md/raid1: read balance chooses idlest disk for SSD
[deliverable/linux.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
473e87ce
JB
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
1da177e4 68
e8096360
N
69static void allow_barrier(struct r1conf *conf);
70static void lower_barrier(struct r1conf *conf);
1da177e4 71
dd0fc66f 72static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
73{
74 struct pool_info *pi = data;
9f2c9d12 75 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
76
77 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 78 return kzalloc(size, gfp_flags);
1da177e4
LT
79}
80
81static void r1bio_pool_free(void *r1_bio, void *data)
82{
83 kfree(r1_bio);
84}
85
86#define RESYNC_BLOCK_SIZE (64*1024)
87//#define RESYNC_BLOCK_SIZE PAGE_SIZE
88#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90#define RESYNC_WINDOW (2048*1024)
91
dd0fc66f 92static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
93{
94 struct pool_info *pi = data;
95 struct page *page;
9f2c9d12 96 struct r1bio *r1_bio;
1da177e4
LT
97 struct bio *bio;
98 int i, j;
99
100 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 101 if (!r1_bio)
1da177e4 102 return NULL;
1da177e4
LT
103
104 /*
105 * Allocate bios : 1 for reading, n-1 for writing
106 */
107 for (j = pi->raid_disks ; j-- ; ) {
6746557f 108 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
109 if (!bio)
110 goto out_free_bio;
111 r1_bio->bios[j] = bio;
112 }
113 /*
114 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
115 * the first bio.
116 * If this is a user-requested check/repair, allocate
117 * RESYNC_PAGES for each bio.
1da177e4 118 */
d11c171e
N
119 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
120 j = pi->raid_disks;
121 else
122 j = 1;
123 while(j--) {
124 bio = r1_bio->bios[j];
125 for (i = 0; i < RESYNC_PAGES; i++) {
126 page = alloc_page(gfp_flags);
127 if (unlikely(!page))
128 goto out_free_pages;
129
130 bio->bi_io_vec[i].bv_page = page;
303a0e11 131 bio->bi_vcnt = i+1;
d11c171e
N
132 }
133 }
134 /* If not user-requests, copy the page pointers to all bios */
135 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
136 for (i=0; i<RESYNC_PAGES ; i++)
137 for (j=1; j<pi->raid_disks; j++)
138 r1_bio->bios[j]->bi_io_vec[i].bv_page =
139 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
140 }
141
142 r1_bio->master_bio = NULL;
143
144 return r1_bio;
145
146out_free_pages:
303a0e11
N
147 for (j=0 ; j < pi->raid_disks; j++)
148 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
149 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 150 j = -1;
1da177e4 151out_free_bio:
8f19ccb2 152 while (++j < pi->raid_disks)
1da177e4
LT
153 bio_put(r1_bio->bios[j]);
154 r1bio_pool_free(r1_bio, data);
155 return NULL;
156}
157
158static void r1buf_pool_free(void *__r1_bio, void *data)
159{
160 struct pool_info *pi = data;
d11c171e 161 int i,j;
9f2c9d12 162 struct r1bio *r1bio = __r1_bio;
1da177e4 163
d11c171e
N
164 for (i = 0; i < RESYNC_PAGES; i++)
165 for (j = pi->raid_disks; j-- ;) {
166 if (j == 0 ||
167 r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 170 }
1da177e4
LT
171 for (i=0 ; i < pi->raid_disks; i++)
172 bio_put(r1bio->bios[i]);
173
174 r1bio_pool_free(r1bio, data);
175}
176
e8096360 177static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
178{
179 int i;
180
8f19ccb2 181 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 182 struct bio **bio = r1_bio->bios + i;
4367af55 183 if (!BIO_SPECIAL(*bio))
1da177e4
LT
184 bio_put(*bio);
185 *bio = NULL;
186 }
187}
188
9f2c9d12 189static void free_r1bio(struct r1bio *r1_bio)
1da177e4 190{
e8096360 191 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 192
1da177e4
LT
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
195}
196
9f2c9d12 197static void put_buf(struct r1bio *r1_bio)
1da177e4 198{
e8096360 199 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
200 int i;
201
8f19ccb2 202 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 }
1da177e4
LT
207
208 mempool_free(r1_bio, conf->r1buf_pool);
209
17999be4 210 lower_barrier(conf);
1da177e4
LT
211}
212
9f2c9d12 213static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
214{
215 unsigned long flags;
fd01b88c 216 struct mddev *mddev = r1_bio->mddev;
e8096360 217 struct r1conf *conf = mddev->private;
1da177e4
LT
218
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 221 conf->nr_queued ++;
1da177e4
LT
222 spin_unlock_irqrestore(&conf->device_lock, flags);
223
17999be4 224 wake_up(&conf->wait_barrier);
1da177e4
LT
225 md_wakeup_thread(mddev->thread);
226}
227
228/*
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
232 */
9f2c9d12 233static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
234{
235 struct bio *bio = r1_bio->master_bio;
236 int done;
e8096360 237 struct r1conf *conf = r1_bio->mddev->private;
d2eb35ac
N
238
239 if (bio->bi_phys_segments) {
240 unsigned long flags;
241 spin_lock_irqsave(&conf->device_lock, flags);
242 bio->bi_phys_segments--;
243 done = (bio->bi_phys_segments == 0);
244 spin_unlock_irqrestore(&conf->device_lock, flags);
245 } else
246 done = 1;
247
248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 clear_bit(BIO_UPTODATE, &bio->bi_flags);
250 if (done) {
251 bio_endio(bio, 0);
252 /*
253 * Wake up any possible resync thread that waits for the device
254 * to go idle.
255 */
256 allow_barrier(conf);
257 }
258}
259
9f2c9d12 260static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
261{
262 struct bio *bio = r1_bio->master_bio;
263
4b6d287f
N
264 /* if nobody has done the final endio yet, do it now */
265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 (unsigned long long) bio->bi_sector,
269 (unsigned long long) bio->bi_sector +
270 (bio->bi_size >> 9) - 1);
4b6d287f 271
d2eb35ac 272 call_bio_endio(r1_bio);
4b6d287f 273 }
1da177e4
LT
274 free_r1bio(r1_bio);
275}
276
277/*
278 * Update disk head position estimator based on IRQ completion info.
279 */
9f2c9d12 280static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 281{
e8096360 282 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
283
284 conf->mirrors[disk].head_position =
285 r1_bio->sector + (r1_bio->sectors);
286}
287
ba3ae3be
NK
288/*
289 * Find the disk number which triggered given bio
290 */
9f2c9d12 291static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
292{
293 int mirror;
30194636
N
294 struct r1conf *conf = r1_bio->mddev->private;
295 int raid_disks = conf->raid_disks;
ba3ae3be 296
8f19ccb2 297 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
298 if (r1_bio->bios[mirror] == bio)
299 break;
300
8f19ccb2 301 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
302 update_head_pos(mirror, r1_bio);
303
304 return mirror;
305}
306
6712ecf8 307static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
308{
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 310 struct r1bio *r1_bio = bio->bi_private;
1da177e4 311 int mirror;
e8096360 312 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 313
1da177e4
LT
314 mirror = r1_bio->read_disk;
315 /*
316 * this branch is our 'one mirror IO has finished' event handler:
317 */
ddaf22ab
N
318 update_head_pos(mirror, r1_bio);
319
dd00a99e
N
320 if (uptodate)
321 set_bit(R1BIO_Uptodate, &r1_bio->state);
322 else {
323 /* If all other devices have failed, we want to return
324 * the error upwards rather than fail the last device.
325 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 326 */
dd00a99e
N
327 unsigned long flags;
328 spin_lock_irqsave(&conf->device_lock, flags);
329 if (r1_bio->mddev->degraded == conf->raid_disks ||
330 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
331 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
332 uptodate = 1;
333 spin_unlock_irqrestore(&conf->device_lock, flags);
334 }
1da177e4 335
dd00a99e 336 if (uptodate)
1da177e4 337 raid_end_bio_io(r1_bio);
dd00a99e 338 else {
1da177e4
LT
339 /*
340 * oops, read error:
341 */
342 char b[BDEVNAME_SIZE];
8bda470e
CD
343 printk_ratelimited(
344 KERN_ERR "md/raid1:%s: %s: "
345 "rescheduling sector %llu\n",
346 mdname(conf->mddev),
347 bdevname(conf->mirrors[mirror].rdev->bdev,
348 b),
349 (unsigned long long)r1_bio->sector);
d2eb35ac 350 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4
LT
351 reschedule_retry(r1_bio);
352 }
353
354 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
1da177e4
LT
355}
356
9f2c9d12 357static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
358{
359 /* it really is the end of this request */
360 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
361 /* free extra copy of the data pages */
362 int i = r1_bio->behind_page_count;
363 while (i--)
364 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
365 kfree(r1_bio->behind_bvecs);
366 r1_bio->behind_bvecs = NULL;
367 }
368 /* clear the bitmap if all writes complete successfully */
369 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
370 r1_bio->sectors,
371 !test_bit(R1BIO_Degraded, &r1_bio->state),
372 test_bit(R1BIO_BehindIO, &r1_bio->state));
373 md_write_end(r1_bio->mddev);
374}
375
9f2c9d12 376static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 377{
cd5ff9a1
N
378 if (!atomic_dec_and_test(&r1_bio->remaining))
379 return;
380
381 if (test_bit(R1BIO_WriteError, &r1_bio->state))
382 reschedule_retry(r1_bio);
383 else {
384 close_write(r1_bio);
4367af55
N
385 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
386 reschedule_retry(r1_bio);
387 else
388 raid_end_bio_io(r1_bio);
4e78064f
N
389 }
390}
391
6712ecf8 392static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
393{
394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 395 struct r1bio *r1_bio = bio->bi_private;
a9701a30 396 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 397 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 398 struct bio *to_put = NULL;
1da177e4 399
ba3ae3be 400 mirror = find_bio_disk(r1_bio, bio);
1da177e4 401
e9c7469b
TH
402 /*
403 * 'one mirror IO has finished' event handler:
404 */
e9c7469b 405 if (!uptodate) {
cd5ff9a1
N
406 set_bit(WriteErrorSeen,
407 &conf->mirrors[mirror].rdev->flags);
19d67169
N
408 if (!test_and_set_bit(WantReplacement,
409 &conf->mirrors[mirror].rdev->flags))
410 set_bit(MD_RECOVERY_NEEDED, &
411 conf->mddev->recovery);
412
cd5ff9a1 413 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 414 } else {
1da177e4 415 /*
e9c7469b
TH
416 * Set R1BIO_Uptodate in our master bio, so that we
417 * will return a good error code for to the higher
418 * levels even if IO on some other mirrored buffer
419 * fails.
420 *
421 * The 'master' represents the composite IO operation
422 * to user-side. So if something waits for IO, then it
423 * will wait for the 'master' bio.
1da177e4 424 */
4367af55
N
425 sector_t first_bad;
426 int bad_sectors;
427
cd5ff9a1
N
428 r1_bio->bios[mirror] = NULL;
429 to_put = bio;
e9c7469b
TH
430 set_bit(R1BIO_Uptodate, &r1_bio->state);
431
4367af55
N
432 /* Maybe we can clear some bad blocks. */
433 if (is_badblock(conf->mirrors[mirror].rdev,
434 r1_bio->sector, r1_bio->sectors,
435 &first_bad, &bad_sectors)) {
436 r1_bio->bios[mirror] = IO_MADE_GOOD;
437 set_bit(R1BIO_MadeGood, &r1_bio->state);
438 }
439 }
440
e9c7469b
TH
441 if (behind) {
442 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
443 atomic_dec(&r1_bio->behind_remaining);
444
445 /*
446 * In behind mode, we ACK the master bio once the I/O
447 * has safely reached all non-writemostly
448 * disks. Setting the Returned bit ensures that this
449 * gets done only once -- we don't ever want to return
450 * -EIO here, instead we'll wait
451 */
452 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
453 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
454 /* Maybe we can return now */
455 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
456 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
457 pr_debug("raid1: behind end write sectors"
458 " %llu-%llu\n",
459 (unsigned long long) mbio->bi_sector,
460 (unsigned long long) mbio->bi_sector +
461 (mbio->bi_size >> 9) - 1);
d2eb35ac 462 call_bio_endio(r1_bio);
4b6d287f
N
463 }
464 }
465 }
4367af55
N
466 if (r1_bio->bios[mirror] == NULL)
467 rdev_dec_pending(conf->mirrors[mirror].rdev,
468 conf->mddev);
e9c7469b 469
1da177e4 470 /*
1da177e4
LT
471 * Let's see if all mirrored write operations have finished
472 * already.
473 */
af6d7b76 474 r1_bio_write_done(r1_bio);
c70810b3 475
04b857f7
N
476 if (to_put)
477 bio_put(to_put);
1da177e4
LT
478}
479
480
481/*
482 * This routine returns the disk from which the requested read should
483 * be done. There is a per-array 'next expected sequential IO' sector
484 * number - if this matches on the next IO then we use the last disk.
