block: Add bio_alloc_pages()
[deliverable/linux.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
473e87ce
JB
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
1da177e4 68
e8096360
N
69static void allow_barrier(struct r1conf *conf);
70static void lower_barrier(struct r1conf *conf);
1da177e4 71
dd0fc66f 72static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
73{
74 struct pool_info *pi = data;
9f2c9d12 75 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
76
77 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 78 return kzalloc(size, gfp_flags);
1da177e4
LT
79}
80
81static void r1bio_pool_free(void *r1_bio, void *data)
82{
83 kfree(r1_bio);
84}
85
86#define RESYNC_BLOCK_SIZE (64*1024)
87//#define RESYNC_BLOCK_SIZE PAGE_SIZE
88#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90#define RESYNC_WINDOW (2048*1024)
91
dd0fc66f 92static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
93{
94 struct pool_info *pi = data;
9f2c9d12 95 struct r1bio *r1_bio;
1da177e4
LT
96 struct bio *bio;
97 int i, j;
98
99 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 100 if (!r1_bio)
1da177e4 101 return NULL;
1da177e4
LT
102
103 /*
104 * Allocate bios : 1 for reading, n-1 for writing
105 */
106 for (j = pi->raid_disks ; j-- ; ) {
6746557f 107 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
108 if (!bio)
109 goto out_free_bio;
110 r1_bio->bios[j] = bio;
111 }
112 /*
113 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
114 * the first bio.
115 * If this is a user-requested check/repair, allocate
116 * RESYNC_PAGES for each bio.
1da177e4 117 */
d11c171e
N
118 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
119 j = pi->raid_disks;
120 else
121 j = 1;
122 while(j--) {
123 bio = r1_bio->bios[j];
a0787606
KO
124 bio->bi_vcnt = RESYNC_PAGES;
125
126 if (bio_alloc_pages(bio, gfp_flags))
127 goto out_free_bio;
d11c171e
N
128 }
129 /* If not user-requests, copy the page pointers to all bios */
130 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
131 for (i=0; i<RESYNC_PAGES ; i++)
132 for (j=1; j<pi->raid_disks; j++)
133 r1_bio->bios[j]->bi_io_vec[i].bv_page =
134 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
135 }
136
137 r1_bio->master_bio = NULL;
138
139 return r1_bio;
140
1da177e4 141out_free_bio:
8f19ccb2 142 while (++j < pi->raid_disks)
1da177e4
LT
143 bio_put(r1_bio->bios[j]);
144 r1bio_pool_free(r1_bio, data);
145 return NULL;
146}
147
148static void r1buf_pool_free(void *__r1_bio, void *data)
149{
150 struct pool_info *pi = data;
d11c171e 151 int i,j;
9f2c9d12 152 struct r1bio *r1bio = __r1_bio;
1da177e4 153
d11c171e
N
154 for (i = 0; i < RESYNC_PAGES; i++)
155 for (j = pi->raid_disks; j-- ;) {
156 if (j == 0 ||
157 r1bio->bios[j]->bi_io_vec[i].bv_page !=
158 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 160 }
1da177e4
LT
161 for (i=0 ; i < pi->raid_disks; i++)
162 bio_put(r1bio->bios[i]);
163
164 r1bio_pool_free(r1bio, data);
165}
166
e8096360 167static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
168{
169 int i;
170
8f19ccb2 171 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 172 struct bio **bio = r1_bio->bios + i;
4367af55 173 if (!BIO_SPECIAL(*bio))
1da177e4
LT
174 bio_put(*bio);
175 *bio = NULL;
176 }
177}
178
9f2c9d12 179static void free_r1bio(struct r1bio *r1_bio)
1da177e4 180{
e8096360 181 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 182
1da177e4
LT
183 put_all_bios(conf, r1_bio);
184 mempool_free(r1_bio, conf->r1bio_pool);
185}
186
9f2c9d12 187static void put_buf(struct r1bio *r1_bio)
1da177e4 188{
e8096360 189 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
190 int i;
191
8f19ccb2 192 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
193 struct bio *bio = r1_bio->bios[i];
194 if (bio->bi_end_io)
195 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
196 }
1da177e4
LT
197
198 mempool_free(r1_bio, conf->r1buf_pool);
199
17999be4 200 lower_barrier(conf);
1da177e4
LT
201}
202
9f2c9d12 203static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
204{
205 unsigned long flags;
fd01b88c 206 struct mddev *mddev = r1_bio->mddev;
e8096360 207 struct r1conf *conf = mddev->private;
1da177e4
LT
208
209 spin_lock_irqsave(&conf->device_lock, flags);
210 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 211 conf->nr_queued ++;
1da177e4
LT
212 spin_unlock_irqrestore(&conf->device_lock, flags);
213
17999be4 214 wake_up(&conf->wait_barrier);
1da177e4
LT
215 md_wakeup_thread(mddev->thread);
216}
217
218/*
219 * raid_end_bio_io() is called when we have finished servicing a mirrored
220 * operation and are ready to return a success/failure code to the buffer
221 * cache layer.
222 */
9f2c9d12 223static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
224{
225 struct bio *bio = r1_bio->master_bio;
226 int done;
e8096360 227 struct r1conf *conf = r1_bio->mddev->private;
d2eb35ac
N
228
229 if (bio->bi_phys_segments) {
230 unsigned long flags;
231 spin_lock_irqsave(&conf->device_lock, flags);
232 bio->bi_phys_segments--;
233 done = (bio->bi_phys_segments == 0);
234 spin_unlock_irqrestore(&conf->device_lock, flags);
235 } else
236 done = 1;
237
238 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
239 clear_bit(BIO_UPTODATE, &bio->bi_flags);
240 if (done) {
241 bio_endio(bio, 0);
242 /*
243 * Wake up any possible resync thread that waits for the device
244 * to go idle.
245 */
246 allow_barrier(conf);
247 }
248}
249
9f2c9d12 250static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
251{
252 struct bio *bio = r1_bio->master_bio;
253
4b6d287f
N
254 /* if nobody has done the final endio yet, do it now */
255 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
256 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
257 (bio_data_dir(bio) == WRITE) ? "write" : "read",
258 (unsigned long long) bio->bi_sector,
259 (unsigned long long) bio->bi_sector +
aa8b57aa 260 bio_sectors(bio) - 1);
4b6d287f 261
d2eb35ac 262 call_bio_endio(r1_bio);
4b6d287f 263 }
1da177e4
LT
264 free_r1bio(r1_bio);
265}
266
267/*
268 * Update disk head position estimator based on IRQ completion info.
269 */
9f2c9d12 270static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 271{
e8096360 272 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
273
274 conf->mirrors[disk].head_position =
275 r1_bio->sector + (r1_bio->sectors);
276}
277
ba3ae3be
NK
278/*
279 * Find the disk number which triggered given bio
280 */
9f2c9d12 281static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
282{
283 int mirror;
30194636
N
284 struct r1conf *conf = r1_bio->mddev->private;
285 int raid_disks = conf->raid_disks;
ba3ae3be 286
8f19ccb2 287 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
288 if (r1_bio->bios[mirror] == bio)
289 break;
290
8f19ccb2 291 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
292 update_head_pos(mirror, r1_bio);
293
294 return mirror;
295}
296
6712ecf8 297static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
298{
299 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 300 struct r1bio *r1_bio = bio->bi_private;
1da177e4 301 int mirror;
e8096360 302 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 303
1da177e4
LT
304 mirror = r1_bio->read_disk;
305 /*
306 * this branch is our 'one mirror IO has finished' event handler:
307 */
ddaf22ab
N
308 update_head_pos(mirror, r1_bio);
309
dd00a99e
N
310 if (uptodate)
311 set_bit(R1BIO_Uptodate, &r1_bio->state);
312 else {
313 /* If all other devices have failed, we want to return
314 * the error upwards rather than fail the last device.
