md: md_stop_writes() should always freeze recovery.
[deliverable/linux.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
473e87ce
JB
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
1da177e4 68
e8096360
N
69static void allow_barrier(struct r1conf *conf);
70static void lower_barrier(struct r1conf *conf);
1da177e4 71
dd0fc66f 72static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
73{
74 struct pool_info *pi = data;
9f2c9d12 75 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
76
77 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 78 return kzalloc(size, gfp_flags);
1da177e4
LT
79}
80
81static void r1bio_pool_free(void *r1_bio, void *data)
82{
83 kfree(r1_bio);
84}
85
86#define RESYNC_BLOCK_SIZE (64*1024)
87//#define RESYNC_BLOCK_SIZE PAGE_SIZE
88#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90#define RESYNC_WINDOW (2048*1024)
91
dd0fc66f 92static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
93{
94 struct pool_info *pi = data;
95 struct page *page;
9f2c9d12 96 struct r1bio *r1_bio;
1da177e4
LT
97 struct bio *bio;
98 int i, j;
99
100 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 101 if (!r1_bio)
1da177e4 102 return NULL;
1da177e4
LT
103
104 /*
105 * Allocate bios : 1 for reading, n-1 for writing
106 */
107 for (j = pi->raid_disks ; j-- ; ) {
6746557f 108 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
109 if (!bio)
110 goto out_free_bio;
111 r1_bio->bios[j] = bio;
112 }
113 /*
114 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
115 * the first bio.
116 * If this is a user-requested check/repair, allocate
117 * RESYNC_PAGES for each bio.
1da177e4 118 */
d11c171e
N
119 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
120 j = pi->raid_disks;
121 else
122 j = 1;
123 while(j--) {
124 bio = r1_bio->bios[j];
125 for (i = 0; i < RESYNC_PAGES; i++) {
126 page = alloc_page(gfp_flags);
127 if (unlikely(!page))
128 goto out_free_pages;
129
130 bio->bi_io_vec[i].bv_page = page;
303a0e11 131 bio->bi_vcnt = i+1;
d11c171e
N
132 }
133 }
134 /* If not user-requests, copy the page pointers to all bios */
135 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
136 for (i=0; i<RESYNC_PAGES ; i++)
137 for (j=1; j<pi->raid_disks; j++)
138 r1_bio->bios[j]->bi_io_vec[i].bv_page =
139 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
140 }
141
142 r1_bio->master_bio = NULL;
143
144 return r1_bio;
145
146out_free_pages:
303a0e11
N
147 for (j=0 ; j < pi->raid_disks; j++)
148 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
149 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 150 j = -1;
1da177e4 151out_free_bio:
8f19ccb2 152 while (++j < pi->raid_disks)
1da177e4
LT
153 bio_put(r1_bio->bios[j]);
154 r1bio_pool_free(r1_bio, data);
155 return NULL;
156}
157
158static void r1buf_pool_free(void *__r1_bio, void *data)
159{
160 struct pool_info *pi = data;
d11c171e 161 int i,j;
9f2c9d12 162 struct r1bio *r1bio = __r1_bio;
1da177e4 163
d11c171e
N
164 for (i = 0; i < RESYNC_PAGES; i++)
165 for (j = pi->raid_disks; j-- ;) {
166 if (j == 0 ||
167 r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 170 }
1da177e4
LT
171 for (i=0 ; i < pi->raid_disks; i++)
172 bio_put(r1bio->bios[i]);
173
174 r1bio_pool_free(r1bio, data);
175}
176
e8096360 177static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
178{
179 int i;
180
8f19ccb2 181 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 182 struct bio **bio = r1_bio->bios + i;
4367af55 183 if (!BIO_SPECIAL(*bio))
1da177e4
LT
184 bio_put(*bio);
185 *bio = NULL;
186 }
187}
188
9f2c9d12 189static void free_r1bio(struct r1bio *r1_bio)
1da177e4 190{
e8096360 191 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 192
1da177e4
LT
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
195}
196
9f2c9d12 197static void put_buf(struct r1bio *r1_bio)
1da177e4 198{
e8096360 199 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
200 int i;
201
8f19ccb2 202 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 }
1da177e4
LT
207
208 mempool_free(r1_bio, conf->r1buf_pool);
209
17999be4 210 lower_barrier(conf);
1da177e4
LT
211}
212
9f2c9d12 213static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
214{
215 unsigned long flags;
fd01b88c 216 struct mddev *mddev = r1_bio->mddev;
e8096360 217 struct r1conf *conf = mddev->private;
1da177e4
LT
218
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 221 conf->nr_queued ++;
1da177e4
LT
222 spin_unlock_irqrestore(&conf->device_lock, flags);
223
17999be4 224 wake_up(&conf->wait_barrier);
1da177e4
LT
225 md_wakeup_thread(mddev->thread);
226}
227
228/*
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
232 */
9f2c9d12 233static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
234{
235 struct bio *bio = r1_bio->master_bio;
236 int done;
e8096360 237 struct r1conf *conf = r1_bio->mddev->private;
d2eb35ac
N
238
239 if (bio->bi_phys_segments) {
240 unsigned long flags;
241 spin_lock_irqsave(&conf->device_lock, flags);
242 bio->bi_phys_segments--;
243 done = (bio->bi_phys_segments == 0);
244 spin_unlock_irqrestore(&conf->device_lock, flags);
245 } else
246 done = 1;
247
248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 clear_bit(BIO_UPTODATE, &bio->bi_flags);
250 if (done) {
251 bio_endio(bio, 0);
252 /*
253 * Wake up any possible resync thread that waits for the device
254 * to go idle.
255 */
256 allow_barrier(conf);
257 }
258}
259
9f2c9d12 260static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
261{
262 struct bio *bio = r1_bio->master_bio;
263
4b6d287f
N
264 /* if nobody has done the final endio yet, do it now */
265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 (unsigned long long) bio->bi_sector,
269 (unsigned long long) bio->bi_sector +
270 (bio->bi_size >> 9) - 1);
4b6d287f 271
d2eb35ac 272 call_bio_endio(r1_bio);
4b6d287f 273 }
1da177e4
LT
274 free_r1bio(r1_bio);
275}
276
277/*
278 * Update disk head position estimator based on IRQ completion info.
279 */
9f2c9d12 280static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 281{
e8096360 282 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
283
284 conf->mirrors[disk].head_position =
285 r1_bio->sector + (r1_bio->sectors);
286}
287
ba3ae3be
NK
288/*
289 * Find the disk number which triggered given bio
290 */
9f2c9d12 291static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
292{
293 int mirror;
30194636
N
294 struct r1conf *conf = r1_bio->mddev->private;
295 int raid_disks = conf->raid_disks;
ba3ae3be 296
8f19ccb2 297 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
298 if (r1_bio->bios[mirror] == bio)
299 break;
300
8f19ccb2 301 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
302 update_head_pos(mirror, r1_bio);
303
304 return mirror;
305}
306
6712ecf8 307static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
308{
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 310 struct r1bio *r1_bio = bio->bi_private;
1da177e4 311 int mirror;
e8096360 312 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 313
1da177e4
LT
314 mirror = r1_bio->read_disk;
315 /*
316 * this branch is our 'one mirror IO has finished' event handler:
317 */
ddaf22ab
N
318 update_head_pos(mirror, r1_bio);
319
dd00a99e
N
320 if (uptodate)
321 set_bit(R1BIO_Uptodate, &r1_bio->state);
322 else {
323 /* If all other devices have failed, we want to return
324 * the error upwards rather than fail the last device.
325 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 326 */
dd00a99e
N
327 unsigned long flags;
328 spin_lock_irqsave(&conf->device_lock, flags);
329 if (r1_bio->mddev->degraded == conf->raid_disks ||
330 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
331 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
332 uptodate = 1;
333 spin_unlock_irqrestore(&conf->device_lock, flags);
334 }
1da177e4 335
7ad4d4a6 336 if (uptodate) {
1da177e4 337 raid_end_bio_io(r1_bio);
7ad4d4a6
N
338 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
339 } else {
1da177e4
LT
340 /*
341 * oops, read error:
342 */
343 char b[BDEVNAME_SIZE];
8bda470e
CD
344 printk_ratelimited(
345 KERN_ERR "md/raid1:%s: %s: "
346 "rescheduling sector %llu\n",
347 mdname(conf->mddev),
348 bdevname(conf->mirrors[mirror].rdev->bdev,
349 b),
350 (unsigned long long)r1_bio->sector);
d2eb35ac 351 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 352 reschedule_retry(r1_bio);
7ad4d4a6 353 /* don't drop the reference on read_disk yet */
1da177e4 354 }
1da177e4
LT
355}
356
9f2c9d12 357static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
358{
359 /* it really is the end of this request */
360 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
361 /* free extra copy of the data pages */
362 int i = r1_bio->behind_page_count;
363 while (i--)
364 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
365 kfree(r1_bio->behind_bvecs);
366 r1_bio->behind_bvecs = NULL;
367 }
368 /* clear the bitmap if all writes complete successfully */
369 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
370 r1_bio->sectors,
371 !test_bit(R1BIO_Degraded, &r1_bio->state),
372 test_bit(R1BIO_BehindIO, &r1_bio->state));
373 md_write_end(r1_bio->mddev);
374}
375
9f2c9d12 376static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 377{
cd5ff9a1
N
378 if (!atomic_dec_and_test(&r1_bio->remaining))
379 return;
380
381 if (test_bit(R1BIO_WriteError, &r1_bio->state))
382 reschedule_retry(r1_bio);
383 else {
384 close_write(r1_bio);
4367af55
N
385 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
386 reschedule_retry(r1_bio);
387 else
388 raid_end_bio_io(r1_bio);
4e78064f
N
389 }
390}
391
6712ecf8 392static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
393{
394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 395 struct r1bio *r1_bio = bio->bi_private;
a9701a30 396 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 397 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 398 struct bio *to_put = NULL;
1da177e4 399
ba3ae3be 400 mirror = find_bio_disk(r1_bio, bio);
1da177e4 401
e9c7469b
TH
402 /*
403 * 'one mirror IO has finished' event handler:
404 */
e9c7469b 405 if (!uptodate) {
cd5ff9a1
N
406 set_bit(WriteErrorSeen,
407 &conf->mirrors[mirror].rdev->flags);
19d67169
N
408 if (!test_and_set_bit(WantReplacement,
409 &conf->mirrors[mirror].rdev->flags))
410 set_bit(MD_RECOVERY_NEEDED, &
411 conf->mddev->recovery);
412
cd5ff9a1 413 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 414 } else {
1da177e4 415 /*
e9c7469b
TH
416 * Set R1BIO_Uptodate in our master bio, so that we
417 * will return a good error code for to the higher
418 * levels even if IO on some other mirrored buffer
419 * fails.
420 *
421 * The 'master' represents the composite IO operation
422 * to user-side. So if something waits for IO, then it
423 * will wait for the 'master' bio.
1da177e4 424 */
4367af55
N
425 sector_t first_bad;
426 int bad_sectors;
427
cd5ff9a1
N
428 r1_bio->bios[mirror] = NULL;
429 to_put = bio;
e9c7469b
TH
430 set_bit(R1BIO_Uptodate, &r1_bio->state);
431
4367af55
N
432 /* Maybe we can clear some bad blocks. */
433 if (is_badblock(conf->mirrors[mirror].rdev,
434 r1_bio->sector, r1_bio->sectors,
435 &first_bad, &bad_sectors)) {
436 r1_bio->bios[mirror] = IO_MADE_GOOD;
437 set_bit(R1BIO_MadeGood, &r1_bio->state);
438 }
439 }
440
e9c7469b
TH
441 if (behind) {
442 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
443 atomic_dec(&r1_bio->behind_remaining);
444
445 /*
446 * In behind mode, we ACK the master bio once the I/O
447 * has safely reached all non-writemostly
448 * disks. Setting the Returned bit ensures that this
449 * gets done only once -- we don't ever want to return
450 * -EIO here, instead we'll wait
451 */
452 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
453 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
454 /* Maybe we can return now */
455 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
456 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
457 pr_debug("raid1: behind end write sectors"
458 " %llu-%llu\n",
459 (unsigned long long) mbio->bi_sector,
460 (unsigned long long) mbio->bi_sector +
461 (mbio->bi_size >> 9) - 1);
d2eb35ac 462 call_bio_endio(r1_bio);
4b6d287f
N
463 }
464 }
465 }
4367af55
N
466 if (r1_bio->bios[mirror] == NULL)
467 rdev_dec_pending(conf->mirrors[mirror].rdev,
468 conf->mddev);
e9c7469b 469
1da177e4 470 /*
1da177e4
LT
471 * Let's see if all mirrored write operations have finished
472 * already.
473 */
af6d7b76 474 r1_bio_write_done(r1_bio);
c70810b3 475
04b857f7
N
476 if (to_put)
477 bio_put(to_put);
1da177e4
LT
478}
479
480
481/*
482 * This routine returns the disk from which the requested read should
483 * be done. There is a per-array 'next expected sequential IO' sector
484 * number - if this matches on the next IO then we use the last disk.
485 * There is also a per-disk 'last know head position' sector that is
486 * maintained from IRQ contexts, both the normal and the resync IO
487 * completion handlers update this position correctly. If there is no
488 * perfect sequential match then we pick the disk whose head is closest.