485 * There is also a per-disk 'last know head position' sector that is
486 * maintained from IRQ contexts, both the normal and the resync IO
487 * completion handlers update this position correctly. If there is no
488 * perfect sequential match then we pick the disk whose head is closest.
489 *
490 * If there are 2 mirrors in the same 2 devices, performance degrades
491 * because position is mirror, not device based.
492 *
493 * The rdev for the device selected will have nr_pending incremented.
494 */
e8096360 495static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 496{
af3a2cd6 497 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
498 int sectors;
499 int best_good_sectors;
9dedf603
SL
500 int best_disk, best_dist_disk, best_pending_disk;
501 int has_nonrot_disk;
be4d3280 502 int disk;
76073054 503 sector_t best_dist;
9dedf603 504 unsigned int min_pending;
3cb03002 505 struct md_rdev *rdev;
f3ac8bf7 506 int choose_first;
1da177e4
LT
507
508 rcu_read_lock();
509 /*
8ddf9efe 510 * Check if we can balance. We can balance on the whole
1da177e4
LT
511 * device if no resync is going on, or below the resync window.
512 * We take the first readable disk when above the resync window.
513 */
514 retry:
d2eb35ac 515 sectors = r1_bio->sectors;
76073054 516 best_disk = -1;
9dedf603 517 best_dist_disk = -1;
76073054 518 best_dist = MaxSector;
9dedf603
SL
519 best_pending_disk = -1;
520 min_pending = UINT_MAX;
d2eb35ac 521 best_good_sectors = 0;
9dedf603 522 has_nonrot_disk = 0;
d2eb35ac 523
1da177e4 524 if (conf->mddev->recovery_cp < MaxSector &&
be4d3280 525 (this_sector + sectors >= conf->next_resync))
f3ac8bf7 526 choose_first = 1;
be4d3280 527 else
f3ac8bf7 528 choose_first = 0;
1da177e4 529
be4d3280 530 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 531 sector_t dist;
d2eb35ac
N
532 sector_t first_bad;
533 int bad_sectors;
9dedf603 534 unsigned int pending;
d2eb35ac 535
f3ac8bf7
N
536 rdev = rcu_dereference(conf->mirrors[disk].rdev);
537 if (r1_bio->bios[disk] == IO_BLOCKED
538 || rdev == NULL
6b740b8d 539 || test_bit(Unmerged, &rdev->flags)
76073054 540 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 541 continue;
76073054
N
542 if (!test_bit(In_sync, &rdev->flags) &&
543 rdev->recovery_offset < this_sector + sectors)
1da177e4 544 continue;
76073054
N
545 if (test_bit(WriteMostly, &rdev->flags)) {
546 /* Don't balance among write-mostly, just
547 * use the first as a last resort */
307729c8
N
548 if (best_disk < 0) {
549 if (is_badblock(rdev, this_sector, sectors,
550 &first_bad, &bad_sectors)) {
551 if (first_bad < this_sector)
552 /* Cannot use this */
553 continue;
554 best_good_sectors = first_bad - this_sector;
555 } else
556 best_good_sectors = sectors;
76073054 557 best_disk = disk;
307729c8 558 }
76073054
N
559 continue;
560 }
561 /* This is a reasonable device to use. It might
562 * even be best.
563 */
d2eb35ac
N
564 if (is_badblock(rdev, this_sector, sectors,
565 &first_bad, &bad_sectors)) {
566 if (best_dist < MaxSector)
567 /* already have a better device */
568 continue;
569 if (first_bad <= this_sector) {
570 /* cannot read here. If this is the 'primary'
571 * device, then we must not read beyond
572 * bad_sectors from another device..
573 */
574 bad_sectors -= (this_sector - first_bad);
575 if (choose_first && sectors > bad_sectors)
576 sectors = bad_sectors;
577 if (best_good_sectors > sectors)
578 best_good_sectors = sectors;
579
580 } else {
581 sector_t good_sectors = first_bad - this_sector;
582 if (good_sectors > best_good_sectors) {
583 best_good_sectors = good_sectors;
584 best_disk = disk;
585 }
586 if (choose_first)
587 break;
588 }
589 continue;
590 } else
591 best_good_sectors = sectors;
592
9dedf603
SL
593 has_nonrot_disk |= blk_queue_nonrot(bdev_get_queue(rdev->bdev));
594 pending = atomic_read(&rdev->nr_pending);
76073054
N
595 dist = abs(this_sector - conf->mirrors[disk].head_position);
596 if (choose_first
597 /* Don't change to another disk for sequential reads */
be4d3280 598 || conf->mirrors[disk].next_seq_sect == this_sector
76073054
N
599 || dist == 0
600 /* If device is idle, use it */
9dedf603 601 || pending == 0) {
76073054 602 best_disk = disk;
1da177e4
LT
603 break;
604 }
9dedf603
SL
605
606 if (min_pending > pending) {
607 min_pending = pending;
608 best_pending_disk = disk;
609 }
610
76073054
N
611 if (dist < best_dist) {
612 best_dist = dist;
9dedf603 613 best_dist_disk = disk;
1da177e4 614 }
f3ac8bf7 615 }
1da177e4 616
9dedf603
SL
617 /*
618 * If all disks are rotational, choose the closest disk. If any disk is
619 * non-rotational, choose the disk with less pending request even the
620 * disk is rotational, which might/might not be optimal for raids with
621 * mixed ratation/non-rotational disks depending on workload.
622 */
623 if (best_disk == -1) {
624 if (has_nonrot_disk)
625 best_disk = best_pending_disk;
626 else
627 best_disk = best_dist_disk;
628 }
629
76073054
N
630 if (best_disk >= 0) {
631 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
632 if (!rdev)
633 goto retry;
634 atomic_inc(&rdev->nr_pending);
76073054 635 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
636 /* cannot risk returning a device that failed
637 * before we inc'ed nr_pending
638 */
03c902e1 639 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
640 goto retry;
641 }
d2eb35ac 642 sectors = best_good_sectors;
be4d3280 643 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
644 }
645 rcu_read_unlock();
d2eb35ac 646 *max_sectors = sectors;
1da177e4 647
76073054 648 return best_disk;
1da177e4
LT
649}
650
6b740b8d
N
651static int raid1_mergeable_bvec(struct request_queue *q,
652 struct bvec_merge_data *bvm,
653 struct bio_vec *biovec)
654{
655 struct mddev *mddev = q->queuedata;
656 struct r1conf *conf = mddev->private;
657 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
658 int max = biovec->bv_len;
659
660 if (mddev->merge_check_needed) {
661 int disk;
662 rcu_read_lock();
663 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
664 struct md_rdev *rdev = rcu_dereference(
665 conf->mirrors[disk].rdev);
666 if (rdev && !test_bit(Faulty, &rdev->flags)) {
667 struct request_queue *q =
668 bdev_get_queue(rdev->bdev);
669 if (q->merge_bvec_fn) {
670 bvm->bi_sector = sector +
671 rdev->data_offset;
672 bvm->bi_bdev = rdev->bdev;
673 max = min(max, q->merge_bvec_fn(
674 q, bvm, biovec));
675 }
676 }
677 }
678 rcu_read_unlock();
679 }
680 return max;
681
682}
683
fd01b88c 684int md_raid1_congested(struct mddev *mddev, int bits)
0d129228 685{
e8096360 686 struct r1conf *conf = mddev->private;
0d129228
N
687 int i, ret = 0;
688
34db0cd6
N
689 if ((bits & (1 << BDI_async_congested)) &&
690 conf->pending_count >= max_queued_requests)
691 return 1;
692
0d129228 693 rcu_read_lock();
f53e29fc 694 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 695 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 696 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 697 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 698
1ed7242e
JB
699 BUG_ON(!q);
700
0d129228
N
701 /* Note the '|| 1' - when read_balance prefers
702 * non-congested targets, it can be removed
703 */
91a9e99d 704 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
705 ret |= bdi_congested(&q->backing_dev_info, bits);
706 else
707 ret &= bdi_congested(&q->backing_dev_info, bits);
708 }
709 }
710 rcu_read_unlock();
711 return ret;
712}
1ed7242e 713EXPORT_SYMBOL_GPL(md_raid1_congested);
0d129228 714
1ed7242e
JB
715static int raid1_congested(void *data, int bits)
716{
fd01b88c 717 struct mddev *mddev = data;
1ed7242e
JB
718
719 return mddev_congested(mddev, bits) ||
720 md_raid1_congested(mddev, bits);
721}
0d129228 722
e8096360 723static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
724{
725 /* Any writes that have been queued but are awaiting
726 * bitmap updates get flushed here.
a35e63ef 727 */
a35e63ef
N
728 spin_lock_irq(&conf->device_lock);
729
730 if (conf->pending_bio_list.head) {
731 struct bio *bio;
732 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 733 conf->pending_count = 0;
a35e63ef
N
734 spin_unlock_irq(&conf->device_lock);
735 /* flush any pending bitmap writes to
736 * disk before proceeding w/ I/O */
737 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 738 wake_up(&conf->wait_barrier);
a35e63ef
N
739
740 while (bio) { /* submit pending writes */
741 struct bio *next = bio->bi_next;
742 bio->bi_next = NULL;
743 generic_make_request(bio);
744 bio = next;
745 }
a35e63ef
N
746 } else
747 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
748}
749
17999be4
N
750/* Barriers....
751 * Sometimes we need to suspend IO while we do something else,
752 * either some resync/recovery, or reconfigure the array.
753 * To do this we raise a 'barrier'.
754 * The 'barrier' is a counter that can be raised multiple times
755 * to count how many activities are happening which preclude
756 * normal IO.
757 * We can only raise the barrier if there is no pending IO.
758 * i.e. if nr_pending == 0.
759 * We choose only to raise the barrier if no-one is waiting for the
760 * barrier to go down. This means that as soon as an IO request
761 * is ready, no other operations which require a barrier will start
762 * until the IO request has had a chance.
763 *
764 * So: regular IO calls 'wait_barrier'. When that returns there
765 * is no backgroup IO happening, It must arrange to call
766 * allow_barrier when it has finished its IO.
767 * backgroup IO calls must call raise_barrier. Once that returns
768 * there is no normal IO happeing. It must arrange to call
769 * lower_barrier when the particular background IO completes.
1da177e4
LT
770 */
771#define RESYNC_DEPTH 32
772
e8096360 773static void raise_barrier(struct r1conf *conf)
1da177e4
LT
774{
775 spin_lock_irq(&conf->resync_lock);
17999be4
N
776
777 /* Wait until no block IO is waiting */
778 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
c3b328ac 779 conf->resync_lock, );
17999be4
N
780
781 /* block any new IO from starting */
782 conf->barrier++;
783
046abeed 784 /* Now wait for all pending IO to complete */
17999be4
N
785 wait_event_lock_irq(conf->wait_barrier,
786 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
c3b328ac 787 conf->resync_lock, );
17999be4
N
788
789 spin_unlock_irq(&conf->resync_lock);
790}
791
e8096360 792static void lower_barrier(struct r1conf *conf)
17999be4
N
793{
794 unsigned long flags;
709ae487 795 BUG_ON(conf->barrier <= 0);
17999be4
N
796 spin_lock_irqsave(&conf->resync_lock, flags);
797 conf->barrier--;
798 spin_unlock_irqrestore(&conf->resync_lock, flags);
799 wake_up(&conf->wait_barrier);
800}
801
e8096360 802static void wait_barrier(struct r1conf *conf)
17999be4
N
803{
804 spin_lock_irq(&conf->resync_lock);
805 if (conf->barrier) {
806 conf->nr_waiting++;
d6b42dcb
N
807 /* Wait for the barrier to drop.
808 * However if there are already pending
809 * requests (preventing the barrier from
810 * rising completely), and the
811 * pre-process bio queue isn't empty,
812 * then don't wait, as we need to empty
813 * that queue to get the nr_pending
814 * count down.
815 */
816 wait_event_lock_irq(conf->wait_barrier,
817 !conf->barrier ||
818 (conf->nr_pending &&
819 current->bio_list &&
820 !bio_list_empty(current->bio_list)),
17999be4 821 conf->resync_lock,
d6b42dcb 822 );
17999be4 823 conf->nr_waiting--;
1da177e4 824 }
17999be4 825 conf->nr_pending++;
1da177e4
LT
826 spin_unlock_irq(&conf->resync_lock);
827}
828
e8096360 829static void allow_barrier(struct r1conf *conf)
17999be4
N
830{
831 unsigned long flags;
832 spin_lock_irqsave(&conf->resync_lock, flags);
833 conf->nr_pending--;
834 spin_unlock_irqrestore(&conf->resync_lock, flags);
835 wake_up(&conf->wait_barrier);
836}
837
e8096360 838static void freeze_array(struct r1conf *conf)
ddaf22ab
N
839{
840 /* stop syncio and normal IO and wait for everything to
841 * go quite.
