Read from the first device when an area is resyncing
[deliverable/linux.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
473e87ce
JB
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
1da177e4 68
79ef3a8a 69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
e8096360 71static void lower_barrier(struct r1conf *conf);
1da177e4 72
dd0fc66f 73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
74{
75 struct pool_info *pi = data;
9f2c9d12 76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 79 return kzalloc(size, gfp_flags);
1da177e4
LT
80}
81
82static void r1bio_pool_free(void *r1_bio, void *data)
83{
84 kfree(r1_bio);
85}
86
87#define RESYNC_BLOCK_SIZE (64*1024)
8e005f7c 88#define RESYNC_DEPTH 32
1da177e4
LT
89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
8e005f7c 91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
1da177e4 94
dd0fc66f 95static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
96{
97 struct pool_info *pi = data;
9f2c9d12 98 struct r1bio *r1_bio;
1da177e4 99 struct bio *bio;
da1aab3d 100 int need_pages;
1da177e4
LT
101 int i, j;
102
103 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 104 if (!r1_bio)
1da177e4 105 return NULL;
1da177e4
LT
106
107 /*
108 * Allocate bios : 1 for reading, n-1 for writing
109 */
110 for (j = pi->raid_disks ; j-- ; ) {
6746557f 111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
112 if (!bio)
113 goto out_free_bio;
114 r1_bio->bios[j] = bio;
115 }
116 /*
117 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
118 * the first bio.
119 * If this is a user-requested check/repair, allocate
120 * RESYNC_PAGES for each bio.
1da177e4 121 */
d11c171e 122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 123 need_pages = pi->raid_disks;
d11c171e 124 else
da1aab3d
N
125 need_pages = 1;
126 for (j = 0; j < need_pages; j++) {
d11c171e 127 bio = r1_bio->bios[j];
a0787606 128 bio->bi_vcnt = RESYNC_PAGES;
d11c171e 129
a0787606 130 if (bio_alloc_pages(bio, gfp_flags))
da1aab3d 131 goto out_free_pages;
d11c171e
N
132 }
133 /* If not user-requests, copy the page pointers to all bios */
134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 for (i=0; i<RESYNC_PAGES ; i++)
136 for (j=1; j<pi->raid_disks; j++)
137 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
139 }
140
141 r1_bio->master_bio = NULL;
142
143 return r1_bio;
144
da1aab3d
N
145out_free_pages:
146 while (--j >= 0) {
147 struct bio_vec *bv;
148
149 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 __free_page(bv->bv_page);
151 }
152
1da177e4 153out_free_bio:
8f19ccb2 154 while (++j < pi->raid_disks)
1da177e4
LT
155 bio_put(r1_bio->bios[j]);
156 r1bio_pool_free(r1_bio, data);
157 return NULL;
158}
159
160static void r1buf_pool_free(void *__r1_bio, void *data)
161{
162 struct pool_info *pi = data;
d11c171e 163 int i,j;
9f2c9d12 164 struct r1bio *r1bio = __r1_bio;
1da177e4 165
d11c171e
N
166 for (i = 0; i < RESYNC_PAGES; i++)
167 for (j = pi->raid_disks; j-- ;) {
168 if (j == 0 ||
169 r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 172 }
1da177e4
LT
173 for (i=0 ; i < pi->raid_disks; i++)
174 bio_put(r1bio->bios[i]);
175
176 r1bio_pool_free(r1bio, data);
177}
178
e8096360 179static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
180{
181 int i;
182
8f19ccb2 183 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 184 struct bio **bio = r1_bio->bios + i;
4367af55 185 if (!BIO_SPECIAL(*bio))
1da177e4
LT
186 bio_put(*bio);
187 *bio = NULL;
188 }
189}
190
9f2c9d12 191static void free_r1bio(struct r1bio *r1_bio)
1da177e4 192{
e8096360 193 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 194
1da177e4
LT
195 put_all_bios(conf, r1_bio);
196 mempool_free(r1_bio, conf->r1bio_pool);
197}
198
9f2c9d12 199static void put_buf(struct r1bio *r1_bio)
1da177e4 200{
e8096360 201 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
202 int i;
203
8f19ccb2 204 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
205 struct bio *bio = r1_bio->bios[i];
206 if (bio->bi_end_io)
207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 }
1da177e4
LT
209
210 mempool_free(r1_bio, conf->r1buf_pool);
211
17999be4 212 lower_barrier(conf);
1da177e4
LT
213}
214
9f2c9d12 215static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
216{
217 unsigned long flags;
fd01b88c 218 struct mddev *mddev = r1_bio->mddev;
e8096360 219 struct r1conf *conf = mddev->private;
1da177e4
LT
220
221 spin_lock_irqsave(&conf->device_lock, flags);
222 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 223 conf->nr_queued ++;
1da177e4
LT
224 spin_unlock_irqrestore(&conf->device_lock, flags);
225
17999be4 226 wake_up(&conf->wait_barrier);
1da177e4
LT
227 md_wakeup_thread(mddev->thread);
228}
229
230/*
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
234 */
9f2c9d12 235static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
236{
237 struct bio *bio = r1_bio->master_bio;
238 int done;
e8096360 239 struct r1conf *conf = r1_bio->mddev->private;
79ef3a8a 240 sector_t start_next_window = r1_bio->start_next_window;
4f024f37 241 sector_t bi_sector = bio->bi_iter.bi_sector;
d2eb35ac
N
242
243 if (bio->bi_phys_segments) {
244 unsigned long flags;
245 spin_lock_irqsave(&conf->device_lock, flags);
246 bio->bi_phys_segments--;
247 done = (bio->bi_phys_segments == 0);
248 spin_unlock_irqrestore(&conf->device_lock, flags);
79ef3a8a 249 /*
250 * make_request() might be waiting for
251 * bi_phys_segments to decrease
252 */
253 wake_up(&conf->wait_barrier);
d2eb35ac
N
254 } else
255 done = 1;
256
257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 if (done) {
260 bio_endio(bio, 0);
261 /*
262 * Wake up any possible resync thread that waits for the device
263 * to go idle.
264 */
79ef3a8a 265 allow_barrier(conf, start_next_window, bi_sector);
d2eb35ac
N
266 }
267}
268
9f2c9d12 269static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
270{
271 struct bio *bio = r1_bio->master_bio;
272
4b6d287f
N
273 /* if nobody has done the final endio yet, do it now */
274 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
277 (unsigned long long) bio->bi_iter.bi_sector,
278 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 279
d2eb35ac 280 call_bio_endio(r1_bio);
4b6d287f 281 }
1da177e4
LT
282 free_r1bio(r1_bio);
283}
284
285/*
286 * Update disk head position estimator based on IRQ completion info.
287 */
9f2c9d12 288static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 289{
e8096360 290 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
291
292 conf->mirrors[disk].head_position =
293 r1_bio->sector + (r1_bio->sectors);
294}
295
ba3ae3be
NK
296/*
297 * Find the disk number which triggered given bio
298 */
9f2c9d12 299static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
300{
301 int mirror;
30194636
N
302 struct r1conf *conf = r1_bio->mddev->private;
303 int raid_disks = conf->raid_disks;
ba3ae3be 304
8f19ccb2 305 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
306 if (r1_bio->bios[mirror] == bio)
307 break;
308
8f19ccb2 309 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
310 update_head_pos(mirror, r1_bio);
311
312 return mirror;
313}
314
6712ecf8 315static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
316{
317 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 318 struct r1bio *r1_bio = bio->bi_private;
1da177e4 319 int mirror;
e8096360 320 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 321
1da177e4
LT
322 mirror = r1_bio->read_disk;
323 /*
324 * this branch is our 'one mirror IO has finished' event handler:
325 */
ddaf22ab
N
326 update_head_pos(mirror, r1_bio);
327
dd00a99e
N
328 if (uptodate)
329 set_bit(R1BIO_Uptodate, &r1_bio->state);
330 else {
331 /* If all other devices have failed, we want to return
332 * the error upwards rather than fail the last device.
333 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 334 */
dd00a99e
N
335 unsigned long flags;
336 spin_lock_irqsave(&conf->device_lock, flags);
337 if (r1_bio->mddev->degraded == conf->raid_disks ||
338 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340 uptodate = 1;
341 spin_unlock_irqrestore(&conf->device_lock, flags);
342 }
1da177e4 343
7ad4d4a6 344 if (uptodate) {
1da177e4 345 raid_end_bio_io(r1_bio);
7ad4d4a6
N
346 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 } else {
1da177e4
LT
348 /*
349 * oops, read error:
350 */
351 char b[BDEVNAME_SIZE];
8bda470e
CD
352 printk_ratelimited(
353 KERN_ERR "md/raid1:%s: %s: "
354 "rescheduling sector %llu\n",
355 mdname(conf->mddev),
356 bdevname(conf->mirrors[mirror].rdev->bdev,
357 b),
358 (unsigned long long)r1_bio->sector);
d2eb35ac 359 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 360 reschedule_retry(r1_bio);
7ad4d4a6 361 /* don't drop the reference on read_disk yet */
1da177e4 362 }
1da177e4
LT
363}
364
9f2c9d12 365static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
366{
367 /* it really is the end of this request */
368 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 /* free extra copy of the data pages */
370 int i = r1_bio->behind_page_count;
371 while (i--)
372 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 kfree(r1_bio->behind_bvecs);
374 r1_bio->behind_bvecs = NULL;
375 }
376 /* clear the bitmap if all writes complete successfully */
377 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 r1_bio->sectors,
379 !test_bit(R1BIO_Degraded, &r1_bio->state),
380 test_bit(R1BIO_BehindIO, &r1_bio->state));
381 md_write_end(r1_bio->mddev);
382}
383
9f2c9d12 384static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 385{
cd5ff9a1
N
386 if (!atomic_dec_and_test(&r1_bio->remaining))
387 return;
388
389 if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 reschedule_retry(r1_bio);
391 else {
392 close_write(r1_bio);
4367af55
N
393 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 reschedule_retry(r1_bio);
395 else
396 raid_end_bio_io(r1_bio);
4e78064f
N
397 }
398}
399
6712ecf8 400static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
401{
402 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 403 struct r1bio *r1_bio = bio->bi_private;
a9701a30 404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 405 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 406 struct bio *to_put = NULL;
1da177e4 407
ba3ae3be 408 mirror = find_bio_disk(r1_bio, bio);
1da177e4 409
e9c7469b
TH
410 /*
411 * 'one mirror IO has finished' event handler:
412 */
e9c7469b 413 if (!uptodate) {
cd5ff9a1
N
414 set_bit(WriteErrorSeen,
415 &conf->mirrors[mirror].rdev->flags);
19d67169
N
416 if (!test_and_set_bit(WantReplacement,
417 &conf->mirrors[mirror].rdev->flags))
418 set_bit(MD_RECOVERY_NEEDED, &
419 conf->mddev->recovery);
420
cd5ff9a1 421 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 422 } else {
1da177e4 423 /*
e9c7469b
TH
424 * Set R1BIO_Uptodate in our master bio, so that we
425 * will return a good error code for to the higher
426 * levels even if IO on some other mirrored buffer
427 * fails.
428 *
429 * The 'master' represents the composite IO operation
430 * to user-side. So if something waits for IO, then it
431 * will wait for the 'master' bio.
1da177e4 432 */
4367af55
N
433 sector_t first_bad;
434 int bad_sectors;
435
cd5ff9a1
N
436 r1_bio->bios[mirror] = NULL;
437 to_put = bio;
3056e3ae
AL
438 /*
439 * Do not set R1BIO_Uptodate if the current device is
440 * rebuilding or Faulty. This is because we cannot use
441 * such device for properly reading the data back (we could
442 * potentially use it, if the current write would have felt
443 * before rdev->recovery_offset, but for simplicity we don't
444 * check this here.
445 */
446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 449
4367af55
N
450 /* Maybe we can clear some bad blocks. */
451 if (is_badblock(conf->mirrors[mirror].rdev,
452 r1_bio->sector, r1_bio->sectors,
453 &first_bad, &bad_sectors)) {
454 r1_bio->bios[mirror] = IO_MADE_GOOD;
455 set_bit(R1BIO_MadeGood, &r1_bio->state);
456 }
457 }
458
e9c7469b
TH
459 if (behind) {
460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 atomic_dec(&r1_bio->behind_remaining);
462
463 /*
464 * In behind mode, we ACK the master bio once the I/O
465 * has safely reached all non-writemostly
466 * disks. Setting the Returned bit ensures that this
467 * gets done only once -- we don't ever want to return
468 * -EIO here, instead we'll wait
469 */
470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 /* Maybe we can return now */
473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
475 pr_debug("raid1: behind end write sectors"
476 " %llu-%llu\n",
4f024f37
KO
477 (unsigned long long) mbio->bi_iter.bi_sector,
478 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 479 call_bio_endio(r1_bio);
4b6d287f
N
480 }
481 }
482 }
4367af55
N
483 if (r1_bio->bios[mirror] == NULL)
484 rdev_dec_pending(conf->mirrors[mirror].rdev,
485 conf->mddev);
e9c7469b 486
1da177e4 487 /*
1da177e4
LT
488 * Let's see if all mirrored write operations have finished
489 * already.
490 */
af6d7b76 491 r1_bio_write_done(r1_bio);
c70810b3 492
04b857f7
N
493 if (to_put)
494 bio_put(to_put);
1da177e4
LT
495}
496
1da177e4
LT
497/*
498 * This routine returns the disk from which the requested read should
499 * be done. There is a per-array 'next expected sequential IO' sector
500 * number - if this matches on the next IO then we use the last disk.
501 * There is also a per-disk 'last know head position' sector that is
502 * maintained from IRQ contexts, both the normal and the resync IO
503 * completion handlers update this position correctly. If there is no
504 * perfect sequential match then we pick the disk whose head is closest.