489 *
490 * If there are 2 mirrors in the same 2 devices, performance degrades
491 * because position is mirror, not device based.
492 *
493 * The rdev for the device selected will have nr_pending incremented.
494 */
e8096360 495static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 496{
af3a2cd6 497 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
498 int sectors;
499 int best_good_sectors;
9dedf603
SL
500 int best_disk, best_dist_disk, best_pending_disk;
501 int has_nonrot_disk;
be4d3280 502 int disk;
76073054 503 sector_t best_dist;
9dedf603 504 unsigned int min_pending;
3cb03002 505 struct md_rdev *rdev;
f3ac8bf7 506 int choose_first;
12cee5a8 507 int choose_next_idle;
1da177e4
LT
508
509 rcu_read_lock();
510 /*
8ddf9efe 511 * Check if we can balance. We can balance on the whole
1da177e4
LT
512 * device if no resync is going on, or below the resync window.
513 * We take the first readable disk when above the resync window.
514 */
515 retry:
d2eb35ac 516 sectors = r1_bio->sectors;
76073054 517 best_disk = -1;
9dedf603 518 best_dist_disk = -1;
76073054 519 best_dist = MaxSector;
9dedf603
SL
520 best_pending_disk = -1;
521 min_pending = UINT_MAX;
d2eb35ac 522 best_good_sectors = 0;
9dedf603 523 has_nonrot_disk = 0;
12cee5a8 524 choose_next_idle = 0;
d2eb35ac 525
1da177e4 526 if (conf->mddev->recovery_cp < MaxSector &&
be4d3280 527 (this_sector + sectors >= conf->next_resync))
f3ac8bf7 528 choose_first = 1;
be4d3280 529 else
f3ac8bf7 530 choose_first = 0;
1da177e4 531
be4d3280 532 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 533 sector_t dist;
d2eb35ac
N
534 sector_t first_bad;
535 int bad_sectors;
9dedf603 536 unsigned int pending;
12cee5a8 537 bool nonrot;
d2eb35ac 538
f3ac8bf7
N
539 rdev = rcu_dereference(conf->mirrors[disk].rdev);
540 if (r1_bio->bios[disk] == IO_BLOCKED
541 || rdev == NULL
6b740b8d 542 || test_bit(Unmerged, &rdev->flags)
76073054 543 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 544 continue;
76073054
N
545 if (!test_bit(In_sync, &rdev->flags) &&
546 rdev->recovery_offset < this_sector + sectors)
1da177e4 547 continue;
76073054
N
548 if (test_bit(WriteMostly, &rdev->flags)) {
549 /* Don't balance among write-mostly, just
550 * use the first as a last resort */
307729c8
N
551 if (best_disk < 0) {
552 if (is_badblock(rdev, this_sector, sectors,
553 &first_bad, &bad_sectors)) {
554 if (first_bad < this_sector)
555 /* Cannot use this */
556 continue;
557 best_good_sectors = first_bad - this_sector;
558 } else
559 best_good_sectors = sectors;
76073054 560 best_disk = disk;
307729c8 561 }
76073054
N
562 continue;
563 }
564 /* This is a reasonable device to use. It might
565 * even be best.
566 */
d2eb35ac
N
567 if (is_badblock(rdev, this_sector, sectors,
568 &first_bad, &bad_sectors)) {
569 if (best_dist < MaxSector)
570 /* already have a better device */
571 continue;
572 if (first_bad <= this_sector) {
573 /* cannot read here. If this is the 'primary'
574 * device, then we must not read beyond
575 * bad_sectors from another device..
576 */
577 bad_sectors -= (this_sector - first_bad);
578 if (choose_first && sectors > bad_sectors)
579 sectors = bad_sectors;
580 if (best_good_sectors > sectors)
581 best_good_sectors = sectors;
582
583 } else {
584 sector_t good_sectors = first_bad - this_sector;
585 if (good_sectors > best_good_sectors) {
586 best_good_sectors = good_sectors;
587 best_disk = disk;
588 }
589 if (choose_first)
590 break;
591 }
592 continue;
593 } else
594 best_good_sectors = sectors;
595
12cee5a8
SL
596 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
597 has_nonrot_disk |= nonrot;
9dedf603 598 pending = atomic_read(&rdev->nr_pending);
76073054 599 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 600 if (choose_first) {
76073054 601 best_disk = disk;
1da177e4
LT
602 break;
603 }
12cee5a8
SL
604 /* Don't change to another disk for sequential reads */
605 if (conf->mirrors[disk].next_seq_sect == this_sector
606 || dist == 0) {
607 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
608 struct raid1_info *mirror = &conf->mirrors[disk];
609
610 best_disk = disk;
611 /*
612 * If buffered sequential IO size exceeds optimal
613 * iosize, check if there is idle disk. If yes, choose
614 * the idle disk. read_balance could already choose an
615 * idle disk before noticing it's a sequential IO in
616 * this disk. This doesn't matter because this disk
617 * will idle, next time it will be utilized after the
618 * first disk has IO size exceeds optimal iosize. In
619 * this way, iosize of the first disk will be optimal
620 * iosize at least. iosize of the second disk might be
621 * small, but not a big deal since when the second disk
622 * starts IO, the first disk is likely still busy.
623 */
624 if (nonrot && opt_iosize > 0 &&
625 mirror->seq_start != MaxSector &&
626 mirror->next_seq_sect > opt_iosize &&
627 mirror->next_seq_sect - opt_iosize >=
628 mirror->seq_start) {
629 choose_next_idle = 1;
630 continue;
631 }
632 break;
633 }
634 /* If device is idle, use it */
635 if (pending == 0) {
636 best_disk = disk;
637 break;
638 }
639
640 if (choose_next_idle)
641 continue;
9dedf603
SL
642
643 if (min_pending > pending) {
644 min_pending = pending;
645 best_pending_disk = disk;
646 }
647
76073054
N
648 if (dist < best_dist) {
649 best_dist = dist;
9dedf603 650 best_dist_disk = disk;
1da177e4 651 }
f3ac8bf7 652 }
1da177e4 653
9dedf603
SL
654 /*
655 * If all disks are rotational, choose the closest disk. If any disk is
656 * non-rotational, choose the disk with less pending request even the
657 * disk is rotational, which might/might not be optimal for raids with
658 * mixed ratation/non-rotational disks depending on workload.
659 */
660 if (best_disk == -1) {
661 if (has_nonrot_disk)
662 best_disk = best_pending_disk;
663 else
664 best_disk = best_dist_disk;
665 }
666
76073054
N
667 if (best_disk >= 0) {
668 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
669 if (!rdev)
670 goto retry;
671 atomic_inc(&rdev->nr_pending);
76073054 672 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
673 /* cannot risk returning a device that failed
674 * before we inc'ed nr_pending
675 */
03c902e1 676 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
677 goto retry;
678 }
d2eb35ac 679 sectors = best_good_sectors;
12cee5a8
SL
680
681 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
682 conf->mirrors[best_disk].seq_start = this_sector;
683
be4d3280 684 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
685 }
686 rcu_read_unlock();
d2eb35ac 687 *max_sectors = sectors;
1da177e4 688
76073054 689 return best_disk;
1da177e4
LT
690}
691
6b740b8d
N
692static int raid1_mergeable_bvec(struct request_queue *q,
693 struct bvec_merge_data *bvm,
694 struct bio_vec *biovec)
695{
696 struct mddev *mddev = q->queuedata;
697 struct r1conf *conf = mddev->private;
698 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
699 int max = biovec->bv_len;
700
701 if (mddev->merge_check_needed) {
702 int disk;
703 rcu_read_lock();
704 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
705 struct md_rdev *rdev = rcu_dereference(
706 conf->mirrors[disk].rdev);
707 if (rdev && !test_bit(Faulty, &rdev->flags)) {
708 struct request_queue *q =
709 bdev_get_queue(rdev->bdev);
710 if (q->merge_bvec_fn) {
711 bvm->bi_sector = sector +
712 rdev->data_offset;
713 bvm->bi_bdev = rdev->bdev;
714 max = min(max, q->merge_bvec_fn(
715 q, bvm, biovec));
716 }
717 }
718 }
719 rcu_read_unlock();
720 }
721 return max;
722
723}
724
fd01b88c 725int md_raid1_congested(struct mddev *mddev, int bits)
0d129228 726{
e8096360 727 struct r1conf *conf = mddev->private;
0d129228
N
728 int i, ret = 0;
729
34db0cd6
N
730 if ((bits & (1 << BDI_async_congested)) &&
731 conf->pending_count >= max_queued_requests)
732 return 1;
733
0d129228 734 rcu_read_lock();
f53e29fc 735 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 736 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 737 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 738 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 739
1ed7242e
JB
740 BUG_ON(!q);
741
0d129228
N
742 /* Note the '|| 1' - when read_balance prefers
743 * non-congested targets, it can be removed
744 */
91a9e99d 745 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
746 ret |= bdi_congested(&q->backing_dev_info, bits);
747 else
748 ret &= bdi_congested(&q->backing_dev_info, bits);
749 }
750 }
751 rcu_read_unlock();
752 return ret;
753}
1ed7242e 754EXPORT_SYMBOL_GPL(md_raid1_congested);
0d129228 755
1ed7242e
JB
756static int raid1_congested(void *data, int bits)
757{
fd01b88c 758 struct mddev *mddev = data;
1ed7242e
JB
759
760 return mddev_congested(mddev, bits) ||
761 md_raid1_congested(mddev, bits);
762}
0d129228 763
e8096360 764static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
765{
766 /* Any writes that have been queued but are awaiting
767 * bitmap updates get flushed here.
a35e63ef 768 */
a35e63ef
N
769 spin_lock_irq(&conf->device_lock);
770
771 if (conf->pending_bio_list.head) {
772 struct bio *bio;
773 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 774 conf->pending_count = 0;
a35e63ef
N
775 spin_unlock_irq(&conf->device_lock);
776 /* flush any pending bitmap writes to
777 * disk before proceeding w/ I/O */
778 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 779 wake_up(&conf->wait_barrier);
a35e63ef
N
780
781 while (bio) { /* submit pending writes */
782 struct bio *next = bio->bi_next;
783 bio->bi_next = NULL;
2ff8cc2c
SL
784 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
785 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
786 /* Just ignore it */
787 bio_endio(bio, 0);
788 else
789 generic_make_request(bio);
a35e63ef
N
790 bio = next;
791 }
a35e63ef
N
792 } else
793 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
794}
795
17999be4
N
796/* Barriers....
797 * Sometimes we need to suspend IO while we do something else,
798 * either some resync/recovery, or reconfigure the array.
799 * To do this we raise a 'barrier'.
800 * The 'barrier' is a counter that can be raised multiple times
801 * to count how many activities are happening which preclude
802 * normal IO.
803 * We can only raise the barrier if there is no pending IO.
804 * i.e. if nr_pending == 0.
805 * We choose only to raise the barrier if no-one is waiting for the
806 * barrier to go down. This means that as soon as an IO request
807 * is ready, no other operations which require a barrier will start
808 * until the IO request has had a chance.
809 *
810 * So: regular IO calls 'wait_barrier'. When that returns there
811 * is no backgroup IO happening, It must arrange to call
812 * allow_barrier when it has finished its IO.
813 * backgroup IO calls must call raise_barrier. Once that returns
814 * there is no normal IO happeing. It must arrange to call
815 * lower_barrier when the particular background IO completes.
1da177e4
LT
816 */
817#define RESYNC_DEPTH 32
818
e8096360 819static void raise_barrier(struct r1conf *conf)
1da177e4
LT
820{
821 spin_lock_irq(&conf->resync_lock);
17999be4
N
822
823 /* Wait until no block IO is waiting */
824 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
eed8c02e 825 conf->resync_lock);
17999be4
N
826
827 /* block any new IO from starting */
828 conf->barrier++;
829
046abeed 830 /* Now wait for all pending IO to complete */
17999be4
N
831 wait_event_lock_irq(conf->wait_barrier,
832 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
eed8c02e 833 conf->resync_lock);
17999be4
N
834
835 spin_unlock_irq(&conf->resync_lock);
836}
837
e8096360 838static void lower_barrier(struct r1conf *conf)
17999be4
N
839{
840 unsigned long flags;
709ae487 841 BUG_ON(conf->barrier <= 0);
17999be4
N
842 spin_lock_irqsave(&conf->resync_lock, flags);
843 conf->barrier--;
844 spin_unlock_irqrestore(&conf->resync_lock, flags);
845 wake_up(&conf->wait_barrier);
846}
847
e8096360 848static void wait_barrier(struct r1conf *conf)
17999be4
N
849{
850 spin_lock_irq(&conf->resync_lock);
851 if (conf->barrier) {
852 conf->nr_waiting++;
d6b42dcb
N
853 /* Wait for the barrier to drop.
854 * However if there are already pending
855 * requests (preventing the barrier from
856 * rising completely), and the
857 * pre-process bio queue isn't empty,
858 * then don't wait, as we need to empty
859 * that queue to get the nr_pending
860 * count down.