842 * We increment barrier and nr_waiting, and then
1c830532
N
843 * wait until nr_pending match nr_queued+1
844 * This is called in the context of one normal IO request
845 * that has failed. Thus any sync request that might be pending
846 * will be blocked by nr_pending, and we need to wait for
847 * pending IO requests to complete or be queued for re-try.
848 * Thus the number queued (nr_queued) plus this request (1)
849 * must match the number of pending IOs (nr_pending) before
850 * we continue.
ddaf22ab
N
851 */
852 spin_lock_irq(&conf->resync_lock);
853 conf->barrier++;
854 conf->nr_waiting++;
855 wait_event_lock_irq(conf->wait_barrier,
1c830532 856 conf->nr_pending == conf->nr_queued+1,
ddaf22ab 857 conf->resync_lock,
c3b328ac 858 flush_pending_writes(conf));
ddaf22ab
N
859 spin_unlock_irq(&conf->resync_lock);
860}
e8096360 861static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
862{
863 /* reverse the effect of the freeze */
864 spin_lock_irq(&conf->resync_lock);
865 conf->barrier--;
866 conf->nr_waiting--;
867 wake_up(&conf->wait_barrier);
868 spin_unlock_irq(&conf->resync_lock);
869}
870
17999be4 871
4e78064f 872/* duplicate the data pages for behind I/O
4e78064f 873 */
9f2c9d12 874static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
875{
876 int i;
877 struct bio_vec *bvec;
2ca68f5e 878 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 879 GFP_NOIO);
2ca68f5e 880 if (unlikely(!bvecs))
af6d7b76 881 return;
4b6d287f 882
4b6d287f 883 bio_for_each_segment(bvec, bio, i) {
2ca68f5e
N
884 bvecs[i] = *bvec;
885 bvecs[i].bv_page = alloc_page(GFP_NOIO);
886 if (unlikely(!bvecs[i].bv_page))
4b6d287f 887 goto do_sync_io;
2ca68f5e
N
888 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
889 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
890 kunmap(bvecs[i].bv_page);
4b6d287f
N
891 kunmap(bvec->bv_page);
892 }
2ca68f5e 893 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
894 r1_bio->behind_page_count = bio->bi_vcnt;
895 set_bit(R1BIO_BehindIO, &r1_bio->state);
896 return;
4b6d287f
N
897
898do_sync_io:
af6d7b76 899 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
900 if (bvecs[i].bv_page)
901 put_page(bvecs[i].bv_page);
902 kfree(bvecs);
36a4e1fe 903 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
4b6d287f
N
904}
905
b4fdcb02 906static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 907{
e8096360 908 struct r1conf *conf = mddev->private;
0eaf822c 909 struct raid1_info *mirror;
9f2c9d12 910 struct r1bio *r1_bio;
1da177e4 911 struct bio *read_bio;
1f68f0c4 912 int i, disks;
84255d10 913 struct bitmap *bitmap;
191ea9b2 914 unsigned long flags;
a362357b 915 const int rw = bio_data_dir(bio);
2c7d46ec 916 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 917 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
3cb03002 918 struct md_rdev *blocked_rdev;
1f68f0c4
N
919 int first_clone;
920 int sectors_handled;
921 int max_sectors;
191ea9b2 922
1da177e4
LT
923 /*
924 * Register the new request and wait if the reconstruction
925 * thread has put up a bar for new requests.
926 * Continue immediately if no resync is active currently.
927 */
62de608d 928
3d310eb7
N
929 md_write_start(mddev, bio); /* wait on superblock update early */
930
6eef4b21
N
931 if (bio_data_dir(bio) == WRITE &&
932 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
933 bio->bi_sector < mddev->suspend_hi) {
934 /* As the suspend_* range is controlled by
935 * userspace, we want an interruptible
936 * wait.
937 */
938 DEFINE_WAIT(w);
939 for (;;) {
940 flush_signals(current);
941 prepare_to_wait(&conf->wait_barrier,
942 &w, TASK_INTERRUPTIBLE);
943 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
944 bio->bi_sector >= mddev->suspend_hi)
945 break;
946 schedule();
947 }
948 finish_wait(&conf->wait_barrier, &w);
949 }
62de608d 950
17999be4 951 wait_barrier(conf);
1da177e4 952
84255d10
N
953 bitmap = mddev->bitmap;
954
1da177e4
LT
955 /*
956 * make_request() can abort the operation when READA is being
957 * used and no empty request is available.
958 *
959 */
960 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
961
962 r1_bio->master_bio = bio;
963 r1_bio->sectors = bio->bi_size >> 9;
191ea9b2 964 r1_bio->state = 0;
1da177e4
LT
965 r1_bio->mddev = mddev;
966 r1_bio->sector = bio->bi_sector;
967
d2eb35ac
N
968 /* We might need to issue multiple reads to different
969 * devices if there are bad blocks around, so we keep
970 * track of the number of reads in bio->bi_phys_segments.
971 * If this is 0, there is only one r1_bio and no locking
972 * will be needed when requests complete. If it is
973 * non-zero, then it is the number of not-completed requests.
974 */
975 bio->bi_phys_segments = 0;
976 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
977
a362357b 978 if (rw == READ) {
1da177e4
LT
979 /*
980 * read balancing logic:
981 */
d2eb35ac
N
982 int rdisk;
983
984read_again:
985 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
986
987 if (rdisk < 0) {
988 /* couldn't find anywhere to read from */
989 raid_end_bio_io(r1_bio);
5a7bbad2 990 return;
1da177e4
LT
991 }
992 mirror = conf->mirrors + rdisk;
993
e555190d
N
994 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
995 bitmap) {
996 /* Reading from a write-mostly device must
997 * take care not to over-take any writes
998 * that are 'behind'
999 */
1000 wait_event(bitmap->behind_wait,
1001 atomic_read(&bitmap->behind_writes) == 0);
1002 }
1da177e4
LT
1003 r1_bio->read_disk = rdisk;
1004
a167f663 1005 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d2eb35ac
N
1006 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
1007 max_sectors);
1da177e4
LT
1008
1009 r1_bio->bios[rdisk] = read_bio;
1010
1011 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1012 read_bio->bi_bdev = mirror->rdev->bdev;
1013 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 1014 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1015 read_bio->bi_private = r1_bio;
1016
d2eb35ac
N
1017 if (max_sectors < r1_bio->sectors) {
1018 /* could not read all from this device, so we will
1019 * need another r1_bio.
1020 */
d2eb35ac
N
1021
1022 sectors_handled = (r1_bio->sector + max_sectors
1023 - bio->bi_sector);
1024 r1_bio->sectors = max_sectors;
1025 spin_lock_irq(&conf->device_lock);
1026 if (bio->bi_phys_segments == 0)
1027 bio->bi_phys_segments = 2;
1028 else
1029 bio->bi_phys_segments++;
1030 spin_unlock_irq(&conf->device_lock);
1031 /* Cannot call generic_make_request directly
1032 * as that will be queued in __make_request
1033 * and subsequent mempool_alloc might block waiting
1034 * for it. So hand bio over to raid1d.
1035 */
1036 reschedule_retry(r1_bio);
1037
1038 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1039
1040 r1_bio->master_bio = bio;
1041 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1042 r1_bio->state = 0;
1043 r1_bio->mddev = mddev;
1044 r1_bio->sector = bio->bi_sector + sectors_handled;
1045 goto read_again;
1046 } else
1047 generic_make_request(read_bio);
5a7bbad2 1048 return;
1da177e4
LT
1049 }
1050
1051 /*
1052 * WRITE:
1053 */
34db0cd6
N
1054 if (conf->pending_count >= max_queued_requests) {
1055 md_wakeup_thread(mddev->thread);
1056 wait_event(conf->wait_barrier,
1057 conf->pending_count < max_queued_requests);
1058 }
1f68f0c4 1059 /* first select target devices under rcu_lock and
1da177e4
LT
1060 * inc refcount on their rdev. Record them by setting
1061 * bios[x] to bio
1f68f0c4
N
1062 * If there are known/acknowledged bad blocks on any device on
1063 * which we have seen a write error, we want to avoid writing those
1064 * blocks.
1065 * This potentially requires several writes to write around
1066 * the bad blocks. Each set of writes gets it's own r1bio
1067 * with a set of bios attached.
1da177e4 1068 */
c3b328ac 1069
8f19ccb2 1070 disks = conf->raid_disks * 2;
6bfe0b49
DW
1071 retry_write:
1072 blocked_rdev = NULL;
1da177e4 1073 rcu_read_lock();
1f68f0c4 1074 max_sectors = r1_bio->sectors;
1da177e4 1075 for (i = 0; i < disks; i++) {
3cb03002 1076 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1077 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1078 atomic_inc(&rdev->nr_pending);
1079 blocked_rdev = rdev;
1080 break;
1081 }
1f68f0c4 1082 r1_bio->bios[i] = NULL;
6b740b8d
N
1083 if (!rdev || test_bit(Faulty, &rdev->flags)
1084 || test_bit(Unmerged, &rdev->flags)) {
8f19ccb2
N
1085 if (i < conf->raid_disks)
1086 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1087 continue;
1088 }
1089
1090 atomic_inc(&rdev->nr_pending);
1091 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1092 sector_t first_bad;
1093 int bad_sectors;
1094 int is_bad;
1095
1096 is_bad = is_badblock(rdev, r1_bio->sector,
1097 max_sectors,
1098 &first_bad, &bad_sectors);
1099 if (is_bad < 0) {
1100 /* mustn't write here until the bad block is
1101 * acknowledged*/
1102 set_bit(BlockedBadBlocks, &rdev->flags);
1103 blocked_rdev = rdev;
1104 break;
1105 }
1106 if (is_bad && first_bad <= r1_bio->sector) {
1107 /* Cannot write here at all */
1108 bad_sectors -= (r1_bio->sector - first_bad);
1109 if (bad_sectors < max_sectors)
1110 /* mustn't write more than bad_sectors
1111 * to other devices yet
1112 */
1113 max_sectors = bad_sectors;
03c902e1 1114 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1115 /* We don't set R1BIO_Degraded as that
1116 * only applies if the disk is
1117 * missing, so it might be re-added,
1118 * and we want to know to recover this
1119 * chunk.
1120 * In this case the device is here,
1121 * and the fact that this chunk is not
1122 * in-sync is recorded in the bad
1123 * block log
1124 */
1125 continue;
964147d5 1126 }
1f68f0c4
N
1127 if (is_bad) {
1128 int good_sectors = first_bad - r1_bio->sector;
1129 if (good_sectors < max_sectors)
1130 max_sectors = good_sectors;
1131 }
1132 }
1133 r1_bio->bios[i] = bio;
1da177e4
LT
1134 }
1135 rcu_read_unlock();
1136
6bfe0b49
DW
1137 if (unlikely(blocked_rdev)) {
1138 /* Wait for this device to become unblocked */
1139 int j;
1140
1141 for (j = 0; j < i; j++)
1142 if (r1_bio->bios[j])
1143 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1144 r1_bio->state = 0;
6bfe0b49
DW
1145 allow_barrier(conf);
1146 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1147 wait_barrier(conf);
1148 goto retry_write;
1149 }
1150
1f68f0c4
N
1151 if (max_sectors < r1_bio->sectors) {
1152 /* We are splitting this write into multiple parts, so
1153 * we need to prepare for allocating another r1_bio.
1154 */
1155 r1_bio->sectors = max_sectors;
1156 spin_lock_irq(&conf->device_lock);
1157 if (bio->bi_phys_segments == 0)
1158 bio->bi_phys_segments = 2;
1159 else
1160 bio->bi_phys_segments++;
1161 spin_unlock_irq(&conf->device_lock);
191ea9b2 1162 }
1f68f0c4 1163 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
4b6d287f 1164
4e78064f 1165 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1166 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1167
1f68f0c4 1168 first_clone = 1;
1da177e4
LT
1169 for (i = 0; i < disks; i++) {
1170 struct bio *mbio;
1171 if (!r1_bio->bios[i])
1172 continue;
1173
a167f663 1174 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1f68f0c4
N
1175 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1176
1177 if (first_clone) {
1178 /* do behind I/O ?
