad > 0) {
2624 /* These sectors are bad on all InSync devices, so we
2625 * need to mark them bad on all write targets
2626 */
2627 int ok = 1;
8f19ccb2 2628 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2629 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2630 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2631 ok = rdev_set_badblocks(rdev, sector_nr,
2632 min_bad, 0
2633 ) && ok;
2634 }
2635 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2636 *skipped = 1;
2637 put_buf(r1_bio);
2638
2639 if (!ok) {
2640 /* Cannot record the badblocks, so need to
2641 * abort the resync.
2642 * If there are multiple read targets, could just
2643 * fail the really bad ones ???
2644 */
2645 conf->recovery_disabled = mddev->recovery_disabled;
2646 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2647 return 0;
2648 } else
2649 return min_bad;
2650
2651 }
2652 if (min_bad > 0 && min_bad < good_sectors) {
2653 /* only resync enough to reach the next bad->good
2654 * transition */
2655 good_sectors = min_bad;
2656 }
2657
3e198f78
N
2658 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2659 /* extra read targets are also write targets */
2660 write_targets += read_targets-1;
2661
2662 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2663 /* There is nowhere to write, so all non-sync
2664 * drives must be failed - so we are finished
2665 */
b7219ccb
N
2666 sector_t rv;
2667 if (min_bad > 0)
2668 max_sector = sector_nr + min_bad;
2669 rv = max_sector - sector_nr;
57afd89f 2670 *skipped = 1;
1da177e4 2671 put_buf(r1_bio);
1da177e4
LT
2672 return rv;
2673 }
2674
c6207277
N
2675 if (max_sector > mddev->resync_max)
2676 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2677 if (max_sector > sector_nr + good_sectors)
2678 max_sector = sector_nr + good_sectors;
1da177e4 2679 nr_sectors = 0;
289e99e8 2680 sync_blocks = 0;
1da177e4
LT
2681 do {
2682 struct page *page;
2683 int len = PAGE_SIZE;
2684 if (sector_nr + (len>>9) > max_sector)
2685 len = (max_sector - sector_nr) << 9;
2686 if (len == 0)
2687 break;
6a806c51
N
2688 if (sync_blocks == 0) {
2689 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2690 &sync_blocks, still_degraded) &&
2691 !conf->fullsync &&
2692 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2693 break;
9e77c485 2694 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2695 if ((len >> 9) > sync_blocks)
6a806c51 2696 len = sync_blocks<<9;
ab7a30c7 2697 }
191ea9b2 2698
8f19ccb2 2699 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2700 bio = r1_bio->bios[i];
2701 if (bio->bi_end_io) {
d11c171e 2702 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2703 if (bio_add_page(bio, page, len, 0) == 0) {
2704 /* stop here */
d11c171e 2705 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2706 while (i > 0) {
2707 i--;
2708 bio = r1_bio->bios[i];
6a806c51
N
2709 if (bio->bi_end_io==NULL)
2710 continue;
1da177e4
LT
2711 /* remove last page from this bio */
2712 bio->bi_vcnt--;
4f024f37 2713 bio->bi_iter.bi_size -= len;
3fd83717 2714 __clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1da177e4
LT
2715 }
2716 goto bio_full;
2717 }
2718 }
2719 }
2720 nr_sectors += len>>9;
2721 sector_nr += len>>9;
191ea9b2 2722 sync_blocks -= (len>>9);
1da177e4
LT
2723 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2724 bio_full:
1da177e4
LT
2725 r1_bio->sectors = nr_sectors;
2726
d11c171e
N
2727 /* For a user-requested sync, we read all readable devices and do a
2728 * compare
2729 */
2730 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2731 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2732 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2733 bio = r1_bio->bios[i];
2734 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2735 read_targets--;
ddac7c7e 2736 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2737 generic_make_request(bio);
2738 }
2739 }
2740 } else {