505 *
506 * If there are 2 mirrors in the same 2 devices, performance degrades
507 * because position is mirror, not device based.
508 *
509 * The rdev for the device selected will have nr_pending incremented.
510 */
e8096360 511static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 512{
af3a2cd6 513 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
514 int sectors;
515 int best_good_sectors;
9dedf603
SL
516 int best_disk, best_dist_disk, best_pending_disk;
517 int has_nonrot_disk;
be4d3280 518 int disk;
76073054 519 sector_t best_dist;
9dedf603 520 unsigned int min_pending;
3cb03002 521 struct md_rdev *rdev;
f3ac8bf7 522 int choose_first;
12cee5a8 523 int choose_next_idle;
1da177e4
LT
524
525 rcu_read_lock();
526 /*
8ddf9efe 527 * Check if we can balance. We can balance on the whole
1da177e4
LT
528 * device if no resync is going on, or below the resync window.
529 * We take the first readable disk when above the resync window.
530 */
531 retry:
d2eb35ac 532 sectors = r1_bio->sectors;
76073054 533 best_disk = -1;
9dedf603 534 best_dist_disk = -1;
76073054 535 best_dist = MaxSector;
9dedf603
SL
536 best_pending_disk = -1;
537 min_pending = UINT_MAX;
d2eb35ac 538 best_good_sectors = 0;
9dedf603 539 has_nonrot_disk = 0;
12cee5a8 540 choose_next_idle = 0;
d2eb35ac 541
7d49ffcf
GR
542 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
543 (mddev_is_clustered(conf->mddev) &&
544 md_cluster_ops->area_resyncing(conf->mddev, this_sector,
545 this_sector + sectors)))
546 choose_first = 1;
547 else
548 choose_first = 0;
1da177e4 549
be4d3280 550 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 551 sector_t dist;
d2eb35ac
N
552 sector_t first_bad;
553 int bad_sectors;
9dedf603 554 unsigned int pending;
12cee5a8 555 bool nonrot;
d2eb35ac 556
f3ac8bf7
N
557 rdev = rcu_dereference(conf->mirrors[disk].rdev);
558 if (r1_bio->bios[disk] == IO_BLOCKED
559 || rdev == NULL
6b740b8d 560 || test_bit(Unmerged, &rdev->flags)
76073054 561 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 562 continue;
76073054
N
563 if (!test_bit(In_sync, &rdev->flags) &&
564 rdev->recovery_offset < this_sector + sectors)
1da177e4 565 continue;
76073054
N
566 if (test_bit(WriteMostly, &rdev->flags)) {
567 /* Don't balance among write-mostly, just
568 * use the first as a last resort */
307729c8
N
569 if (best_disk < 0) {
570 if (is_badblock(rdev, this_sector, sectors,
571 &first_bad, &bad_sectors)) {
572 if (first_bad < this_sector)
573 /* Cannot use this */
574 continue;
575 best_good_sectors = first_bad - this_sector;
576 } else
577 best_good_sectors = sectors;
76073054 578 best_disk = disk;
307729c8 579 }
76073054
N
580 continue;
581 }
582 /* This is a reasonable device to use. It might
583 * even be best.
584 */
d2eb35ac
N
585 if (is_badblock(rdev, this_sector, sectors,
586 &first_bad, &bad_sectors)) {
587 if (best_dist < MaxSector)
588 /* already have a better device */
589 continue;
590 if (first_bad <= this_sector) {
591 /* cannot read here. If this is the 'primary'
592 * device, then we must not read beyond
593 * bad_sectors from another device..
594 */
595 bad_sectors -= (this_sector - first_bad);
596 if (choose_first && sectors > bad_sectors)
597 sectors = bad_sectors;
598 if (best_good_sectors > sectors)
599 best_good_sectors = sectors;
600
601 } else {
602 sector_t good_sectors = first_bad - this_sector;
603 if (good_sectors > best_good_sectors) {
604 best_good_sectors = good_sectors;
605 best_disk = disk;
606 }
607 if (choose_first)
608 break;
609 }
610 continue;
611 } else
612 best_good_sectors = sectors;
613
12cee5a8
SL
614 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
615 has_nonrot_disk |= nonrot;
9dedf603 616 pending = atomic_read(&rdev->nr_pending);
76073054 617 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 618 if (choose_first) {
76073054 619 best_disk = disk;
1da177e4
LT
620 break;
621 }
12cee5a8
SL
622 /* Don't change to another disk for sequential reads */
623 if (conf->mirrors[disk].next_seq_sect == this_sector
624 || dist == 0) {
625 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
626 struct raid1_info *mirror = &conf->mirrors[disk];
627
628 best_disk = disk;
629 /*
630 * If buffered sequential IO size exceeds optimal
631 * iosize, check if there is idle disk. If yes, choose
632 * the idle disk. read_balance could already choose an
633 * idle disk before noticing it's a sequential IO in
634 * this disk. This doesn't matter because this disk
635 * will idle, next time it will be utilized after the
636 * first disk has IO size exceeds optimal iosize. In
637 * this way, iosize of the first disk will be optimal
638 * iosize at least. iosize of the second disk might be
639 * small, but not a big deal since when the second disk
640 * starts IO, the first disk is likely still busy.
641 */
642 if (nonrot && opt_iosize > 0 &&
643 mirror->seq_start != MaxSector &&
644 mirror->next_seq_sect > opt_iosize &&
645 mirror->next_seq_sect - opt_iosize >=
646 mirror->seq_start) {
647 choose_next_idle = 1;
648 continue;
649 }
650 break;
651 }
652 /* If device is idle, use it */
653 if (pending == 0) {
654 best_disk = disk;
655 break;
656 }
657
658 if (choose_next_idle)
659 continue;
9dedf603
SL
660
661 if (min_pending > pending) {
662 min_pending = pending;
663 best_pending_disk = disk;
664 }
665
76073054
N
666 if (dist < best_dist) {
667 best_dist = dist;
9dedf603 668 best_dist_disk = disk;
1da177e4 669 }
f3ac8bf7 670 }
1da177e4 671
9dedf603
SL
672 /*
673 * If all disks are rotational, choose the closest disk. If any disk is
674 * non-rotational, choose the disk with less pending request even the
675 * disk is rotational, which might/might not be optimal for raids with
676 * mixed ratation/non-rotational disks depending on workload.
677 */
678 if (best_disk == -1) {
679 if (has_nonrot_disk)
680 best_disk = best_pending_disk;
681 else
682 best_disk = best_dist_disk;
683 }
684
76073054
N
685 if (best_disk >= 0) {
686 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
687 if (!rdev)
688 goto retry;
689 atomic_inc(&rdev->nr_pending);
76073054 690 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
691 /* cannot risk returning a device that failed
692 * before we inc'ed nr_pending
693 */
03c902e1 694 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
695 goto retry;
696 }
d2eb35ac 697 sectors = best_good_sectors;
12cee5a8
SL
698
699 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
700 conf->mirrors[best_disk].seq_start = this_sector;
701
be4d3280 702 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
703 }
704 rcu_read_unlock();
d2eb35ac 705 *max_sectors = sectors;
1da177e4 706
76073054 707 return best_disk;
1da177e4
LT
708}
709
64590f45 710static int raid1_mergeable_bvec(struct mddev *mddev,
6b740b8d
N
711 struct bvec_merge_data *bvm,
712 struct bio_vec *biovec)
713{
6b740b8d
N
714 struct r1conf *conf = mddev->private;
715 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
716 int max = biovec->bv_len;
717
718 if (mddev->merge_check_needed) {
719 int disk;
720 rcu_read_lock();
721 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
722 struct md_rdev *rdev = rcu_dereference(
723 conf->mirrors[disk].rdev);
724 if (rdev && !test_bit(Faulty, &rdev->flags)) {
725 struct request_queue *q =
726 bdev_get_queue(rdev->bdev);
727 if (q->merge_bvec_fn) {
728 bvm->bi_sector = sector +
729 rdev->data_offset;
730 bvm->bi_bdev = rdev->bdev;
731 max = min(max, q->merge_bvec_fn(
732 q, bvm, biovec));
733 }
734 }
735 }
736 rcu_read_unlock();
737 }
738 return max;
739
740}
741
5c675f83 742static int raid1_congested(struct mddev *mddev, int bits)
0d129228 743{
e8096360 744 struct r1conf *conf = mddev->private;
0d129228
N
745 int i, ret = 0;
746
34db0cd6
N
747 if ((bits & (1 << BDI_async_congested)) &&
748 conf->pending_count >= max_queued_requests)
749 return 1;
750
0d129228 751 rcu_read_lock();
f53e29fc 752 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 753 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 754 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 755 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 756
1ed7242e
JB
757 BUG_ON(!q);
758
0d129228
N
759 /* Note the '|| 1' - when read_balance prefers
760 * non-congested targets, it can be removed
761 */
91a9e99d 762 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
763 ret |= bdi_congested(&q->backing_dev_info, bits);
764 else
765 ret &= bdi_congested(&q->backing_dev_info, bits);
766 }
767 }
768 rcu_read_unlock();
769 return ret;
770}
0d129228 771
e8096360 772static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
773{
774 /* Any writes that have been queued but are awaiting
775 * bitmap updates get flushed here.
a35e63ef 776 */
a35e63ef
N
777 spin_lock_irq(&conf->device_lock);
778
779 if (conf->pending_bio_list.head) {
780 struct bio *bio;
781 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 782 conf->pending_count = 0;
a35e63ef
N
783 spin_unlock_irq(&conf->device_lock);
784 /* flush any pending bitmap writes to
785 * disk before proceeding w/ I/O */
786 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 787 wake_up(&conf->wait_barrier);
a35e63ef
N
788
789 while (bio) { /* submit pending writes */
790 struct bio *next = bio->bi_next;
791 bio->bi_next = NULL;
2ff8cc2c
SL
792 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
793 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
794 /* Just ignore it */
795 bio_endio(bio, 0);
796 else
797 generic_make_request(bio);
a35e63ef
N
798 bio = next;
799 }
a35e63ef
N
800 } else
801 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
802}
803
17999be4
N
804/* Barriers....
805 * Sometimes we need to suspend IO while we do something else,
806 * either some resync/recovery, or reconfigure the array.
807 * To do this we raise a 'barrier'.
808 * The 'barrier' is a counter that can be raised multiple times
809 * to count how many activities are happening which preclude
810 * normal IO.
811 * We can only raise the barrier if there is no pending IO.
812 * i.e. if nr_pending == 0.
813 * We choose only to raise the barrier if no-one is waiting for the
814 * barrier to go down. This means that as soon as an IO request
815 * is ready, no other operations which require a barrier will start
816 * until the IO request has had a chance.
817 *
818 * So: regular IO calls 'wait_barrier'. When that returns there
819 * is no backgroup IO happening, It must arrange to call
820 * allow_barrier when it has finished its IO.
821 * backgroup IO calls must call raise_barrier. Once that returns
822 * there is no normal IO happeing. It must arrange to call
823 * lower_barrier when the particular background IO completes.
1da177e4 824 */
c2fd4c94 825static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4
LT
826{
827 spin_lock_irq(&conf->resync_lock);
17999be4
N
828
829 /* Wait until no block IO is waiting */
830 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
eed8c02e 831 conf->resync_lock);
17999be4
N
832
833 /* block any new IO from starting */
834 conf->barrier++;
c2fd4c94 835 conf->next_resync = sector_nr;
17999be4 836
79ef3a8a 837 /* For these conditions we must wait:
838 * A: while the array is in frozen state
839 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
840 * the max count which allowed.
841 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
842 * next resync will reach to the window which normal bios are
843 * handling.
2f73d3c5 844 * D: while there are any active requests in the current window.
79ef3a8a 845 */
17999be4 846 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 847 !conf->array_frozen &&
79ef3a8a 848 conf->barrier < RESYNC_DEPTH &&
2f73d3c5 849 conf->current_window_requests == 0 &&
79ef3a8a 850 (conf->start_next_window >=
851 conf->next_resync + RESYNC_SECTORS),
eed8c02e 852 conf->resync_lock);
17999be4 853
34e97f17 854 conf->nr_pending++;
17999be4
N
855 spin_unlock_irq(&conf->resync_lock);
856}
857
e8096360 858static void lower_barrier(struct r1conf *conf)
17999be4
N
859{
860 unsigned long flags;
709ae487 861 BUG_ON(conf->barrier <= 0);
17999be4
N
862 spin_lock_irqsave(&conf->resync_lock, flags);
863 conf->barrier--;
34e97f17 864 conf->nr_pending--;
17999be4
N
865 spin_unlock_irqrestore(&conf->resync_lock, flags);
866 wake_up(&conf->wait_barrier);
867}
868
79ef3a8a 869static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
17999be4 870{
79ef3a8a 871 bool wait = false;
872
873 if (conf->array_frozen || !bio)
874 wait = true;
875 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
23554960
N
876 if ((conf->mddev->curr_resync_completed
877 >= bio_end_sector(bio)) ||
878 (conf->next_resync + NEXT_NORMALIO_DISTANCE
879 <= bio->bi_iter.bi_sector))
79ef3a8a 880 wait = false;
881 else
882 wait = true;
883 }
884
885 return wait;
886}
887
888static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
889{
890 sector_t sector = 0;
891
17999be4 892 spin_lock_irq(&conf->resync_lock);
79ef3a8a 893 if (need_to_wait_for_sync(conf, bio)) {
17999be4 894 conf->nr_waiting++;
d6b42dcb
N
895 /* Wait for the barrier to drop.