1179 * Not if there are too many, or cannot
1180 * allocate memory, or a reader on WriteMostly
1181 * is waiting for behind writes to flush */
1182 if (bitmap &&
1183 (atomic_read(&bitmap->behind_writes)
1184 < mddev->bitmap_info.max_write_behind) &&
1185 !waitqueue_active(&bitmap->behind_wait))
1186 alloc_behind_pages(mbio, r1_bio);
1187
1188 bitmap_startwrite(bitmap, r1_bio->sector,
1189 r1_bio->sectors,
1190 test_bit(R1BIO_BehindIO,
1191 &r1_bio->state));
1192 first_clone = 0;
1193 }
2ca68f5e 1194 if (r1_bio->behind_bvecs) {
4b6d287f
N
1195 struct bio_vec *bvec;
1196 int j;
1197
1198 /* Yes, I really want the '__' version so that
1199 * we clear any unused pointer in the io_vec, rather
1200 * than leave them unchanged. This is important
1201 * because when we come to free the pages, we won't
046abeed 1202 * know the original bi_idx, so we just free
4b6d287f
N
1203 * them all
1204 */
1205 __bio_for_each_segment(bvec, mbio, j, 0)
2ca68f5e 1206 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1207 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1208 atomic_inc(&r1_bio->behind_remaining);
1209 }
1210
1f68f0c4
N
1211 r1_bio->bios[i] = mbio;
1212
1213 mbio->bi_sector = (r1_bio->sector +
1214 conf->mirrors[i].rdev->data_offset);
1215 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1216 mbio->bi_end_io = raid1_end_write_request;
1217 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1218 mbio->bi_private = r1_bio;
1219
1da177e4 1220 atomic_inc(&r1_bio->remaining);
4e78064f
N
1221 spin_lock_irqsave(&conf->device_lock, flags);
1222 bio_list_add(&conf->pending_bio_list, mbio);
34db0cd6 1223 conf->pending_count++;
4e78064f 1224 spin_unlock_irqrestore(&conf->device_lock, flags);
b357f04a
N
1225 if (!mddev_check_plugged(mddev))
1226 md_wakeup_thread(mddev->thread);
1da177e4 1227 }
079fa166
N
1228 /* Mustn't call r1_bio_write_done before this next test,
1229 * as it could result in the bio being freed.
1230 */
1f68f0c4 1231 if (sectors_handled < (bio->bi_size >> 9)) {
079fa166 1232 r1_bio_write_done(r1_bio);
1f68f0c4
N
1233 /* We need another r1_bio. It has already been counted
1234 * in bio->bi_phys_segments
1235 */
1236 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1237 r1_bio->master_bio = bio;
1238 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1239 r1_bio->state = 0;
1240 r1_bio->mddev = mddev;
1241 r1_bio->sector = bio->bi_sector + sectors_handled;
1242 goto retry_write;
1243 }
1244
079fa166
N
1245 r1_bio_write_done(r1_bio);
1246
1247 /* In case raid1d snuck in to freeze_array */
1248 wake_up(&conf->wait_barrier);
1da177e4
LT
1249}
1250
fd01b88c 1251static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1252{
e8096360 1253 struct r1conf *conf = mddev->private;
1da177e4
LT
1254 int i;
1255
1256 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1257 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1258 rcu_read_lock();
1259 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1260 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1261 seq_printf(seq, "%s",
ddac7c7e
N
1262 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1263 }
1264 rcu_read_unlock();
1da177e4
LT
1265 seq_printf(seq, "]");
1266}
1267
1268
fd01b88c 1269static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1270{
1271 char b[BDEVNAME_SIZE];
e8096360 1272 struct r1conf *conf = mddev->private;
1da177e4
LT
1273
1274 /*
1275 * If it is not operational, then we have already marked it as dead
1276 * else if it is the last working disks, ignore the error, let the
1277 * next level up know.
1278 * else mark the drive as failed
1279 */
b2d444d7 1280 if (test_bit(In_sync, &rdev->flags)
4044ba58 1281 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1282 /*
1283 * Don't fail the drive, act as though we were just a
4044ba58
N
1284 * normal single drive.
1285 * However don't try a recovery from this drive as
1286 * it is very likely to fail.
1da177e4 1287 */
5389042f 1288 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1289 return;
4044ba58 1290 }
de393cde 1291 set_bit(Blocked, &rdev->flags);
c04be0aa
N
1292 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1293 unsigned long flags;
1294 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1295 mddev->degraded++;
dd00a99e 1296 set_bit(Faulty, &rdev->flags);
c04be0aa 1297 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1298 /*
1299 * if recovery is running, make sure it aborts.
1300 */
dfc70645 1301 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
dd00a99e
N
1302 } else
1303 set_bit(Faulty, &rdev->flags);
850b2b42 1304 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1305 printk(KERN_ALERT
1306 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1307 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1308 mdname(mddev), bdevname(rdev->bdev, b),
1309 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1310}
1311
e8096360 1312static void print_conf(struct r1conf *conf)
1da177e4
LT
1313{
1314 int i;
1da177e4 1315
9dd1e2fa 1316 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1317 if (!conf) {
9dd1e2fa 1318 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1319 return;
1320 }
9dd1e2fa 1321 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1322 conf->raid_disks);
1323
ddac7c7e 1324 rcu_read_lock();
1da177e4
LT
1325 for (i = 0; i < conf->raid_disks; i++) {
1326 char b[BDEVNAME_SIZE];
3cb03002 1327 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1328 if (rdev)
9dd1e2fa 1329 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1330 i, !test_bit(In_sync, &rdev->flags),
1331 !test_bit(Faulty, &rdev->flags),
1332 bdevname(rdev->bdev,b));
1da177e4 1333 }
ddac7c7e 1334 rcu_read_unlock();
1da177e4
LT
1335}
1336
e8096360 1337static void close_sync(struct r1conf *conf)
1da177e4 1338{
17999be4
N
1339 wait_barrier(conf);
1340 allow_barrier(conf);
1da177e4
LT
1341
1342 mempool_destroy(conf->r1buf_pool);
1343 conf->r1buf_pool = NULL;
1344}
1345
fd01b88c 1346static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1347{
1348 int i;
e8096360 1349 struct r1conf *conf = mddev->private;
6b965620
N
1350 int count = 0;
1351 unsigned long flags;
1da177e4
LT
1352
1353 /*
1354 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1355 * and mark them readable.
1356 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1357 */
1358 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1359 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1360 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1361 if (repl
1362 && repl->recovery_offset == MaxSector
1363 && !test_bit(Faulty, &repl->flags)
1364 && !test_and_set_bit(In_sync, &repl->flags)) {
1365 /* replacement has just become active */
1366 if (!rdev ||
1367 !test_and_clear_bit(In_sync, &rdev->flags))
1368 count++;
1369 if (rdev) {
1370 /* Replaced device not technically
1371 * faulty, but we need to be sure
1372 * it gets removed and never re-added
1373 */
1374 set_bit(Faulty, &rdev->flags);
1375 sysfs_notify_dirent_safe(
1376 rdev->sysfs_state);
1377 }
1378 }
ddac7c7e
N
1379 if (rdev
1380 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1381 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1382 count++;
654e8b5a 1383 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1384 }
1385 }
6b965620
N
1386 spin_lock_irqsave(&conf->device_lock, flags);
1387 mddev->degraded -= count;
1388 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1389
1390 print_conf(conf);
6b965620 1391 return count;
1da177e4
LT
1392}
1393
1394
fd01b88c 1395static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1396{
e8096360 1397 struct r1conf *conf = mddev->private;
199050ea 1398 int err = -EEXIST;
41158c7e 1399 int mirror = 0;
0eaf822c 1400 struct raid1_info *p;
6c2fce2e 1401 int first = 0;
30194636 1402 int last = conf->raid_disks - 1;
6b740b8d 1403 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4 1404
5389042f
N
1405 if (mddev->recovery_disabled == conf->recovery_disabled)
1406 return -EBUSY;
1407
6c2fce2e
NB
1408 if (rdev->raid_disk >= 0)
1409 first = last = rdev->raid_disk;
1410
6b740b8d
N
1411 if (q->merge_bvec_fn) {
1412 set_bit(Unmerged, &rdev->flags);
1413 mddev->merge_check_needed = 1;
1414 }
1415
7ef449d1
N
1416 for (mirror = first; mirror <= last; mirror++) {
1417 p = conf->mirrors+mirror;
1418 if (!p->rdev) {
1da177e4 1419
8f6c2e4b
MP
1420 disk_stack_limits(mddev->gendisk, rdev->bdev,
1421 rdev->data_offset << 9);
1da177e4
LT
1422
1423 p->head_position = 0;
1424 rdev->raid_disk = mirror;
199050ea 1425 err = 0;
6aea114a
N
1426 /* As all devices are equivalent, we don't need a full recovery
1427 * if this was recently any drive of the array
1428 */
1429 if (rdev->saved_raid_disk < 0)
41158c7e 1430 conf->fullsync = 1;
d6065f7b 1431 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1432 break;
1433 }
7ef449d1
N
1434 if (test_bit(WantReplacement, &p->rdev->flags) &&
1435 p[conf->raid_disks].rdev == NULL) {
1436 /* Add this device as a replacement */
1437 clear_bit(In_sync, &rdev->flags);
1438 set_bit(Replacement, &rdev->flags);
1439 rdev->raid_disk = mirror;
1440 err = 0;
1441 conf->fullsync = 1;
1442 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1443 break;
1444 }
1445 }
6b740b8d
N
1446 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1447 /* Some requests might not have seen this new
1448 * merge_bvec_fn. We must wait for them to complete
1449 * before merging the device fully.
1450 * First we make sure any code which has tested
1451 * our function has submitted the request, then
1452 * we wait for all outstanding requests to complete.
1453 */
1454 synchronize_sched();
1455 raise_barrier(conf);
1456 lower_barrier(conf);
1457 clear_bit(Unmerged, &rdev->flags);
1458 }
ac5e7113 1459 md_integrity_add_rdev(rdev, mddev);
1da177e4 1460 print_conf(conf);
199050ea 1461 return err;
1da177e4
LT
1462}
1463
b8321b68 1464static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1465{
e8096360 1466 struct r1conf *conf = mddev->private;
1da177e4 1467 int err = 0;
b8321b68 1468 int number = rdev->raid_disk;
0eaf822c 1469 struct raid1_info *p = conf->mirrors + number;
1da177e4 1470
b014f14c
N
1471 if (rdev != p->rdev)
1472 p = conf->mirrors + conf->raid_disks + number;
1473
1da177e4 1474 print_conf(conf);
b8321b68 1475 if (rdev == p->rdev) {
b2d444d7 1476 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1477 atomic_read(&rdev->nr_pending)) {
1478 err = -EBUSY;
1479 goto abort;
1480 }
046abeed 1481 /* Only remove non-faulty devices if recovery
dfc70645
N
1482 * is not possible.
1483 */
1484 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1485 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1486 mddev->degraded < conf->raid_disks) {
1487 err = -EBUSY;
1488 goto abort;
1489 }
1da177e4 1490 p->rdev = NULL;
fbd568a3 1491 synchronize_rcu();
1da177e4
LT
1492 if (atomic_read(&rdev->nr_pending)) {
1493 /* lost the race, try later */
1494 err = -EBUSY;
1495 p->rdev = rdev;
ac5e7113 1496 goto abort;
8c7a2c2b
N
1497 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1498 /* We just removed a device that is being replaced.
1499 * Move down the replacement. We drain all IO before
1500 * doing this to avoid confusion.
1501 */
1502 struct md_rdev *repl =
1503 conf->mirrors[conf->raid_disks + number].rdev;
1504 raise_barrier(conf);
1505 clear_bit(Replacement, &repl->flags);
1506 p->rdev = repl;
1507 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1508 lower_barrier(conf);
1509 clear_bit(WantReplacement, &rdev->flags);
1510 } else
b014f14c 1511 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1512 err = md_integrity_register(mddev);
1da177e4
LT
1513 }
1514abort:
1515
1516 print_conf(conf);
1517 return err;
1518}
1519
1520
6712ecf8 1521static void end_sync_read(struct bio *bio, int error)
1da177e4 1522{
9f2c9d12 1523 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1524
0fc280f6 1525 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1526
1da177e4
LT
1527 /*
1528 * we have read a block, now it needs to be re-written,
1529 * or re-read if the read failed.