2741 atomic_set(&r1_bio->remaining, 1);
2742 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2743 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2744 generic_make_request(bio);
1da177e4 2745
d11c171e 2746 }
1da177e4
LT
2747 return nr_sectors;
2748}
2749
fd01b88c 2750static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2751{
2752 if (sectors)
2753 return sectors;
2754
2755 return mddev->dev_sectors;
2756}
2757
e8096360 2758static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2759{
e8096360 2760 struct r1conf *conf;
709ae487 2761 int i;
0eaf822c 2762 struct raid1_info *disk;
3cb03002 2763 struct md_rdev *rdev;
709ae487 2764 int err = -ENOMEM;
1da177e4 2765
e8096360 2766 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2767 if (!conf)
709ae487 2768 goto abort;
1da177e4 2769
0eaf822c 2770 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2771 * mddev->raid_disks * 2,
1da177e4
LT
2772 GFP_KERNEL);
2773 if (!conf->mirrors)
709ae487 2774 goto abort;
1da177e4 2775
ddaf22ab
N
2776 conf->tmppage = alloc_page(GFP_KERNEL);
2777 if (!conf->tmppage)
709ae487 2778 goto abort;
ddaf22ab 2779
709ae487 2780 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2781 if (!conf->poolinfo)
709ae487 2782 goto abort;
8f19ccb2 2783 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2784 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2785 r1bio_pool_free,
2786 conf->poolinfo);
2787 if (!conf->r1bio_pool)
709ae487
N
2788 goto abort;
2789
ed9bfdf1 2790 conf->poolinfo->mddev = mddev;
1da177e4 2791
c19d5798 2792 err = -EINVAL;
e7e72bf6 2793 spin_lock_init(&conf->device_lock);
dafb20fa 2794 rdev_for_each(rdev, mddev) {
aba336bd 2795 struct request_queue *q;
709ae487 2796 int disk_idx = rdev->raid_disk;
1da177e4
LT
2797 if (disk_idx >= mddev->raid_disks
2798 || disk_idx < 0)
2799 continue;
c19d5798 2800 if (test_bit(Replacement, &rdev->flags))
02b898f2 2801 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2802 else
2803 disk = conf->mirrors + disk_idx;
1da177e4 2804
c19d5798
N
2805 if (disk->rdev)
2806 goto abort;
1da177e4 2807 disk->rdev = rdev;
aba336bd
N
2808 q = bdev_get_queue(rdev->bdev);
2809 if (q->merge_bvec_fn)
2810 mddev->merge_check_needed = 1;
1da177e4
LT
2811
2812 disk->head_position = 0;
12cee5a8 2813 disk->seq_start = MaxSector;
1da177e4
LT
2814 }
2815 conf->raid_disks = mddev->raid_disks;
2816 conf->mddev = mddev;
1da177e4 2817 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2818
2819 spin_lock_init(&conf->resync_lock);
17999be4 2820 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2821
191ea9b2 2822 bio_list_init(&conf->pending_bio_list);
34db0cd6 2823 conf->pending_count = 0;
d890fa2b 2824 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2825
79ef3a8a 2826 conf->start_next_window = MaxSector;
2827 conf->current_window_requests = conf->next_window_requests = 0;
2828
c19d5798 2829 err = -EIO;
8f19ccb2 2830 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2831
2832 disk = conf->mirrors + i;
2833
c19d5798
N
2834 if (i < conf->raid_disks &&
2835 disk[conf->raid_disks].rdev) {
2836 /* This slot has a replacement. */
2837 if (!disk->rdev) {
2838 /* No original, just make the replacement
2839 * a recovering spare
2840 */
2841 disk->rdev =
2842 disk[conf->raid_disks].rdev;
2843 disk[conf->raid_disks].rdev = NULL;
2844 } else if (!test_bit(In_sync, &disk->rdev->flags))
2845 /* Original is not in_sync - bad */
2846 goto abort;
2847 }
2848
5fd6c1dc
N
2849 if (!disk->rdev ||
2850 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2851 disk->head_position = 0;
4f0a5e01
JB
2852 if (disk->rdev &&
2853 (disk->rdev->saved_raid_disk < 0))
918f0238 2854 conf->fullsync = 1;
be4d3280 2855 }
1da177e4 2856 }
709ae487 2857
709ae487 2858 err = -ENOMEM;
0232605d 2859 conf->thread = md_register_thread(raid1d, mddev, "raid1");
709ae487
N
2860 if (!conf->thread) {
2861 printk(KERN_ERR