896 * However if there are already pending
897 * requests (preventing the barrier from
898 * rising completely), and the
5965b642 899 * per-process bio queue isn't empty,
d6b42dcb 900 * then don't wait, as we need to empty
5965b642
N
901 * that queue to allow conf->start_next_window
902 * to increase.
d6b42dcb
N
903 */
904 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 905 !conf->array_frozen &&
906 (!conf->barrier ||
5965b642
N
907 ((conf->start_next_window <
908 conf->next_resync + RESYNC_SECTORS) &&
909 current->bio_list &&
910 !bio_list_empty(current->bio_list))),
eed8c02e 911 conf->resync_lock);
17999be4 912 conf->nr_waiting--;
1da177e4 913 }
79ef3a8a 914
915 if (bio && bio_data_dir(bio) == WRITE) {
2f73d3c5 916 if (bio->bi_iter.bi_sector >=
23554960 917 conf->mddev->curr_resync_completed) {
79ef3a8a 918 if (conf->start_next_window == MaxSector)
919 conf->start_next_window =
920 conf->next_resync +
921 NEXT_NORMALIO_DISTANCE;
922
923 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
4f024f37 924 <= bio->bi_iter.bi_sector)
79ef3a8a 925 conf->next_window_requests++;
926 else
927 conf->current_window_requests++;
79ef3a8a 928 sector = conf->start_next_window;
41a336e0 929 }
79ef3a8a 930 }
931
17999be4 932 conf->nr_pending++;
1da177e4 933 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 934 return sector;
1da177e4
LT
935}
936
79ef3a8a 937static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
938 sector_t bi_sector)
17999be4
N
939{
940 unsigned long flags;
79ef3a8a 941
17999be4
N
942 spin_lock_irqsave(&conf->resync_lock, flags);
943 conf->nr_pending--;
79ef3a8a 944 if (start_next_window) {
945 if (start_next_window == conf->start_next_window) {
946 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
947 <= bi_sector)
948 conf->next_window_requests--;
949 else
950 conf->current_window_requests--;
951 } else
952 conf->current_window_requests--;
953
954 if (!conf->current_window_requests) {
955 if (conf->next_window_requests) {
956 conf->current_window_requests =
957 conf->next_window_requests;
958 conf->next_window_requests = 0;
959 conf->start_next_window +=
960 NEXT_NORMALIO_DISTANCE;
961 } else
962 conf->start_next_window = MaxSector;
963 }
964 }
17999be4
N
965 spin_unlock_irqrestore(&conf->resync_lock, flags);
966 wake_up(&conf->wait_barrier);
967}
968
e2d59925 969static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab
N
970{
971 /* stop syncio and normal IO and wait for everything to
972 * go quite.
b364e3d0 973 * We wait until nr_pending match nr_queued+extra
1c830532
N
974 * This is called in the context of one normal IO request
975 * that has failed. Thus any sync request that might be pending
976 * will be blocked by nr_pending, and we need to wait for
977 * pending IO requests to complete or be queued for re-try.
e2d59925 978 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
979 * must match the number of pending IOs (nr_pending) before
980 * we continue.
ddaf22ab
N
981 */
982 spin_lock_irq(&conf->resync_lock);
b364e3d0 983 conf->array_frozen = 1;
eed8c02e 984 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 985 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
986 conf->resync_lock,
987 flush_pending_writes(conf));
ddaf22ab
N
988 spin_unlock_irq(&conf->resync_lock);
989}
e8096360 990static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
991{
992 /* reverse the effect of the freeze */
993 spin_lock_irq(&conf->resync_lock);
b364e3d0 994 conf->array_frozen = 0;
ddaf22ab
N
995 wake_up(&conf->wait_barrier);
996 spin_unlock_irq(&conf->resync_lock);
997}
998
f72ffdd6 999/* duplicate the data pages for behind I/O
4e78064f 1000 */
9f2c9d12 1001static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
1002{
1003 int i;
1004 struct bio_vec *bvec;
2ca68f5e 1005 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 1006 GFP_NOIO);
2ca68f5e 1007 if (unlikely(!bvecs))
af6d7b76 1008 return;
4b6d287f 1009
cb34e057 1010 bio_for_each_segment_all(bvec, bio, i) {
2ca68f5e
N
1011 bvecs[i] = *bvec;
1012 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1013 if (unlikely(!bvecs[i].bv_page))
4b6d287f 1014 goto do_sync_io;
2ca68f5e
N
1015 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1016 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1017 kunmap(bvecs[i].bv_page);
4b6d287f
N
1018 kunmap(bvec->bv_page);
1019 }
2ca68f5e 1020 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
1021 r1_bio->behind_page_count = bio->bi_vcnt;
1022 set_bit(R1BIO_BehindIO, &r1_bio->state);
1023 return;
4b6d287f
N
1024
1025do_sync_io:
af6d7b76 1026 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
1027 if (bvecs[i].bv_page)
1028 put_page(bvecs[i].bv_page);
1029 kfree(bvecs);
4f024f37
KO
1030 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1031 bio->bi_iter.bi_size);
4b6d287f
N
1032}
1033
f54a9d0e
N
1034struct raid1_plug_cb {
1035 struct blk_plug_cb cb;
1036 struct bio_list pending;
1037 int pending_cnt;
1038};
1039
1040static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1041{
1042 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1043 cb);
1044 struct mddev *mddev = plug->cb.data;
1045 struct r1conf *conf = mddev->private;
1046 struct bio *bio;
1047
874807a8 1048 if (from_schedule || current->bio_list) {
f54a9d0e
N
1049 spin_lock_irq(&conf->device_lock);
1050 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1051 conf->pending_count += plug->pending_cnt;
1052 spin_unlock_irq(&conf->device_lock);
ee0b0244 1053 wake_up(&conf->wait_barrier);
f54a9d0e
N
1054 md_wakeup_thread(mddev->thread);
1055 kfree(plug);
1056 return;
1057 }
1058
1059 /* we aren't scheduling, so we can do the write-out directly. */
1060 bio = bio_list_get(&plug->pending);
1061 bitmap_unplug(mddev->bitmap);
1062 wake_up(&conf->wait_barrier);
1063
1064 while (bio) { /* submit pending writes */
1065 struct bio *next = bio->bi_next;
1066 bio->bi_next = NULL;
32f9f570
SL
1067 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1068 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1069 /* Just ignore it */
1070 bio_endio(bio, 0);
1071 else
1072 generic_make_request(bio);
f54a9d0e
N
1073 bio = next;
1074 }
1075 kfree(plug);
1076}
1077
b4fdcb02 1078static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1079{
e8096360 1080 struct r1conf *conf = mddev->private;
0eaf822c 1081 struct raid1_info *mirror;
9f2c9d12 1082 struct r1bio *r1_bio;
1da177e4 1083 struct bio *read_bio;
1f68f0c4 1084 int i, disks;
84255d10 1085 struct bitmap *bitmap;
191ea9b2 1086 unsigned long flags;
a362357b 1087 const int rw = bio_data_dir(bio);
2c7d46ec 1088 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1089 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
2ff8cc2c
SL
1090 const unsigned long do_discard = (bio->bi_rw
1091 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1092 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
3cb03002 1093 struct md_rdev *blocked_rdev;
f54a9d0e
N
1094 struct blk_plug_cb *cb;
1095 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
1096 int first_clone;
1097 int sectors_handled;
1098 int max_sectors;
79ef3a8a 1099 sector_t start_next_window;
191ea9b2 1100
1da177e4
LT
1101 /*
1102 * Register the new request and wait if the reconstruction
1103 * thread has put up a bar for new requests.
1104 * Continue immediately if no resync is active currently.
1105 */
62de608d 1106
3d310eb7
N
1107 md_write_start(mddev, bio); /* wait on superblock update early */
1108
6eef4b21 1109 if (bio_data_dir(bio) == WRITE &&
589a1c49
GR
1110 ((bio_end_sector(bio) > mddev->suspend_lo &&
1111 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1112 (mddev_is_clustered(mddev) &&
1113 md_cluster_ops->area_resyncing(mddev, bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
6eef4b21
N
1114 /* As the suspend_* range is controlled by
1115 * userspace, we want an interruptible
1116 * wait.
1117 */
1118 DEFINE_WAIT(w);
1119 for (;;) {
1120 flush_signals(current);
1121 prepare_to_wait(&conf->wait_barrier,
1122 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1123 if (bio_end_sector(bio) <= mddev->suspend_lo ||
589a1c49
GR
1124 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1125 (mddev_is_clustered(mddev) &&
1126 !md_cluster_ops->area_resyncing(mddev,
1127 bio->bi_iter.bi_sector, bio_end_sector(bio))))
6eef4b21
N
1128 break;
1129 schedule();
1130 }
1131 finish_wait(&conf->wait_barrier, &w);
1132 }
62de608d 1133
79ef3a8a 1134 start_next_window = wait_barrier(conf, bio);
1da177e4 1135
84255d10
N
1136 bitmap = mddev->bitmap;
1137
1da177e4
LT
1138 /*
1139 * make_request() can abort the operation when READA is being
1140 * used and no empty request is available.
1141 *
1142 */
1143 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1144
1145 r1_bio->master_bio = bio;
aa8b57aa 1146 r1_bio->sectors = bio_sectors(bio);
191ea9b2 1147 r1_bio->state = 0;
1da177e4 1148 r1_bio->mddev = mddev;
4f024f37 1149 r1_bio->sector = bio->bi_iter.bi_sector;
1da177e4 1150
d2eb35ac
N
1151 /* We might need to issue multiple reads to different
1152 * devices if there are bad blocks around, so we keep
1153 * track of the number of reads in bio->bi_phys_segments.
1154 * If this is 0, there is only one r1_bio and no locking
1155 * will be needed when requests complete. If it is
1156 * non-zero, then it is the number of not-completed requests.
1157 */
1158 bio->bi_phys_segments = 0;
1159 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1160
a362357b 1161 if (rw == READ) {
1da177e4
LT
1162 /*
1163 * read balancing logic:
1164 */
d2eb35ac
N
1165 int rdisk;
1166
1167read_again:
1168 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
1169
1170 if (rdisk < 0) {
1171 /* couldn't find anywhere to read from */
1172 raid_end_bio_io(r1_bio);
5a7bbad2 1173 return;
1da177e4
LT
1174 }
1175 mirror = conf->mirrors + rdisk;
1176
e555190d
N
1177 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1178 bitmap) {
1179 /* Reading from a write-mostly device must
1180 * take care not to over-take any writes
1181 * that are 'behind'
1182 */
1183 wait_event(bitmap->behind_wait,
1184 atomic_read(&bitmap->behind_writes) == 0);
1185 }
1da177e4 1186 r1_bio->read_disk = rdisk;
f0cc9a05 1187 r1_bio->start_next_window = 0;
1da177e4 1188
a167f663 1189 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1190 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1191 max_sectors);
1da177e4
LT
1192
1193 r1_bio->bios[rdisk] = read_bio;
1194
4f024f37
KO
1195 read_bio->bi_iter.bi_sector = r1_bio->sector +
1196 mirror->rdev->data_offset;
1da177e4
LT
1197 read_bio->bi_bdev = mirror->rdev->bdev;
1198 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 1199 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1200 read_bio->bi_private = r1_bio;
1201
d2eb35ac
N
1202 if (max_sectors < r1_bio->sectors) {
1203 /* could not read all from this device, so we will
1204 * need another r1_bio.
1205 */
d2eb35ac
N
1206
1207 sectors_handled = (r1_bio->sector + max_sectors
4f024f37 1208 - bio->bi_iter.bi_sector);
d2eb35ac
N
1209 r1_bio->sectors = max_sectors;
1210 spin_lock_irq(&conf->device_lock);
1211 if (bio->bi_phys_segments == 0)
1212 bio->bi_phys_segments = 2;
1213 else
1214 bio->bi_phys_segments++;
1215 spin_unlock_irq(&conf->device_lock);
1216 /* Cannot call generic_make_request directly
1217 * as that will be queued in __make_request
1218 * and subsequent mempool_alloc might block waiting
1219 * for it. So hand bio over to raid1d.
1220 */
1221 reschedule_retry(r1_bio);
1222
1223 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1224
1225 r1_bio->master_bio = bio;
aa8b57aa 1226 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
d2eb35ac
N
1227 r1_bio->state = 0;
1228 r1_bio->mddev = mddev;
4f024f37
KO
1229 r1_bio->sector = bio->bi_iter.bi_sector +
1230 sectors_handled;
d2eb35ac
N
1231 goto read_again;
1232 } else
1233 generic_make_request(read_bio);
5a7bbad2 1234 return;
1da177e4
LT
1235 }
1236
1237 /*
1238 * WRITE:
1239 */
34db0cd6
N
1240 if (conf->pending_count >= max_queued_requests) {
1241 md_wakeup_thread(mddev->thread);
1242 wait_event(conf->wait_barrier,
1243 conf->pending_count < max_queued_requests);
1244 }
1f68f0c4 1245 /* first select target devices under rcu_lock and
1da177e4
LT
1246 * inc refcount on their rdev. Record them by setting
1247 * bios[x] to bio
1f68f0c4
N
1248 * If there are known/acknowledged bad blocks on any device on
1249 * which we have seen a write error, we want to avoid writing those
1250 * blocks.
1251 * This potentially requires several writes to write around
1252 * the bad blocks. Each set of writes gets it's own r1bio
1253 * with a set of bios attached.