1530 * We don't do much here, just schedule handling by raid1d
1531 */
69382e85 1532 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1533 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1534
1535 if (atomic_dec_and_test(&r1_bio->remaining))
1536 reschedule_retry(r1_bio);
1da177e4
LT
1537}
1538
6712ecf8 1539static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1540{
1541 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1542 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1543 struct mddev *mddev = r1_bio->mddev;
e8096360 1544 struct r1conf *conf = mddev->private;
1da177e4 1545 int mirror=0;
4367af55
N
1546 sector_t first_bad;
1547 int bad_sectors;
1da177e4 1548
ba3ae3be
NK
1549 mirror = find_bio_disk(r1_bio, bio);
1550
6b1117d5 1551 if (!uptodate) {
57dab0bd 1552 sector_t sync_blocks = 0;
6b1117d5
N
1553 sector_t s = r1_bio->sector;
1554 long sectors_to_go = r1_bio->sectors;
1555 /* make sure these bits doesn't get cleared. */
1556 do {
5e3db645 1557 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1558 &sync_blocks, 1);
1559 s += sync_blocks;
1560 sectors_to_go -= sync_blocks;
1561 } while (sectors_to_go > 0);
d8f05d29
N
1562 set_bit(WriteErrorSeen,
1563 &conf->mirrors[mirror].rdev->flags);
19d67169
N
1564 if (!test_and_set_bit(WantReplacement,
1565 &conf->mirrors[mirror].rdev->flags))
1566 set_bit(MD_RECOVERY_NEEDED, &
1567 mddev->recovery);
d8f05d29 1568 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1569 } else if (is_badblock(conf->mirrors[mirror].rdev,
1570 r1_bio->sector,
1571 r1_bio->sectors,
3a9f28a5
N
1572 &first_bad, &bad_sectors) &&
1573 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1574 r1_bio->sector,
1575 r1_bio->sectors,
1576 &first_bad, &bad_sectors)
1577 )
4367af55 1578 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1579
1da177e4 1580 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1581 int s = r1_bio->sectors;
d8f05d29
N
1582 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1583 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1584 reschedule_retry(r1_bio);
1585 else {
1586 put_buf(r1_bio);
1587 md_done_sync(mddev, s, uptodate);
1588 }
1da177e4 1589 }
1da177e4
LT
1590}
1591
3cb03002 1592static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1593 int sectors, struct page *page, int rw)
1594{
1595 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1596 /* success */
1597 return 1;
19d67169 1598 if (rw == WRITE) {
d8f05d29 1599 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1600 if (!test_and_set_bit(WantReplacement,
1601 &rdev->flags))
1602 set_bit(MD_RECOVERY_NEEDED, &
1603 rdev->mddev->recovery);
1604 }
d8f05d29
N
1605 /* need to record an error - either for the block or the device */
1606 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1607 md_error(rdev->mddev, rdev);
1608 return 0;
1609}
1610
9f2c9d12 1611static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1612{
a68e5870
N
1613 /* Try some synchronous reads of other devices to get
1614 * good data, much like with normal read errors. Only
1615 * read into the pages we already have so we don't
1616 * need to re-issue the read request.
1617 * We don't need to freeze the array, because being in an
1618 * active sync request, there is no normal IO, and
1619 * no overlapping syncs.
06f60385
N
1620 * We don't need to check is_badblock() again as we
1621 * made sure that anything with a bad block in range
1622 * will have bi_end_io clear.
a68e5870 1623 */
fd01b88c 1624 struct mddev *mddev = r1_bio->mddev;
e8096360 1625 struct r1conf *conf = mddev->private;
a68e5870
N
1626 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1627 sector_t sect = r1_bio->sector;
1628 int sectors = r1_bio->sectors;
1629 int idx = 0;
1630
1631 while(sectors) {
1632 int s = sectors;
1633 int d = r1_bio->read_disk;
1634 int success = 0;
3cb03002 1635 struct md_rdev *rdev;
78d7f5f7 1636 int start;
a68e5870
N
1637
1638 if (s > (PAGE_SIZE>>9))
1639 s = PAGE_SIZE >> 9;
1640 do {
1641 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1642 /* No rcu protection needed here devices
1643 * can only be removed when no resync is
1644 * active, and resync is currently active
1645 */
1646 rdev = conf->mirrors[d].rdev;
9d3d8011 1647 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1648 bio->bi_io_vec[idx].bv_page,
1649 READ, false)) {
1650 success = 1;
1651 break;
1652 }
1653 }
1654 d++;
8f19ccb2 1655 if (d == conf->raid_disks * 2)
a68e5870
N
1656 d = 0;
1657 } while (!success && d != r1_bio->read_disk);
1658
78d7f5f7 1659 if (!success) {
a68e5870 1660 char b[BDEVNAME_SIZE];
3a9f28a5
N
1661 int abort = 0;
1662 /* Cannot read from anywhere, this block is lost.
1663 * Record a bad block on each device. If that doesn't
1664 * work just disable and interrupt the recovery.
1665 * Don't fail devices as that won't really help.
1666 */
a68e5870
N
1667 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1668 " for block %llu\n",
1669 mdname(mddev),
1670 bdevname(bio->bi_bdev, b),
1671 (unsigned long long)r1_bio->sector);
8f19ccb2 1672 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1673 rdev = conf->mirrors[d].rdev;
1674 if (!rdev || test_bit(Faulty, &rdev->flags))
1675 continue;
1676 if (!rdev_set_badblocks(rdev, sect, s, 0))
1677 abort = 1;
1678 }
1679 if (abort) {
d890fa2b
N
1680 conf->recovery_disabled =
1681 mddev->recovery_disabled;
3a9f28a5
N
1682 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1683 md_done_sync(mddev, r1_bio->sectors, 0);
1684 put_buf(r1_bio);
1685 return 0;
1686 }
1687 /* Try next page */
1688 sectors -= s;
1689 sect += s;
1690 idx++;
1691 continue;
d11c171e 1692 }
78d7f5f7
N
1693
1694 start = d;
1695 /* write it back and re-read */
1696 while (d != r1_bio->read_disk) {
1697 if (d == 0)
8f19ccb2 1698 d = conf->raid_disks * 2;
78d7f5f7
N
1699 d--;
1700 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1701 continue;
1702 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1703 if (r1_sync_page_io(rdev, sect, s,
1704 bio->bi_io_vec[idx].bv_page,
1705 WRITE) == 0) {
78d7f5f7
N
1706 r1_bio->bios[d]->bi_end_io = NULL;
1707 rdev_dec_pending(rdev, mddev);
9d3d8011 1708 }
78d7f5f7
N
1709 }
1710 d = start;
1711 while (d != r1_bio->read_disk) {
1712 if (d == 0)
8f19ccb2 1713 d = conf->raid_disks * 2;
78d7f5f7
N
1714 d--;
1715 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1716 continue;
1717 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1718 if (r1_sync_page_io(rdev, sect, s,
1719 bio->bi_io_vec[idx].bv_page,
1720 READ) != 0)
9d3d8011 1721 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1722 }
a68e5870
N
1723 sectors -= s;
1724 sect += s;
1725 idx ++;
1726 }
78d7f5f7 1727 set_bit(R1BIO_Uptodate, &r1_bio->state);
7ca78d57 1728 set_bit(BIO_UPTODATE, &bio->bi_flags);
a68e5870
N
1729 return 1;
1730}
1731
9f2c9d12 1732static int process_checks(struct r1bio *r1_bio)
a68e5870
N
1733{
1734 /* We have read all readable devices. If we haven't
1735 * got the block, then there is no hope left.
1736 * If we have, then we want to do a comparison
1737 * and skip the write if everything is the same.
1738 * If any blocks failed to read, then we need to
1739 * attempt an over-write
1740 */
fd01b88c 1741 struct mddev *mddev = r1_bio->mddev;
e8096360 1742 struct r1conf *conf = mddev->private;
a68e5870
N
1743 int primary;
1744 int i;
f4380a91 1745 int vcnt;
a68e5870 1746
8f19ccb2 1747 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870
N
1748 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1749 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1750 r1_bio->bios[primary]->bi_end_io = NULL;
1751 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1752 break;
1753 }
1754 r1_bio->read_disk = primary;
f4380a91 1755 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
8f19ccb2 1756 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 1757 int j;
78d7f5f7
N
1758 struct bio *pbio = r1_bio->bios[primary];
1759 struct bio *sbio = r1_bio->bios[i];
1760 int size;
a68e5870 1761
78d7f5f7
N
1762 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1763 continue;
1764
1765 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1766 for (j = vcnt; j-- ; ) {
1767 struct page *p, *s;
1768 p = pbio->bi_io_vec[j].bv_page;
1769 s = sbio->bi_io_vec[j].bv_page;
1770 if (memcmp(page_address(p),
1771 page_address(s),
5020ad7d 1772 sbio->bi_io_vec[j].bv_len))
78d7f5f7 1773 break;
69382e85 1774 }
78d7f5f7
N
1775 } else
1776 j = 0;
1777 if (j >= 0)
1778 mddev->resync_mismatches += r1_bio->sectors;
1779 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1780 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1781 /* No need to write to this device. */
1782 sbio->bi_end_io = NULL;
1783 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1784 continue;
1785 }
1786 /* fixup the bio for reuse */
1787 sbio->bi_vcnt = vcnt;
1788 sbio->bi_size = r1_bio->sectors << 9;
1789 sbio->bi_idx = 0;
1790 sbio->bi_phys_segments = 0;
1791 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1792 sbio->bi_flags |= 1 << BIO_UPTODATE;
1793 sbio->bi_next = NULL;
1794 sbio->bi_sector = r1_bio->sector +
1795 conf->mirrors[i].rdev->data_offset;
1796 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1797 size = sbio->bi_size;
1798 for (j = 0; j < vcnt ; j++) {
1799 struct bio_vec *bi;
1800 bi = &sbio->bi_io_vec[j];
1801 bi->bv_offset = 0;
1802 if (size > PAGE_SIZE)
1803 bi->bv_len = PAGE_SIZE;
1804 else
1805 bi->bv_len = size;
1806 size -= PAGE_SIZE;
1807 memcpy(page_address(bi->bv_page),
1808 page_address(pbio->bi_io_vec[j].bv_page),
1809 PAGE_SIZE);
69382e85 1810 }
78d7f5f7 1811 }
a68e5870
N
1812 return 0;
1813}
1814
9f2c9d12 1815static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 1816{
e8096360 1817 struct r1conf *conf = mddev->private;
a68e5870 1818 int i;
8f19ccb2 1819 int disks = conf->raid_disks * 2;
a68e5870
N
1820 struct bio *bio, *wbio;
1821
1822 bio = r1_bio->bios[r1_bio->read_disk];
1823
a68e5870
N
1824 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1825 /* ouch - failed to read all of that. */
1826 if (!fix_sync_read_error(r1_bio))
1827 return;
7ca78d57
N
1828
1829 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1830 if (process_checks(r1_bio) < 0)
1831 return;
d11c171e
N
1832 /*
1833 * schedule writes
1834 */
1da177e4
LT
1835 atomic_set(&r1_bio->remaining, 1);
1836 for (i = 0; i < disks ; i++) {
1837 wbio = r1_bio->bios[i];
3e198f78
N
1838 if (wbio->bi_end_io == NULL ||
1839 (wbio->bi_end_io == end_sync_read &&
1840 (i == r1_bio->read_disk ||
1841 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
1842 continue;
1843
3e198f78
N
1844 wbio->bi_rw = WRITE;
1845 wbio->bi_end_io = end_sync_write;
1da177e4
LT
1846 atomic_inc(&r1_bio->remaining);
1847 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
191ea9b2 1848
1da177e4
LT
1849 generic_make_request(wbio);
1850 }
1851
1852 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 1853 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
1854 int s = r1_bio->sectors;
1855 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1856 test_bit(R1BIO_WriteError, &r1_bio->state))
1857 reschedule_retry(r1_bio);
1858 else {
1859 put_buf(r1_bio);
1860 md_done_sync(mddev, s, 1);
1861 }
1da177e4
LT
1862 }
1863}
1864
1865/*
1866 * This is a kernel thread which:
1867 *
1868 * 1. Retries failed read operations on working mirrors.
1869 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 1870 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1871 */
1872
e8096360 1873static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
1874 sector_t sect, int sectors)
1875{
fd01b88c 1876 struct mddev *mddev = conf->mddev;
867868fb
N
1877 while(sectors) {
1878 int s = sectors;
1879 int d = read_disk;
1880 int success = 0;
1881 int start;
3cb03002 1882 struct md_rdev *rdev;
867868fb
N
1883
1884 if (s > (PAGE_SIZE>>9))
1885 s = PAGE_SIZE >> 9;
1886
1887 do {
1888 /* Note: no rcu protection needed here
1889 * as this is synchronous in the raid1d thread
1890 * which is the thread that might remove
1891 * a device. If raid1d ever becomes multi-threaded....