315 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 316 */
dd00a99e
N
317 unsigned long flags;
318 spin_lock_irqsave(&conf->device_lock, flags);
319 if (r1_bio->mddev->degraded == conf->raid_disks ||
320 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
321 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
322 uptodate = 1;
323 spin_unlock_irqrestore(&conf->device_lock, flags);
324 }
1da177e4 325
7ad4d4a6 326 if (uptodate) {
1da177e4 327 raid_end_bio_io(r1_bio);
7ad4d4a6
N
328 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
329 } else {
1da177e4
LT
330 /*
331 * oops, read error:
332 */
333 char b[BDEVNAME_SIZE];
8bda470e
CD
334 printk_ratelimited(
335 KERN_ERR "md/raid1:%s: %s: "
336 "rescheduling sector %llu\n",
337 mdname(conf->mddev),
338 bdevname(conf->mirrors[mirror].rdev->bdev,
339 b),
340 (unsigned long long)r1_bio->sector);
d2eb35ac 341 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 342 reschedule_retry(r1_bio);
7ad4d4a6 343 /* don't drop the reference on read_disk yet */
1da177e4 344 }
1da177e4
LT
345}
346
9f2c9d12 347static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
348{
349 /* it really is the end of this request */
350 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
351 /* free extra copy of the data pages */
352 int i = r1_bio->behind_page_count;
353 while (i--)
354 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
355 kfree(r1_bio->behind_bvecs);
356 r1_bio->behind_bvecs = NULL;
357 }
358 /* clear the bitmap if all writes complete successfully */
359 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
360 r1_bio->sectors,
361 !test_bit(R1BIO_Degraded, &r1_bio->state),
362 test_bit(R1BIO_BehindIO, &r1_bio->state));
363 md_write_end(r1_bio->mddev);
364}
365
9f2c9d12 366static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 367{
cd5ff9a1
N
368 if (!atomic_dec_and_test(&r1_bio->remaining))
369 return;
370
371 if (test_bit(R1BIO_WriteError, &r1_bio->state))
372 reschedule_retry(r1_bio);
373 else {
374 close_write(r1_bio);
4367af55
N
375 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
376 reschedule_retry(r1_bio);
377 else
378 raid_end_bio_io(r1_bio);
4e78064f
N
379 }
380}
381
6712ecf8 382static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
383{
384 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 385 struct r1bio *r1_bio = bio->bi_private;
a9701a30 386 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 387 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 388 struct bio *to_put = NULL;
1da177e4 389
ba3ae3be 390 mirror = find_bio_disk(r1_bio, bio);
1da177e4 391
e9c7469b
TH
392 /*
393 * 'one mirror IO has finished' event handler:
394 */
e9c7469b 395 if (!uptodate) {
cd5ff9a1
N
396 set_bit(WriteErrorSeen,
397 &conf->mirrors[mirror].rdev->flags);
19d67169
N
398 if (!test_and_set_bit(WantReplacement,
399 &conf->mirrors[mirror].rdev->flags))
400 set_bit(MD_RECOVERY_NEEDED, &
401 conf->mddev->recovery);
402
cd5ff9a1 403 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 404 } else {
1da177e4 405 /*
e9c7469b
TH
406 * Set R1BIO_Uptodate in our master bio, so that we
407 * will return a good error code for to the higher
408 * levels even if IO on some other mirrored buffer
409 * fails.
410 *
411 * The 'master' represents the composite IO operation
412 * to user-side. So if something waits for IO, then it
413 * will wait for the 'master' bio.
1da177e4 414 */
4367af55
N
415 sector_t first_bad;
416 int bad_sectors;
417
cd5ff9a1
N
418 r1_bio->bios[mirror] = NULL;
419 to_put = bio;
e9c7469b
TH
420 set_bit(R1BIO_Uptodate, &r1_bio->state);
421
4367af55
N
422 /* Maybe we can clear some bad blocks. */
423 if (is_badblock(conf->mirrors[mirror].rdev,
424 r1_bio->sector, r1_bio->sectors,
425 &first_bad, &bad_sectors)) {
426 r1_bio->bios[mirror] = IO_MADE_GOOD;
427 set_bit(R1BIO_MadeGood, &r1_bio->state);
428 }
429 }
430
e9c7469b
TH
431 if (behind) {
432 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
433 atomic_dec(&r1_bio->behind_remaining);
434
435 /*
436 * In behind mode, we ACK the master bio once the I/O
437 * has safely reached all non-writemostly
438 * disks. Setting the Returned bit ensures that this
439 * gets done only once -- we don't ever want to return
440 * -EIO here, instead we'll wait
441 */
442 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
443 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
444 /* Maybe we can return now */
445 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
446 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
447 pr_debug("raid1: behind end write sectors"
448 " %llu-%llu\n",
449 (unsigned long long) mbio->bi_sector,
450 (unsigned long long) mbio->bi_sector +
aa8b57aa 451 bio_sectors(mbio) - 1);
d2eb35ac 452 call_bio_endio(r1_bio);
4b6d287f
N
453 }
454 }
455 }
4367af55
N
456 if (r1_bio->bios[mirror] == NULL)
457 rdev_dec_pending(conf->mirrors[mirror].rdev,
458 conf->mddev);
e9c7469b 459
1da177e4 460 /*
1da177e4
LT
461 * Let's see if all mirrored write operations have finished
462 * already.
463 */
af6d7b76 464 r1_bio_write_done(r1_bio);
c70810b3 465
04b857f7
N
466 if (to_put)
467 bio_put(to_put);
1da177e4
LT
468}
469
470
471/*
472 * This routine returns the disk from which the requested read should
473 * be done. There is a per-array 'next expected sequential IO' sector
474 * number - if this matches on the next IO then we use the last disk.
475 * There is also a per-disk 'last know head position' sector that is
476 * maintained from IRQ contexts, both the normal and the resync IO
477 * completion handlers update this position correctly. If there is no
478 * perfect sequential match then we pick the disk whose head is closest.
479 *
480 * If there are 2 mirrors in the same 2 devices, performance degrades
481 * because position is mirror, not device based.
482 *
483 * The rdev for the device selected will have nr_pending incremented.
484 */
e8096360 485static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 486{
af3a2cd6 487 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
488 int sectors;
489 int best_good_sectors;
9dedf603
SL
490 int best_disk, best_dist_disk, best_pending_disk;
491 int has_nonrot_disk;
be4d3280 492 int disk;
76073054 493 sector_t best_dist;
9dedf603 494 unsigned int min_pending;
3cb03002 495 struct md_rdev *rdev;
f3ac8bf7 496 int choose_first;
12cee5a8 497 int choose_next_idle;
1da177e4
LT
498
499 rcu_read_lock();
500 /*
8ddf9efe 501 * Check if we can balance. We can balance on the whole
1da177e4
LT
502 * device if no resync is going on, or below the resync window.
503 * We take the first readable disk when above the resync window.