1da177e4 1254 */
c3b328ac 1255
8f19ccb2 1256 disks = conf->raid_disks * 2;
6bfe0b49 1257 retry_write:
79ef3a8a 1258 r1_bio->start_next_window = start_next_window;
6bfe0b49 1259 blocked_rdev = NULL;
1da177e4 1260 rcu_read_lock();
1f68f0c4 1261 max_sectors = r1_bio->sectors;
1da177e4 1262 for (i = 0; i < disks; i++) {
3cb03002 1263 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1264 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1265 atomic_inc(&rdev->nr_pending);
1266 blocked_rdev = rdev;
1267 break;
1268 }
1f68f0c4 1269 r1_bio->bios[i] = NULL;
6b740b8d
N
1270 if (!rdev || test_bit(Faulty, &rdev->flags)
1271 || test_bit(Unmerged, &rdev->flags)) {
8f19ccb2
N
1272 if (i < conf->raid_disks)
1273 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1274 continue;
1275 }
1276
1277 atomic_inc(&rdev->nr_pending);
1278 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1279 sector_t first_bad;
1280 int bad_sectors;
1281 int is_bad;
1282
1283 is_bad = is_badblock(rdev, r1_bio->sector,
1284 max_sectors,
1285 &first_bad, &bad_sectors);
1286 if (is_bad < 0) {
1287 /* mustn't write here until the bad block is
1288 * acknowledged*/
1289 set_bit(BlockedBadBlocks, &rdev->flags);
1290 blocked_rdev = rdev;
1291 break;
1292 }
1293 if (is_bad && first_bad <= r1_bio->sector) {
1294 /* Cannot write here at all */
1295 bad_sectors -= (r1_bio->sector - first_bad);
1296 if (bad_sectors < max_sectors)
1297 /* mustn't write more than bad_sectors
1298 * to other devices yet
1299 */
1300 max_sectors = bad_sectors;
03c902e1 1301 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1302 /* We don't set R1BIO_Degraded as that
1303 * only applies if the disk is
1304 * missing, so it might be re-added,
1305 * and we want to know to recover this
1306 * chunk.
1307 * In this case the device is here,
1308 * and the fact that this chunk is not
1309 * in-sync is recorded in the bad
1310 * block log
1311 */
1312 continue;
964147d5 1313 }
1f68f0c4
N
1314 if (is_bad) {
1315 int good_sectors = first_bad - r1_bio->sector;
1316 if (good_sectors < max_sectors)
1317 max_sectors = good_sectors;
1318 }
1319 }
1320 r1_bio->bios[i] = bio;
1da177e4
LT
1321 }
1322 rcu_read_unlock();
1323
6bfe0b49
DW
1324 if (unlikely(blocked_rdev)) {
1325 /* Wait for this device to become unblocked */
1326 int j;
79ef3a8a 1327 sector_t old = start_next_window;
6bfe0b49
DW
1328
1329 for (j = 0; j < i; j++)
1330 if (r1_bio->bios[j])
1331 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1332 r1_bio->state = 0;
4f024f37 1333 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
6bfe0b49 1334 md_wait_for_blocked_rdev(blocked_rdev, mddev);
79ef3a8a 1335 start_next_window = wait_barrier(conf, bio);
1336 /*
1337 * We must make sure the multi r1bios of bio have
1338 * the same value of bi_phys_segments
1339 */
1340 if (bio->bi_phys_segments && old &&
1341 old != start_next_window)
1342 /* Wait for the former r1bio(s) to complete */
1343 wait_event(conf->wait_barrier,
1344 bio->bi_phys_segments == 1);
6bfe0b49
DW
1345 goto retry_write;
1346 }
1347
1f68f0c4
N
1348 if (max_sectors < r1_bio->sectors) {
1349 /* We are splitting this write into multiple parts, so
1350 * we need to prepare for allocating another r1_bio.
1351 */
1352 r1_bio->sectors = max_sectors;
1353 spin_lock_irq(&conf->device_lock);
1354 if (bio->bi_phys_segments == 0)
1355 bio->bi_phys_segments = 2;
1356 else
1357 bio->bi_phys_segments++;
1358 spin_unlock_irq(&conf->device_lock);
191ea9b2 1359 }
4f024f37 1360 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
4b6d287f 1361
4e78064f 1362 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1363 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1364
1f68f0c4 1365 first_clone = 1;
1da177e4
LT
1366 for (i = 0; i < disks; i++) {
1367 struct bio *mbio;
1368 if (!r1_bio->bios[i])
1369 continue;
1370
a167f663 1371 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1372 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1f68f0c4
N
1373
1374 if (first_clone) {
1375 /* do behind I/O ?
1376 * Not if there are too many, or cannot
1377 * allocate memory, or a reader on WriteMostly
1378 * is waiting for behind writes to flush */
1379 if (bitmap &&
1380 (atomic_read(&bitmap->behind_writes)
1381 < mddev->bitmap_info.max_write_behind) &&
1382 !waitqueue_active(&bitmap->behind_wait))
1383 alloc_behind_pages(mbio, r1_bio);
1384
1385 bitmap_startwrite(bitmap, r1_bio->sector,
1386 r1_bio->sectors,
1387 test_bit(R1BIO_BehindIO,
1388 &r1_bio->state));
1389 first_clone = 0;
1390 }
2ca68f5e 1391 if (r1_bio->behind_bvecs) {
4b6d287f
N
1392 struct bio_vec *bvec;
1393 int j;
1394
cb34e057
KO
1395 /*
1396 * We trimmed the bio, so _all is legit
4b6d287f 1397 */
d74c6d51 1398 bio_for_each_segment_all(bvec, mbio, j)
2ca68f5e 1399 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1400 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1401 atomic_inc(&r1_bio->behind_remaining);
1402 }
1403
1f68f0c4
N
1404 r1_bio->bios[i] = mbio;
1405
4f024f37 1406 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4
N
1407 conf->mirrors[i].rdev->data_offset);
1408 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1409 mbio->bi_end_io = raid1_end_write_request;
c8dc9c65
JL
1410 mbio->bi_rw =
1411 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1f68f0c4
N
1412 mbio->bi_private = r1_bio;
1413
1da177e4 1414 atomic_inc(&r1_bio->remaining);
f54a9d0e
N
1415
1416 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1417 if (cb)
1418 plug = container_of(cb, struct raid1_plug_cb, cb);
1419 else
1420 plug = NULL;
4e78064f 1421 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1422 if (plug) {
1423 bio_list_add(&plug->pending, mbio);
1424 plug->pending_cnt++;
1425 } else {
1426 bio_list_add(&conf->pending_bio_list, mbio);
1427 conf->pending_count++;
1428 }
4e78064f 1429 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1430 if (!plug)
b357f04a 1431 md_wakeup_thread(mddev->thread);
1da177e4 1432 }
079fa166
N
1433 /* Mustn't call r1_bio_write_done before this next test,
1434 * as it could result in the bio being freed.
1435 */
aa8b57aa 1436 if (sectors_handled < bio_sectors(bio)) {
079fa166 1437 r1_bio_write_done(r1_bio);
1f68f0c4
N
1438 /* We need another r1_bio. It has already been counted
1439 * in bio->bi_phys_segments
1440 */
1441 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1442 r1_bio->master_bio = bio;
aa8b57aa 1443 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1f68f0c4
N
1444 r1_bio->state = 0;
1445 r1_bio->mddev = mddev;
4f024f37 1446 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1f68f0c4
N
1447 goto retry_write;
1448 }
1449
079fa166
N
1450 r1_bio_write_done(r1_bio);
1451
1452 /* In case raid1d snuck in to freeze_array */
1453 wake_up(&conf->wait_barrier);
1da177e4
LT
1454}
1455
fd01b88c 1456static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1457{
e8096360 1458 struct r1conf *conf = mddev->private;
1da177e4
LT
1459 int i;
1460
1461 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1462 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1463 rcu_read_lock();
1464 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1465 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1466 seq_printf(seq, "%s",
ddac7c7e
N
1467 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1468 }
1469 rcu_read_unlock();
1da177e4
LT
1470 seq_printf(seq, "]");
1471}
1472
fd01b88c 1473static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1474{
1475 char b[BDEVNAME_SIZE];
e8096360 1476 struct r1conf *conf = mddev->private;
1da177e4
LT
1477
1478 /*
1479 * If it is not operational, then we have already marked it as dead
1480 * else if it is the last working disks, ignore the error, let the
1481 * next level up know.
1482 * else mark the drive as failed
1483 */
b2d444d7 1484 if (test_bit(In_sync, &rdev->flags)
4044ba58 1485 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1486 /*
1487 * Don't fail the drive, act as though we were just a
4044ba58
N
1488 * normal single drive.
1489 * However don't try a recovery from this drive as
1490 * it is very likely to fail.
1da177e4 1491 */
5389042f 1492 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1493 return;
4044ba58 1494 }
de393cde 1495 set_bit(Blocked, &rdev->flags);
c04be0aa
N
1496 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1497 unsigned long flags;
1498 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1499 mddev->degraded++;
dd00a99e 1500 set_bit(Faulty, &rdev->flags);
c04be0aa 1501 spin_unlock_irqrestore(&conf->device_lock, flags);
dd00a99e
N
1502 } else
1503 set_bit(Faulty, &rdev->flags);
2446dba0
N
1504 /*
1505 * if recovery is running, make sure it aborts.
1506 */
1507 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
850b2b42 1508 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1509 printk(KERN_ALERT
1510 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1511 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1512 mdname(mddev), bdevname(rdev->bdev, b),
1513 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1514}
1515
e8096360 1516static void print_conf(struct r1conf *conf)
1da177e4
LT
1517{
1518 int i;
1da177e4 1519
9dd1e2fa 1520 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1521 if (!conf) {
9dd1e2fa 1522 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1523 return;
1524 }
9dd1e2fa 1525 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1526 conf->raid_disks);
1527
ddac7c7e 1528 rcu_read_lock();
1da177e4
LT
1529 for (i = 0; i < conf->raid_disks; i++) {
1530 char b[BDEVNAME_SIZE];
3cb03002 1531 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1532 if (rdev)
9dd1e2fa 1533 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1534 i, !test_bit(In_sync, &rdev->flags),
1535 !test_bit(Faulty, &rdev->flags),
1536 bdevname(rdev->bdev,b));
1da177e4 1537 }
ddac7c7e 1538 rcu_read_unlock();
1da177e4
LT
1539}
1540
e8096360 1541static void close_sync(struct r1conf *conf)
1da177e4 1542{
79ef3a8a 1543 wait_barrier(conf, NULL);
1544 allow_barrier(conf, 0, 0);
1da177e4
LT
1545
1546 mempool_destroy(conf->r1buf_pool);
1547 conf->r1buf_pool = NULL;
79ef3a8a 1548
669cc7ba 1549 spin_lock_irq(&conf->resync_lock);
79ef3a8a 1550 conf->next_resync = 0;
1551 conf->start_next_window = MaxSector;
669cc7ba
N
1552 conf->current_window_requests +=
1553 conf->next_window_requests;
1554 conf->next_window_requests = 0;
1555 spin_unlock_irq(&conf->resync_lock);
1da177e4
LT
1556}
1557
fd01b88c 1558static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1559{
1560 int i;
e8096360 1561 struct r1conf *conf = mddev->private;
6b965620
N
1562 int count = 0;
1563 unsigned long flags;
1da177e4
LT
1564
1565 /*
f72ffdd6 1566 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1567 * and mark them readable.
1568 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1569 */
1570 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1571 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1572 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1573 if (repl
1574 && repl->recovery_offset == MaxSector
1575 && !test_bit(Faulty, &repl->flags)
1576 && !test_and_set_bit(In_sync, &repl->flags)) {
1577 /* replacement has just become active */
1578 if (!rdev ||
1579 !test_and_clear_bit(In_sync, &rdev->flags))
1580 count++;
1581 if (rdev) {
1582 /* Replaced device not technically
1583 * faulty, but we need to be sure
1584 * it gets removed and never re-added
1585 */
1586 set_bit(Faulty, &rdev->flags);
1587 sysfs_notify_dirent_safe(
1588 rdev->sysfs_state);
1589 }
1590 }
ddac7c7e 1591 if (rdev
61e4947c 1592 && rdev->recovery_offset == MaxSector
ddac7c7e 1593 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1594 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1595 count++;
654e8b5a 1596 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1597 }
1598 }
6b965620
N
1599 spin_lock_irqsave(&conf->device_lock, flags);
1600 mddev->degraded -= count;
1601 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1602
1603 print_conf(conf);
6b965620 1604 return count;
1da177e4
LT
1605}
1606
fd01b88c 1607static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1608{
e8096360 1609 struct r1conf *conf = mddev->private;
199050ea 1610 int err = -EEXIST;
41158c7e 1611 int mirror = 0;
0eaf822c 1612 struct raid1_info *p;
6c2fce2e 1613 int first = 0;
30194636 1614 int last = conf->raid_disks - 1;
6b740b8d 1615 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4 1616
5389042f
N
1617 if (mddev->recovery_disabled == conf->recovery_disabled)
1618 return -EBUSY;
1619
6c2fce2e
NB
1620 if (rdev->raid_disk >= 0)
1621 first = last = rdev->raid_disk;
1622
6b740b8d
N
1623 if (q->merge_bvec_fn) {
1624 set_bit(Unmerged, &rdev->flags);
1625 mddev->merge_check_needed = 1;
1626 }
1627
7ef449d1
N
1628 for (mirror = first; mirror <= last; mirror++) {
1629 p = conf->mirrors+mirror;
1630 if (!p->rdev) {
1da177e4 1631
9092c02d
JB
1632 if (mddev->gendisk)
1633 disk_stack_limits(mddev->gendisk, rdev->bdev,
1634 rdev->data_offset << 9);
1da177e4
LT
1635
1636 p->head_position = 0;
1637 rdev->raid_disk = mirror;
199050ea 1638 err = 0;
6aea114a
N
1639 /* As all devices are equivalent, we don't need a full recovery
1640 * if this was recently any drive of the array
1641 */
1642 if (rdev->saved_raid_disk < 0)
41158c7e 1643 conf->fullsync = 1;
d6065f7b 1644 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1645 break;
1646 }
7ef449d1
N
1647 if (test_bit(WantReplacement, &p->rdev->flags) &&
1648 p[conf->raid_disks].rdev == NULL) {
1649 /* Add this device as a replacement */
1650 clear_bit(In_sync, &rdev->flags);
1651 set_bit(Replacement, &rdev->flags);
1652 rdev->raid_disk = mirror;
1653 err = 0;
1654 conf->fullsync = 1;
1655 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1656 break;
1657 }
1658 }
6b740b8d
N
1659 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1660 /* Some requests might not have seen this new
1661 * merge_bvec_fn. We must wait for them to complete
1662 * before merging the device fully.