1892 */
d2eb35ac
N
1893 sector_t first_bad;
1894 int bad_sectors;
1895
867868fb
N
1896 rdev = conf->mirrors[d].rdev;
1897 if (rdev &&
da8840a7 1898 (test_bit(In_sync, &rdev->flags) ||
1899 (!test_bit(Faulty, &rdev->flags) &&
1900 rdev->recovery_offset >= sect + s)) &&
d2eb35ac
N
1901 is_badblock(rdev, sect, s,
1902 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
1903 sync_page_io(rdev, sect, s<<9,
1904 conf->tmppage, READ, false))
867868fb
N
1905 success = 1;
1906 else {
1907 d++;
8f19ccb2 1908 if (d == conf->raid_disks * 2)
867868fb
N
1909 d = 0;
1910 }
1911 } while (!success && d != read_disk);
1912
1913 if (!success) {
d8f05d29 1914 /* Cannot read from anywhere - mark it bad */
3cb03002 1915 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
1916 if (!rdev_set_badblocks(rdev, sect, s, 0))
1917 md_error(mddev, rdev);
867868fb
N
1918 break;
1919 }
1920 /* write it back and re-read */
1921 start = d;
1922 while (d != read_disk) {
1923 if (d==0)
8f19ccb2 1924 d = conf->raid_disks * 2;
867868fb
N
1925 d--;
1926 rdev = conf->mirrors[d].rdev;
1927 if (rdev &&
d8f05d29
N
1928 test_bit(In_sync, &rdev->flags))
1929 r1_sync_page_io(rdev, sect, s,
1930 conf->tmppage, WRITE);
867868fb
N
1931 }
1932 d = start;
1933 while (d != read_disk) {
1934 char b[BDEVNAME_SIZE];
1935 if (d==0)
8f19ccb2 1936 d = conf->raid_disks * 2;
867868fb
N
1937 d--;
1938 rdev = conf->mirrors[d].rdev;
1939 if (rdev &&
1940 test_bit(In_sync, &rdev->flags)) {
d8f05d29
N
1941 if (r1_sync_page_io(rdev, sect, s,
1942 conf->tmppage, READ)) {
867868fb
N
1943 atomic_add(s, &rdev->corrected_errors);
1944 printk(KERN_INFO
9dd1e2fa 1945 "md/raid1:%s: read error corrected "
867868fb
N
1946 "(%d sectors at %llu on %s)\n",
1947 mdname(mddev), s,
969b755a
RD
1948 (unsigned long long)(sect +
1949 rdev->data_offset),
867868fb
N
1950 bdevname(rdev->bdev, b));
1951 }
1952 }
1953 }
1954 sectors -= s;
1955 sect += s;
1956 }
1957}
1958
cd5ff9a1
N
1959static void bi_complete(struct bio *bio, int error)
1960{
1961 complete((struct completion *)bio->bi_private);
1962}
1963
1964static int submit_bio_wait(int rw, struct bio *bio)
1965{
1966 struct completion event;
1967 rw |= REQ_SYNC;
1968
1969 init_completion(&event);
1970 bio->bi_private = &event;
1971 bio->bi_end_io = bi_complete;
1972 submit_bio(rw, bio);
1973 wait_for_completion(&event);
1974
1975 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1976}
1977
9f2c9d12 1978static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 1979{
fd01b88c 1980 struct mddev *mddev = r1_bio->mddev;
e8096360 1981 struct r1conf *conf = mddev->private;
3cb03002 1982 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
1983 int vcnt, idx;
1984 struct bio_vec *vec;
1985
1986 /* bio has the data to be written to device 'i' where
1987 * we just recently had a write error.
1988 * We repeatedly clone the bio and trim down to one block,
1989 * then try the write. Where the write fails we record
1990 * a bad block.
1991 * It is conceivable that the bio doesn't exactly align with
1992 * blocks. We must handle this somehow.
1993 *
1994 * We currently own a reference on the rdev.
1995 */
1996
1997 int block_sectors;
1998 sector_t sector;
1999 int sectors;
2000 int sect_to_write = r1_bio->sectors;
2001 int ok = 1;
2002
2003 if (rdev->badblocks.shift < 0)
2004 return 0;
2005
2006 block_sectors = 1 << rdev->badblocks.shift;
2007 sector = r1_bio->sector;
2008 sectors = ((sector + block_sectors)
2009 & ~(sector_t)(block_sectors - 1))
2010 - sector;
2011
2012 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2013 vcnt = r1_bio->behind_page_count;
2014 vec = r1_bio->behind_bvecs;
2015 idx = 0;
2016 while (vec[idx].bv_page == NULL)
2017 idx++;
2018 } else {
2019 vcnt = r1_bio->master_bio->bi_vcnt;
2020 vec = r1_bio->master_bio->bi_io_vec;
2021 idx = r1_bio->master_bio->bi_idx;
2022 }
2023 while (sect_to_write) {
2024 struct bio *wbio;
2025 if (sectors > sect_to_write)
2026 sectors = sect_to_write;
2027 /* Write at 'sector' for 'sectors'*/
2028
2029 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2030 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2031 wbio->bi_sector = r1_bio->sector;
2032 wbio->bi_rw = WRITE;
2033 wbio->bi_vcnt = vcnt;
2034 wbio->bi_size = r1_bio->sectors << 9;
2035 wbio->bi_idx = idx;
2036
2037 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2038 wbio->bi_sector += rdev->data_offset;
2039 wbio->bi_bdev = rdev->bdev;
2040 if (submit_bio_wait(WRITE, wbio) == 0)
2041 /* failure! */
2042 ok = rdev_set_badblocks(rdev, sector,
2043 sectors, 0)
2044 && ok;
2045
2046 bio_put(wbio);
2047 sect_to_write -= sectors;
2048 sector += sectors;
2049 sectors = block_sectors;
2050 }
2051 return ok;
2052}
2053
e8096360 2054static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2055{
2056 int m;
2057 int s = r1_bio->sectors;
8f19ccb2 2058 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2059 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2060 struct bio *bio = r1_bio->bios[m];
2061 if (bio->bi_end_io == NULL)
2062 continue;
2063 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2064 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2065 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce
N
2066 }
2067 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2068 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2069 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2070 md_error(conf->mddev, rdev);
2071 }
2072 }
2073 put_buf(r1_bio);
2074 md_done_sync(conf->mddev, s, 1);
2075}
2076
e8096360 2077static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2078{
2079 int m;
8f19ccb2 2080 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2081 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2082 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2083 rdev_clear_badblocks(rdev,
2084 r1_bio->sector,
c6563a8c 2085 r1_bio->sectors, 0);
62096bce
N
2086 rdev_dec_pending(rdev, conf->mddev);
2087 } else if (r1_bio->bios[m] != NULL) {
2088 /* This drive got a write error. We need to
2089 * narrow down and record precise write
2090 * errors.
2091 */
2092 if (!narrow_write_error(r1_bio, m)) {
2093 md_error(conf->mddev,
2094 conf->mirrors[m].rdev);
2095 /* an I/O failed, we can't clear the bitmap */
2096 set_bit(R1BIO_Degraded, &r1_bio->state);
2097 }
2098 rdev_dec_pending(conf->mirrors[m].rdev,
2099 conf->mddev);
2100 }
2101 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2102 close_write(r1_bio);
2103 raid_end_bio_io(r1_bio);
2104}
2105
e8096360 2106static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2107{
2108 int disk;
2109 int max_sectors;
fd01b88c 2110 struct mddev *mddev = conf->mddev;
62096bce
N
2111 struct bio *bio;
2112 char b[BDEVNAME_SIZE];
3cb03002 2113 struct md_rdev *rdev;
62096bce
N
2114
2115 clear_bit(R1BIO_ReadError, &r1_bio->state);
2116 /* we got a read error. Maybe the drive is bad. Maybe just
2117 * the block and we can fix it.
2118 * We freeze all other IO, and try reading the block from
2119 * other devices. When we find one, we re-write
2120 * and check it that fixes the read error.
2121 * This is all done synchronously while the array is
2122 * frozen
2123 */
2124 if (mddev->ro == 0) {
2125 freeze_array(conf);
2126 fix_read_error(conf, r1_bio->read_disk,
2127 r1_bio->sector, r1_bio->sectors);
2128 unfreeze_array(conf);
2129 } else
2130 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2131
2132 bio = r1_bio->bios[r1_bio->read_disk];
2133 bdevname(bio->bi_bdev, b);
2134read_more:
2135 disk = read_balance(conf, r1_bio, &max_sectors);
2136 if (disk == -1) {
2137 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2138 " read error for block %llu\n",
2139 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2140 raid_end_bio_io(r1_bio);
2141 } else {
2142 const unsigned long do_sync
2143 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2144 if (bio) {
2145 r1_bio->bios[r1_bio->read_disk] =
2146 mddev->ro ? IO_BLOCKED : NULL;
2147 bio_put(bio);
2148 }
2149 r1_bio->read_disk = disk;
2150 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2151 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2152 r1_bio->bios[r1_bio->read_disk] = bio;
2153 rdev = conf->mirrors[disk].rdev;
2154 printk_ratelimited(KERN_ERR
2155 "md/raid1:%s: redirecting sector %llu"
2156 " to other mirror: %s\n",
2157 mdname(mddev),
2158 (unsigned long long)r1_bio->sector,
2159 bdevname(rdev->bdev, b));
2160 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2161 bio->bi_bdev = rdev->bdev;
2162 bio->bi_end_io = raid1_end_read_request;
2163 bio->bi_rw = READ | do_sync;
2164 bio->bi_private = r1_bio;
2165 if (max_sectors < r1_bio->sectors) {
2166 /* Drat - have to split this up more */
2167 struct bio *mbio = r1_bio->master_bio;
2168 int sectors_handled = (r1_bio->sector + max_sectors
2169 - mbio->bi_sector);
2170 r1_bio->sectors = max_sectors;
2171 spin_lock_irq(&conf->device_lock);
2172 if (mbio->bi_phys_segments == 0)
2173 mbio->bi_phys_segments = 2;
2174 else
2175 mbio->bi_phys_segments++;
2176 spin_unlock_irq(&conf->device_lock);
2177 generic_make_request(bio);
2178 bio = NULL;
2179
2180 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2181
2182 r1_bio->master_bio = mbio;
2183 r1_bio->sectors = (mbio->bi_size >> 9)
2184 - sectors_handled;
2185 r1_bio->state = 0;
2186 set_bit(R1BIO_ReadError, &r1_bio->state);
2187 r1_bio->mddev = mddev;
2188 r1_bio->sector = mbio->bi_sector + sectors_handled;
2189
2190 goto read_more;
2191 } else
2192 generic_make_request(bio);
2193 }
2194}
2195
fd01b88c 2196static void raid1d(struct mddev *mddev)
1da177e4 2197{
9f2c9d12 2198 struct r1bio *r1_bio;
1da177e4 2199 unsigned long flags;
e8096360 2200 struct r1conf *conf = mddev->private;
1da177e4 2201 struct list_head *head = &conf->retry_list;
e1dfa0a2 2202 struct blk_plug plug;
1da177e4
LT
2203
2204 md_check_recovery(mddev);
e1dfa0a2
N
2205
2206 blk_start_plug(&plug);
1da177e4 2207 for (;;) {
191ea9b2 2208
c3b328ac
N
2209 if (atomic_read(&mddev->plug_cnt) == 0)
2210 flush_pending_writes(conf);
191ea9b2 2211
a35e63ef
N
2212 spin_lock_irqsave(&conf->device_lock, flags);
2213 if (list_empty(head)) {
2214 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2215 break;
a35e63ef 2216 }
9f2c9d12 2217 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2218 list_del(head->prev);
ddaf22ab 2219 conf->nr_queued--;
1da177e4
LT
2220 spin_unlock_irqrestore(&conf->device_lock, flags);
2221
2222 mddev = r1_bio->mddev;
070ec55d 2223 conf = mddev->private;
4367af55 2224 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2225 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2226 test_bit(R1BIO_WriteError, &r1_bio->state))
2227 handle_sync_write_finished(conf, r1_bio);
2228 else
4367af55 2229 sync_request_write(mddev, r1_bio);
cd5ff9a1 2230 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2231 test_bit(R1BIO_WriteError, &r1_bio->state))
2232 handle_write_finished(conf, r1_bio);
2233 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2234 handle_read_error(conf, r1_bio);
2235 else
d2eb35ac
N
2236 /* just a partial read to be scheduled from separate
2237 * context
2238 */
2239 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2240
1d9d5241 2241 cond_resched();
de393cde
N
2242 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2243 md_check_recovery(mddev);
1da177e4 2244 }
e1dfa0a2 2245 blk_finish_plug(&plug);
1da177e4
LT
2246}
2247
2248
e8096360 2249static int init_resync(struct r1conf *conf)
1da177e4
LT
2250{
2251 int buffs;
2252
2253 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2254 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2255 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2256 conf->poolinfo);
2257 if (!conf->r1buf_pool)
2258 return -ENOMEM;
2259 conf->next_resync = 0;
2260 return 0;
2261}
2262
2263/*
2264 * perform a "sync" on one "block"
2265 *
2266 * We need to make sure that no normal I/O request - particularly write
2267 * requests - conflict with active sync requests.
2268 *
2269 * This is achieved by tracking pending requests and a 'barrier' concept
2270 * that can be installed to exclude normal IO requests.