504 */
505 retry:
d2eb35ac 506 sectors = r1_bio->sectors;
76073054 507 best_disk = -1;
9dedf603 508 best_dist_disk = -1;
76073054 509 best_dist = MaxSector;
9dedf603
SL
510 best_pending_disk = -1;
511 min_pending = UINT_MAX;
d2eb35ac 512 best_good_sectors = 0;
9dedf603 513 has_nonrot_disk = 0;
12cee5a8 514 choose_next_idle = 0;
d2eb35ac 515
1da177e4 516 if (conf->mddev->recovery_cp < MaxSector &&
be4d3280 517 (this_sector + sectors >= conf->next_resync))
f3ac8bf7 518 choose_first = 1;
be4d3280 519 else
f3ac8bf7 520 choose_first = 0;
1da177e4 521
be4d3280 522 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 523 sector_t dist;
d2eb35ac
N
524 sector_t first_bad;
525 int bad_sectors;
9dedf603 526 unsigned int pending;
12cee5a8 527 bool nonrot;
d2eb35ac 528
f3ac8bf7
N
529 rdev = rcu_dereference(conf->mirrors[disk].rdev);
530 if (r1_bio->bios[disk] == IO_BLOCKED
531 || rdev == NULL
6b740b8d 532 || test_bit(Unmerged, &rdev->flags)
76073054 533 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 534 continue;
76073054
N
535 if (!test_bit(In_sync, &rdev->flags) &&
536 rdev->recovery_offset < this_sector + sectors)
1da177e4 537 continue;
76073054
N
538 if (test_bit(WriteMostly, &rdev->flags)) {
539 /* Don't balance among write-mostly, just
540 * use the first as a last resort */
307729c8
N
541 if (best_disk < 0) {
542 if (is_badblock(rdev, this_sector, sectors,
543 &first_bad, &bad_sectors)) {
544 if (first_bad < this_sector)
545 /* Cannot use this */
546 continue;
547 best_good_sectors = first_bad - this_sector;
548 } else
549 best_good_sectors = sectors;
76073054 550 best_disk = disk;
307729c8 551 }
76073054
N
552 continue;
553 }
554 /* This is a reasonable device to use. It might
555 * even be best.
556 */
d2eb35ac
N
557 if (is_badblock(rdev, this_sector, sectors,
558 &first_bad, &bad_sectors)) {
559 if (best_dist < MaxSector)
560 /* already have a better device */
561 continue;
562 if (first_bad <= this_sector) {
563 /* cannot read here. If this is the 'primary'
564 * device, then we must not read beyond
565 * bad_sectors from another device..
566 */
567 bad_sectors -= (this_sector - first_bad);
568 if (choose_first && sectors > bad_sectors)
569 sectors = bad_sectors;
570 if (best_good_sectors > sectors)
571 best_good_sectors = sectors;
572
573 } else {
574 sector_t good_sectors = first_bad - this_sector;
575 if (good_sectors > best_good_sectors) {
576 best_good_sectors = good_sectors;
577 best_disk = disk;
578 }
579 if (choose_first)
580 break;
581 }
582 continue;
583 } else
584 best_good_sectors = sectors;
585
12cee5a8
SL
586 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
587 has_nonrot_disk |= nonrot;
9dedf603 588 pending = atomic_read(&rdev->nr_pending);
76073054 589 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 590 if (choose_first) {
76073054 591 best_disk = disk;
1da177e4
LT
592 break;
593 }
12cee5a8
SL
594 /* Don't change to another disk for sequential reads */
595 if (conf->mirrors[disk].next_seq_sect == this_sector
596 || dist == 0) {
597 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
598 struct raid1_info *mirror = &conf->mirrors[disk];
599
600 best_disk = disk;
601 /*
602 * If buffered sequential IO size exceeds optimal
603 * iosize, check if there is idle disk. If yes, choose
604 * the idle disk. read_balance could already choose an
605 * idle disk before noticing it's a sequential IO in
606 * this disk. This doesn't matter because this disk
607 * will idle, next time it will be utilized after the
608 * first disk has IO size exceeds optimal iosize. In
609 * this way, iosize of the first disk will be optimal
610 * iosize at least. iosize of the second disk might be
611 * small, but not a big deal since when the second disk
612 * starts IO, the first disk is likely still busy.
613 */
614 if (nonrot && opt_iosize > 0 &&
615 mirror->seq_start != MaxSector &&
616 mirror->next_seq_sect > opt_iosize &&
617 mirror->next_seq_sect - opt_iosize >=
618 mirror->seq_start) {
619 choose_next_idle = 1;
620 continue;
621 }
622 break;
623 }
624 /* If device is idle, use it */
625 if (pending == 0) {
626 best_disk = disk;
627 break;
628 }
629
630 if (choose_next_idle)
631 continue;
9dedf603
SL
632
633 if (min_pending > pending) {
634 min_pending = pending;
635 best_pending_disk = disk;
636 }
637
76073054
N
638 if (dist < best_dist) {
639 best_dist = dist;
9dedf603 640 best_dist_disk = disk;
1da177e4 641 }
f3ac8bf7 642 }
1da177e4 643
9dedf603
SL
644 /*
645 * If all disks are rotational, choose the closest disk. If any disk is
646 * non-rotational, choose the disk with less pending request even the
647 * disk is rotational, which might/might not be optimal for raids with
648 * mixed ratation/non-rotational disks depending on workload.
649 */
650 if (best_disk == -1) {
651 if (has_nonrot_disk)
652 best_disk = best_pending_disk;
653 else
654 best_disk = best_dist_disk;
655 }
656
76073054
N
657 if (best_disk >= 0) {
658 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
659 if (!rdev)
660 goto retry;
661 atomic_inc(&rdev->nr_pending);
76073054 662 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
663 /* cannot risk returning a device that failed
664 * before we inc'ed nr_pending
665 */
03c902e1 666 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
667 goto retry;
668 }
d2eb35ac 669 sectors = best_good_sectors;
12cee5a8
SL
670
671 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
672 conf->mirrors[best_disk].seq_start = this_sector;
673
be4d3280 674 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
675 }
676 rcu_read_unlock();
d2eb35ac 677 *max_sectors = sectors;
1da177e4 678
76073054 679 return best_disk;
1da177e4
LT
680}
681
6b740b8d
N
682static int raid1_mergeable_bvec(struct request_queue *q,
683 struct bvec_merge_data *bvm,
684 struct bio_vec *biovec)
685{
686 struct mddev *mddev = q->queuedata;
687 struct r1conf *conf = mddev->private;
688 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
689 int max = biovec->bv_len;
690
691 if (mddev->merge_check_needed) {
692 int disk;
693 rcu_read_lock();
694 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
695 struct md_rdev *rdev = rcu_dereference(
696 conf->mirrors[disk].rdev);
697 if (rdev && !test_bit(Faulty, &rdev->flags)) {
698 struct request_queue *q =
699 bdev_get_queue(rdev->bdev);
700 if (q->merge_bvec_fn) {
701 bvm->bi_sector = sector +
702 rdev->data_offset;
703 bvm->bi_bdev = rdev->bdev;
704 max = min(max, q->merge_bvec_fn(
705 q, bvm, biovec));
706 }
707 }
708 }
709 rcu_read_unlock();
710 }
711 return max;
712
713}
714
fd01b88c 715int md_raid1_congested(struct mddev *mddev, int bits)
0d129228 716{
e8096360 717 struct r1conf *conf = mddev->private;
0d129228
N
718 int i, ret = 0;
719
34db0cd6
N
720 if ((bits & (1 << BDI_async_congested)) &&
721 conf->pending_count >= max_queued_requests)
722 return 1;
723
0d129228 724 rcu_read_lock();
f53e29fc 725 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 726 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 727 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 728 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 729
1ed7242e
JB
730 BUG_ON(!q);
731
0d129228
N
732 /* Note the '|| 1' - when read_balance prefers
733 * non-congested targets, it can be removed
734 */
91a9e99d 735 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
736 ret |= bdi_congested(&q->backing_dev_info, bits);
737 else
738 ret &= bdi_congested(&q->backing_dev_info, bits);
739 }
740 }
741 rcu_read_unlock();
742 return ret;
743}
1ed7242e 744EXPORT_SYMBOL_GPL(md_raid1_congested);
0d129228 745
1ed7242e
JB
746static int raid1_congested(void *data, int bits)
747{
fd01b88c 748 struct mddev *mddev = data;
1ed7242e
JB
749
750 return mddev_congested(mddev, bits) ||
751 md_raid1_congested(mddev, bits);
752}
0d129228 753
e8096360 754static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
755{
756 /* Any writes that have been queued but are awaiting
757 * bitmap updates get flushed here.