1663 * First we make sure any code which has tested
1664 * our function has submitted the request, then
1665 * we wait for all outstanding requests to complete.
1666 */
1667 synchronize_sched();
e2d59925
N
1668 freeze_array(conf, 0);
1669 unfreeze_array(conf);
6b740b8d
N
1670 clear_bit(Unmerged, &rdev->flags);
1671 }
ac5e7113 1672 md_integrity_add_rdev(rdev, mddev);
9092c02d 1673 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1674 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1675 print_conf(conf);
199050ea 1676 return err;
1da177e4
LT
1677}
1678
b8321b68 1679static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1680{
e8096360 1681 struct r1conf *conf = mddev->private;
1da177e4 1682 int err = 0;
b8321b68 1683 int number = rdev->raid_disk;
0eaf822c 1684 struct raid1_info *p = conf->mirrors + number;
1da177e4 1685
b014f14c
N
1686 if (rdev != p->rdev)
1687 p = conf->mirrors + conf->raid_disks + number;
1688
1da177e4 1689 print_conf(conf);
b8321b68 1690 if (rdev == p->rdev) {
b2d444d7 1691 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1692 atomic_read(&rdev->nr_pending)) {
1693 err = -EBUSY;
1694 goto abort;
1695 }
046abeed 1696 /* Only remove non-faulty devices if recovery
dfc70645
N
1697 * is not possible.
1698 */
1699 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1700 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1701 mddev->degraded < conf->raid_disks) {
1702 err = -EBUSY;
1703 goto abort;
1704 }
1da177e4 1705 p->rdev = NULL;
fbd568a3 1706 synchronize_rcu();
1da177e4
LT
1707 if (atomic_read(&rdev->nr_pending)) {
1708 /* lost the race, try later */
1709 err = -EBUSY;
1710 p->rdev = rdev;
ac5e7113 1711 goto abort;
8c7a2c2b
N
1712 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1713 /* We just removed a device that is being replaced.
1714 * Move down the replacement. We drain all IO before
1715 * doing this to avoid confusion.
1716 */
1717 struct md_rdev *repl =
1718 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1719 freeze_array(conf, 0);
8c7a2c2b
N
1720 clear_bit(Replacement, &repl->flags);
1721 p->rdev = repl;
1722 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1723 unfreeze_array(conf);
8c7a2c2b
N
1724 clear_bit(WantReplacement, &rdev->flags);
1725 } else
b014f14c 1726 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1727 err = md_integrity_register(mddev);
1da177e4
LT
1728 }
1729abort:
1730
1731 print_conf(conf);
1732 return err;
1733}
1734
6712ecf8 1735static void end_sync_read(struct bio *bio, int error)
1da177e4 1736{
9f2c9d12 1737 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1738
0fc280f6 1739 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1740
1da177e4
LT
1741 /*
1742 * we have read a block, now it needs to be re-written,
1743 * or re-read if the read failed.
1744 * We don't do much here, just schedule handling by raid1d
1745 */
69382e85 1746 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1747 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1748
1749 if (atomic_dec_and_test(&r1_bio->remaining))
1750 reschedule_retry(r1_bio);
1da177e4
LT
1751}
1752
6712ecf8 1753static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1754{
1755 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1756 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1757 struct mddev *mddev = r1_bio->mddev;
e8096360 1758 struct r1conf *conf = mddev->private;
1da177e4 1759 int mirror=0;
4367af55
N
1760 sector_t first_bad;
1761 int bad_sectors;
1da177e4 1762
ba3ae3be
NK
1763 mirror = find_bio_disk(r1_bio, bio);
1764
6b1117d5 1765 if (!uptodate) {
57dab0bd 1766 sector_t sync_blocks = 0;
6b1117d5
N
1767 sector_t s = r1_bio->sector;
1768 long sectors_to_go = r1_bio->sectors;
1769 /* make sure these bits doesn't get cleared. */
1770 do {
5e3db645 1771 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1772 &sync_blocks, 1);
1773 s += sync_blocks;
1774 sectors_to_go -= sync_blocks;
1775 } while (sectors_to_go > 0);
d8f05d29
N
1776 set_bit(WriteErrorSeen,
1777 &conf->mirrors[mirror].rdev->flags);
19d67169
N
1778 if (!test_and_set_bit(WantReplacement,
1779 &conf->mirrors[mirror].rdev->flags))
1780 set_bit(MD_RECOVERY_NEEDED, &
1781 mddev->recovery);
d8f05d29 1782 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1783 } else if (is_badblock(conf->mirrors[mirror].rdev,
1784 r1_bio->sector,
1785 r1_bio->sectors,
3a9f28a5
N
1786 &first_bad, &bad_sectors) &&
1787 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1788 r1_bio->sector,
1789 r1_bio->sectors,
1790 &first_bad, &bad_sectors)
1791 )
4367af55 1792 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1793
1da177e4 1794 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1795 int s = r1_bio->sectors;
d8f05d29
N
1796 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1797 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1798 reschedule_retry(r1_bio);
1799 else {
1800 put_buf(r1_bio);
1801 md_done_sync(mddev, s, uptodate);
1802 }
1da177e4 1803 }
1da177e4
LT
1804}
1805
3cb03002 1806static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1807 int sectors, struct page *page, int rw)
1808{
1809 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1810 /* success */
1811 return 1;
19d67169 1812 if (rw == WRITE) {
d8f05d29 1813 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1814 if (!test_and_set_bit(WantReplacement,
1815 &rdev->flags))
1816 set_bit(MD_RECOVERY_NEEDED, &
1817 rdev->mddev->recovery);
1818 }
d8f05d29
N
1819 /* need to record an error - either for the block or the device */
1820 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1821 md_error(rdev->mddev, rdev);
1822 return 0;
1823}
1824
9f2c9d12 1825static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1826{
a68e5870
N
1827 /* Try some synchronous reads of other devices to get
1828 * good data, much like with normal read errors. Only
1829 * read into the pages we already have so we don't
1830 * need to re-issue the read request.
1831 * We don't need to freeze the array, because being in an
1832 * active sync request, there is no normal IO, and
1833 * no overlapping syncs.
06f60385
N
1834 * We don't need to check is_badblock() again as we
1835 * made sure that anything with a bad block in range
1836 * will have bi_end_io clear.
a68e5870 1837 */
fd01b88c 1838 struct mddev *mddev = r1_bio->mddev;
e8096360 1839 struct r1conf *conf = mddev->private;
a68e5870
N
1840 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1841 sector_t sect = r1_bio->sector;
1842 int sectors = r1_bio->sectors;
1843 int idx = 0;
1844
1845 while(sectors) {
1846 int s = sectors;
1847 int d = r1_bio->read_disk;
1848 int success = 0;
3cb03002 1849 struct md_rdev *rdev;
78d7f5f7 1850 int start;
a68e5870
N
1851
1852 if (s > (PAGE_SIZE>>9))
1853 s = PAGE_SIZE >> 9;
1854 do {
1855 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1856 /* No rcu protection needed here devices
1857 * can only be removed when no resync is
1858 * active, and resync is currently active
1859 */
1860 rdev = conf->mirrors[d].rdev;
9d3d8011 1861 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1862 bio->bi_io_vec[idx].bv_page,
1863 READ, false)) {
1864 success = 1;
1865 break;
1866 }
1867 }
1868 d++;
8f19ccb2 1869 if (d == conf->raid_disks * 2)
a68e5870
N
1870 d = 0;
1871 } while (!success && d != r1_bio->read_disk);
1872
78d7f5f7 1873 if (!success) {
a68e5870 1874 char b[BDEVNAME_SIZE];
3a9f28a5
N
1875 int abort = 0;
1876 /* Cannot read from anywhere, this block is lost.
1877 * Record a bad block on each device. If that doesn't
1878 * work just disable and interrupt the recovery.
1879 * Don't fail devices as that won't really help.
1880 */
a68e5870
N
1881 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1882 " for block %llu\n",
1883 mdname(mddev),
1884 bdevname(bio->bi_bdev, b),
1885 (unsigned long long)r1_bio->sector);
8f19ccb2 1886 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1887 rdev = conf->mirrors[d].rdev;
1888 if (!rdev || test_bit(Faulty, &rdev->flags))
1889 continue;
1890 if (!rdev_set_badblocks(rdev, sect, s, 0))
1891 abort = 1;
1892 }
1893 if (abort) {
d890fa2b
N
1894 conf->recovery_disabled =
1895 mddev->recovery_disabled;
3a9f28a5
N
1896 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1897 md_done_sync(mddev, r1_bio->sectors, 0);
1898 put_buf(r1_bio);
1899 return 0;
1900 }
1901 /* Try next page */
1902 sectors -= s;
1903 sect += s;
1904 idx++;
1905 continue;
d11c171e 1906 }
78d7f5f7
N
1907
1908 start = d;
1909 /* write it back and re-read */
1910 while (d != r1_bio->read_disk) {
1911 if (d == 0)
8f19ccb2 1912 d = conf->raid_disks * 2;
78d7f5f7
N
1913 d--;
1914 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1915 continue;
1916 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1917 if (r1_sync_page_io(rdev, sect, s,
1918 bio->bi_io_vec[idx].bv_page,
1919 WRITE) == 0) {
78d7f5f7
N
1920 r1_bio->bios[d]->bi_end_io = NULL;
1921 rdev_dec_pending(rdev, mddev);
9d3d8011 1922 }
78d7f5f7
N
1923 }
1924 d = start;
1925 while (d != r1_bio->read_disk) {
1926 if (d == 0)
8f19ccb2 1927 d = conf->raid_disks * 2;
78d7f5f7
N
1928 d--;
1929 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1930 continue;
1931 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1932 if (r1_sync_page_io(rdev, sect, s,
1933 bio->bi_io_vec[idx].bv_page,
1934 READ) != 0)
9d3d8011 1935 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1936 }
a68e5870
N
1937 sectors -= s;
1938 sect += s;
1939 idx ++;
1940 }
78d7f5f7 1941 set_bit(R1BIO_Uptodate, &r1_bio->state);
7ca78d57 1942 set_bit(BIO_UPTODATE, &bio->bi_flags);
a68e5870
N
1943 return 1;
1944}
1945
c95e6385 1946static void process_checks(struct r1bio *r1_bio)
a68e5870
N
1947{
1948 /* We have read all readable devices. If we haven't
1949 * got the block, then there is no hope left.
1950 * If we have, then we want to do a comparison
1951 * and skip the write if everything is the same.
1952 * If any blocks failed to read, then we need to
1953 * attempt an over-write
1954 */
fd01b88c 1955 struct mddev *mddev = r1_bio->mddev;
e8096360 1956 struct r1conf *conf = mddev->private;
a68e5870
N
1957 int primary;
1958 int i;
f4380a91 1959 int vcnt;
a68e5870 1960
30bc9b53
N
1961 /* Fix variable parts of all bios */
1962 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1963 for (i = 0; i < conf->raid_disks * 2; i++) {
1964 int j;
1965 int size;
1877db75 1966 int uptodate;
30bc9b53
N
1967 struct bio *b = r1_bio->bios[i];
1968 if (b->bi_end_io != end_sync_read)
1969 continue;
1877db75
N
1970 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1971 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
30bc9b53 1972 bio_reset(b);
1877db75
N
1973 if (!uptodate)
1974 clear_bit(BIO_UPTODATE, &b->bi_flags);
30bc9b53 1975 b->bi_vcnt = vcnt;
4f024f37
KO
1976 b->bi_iter.bi_size = r1_bio->sectors << 9;
1977 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53
N
1978 conf->mirrors[i].rdev->data_offset;
1979 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1980 b->bi_end_io = end_sync_read;
1981 b->bi_private = r1_bio;
1982
4f024f37 1983 size = b->bi_iter.bi_size;
30bc9b53
N
1984 for (j = 0; j < vcnt ; j++) {
1985 struct bio_vec *bi;
1986 bi = &b->bi_io_vec[j];
1987 bi->bv_offset = 0;
1988 if (size > PAGE_SIZE)
1989 bi->bv_len = PAGE_SIZE;
1990 else
1991 bi->bv_len = size;
1992 size -= PAGE_SIZE;
1993 }
1994 }
8f19ccb2 1995 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870
N
1996 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1997 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1998 r1_bio->bios[primary]->bi_end_io = NULL;
1999 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2000 break;
2001 }
2002 r1_bio->read_disk = primary;
8f19ccb2 2003 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 2004 int j;
78d7f5f7
N
2005 struct bio *pbio = r1_bio->bios[primary];
2006 struct bio *sbio = r1_bio->bios[i];
1877db75 2007 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
a68e5870 2008
2aabaa65 2009 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2010 continue;
1877db75
N
2011 /* Now we can 'fixup' the BIO_UPTODATE flag */
2012 set_bit(BIO_UPTODATE, &sbio->bi_flags);
78d7f5f7 2013
1877db75 2014 if (uptodate) {
78d7f5f7
N
2015 for (j = vcnt; j-- ; ) {
2016 struct page *p, *s;
2017 p = pbio->bi_io_vec[j].bv_page;
2018 s = sbio->bi_io_vec[j].bv_page;
2019 if (memcmp(page_address(p),
2020 page_address(s),
5020ad7d 2021 sbio->bi_io_vec[j].bv_len))
78d7f5f7 2022 break;
69382e85 2023 }
78d7f5f7
N
2024 } else
2025 j = 0;
2026 if (j >= 0)
7f7583d4 2027 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2028 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1877db75 2029 && uptodate)) {
78d7f5f7
N
2030 /* No need to write to this device. */
2031 sbio->bi_end_io = NULL;
2032 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2033 continue;
2034 }
d3b45c2a
KO
2035
2036 bio_copy_data(sbio, pbio);
78d7f5f7 2037 }
a68e5870
N
2038}
2039
9f2c9d12 2040static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2041{
e8096360 2042 struct r1conf *conf = mddev->private;
a68e5870 2043 int i;
8f19ccb2 2044 int disks = conf->raid_disks * 2;
a68e5870
N
2045 struct bio *bio, *wbio;
2046
2047 bio = r1_bio->bios[r1_bio->read_disk];
2048
a68e5870
N
2049 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2050 /* ouch - failed to read all of that. */
2051 if (!fix_sync_read_error(r1_bio))
2052 return;
7ca78d57
N
2053
2054 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2055 process_checks(r1_bio);
2056
d11c171e
N
2057 /*
2058 * schedule writes
2059 */
1da177e4
LT
2060 atomic_set(&r1_bio->remaining, 1);
2061 for (i = 0; i < disks ; i++) {
2062 wbio = r1_bio->bios[i];
3e198f78
N
2063 if (wbio->bi_end_io == NULL ||
2064 (wbio->bi_end_io == end_sync_read &&
2065 (i == r1_bio->read_disk ||
2066 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
2067 continue;
2068
3e198f78
N
2069 wbio->bi_rw = WRITE;
2070 wbio->bi_end_io = end_sync_write;
1da177e4 2071 atomic_inc(&r1_bio->remaining);
aa8b57aa 2072 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2073
1da177e4
LT
2074 generic_make_request(wbio);
2075 }
2076
2077 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2078 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2079 int s = r1_bio->sectors;
2080 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2081 test_bit(R1BIO_WriteError, &r1_bio->state))
2082 reschedule_retry(r1_bio);
2083 else {
2084 put_buf(r1_bio);
2085 md_done_sync(mddev, s, 1);
2086 }
1da177e4
LT
2087 }
2088}
2089
2090/*
2091 * This is a kernel thread which:
2092 *
2093 * 1. Retries failed read operations on working mirrors.