2271 */
2272
fd01b88c 2273static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 2274{
e8096360 2275 struct r1conf *conf = mddev->private;
9f2c9d12 2276 struct r1bio *r1_bio;
1da177e4
LT
2277 struct bio *bio;
2278 sector_t max_sector, nr_sectors;
3e198f78 2279 int disk = -1;
1da177e4 2280 int i;
3e198f78
N
2281 int wonly = -1;
2282 int write_targets = 0, read_targets = 0;
57dab0bd 2283 sector_t sync_blocks;
e3b9703e 2284 int still_degraded = 0;
06f60385
N
2285 int good_sectors = RESYNC_SECTORS;
2286 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2287
2288 if (!conf->r1buf_pool)
2289 if (init_resync(conf))
57afd89f 2290 return 0;
1da177e4 2291
58c0fed4 2292 max_sector = mddev->dev_sectors;
1da177e4 2293 if (sector_nr >= max_sector) {
191ea9b2
N
2294 /* If we aborted, we need to abort the
2295 * sync on the 'current' bitmap chunk (there will
2296 * only be one in raid1 resync.
2297 * We can find the current addess in mddev->curr_resync
2298 */
6a806c51
N
2299 if (mddev->curr_resync < max_sector) /* aborted */
2300 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2301 &sync_blocks, 1);
6a806c51 2302 else /* completed sync */
191ea9b2 2303 conf->fullsync = 0;
6a806c51
N
2304
2305 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2306 close_sync(conf);
2307 return 0;
2308 }
2309
07d84d10
N
2310 if (mddev->bitmap == NULL &&
2311 mddev->recovery_cp == MaxSector &&
6394cca5 2312 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2313 conf->fullsync == 0) {
2314 *skipped = 1;
2315 return max_sector - sector_nr;
2316 }
6394cca5
N
2317 /* before building a request, check if we can skip these blocks..
2318 * This call the bitmap_start_sync doesn't actually record anything
2319 */
e3b9703e 2320 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2321 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2322 /* We can skip this block, and probably several more */
2323 *skipped = 1;
2324 return sync_blocks;
2325 }
1da177e4 2326 /*
17999be4
N
2327 * If there is non-resync activity waiting for a turn,
2328 * and resync is going fast enough,
2329 * then let it though before starting on this new sync request.
1da177e4 2330 */
17999be4 2331 if (!go_faster && conf->nr_waiting)
1da177e4 2332 msleep_interruptible(1000);
17999be4 2333
b47490c9 2334 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2335 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4
N
2336 raise_barrier(conf);
2337
2338 conf->next_resync = sector_nr;
1da177e4 2339
3e198f78 2340 rcu_read_lock();
1da177e4 2341 /*
3e198f78
N
2342 * If we get a correctably read error during resync or recovery,
2343 * we might want to read from a different device. So we
2344 * flag all drives that could conceivably be read from for READ,
2345 * and any others (which will be non-In_sync devices) for WRITE.
2346 * If a read fails, we try reading from something else for which READ
2347 * is OK.
1da177e4 2348 */
1da177e4 2349
1da177e4
LT
2350 r1_bio->mddev = mddev;
2351 r1_bio->sector = sector_nr;
191ea9b2 2352 r1_bio->state = 0;
1da177e4 2353 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2354
8f19ccb2 2355 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2356 struct md_rdev *rdev;
1da177e4
LT
2357 bio = r1_bio->bios[i];
2358
2359 /* take from bio_init */
2360 bio->bi_next = NULL;
db8d9d35 2361 bio->bi_flags &= ~(BIO_POOL_MASK-1);
1da177e4 2362 bio->bi_flags |= 1 << BIO_UPTODATE;
802ba064 2363 bio->bi_rw = READ;
1da177e4
LT
2364 bio->bi_vcnt = 0;
2365 bio->bi_idx = 0;
2366 bio->bi_phys_segments = 0;
1da177e4
LT
2367 bio->bi_size = 0;
2368 bio->bi_end_io = NULL;
2369 bio->bi_private = NULL;
2370
3e198f78
N
2371 rdev = rcu_dereference(conf->mirrors[i].rdev);
2372 if (rdev == NULL ||
06f60385 2373 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2374 if (i < conf->raid_disks)
2375 still_degraded = 1;
3e198f78 2376 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2377 bio->bi_rw = WRITE;
2378 bio->bi_end_io = end_sync_write;
2379 write_targets ++;
3e198f78
N
2380 } else {
2381 /* may need to read from here */
06f60385
N
2382 sector_t first_bad = MaxSector;
2383 int bad_sectors;
2384
2385 if (is_badblock(rdev, sector_nr, good_sectors,
2386 &first_bad, &bad_sectors)) {
2387 if (first_bad > sector_nr)
2388 good_sectors = first_bad - sector_nr;
2389 else {
2390 bad_sectors -= (sector_nr - first_bad);
2391 if (min_bad == 0 ||
2392 min_bad > bad_sectors)
2393 min_bad = bad_sectors;
2394 }
2395 }
2396 if (sector_nr < first_bad) {
2397 if (test_bit(WriteMostly, &rdev->flags)) {
2398 if (wonly < 0)
2399 wonly = i;
2400 } else {
2401 if (disk < 0)
2402 disk = i;
2403 }
2404 bio->bi_rw = READ;
2405 bio->bi_end_io = end_sync_read;
2406 read_targets++;
3e198f78 2407 }
3e198f78 2408 }
06f60385
N
2409 if (bio->bi_end_io) {
2410 atomic_inc(&rdev->nr_pending);
2411 bio->bi_sector = sector_nr + rdev->data_offset;
2412 bio->bi_bdev = rdev->bdev;
2413 bio->bi_private = r1_bio;
2414 }
1da177e4 2415 }
3e198f78
N
2416 rcu_read_unlock();
2417 if (disk < 0)
2418 disk = wonly;
2419 r1_bio->read_disk = disk;
191ea9b2 2420
06f60385
N
2421 if (read_targets == 0 && min_bad > 0) {
2422 /* These sectors are bad on all InSync devices, so we
2423 * need to mark them bad on all write targets
2424 */
2425 int ok = 1;
8f19ccb2 2426 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2427 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2428 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2429 ok = rdev_set_badblocks(rdev, sector_nr,
2430 min_bad, 0
2431 ) && ok;
2432 }
2433 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2434 *skipped = 1;
2435 put_buf(r1_bio);
2436
2437 if (!ok) {
2438 /* Cannot record the badblocks, so need to
2439 * abort the resync.
2440 * If there are multiple read targets, could just
2441 * fail the really bad ones ???
2442 */
2443 conf->recovery_disabled = mddev->recovery_disabled;
2444 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2445 return 0;
2446 } else
2447 return min_bad;
2448
2449 }
2450 if (min_bad > 0 && min_bad < good_sectors) {
2451 /* only resync enough to reach the next bad->good
2452 * transition */
2453 good_sectors = min_bad;
2454 }
2455
3e198f78
N
2456 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2457 /* extra read targets are also write targets */
2458 write_targets += read_targets-1;
2459
2460 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2461 /* There is nowhere to write, so all non-sync
2462 * drives must be failed - so we are finished
2463 */
57afd89f
N
2464 sector_t rv = max_sector - sector_nr;
2465 *skipped = 1;
1da177e4 2466 put_buf(r1_bio);
1da177e4
LT
2467 return rv;
2468 }
2469
c6207277
N
2470 if (max_sector > mddev->resync_max)
2471 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2472 if (max_sector > sector_nr + good_sectors)
2473 max_sector = sector_nr + good_sectors;
1da177e4 2474 nr_sectors = 0;
289e99e8 2475 sync_blocks = 0;
1da177e4
LT
2476 do {
2477 struct page *page;
2478 int len = PAGE_SIZE;
2479 if (sector_nr + (len>>9) > max_sector)
2480 len = (max_sector - sector_nr) << 9;
2481 if (len == 0)
2482 break;
6a806c51
N
2483 if (sync_blocks == 0) {
2484 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2485 &sync_blocks, still_degraded) &&
2486 !conf->fullsync &&
2487 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2488 break;
9e77c485 2489 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2490 if ((len >> 9) > sync_blocks)
6a806c51 2491 len = sync_blocks<<9;
ab7a30c7 2492 }
191ea9b2 2493
8f19ccb2 2494 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2495 bio = r1_bio->bios[i];
2496 if (bio->bi_end_io) {
d11c171e 2497 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2498 if (bio_add_page(bio, page, len, 0) == 0) {
2499 /* stop here */
d11c171e 2500 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2501 while (i > 0) {
2502 i--;
2503 bio = r1_bio->bios[i];
6a806c51
N
2504 if (bio->bi_end_io==NULL)
2505 continue;
1da177e4
LT
2506 /* remove last page from this bio */
2507 bio->bi_vcnt--;
2508 bio->bi_size -= len;
2509 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2510 }
2511 goto bio_full;
2512 }
2513 }
2514 }
2515 nr_sectors += len>>9;
2516 sector_nr += len>>9;
191ea9b2 2517 sync_blocks -= (len>>9);
1da177e4
LT
2518 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2519 bio_full:
1da177e4
LT
2520 r1_bio->sectors = nr_sectors;
2521
d11c171e
N
2522 /* For a user-requested sync, we read all readable devices and do a
2523 * compare
2524 */
2525 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2526 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2527 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2528 bio = r1_bio->bios[i];
2529 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2530 read_targets--;
ddac7c7e 2531 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2532 generic_make_request(bio);
2533 }
2534 }
2535 } else {
2536 atomic_set(&r1_bio->remaining, 1);
2537 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2538 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2539 generic_make_request(bio);
1da177e4 2540
d11c171e 2541 }
1da177e4
LT
2542 return nr_sectors;
2543}
2544
fd01b88c 2545static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2546{
2547 if (sectors)
2548 return sectors;
2549
2550 return mddev->dev_sectors;
2551}
2552
e8096360 2553static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2554{
e8096360 2555 struct r1conf *conf;
709ae487 2556 int i;
0eaf822c 2557 struct raid1_info *disk;
3cb03002 2558 struct md_rdev *rdev;
709ae487 2559 int err = -ENOMEM;
1da177e4 2560
e8096360 2561 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2562 if (!conf)
709ae487 2563 goto abort;
1da177e4 2564
0eaf822c 2565 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2566 * mddev->raid_disks * 2,
1da177e4
LT
2567 GFP_KERNEL);
2568 if (!conf->mirrors)
709ae487 2569 goto abort;
1da177e4 2570
ddaf22ab
N
2571 conf->tmppage = alloc_page(GFP_KERNEL);
2572 if (!conf->tmppage)
709ae487 2573 goto abort;
ddaf22ab 2574
709ae487 2575 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2576 if (!conf->poolinfo)
709ae487 2577 goto abort;
8f19ccb2 2578 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2579 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2580 r1bio_pool_free,
2581 conf->poolinfo);
2582 if (!conf->r1bio_pool)
709ae487
N
2583 goto abort;
2584
ed9bfdf1 2585 conf->poolinfo->mddev = mddev;
1da177e4 2586
c19d5798 2587 err = -EINVAL;
e7e72bf6 2588 spin_lock_init(&conf->device_lock);
dafb20fa 2589 rdev_for_each(rdev, mddev) {
aba336bd 2590 struct request_queue *q;
709ae487 2591 int disk_idx = rdev->raid_disk;
1da177e4
LT
2592 if (disk_idx >= mddev->raid_disks
2593 || disk_idx < 0)
2594 continue;
c19d5798
N
2595 if (test_bit(Replacement, &rdev->flags))
2596 disk = conf->mirrors + conf->raid_disks + disk_idx;
2597 else
2598 disk = conf->mirrors + disk_idx;
1da177e4 2599
c19d5798
N
2600 if (disk->rdev)
2601 goto abort;
1da177e4 2602 disk->rdev = rdev;
aba336bd
N
2603 q = bdev_get_queue(rdev->bdev);
2604 if (q->merge_bvec_fn)
2605 mddev->merge_check_needed = 1;
1da177e4
LT
2606
2607 disk->head_position = 0;
1da177e4
LT
2608 }
2609 conf->raid_disks = mddev->raid_disks;
2610 conf->mddev = mddev;
1da177e4 2611 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2612
2613 spin_lock_init(&conf->resync_lock);
17999be4 2614 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2615
191ea9b2 2616 bio_list_init(&conf->pending_bio_list);
34db0cd6 2617 conf->pending_count = 0;
d890fa2b 2618 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2619
c19d5798 2620 err = -EIO;
8f19ccb2 2621 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2622
2623 disk = conf->mirrors + i;
2624
c19d5798
N
2625 if (i < conf->raid_disks &&
2626 disk[conf->raid_disks].rdev) {