a35e63ef 758 */
a35e63ef
N
759 spin_lock_irq(&conf->device_lock);
760
761 if (conf->pending_bio_list.head) {
762 struct bio *bio;
763 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 764 conf->pending_count = 0;
a35e63ef
N
765 spin_unlock_irq(&conf->device_lock);
766 /* flush any pending bitmap writes to
767 * disk before proceeding w/ I/O */
768 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 769 wake_up(&conf->wait_barrier);
a35e63ef
N
770
771 while (bio) { /* submit pending writes */
772 struct bio *next = bio->bi_next;
773 bio->bi_next = NULL;
2ff8cc2c
SL
774 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
775 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
776 /* Just ignore it */
777 bio_endio(bio, 0);
778 else
779 generic_make_request(bio);
a35e63ef
N
780 bio = next;
781 }
a35e63ef
N
782 } else
783 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
784}
785
17999be4
N
786/* Barriers....
787 * Sometimes we need to suspend IO while we do something else,
788 * either some resync/recovery, or reconfigure the array.
789 * To do this we raise a 'barrier'.
790 * The 'barrier' is a counter that can be raised multiple times
791 * to count how many activities are happening which preclude
792 * normal IO.
793 * We can only raise the barrier if there is no pending IO.
794 * i.e. if nr_pending == 0.
795 * We choose only to raise the barrier if no-one is waiting for the
796 * barrier to go down. This means that as soon as an IO request
797 * is ready, no other operations which require a barrier will start
798 * until the IO request has had a chance.
799 *
800 * So: regular IO calls 'wait_barrier'. When that returns there
801 * is no backgroup IO happening, It must arrange to call
802 * allow_barrier when it has finished its IO.
803 * backgroup IO calls must call raise_barrier. Once that returns
804 * there is no normal IO happeing. It must arrange to call
805 * lower_barrier when the particular background IO completes.
1da177e4
LT
806 */
807#define RESYNC_DEPTH 32
808
e8096360 809static void raise_barrier(struct r1conf *conf)
1da177e4
LT
810{
811 spin_lock_irq(&conf->resync_lock);
17999be4
N
812
813 /* Wait until no block IO is waiting */
814 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
eed8c02e 815 conf->resync_lock);
17999be4
N
816
817 /* block any new IO from starting */
818 conf->barrier++;
819
046abeed 820 /* Now wait for all pending IO to complete */
17999be4
N
821 wait_event_lock_irq(conf->wait_barrier,
822 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
eed8c02e 823 conf->resync_lock);
17999be4
N
824
825 spin_unlock_irq(&conf->resync_lock);
826}
827
e8096360 828static void lower_barrier(struct r1conf *conf)
17999be4
N
829{
830 unsigned long flags;
709ae487 831 BUG_ON(conf->barrier <= 0);
17999be4
N
832 spin_lock_irqsave(&conf->resync_lock, flags);
833 conf->barrier--;
834 spin_unlock_irqrestore(&conf->resync_lock, flags);
835 wake_up(&conf->wait_barrier);
836}
837
e8096360 838static void wait_barrier(struct r1conf *conf)
17999be4
N
839{
840 spin_lock_irq(&conf->resync_lock);
841 if (conf->barrier) {
842 conf->nr_waiting++;
d6b42dcb
N
843 /* Wait for the barrier to drop.
844 * However if there are already pending
845 * requests (preventing the barrier from
846 * rising completely), and the
847 * pre-process bio queue isn't empty,
848 * then don't wait, as we need to empty
849 * that queue to get the nr_pending
850 * count down.
851 */
852 wait_event_lock_irq(conf->wait_barrier,
853 !conf->barrier ||
854 (conf->nr_pending &&
855 current->bio_list &&
856 !bio_list_empty(current->bio_list)),
eed8c02e 857 conf->resync_lock);
17999be4 858 conf->nr_waiting--;
1da177e4 859 }
17999be4 860 conf->nr_pending++;
1da177e4
LT
861 spin_unlock_irq(&conf->resync_lock);
862}
863
e8096360 864static void allow_barrier(struct r1conf *conf)
17999be4
N
865{
866 unsigned long flags;
867 spin_lock_irqsave(&conf->resync_lock, flags);
868 conf->nr_pending--;
869 spin_unlock_irqrestore(&conf->resync_lock, flags);
870 wake_up(&conf->wait_barrier);
871}
872
e8096360 873static void freeze_array(struct r1conf *conf)
ddaf22ab
N
874{
875 /* stop syncio and normal IO and wait for everything to
876 * go quite.
877 * We increment barrier and nr_waiting, and then
1c830532
N
878 * wait until nr_pending match nr_queued+1
879 * This is called in the context of one normal IO request
880 * that has failed. Thus any sync request that might be pending
881 * will be blocked by nr_pending, and we need to wait for
882 * pending IO requests to complete or be queued for re-try.
883 * Thus the number queued (nr_queued) plus this request (1)
884 * must match the number of pending IOs (nr_pending) before
885 * we continue.