2094 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2095 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2096 */
2097
e8096360 2098static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2099 sector_t sect, int sectors)
2100{
fd01b88c 2101 struct mddev *mddev = conf->mddev;
867868fb
N
2102 while(sectors) {
2103 int s = sectors;
2104 int d = read_disk;
2105 int success = 0;
2106 int start;
3cb03002 2107 struct md_rdev *rdev;
867868fb
N
2108
2109 if (s > (PAGE_SIZE>>9))
2110 s = PAGE_SIZE >> 9;
2111
2112 do {
2113 /* Note: no rcu protection needed here
2114 * as this is synchronous in the raid1d thread
2115 * which is the thread that might remove
2116 * a device. If raid1d ever becomes multi-threaded....
2117 */
d2eb35ac
N
2118 sector_t first_bad;
2119 int bad_sectors;
2120
867868fb
N
2121 rdev = conf->mirrors[d].rdev;
2122 if (rdev &&
da8840a7 2123 (test_bit(In_sync, &rdev->flags) ||
2124 (!test_bit(Faulty, &rdev->flags) &&
2125 rdev->recovery_offset >= sect + s)) &&
d2eb35ac
N
2126 is_badblock(rdev, sect, s,
2127 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
2128 sync_page_io(rdev, sect, s<<9,
2129 conf->tmppage, READ, false))
867868fb
N
2130 success = 1;
2131 else {
2132 d++;
8f19ccb2 2133 if (d == conf->raid_disks * 2)
867868fb
N
2134 d = 0;
2135 }
2136 } while (!success && d != read_disk);
2137
2138 if (!success) {
d8f05d29 2139 /* Cannot read from anywhere - mark it bad */
3cb03002 2140 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2141 if (!rdev_set_badblocks(rdev, sect, s, 0))
2142 md_error(mddev, rdev);
867868fb
N
2143 break;
2144 }
2145 /* write it back and re-read */
2146 start = d;
2147 while (d != read_disk) {
2148 if (d==0)
8f19ccb2 2149 d = conf->raid_disks * 2;
867868fb
N
2150 d--;
2151 rdev = conf->mirrors[d].rdev;
2152 if (rdev &&
b8cb6b4c 2153 !test_bit(Faulty, &rdev->flags))
d8f05d29
N
2154 r1_sync_page_io(rdev, sect, s,
2155 conf->tmppage, WRITE);
867868fb
N
2156 }
2157 d = start;
2158 while (d != read_disk) {
2159 char b[BDEVNAME_SIZE];
2160 if (d==0)
8f19ccb2 2161 d = conf->raid_disks * 2;
867868fb
N
2162 d--;
2163 rdev = conf->mirrors[d].rdev;
2164 if (rdev &&
b8cb6b4c 2165 !test_bit(Faulty, &rdev->flags)) {
d8f05d29
N
2166 if (r1_sync_page_io(rdev, sect, s,
2167 conf->tmppage, READ)) {
867868fb
N
2168 atomic_add(s, &rdev->corrected_errors);
2169 printk(KERN_INFO
9dd1e2fa 2170 "md/raid1:%s: read error corrected "
867868fb
N
2171 "(%d sectors at %llu on %s)\n",
2172 mdname(mddev), s,
969b755a
RD
2173 (unsigned long long)(sect +
2174 rdev->data_offset),
867868fb
N
2175 bdevname(rdev->bdev, b));
2176 }
2177 }
2178 }
2179 sectors -= s;
2180 sect += s;
2181 }
2182}
2183
9f2c9d12 2184static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2185{
fd01b88c 2186 struct mddev *mddev = r1_bio->mddev;
e8096360 2187 struct r1conf *conf = mddev->private;
3cb03002 2188 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2189
2190 /* bio has the data to be written to device 'i' where
2191 * we just recently had a write error.
2192 * We repeatedly clone the bio and trim down to one block,
2193 * then try the write. Where the write fails we record
2194 * a bad block.
2195 * It is conceivable that the bio doesn't exactly align with
2196 * blocks. We must handle this somehow.
2197 *
2198 * We currently own a reference on the rdev.
2199 */
2200
2201 int block_sectors;
2202 sector_t sector;
2203 int sectors;
2204 int sect_to_write = r1_bio->sectors;
2205 int ok = 1;
2206
2207 if (rdev->badblocks.shift < 0)
2208 return 0;
2209
ab713cdc
ND
2210 block_sectors = roundup(1 << rdev->badblocks.shift,
2211 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2212 sector = r1_bio->sector;
2213 sectors = ((sector + block_sectors)
2214 & ~(sector_t)(block_sectors - 1))
2215 - sector;
2216
cd5ff9a1
N
2217 while (sect_to_write) {
2218 struct bio *wbio;
2219 if (sectors > sect_to_write)
2220 sectors = sect_to_write;
2221 /* Write at 'sector' for 'sectors'*/
2222
b783863f
KO
2223 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2224 unsigned vcnt = r1_bio->behind_page_count;
2225 struct bio_vec *vec = r1_bio->behind_bvecs;
2226
2227 while (!vec->bv_page) {
2228 vec++;
2229 vcnt--;
2230 }
2231
2232 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2233 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2234
2235 wbio->bi_vcnt = vcnt;
2236 } else {
2237 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2238 }
2239
cd5ff9a1 2240 wbio->bi_rw = WRITE;
4f024f37
KO
2241 wbio->bi_iter.bi_sector = r1_bio->sector;
2242 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2243
6678d83f 2244 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2245 wbio->bi_iter.bi_sector += rdev->data_offset;
cd5ff9a1
N
2246 wbio->bi_bdev = rdev->bdev;
2247 if (submit_bio_wait(WRITE, wbio) == 0)
2248 /* failure! */
2249 ok = rdev_set_badblocks(rdev, sector,
2250 sectors, 0)
2251 && ok;
2252
2253 bio_put(wbio);
2254 sect_to_write -= sectors;
2255 sector += sectors;
2256 sectors = block_sectors;
2257 }
2258 return ok;
2259}
2260
e8096360 2261static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2262{
2263 int m;
2264 int s = r1_bio->sectors;
8f19ccb2 2265 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2266 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2267 struct bio *bio = r1_bio->bios[m];
2268 if (bio->bi_end_io == NULL)
2269 continue;
2270 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2271 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2272 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce
N
2273 }
2274 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2275 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2276 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2277 md_error(conf->mddev, rdev);
2278 }
2279 }
2280 put_buf(r1_bio);
2281 md_done_sync(conf->mddev, s, 1);
2282}
2283
e8096360 2284static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2285{
2286 int m;
8f19ccb2 2287 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2288 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2289 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2290 rdev_clear_badblocks(rdev,
2291 r1_bio->sector,
c6563a8c 2292 r1_bio->sectors, 0);
62096bce
N
2293 rdev_dec_pending(rdev, conf->mddev);
2294 } else if (r1_bio->bios[m] != NULL) {
2295 /* This drive got a write error. We need to
2296 * narrow down and record precise write
2297 * errors.
2298 */
2299 if (!narrow_write_error(r1_bio, m)) {
2300 md_error(conf->mddev,
2301 conf->mirrors[m].rdev);
2302 /* an I/O failed, we can't clear the bitmap */
2303 set_bit(R1BIO_Degraded, &r1_bio->state);
2304 }
2305 rdev_dec_pending(conf->mirrors[m].rdev,
2306 conf->mddev);
2307 }
2308 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2309 close_write(r1_bio);
2310 raid_end_bio_io(r1_bio);
2311}
2312
e8096360 2313static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2314{
2315 int disk;
2316 int max_sectors;
fd01b88c 2317 struct mddev *mddev = conf->mddev;
62096bce
N
2318 struct bio *bio;
2319 char b[BDEVNAME_SIZE];
3cb03002 2320 struct md_rdev *rdev;
62096bce
N
2321
2322 clear_bit(R1BIO_ReadError, &r1_bio->state);
2323 /* we got a read error. Maybe the drive is bad. Maybe just
2324 * the block and we can fix it.
2325 * We freeze all other IO, and try reading the block from
2326 * other devices. When we find one, we re-write
2327 * and check it that fixes the read error.
2328 * This is all done synchronously while the array is
2329 * frozen
2330 */
2331 if (mddev->ro == 0) {
e2d59925 2332 freeze_array(conf, 1);
62096bce
N
2333 fix_read_error(conf, r1_bio->read_disk,
2334 r1_bio->sector, r1_bio->sectors);
2335 unfreeze_array(conf);
2336 } else
2337 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
7ad4d4a6 2338 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
62096bce
N
2339
2340 bio = r1_bio->bios[r1_bio->read_disk];
2341 bdevname(bio->bi_bdev, b);
2342read_more:
2343 disk = read_balance(conf, r1_bio, &max_sectors);
2344 if (disk == -1) {
2345 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2346 " read error for block %llu\n",
2347 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2348 raid_end_bio_io(r1_bio);
2349 } else {
2350 const unsigned long do_sync
2351 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2352 if (bio) {
2353 r1_bio->bios[r1_bio->read_disk] =
2354 mddev->ro ? IO_BLOCKED : NULL;
2355 bio_put(bio);
2356 }
2357 r1_bio->read_disk = disk;
2358 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
4f024f37
KO
2359 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2360 max_sectors);
62096bce
N
2361 r1_bio->bios[r1_bio->read_disk] = bio;
2362 rdev = conf->mirrors[disk].rdev;
2363 printk_ratelimited(KERN_ERR
2364 "md/raid1:%s: redirecting sector %llu"
2365 " to other mirror: %s\n",
2366 mdname(mddev),
2367 (unsigned long long)r1_bio->sector,
2368 bdevname(rdev->bdev, b));
4f024f37 2369 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
62096bce
N
2370 bio->bi_bdev = rdev->bdev;
2371 bio->bi_end_io = raid1_end_read_request;
2372 bio->bi_rw = READ | do_sync;
2373 bio->bi_private = r1_bio;
2374 if (max_sectors < r1_bio->sectors) {
2375 /* Drat - have to split this up more */
2376 struct bio *mbio = r1_bio->master_bio;
2377 int sectors_handled = (r1_bio->sector + max_sectors
4f024f37 2378 - mbio->bi_iter.bi_sector);
62096bce
N
2379 r1_bio->sectors = max_sectors;
2380 spin_lock_irq(&conf->device_lock);
2381 if (mbio->bi_phys_segments == 0)
2382 mbio->bi_phys_segments = 2;
2383 else
2384 mbio->bi_phys_segments++;
2385 spin_unlock_irq(&conf->device_lock);
2386 generic_make_request(bio);
2387 bio = NULL;
2388
2389 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2390
2391 r1_bio->master_bio = mbio;
aa8b57aa 2392 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
62096bce
N
2393 r1_bio->state = 0;
2394 set_bit(R1BIO_ReadError, &r1_bio->state);
2395 r1_bio->mddev = mddev;
4f024f37
KO
2396 r1_bio->sector = mbio->bi_iter.bi_sector +
2397 sectors_handled;
62096bce
N
2398
2399 goto read_more;
2400 } else
2401 generic_make_request(bio);
2402 }
2403}
2404
4ed8731d 2405static void raid1d(struct md_thread *thread)
1da177e4 2406{
4ed8731d 2407 struct mddev *mddev = thread->mddev;
9f2c9d12 2408 struct r1bio *r1_bio;
1da177e4 2409 unsigned long flags;
e8096360 2410 struct r1conf *conf = mddev->private;
1da177e4 2411 struct list_head *head = &conf->retry_list;
e1dfa0a2 2412 struct blk_plug plug;
1da177e4
LT
2413
2414 md_check_recovery(mddev);
e1dfa0a2
N
2415
2416 blk_start_plug(&plug);
1da177e4 2417 for (;;) {
191ea9b2 2418
0021b7bc 2419 flush_pending_writes(conf);
191ea9b2 2420
a35e63ef
N
2421 spin_lock_irqsave(&conf->device_lock, flags);
2422 if (list_empty(head)) {
2423 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2424 break;
a35e63ef 2425 }
9f2c9d12 2426 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2427 list_del(head->prev);
ddaf22ab 2428 conf->nr_queued--;
1da177e4
LT
2429 spin_unlock_irqrestore(&conf->device_lock, flags);
2430
2431 mddev = r1_bio->mddev;
070ec55d 2432 conf = mddev->private;
4367af55 2433 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2434 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2435 test_bit(R1BIO_WriteError, &r1_bio->state))
2436 handle_sync_write_finished(conf, r1_bio);
2437 else
4367af55 2438 sync_request_write(mddev, r1_bio);
cd5ff9a1 2439 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2440 test_bit(R1BIO_WriteError, &r1_bio->state))
2441 handle_write_finished(conf, r1_bio);
2442 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2443 handle_read_error(conf, r1_bio);
2444 else
d2eb35ac
N
2445 /* just a partial read to be scheduled from separate
2446 * context
2447 */
2448 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2449
1d9d5241 2450 cond_resched();
de393cde
N
2451 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2452 md_check_recovery(mddev);
1da177e4 2453 }
e1dfa0a2 2454 blk_finish_plug(&plug);
1da177e4
LT
2455}
2456
e8096360 2457static int init_resync(struct r1conf *conf)
1da177e4
LT
2458{
2459 int buffs;
2460
2461 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2462 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2463 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2464 conf->poolinfo);
2465 if (!conf->r1buf_pool)
2466 return -ENOMEM;
2467 conf->next_resync = 0;
2468 return 0;
2469}
2470
2471/*
2472 * perform a "sync" on one "block"
2473 *
2474 * We need to make sure that no normal I/O request - particularly write
2475 * requests - conflict with active sync requests.