861 */
862 wait_event_lock_irq(conf->wait_barrier,
863 !conf->barrier ||
864 (conf->nr_pending &&
865 current->bio_list &&
866 !bio_list_empty(current->bio_list)),
eed8c02e 867 conf->resync_lock);
17999be4 868 conf->nr_waiting--;
1da177e4 869 }
17999be4 870 conf->nr_pending++;
1da177e4
LT
871 spin_unlock_irq(&conf->resync_lock);
872}
873
e8096360 874static void allow_barrier(struct r1conf *conf)
17999be4
N
875{
876 unsigned long flags;
877 spin_lock_irqsave(&conf->resync_lock, flags);
878 conf->nr_pending--;
879 spin_unlock_irqrestore(&conf->resync_lock, flags);
880 wake_up(&conf->wait_barrier);
881}
882
e8096360 883static void freeze_array(struct r1conf *conf)
ddaf22ab
N
884{
885 /* stop syncio and normal IO and wait for everything to
886 * go quite.
887 * We increment barrier and nr_waiting, and then
1c830532
N
888 * wait until nr_pending match nr_queued+1
889 * This is called in the context of one normal IO request
890 * that has failed. Thus any sync request that might be pending
891 * will be blocked by nr_pending, and we need to wait for
892 * pending IO requests to complete or be queued for re-try.
893 * Thus the number queued (nr_queued) plus this request (1)
894 * must match the number of pending IOs (nr_pending) before
895 * we continue.
ddaf22ab
N
896 */
897 spin_lock_irq(&conf->resync_lock);
898 conf->barrier++;
899 conf->nr_waiting++;
eed8c02e
LC
900 wait_event_lock_irq_cmd(conf->wait_barrier,
901 conf->nr_pending == conf->nr_queued+1,
902 conf->resync_lock,
903 flush_pending_writes(conf));
ddaf22ab
N
904 spin_unlock_irq(&conf->resync_lock);
905}
e8096360 906static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
907{
908 /* reverse the effect of the freeze */
909 spin_lock_irq(&conf->resync_lock);
910 conf->barrier--;
911 conf->nr_waiting--;
912 wake_up(&conf->wait_barrier);
913 spin_unlock_irq(&conf->resync_lock);
914}
915
17999be4 916
4e78064f 917/* duplicate the data pages for behind I/O
4e78064f 918 */
9f2c9d12 919static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
920{
921 int i;
922 struct bio_vec *bvec;
2ca68f5e 923 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 924 GFP_NOIO);
2ca68f5e 925 if (unlikely(!bvecs))
af6d7b76 926 return;
4b6d287f 927
4b6d287f 928 bio_for_each_segment(bvec, bio, i) {
2ca68f5e
N
929 bvecs[i] = *bvec;
930 bvecs[i].bv_page = alloc_page(GFP_NOIO);
931 if (unlikely(!bvecs[i].bv_page))
4b6d287f 932 goto do_sync_io;
2ca68f5e
N
933 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
934 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
935 kunmap(bvecs[i].bv_page);
4b6d287f
N
936 kunmap(bvec->bv_page);
937 }
2ca68f5e 938 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
939 r1_bio->behind_page_count = bio->bi_vcnt;
940 set_bit(R1BIO_BehindIO, &r1_bio->state);
941 return;
4b6d287f
N
942
943do_sync_io:
af6d7b76 944 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
945 if (bvecs[i].bv_page)
946 put_page(bvecs[i].bv_page);
947 kfree(bvecs);
36a4e1fe 948 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
4b6d287f
N
949}
950
f54a9d0e
N
951struct raid1_plug_cb {
952 struct blk_plug_cb cb;
953 struct bio_list pending;
954 int pending_cnt;
955};
956
957static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
958{
959 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
960 cb);
961 struct mddev *mddev = plug->cb.data;
962 struct r1conf *conf = mddev->private;
963 struct bio *bio;
964
874807a8 965 if (from_schedule || current->bio_list) {
f54a9d0e
N
966 spin_lock_irq(&conf->device_lock);
967 bio_list_merge(&conf->pending_bio_list, &plug->pending);
968 conf->pending_count += plug->pending_cnt;
969 spin_unlock_irq(&conf->device_lock);
ee0b0244 970 wake_up(&conf->wait_barrier);
f54a9d0e
N
971 md_wakeup_thread(mddev->thread);
972 kfree(plug);
973 return;
974 }
975
976 /* we aren't scheduling, so we can do the write-out directly. */
977 bio = bio_list_get(&plug->pending);
978 bitmap_unplug(mddev->bitmap);
979 wake_up(&conf->wait_barrier);
980
981 while (bio) { /* submit pending writes */
982 struct bio *next = bio->bi_next;
983 bio->bi_next = NULL;
32f9f570
SL
984 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
985 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
986 /* Just ignore it */
987 bio_endio(bio, 0);
988 else
989 generic_make_request(bio);
f54a9d0e
N
990 bio = next;
991 }
992 kfree(plug);
993}
994
b4fdcb02 995static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 996{
e8096360 997 struct r1conf *conf = mddev->private;
0eaf822c 998 struct raid1_info *mirror;
9f2c9d12 999 struct r1bio *r1_bio;
1da177e4 1000 struct bio *read_bio;
1f68f0c4 1001 int i, disks;
84255d10 1002 struct bitmap *bitmap;
191ea9b2 1003 unsigned long flags;
a362357b 1004 const int rw = bio_data_dir(bio);
2c7d46ec 1005 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1006 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
2ff8cc2c
SL
1007 const unsigned long do_discard = (bio->bi_rw
1008 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1009 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
3cb03002 1010 struct md_rdev *blocked_rdev;
f54a9d0e
N
1011 struct blk_plug_cb *cb;
1012 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
1013 int first_clone;
1014 int sectors_handled;
1015 int max_sectors;
191ea9b2 1016
1da177e4
LT
1017 /*
1018 * Register the new request and wait if the reconstruction
1019 * thread has put up a bar for new requests.
1020 * Continue immediately if no resync is active currently.
1021 */
62de608d 1022
3d310eb7
N
1023 md_write_start(mddev, bio); /* wait on superblock update early */
1024
6eef4b21
N
1025 if (bio_data_dir(bio) == WRITE &&
1026 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
1027 bio->bi_sector < mddev->suspend_hi) {
1028 /* As the suspend_* range is controlled by
1029 * userspace, we want an interruptible
1030 * wait.
1031 */
1032 DEFINE_WAIT(w);
1033 for (;;) {
1034 flush_signals(current);
1035 prepare_to_wait(&conf->wait_barrier,
1036 &w, TASK_INTERRUPTIBLE);
1037 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
1038 bio->bi_sector >= mddev->suspend_hi)
1039 break;
1040 schedule();
1041 }
1042 finish_wait(&conf->wait_barrier, &w);
1043 }
62de608d 1044
17999be4 1045 wait_barrier(conf);
1da177e4 1046
84255d10
N
1047 bitmap = mddev->bitmap;
1048
1da177e4
LT
1049 /*
1050 * make_request() can abort the operation when READA is being
1051 * used and no empty request is available.
1052 *
1053 */
1054 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1055
1056 r1_bio->master_bio = bio;
1057 r1_bio->sectors = bio->bi_size >> 9;
191ea9b2 1058 r1_bio->state = 0;
1da177e4
LT
1059 r1_bio->mddev = mddev;
1060 r1_bio->sector = bio->bi_sector;
1061
d2eb35ac
N
1062 /* We might need to issue multiple reads to different
1063 * devices if there are bad blocks around, so we keep
1064 * track of the number of reads in bio->bi_phys_segments.
1065 * If this is 0, there is only one r1_bio and no locking
1066 * will be needed when requests complete. If it is
1067 * non-zero, then it is the number of not-completed requests.
1068 */
1069 bio->bi_phys_segments = 0;
1070 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1071
a362357b 1072 if (rw == READ) {
1da177e4
LT
1073 /*
1074 * read balancing logic:
1075 */
d2eb35ac
N
1076 int rdisk;
1077
1078read_again:
1079 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
1080
1081 if (rdisk < 0) {
1082 /* couldn't find anywhere to read from */
1083 raid_end_bio_io(r1_bio);
5a7bbad2 1084 return;
1da177e4
LT
1085 }
1086 mirror = conf->mirrors + rdisk;
1087
e555190d
N
1088 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1089 bitmap) {
1090 /* Reading from a write-mostly device must
1091 * take care not to over-take any writes
1092 * that are 'behind'
1093 */
1094 wait_event(bitmap->behind_wait,
1095 atomic_read(&bitmap->behind_writes) == 0);
1096 }
1da177e4
LT
1097 r1_bio->read_disk = rdisk;
1098
a167f663 1099 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d2eb35ac
N
1100 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
1101 max_sectors);
1da177e4
LT
1102
1103 r1_bio->bios[rdisk] = read_bio;
1104
1105 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1106 read_bio->bi_bdev = mirror->rdev->bdev;
1107 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 1108 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1109 read_bio->bi_private = r1_bio;
1110
d2eb35ac
N
1111 if (max_sectors < r1_bio->sectors) {
1112 /* could not read all from this device, so we will
1113 * need another r1_bio.
1114 */
d2eb35ac
N
1115
1116 sectors_handled = (r1_bio->sector + max_sectors
1117 - bio->bi_sector);
1118 r1_bio->sectors = max_sectors;
1119 spin_lock_irq(&conf->device_lock);
1120 if (bio->bi_phys_segments == 0)
1121 bio->bi_phys_segments = 2;
1122 else
1123 bio->bi_phys_segments++;
1124 spin_unlock_irq(&conf->device_lock);
1125 /* Cannot call generic_make_request directly
1126 * as that will be queued in __make_request
1127 * and subsequent mempool_alloc might block waiting
1128 * for it. So hand bio over to raid1d.
1129 */
1130 reschedule_retry(r1_bio);
1131
1132 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1133
1134 r1_bio->master_bio = bio;
1135 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1136 r1_bio->state = 0;
1137 r1_bio->mddev = mddev;
1138 r1_bio->sector = bio->bi_sector + sectors_handled;
1139 goto read_again;
1140 } else
1141 generic_make_request(read_bio);
5a7bbad2 1142 return;
1da177e4
LT
1143 }
1144
1145 /*
1146 * WRITE:
1147 */
34db0cd6
N
1148 if (conf->pending_count >= max_queued_requests) {
1149 md_wakeup_thread(mddev->thread);
1150 wait_event(conf->wait_barrier,
1151 conf->pending_count < max_queued_requests);
1152 }
1f68f0c4 1153 /* first select target devices under rcu_lock and
1da177e4
LT
1154 * inc refcount on their rdev. Record them by setting
1155 * bios[x] to bio
1f68f0c4
N
1156 * If there are known/acknowledged bad blocks on any device on
1157 * which we have seen a write error, we want to avoid writing those
1158 * blocks.
1159 * This potentially requires several writes to write around
1160 * the bad blocks. Each set of writes gets it's own r1bio
1161 * with a set of bios attached.
1da177e4 1162 */
c3b328ac 1163
8f19ccb2 1164 disks = conf->raid_disks * 2;
6bfe0b49
DW
1165 retry_write:
1166 blocked_rdev = NULL;
1da177e4 1167 rcu_read_lock();
1f68f0c4 1168 max_sectors = r1_bio->sectors;
1da177e4 1169 for (i = 0; i < disks; i++) {
3cb03002 1170 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1171 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1172 atomic_inc(&rdev->nr_pending);
1173 blocked_rdev = rdev;
1174 break;
1175 }
1f68f0c4 1176 r1_bio->bios[i] = NULL;
6b740b8d
N
1177 if (!rdev || test_bit(Faulty, &rdev->flags)
1178 || test_bit(Unmerged, &rdev->flags)) {
8f19ccb2
N
1179 if (i < conf->raid_disks)
1180 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1181 continue;
1182 }
1183
1184 atomic_inc(&rdev->nr_pending);
1185 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1186 sector_t first_bad;
1187 int bad_sectors;
1188 int is_bad;
1189
1190 is_bad = is_badblock(rdev, r1_bio->sector,
1191 max_sectors,
1192 &first_bad, &bad_sectors);
1193 if (is_bad < 0) {
1194 /* mustn't write here until the bad block is
1195 * acknowledged*/
1196 set_bit(BlockedBadBlocks, &rdev->flags);
1197 blocked_rdev = rdev;
1198 break;
1199 }
1200 if (is_bad && first_bad <= r1_bio->sector) {
1201 /* Cannot write here at all */
1202 bad_sectors -= (r1_bio->sector - first_bad);
1203 if (bad_sectors < max_sectors)
1204 /* mustn't write more than bad_sectors
1205 * to other devices yet
1206 */
1207 max_sectors = bad_sectors;
03c902e1 1208 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1209 /* We don't set R1BIO_Degraded as that
1210 * only applies if the disk is
1211 * missing, so it might be re-added,
1212 * and we want to know to recover this
1213 * chunk.
1214 * In this case the device is here,
1215 * and the fact that this chunk is not
1216 * in-sync is recorded in the bad
1217 * block log
1218 */
1219 continue;
964147d5 1220 }
1f68f0c4
N
1221 if (is_bad) {
1222 int good_sectors = first_bad - r1_bio->sector;
1223 if (good_sectors < max_sectors)
1224 max_sectors = good_sectors;
1225 }
1226 }
1227 r1_bio->bios[i] = bio;
1da177e4
LT
1228 }
1229 rcu_read_unlock();
1230
6bfe0b49
DW
1231 if (unlikely(blocked_rdev)) {
1232 /* Wait for this device to become unblocked */
1233 int j;
1234
1235 for (j = 0; j < i; j++)
1236 if (r1_bio->bios[j])
1237 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1238 r1_bio->state = 0;
6bfe0b49
DW
1239 allow_barrier(conf);
1240 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1241 wait_barrier(conf);
1242 goto retry_write;
1243 }
1244
1f68f0c4
N
1245 if (max_sectors < r1_bio->sectors) {
1246 /* We are splitting this write into multiple parts, so
1247 * we need to prepare for allocating another r1_bio.