2627 /* This slot has a replacement. */
2628 if (!disk->rdev) {
2629 /* No original, just make the replacement
2630 * a recovering spare
2631 */
2632 disk->rdev =
2633 disk[conf->raid_disks].rdev;
2634 disk[conf->raid_disks].rdev = NULL;
2635 } else if (!test_bit(In_sync, &disk->rdev->flags))
2636 /* Original is not in_sync - bad */
2637 goto abort;
2638 }
2639
5fd6c1dc
N
2640 if (!disk->rdev ||
2641 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2642 disk->head_position = 0;
4f0a5e01
JB
2643 if (disk->rdev &&
2644 (disk->rdev->saved_raid_disk < 0))
918f0238 2645 conf->fullsync = 1;
be4d3280 2646 }
1da177e4 2647 }
709ae487 2648
709ae487 2649 err = -ENOMEM;
0232605d 2650 conf->thread = md_register_thread(raid1d, mddev, "raid1");
709ae487
N
2651 if (!conf->thread) {
2652 printk(KERN_ERR
9dd1e2fa 2653 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2654 mdname(mddev));
2655 goto abort;
11ce99e6 2656 }
1da177e4 2657
709ae487
N
2658 return conf;
2659
2660 abort:
2661 if (conf) {
2662 if (conf->r1bio_pool)
2663 mempool_destroy(conf->r1bio_pool);
2664 kfree(conf->mirrors);
2665 safe_put_page(conf->tmppage);
2666 kfree(conf->poolinfo);
2667 kfree(conf);
2668 }
2669 return ERR_PTR(err);
2670}
2671
5220ea1e 2672static int stop(struct mddev *mddev);
fd01b88c 2673static int run(struct mddev *mddev)
709ae487 2674{
e8096360 2675 struct r1conf *conf;
709ae487 2676 int i;
3cb03002 2677 struct md_rdev *rdev;
5220ea1e 2678 int ret;
709ae487
N
2679
2680 if (mddev->level != 1) {
9dd1e2fa 2681 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2682 mdname(mddev), mddev->level);
2683 return -EIO;
2684 }
2685 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2686 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2687 mdname(mddev));
2688 return -EIO;
2689 }
1da177e4 2690 /*
709ae487
N
2691 * copy the already verified devices into our private RAID1
2692 * bookkeeping area. [whatever we allocate in run(),
2693 * should be freed in stop()]
1da177e4 2694 */
709ae487
N
2695 if (mddev->private == NULL)
2696 conf = setup_conf(mddev);
2697 else
2698 conf = mddev->private;
1da177e4 2699
709ae487
N
2700 if (IS_ERR(conf))
2701 return PTR_ERR(conf);
1da177e4 2702
dafb20fa 2703 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2704 if (!mddev->gendisk)
2705 continue;
709ae487
N
2706 disk_stack_limits(mddev->gendisk, rdev->bdev,
2707 rdev->data_offset << 9);
1da177e4 2708 }
191ea9b2 2709
709ae487
N
2710 mddev->degraded = 0;
2711 for (i=0; i < conf->raid_disks; i++)
2712 if (conf->mirrors[i].rdev == NULL ||
2713 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2714 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2715 mddev->degraded++;
2716
2717 if (conf->raid_disks - mddev->degraded == 1)
2718 mddev->recovery_cp = MaxSector;
2719
8c6ac868 2720 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2721 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2722 " -- starting background reconstruction\n",
2723 mdname(mddev));
1da177e4 2724 printk(KERN_INFO
9dd1e2fa 2725 "md/raid1:%s: active with %d out of %d mirrors\n",
1da177e4
LT
2726 mdname(mddev), mddev->raid_disks - mddev->degraded,
2727 mddev->raid_disks);
709ae487 2728
1da177e4
LT
2729 /*
2730 * Ok, everything is just fine now
2731 */
709ae487
N
2732 mddev->thread = conf->thread;
2733 conf->thread = NULL;
2734 mddev->private = conf;
2735
1f403624 2736 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2737
1ed7242e
JB
2738 if (mddev->queue) {
2739 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2740 mddev->queue->backing_dev_info.congested_data = mddev;
6b740b8d 2741 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
1ed7242e 2742 }
5220ea1e 2743
2744 ret = md_integrity_register(mddev);
2745 if (ret)
2746 stop(mddev);
2747 return ret;
1da177e4
LT
2748}
2749
fd01b88c 2750static int stop(struct mddev *mddev)
1da177e4 2751{
e8096360 2752 struct r1conf *conf = mddev->private;
4b6d287f 2753 struct bitmap *bitmap = mddev->bitmap;
4b6d287f
N
2754
2755 /* wait for behind writes to complete */
e555190d 2756 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
9dd1e2fa
N
2757 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2758 mdname(mddev));
4b6d287f 2759 /* need to kick something here to make sure I/O goes? */
e555190d
N
2760 wait_event(bitmap->behind_wait,
2761 atomic_read(&bitmap->behind_writes) == 0);
4b6d287f 2762 }
1da177e4 2763
409c57f3
N
2764 raise_barrier(conf);
2765 lower_barrier(conf);
2766
01f96c0a 2767 md_unregister_thread(&mddev->thread);
1da177e4
LT
2768 if (conf->r1bio_pool)
2769 mempool_destroy(conf->r1bio_pool);
990a8baf
JJ
2770 kfree(conf->mirrors);
2771 kfree(conf->poolinfo);
1da177e4
LT
2772 kfree(conf);
2773 mddev->private = NULL;
2774 return 0;
2775}
2776
fd01b88c 2777static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2778{
2779 /* no resync is happening, and there is enough space
2780 * on all devices, so we can resize.
2781 * We need to make sure resync covers any new space.
2782 * If the array is shrinking we should possibly wait until
2783 * any io in the removed space completes, but it hardly seems
2784 * worth it.
2785 */
a4a6125a
N
2786 sector_t newsize = raid1_size(mddev, sectors, 0);
2787 if (mddev->external_size &&
2788 mddev->array_sectors > newsize)
b522adcd 2789 return -EINVAL;
a4a6125a
N
2790 if (mddev->bitmap) {
2791 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2792 if (ret)
2793 return ret;
2794 }
2795 md_set_array_sectors(mddev, newsize);
f233ea5c 2796 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 2797 revalidate_disk(mddev->gendisk);
b522adcd 2798 if (sectors > mddev->dev_sectors &&
b098636c 2799 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 2800 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
2801 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2802 }
b522adcd 2803 mddev->dev_sectors = sectors;
4b5c7ae8 2804 mddev->resync_max_sectors = sectors;
1da177e4
LT
2805 return 0;
2806}
2807
fd01b88c 2808static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
2809{
2810 /* We need to:
2811 * 1/ resize the r1bio_pool
2812 * 2/ resize conf->mirrors
2813 *
2814 * We allocate a new r1bio_pool if we can.
2815 * Then raise a device barrier and wait until all IO stops.
2816 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
2817 *
2818 * At the same time, we "pack" the devices so that all the missing
2819 * devices have the higher raid_disk numbers.
1da177e4
LT
2820 */
2821 mempool_t *newpool, *oldpool;
2822 struct pool_info *newpoolinfo;
0eaf822c 2823 struct raid1_info *newmirrors;
e8096360 2824 struct r1conf *conf = mddev->private;
63c70c4f 2825 int cnt, raid_disks;
c04be0aa 2826 unsigned long flags;
b5470dc5 2827 int d, d2, err;
1da177e4 2828
63c70c4f 2829 /* Cannot change chunk_size, layout, or level */
664e7c41 2830 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
2831 mddev->layout != mddev->new_layout ||
2832 mddev->level != mddev->new_level) {
664e7c41 2833 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
2834 mddev->new_layout = mddev->layout;
2835 mddev->new_level = mddev->level;
2836 return -EINVAL;
2837 }
2838
b5470dc5
DW
2839 err = md_allow_write(mddev);
2840 if (err)
2841 return err;
2a2275d6 2842
63c70c4f
N
2843 raid_disks = mddev->raid_disks + mddev->delta_disks;
2844
6ea9c07c
N
2845 if (raid_disks < conf->raid_disks) {
2846 cnt=0;
2847 for (d= 0; d < conf->raid_disks; d++)
2848 if (conf->mirrors[d].rdev)
2849 cnt++;
2850 if (cnt > raid_disks)
1da177e4 2851 return -EBUSY;
6ea9c07c 2852 }
1da177e4
LT
2853
2854 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2855 if (!newpoolinfo)
2856 return -ENOMEM;
2857 newpoolinfo->mddev = mddev;
8f19ccb2 2858 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
2859
2860 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2861 r1bio_pool_free, newpoolinfo);
2862 if (!newpool) {
2863 kfree(newpoolinfo);
2864 return -ENOMEM;
2865 }
0eaf822c 2866 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 2867 GFP_KERNEL);
1da177e4
LT
2868 if (!newmirrors) {
2869 kfree(newpoolinfo);
2870 mempool_destroy(newpool);
2871 return -ENOMEM;
2872 }
1da177e4 2873
17999be4 2874 raise_barrier(conf);
1da177e4
LT
2875
2876 /* ok, everything is stopped */
2877 oldpool = conf->r1bio_pool;
2878 conf->r1bio_pool = newpool;
6ea9c07c 2879
a88aa786 2880 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 2881 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 2882 if (rdev && rdev->raid_disk != d2) {
36fad858 2883 sysfs_unlink_rdev(mddev, rdev);
a88aa786 2884 rdev->raid_disk = d2;
36fad858
NK
2885 sysfs_unlink_rdev(mddev, rdev);
2886 if (sysfs_link_rdev(mddev, rdev))
a88aa786 2887 printk(KERN_WARNING
36fad858
NK
2888 "md/raid1:%s: cannot register rd%d\n",
2889 mdname(mddev), rdev->raid_disk);
6ea9c07c 2890 }
a88aa786
N
2891 if (rdev)
2892 newmirrors[d2++].rdev = rdev;
2893 }
1da177e4
LT
2894 kfree(conf->mirrors);
2895 conf->mirrors = newmirrors;
2896 kfree(conf->poolinfo);
2897 conf->poolinfo = newpoolinfo;
2898
c04be0aa 2899 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 2900 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 2901 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2902 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 2903 mddev->delta_disks = 0;
1da177e4 2904
17999be4 2905 lower_barrier(conf);
1da177e4
LT
2906
2907 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2908 md_wakeup_thread(mddev->thread);
2909
2910 mempool_destroy(oldpool);
2911 return 0;
2912}
2913
fd01b88c 2914static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 2915{
e8096360 2916 struct r1conf *conf = mddev->private;
36fa3063
N
2917
2918 switch(state) {
6eef4b21
N
2919 case 2: /* wake for suspend */
2920 wake_up(&conf->wait_barrier);
2921 break;
9e6603da 2922 case 1:
17999be4 2923 raise_barrier(conf);
36fa3063 2924 break;
9e6603da 2925 case 0:
17999be4 2926 lower_barrier(conf);
36fa3063
N
2927 break;
2928 }
36fa3063
N
2929}
2930
fd01b88c 2931static void *raid1_takeover(struct mddev *mddev)
709ae487
N
2932{
2933 /* raid1 can take over:
2934 * raid5 with 2 devices, any layout or chunk size
2935 */
2936 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 2937 struct r1conf *conf;
709ae487
N
2938 mddev->new_level = 1;
2939 mddev->new_layout = 0;
2940 mddev->new_chunk_sectors = 0;
2941 conf = setup_conf(mddev);
2942 if (!IS_ERR(conf))
2943 conf->barrier = 1;
2944 return conf;
2945 }
2946 return ERR_PTR(-EINVAL);
2947}
1da177e4 2948
84fc4b56 2949static struct md_personality raid1_personality =
1da177e4
LT
2950{
2951 .name = "raid1",
2604b703 2952 .level = 1,
1da177e4
LT
2953 .owner = THIS_MODULE,
2954 .make_request = make_request,
2955 .run = run,
2956 .stop = stop,
2957 .status = status,
2958 .error_handler = error,
2959 .hot_add_disk = raid1_add_disk,
2960 .hot_remove_disk= raid1_remove_disk,
2961 .spare_active = raid1_spare_active,
2962 .sync_request = sync_request,
2963 .resize = raid1_resize,
80c3a6ce 2964 .size = raid1_size,
63c70c4f 2965 .check_reshape = raid1_reshape,
36fa3063 2966 .quiesce = raid1_quiesce,
709ae487 2967 .takeover = raid1_takeover,
1da177e4
LT
2968};
2969
2970static int __init raid_init(void)
2971{
2604b703 2972 return register_md_personality(&raid1_personality);
1da177e4
LT
2973}
2974
2975static void raid_exit(void)
2976{
2604b703 2977 unregister_md_personality(&raid1_personality);
1da177e4
LT
2978}
2979
2980module_init(raid_init);
2981module_exit(raid_exit);
2982MODULE_LICENSE("GPL");
0efb9e61 2983MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 2984MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 2985MODULE_ALIAS("md-raid1");
2604b703 2986MODULE_ALIAS("md-level-1");
34db0cd6
N
2987
2988module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.803567 seconds and 5 git commands to generate.