9dd1e2fa 2862 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2863 mdname(mddev));
2864 goto abort;
11ce99e6 2865 }
1da177e4 2866
709ae487
N
2867 return conf;
2868
2869 abort:
2870 if (conf) {
2871 if (conf->r1bio_pool)
2872 mempool_destroy(conf->r1bio_pool);
2873 kfree(conf->mirrors);
2874 safe_put_page(conf->tmppage);
2875 kfree(conf->poolinfo);
2876 kfree(conf);
2877 }
2878 return ERR_PTR(err);
2879}
2880
afa0f557 2881static void raid1_free(struct mddev *mddev, void *priv);
fd01b88c 2882static int run(struct mddev *mddev)
709ae487 2883{
e8096360 2884 struct r1conf *conf;
709ae487 2885 int i;
3cb03002 2886 struct md_rdev *rdev;
5220ea1e 2887 int ret;
2ff8cc2c 2888 bool discard_supported = false;
709ae487
N
2889
2890 if (mddev->level != 1) {
9dd1e2fa 2891 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2892 mdname(mddev), mddev->level);
2893 return -EIO;
2894 }
2895 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2896 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2897 mdname(mddev));
2898 return -EIO;
2899 }
1da177e4 2900 /*
709ae487
N
2901 * copy the already verified devices into our private RAID1
2902 * bookkeeping area. [whatever we allocate in run(),
afa0f557 2903 * should be freed in raid1_free()]
1da177e4 2904 */
709ae487
N
2905 if (mddev->private == NULL)
2906 conf = setup_conf(mddev);
2907 else
2908 conf = mddev->private;
1da177e4 2909
709ae487
N
2910 if (IS_ERR(conf))
2911 return PTR_ERR(conf);
1da177e4 2912
c8dc9c65 2913 if (mddev->queue)
5026d7a9
PA
2914 blk_queue_max_write_same_sectors(mddev->queue, 0);
2915
dafb20fa 2916 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2917 if (!mddev->gendisk)
2918 continue;
709ae487
N
2919 disk_stack_limits(mddev->gendisk, rdev->bdev,
2920 rdev->data_offset << 9);
2ff8cc2c
SL
2921 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2922 discard_supported = true;
1da177e4 2923 }
191ea9b2 2924
709ae487
N
2925 mddev->degraded = 0;
2926 for (i=0; i < conf->raid_disks; i++)
2927 if (conf->mirrors[i].rdev == NULL ||
2928 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2929 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2930 mddev->degraded++;
2931
2932 if (conf->raid_disks - mddev->degraded == 1)
2933 mddev->recovery_cp = MaxSector;
2934
8c6ac868 2935 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2936 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2937 " -- starting background reconstruction\n",
2938 mdname(mddev));
f72ffdd6 2939 printk(KERN_INFO
9dd1e2fa 2940 "md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 2941 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 2942 mddev->raid_disks);
709ae487 2943
1da177e4
LT
2944 /*
2945 * Ok, everything is just fine now
2946 */
709ae487
N
2947 mddev->thread = conf->thread;
2948 conf->thread = NULL;
2949 mddev->private = conf;
2950
1f403624 2951 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2952
1ed7242e 2953 if (mddev->queue) {
2ff8cc2c
SL
2954 if (discard_supported)
2955 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2956 mddev->queue);
2957 else
2958 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2959 mddev->queue);
1ed7242e 2960 }
5220ea1e 2961
2962 ret = md_integrity_register(mddev);
5aa61f42
N
2963 if (ret) {
2964 md_unregister_thread(&mddev->thread);
afa0f557 2965 raid1_free(mddev, conf);
5aa61f42 2966 }
5220ea1e 2967 return ret;
1da177e4
LT
2968}
2969
afa0f557 2970static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 2971{
afa0f557 2972 struct r1conf *conf = priv;
409c57f3 2973
1da177e4
LT
2974 if (conf->r1bio_pool)
2975 mempool_destroy(conf->r1bio_pool);
990a8baf 2976 kfree(conf->mirrors);
0fea7ed8 2977 safe_put_page(conf->tmppage);
990a8baf 2978 kfree(conf->poolinfo);
1da177e4 2979 kfree(conf);
1da177e4
LT
2980}
2981
fd01b88c 2982static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2983{
2984 /* no resync is happening, and there is enough space
2985 * on all devices, so we can resize.