1248 */
1249 r1_bio->sectors = max_sectors;
1250 spin_lock_irq(&conf->device_lock);
1251 if (bio->bi_phys_segments == 0)
1252 bio->bi_phys_segments = 2;
1253 else
1254 bio->bi_phys_segments++;
1255 spin_unlock_irq(&conf->device_lock);
191ea9b2 1256 }
1f68f0c4 1257 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
4b6d287f 1258
4e78064f 1259 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1260 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1261
1f68f0c4 1262 first_clone = 1;
1da177e4
LT
1263 for (i = 0; i < disks; i++) {
1264 struct bio *mbio;
1265 if (!r1_bio->bios[i])
1266 continue;
1267
a167f663 1268 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1f68f0c4
N
1269 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1270
1271 if (first_clone) {
1272 /* do behind I/O ?
1273 * Not if there are too many, or cannot
1274 * allocate memory, or a reader on WriteMostly
1275 * is waiting for behind writes to flush */
1276 if (bitmap &&
1277 (atomic_read(&bitmap->behind_writes)
1278 < mddev->bitmap_info.max_write_behind) &&
1279 !waitqueue_active(&bitmap->behind_wait))
1280 alloc_behind_pages(mbio, r1_bio);
1281
1282 bitmap_startwrite(bitmap, r1_bio->sector,
1283 r1_bio->sectors,
1284 test_bit(R1BIO_BehindIO,
1285 &r1_bio->state));
1286 first_clone = 0;
1287 }
2ca68f5e 1288 if (r1_bio->behind_bvecs) {
4b6d287f
N
1289 struct bio_vec *bvec;
1290 int j;
1291
1292 /* Yes, I really want the '__' version so that
1293 * we clear any unused pointer in the io_vec, rather
1294 * than leave them unchanged. This is important
1295 * because when we come to free the pages, we won't
046abeed 1296 * know the original bi_idx, so we just free
4b6d287f
N
1297 * them all
1298 */
1299 __bio_for_each_segment(bvec, mbio, j, 0)
2ca68f5e 1300 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1301 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1302 atomic_inc(&r1_bio->behind_remaining);
1303 }
1304
1f68f0c4
N
1305 r1_bio->bios[i] = mbio;
1306
1307 mbio->bi_sector = (r1_bio->sector +
1308 conf->mirrors[i].rdev->data_offset);
1309 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1310 mbio->bi_end_io = raid1_end_write_request;
c8dc9c65
JL
1311 mbio->bi_rw =
1312 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1f68f0c4
N
1313 mbio->bi_private = r1_bio;
1314
1da177e4 1315 atomic_inc(&r1_bio->remaining);
f54a9d0e
N
1316
1317 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1318 if (cb)
1319 plug = container_of(cb, struct raid1_plug_cb, cb);
1320 else
1321 plug = NULL;
4e78064f 1322 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1323 if (plug) {
1324 bio_list_add(&plug->pending, mbio);
1325 plug->pending_cnt++;
1326 } else {
1327 bio_list_add(&conf->pending_bio_list, mbio);
1328 conf->pending_count++;
1329 }
4e78064f 1330 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1331 if (!plug)
b357f04a 1332 md_wakeup_thread(mddev->thread);
1da177e4 1333 }
079fa166
N
1334 /* Mustn't call r1_bio_write_done before this next test,
1335 * as it could result in the bio being freed.
1336 */
1f68f0c4 1337 if (sectors_handled < (bio->bi_size >> 9)) {
079fa166 1338 r1_bio_write_done(r1_bio);
1f68f0c4
N
1339 /* We need another r1_bio. It has already been counted
1340 * in bio->bi_phys_segments
1341 */
1342 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1343 r1_bio->master_bio = bio;
1344 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1345 r1_bio->state = 0;
1346 r1_bio->mddev = mddev;
1347 r1_bio->sector = bio->bi_sector + sectors_handled;
1348 goto retry_write;
1349 }
1350
079fa166
N
1351 r1_bio_write_done(r1_bio);
1352
1353 /* In case raid1d snuck in to freeze_array */
1354 wake_up(&conf->wait_barrier);
1da177e4
LT
1355}
1356
fd01b88c 1357static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1358{
e8096360 1359 struct r1conf *conf = mddev->private;
1da177e4
LT
1360 int i;
1361
1362 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1363 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1364 rcu_read_lock();
1365 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1366 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1367 seq_printf(seq, "%s",
ddac7c7e
N
1368 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1369 }
1370 rcu_read_unlock();
1da177e4
LT
1371 seq_printf(seq, "]");
1372}
1373
1374
fd01b88c 1375static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1376{
1377 char b[BDEVNAME_SIZE];
e8096360 1378 struct r1conf *conf = mddev->private;
1da177e4
LT
1379
1380 /*
1381 * If it is not operational, then we have already marked it as dead
1382 * else if it is the last working disks, ignore the error, let the
1383 * next level up know.
1384 * else mark the drive as failed
1385 */
b2d444d7 1386 if (test_bit(In_sync, &rdev->flags)
4044ba58 1387 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1388 /*
1389 * Don't fail the drive, act as though we were just a
4044ba58
N
1390 * normal single drive.
1391 * However don't try a recovery from this drive as
1392 * it is very likely to fail.
1da177e4 1393 */
5389042f 1394 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1395 return;
4044ba58 1396 }
de393cde 1397 set_bit(Blocked, &rdev->flags);
c04be0aa
N
1398 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1399 unsigned long flags;
1400 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1401 mddev->degraded++;
dd00a99e 1402 set_bit(Faulty, &rdev->flags);
c04be0aa 1403 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1404 /*
1405 * if recovery is running, make sure it aborts.
1406 */
dfc70645 1407 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
dd00a99e
N
1408 } else
1409 set_bit(Faulty, &rdev->flags);
850b2b42 1410 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1411 printk(KERN_ALERT
1412 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1413 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1414 mdname(mddev), bdevname(rdev->bdev, b),
1415 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1416}
1417
e8096360 1418static void print_conf(struct r1conf *conf)
1da177e4
LT
1419{
1420 int i;
1da177e4 1421
9dd1e2fa 1422 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1423 if (!conf) {
9dd1e2fa 1424 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1425 return;
1426 }
9dd1e2fa 1427 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1428 conf->raid_disks);
1429
ddac7c7e 1430 rcu_read_lock();
1da177e4
LT
1431 for (i = 0; i < conf->raid_disks; i++) {
1432 char b[BDEVNAME_SIZE];
3cb03002 1433 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1434 if (rdev)
9dd1e2fa 1435 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1436 i, !test_bit(In_sync, &rdev->flags),
1437 !test_bit(Faulty, &rdev->flags),
1438 bdevname(rdev->bdev,b));
1da177e4 1439 }
ddac7c7e 1440 rcu_read_unlock();
1da177e4
LT
1441}
1442
e8096360 1443static void close_sync(struct r1conf *conf)
1da177e4 1444{
17999be4
N
1445 wait_barrier(conf);
1446 allow_barrier(conf);
1da177e4
LT
1447
1448 mempool_destroy(conf->r1buf_pool);
1449 conf->r1buf_pool = NULL;
1450}
1451
fd01b88c 1452static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1453{
1454 int i;
e8096360 1455 struct r1conf *conf = mddev->private;
6b965620
N
1456 int count = 0;
1457 unsigned long flags;
1da177e4
LT
1458
1459 /*
1460 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1461 * and mark them readable.
1462 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1463 */
1464 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1465 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1466 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1467 if (repl
1468 && repl->recovery_offset == MaxSector
1469 && !test_bit(Faulty, &repl->flags)
1470 && !test_and_set_bit(In_sync, &repl->flags)) {
1471 /* replacement has just become active */
1472 if (!rdev ||
1473 !test_and_clear_bit(In_sync, &rdev->flags))
1474 count++;
1475 if (rdev) {
1476 /* Replaced device not technically
1477 * faulty, but we need to be sure
1478 * it gets removed and never re-added
1479 */
1480 set_bit(Faulty, &rdev->flags);
1481 sysfs_notify_dirent_safe(
1482 rdev->sysfs_state);
1483 }
1484 }
ddac7c7e
N
1485 if (rdev
1486 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1487 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1488 count++;
654e8b5a 1489 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1490 }
1491 }
6b965620
N
1492 spin_lock_irqsave(&conf->device_lock, flags);
1493 mddev->degraded -= count;
1494 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1495
1496 print_conf(conf);
6b965620 1497 return count;
1da177e4
LT
1498}
1499
1500
fd01b88c 1501static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1502{
e8096360 1503 struct r1conf *conf = mddev->private;
199050ea 1504 int err = -EEXIST;
41158c7e 1505 int mirror = 0;
0eaf822c 1506 struct raid1_info *p;
6c2fce2e 1507 int first = 0;
30194636 1508 int last = conf->raid_disks - 1;
6b740b8d 1509 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4 1510
5389042f
N
1511 if (mddev->recovery_disabled == conf->recovery_disabled)
1512 return -EBUSY;
1513
6c2fce2e
NB
1514 if (rdev->raid_disk >= 0)
1515 first = last = rdev->raid_disk;
1516
6b740b8d
N
1517 if (q->merge_bvec_fn) {
1518 set_bit(Unmerged, &rdev->flags);
1519 mddev->merge_check_needed = 1;
1520 }
1521
7ef449d1
N
1522 for (mirror = first; mirror <= last; mirror++) {
1523 p = conf->mirrors+mirror;
1524 if (!p->rdev) {
1da177e4 1525
8f6c2e4b
MP
1526 disk_stack_limits(mddev->gendisk, rdev->bdev,
1527 rdev->data_offset << 9);
1da177e4
LT
1528
1529 p->head_position = 0;
1530 rdev->raid_disk = mirror;
199050ea 1531 err = 0;
6aea114a
N
1532 /* As all devices are equivalent, we don't need a full recovery
1533 * if this was recently any drive of the array
1534 */
1535 if (rdev->saved_raid_disk < 0)
41158c7e 1536 conf->fullsync = 1;
d6065f7b 1537 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1538 break;
1539 }
7ef449d1
N
1540 if (test_bit(WantReplacement, &p->rdev->flags) &&
1541 p[conf->raid_disks].rdev == NULL) {
1542 /* Add this device as a replacement */
1543 clear_bit(In_sync, &rdev->flags);
1544 set_bit(Replacement, &rdev->flags);
1545 rdev->raid_disk = mirror;
1546 err = 0;
1547 conf->fullsync = 1;
1548 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1549 break;
1550 }
1551 }
6b740b8d
N
1552 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1553 /* Some requests might not have seen this new
1554 * merge_bvec_fn. We must wait for them to complete
1555 * before merging the device fully.
1556 * First we make sure any code which has tested
1557 * our function has submitted the request, then
1558 * we wait for all outstanding requests to complete.
1559 */
1560 synchronize_sched();
1561 raise_barrier(conf);
1562 lower_barrier(conf);
1563 clear_bit(Unmerged, &rdev->flags);
1564 }
ac5e7113 1565 md_integrity_add_rdev(rdev, mddev);
2ff8cc2c
SL
1566 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
1567 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1568 print_conf(conf);
199050ea 1569 return err;
1da177e4
LT
1570}
1571
b8321b68 1572static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1573{
e8096360 1574 struct r1conf *conf = mddev->private;
1da177e4 1575 int err = 0;
b8321b68 1576 int number = rdev->raid_disk;
0eaf822c 1577 struct raid1_info *p = conf->mirrors + number;
1da177e4 1578
b014f14c
N
1579 if (rdev != p->rdev)
1580 p = conf->mirrors + conf->raid_disks + number;
1581
1da177e4 1582 print_conf(conf);
b8321b68 1583 if (rdev == p->rdev) {
b2d444d7 1584 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1585 atomic_read(&rdev->nr_pending)) {
1586 err = -EBUSY;
1587 goto abort;
1588 }
046abeed 1589 /* Only remove non-faulty devices if recovery
dfc70645
N
1590 * is not possible.
1591 */
1592 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1593 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1594 mddev->degraded < conf->raid_disks) {
1595 err = -EBUSY;
1596 goto abort;
1597 }
1da177e4 1598 p->rdev = NULL;
fbd568a3 1599 synchronize_rcu();
1da177e4
LT
1600 if (atomic_read(&rdev->nr_pending)) {
1601 /* lost the race, try later */
1602 err = -EBUSY;
1603 p->rdev = rdev;
ac5e7113 1604 goto abort;
8c7a2c2b
N
1605 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1606 /* We just removed a device that is being replaced.
1607 * Move down the replacement. We drain all IO before
1608 * doing this to avoid confusion.
1609 */
1610 struct md_rdev *repl =
1611 conf->mirrors[conf->raid_disks + number].rdev;
1612 raise_barrier(conf);
1613 clear_bit(Replacement, &repl->flags);
1614 p->rdev = repl;
1615 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1616 lower_barrier(conf);
1617 clear_bit(WantReplacement, &rdev->flags);
1618 } else
b014f14c 1619 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1620 err = md_integrity_register(mddev);
1da177e4
LT
1621 }
1622abort:
1623
1624 print_conf(conf);
1625 return err;
1626}
1627
1628
6712ecf8 1629static void end_sync_read(struct bio *bio, int error)
1da177e4 1630{
9f2c9d12 1631 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1632
0fc280f6 1633 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1634
1da177e4
LT
1635 /*
1636 * we have read a block, now it needs to be re-written,
1637 * or re-read if the read failed.