2476 *
2477 * This is achieved by tracking pending requests and a 'barrier' concept
2478 * that can be installed to exclude normal IO requests.
2479 */
2480
fd01b88c 2481static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 2482{
e8096360 2483 struct r1conf *conf = mddev->private;
9f2c9d12 2484 struct r1bio *r1_bio;
1da177e4
LT
2485 struct bio *bio;
2486 sector_t max_sector, nr_sectors;
3e198f78 2487 int disk = -1;
1da177e4 2488 int i;
3e198f78
N
2489 int wonly = -1;
2490 int write_targets = 0, read_targets = 0;
57dab0bd 2491 sector_t sync_blocks;
e3b9703e 2492 int still_degraded = 0;
06f60385
N
2493 int good_sectors = RESYNC_SECTORS;
2494 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2495
2496 if (!conf->r1buf_pool)
2497 if (init_resync(conf))
57afd89f 2498 return 0;
1da177e4 2499
58c0fed4 2500 max_sector = mddev->dev_sectors;
1da177e4 2501 if (sector_nr >= max_sector) {
191ea9b2
N
2502 /* If we aborted, we need to abort the
2503 * sync on the 'current' bitmap chunk (there will
2504 * only be one in raid1 resync.
2505 * We can find the current addess in mddev->curr_resync
2506 */
6a806c51
N
2507 if (mddev->curr_resync < max_sector) /* aborted */
2508 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2509 &sync_blocks, 1);
6a806c51 2510 else /* completed sync */
191ea9b2 2511 conf->fullsync = 0;
6a806c51
N
2512
2513 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2514 close_sync(conf);
2515 return 0;
2516 }
2517
07d84d10
N
2518 if (mddev->bitmap == NULL &&
2519 mddev->recovery_cp == MaxSector &&
6394cca5 2520 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2521 conf->fullsync == 0) {
2522 *skipped = 1;
2523 return max_sector - sector_nr;
2524 }
6394cca5
N
2525 /* before building a request, check if we can skip these blocks..
2526 * This call the bitmap_start_sync doesn't actually record anything
2527 */
e3b9703e 2528 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2529 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2530 /* We can skip this block, and probably several more */
2531 *skipped = 1;
2532 return sync_blocks;
2533 }
1da177e4 2534 /*
17999be4
N
2535 * If there is non-resync activity waiting for a turn,
2536 * and resync is going fast enough,
2537 * then let it though before starting on this new sync request.
1da177e4 2538 */
17999be4 2539 if (!go_faster && conf->nr_waiting)
1da177e4 2540 msleep_interruptible(1000);
17999be4 2541
b47490c9 2542 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2543 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4 2544
c2fd4c94 2545 raise_barrier(conf, sector_nr);
1da177e4 2546
3e198f78 2547 rcu_read_lock();
1da177e4 2548 /*
3e198f78
N
2549 * If we get a correctably read error during resync or recovery,
2550 * we might want to read from a different device. So we
2551 * flag all drives that could conceivably be read from for READ,
2552 * and any others (which will be non-In_sync devices) for WRITE.
2553 * If a read fails, we try reading from something else for which READ
2554 * is OK.
1da177e4 2555 */
1da177e4 2556
1da177e4
LT
2557 r1_bio->mddev = mddev;
2558 r1_bio->sector = sector_nr;
191ea9b2 2559 r1_bio->state = 0;
1da177e4 2560 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2561
8f19ccb2 2562 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2563 struct md_rdev *rdev;
1da177e4 2564 bio = r1_bio->bios[i];
2aabaa65 2565 bio_reset(bio);
1da177e4 2566
3e198f78
N
2567 rdev = rcu_dereference(conf->mirrors[i].rdev);
2568 if (rdev == NULL ||
06f60385 2569 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2570 if (i < conf->raid_disks)
2571 still_degraded = 1;
3e198f78 2572 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2573 bio->bi_rw = WRITE;
2574 bio->bi_end_io = end_sync_write;
2575 write_targets ++;
3e198f78
N
2576 } else {
2577 /* may need to read from here */
06f60385
N
2578 sector_t first_bad = MaxSector;
2579 int bad_sectors;
2580
2581 if (is_badblock(rdev, sector_nr, good_sectors,
2582 &first_bad, &bad_sectors)) {
2583 if (first_bad > sector_nr)
2584 good_sectors = first_bad - sector_nr;
2585 else {
2586 bad_sectors -= (sector_nr - first_bad);
2587 if (min_bad == 0 ||
2588 min_bad > bad_sectors)
2589 min_bad = bad_sectors;
2590 }
2591 }
2592 if (sector_nr < first_bad) {
2593 if (test_bit(WriteMostly, &rdev->flags)) {
2594 if (wonly < 0)
2595 wonly = i;
2596 } else {
2597 if (disk < 0)
2598 disk = i;
2599 }
2600 bio->bi_rw = READ;
2601 bio->bi_end_io = end_sync_read;
2602 read_targets++;
d57368af
AL
2603 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2604 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2605 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2606 /*
2607 * The device is suitable for reading (InSync),
2608 * but has bad block(s) here. Let's try to correct them,
2609 * if we are doing resync or repair. Otherwise, leave
2610 * this device alone for this sync request.
2611 */
2612 bio->bi_rw = WRITE;
2613 bio->bi_end_io = end_sync_write;
2614 write_targets++;
3e198f78 2615 }
3e198f78 2616 }
06f60385
N
2617 if (bio->bi_end_io) {
2618 atomic_inc(&rdev->nr_pending);
4f024f37 2619 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
06f60385
N
2620 bio->bi_bdev = rdev->bdev;
2621 bio->bi_private = r1_bio;
2622 }
1da177e4 2623 }
3e198f78
N
2624 rcu_read_unlock();
2625 if (disk < 0)
2626 disk = wonly;
2627 r1_bio->read_disk = disk;
191ea9b2 2628
06f60385
N
2629 if (read_targets == 0 && min_bad > 0) {
2630 /* These sectors are bad on all InSync devices, so we
2631 * need to mark them bad on all write targets
2632 */
2633 int ok = 1;
8f19ccb2 2634 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2635 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2636 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2637 ok = rdev_set_badblocks(rdev, sector_nr,
2638 min_bad, 0
2639 ) && ok;
2640 }
2641 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2642 *skipped = 1;
2643 put_buf(r1_bio);
2644
2645 if (!ok) {
2646 /* Cannot record the badblocks, so need to
2647 * abort the resync.
2648 * If there are multiple read targets, could just
2649 * fail the really bad ones ???
2650 */
2651 conf->recovery_disabled = mddev->recovery_disabled;
2652 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2653 return 0;
2654 } else
2655 return min_bad;
2656
2657 }
2658 if (min_bad > 0 && min_bad < good_sectors) {
2659 /* only resync enough to reach the next bad->good
2660 * transition */
2661 good_sectors = min_bad;
2662 }
2663
3e198f78
N
2664 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2665 /* extra read targets are also write targets */
2666 write_targets += read_targets-1;
2667
2668 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2669 /* There is nowhere to write, so all non-sync
2670 * drives must be failed - so we are finished
2671 */
b7219ccb
N
2672 sector_t rv;
2673 if (min_bad > 0)
2674 max_sector = sector_nr + min_bad;
2675 rv = max_sector - sector_nr;
57afd89f 2676 *skipped = 1;
1da177e4 2677 put_buf(r1_bio);
1da177e4
LT
2678 return rv;
2679 }
2680
c6207277
N
2681 if (max_sector > mddev->resync_max)
2682 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2683 if (max_sector > sector_nr + good_sectors)
2684 max_sector = sector_nr + good_sectors;
1da177e4 2685 nr_sectors = 0;
289e99e8 2686 sync_blocks = 0;
1da177e4
LT
2687 do {
2688 struct page *page;
2689 int len = PAGE_SIZE;
2690 if (sector_nr + (len>>9) > max_sector)
2691 len = (max_sector - sector_nr) << 9;
2692 if (len == 0)
2693 break;
6a806c51
N
2694 if (sync_blocks == 0) {
2695 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2696 &sync_blocks, still_degraded) &&
2697 !conf->fullsync &&
2698 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2699 break;
9e77c485 2700 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2701 if ((len >> 9) > sync_blocks)
6a806c51 2702 len = sync_blocks<<9;
ab7a30c7 2703 }
191ea9b2 2704
8f19ccb2 2705 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2706 bio = r1_bio->bios[i];
2707 if (bio->bi_end_io) {
d11c171e 2708 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2709 if (bio_add_page(bio, page, len, 0) == 0) {
2710 /* stop here */
d11c171e 2711 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2712 while (i > 0) {
2713 i--;
2714 bio = r1_bio->bios[i];
6a806c51
N
2715 if (bio->bi_end_io==NULL)
2716 continue;
1da177e4
LT
2717 /* remove last page from this bio */
2718 bio->bi_vcnt--;
4f024f37 2719 bio->bi_iter.bi_size -= len;
3fd83717 2720 __clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1da177e4
LT
2721 }
2722 goto bio_full;
2723 }
2724 }
2725 }
2726 nr_sectors += len>>9;
2727 sector_nr += len>>9;
191ea9b2 2728 sync_blocks -= (len>>9);
1da177e4
LT
2729 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2730 bio_full:
1da177e4
LT
2731 r1_bio->sectors = nr_sectors;
2732
d11c171e
N
2733 /* For a user-requested sync, we read all readable devices and do a
2734 * compare
2735 */
2736 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2737 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2738 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2739 bio = r1_bio->bios[i];
2740 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2741 read_targets--;
ddac7c7e 2742 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2743 generic_make_request(bio);
2744 }
2745 }
2746 } else {
2747 atomic_set(&r1_bio->remaining, 1);
2748 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2749 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2750 generic_make_request(bio);
1da177e4 2751
d11c171e 2752 }
1da177e4
LT
2753 return nr_sectors;
2754}
2755
fd01b88c 2756static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2757{
2758 if (sectors)
2759 return sectors;
2760
2761 return mddev->dev_sectors;
2762}
2763
e8096360 2764static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2765{
e8096360 2766 struct r1conf *conf;
709ae487 2767 int i;
0eaf822c 2768 struct raid1_info *disk;
3cb03002 2769 struct md_rdev *rdev;
709ae487 2770 int err = -ENOMEM;
1da177e4 2771
e8096360 2772 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2773 if (!conf)
709ae487 2774 goto abort;
1da177e4 2775
0eaf822c 2776 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2777 * mddev->raid_disks * 2,
1da177e4
LT
2778 GFP_KERNEL);
2779 if (!conf->mirrors)
709ae487 2780 goto abort;
1da177e4 2781
ddaf22ab
N
2782 conf->tmppage = alloc_page(GFP_KERNEL);
2783 if (!conf->tmppage)
709ae487 2784 goto abort;
ddaf22ab 2785
709ae487 2786 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2787 if (!conf->poolinfo)
709ae487 2788 goto abort;
8f19ccb2 2789 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2790 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2791 r1bio_pool_free,
2792 conf->poolinfo);
2793 if (!conf->r1bio_pool)
709ae487
N
2794 goto abort;
2795
ed9bfdf1 2796 conf->poolinfo->mddev = mddev;
1da177e4 2797
c19d5798 2798 err = -EINVAL;
e7e72bf6 2799 spin_lock_init(&conf->device_lock);
dafb20fa 2800 rdev_for_each(rdev, mddev) {
aba336bd 2801 struct request_queue *q;
709ae487 2802 int disk_idx = rdev->raid_disk;
1da177e4
LT
2803 if (disk_idx >= mddev->raid_disks
2804 || disk_idx < 0)
2805 continue;
c19d5798 2806 if (test_bit(Replacement, &rdev->flags))
02b898f2 2807 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2808 else
2809 disk = conf->mirrors + disk_idx;
1da177e4 2810
c19d5798
N
2811 if (disk->rdev)
2812 goto abort;
1da177e4 2813 disk->rdev = rdev;
aba336bd
N
2814 q = bdev_get_queue(rdev->bdev);
2815 if (q->merge_bvec_fn)
2816 mddev->merge_check_needed = 1;
1da177e4
LT
2817
2818 disk->head_position = 0;
12cee5a8 2819 disk->seq_start = MaxSector;
1da177e4
LT
2820 }
2821 conf->raid_disks = mddev->raid_disks;
2822 conf->mddev = mddev;
1da177e4 2823 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2824
2825 spin_lock_init(&conf->resync_lock);
17999be4 2826 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2827
191ea9b2 2828 bio_list_init(&conf->pending_bio_list);
34db0cd6 2829 conf->pending_count = 0;
d890fa2b 2830 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2831
79ef3a8a 2832 conf->start_next_window = MaxSector;