2986 * We need to make sure resync covers any new space.
2987 * If the array is shrinking we should possibly wait until
2988 * any io in the removed space completes, but it hardly seems
2989 * worth it.
2990 */
a4a6125a
N
2991 sector_t newsize = raid1_size(mddev, sectors, 0);
2992 if (mddev->external_size &&
2993 mddev->array_sectors > newsize)
b522adcd 2994 return -EINVAL;
a4a6125a
N
2995 if (mddev->bitmap) {
2996 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2997 if (ret)
2998 return ret;
2999 }
3000 md_set_array_sectors(mddev, newsize);
f233ea5c 3001 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 3002 revalidate_disk(mddev->gendisk);
b522adcd 3003 if (sectors > mddev->dev_sectors &&
b098636c 3004 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3005 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3006 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3007 }
b522adcd 3008 mddev->dev_sectors = sectors;
4b5c7ae8 3009 mddev->resync_max_sectors = sectors;
1da177e4
LT
3010 return 0;
3011}
3012
fd01b88c 3013static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3014{
3015 /* We need to:
3016 * 1/ resize the r1bio_pool
3017 * 2/ resize conf->mirrors
3018 *
3019 * We allocate a new r1bio_pool if we can.
3020 * Then raise a device barrier and wait until all IO stops.
3021 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3022 *
3023 * At the same time, we "pack" the devices so that all the missing
3024 * devices have the higher raid_disk numbers.
1da177e4
LT
3025 */
3026 mempool_t *newpool, *oldpool;
3027 struct pool_info *newpoolinfo;
0eaf822c 3028 struct raid1_info *newmirrors;
e8096360 3029 struct r1conf *conf = mddev->private;
63c70c4f 3030 int cnt, raid_disks;
c04be0aa 3031 unsigned long flags;
b5470dc5 3032 int d, d2, err;
1da177e4 3033
63c70c4f 3034 /* Cannot change chunk_size, layout, or level */
664e7c41 3035 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3036 mddev->layout != mddev->new_layout ||
3037 mddev->level != mddev->new_level) {
664e7c41 3038 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3039 mddev->new_layout = mddev->layout;
3040 mddev->new_level = mddev->level;
3041 return -EINVAL;
3042 }
3043
b5470dc5
DW
3044 err = md_allow_write(mddev);
3045 if (err)
3046 return err;
2a2275d6 3047
63c70c4f
N
3048 raid_disks = mddev->raid_disks + mddev->delta_disks;
3049
6ea9c07c
N
3050 if (raid_disks < conf->raid_disks) {
3051 cnt=0;
3052 for (d= 0; d < conf->raid_disks; d++)
3053 if (conf->mirrors[d].rdev)
3054 cnt++;
3055 if (cnt > raid_disks)
1da177e4 3056 return -EBUSY;
6ea9c07c 3057 }
1da177e4
LT
3058
3059 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3060 if (!newpoolinfo)
3061 return -ENOMEM;
3062 newpoolinfo->mddev = mddev;
8f19ccb2 3063 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3064
3065 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3066 r1bio_pool_free, newpoolinfo);
3067 if (!newpool) {
3068 kfree(newpoolinfo);
3069 return -ENOMEM;
3070 }
0eaf822c 3071 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3072 GFP_KERNEL);
1da177e4
LT
3073 if (!newmirrors) {
3074 kfree(newpoolinfo);
3075 mempool_destroy(newpool);
3076 return -ENOMEM;
3077 }
1da177e4 3078
e2d59925 3079 freeze_array(conf, 0);
1da177e4
LT
3080
3081 /* ok, everything is stopped */
3082 oldpool = conf->r1bio_pool;
3083 conf->r1bio_pool = newpool;
6ea9c07c 3084
a88aa786 3085 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3086 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3087 if (rdev && rdev->raid_disk != d2) {