ddaf22ab
N
886 */
887 spin_lock_irq(&conf->resync_lock);
888 conf->barrier++;
889 conf->nr_waiting++;
eed8c02e
LC
890 wait_event_lock_irq_cmd(conf->wait_barrier,
891 conf->nr_pending == conf->nr_queued+1,
892 conf->resync_lock,
893 flush_pending_writes(conf));
ddaf22ab
N
894 spin_unlock_irq(&conf->resync_lock);
895}
e8096360 896static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
897{
898 /* reverse the effect of the freeze */
899 spin_lock_irq(&conf->resync_lock);
900 conf->barrier--;
901 conf->nr_waiting--;
902 wake_up(&conf->wait_barrier);
903 spin_unlock_irq(&conf->resync_lock);
904}
905
17999be4 906
4e78064f 907/* duplicate the data pages for behind I/O
4e78064f 908 */
9f2c9d12 909static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
910{
911 int i;
912 struct bio_vec *bvec;
2ca68f5e 913 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 914 GFP_NOIO);
2ca68f5e 915 if (unlikely(!bvecs))
af6d7b76 916 return;
4b6d287f 917
cb34e057 918 bio_for_each_segment_all(bvec, bio, i) {
2ca68f5e
N
919 bvecs[i] = *bvec;
920 bvecs[i].bv_page = alloc_page(GFP_NOIO);
921 if (unlikely(!bvecs[i].bv_page))
4b6d287f 922 goto do_sync_io;
2ca68f5e
N
923 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
924 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
925 kunmap(bvecs[i].bv_page);
4b6d287f
N
926 kunmap(bvec->bv_page);
927 }
2ca68f5e 928 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
929 r1_bio->behind_page_count = bio->bi_vcnt;
930 set_bit(R1BIO_BehindIO, &r1_bio->state);
931 return;
4b6d287f
N
932
933do_sync_io:
af6d7b76 934 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
935 if (bvecs[i].bv_page)
936 put_page(bvecs[i].bv_page);
937 kfree(bvecs);
36a4e1fe 938 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
4b6d287f
N
939}
940
f54a9d0e
N
941struct raid1_plug_cb {
942 struct blk_plug_cb cb;
943 struct bio_list pending;
944 int pending_cnt;
945};
946
947static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
948{
949 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
950 cb);
951 struct mddev *mddev = plug->cb.data;
952 struct r1conf *conf = mddev->private;
953 struct bio *bio;
954
874807a8 955 if (from_schedule || current->bio_list) {
f54a9d0e
N
956 spin_lock_irq(&conf->device_lock);
957 bio_list_merge(&conf->pending_bio_list, &plug->pending);
958 conf->pending_count += plug->pending_cnt;
959 spin_unlock_irq(&conf->device_lock);
ee0b0244 960 wake_up(&conf->wait_barrier);
f54a9d0e
N
961 md_wakeup_thread(mddev->thread);
962 kfree(plug);
963 return;
964 }
965
966 /* we aren't scheduling, so we can do the write-out directly. */
967 bio = bio_list_get(&plug->pending);
968 bitmap_unplug(mddev->bitmap);
969 wake_up(&conf->wait_barrier);
970
971 while (bio) { /* submit pending writes */
972 struct bio *next = bio->bi_next;
973 bio->bi_next = NULL;
974 generic_make_request(bio);
975 bio = next;
976 }
977 kfree(plug);
978}
979
b4fdcb02 980static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 981{
e8096360 982 struct r1conf *conf = mddev->private;
0eaf822c 983 struct raid1_info *mirror;
9f2c9d12 984 struct r1bio *r1_bio;
1da177e4 985 struct bio *read_bio;
1f68f0c4 986 int i, disks;
84255d10 987 struct bitmap *bitmap;
191ea9b2 988 unsigned long flags;
a362357b 989 const int rw = bio_data_dir(bio);
2c7d46ec 990 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 991 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
2ff8cc2c
SL
992 const unsigned long do_discard = (bio->bi_rw
993 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 994 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
3cb03002 995 struct md_rdev *blocked_rdev;
f54a9d0e
N
996 struct blk_plug_cb *cb;
997 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
998 int first_clone;
999 int sectors_handled;
1000 int max_sectors;
191ea9b2 1001
1da177e4
LT
1002 /*
1003 * Register the new request and wait if the reconstruction
1004 * thread has put up a bar for new requests.
1005 * Continue immediately if no resync is active currently.
1006 */
62de608d 1007
3d310eb7
N
1008 md_write_start(mddev, bio); /* wait on superblock update early */
1009
6eef4b21 1010 if (bio_data_dir(bio) == WRITE &&
f73a1c7d 1011 bio_end_sector(bio) > mddev->suspend_lo &&
6eef4b21
N
1012 bio->bi_sector < mddev->suspend_hi) {
1013 /* As the suspend_* range is controlled by
1014 * userspace, we want an interruptible
1015 * wait.
1016 */
1017 DEFINE_WAIT(w);
1018 for (;;) {
1019 flush_signals(current);
1020 prepare_to_wait(&conf->wait_barrier,
1021 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1022 if (bio_end_sector(bio) <= mddev->suspend_lo ||
6eef4b21
N
1023 bio->bi_sector >= mddev->suspend_hi)
1024 break;
1025 schedule();
1026 }
1027 finish_wait(&conf->wait_barrier, &w);
1028 }
62de608d 1029
17999be4 1030 wait_barrier(conf);
1da177e4 1031
84255d10
N
1032 bitmap = mddev->bitmap;
1033
1da177e4
LT
1034 /*
1035 * make_request() can abort the operation when READA is being
1036 * used and no empty request is available.
1037 *
1038 */
1039 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1040
1041 r1_bio->master_bio = bio;
aa8b57aa 1042 r1_bio->sectors = bio_sectors(bio);
191ea9b2 1043 r1_bio->state = 0;
1da177e4
LT
1044 r1_bio->mddev = mddev;
1045 r1_bio->sector = bio->bi_sector;
1046
d2eb35ac
N
1047 /* We might need to issue multiple reads to different
1048 * devices if there are bad blocks around, so we keep
1049 * track of the number of reads in bio->bi_phys_segments.
1050 * If this is 0, there is only one r1_bio and no locking
1051 * will be needed when requests complete. If it is
1052 * non-zero, then it is the number of not-completed requests.
1053 */
1054 bio->bi_phys_segments = 0;
1055 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1056
a362357b 1057 if (rw == READ) {
1da177e4
LT
1058 /*
1059 * read balancing logic:
1060 */
d2eb35ac
N
1061 int rdisk;
1062
1063read_again:
1064 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
1065
1066 if (rdisk < 0) {
1067 /* couldn't find anywhere to read from */
1068 raid_end_bio_io(r1_bio);
5a7bbad2 1069 return;
1da177e4
LT
1070 }
1071 mirror = conf->mirrors + rdisk;
1072
e555190d
N
1073 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1074 bitmap) {
1075 /* Reading from a write-mostly device must
1076 * take care not to over-take any writes
1077 * that are 'behind'
1078 */
1079 wait_event(bitmap->behind_wait,
1080 atomic_read(&bitmap->behind_writes) == 0);
1081 }
1da177e4
LT
1082 r1_bio->read_disk = rdisk;
1083
a167f663 1084 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d2eb35ac
N
1085 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
1086 max_sectors);
1da177e4
LT
1087
1088 r1_bio->bios[rdisk] = read_bio;
1089
1090 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1091 read_bio->bi_bdev = mirror->rdev->bdev;
1092 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 1093 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1094 read_bio->bi_private = r1_bio;
1095
d2eb35ac
N
1096 if (max_sectors < r1_bio->sectors) {
1097 /* could not read all from this device, so we will
1098 * need another r1_bio.
1099 */
d2eb35ac
N
1100
1101 sectors_handled = (r1_bio->sector + max_sectors
1102 - bio->bi_sector);
1103 r1_bio->sectors = max_sectors;
1104 spin_lock_irq(&conf->device_lock);
1105 if (bio->bi_phys_segments == 0)
1106 bio->bi_phys_segments = 2;
1107 else
1108 bio->bi_phys_segments++;
1109 spin_unlock_irq(&conf->device_lock);
1110 /* Cannot call generic_make_request directly
1111 * as that will be queued in __make_request
1112 * and subsequent mempool_alloc might block waiting
1113 * for it. So hand bio over to raid1d.