1638 * We don't do much here, just schedule handling by raid1d
1639 */
69382e85 1640 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1641 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1642
1643 if (atomic_dec_and_test(&r1_bio->remaining))
1644 reschedule_retry(r1_bio);
1da177e4
LT
1645}
1646
6712ecf8 1647static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1648{
1649 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1650 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1651 struct mddev *mddev = r1_bio->mddev;
e8096360 1652 struct r1conf *conf = mddev->private;
1da177e4 1653 int mirror=0;
4367af55
N
1654 sector_t first_bad;
1655 int bad_sectors;
1da177e4 1656
ba3ae3be
NK
1657 mirror = find_bio_disk(r1_bio, bio);
1658
6b1117d5 1659 if (!uptodate) {
57dab0bd 1660 sector_t sync_blocks = 0;
6b1117d5
N
1661 sector_t s = r1_bio->sector;
1662 long sectors_to_go = r1_bio->sectors;
1663 /* make sure these bits doesn't get cleared. */
1664 do {
5e3db645 1665 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1666 &sync_blocks, 1);
1667 s += sync_blocks;
1668 sectors_to_go -= sync_blocks;
1669 } while (sectors_to_go > 0);
d8f05d29
N
1670 set_bit(WriteErrorSeen,
1671 &conf->mirrors[mirror].rdev->flags);
19d67169
N
1672 if (!test_and_set_bit(WantReplacement,
1673 &conf->mirrors[mirror].rdev->flags))
1674 set_bit(MD_RECOVERY_NEEDED, &
1675 mddev->recovery);
d8f05d29 1676 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1677 } else if (is_badblock(conf->mirrors[mirror].rdev,
1678 r1_bio->sector,
1679 r1_bio->sectors,
3a9f28a5
N
1680 &first_bad, &bad_sectors) &&
1681 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1682 r1_bio->sector,
1683 r1_bio->sectors,
1684 &first_bad, &bad_sectors)
1685 )
4367af55 1686 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1687
1da177e4 1688 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1689 int s = r1_bio->sectors;
d8f05d29
N
1690 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1691 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1692 reschedule_retry(r1_bio);
1693 else {
1694 put_buf(r1_bio);
1695 md_done_sync(mddev, s, uptodate);
1696 }
1da177e4 1697 }
1da177e4
LT
1698}
1699
3cb03002 1700static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1701 int sectors, struct page *page, int rw)
1702{
1703 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1704 /* success */
1705 return 1;
19d67169 1706 if (rw == WRITE) {
d8f05d29 1707 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1708 if (!test_and_set_bit(WantReplacement,
1709 &rdev->flags))
1710 set_bit(MD_RECOVERY_NEEDED, &
1711 rdev->mddev->recovery);
1712 }
d8f05d29
N
1713 /* need to record an error - either for the block or the device */
1714 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1715 md_error(rdev->mddev, rdev);
1716 return 0;
1717}
1718
9f2c9d12 1719static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1720{
a68e5870
N
1721 /* Try some synchronous reads of other devices to get
1722 * good data, much like with normal read errors. Only
1723 * read into the pages we already have so we don't
1724 * need to re-issue the read request.
1725 * We don't need to freeze the array, because being in an
1726 * active sync request, there is no normal IO, and
1727 * no overlapping syncs.
06f60385
N
1728 * We don't need to check is_badblock() again as we
1729 * made sure that anything with a bad block in range
1730 * will have bi_end_io clear.
a68e5870 1731 */
fd01b88c 1732 struct mddev *mddev = r1_bio->mddev;
e8096360 1733 struct r1conf *conf = mddev->private;
a68e5870
N
1734 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1735 sector_t sect = r1_bio->sector;
1736 int sectors = r1_bio->sectors;
1737 int idx = 0;
1738
1739 while(sectors) {
1740 int s = sectors;
1741 int d = r1_bio->read_disk;
1742 int success = 0;
3cb03002 1743 struct md_rdev *rdev;
78d7f5f7 1744 int start;
a68e5870
N
1745
1746 if (s > (PAGE_SIZE>>9))
1747 s = PAGE_SIZE >> 9;
1748 do {
1749 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1750 /* No rcu protection needed here devices
1751 * can only be removed when no resync is
1752 * active, and resync is currently active
1753 */
1754 rdev = conf->mirrors[d].rdev;
9d3d8011 1755 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1756 bio->bi_io_vec[idx].bv_page,
1757 READ, false)) {
1758 success = 1;
1759 break;
1760 }
1761 }
1762 d++;
8f19ccb2 1763 if (d == conf->raid_disks * 2)
a68e5870
N
1764 d = 0;
1765 } while (!success && d != r1_bio->read_disk);
1766
78d7f5f7 1767 if (!success) {
a68e5870 1768 char b[BDEVNAME_SIZE];
3a9f28a5
N
1769 int abort = 0;
1770 /* Cannot read from anywhere, this block is lost.
1771 * Record a bad block on each device. If that doesn't
1772 * work just disable and interrupt the recovery.
1773 * Don't fail devices as that won't really help.
1774 */
a68e5870
N
1775 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1776 " for block %llu\n",
1777 mdname(mddev),
1778 bdevname(bio->bi_bdev, b),
1779 (unsigned long long)r1_bio->sector);
8f19ccb2 1780 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1781 rdev = conf->mirrors[d].rdev;
1782 if (!rdev || test_bit(Faulty, &rdev->flags))
1783 continue;
1784 if (!rdev_set_badblocks(rdev, sect, s, 0))
1785 abort = 1;
1786 }
1787 if (abort) {
d890fa2b
N
1788 conf->recovery_disabled =
1789 mddev->recovery_disabled;
3a9f28a5
N
1790 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1791 md_done_sync(mddev, r1_bio->sectors, 0);
1792 put_buf(r1_bio);
1793 return 0;
1794 }
1795 /* Try next page */
1796 sectors -= s;
1797 sect += s;
1798 idx++;
1799 continue;
d11c171e 1800 }
78d7f5f7
N
1801
1802 start = d;
1803 /* write it back and re-read */
1804 while (d != r1_bio->read_disk) {
1805 if (d == 0)
8f19ccb2 1806 d = conf->raid_disks * 2;
78d7f5f7
N
1807 d--;
1808 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1809 continue;
1810 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1811 if (r1_sync_page_io(rdev, sect, s,
1812 bio->bi_io_vec[idx].bv_page,
1813 WRITE) == 0) {
78d7f5f7
N
1814 r1_bio->bios[d]->bi_end_io = NULL;
1815 rdev_dec_pending(rdev, mddev);
9d3d8011 1816 }
78d7f5f7
N
1817 }
1818 d = start;
1819 while (d != r1_bio->read_disk) {
1820 if (d == 0)
8f19ccb2 1821 d = conf->raid_disks * 2;
78d7f5f7
N
1822 d--;
1823 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1824 continue;
1825 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1826 if (r1_sync_page_io(rdev, sect, s,
1827 bio->bi_io_vec[idx].bv_page,
1828 READ) != 0)
9d3d8011 1829 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1830 }
a68e5870
N
1831 sectors -= s;
1832 sect += s;
1833 idx ++;
1834 }
78d7f5f7 1835 set_bit(R1BIO_Uptodate, &r1_bio->state);
7ca78d57 1836 set_bit(BIO_UPTODATE, &bio->bi_flags);
a68e5870
N
1837 return 1;
1838}
1839
9f2c9d12 1840static int process_checks(struct r1bio *r1_bio)
a68e5870
N
1841{
1842 /* We have read all readable devices. If we haven't
1843 * got the block, then there is no hope left.
1844 * If we have, then we want to do a comparison
1845 * and skip the write if everything is the same.
1846 * If any blocks failed to read, then we need to
1847 * attempt an over-write
1848 */
fd01b88c 1849 struct mddev *mddev = r1_bio->mddev;
e8096360 1850 struct r1conf *conf = mddev->private;
a68e5870
N
1851 int primary;
1852 int i;
f4380a91 1853 int vcnt;
a68e5870 1854
8f19ccb2 1855 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870
N
1856 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1857 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1858 r1_bio->bios[primary]->bi_end_io = NULL;
1859 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1860 break;
1861 }
1862 r1_bio->read_disk = primary;
f4380a91 1863 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
8f19ccb2 1864 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 1865 int j;
78d7f5f7
N
1866 struct bio *pbio = r1_bio->bios[primary];
1867 struct bio *sbio = r1_bio->bios[i];
1868 int size;
a68e5870 1869
78d7f5f7
N
1870 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1871 continue;
1872
1873 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1874 for (j = vcnt; j-- ; ) {
1875 struct page *p, *s;
1876 p = pbio->bi_io_vec[j].bv_page;
1877 s = sbio->bi_io_vec[j].bv_page;
1878 if (memcmp(page_address(p),
1879 page_address(s),
5020ad7d 1880 sbio->bi_io_vec[j].bv_len))
78d7f5f7 1881 break;
69382e85 1882 }
78d7f5f7
N
1883 } else
1884 j = 0;
1885 if (j >= 0)
7f7583d4 1886 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7
N
1887 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1888 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1889 /* No need to write to this device. */
1890 sbio->bi_end_io = NULL;
1891 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1892 continue;
1893 }
1894 /* fixup the bio for reuse */
1895 sbio->bi_vcnt = vcnt;
1896 sbio->bi_size = r1_bio->sectors << 9;
1897 sbio->bi_idx = 0;
1898 sbio->bi_phys_segments = 0;
1899 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1900 sbio->bi_flags |= 1 << BIO_UPTODATE;
1901 sbio->bi_next = NULL;
1902 sbio->bi_sector = r1_bio->sector +
1903 conf->mirrors[i].rdev->data_offset;
1904 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1905 size = sbio->bi_size;
1906 for (j = 0; j < vcnt ; j++) {
1907 struct bio_vec *bi;
1908 bi = &sbio->bi_io_vec[j];
1909 bi->bv_offset = 0;
1910 if (size > PAGE_SIZE)
1911 bi->bv_len = PAGE_SIZE;
1912 else
1913 bi->bv_len = size;
1914 size -= PAGE_SIZE;
1915 memcpy(page_address(bi->bv_page),
1916 page_address(pbio->bi_io_vec[j].bv_page),
1917 PAGE_SIZE);
69382e85 1918 }
78d7f5f7 1919 }
a68e5870
N
1920 return 0;
1921}
1922
9f2c9d12 1923static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 1924{
e8096360 1925 struct r1conf *conf = mddev->private;
a68e5870 1926 int i;
8f19ccb2 1927 int disks = conf->raid_disks * 2;
a68e5870
N
1928 struct bio *bio, *wbio;
1929
1930 bio = r1_bio->bios[r1_bio->read_disk];
1931
a68e5870
N
1932 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1933 /* ouch - failed to read all of that. */
1934 if (!fix_sync_read_error(r1_bio))
1935 return;
7ca78d57
N
1936
1937 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1938 if (process_checks(r1_bio) < 0)
1939 return;
d11c171e
N
1940 /*
1941 * schedule writes
1942 */
1da177e4
LT
1943 atomic_set(&r1_bio->remaining, 1);
1944 for (i = 0; i < disks ; i++) {
1945 wbio = r1_bio->bios[i];
3e198f78
N
1946 if (wbio->bi_end_io == NULL ||
1947 (wbio->bi_end_io == end_sync_read &&
1948 (i == r1_bio->read_disk ||
1949 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
1950 continue;
1951
3e198f78
N
1952 wbio->bi_rw = WRITE;
1953 wbio->bi_end_io = end_sync_write;
1da177e4
LT
1954 atomic_inc(&r1_bio->remaining);
1955 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
191ea9b2 1956
1da177e4
LT
1957 generic_make_request(wbio);
1958 }
1959
1960 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 1961 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
1962 int s = r1_bio->sectors;
1963 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1964 test_bit(R1BIO_WriteError, &r1_bio->state))
1965 reschedule_retry(r1_bio);
1966 else {
1967 put_buf(r1_bio);
1968 md_done_sync(mddev, s, 1);
1969 }
1da177e4
LT
1970 }
1971}
1972
1973/*
1974 * This is a kernel thread which:
1975 *
1976 * 1. Retries failed read operations on working mirrors.
1977 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 1978 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1979 */
1980
e8096360 1981static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
1982 sector_t sect, int sectors)
1983{
fd01b88c 1984 struct mddev *mddev = conf->mddev;
867868fb
N
1985 while(sectors) {
1986 int s = sectors;
1987 int d = read_disk;
1988 int success = 0;
1989 int start;
3cb03002 1990 struct md_rdev *rdev;
867868fb
N
1991
1992 if (s > (PAGE_SIZE>>9))
1993 s = PAGE_SIZE >> 9;
1994
1995 do {
1996 /* Note: no rcu protection needed here
1997 * as this is synchronous in the raid1d thread
1998 * which is the thread that might remove
1999 * a device. If raid1d ever becomes multi-threaded....