2833 conf->current_window_requests = conf->next_window_requests = 0;
2834
c19d5798 2835 err = -EIO;
8f19ccb2 2836 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2837
2838 disk = conf->mirrors + i;
2839
c19d5798
N
2840 if (i < conf->raid_disks &&
2841 disk[conf->raid_disks].rdev) {
2842 /* This slot has a replacement. */
2843 if (!disk->rdev) {
2844 /* No original, just make the replacement
2845 * a recovering spare
2846 */
2847 disk->rdev =
2848 disk[conf->raid_disks].rdev;
2849 disk[conf->raid_disks].rdev = NULL;
2850 } else if (!test_bit(In_sync, &disk->rdev->flags))
2851 /* Original is not in_sync - bad */
2852 goto abort;
2853 }
2854
5fd6c1dc
N
2855 if (!disk->rdev ||
2856 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2857 disk->head_position = 0;
4f0a5e01
JB
2858 if (disk->rdev &&
2859 (disk->rdev->saved_raid_disk < 0))
918f0238 2860 conf->fullsync = 1;
be4d3280 2861 }
1da177e4 2862 }
709ae487 2863
709ae487 2864 err = -ENOMEM;
0232605d 2865 conf->thread = md_register_thread(raid1d, mddev, "raid1");
709ae487
N
2866 if (!conf->thread) {
2867 printk(KERN_ERR
9dd1e2fa 2868 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2869 mdname(mddev));
2870 goto abort;
11ce99e6 2871 }
1da177e4 2872
709ae487
N
2873 return conf;
2874
2875 abort:
2876 if (conf) {
2877 if (conf->r1bio_pool)
2878 mempool_destroy(conf->r1bio_pool);
2879 kfree(conf->mirrors);
2880 safe_put_page(conf->tmppage);
2881 kfree(conf->poolinfo);
2882 kfree(conf);
2883 }
2884 return ERR_PTR(err);
2885}
2886
afa0f557 2887static void raid1_free(struct mddev *mddev, void *priv);
fd01b88c 2888static int run(struct mddev *mddev)
709ae487 2889{
e8096360 2890 struct r1conf *conf;
709ae487 2891 int i;
3cb03002 2892 struct md_rdev *rdev;
5220ea1e 2893 int ret;
2ff8cc2c 2894 bool discard_supported = false;
709ae487
N
2895
2896 if (mddev->level != 1) {
9dd1e2fa 2897 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2898 mdname(mddev), mddev->level);
2899 return -EIO;
2900 }
2901 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2902 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2903 mdname(mddev));
2904 return -EIO;
2905 }
1da177e4 2906 /*
709ae487
N
2907 * copy the already verified devices into our private RAID1
2908 * bookkeeping area. [whatever we allocate in run(),
afa0f557 2909 * should be freed in raid1_free()]
1da177e4 2910 */
709ae487
N
2911 if (mddev->private == NULL)
2912 conf = setup_conf(mddev);
2913 else
2914 conf = mddev->private;
1da177e4 2915
709ae487
N
2916 if (IS_ERR(conf))
2917 return PTR_ERR(conf);
1da177e4 2918
c8dc9c65 2919 if (mddev->queue)
5026d7a9
PA
2920 blk_queue_max_write_same_sectors(mddev->queue, 0);
2921
dafb20fa 2922 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2923 if (!mddev->gendisk)
2924 continue;
709ae487
N
2925 disk_stack_limits(mddev->gendisk, rdev->bdev,
2926 rdev->data_offset << 9);
2ff8cc2c
SL
2927 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2928 discard_supported = true;
1da177e4 2929 }
191ea9b2 2930
709ae487
N
2931 mddev->degraded = 0;
2932 for (i=0; i < conf->raid_disks; i++)
2933 if (conf->mirrors[i].rdev == NULL ||
2934 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2935 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2936 mddev->degraded++;
2937
2938 if (conf->raid_disks - mddev->degraded == 1)
2939 mddev->recovery_cp = MaxSector;
2940
8c6ac868 2941 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2942 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2943 " -- starting background reconstruction\n",
2944 mdname(mddev));
f72ffdd6 2945 printk(KERN_INFO
9dd1e2fa 2946 "md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 2947 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 2948 mddev->raid_disks);
709ae487 2949
1da177e4
LT
2950 /*
2951 * Ok, everything is just fine now
2952 */
709ae487
N
2953 mddev->thread = conf->thread;
2954 conf->thread = NULL;
2955 mddev->private = conf;
2956
1f403624 2957 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2958
1ed7242e 2959 if (mddev->queue) {
2ff8cc2c
SL
2960 if (discard_supported)
2961 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2962 mddev->queue);
2963 else
2964 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2965 mddev->queue);
1ed7242e 2966 }
5220ea1e 2967
2968 ret = md_integrity_register(mddev);
5aa61f42
N
2969 if (ret) {
2970 md_unregister_thread(&mddev->thread);
afa0f557 2971 raid1_free(mddev, conf);
5aa61f42 2972 }
5220ea1e 2973 return ret;
1da177e4
LT
2974}
2975
afa0f557 2976static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 2977{
afa0f557 2978 struct r1conf *conf = priv;
409c57f3 2979
1da177e4
LT
2980 if (conf->r1bio_pool)
2981 mempool_destroy(conf->r1bio_pool);
990a8baf 2982 kfree(conf->mirrors);
0fea7ed8 2983 safe_put_page(conf->tmppage);
990a8baf 2984 kfree(conf->poolinfo);
1da177e4 2985 kfree(conf);
1da177e4
LT
2986}
2987
fd01b88c 2988static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2989{
2990 /* no resync is happening, and there is enough space
2991 * on all devices, so we can resize.
2992 * We need to make sure resync covers any new space.
2993 * If the array is shrinking we should possibly wait until
2994 * any io in the removed space completes, but it hardly seems
2995 * worth it.
2996 */
a4a6125a
N
2997 sector_t newsize = raid1_size(mddev, sectors, 0);
2998 if (mddev->external_size &&
2999 mddev->array_sectors > newsize)
b522adcd 3000 return -EINVAL;
a4a6125a
N
3001 if (mddev->bitmap) {
3002 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3003 if (ret)
3004 return ret;
3005 }
3006 md_set_array_sectors(mddev, newsize);
f233ea5c 3007 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 3008 revalidate_disk(mddev->gendisk);
b522adcd 3009 if (sectors > mddev->dev_sectors &&
b098636c 3010 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3011 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3012 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3013 }
b522adcd 3014 mddev->dev_sectors = sectors;
4b5c7ae8 3015 mddev->resync_max_sectors = sectors;
1da177e4
LT
3016 return 0;
3017}
3018
fd01b88c 3019static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3020{
3021 /* We need to:
3022 * 1/ resize the r1bio_pool
3023 * 2/ resize conf->mirrors
3024 *
3025 * We allocate a new r1bio_pool if we can.
3026 * Then raise a device barrier and wait until all IO stops.
3027 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3028 *
3029 * At the same time, we "pack" the devices so that all the missing
3030 * devices have the higher raid_disk numbers.
1da177e4
LT
3031 */
3032 mempool_t *newpool, *oldpool;
3033 struct pool_info *newpoolinfo;
0eaf822c 3034 struct raid1_info *newmirrors;
e8096360 3035 struct r1conf *conf = mddev->private;
63c70c4f 3036 int cnt, raid_disks;
c04be0aa 3037 unsigned long flags;
b5470dc5 3038 int d, d2, err;
1da177e4 3039
63c70c4f 3040 /* Cannot change chunk_size, layout, or level */
664e7c41 3041 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3042 mddev->layout != mddev->new_layout ||
3043 mddev->level != mddev->new_level) {
664e7c41 3044 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3045 mddev->new_layout = mddev->layout;
3046 mddev->new_level = mddev->level;
3047 return -EINVAL;
3048 }
3049
b5470dc5
DW
3050 err = md_allow_write(mddev);
3051 if (err)
3052 return err;
2a2275d6 3053
63c70c4f
N
3054 raid_disks = mddev->raid_disks + mddev->delta_disks;
3055
6ea9c07c
N
3056 if (raid_disks < conf->raid_disks) {
3057 cnt=0;
3058 for (d= 0; d < conf->raid_disks; d++)
3059 if (conf->mirrors[d].rdev)
3060 cnt++;
3061 if (cnt > raid_disks)
1da177e4 3062 return -EBUSY;
6ea9c07c 3063 }
1da177e4
LT
3064
3065 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3066 if (!newpoolinfo)
3067 return -ENOMEM;
3068 newpoolinfo->mddev = mddev;
8f19ccb2 3069 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3070
3071 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3072 r1bio_pool_free, newpoolinfo);
3073 if (!newpool) {
3074 kfree(newpoolinfo);
3075 return -ENOMEM;
3076 }
0eaf822c 3077 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3078 GFP_KERNEL);
1da177e4
LT
3079 if (!newmirrors) {
3080 kfree(newpoolinfo);
3081 mempool_destroy(newpool);
3082 return -ENOMEM;
3083 }
1da177e4 3084
e2d59925 3085 freeze_array(conf, 0);
1da177e4
LT
3086
3087 /* ok, everything is stopped */
3088 oldpool = conf->r1bio_pool;
3089 conf->r1bio_pool = newpool;
6ea9c07c 3090
a88aa786 3091 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3092 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3093 if (rdev && rdev->raid_disk != d2) {
36fad858 3094 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3095 rdev->raid_disk = d2;
36fad858
NK
3096 sysfs_unlink_rdev(mddev, rdev);
3097 if (sysfs_link_rdev(mddev, rdev))
a88aa786 3098 printk(KERN_WARNING
36fad858
NK
3099 "md/raid1:%s: cannot register rd%d\n",
3100 mdname(mddev), rdev->raid_disk);
6ea9c07c 3101 }
a88aa786
N
3102 if (rdev)
3103 newmirrors[d2++].rdev = rdev;
3104 }
1da177e4
LT
3105 kfree(conf->mirrors);
3106 conf->mirrors = newmirrors;
3107 kfree(conf->poolinfo);
3108 conf->poolinfo = newpoolinfo;
3109
c04be0aa 3110 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3111 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3112 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3113 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3114 mddev->delta_disks = 0;
1da177e4 3115
e2d59925 3116 unfreeze_array(conf);
1da177e4
LT
3117
3118 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3119 md_wakeup_thread(mddev->thread);
3120
3121 mempool_destroy(oldpool);
3122 return 0;
3123}
3124
fd01b88c 3125static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3126{
e8096360 3127 struct r1conf *conf = mddev->private;
36fa3063
N
3128
3129 switch(state) {
6eef4b21
N
3130 case 2: /* wake for suspend */
3131 wake_up(&conf->wait_barrier);
3132 break;
9e6603da 3133 case 1:
07169fd4 3134 freeze_array(conf, 0);
36fa3063 3135 break;
9e6603da 3136 case 0:
07169fd4 3137 unfreeze_array(conf);
36fa3063
N
3138 break;
3139 }
36fa3063
N
3140}
3141
fd01b88c 3142static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3143{
3144 /* raid1 can take over:
3145 * raid5 with 2 devices, any layout or chunk size
3146 */
3147 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3148 struct r1conf *conf;
709ae487
N
3149 mddev->new_level = 1;
3150 mddev->new_layout = 0;
3151 mddev->new_chunk_sectors = 0;
3152 conf = setup_conf(mddev);
3153 if (!IS_ERR(conf))
07169fd4 3154 /* Array must appear to be quiesced */
3155 conf->array_frozen = 1;
709ae487
N
3156 return conf;
3157 }
3158 return ERR_PTR(-EINVAL);
3159}
1da177e4 3160
84fc4b56 3161static struct md_personality raid1_personality =
1da177e4
LT
3162{
3163 .name = "raid1",
2604b703 3164 .level = 1,
1da177e4
LT
3165 .owner = THIS_MODULE,
3166 .make_request = make_request,
3167 .run = run,
afa0f557 3168 .free = raid1_free,
1da177e4
LT
3169 .status = status,
3170 .error_handler = error,
3171 .hot_add_disk = raid1_add_disk,
3172 .hot_remove_disk= raid1_remove_disk,
3173 .spare_active = raid1_spare_active,
3174 .sync_request = sync_request,
3175 .resize = raid1_resize,
80c3a6ce 3176 .size = raid1_size,
63c70c4f 3177 .check_reshape = raid1_reshape,
36fa3063 3178 .quiesce = raid1_quiesce,
709ae487 3179 .takeover = raid1_takeover,
5c675f83 3180 .congested = raid1_congested,
64590f45 3181 .mergeable_bvec = raid1_mergeable_bvec,
1da177e4
LT
3182};
3183
3184static int __init raid_init(void)
3185{
2604b703 3186 return register_md_personality(&raid1_personality);
1da177e4
LT
3187}
3188
3189static void raid_exit(void)
3190{
2604b703 3191 unregister_md_personality(&raid1_personality);
1da177e4
LT
3192}
3193
3194module_init(raid_init);
3195module_exit(raid_exit);
3196MODULE_LICENSE("GPL");
0efb9e61 3197MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3198MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3199MODULE_ALIAS("md-raid1");
2604b703 3200MODULE_ALIAS("md-level-1");
34db0cd6
N
3201
3202module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.948128 seconds and 5 git commands to generate.