1114 */
1115 reschedule_retry(r1_bio);
1116
1117 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1118
1119 r1_bio->master_bio = bio;
aa8b57aa 1120 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
d2eb35ac
N
1121 r1_bio->state = 0;
1122 r1_bio->mddev = mddev;
1123 r1_bio->sector = bio->bi_sector + sectors_handled;
1124 goto read_again;
1125 } else
1126 generic_make_request(read_bio);
5a7bbad2 1127 return;
1da177e4
LT
1128 }
1129
1130 /*
1131 * WRITE:
1132 */
34db0cd6
N
1133 if (conf->pending_count >= max_queued_requests) {
1134 md_wakeup_thread(mddev->thread);
1135 wait_event(conf->wait_barrier,
1136 conf->pending_count < max_queued_requests);
1137 }
1f68f0c4 1138 /* first select target devices under rcu_lock and
1da177e4
LT
1139 * inc refcount on their rdev. Record them by setting
1140 * bios[x] to bio
1f68f0c4
N
1141 * If there are known/acknowledged bad blocks on any device on
1142 * which we have seen a write error, we want to avoid writing those
1143 * blocks.
1144 * This potentially requires several writes to write around
1145 * the bad blocks. Each set of writes gets it's own r1bio
1146 * with a set of bios attached.
1da177e4 1147 */
c3b328ac 1148
8f19ccb2 1149 disks = conf->raid_disks * 2;
6bfe0b49
DW
1150 retry_write:
1151 blocked_rdev = NULL;
1da177e4 1152 rcu_read_lock();
1f68f0c4 1153 max_sectors = r1_bio->sectors;
1da177e4 1154 for (i = 0; i < disks; i++) {
3cb03002 1155 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1156 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1157 atomic_inc(&rdev->nr_pending);
1158 blocked_rdev = rdev;
1159 break;
1160 }
1f68f0c4 1161 r1_bio->bios[i] = NULL;
6b740b8d
N
1162 if (!rdev || test_bit(Faulty, &rdev->flags)
1163 || test_bit(Unmerged, &rdev->flags)) {
8f19ccb2
N
1164 if (i < conf->raid_disks)
1165 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1166 continue;
1167 }
1168
1169 atomic_inc(&rdev->nr_pending);
1170 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1171 sector_t first_bad;
1172 int bad_sectors;
1173 int is_bad;
1174
1175 is_bad = is_badblock(rdev, r1_bio->sector,
1176 max_sectors,
1177 &first_bad, &bad_sectors);
1178 if (is_bad < 0) {
1179 /* mustn't write here until the bad block is
1180 * acknowledged*/
1181 set_bit(BlockedBadBlocks, &rdev->flags);
1182 blocked_rdev = rdev;
1183 break;
1184 }
1185 if (is_bad && first_bad <= r1_bio->sector) {
1186 /* Cannot write here at all */
1187 bad_sectors -= (r1_bio->sector - first_bad);
1188 if (bad_sectors < max_sectors)
1189 /* mustn't write more than bad_sectors
1190 * to other devices yet
1191 */
1192 max_sectors = bad_sectors;
03c902e1 1193 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1194 /* We don't set R1BIO_Degraded as that
1195 * only applies if the disk is
1196 * missing, so it might be re-added,
1197 * and we want to know to recover this
1198 * chunk.
1199 * In this case the device is here,
1200 * and the fact that this chunk is not
1201 * in-sync is recorded in the bad
1202 * block log
1203 */
1204 continue;
964147d5 1205 }
1f68f0c4
N
1206 if (is_bad) {
1207 int good_sectors = first_bad - r1_bio->sector;
1208 if (good_sectors < max_sectors)
1209 max_sectors = good_sectors;
1210 }
1211 }
1212 r1_bio->bios[i] = bio;
1da177e4
LT
1213 }
1214 rcu_read_unlock();
1215
6bfe0b49
DW
1216 if (unlikely(blocked_rdev)) {
1217 /* Wait for this device to become unblocked */
1218 int j;
1219
1220 for (j = 0; j < i; j++)
1221 if (r1_bio->bios[j])
1222 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1223 r1_bio->state = 0;
6bfe0b49
DW
1224 allow_barrier(conf);
1225 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1226 wait_barrier(conf);
1227 goto retry_write;
1228 }
1229
1f68f0c4
N
1230 if (max_sectors < r1_bio->sectors) {
1231 /* We are splitting this write into multiple parts, so
1232 * we need to prepare for allocating another r1_bio.
1233 */
1234 r1_bio->sectors = max_sectors;
1235 spin_lock_irq(&conf->device_lock);
1236 if (bio->bi_phys_segments == 0)
1237 bio->bi_phys_segments = 2;
1238 else
1239 bio->bi_phys_segments++;
1240 spin_unlock_irq(&conf->device_lock);
191ea9b2 1241 }
1f68f0c4 1242 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
4b6d287f 1243
4e78064f 1244 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1245 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1246
1f68f0c4 1247 first_clone = 1;
1da177e4
LT
1248 for (i = 0; i < disks; i++) {
1249 struct bio *mbio;
1250 if (!r1_bio->bios[i])
1251 continue;
1252
a167f663 1253 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1f68f0c4
N
1254 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1255
1256 if (first_clone) {
1257 /* do behind I/O ?
1258 * Not if there are too many, or cannot
1259 * allocate memory, or a reader on WriteMostly
1260 * is waiting for behind writes to flush */
1261 if (bitmap &&
1262 (atomic_read(&bitmap->behind_writes)
1263 < mddev->bitmap_info.max_write_behind) &&
1264 !waitqueue_active(&bitmap->behind_wait))
1265 alloc_behind_pages(mbio, r1_bio);
1266
1267 bitmap_startwrite(bitmap, r1_bio->sector,
1268 r1_bio->sectors,
1269 test_bit(R1BIO_BehindIO,
1270 &r1_bio->state));
1271 first_clone = 0;
1272 }
2ca68f5e 1273 if (r1_bio->behind_bvecs) {
4b6d287f
N
1274 struct bio_vec *bvec;
1275 int j;
1276
cb34e057
KO
1277 /*
1278 * We trimmed the bio, so _all is legit
4b6d287f 1279 */
d74c6d51 1280 bio_for_each_segment_all(bvec, mbio, j)
2ca68f5e 1281 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1282 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1283 atomic_inc(&r1_bio->behind_remaining);
1284 }
1285
1f68f0c4
N
1286 r1_bio->bios[i] = mbio;
1287
1288 mbio->bi_sector = (r1_bio->sector +
1289 conf->mirrors[i].rdev->data_offset);
1290 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1291 mbio->bi_end_io = raid1_end_write_request;
c8dc9c65
JL
1292 mbio->bi_rw =
1293 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1f68f0c4
N
1294 mbio->bi_private = r1_bio;
1295
1da177e4 1296 atomic_inc(&r1_bio->remaining);
f54a9d0e
N
1297
1298 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1299 if (cb)
1300 plug = container_of(cb, struct raid1_plug_cb, cb);
1301 else
1302 plug = NULL;
4e78064f 1303 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1304 if (plug) {
1305 bio_list_add(&plug->pending, mbio);
1306 plug->pending_cnt++;
1307 } else {
1308 bio_list_add(&conf->pending_bio_list, mbio);
1309 conf->pending_count++;
1310 }
4e78064f 1311 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1312 if (!plug)
b357f04a 1313 md_wakeup_thread(mddev->thread);
1da177e4 1314 }
079fa166
N
1315 /* Mustn't call r1_bio_write_done before this next test,
1316 * as it could result in the bio being freed.