2000 */
d2eb35ac
N
2001 sector_t first_bad;
2002 int bad_sectors;
2003
867868fb
N
2004 rdev = conf->mirrors[d].rdev;
2005 if (rdev &&
da8840a7 2006 (test_bit(In_sync, &rdev->flags) ||
2007 (!test_bit(Faulty, &rdev->flags) &&
2008 rdev->recovery_offset >= sect + s)) &&
d2eb35ac
N
2009 is_badblock(rdev, sect, s,
2010 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
2011 sync_page_io(rdev, sect, s<<9,
2012 conf->tmppage, READ, false))
867868fb
N
2013 success = 1;
2014 else {
2015 d++;
8f19ccb2 2016 if (d == conf->raid_disks * 2)
867868fb
N
2017 d = 0;
2018 }
2019 } while (!success && d != read_disk);
2020
2021 if (!success) {
d8f05d29 2022 /* Cannot read from anywhere - mark it bad */
3cb03002 2023 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2024 if (!rdev_set_badblocks(rdev, sect, s, 0))
2025 md_error(mddev, rdev);
867868fb
N
2026 break;
2027 }
2028 /* write it back and re-read */
2029 start = d;
2030 while (d != read_disk) {
2031 if (d==0)
8f19ccb2 2032 d = conf->raid_disks * 2;
867868fb
N
2033 d--;
2034 rdev = conf->mirrors[d].rdev;
2035 if (rdev &&
d8f05d29
N
2036 test_bit(In_sync, &rdev->flags))
2037 r1_sync_page_io(rdev, sect, s,
2038 conf->tmppage, WRITE);
867868fb
N
2039 }
2040 d = start;
2041 while (d != read_disk) {
2042 char b[BDEVNAME_SIZE];
2043 if (d==0)
8f19ccb2 2044 d = conf->raid_disks * 2;
867868fb
N
2045 d--;
2046 rdev = conf->mirrors[d].rdev;
2047 if (rdev &&
2048 test_bit(In_sync, &rdev->flags)) {
d8f05d29
N
2049 if (r1_sync_page_io(rdev, sect, s,
2050 conf->tmppage, READ)) {
867868fb
N
2051 atomic_add(s, &rdev->corrected_errors);
2052 printk(KERN_INFO
9dd1e2fa 2053 "md/raid1:%s: read error corrected "
867868fb
N
2054 "(%d sectors at %llu on %s)\n",
2055 mdname(mddev), s,
969b755a
RD
2056 (unsigned long long)(sect +
2057 rdev->data_offset),
867868fb
N
2058 bdevname(rdev->bdev, b));
2059 }
2060 }
2061 }
2062 sectors -= s;
2063 sect += s;
2064 }
2065}
2066
cd5ff9a1
N
2067static void bi_complete(struct bio *bio, int error)
2068{
2069 complete((struct completion *)bio->bi_private);
2070}
2071
2072static int submit_bio_wait(int rw, struct bio *bio)
2073{
2074 struct completion event;
2075 rw |= REQ_SYNC;
2076
2077 init_completion(&event);
2078 bio->bi_private = &event;
2079 bio->bi_end_io = bi_complete;
2080 submit_bio(rw, bio);
2081 wait_for_completion(&event);
2082
2083 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2084}
2085
9f2c9d12 2086static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2087{
fd01b88c 2088 struct mddev *mddev = r1_bio->mddev;
e8096360 2089 struct r1conf *conf = mddev->private;
3cb03002 2090 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2091 int vcnt, idx;
2092 struct bio_vec *vec;
2093
2094 /* bio has the data to be written to device 'i' where
2095 * we just recently had a write error.
2096 * We repeatedly clone the bio and trim down to one block,
2097 * then try the write. Where the write fails we record
2098 * a bad block.
2099 * It is conceivable that the bio doesn't exactly align with
2100 * blocks. We must handle this somehow.
2101 *
2102 * We currently own a reference on the rdev.
2103 */
2104
2105 int block_sectors;
2106 sector_t sector;
2107 int sectors;
2108 int sect_to_write = r1_bio->sectors;
2109 int ok = 1;
2110
2111 if (rdev->badblocks.shift < 0)
2112 return 0;
2113
2114 block_sectors = 1 << rdev->badblocks.shift;
2115 sector = r1_bio->sector;
2116 sectors = ((sector + block_sectors)
2117 & ~(sector_t)(block_sectors - 1))
2118 - sector;
2119
2120 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2121 vcnt = r1_bio->behind_page_count;
2122 vec = r1_bio->behind_bvecs;
2123 idx = 0;
2124 while (vec[idx].bv_page == NULL)
2125 idx++;
2126 } else {
2127 vcnt = r1_bio->master_bio->bi_vcnt;
2128 vec = r1_bio->master_bio->bi_io_vec;
2129 idx = r1_bio->master_bio->bi_idx;
2130 }
2131 while (sect_to_write) {
2132 struct bio *wbio;
2133 if (sectors > sect_to_write)
2134 sectors = sect_to_write;
2135 /* Write at 'sector' for 'sectors'*/
2136
2137 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2138 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2139 wbio->bi_sector = r1_bio->sector;
2140 wbio->bi_rw = WRITE;
2141 wbio->bi_vcnt = vcnt;
2142 wbio->bi_size = r1_bio->sectors << 9;
2143 wbio->bi_idx = idx;
2144
2145 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2146 wbio->bi_sector += rdev->data_offset;
2147 wbio->bi_bdev = rdev->bdev;
2148 if (submit_bio_wait(WRITE, wbio) == 0)
2149 /* failure! */
2150 ok = rdev_set_badblocks(rdev, sector,
2151 sectors, 0)
2152 && ok;
2153
2154 bio_put(wbio);
2155 sect_to_write -= sectors;
2156 sector += sectors;
2157 sectors = block_sectors;
2158 }
2159 return ok;
2160}
2161
e8096360 2162static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2163{
2164 int m;
2165 int s = r1_bio->sectors;
8f19ccb2 2166 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2167 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2168 struct bio *bio = r1_bio->bios[m];
2169 if (bio->bi_end_io == NULL)
2170 continue;
2171 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2172 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2173 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce
N
2174 }
2175 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2176 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2177 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2178 md_error(conf->mddev, rdev);
2179 }
2180 }
2181 put_buf(r1_bio);
2182 md_done_sync(conf->mddev, s, 1);
2183}
2184
e8096360 2185static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2186{
2187 int m;
8f19ccb2 2188 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2189 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2190 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2191 rdev_clear_badblocks(rdev,
2192 r1_bio->sector,
c6563a8c 2193 r1_bio->sectors, 0);
62096bce
N
2194 rdev_dec_pending(rdev, conf->mddev);
2195 } else if (r1_bio->bios[m] != NULL) {
2196 /* This drive got a write error. We need to
2197 * narrow down and record precise write
2198 * errors.
2199 */
2200 if (!narrow_write_error(r1_bio, m)) {
2201 md_error(conf->mddev,
2202 conf->mirrors[m].rdev);
2203 /* an I/O failed, we can't clear the bitmap */
2204 set_bit(R1BIO_Degraded, &r1_bio->state);
2205 }
2206 rdev_dec_pending(conf->mirrors[m].rdev,
2207 conf->mddev);
2208 }
2209 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2210 close_write(r1_bio);
2211 raid_end_bio_io(r1_bio);
2212}
2213
e8096360 2214static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2215{
2216 int disk;
2217 int max_sectors;
fd01b88c 2218 struct mddev *mddev = conf->mddev;
62096bce
N
2219 struct bio *bio;
2220 char b[BDEVNAME_SIZE];
3cb03002 2221 struct md_rdev *rdev;
62096bce
N
2222
2223 clear_bit(R1BIO_ReadError, &r1_bio->state);
2224 /* we got a read error. Maybe the drive is bad. Maybe just
2225 * the block and we can fix it.
2226 * We freeze all other IO, and try reading the block from
2227 * other devices. When we find one, we re-write
2228 * and check it that fixes the read error.
2229 * This is all done synchronously while the array is
2230 * frozen
2231 */
2232 if (mddev->ro == 0) {
2233 freeze_array(conf);
2234 fix_read_error(conf, r1_bio->read_disk,
2235 r1_bio->sector, r1_bio->sectors);
2236 unfreeze_array(conf);
2237 } else
2238 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
7ad4d4a6 2239 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
62096bce
N
2240
2241 bio = r1_bio->bios[r1_bio->read_disk];
2242 bdevname(bio->bi_bdev, b);
2243read_more:
2244 disk = read_balance(conf, r1_bio, &max_sectors);
2245 if (disk == -1) {
2246 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2247 " read error for block %llu\n",
2248 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2249 raid_end_bio_io(r1_bio);
2250 } else {
2251 const unsigned long do_sync
2252 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2253 if (bio) {
2254 r1_bio->bios[r1_bio->read_disk] =
2255 mddev->ro ? IO_BLOCKED : NULL;
2256 bio_put(bio);
2257 }
2258 r1_bio->read_disk = disk;
2259 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2260 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2261 r1_bio->bios[r1_bio->read_disk] = bio;
2262 rdev = conf->mirrors[disk].rdev;
2263 printk_ratelimited(KERN_ERR
2264 "md/raid1:%s: redirecting sector %llu"
2265 " to other mirror: %s\n",
2266 mdname(mddev),
2267 (unsigned long long)r1_bio->sector,
2268 bdevname(rdev->bdev, b));
2269 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2270 bio->bi_bdev = rdev->bdev;
2271 bio->bi_end_io = raid1_end_read_request;
2272 bio->bi_rw = READ | do_sync;
2273 bio->bi_private = r1_bio;
2274 if (max_sectors < r1_bio->sectors) {
2275 /* Drat - have to split this up more */
2276 struct bio *mbio = r1_bio->master_bio;
2277 int sectors_handled = (r1_bio->sector + max_sectors
2278 - mbio->bi_sector);
2279 r1_bio->sectors = max_sectors;
2280 spin_lock_irq(&conf->device_lock);
2281 if (mbio->bi_phys_segments == 0)
2282 mbio->bi_phys_segments = 2;
2283 else
2284 mbio->bi_phys_segments++;
2285 spin_unlock_irq(&conf->device_lock);
2286 generic_make_request(bio);
2287 bio = NULL;
2288
2289 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2290
2291 r1_bio->master_bio = mbio;
2292 r1_bio->sectors = (mbio->bi_size >> 9)
2293 - sectors_handled;
2294 r1_bio->state = 0;
2295 set_bit(R1BIO_ReadError, &r1_bio->state);
2296 r1_bio->mddev = mddev;
2297 r1_bio->sector = mbio->bi_sector + sectors_handled;
2298
2299 goto read_more;
2300 } else
2301 generic_make_request(bio);
2302 }
2303}
2304
4ed8731d 2305static void raid1d(struct md_thread *thread)
1da177e4 2306{
4ed8731d 2307 struct mddev *mddev = thread->mddev;
9f2c9d12 2308 struct r1bio *r1_bio;
1da177e4 2309 unsigned long flags;
e8096360 2310 struct r1conf *conf = mddev->private;
1da177e4 2311 struct list_head *head = &conf->retry_list;
e1dfa0a2 2312 struct blk_plug plug;
1da177e4
LT
2313
2314 md_check_recovery(mddev);
e1dfa0a2
N
2315
2316 blk_start_plug(&plug);
1da177e4 2317 for (;;) {
191ea9b2 2318
0021b7bc 2319 flush_pending_writes(conf);
191ea9b2 2320
a35e63ef
N
2321 spin_lock_irqsave(&conf->device_lock, flags);
2322 if (list_empty(head)) {
2323 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2324 break;
a35e63ef 2325 }
9f2c9d12 2326 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2327 list_del(head->prev);
ddaf22ab 2328 conf->nr_queued--;
1da177e4
LT
2329 spin_unlock_irqrestore(&conf->device_lock, flags);
2330
2331 mddev = r1_bio->mddev;
070ec55d 2332 conf = mddev->private;
4367af55 2333 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2334 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2335 test_bit(R1BIO_WriteError, &r1_bio->state))
2336 handle_sync_write_finished(conf, r1_bio);
2337 else
4367af55 2338 sync_request_write(mddev, r1_bio);
cd5ff9a1 2339 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2340 test_bit(R1BIO_WriteError, &r1_bio->state))
2341 handle_write_finished(conf, r1_bio);
2342 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2343 handle_read_error(conf, r1_bio);
2344 else
d2eb35ac
N
2345 /* just a partial read to be scheduled from separate
2346 * context
2347 */
2348 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2349
1d9d5241 2350 cond_resched();
de393cde
N
2351 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2352 md_check_recovery(mddev);
1da177e4 2353 }
e1dfa0a2 2354 blk_finish_plug(&plug);
1da177e4
LT
2355}
2356
2357
e8096360 2358static int init_resync(struct r1conf *conf)
1da177e4
LT
2359{
2360 int buffs;
2361
2362 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2363 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2364 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2365 conf->poolinfo);
2366 if (!conf->r1buf_pool)
2367 return -ENOMEM;
2368 conf->next_resync = 0;
2369 return 0;
2370}
2371
2372/*
2373 * perform a "sync" on one "block"
2374 *
2375 * We need to make sure that no normal I/O request - particularly write
2376 * requests - conflict with active sync requests.
2377 *
2378 * This is achieved by tracking pending requests and a 'barrier' concept
2379 * that can be installed to exclude normal IO requests.