36fad858 3088 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3089 rdev->raid_disk = d2;
36fad858
NK
3090 sysfs_unlink_rdev(mddev, rdev);
3091 if (sysfs_link_rdev(mddev, rdev))
a88aa786 3092 printk(KERN_WARNING
36fad858
NK
3093 "md/raid1:%s: cannot register rd%d\n",
3094 mdname(mddev), rdev->raid_disk);
6ea9c07c 3095 }
a88aa786
N
3096 if (rdev)
3097 newmirrors[d2++].rdev = rdev;
3098 }
1da177e4
LT
3099 kfree(conf->mirrors);
3100 conf->mirrors = newmirrors;
3101 kfree(conf->poolinfo);
3102 conf->poolinfo = newpoolinfo;
3103
c04be0aa 3104 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3105 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3106 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3107 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3108 mddev->delta_disks = 0;
1da177e4 3109
e2d59925 3110 unfreeze_array(conf);
1da177e4
LT
3111
3112 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3113 md_wakeup_thread(mddev->thread);
3114
3115 mempool_destroy(oldpool);
3116 return 0;
3117}
3118
fd01b88c 3119static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3120{
e8096360 3121 struct r1conf *conf = mddev->private;
36fa3063
N
3122
3123 switch(state) {
6eef4b21
N
3124 case 2: /* wake for suspend */
3125 wake_up(&conf->wait_barrier);
3126 break;
9e6603da 3127 case 1:
07169fd4 3128 freeze_array(conf, 0);
36fa3063 3129 break;
9e6603da 3130 case 0:
07169fd4 3131 unfreeze_array(conf);
36fa3063
N
3132 break;
3133 }
36fa3063
N
3134}
3135
fd01b88c 3136static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3137{
3138 /* raid1 can take over:
3139 * raid5 with 2 devices, any layout or chunk size
3140 */
3141 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3142 struct r1conf *conf;
709ae487
N
3143 mddev->new_level = 1;
3144 mddev->new_layout = 0;
3145 mddev->new_chunk_sectors = 0;
3146 conf = setup_conf(mddev);
3147 if (!IS_ERR(conf))
07169fd4 3148 /* Array must appear to be quiesced */
3149 conf->array_frozen = 1;
709ae487
N
3150 return conf;
3151 }
3152 return ERR_PTR(-EINVAL);
3153}
1da177e4 3154
84fc4b56 3155static struct md_personality raid1_personality =
1da177e4
LT
3156{
3157 .name = "raid1",
2604b703 3158 .level = 1,
1da177e4
LT
3159 .owner = THIS_MODULE,
3160 .make_request = make_request,
3161 .run = run,
afa0f557 3162 .free = raid1_free,
1da177e4
LT
3163 .status = status,
3164 .error_handler = error,
3165 .hot_add_disk = raid1_add_disk,
3166 .hot_remove_disk= raid1_remove_disk,
3167 .spare_active = raid1_spare_active,
3168 .sync_request = sync_request,
3169 .resize = raid1_resize,
80c3a6ce 3170 .size = raid1_size,
63c70c4f 3171 .check_reshape = raid1_reshape,
36fa3063 3172 .quiesce = raid1_quiesce,
709ae487 3173 .takeover = raid1_takeover,
5c675f83 3174 .congested = raid1_congested,
64590f45 3175 .mergeable_bvec = raid1_mergeable_bvec,
1da177e4
LT
3176};
3177
3178static int __init raid_init(void)
3179{
2604b703 3180 return register_md_personality(&raid1_personality);
1da177e4
LT
3181}
3182
3183static void raid_exit(void)
3184{
2604b703 3185 unregister_md_personality(&raid1_personality);
1da177e4
LT
3186}
3187
3188module_init(raid_init);
3189module_exit(raid_exit);
3190MODULE_LICENSE("GPL");
0efb9e61 3191MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3192MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3193MODULE_ALIAS("md-raid1");
2604b703 3194MODULE_ALIAS("md-level-1");
34db0cd6
N
3195
3196module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.967621 seconds and 5 git commands to generate.