1317 */
aa8b57aa 1318 if (sectors_handled < bio_sectors(bio)) {
079fa166 1319 r1_bio_write_done(r1_bio);
1f68f0c4
N
1320 /* We need another r1_bio. It has already been counted
1321 * in bio->bi_phys_segments
1322 */
1323 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1324 r1_bio->master_bio = bio;
aa8b57aa 1325 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1f68f0c4
N
1326 r1_bio->state = 0;
1327 r1_bio->mddev = mddev;
1328 r1_bio->sector = bio->bi_sector + sectors_handled;
1329 goto retry_write;
1330 }
1331
079fa166
N
1332 r1_bio_write_done(r1_bio);
1333
1334 /* In case raid1d snuck in to freeze_array */
1335 wake_up(&conf->wait_barrier);
1da177e4
LT
1336}
1337
fd01b88c 1338static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1339{
e8096360 1340 struct r1conf *conf = mddev->private;
1da177e4
LT
1341 int i;
1342
1343 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1344 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1345 rcu_read_lock();
1346 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1347 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1348 seq_printf(seq, "%s",
ddac7c7e
N
1349 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1350 }
1351 rcu_read_unlock();
1da177e4
LT
1352 seq_printf(seq, "]");
1353}
1354
1355
fd01b88c 1356static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1357{
1358 char b[BDEVNAME_SIZE];
e8096360 1359 struct r1conf *conf = mddev->private;
1da177e4
LT
1360
1361 /*
1362 * If it is not operational, then we have already marked it as dead
1363 * else if it is the last working disks, ignore the error, let the
1364 * next level up know.
1365 * else mark the drive as failed
1366 */
b2d444d7 1367 if (test_bit(In_sync, &rdev->flags)
4044ba58 1368 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1369 /*
1370 * Don't fail the drive, act as though we were just a
4044ba58
N
1371 * normal single drive.
1372 * However don't try a recovery from this drive as
1373 * it is very likely to fail.
1da177e4 1374 */
5389042f 1375 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1376 return;
4044ba58 1377 }
de393cde 1378 set_bit(Blocked, &rdev->flags);
c04be0aa
N
1379 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1380 unsigned long flags;
1381 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1382 mddev->degraded++;
dd00a99e 1383 set_bit(Faulty, &rdev->flags);
c04be0aa 1384 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1385 /*
1386 * if recovery is running, make sure it aborts.
1387 */
dfc70645 1388 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
dd00a99e
N
1389 } else
1390 set_bit(Faulty, &rdev->flags);
850b2b42 1391 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1392 printk(KERN_ALERT
1393 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1394 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1395 mdname(mddev), bdevname(rdev->bdev, b),
1396 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1397}
1398
e8096360 1399static void print_conf(struct r1conf *conf)
1da177e4
LT
1400{
1401 int i;
1da177e4 1402
9dd1e2fa 1403 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1404 if (!conf) {
9dd1e2fa 1405 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1406 return;
1407 }
9dd1e2fa 1408 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1409 conf->raid_disks);
1410
ddac7c7e 1411 rcu_read_lock();
1da177e4
LT
1412 for (i = 0; i < conf->raid_disks; i++) {
1413 char b[BDEVNAME_SIZE];
3cb03002 1414 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1415 if (rdev)
9dd1e2fa 1416 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1417 i, !test_bit(In_sync, &rdev->flags),
1418 !test_bit(Faulty, &rdev->flags),
1419 bdevname(rdev->bdev,b));
1da177e4 1420 }
ddac7c7e 1421 rcu_read_unlock();
1da177e4
LT
1422}
1423
e8096360 1424static void close_sync(struct r1conf *conf)
1da177e4 1425{
17999be4
N
1426 wait_barrier(conf);
1427 allow_barrier(conf);
1da177e4
LT
1428
1429 mempool_destroy(conf->r1buf_pool);
1430 conf->r1buf_pool = NULL;
1431}
1432
fd01b88c 1433static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1434{
1435 int i;
e8096360 1436 struct r1conf *conf = mddev->private;
6b965620
N
1437 int count = 0;
1438 unsigned long flags;
1da177e4
LT
1439
1440 /*
1441 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1442 * and mark them readable.
1443 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1444 */
1445 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1446 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1447 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1448 if (repl
1449 && repl->recovery_offset == MaxSector
1450 && !test_bit(Faulty, &repl->flags)
1451 && !test_and_set_bit(In_sync, &repl->flags)) {
1452 /* replacement has just become active */
1453 if (!rdev ||
1454 !test_and_clear_bit(In_sync, &rdev->flags))
1455 count++;
1456 if (rdev) {
1457 /* Replaced device not technically
1458 * faulty, but we need to be sure
1459 * it gets removed and never re-added
1460 */
1461 set_bit(Faulty, &rdev->flags);
1462 sysfs_notify_dirent_safe(
1463 rdev->sysfs_state);
1464 }
1465 }
ddac7c7e
N
1466 if (rdev
1467 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1468 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1469 count++;
654e8b5a 1470 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1471 }
1472 }
6b965620
N
1473 spin_lock_irqsave(&conf->device_lock, flags);
1474 mddev->degraded -= count;
1475 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1476
1477 print_conf(conf);
6b965620 1478 return count;
1da177e4
LT
1479}
1480
1481
fd01b88c 1482static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1483{
e8096360 1484 struct r1conf *conf = mddev->private;
199050ea 1485 int err = -EEXIST;
41158c7e 1486 int mirror = 0;
0eaf822c 1487 struct raid1_info *p;
6c2fce2e 1488 int first = 0;
30194636 1489 int last = conf->raid_disks - 1;
6b740b8d 1490 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4 1491
5389042f
N
1492 if (mddev->recovery_disabled == conf->recovery_disabled)
1493 return -EBUSY;
1494
6c2fce2e
NB
1495 if (rdev->raid_disk >= 0)
1496 first = last = rdev->raid_disk;
1497
6b740b8d
N
1498 if (q->merge_bvec_fn) {
1499 set_bit(Unmerged, &rdev->flags);
1500 mddev->merge_check_needed = 1;
1501 }
1502
7ef449d1
N
1503 for (mirror = first; mirror <= last; mirror++) {
1504 p = conf->mirrors+mirror;
1505 if (!p->rdev) {
1da177e4 1506
8f6c2e4b
MP
1507 disk_stack_limits(mddev->gendisk, rdev->bdev,
1508 rdev->data_offset << 9);
1da177e4
LT
1509
1510 p->head_position = 0;
1511 rdev->raid_disk = mirror;
199050ea 1512 err = 0;
6aea114a
N
1513 /* As all devices are equivalent, we don't need a full recovery
1514 * if this was recently any drive of the array
1515 */
1516 if (rdev->saved_raid_disk < 0)
41158c7e 1517 conf->fullsync = 1;
d6065f7b 1518 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1519 break;
1520 }
7ef449d1
N
1521 if (test_bit(WantReplacement, &p->rdev->flags) &&
1522 p[conf->raid_disks].rdev == NULL) {
1523 /* Add this device as a replacement */
1524 clear_bit(In_sync, &rdev->flags);
1525 set_bit(Replacement, &rdev->flags);
1526 rdev->raid_disk = mirror;
1527 err = 0;
1528 conf->fullsync = 1;
1529 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1530 break;
1531 }
1532 }
6b740b8d
N
1533 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1534 /* Some requests might not have seen this new
1535 * merge_bvec_fn. We must wait for them to complete
1536 * before merging the device fully.