2380 */
2381
fd01b88c 2382static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 2383{
e8096360 2384 struct r1conf *conf = mddev->private;
9f2c9d12 2385 struct r1bio *r1_bio;
1da177e4
LT
2386 struct bio *bio;
2387 sector_t max_sector, nr_sectors;
3e198f78 2388 int disk = -1;
1da177e4 2389 int i;
3e198f78
N
2390 int wonly = -1;
2391 int write_targets = 0, read_targets = 0;
57dab0bd 2392 sector_t sync_blocks;
e3b9703e 2393 int still_degraded = 0;
06f60385
N
2394 int good_sectors = RESYNC_SECTORS;
2395 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2396
2397 if (!conf->r1buf_pool)
2398 if (init_resync(conf))
57afd89f 2399 return 0;
1da177e4 2400
58c0fed4 2401 max_sector = mddev->dev_sectors;
1da177e4 2402 if (sector_nr >= max_sector) {
191ea9b2
N
2403 /* If we aborted, we need to abort the
2404 * sync on the 'current' bitmap chunk (there will
2405 * only be one in raid1 resync.
2406 * We can find the current addess in mddev->curr_resync
2407 */
6a806c51
N
2408 if (mddev->curr_resync < max_sector) /* aborted */
2409 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2410 &sync_blocks, 1);
6a806c51 2411 else /* completed sync */
191ea9b2 2412 conf->fullsync = 0;
6a806c51
N
2413
2414 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2415 close_sync(conf);
2416 return 0;
2417 }
2418
07d84d10
N
2419 if (mddev->bitmap == NULL &&
2420 mddev->recovery_cp == MaxSector &&
6394cca5 2421 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2422 conf->fullsync == 0) {
2423 *skipped = 1;
2424 return max_sector - sector_nr;
2425 }
6394cca5
N
2426 /* before building a request, check if we can skip these blocks..
2427 * This call the bitmap_start_sync doesn't actually record anything
2428 */
e3b9703e 2429 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2430 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2431 /* We can skip this block, and probably several more */
2432 *skipped = 1;
2433 return sync_blocks;
2434 }
1da177e4 2435 /*
17999be4
N
2436 * If there is non-resync activity waiting for a turn,
2437 * and resync is going fast enough,
2438 * then let it though before starting on this new sync request.
1da177e4 2439 */
17999be4 2440 if (!go_faster && conf->nr_waiting)
1da177e4 2441 msleep_interruptible(1000);
17999be4 2442
b47490c9 2443 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2444 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4
N
2445 raise_barrier(conf);
2446
2447 conf->next_resync = sector_nr;
1da177e4 2448
3e198f78 2449 rcu_read_lock();
1da177e4 2450 /*
3e198f78
N
2451 * If we get a correctably read error during resync or recovery,
2452 * we might want to read from a different device. So we
2453 * flag all drives that could conceivably be read from for READ,
2454 * and any others (which will be non-In_sync devices) for WRITE.
2455 * If a read fails, we try reading from something else for which READ
2456 * is OK.
1da177e4 2457 */
1da177e4 2458
1da177e4
LT
2459 r1_bio->mddev = mddev;
2460 r1_bio->sector = sector_nr;
191ea9b2 2461 r1_bio->state = 0;
1da177e4 2462 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2463
8f19ccb2 2464 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2465 struct md_rdev *rdev;
1da177e4
LT
2466 bio = r1_bio->bios[i];
2467
2468 /* take from bio_init */
2469 bio->bi_next = NULL;
db8d9d35 2470 bio->bi_flags &= ~(BIO_POOL_MASK-1);
1da177e4 2471 bio->bi_flags |= 1 << BIO_UPTODATE;
802ba064 2472 bio->bi_rw = READ;
1da177e4
LT
2473 bio->bi_vcnt = 0;
2474 bio->bi_idx = 0;
2475 bio->bi_phys_segments = 0;
1da177e4
LT
2476 bio->bi_size = 0;
2477 bio->bi_end_io = NULL;
2478 bio->bi_private = NULL;
2479
3e198f78
N
2480 rdev = rcu_dereference(conf->mirrors[i].rdev);
2481 if (rdev == NULL ||
06f60385 2482 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2483 if (i < conf->raid_disks)
2484 still_degraded = 1;
3e198f78 2485 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2486 bio->bi_rw = WRITE;
2487 bio->bi_end_io = end_sync_write;
2488 write_targets ++;
3e198f78
N
2489 } else {
2490 /* may need to read from here */
06f60385
N
2491 sector_t first_bad = MaxSector;
2492 int bad_sectors;
2493
2494 if (is_badblock(rdev, sector_nr, good_sectors,
2495 &first_bad, &bad_sectors)) {
2496 if (first_bad > sector_nr)
2497 good_sectors = first_bad - sector_nr;
2498 else {
2499 bad_sectors -= (sector_nr - first_bad);
2500 if (min_bad == 0 ||
2501 min_bad > bad_sectors)
2502 min_bad = bad_sectors;
2503 }
2504 }
2505 if (sector_nr < first_bad) {
2506 if (test_bit(WriteMostly, &rdev->flags)) {
2507 if (wonly < 0)
2508 wonly = i;
2509 } else {
2510 if (disk < 0)
2511 disk = i;
2512 }
2513 bio->bi_rw = READ;
2514 bio->bi_end_io = end_sync_read;
2515 read_targets++;
d57368af
AL
2516 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2517 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2518 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2519 /*
2520 * The device is suitable for reading (InSync),
2521 * but has bad block(s) here. Let's try to correct them,
2522 * if we are doing resync or repair. Otherwise, leave
2523 * this device alone for this sync request.
2524 */
2525 bio->bi_rw = WRITE;
2526 bio->bi_end_io = end_sync_write;
2527 write_targets++;
3e198f78 2528 }
3e198f78 2529 }
06f60385
N
2530 if (bio->bi_end_io) {
2531 atomic_inc(&rdev->nr_pending);
2532 bio->bi_sector = sector_nr + rdev->data_offset;
2533 bio->bi_bdev = rdev->bdev;
2534 bio->bi_private = r1_bio;
2535 }
1da177e4 2536 }
3e198f78
N
2537 rcu_read_unlock();
2538 if (disk < 0)
2539 disk = wonly;
2540 r1_bio->read_disk = disk;
191ea9b2 2541
06f60385
N
2542 if (read_targets == 0 && min_bad > 0) {
2543 /* These sectors are bad on all InSync devices, so we
2544 * need to mark them bad on all write targets
2545 */
2546 int ok = 1;
8f19ccb2 2547 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2548 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2549 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2550 ok = rdev_set_badblocks(rdev, sector_nr,
2551 min_bad, 0
2552 ) && ok;
2553 }
2554 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2555 *skipped = 1;
2556 put_buf(r1_bio);
2557
2558 if (!ok) {
2559 /* Cannot record the badblocks, so need to
2560 * abort the resync.
2561 * If there are multiple read targets, could just
2562 * fail the really bad ones ???
2563 */
2564 conf->recovery_disabled = mddev->recovery_disabled;
2565 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2566 return 0;
2567 } else
2568 return min_bad;
2569
2570 }
2571 if (min_bad > 0 && min_bad < good_sectors) {
2572 /* only resync enough to reach the next bad->good
2573 * transition */
2574 good_sectors = min_bad;
2575 }
2576
3e198f78
N
2577 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2578 /* extra read targets are also write targets */
2579 write_targets += read_targets-1;
2580
2581 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2582 /* There is nowhere to write, so all non-sync
2583 * drives must be failed - so we are finished
2584 */
b7219ccb
N
2585 sector_t rv;
2586 if (min_bad > 0)
2587 max_sector = sector_nr + min_bad;
2588 rv = max_sector - sector_nr;
57afd89f 2589 *skipped = 1;
1da177e4 2590 put_buf(r1_bio);
1da177e4
LT
2591 return rv;
2592 }
2593
c6207277
N
2594 if (max_sector > mddev->resync_max)
2595 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2596 if (max_sector > sector_nr + good_sectors)
2597 max_sector = sector_nr + good_sectors;
1da177e4 2598 nr_sectors = 0;
289e99e8 2599 sync_blocks = 0;
1da177e4
LT
2600 do {
2601 struct page *page;
2602 int len = PAGE_SIZE;
2603 if (sector_nr + (len>>9) > max_sector)
2604 len = (max_sector - sector_nr) << 9;
2605 if (len == 0)
2606 break;
6a806c51
N
2607 if (sync_blocks == 0) {
2608 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2609 &sync_blocks, still_degraded) &&
2610 !conf->fullsync &&
2611 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2612 break;
9e77c485 2613 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2614 if ((len >> 9) > sync_blocks)
6a806c51 2615 len = sync_blocks<<9;
ab7a30c7 2616 }
191ea9b2 2617
8f19ccb2 2618 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2619 bio = r1_bio->bios[i];
2620 if (bio->bi_end_io) {
d11c171e 2621 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2622 if (bio_add_page(bio, page, len, 0) == 0) {
2623 /* stop here */
d11c171e 2624 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2625 while (i > 0) {
2626 i--;
2627 bio = r1_bio->bios[i];
6a806c51
N
2628 if (bio->bi_end_io==NULL)
2629 continue;
1da177e4
LT
2630 /* remove last page from this bio */
2631 bio->bi_vcnt--;
2632 bio->bi_size -= len;
2633 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2634 }
2635 goto bio_full;
2636 }
2637 }
2638 }
2639 nr_sectors += len>>9;
2640 sector_nr += len>>9;
191ea9b2 2641 sync_blocks -= (len>>9);
1da177e4
LT
2642 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2643 bio_full:
1da177e4
LT
2644 r1_bio->sectors = nr_sectors;
2645
d11c171e
N
2646 /* For a user-requested sync, we read all readable devices and do a
2647 * compare
2648 */
2649 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2650 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2651 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2652 bio = r1_bio->bios[i];
2653 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2654 read_targets--;
ddac7c7e 2655 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2656 generic_make_request(bio);
2657 }
2658 }
2659 } else {
2660 atomic_set(&r1_bio->remaining, 1);
2661 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2662 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2663 generic_make_request(bio);
1da177e4 2664
d11c171e 2665 }
1da177e4
LT
2666 return nr_sectors;
2667}
2668
fd01b88c 2669static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2670{
2671 if (sectors)
2672 return sectors;
2673
2674 return mddev->dev_sectors;
2675}
2676
e8096360 2677static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2678{
e8096360 2679 struct r1conf *conf;
709ae487 2680 int i;
0eaf822c 2681 struct raid1_info *disk;
3cb03002 2682 struct md_rdev *rdev;
709ae487 2683 int err = -ENOMEM;
1da177e4 2684
e8096360 2685 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2686 if (!conf)
709ae487 2687 goto abort;
1da177e4 2688
0eaf822c 2689 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2690 * mddev->raid_disks * 2,
1da177e4
LT
2691 GFP_KERNEL);
2692 if (!conf->mirrors)
709ae487 2693 goto abort;
1da177e4 2694
ddaf22ab
N
2695 conf->tmppage = alloc_page(GFP_KERNEL);
2696 if (!conf->tmppage)
709ae487 2697 goto abort;
ddaf22ab 2698
709ae487 2699 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2700 if (!conf->poolinfo)
709ae487 2701 goto abort;
8f19ccb2 2702 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2703 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2704 r1bio_pool_free,
2705 conf->poolinfo);
2706 if (!conf->r1bio_pool)
709ae487
N
2707 goto abort;
2708
ed9bfdf1 2709 conf->poolinfo->mddev = mddev;
1da177e4 2710
c19d5798 2711 err = -EINVAL;
e7e72bf6 2712 spin_lock_init(&conf->device_lock);
dafb20fa 2713 rdev_for_each(rdev, mddev) {
aba336bd 2714 struct request_queue *q;
709ae487 2715 int disk_idx = rdev->raid_disk;
1da177e4
LT
2716 if (disk_idx >= mddev->raid_disks
2717 || disk_idx < 0)
2718 continue;
c19d5798 2719 if (test_bit(Replacement, &rdev->flags))
02b898f2 2720 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2721 else
2722 disk = conf->mirrors + disk_idx;
1da177e4 2723
c19d5798
N
2724 if (disk->rdev)
2725 goto abort;
1da177e4 2726 disk->rdev = rdev;
aba336bd
N
2727 q = bdev_get_queue(rdev->bdev);
2728 if (q->merge_bvec_fn)
2729 mddev->merge_check_needed = 1;
1da177e4
LT
2730
2731 disk->head_position = 0;
12cee5a8 2732 disk->seq_start = MaxSector;
1da177e4
LT
2733 }
2734 conf->raid_disks = mddev->raid_disks;
2735 conf->mddev = mddev;
1da177e4 2736 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2737
2738 spin_lock_init(&conf->resync_lock);
17999be4 2739 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2740
191ea9b2 2741 bio_list_init(&conf->pending_bio_list);
34db0cd6 2742 conf->pending_count = 0;
d890fa2b 2743 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2744
c19d5798 2745 err = -EIO;
8f19ccb2 2746 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2747
2748 disk = conf->mirrors + i;
2749
c19d5798
N
2750 if (i < conf->raid_disks &&
2751 disk[conf->raid_disks].rdev) {
2752 /* This slot has a replacement. */
2753 if (!disk->rdev) {
2754 /* No original, just make the replacement
2755 * a recovering spare
2756 */
2757 disk->rdev =
2758 disk[conf->raid_disks].rdev;
2759 disk[conf->raid_disks].rdev = NULL;
2760 } else if (!test_bit(In_sync, &disk->rdev->flags))
2761 /* Original is not in_sync - bad */
2762 goto abort;
2763 }
2764
5fd6c1dc
N
2765 if (!disk->rdev ||
2766 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2767 disk->head_position = 0;
4f0a5e01
JB
2768 if (disk->rdev &&
2769 (disk->rdev->saved_raid_disk < 0))
918f0238 2770 conf->fullsync = 1;
be4d3280 2771 }
1da177e4 2772 }
709ae487 2773
709ae487 2774 err = -ENOMEM;
0232605d 2775 conf->thread = md_register_thread(raid1d, mddev, "raid1");
709ae487
N
2776 if (!conf->thread) {
2777 printk(KERN_ERR
9dd1e2fa 2778 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2779 mdname(mddev));
2780 goto abort;
11ce99e6 2781 }
1da177e4 2782
709ae487
N
2783 return conf;
2784
2785 abort:
2786 if (conf) {
2787 if (conf->r1bio_pool)
2788 mempool_destroy(conf->r1bio_pool);
2789 kfree(conf->mirrors);
2790 safe_put_page(conf->tmppage);
2791 kfree(conf->poolinfo);
2792 kfree(conf);
2793 }
2794 return ERR_PTR(err);
2795}
2796
5220ea1e 2797static int stop(struct mddev *mddev);
fd01b88c 2798static int run(struct mddev *mddev)
709ae487 2799{
e8096360 2800 struct r1conf *conf;
709ae487 2801 int i;
3cb03002 2802 struct md_rdev *rdev;
5220ea1e 2803 int ret;
2ff8cc2c 2804 bool discard_supported = false;
709ae487
N
2805
2806 if (mddev->level != 1) {
9dd1e2fa 2807 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2808 mdname(mddev), mddev->level);
2809 return -EIO;
2810 }
2811 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2812 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2813 mdname(mddev));
2814 return -EIO;
2815 }
1da177e4 2816 /*
709ae487
N
2817 * copy the already verified devices into our private RAID1
2818 * bookkeeping area. [whatever we allocate in run(),
2819 * should be freed in stop()]
1da177e4 2820 */
709ae487
N
2821 if (mddev->private == NULL)
2822 conf = setup_conf(mddev);
2823 else
2824 conf = mddev->private;
1da177e4 2825
709ae487
N
2826 if (IS_ERR(conf))
2827 return PTR_ERR(conf);
1da177e4 2828
c8dc9c65
JL
2829 if (mddev->queue)
2830 blk_queue_max_write_same_sectors(mddev->queue,
2831 mddev->chunk_sectors);
dafb20fa 2832 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2833 if (!mddev->gendisk)
2834 continue;
709ae487
N
2835 disk_stack_limits(mddev->gendisk, rdev->bdev,
2836 rdev->data_offset << 9);
2ff8cc2c
SL
2837 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2838 discard_supported = true;
1da177e4 2839 }
191ea9b2 2840
709ae487
N
2841 mddev->degraded = 0;
2842 for (i=0; i < conf->raid_disks; i++)
2843 if (conf->mirrors[i].rdev == NULL ||
2844 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2845 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2846 mddev->degraded++;
2847
2848 if (conf->raid_disks - mddev->degraded == 1)
2849 mddev->recovery_cp = MaxSector;
2850
8c6ac868 2851 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2852 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2853 " -- starting background reconstruction\n",
2854 mdname(mddev));
1da177e4 2855 printk(KERN_INFO
9dd1e2fa 2856 "md/raid1:%s: active with %d out of %d mirrors\n",
1da177e4
LT
2857 mdname(mddev), mddev->raid_disks - mddev->degraded,
2858 mddev->raid_disks);
709ae487 2859
1da177e4
LT
2860 /*
2861 * Ok, everything is just fine now
2862 */
709ae487
N
2863 mddev->thread = conf->thread;
2864 conf->thread = NULL;
2865 mddev->private = conf;
2866
1f403624 2867 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2868
1ed7242e
JB
2869 if (mddev->queue) {
2870 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2871 mddev->queue->backing_dev_info.congested_data = mddev;
6b740b8d 2872 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2ff8cc2c
SL
2873
2874 if (discard_supported)
2875 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2876 mddev->queue);
2877 else
2878 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2879 mddev->queue);
1ed7242e 2880 }
5220ea1e 2881
2882 ret = md_integrity_register(mddev);
2883 if (ret)
2884 stop(mddev);
2885 return ret;
1da177e4
LT
2886}
2887
fd01b88c 2888static int stop(struct mddev *mddev)
1da177e4 2889{
e8096360 2890 struct r1conf *conf = mddev->private;
4b6d287f 2891 struct bitmap *bitmap = mddev->bitmap;
4b6d287f
N
2892
2893 /* wait for behind writes to complete */
e555190d 2894 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
9dd1e2fa
N
2895 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2896 mdname(mddev));
4b6d287f 2897 /* need to kick something here to make sure I/O goes? */
e555190d
N
2898 wait_event(bitmap->behind_wait,
2899 atomic_read(&bitmap->behind_writes) == 0);
4b6d287f 2900 }
1da177e4 2901
409c57f3
N
2902 raise_barrier(conf);
2903 lower_barrier(conf);
2904
01f96c0a 2905 md_unregister_thread(&mddev->thread);
1da177e4
LT
2906 if (conf->r1bio_pool)
2907 mempool_destroy(conf->r1bio_pool);
990a8baf 2908 kfree(conf->mirrors);
0fea7ed8 2909 safe_put_page(conf->tmppage);
990a8baf 2910 kfree(conf->poolinfo);
1da177e4
LT
2911 kfree(conf);
2912 mddev->private = NULL;
2913 return 0;
2914}
2915
fd01b88c 2916static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2917{
2918 /* no resync is happening, and there is enough space
2919 * on all devices, so we can resize.
2920 * We need to make sure resync covers any new space.
2921 * If the array is shrinking we should possibly wait until
2922 * any io in the removed space completes, but it hardly seems
2923 * worth it.
2924 */
a4a6125a
N
2925 sector_t newsize = raid1_size(mddev, sectors, 0);
2926 if (mddev->external_size &&
2927 mddev->array_sectors > newsize)
b522adcd 2928 return -EINVAL;
a4a6125a
N
2929 if (mddev->bitmap) {
2930 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2931 if (ret)
2932 return ret;
2933 }
2934 md_set_array_sectors(mddev, newsize);
f233ea5c 2935 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 2936 revalidate_disk(mddev->gendisk);
b522adcd 2937 if (sectors > mddev->dev_sectors &&
b098636c 2938 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 2939 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
2940 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2941 }
b522adcd 2942 mddev->dev_sectors = sectors;
4b5c7ae8 2943 mddev->resync_max_sectors = sectors;
1da177e4
LT
2944 return 0;
2945}
2946
fd01b88c 2947static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
2948{
2949 /* We need to:
2950 * 1/ resize the r1bio_pool
2951 * 2/ resize conf->mirrors
2952 *
2953 * We allocate a new r1bio_pool if we can.
2954 * Then raise a device barrier and wait until all IO stops.
2955 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
2956 *
2957 * At the same time, we "pack" the devices so that all the missing
2958 * devices have the higher raid_disk numbers.
1da177e4
LT
2959 */
2960 mempool_t *newpool, *oldpool;
2961 struct pool_info *newpoolinfo;
0eaf822c 2962 struct raid1_info *newmirrors;
e8096360 2963 struct r1conf *conf = mddev->private;
63c70c4f 2964 int cnt, raid_disks;
c04be0aa 2965 unsigned long flags;
b5470dc5 2966 int d, d2, err;
1da177e4 2967
63c70c4f 2968 /* Cannot change chunk_size, layout, or level */
664e7c41 2969 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
2970 mddev->layout != mddev->new_layout ||
2971 mddev->level != mddev->new_level) {
664e7c41 2972 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
2973 mddev->new_layout = mddev->layout;
2974 mddev->new_level = mddev->level;
2975 return -EINVAL;
2976 }
2977
b5470dc5
DW
2978 err = md_allow_write(mddev);
2979 if (err)
2980 return err;
2a2275d6 2981
63c70c4f
N
2982 raid_disks = mddev->raid_disks + mddev->delta_disks;
2983
6ea9c07c
N
2984 if (raid_disks < conf->raid_disks) {
2985 cnt=0;
2986 for (d= 0; d < conf->raid_disks; d++)
2987 if (conf->mirrors[d].rdev)
2988 cnt++;
2989 if (cnt > raid_disks)
1da177e4 2990 return -EBUSY;
6ea9c07c 2991 }
1da177e4
LT
2992
2993 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2994 if (!newpoolinfo)
2995 return -ENOMEM;
2996 newpoolinfo->mddev = mddev;
8f19ccb2 2997 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
2998
2999 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3000 r1bio_pool_free, newpoolinfo);
3001 if (!newpool) {
3002 kfree(newpoolinfo);
3003 return -ENOMEM;
3004 }
0eaf822c 3005 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3006 GFP_KERNEL);
1da177e4
LT
3007 if (!newmirrors) {
3008 kfree(newpoolinfo);
3009 mempool_destroy(newpool);
3010 return -ENOMEM;
3011 }
1da177e4 3012
17999be4 3013 raise_barrier(conf);
1da177e4
LT
3014
3015 /* ok, everything is stopped */
3016 oldpool = conf->r1bio_pool;
3017 conf->r1bio_pool = newpool;
6ea9c07c 3018
a88aa786 3019 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3020 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3021 if (rdev && rdev->raid_disk != d2) {
36fad858 3022 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3023 rdev->raid_disk = d2;
36fad858
NK
3024 sysfs_unlink_rdev(mddev, rdev);
3025 if (sysfs_link_rdev(mddev, rdev))
a88aa786 3026 printk(KERN_WARNING
36fad858
NK
3027 "md/raid1:%s: cannot register rd%d\n",
3028 mdname(mddev), rdev->raid_disk);
6ea9c07c 3029 }
a88aa786
N
3030 if (rdev)
3031 newmirrors[d2++].rdev = rdev;
3032 }
1da177e4
LT
3033 kfree(conf->mirrors);
3034 conf->mirrors = newmirrors;
3035 kfree(conf->poolinfo);
3036 conf->poolinfo = newpoolinfo;
3037
c04be0aa 3038 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3039 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3040 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3041 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3042 mddev->delta_disks = 0;
1da177e4 3043
17999be4 3044 lower_barrier(conf);
1da177e4
LT
3045
3046 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3047 md_wakeup_thread(mddev->thread);
3048
3049 mempool_destroy(oldpool);
3050 return 0;
3051}
3052
fd01b88c 3053static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3054{
e8096360 3055 struct r1conf *conf = mddev->private;
36fa3063
N
3056
3057 switch(state) {
6eef4b21
N
3058 case 2: /* wake for suspend */
3059 wake_up(&conf->wait_barrier);
3060 break;
9e6603da 3061 case 1:
17999be4 3062 raise_barrier(conf);
36fa3063 3063 break;
9e6603da 3064 case 0:
17999be4 3065 lower_barrier(conf);
36fa3063
N
3066 break;
3067 }
36fa3063
N
3068}
3069
fd01b88c 3070static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3071{
3072 /* raid1 can take over:
3073 * raid5 with 2 devices, any layout or chunk size
3074 */
3075 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3076 struct r1conf *conf;
709ae487
N
3077 mddev->new_level = 1;
3078 mddev->new_layout = 0;
3079 mddev->new_chunk_sectors = 0;
3080 conf = setup_conf(mddev);
3081 if (!IS_ERR(conf))
3082 conf->barrier = 1;
3083 return conf;
3084 }
3085 return ERR_PTR(-EINVAL);
3086}
1da177e4 3087
84fc4b56 3088static struct md_personality raid1_personality =
1da177e4
LT
3089{
3090 .name = "raid1",
2604b703 3091 .level = 1,
1da177e4
LT
3092 .owner = THIS_MODULE,
3093 .make_request = make_request,
3094 .run = run,
3095 .stop = stop,
3096 .status = status,
3097 .error_handler = error,
3098 .hot_add_disk = raid1_add_disk,
3099 .hot_remove_disk= raid1_remove_disk,
3100 .spare_active = raid1_spare_active,
3101 .sync_request = sync_request,
3102 .resize = raid1_resize,
80c3a6ce 3103 .size = raid1_size,
63c70c4f 3104 .check_reshape = raid1_reshape,
36fa3063 3105 .quiesce = raid1_quiesce,
709ae487 3106 .takeover = raid1_takeover,
1da177e4
LT
3107};
3108
3109static int __init raid_init(void)
3110{
2604b703 3111 return register_md_personality(&raid1_personality);
1da177e4
LT
3112}
3113
3114static void raid_exit(void)
3115{
2604b703 3116 unregister_md_personality(&raid1_personality);
1da177e4
LT
3117}
3118
3119module_init(raid_init);
3120module_exit(raid_exit);
3121MODULE_LICENSE("GPL");
0efb9e61 3122MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3123MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3124MODULE_ALIAS("md-raid1");
2604b703 3125MODULE_ALIAS("md-level-1");
34db0cd6
N
3126
3127module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.845243 seconds and 5 git commands to generate.