1537 * First we make sure any code which has tested
1538 * our function has submitted the request, then
1539 * we wait for all outstanding requests to complete.
1540 */
1541 synchronize_sched();
1542 raise_barrier(conf);
1543 lower_barrier(conf);
1544 clear_bit(Unmerged, &rdev->flags);
1545 }
ac5e7113 1546 md_integrity_add_rdev(rdev, mddev);
2ff8cc2c
SL
1547 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
1548 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1549 print_conf(conf);
199050ea 1550 return err;
1da177e4
LT
1551}
1552
b8321b68 1553static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1554{
e8096360 1555 struct r1conf *conf = mddev->private;
1da177e4 1556 int err = 0;
b8321b68 1557 int number = rdev->raid_disk;
0eaf822c 1558 struct raid1_info *p = conf->mirrors + number;
1da177e4 1559
b014f14c
N
1560 if (rdev != p->rdev)
1561 p = conf->mirrors + conf->raid_disks + number;
1562
1da177e4 1563 print_conf(conf);
b8321b68 1564 if (rdev == p->rdev) {
b2d444d7 1565 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1566 atomic_read(&rdev->nr_pending)) {
1567 err = -EBUSY;
1568 goto abort;
1569 }
046abeed 1570 /* Only remove non-faulty devices if recovery
dfc70645
N
1571 * is not possible.
1572 */
1573 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1574 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1575 mddev->degraded < conf->raid_disks) {
1576 err = -EBUSY;
1577 goto abort;
1578 }
1da177e4 1579 p->rdev = NULL;
fbd568a3 1580 synchronize_rcu();
1da177e4
LT
1581 if (atomic_read(&rdev->nr_pending)) {
1582 /* lost the race, try later */
1583 err = -EBUSY;
1584 p->rdev = rdev;
ac5e7113 1585 goto abort;
8c7a2c2b
N
1586 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1587 /* We just removed a device that is being replaced.
1588 * Move down the replacement. We drain all IO before
1589 * doing this to avoid confusion.
1590 */
1591 struct md_rdev *repl =
1592 conf->mirrors[conf->raid_disks + number].rdev;
1593 raise_barrier(conf);
1594 clear_bit(Replacement, &repl->flags);
1595 p->rdev = repl;
1596 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1597 lower_barrier(conf);
1598 clear_bit(WantReplacement, &rdev->flags);
1599 } else
b014f14c 1600 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1601 err = md_integrity_register(mddev);
1da177e4
LT
1602 }
1603abort:
1604
1605 print_conf(conf);
1606 return err;
1607}
1608
1609
6712ecf8 1610static void end_sync_read(struct bio *bio, int error)
1da177e4 1611{
9f2c9d12 1612 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1613
0fc280f6 1614 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1615
1da177e4
LT
1616 /*
1617 * we have read a block, now it needs to be re-written,
1618 * or re-read if the read failed.
1619 * We don't do much here, just schedule handling by raid1d
1620 */
69382e85 1621 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1622 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1623
1624 if (atomic_dec_and_test(&r1_bio->remaining))
1625 reschedule_retry(r1_bio);
1da177e4
LT
1626}
1627
6712ecf8 1628static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1629{
1630 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1631 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1632 struct mddev *mddev = r1_bio->mddev;
e8096360 1633 struct r1conf *conf = mddev->private;
1da177e4 1634 int mirror=0;
4367af55
N
1635 sector_t first_bad;
1636 int bad_sectors;
1da177e4 1637
ba3ae3be
NK
1638 mirror = find_bio_disk(r1_bio, bio);
1639
6b1117d5 1640 if (!uptodate) {
57dab0bd 1641 sector_t sync_blocks = 0;
6b1117d5
N
1642 sector_t s = r1_bio->sector;
1643 long sectors_to_go = r1_bio->sectors;
1644 /* make sure these bits doesn't get cleared. */
1645 do {
5e3db645 1646 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1647 &sync_blocks, 1);
1648 s += sync_blocks;
1649 sectors_to_go -= sync_blocks;
1650 } while (sectors_to_go > 0);
d8f05d29
N
1651 set_bit(WriteErrorSeen,
1652 &conf->mirrors[mirror].rdev->flags);
19d67169
N
1653 if (!test_and_set_bit(WantReplacement,
1654 &conf->mirrors[mirror].rdev->flags))
1655 set_bit(MD_RECOVERY_NEEDED, &
1656 mddev->recovery);
d8f05d29 1657 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1658 } else if (is_badblock(conf->mirrors[mirror].rdev,
1659 r1_bio->sector,
1660 r1_bio->sectors,
3a9f28a5
N
1661 &first_bad, &bad_sectors) &&
1662 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1663 r1_bio->sector,
1664 r1_bio->sectors,
1665 &first_bad, &bad_sectors)
1666 )
4367af55 1667 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1668
1da177e4 1669 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1670 int s = r1_bio->sectors;
d8f05d29
N
1671 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1672 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1673 reschedule_retry(r1_bio);
1674 else {
1675 put_buf(r1_bio);
1676 md_done_sync(mddev, s, uptodate);
1677 }
1da177e4 1678 }
1da177e4
LT
1679}
1680
3cb03002 1681static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1682 int sectors, struct page *page, int rw)
1683{
1684 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1685 /* success */
1686 return 1;
19d67169 1687 if (rw == WRITE) {
d8f05d29 1688 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1689 if (!test_and_set_bit(WantReplacement,
1690 &rdev->flags))
1691 set_bit(MD_RECOVERY_NEEDED, &
1692 rdev->mddev->recovery);
1693 }
d8f05d29
N
1694 /* need to record an error - either for the block or the device */
1695 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1696 md_error(rdev->mddev, rdev);
1697 return 0;
1698}
1699
9f2c9d12 1700static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1701{
a68e5870
N
1702 /* Try some synchronous reads of other devices to get
1703 * good data, much like with normal read errors. Only
1704 * read into the pages we already have so we don't
1705 * need to re-issue the read request.
1706 * We don't need to freeze the array, because being in an
1707 * active sync request, there is no normal IO, and
1708 * no overlapping syncs.
06f60385
N
1709 * We don't need to check is_badblock() again as we
1710 * made sure that anything with a bad block in range
1711 * will have bi_end_io clear.
a68e5870 1712 */
fd01b88c 1713 struct mddev *mddev = r1_bio->mddev;
e8096360 1714 struct r1conf *conf = mddev->private;
a68e5870
N
1715 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1716 sector_t sect = r1_bio->sector;
1717 int sectors = r1_bio->sectors;
1718 int idx = 0;
1719
1720 while(sectors) {
1721 int s = sectors;
1722 int d = r1_bio->read_disk;
1723 int success = 0;
3cb03002 1724 struct md_rdev *rdev;
78d7f5f7 1725 int start;
a68e5870
N
1726
1727 if (s > (PAGE_SIZE>>9))
1728 s = PAGE_SIZE >> 9;
1729 do {
1730 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1731 /* No rcu protection needed here devices
1732 * can only be removed when no resync is
1733 * active, and resync is currently active
1734 */
1735 rdev = conf->mirrors[d].rdev;
9d3d8011 1736 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1737 bio->bi_io_vec[idx].bv_page,
1738 READ, false)) {
1739 success = 1;
1740 break;
1741 }
1742 }
1743 d++;
8f19ccb2 1744 if (d == conf->raid_disks * 2)
a68e5870
N
1745 d = 0;
1746 } while (!success && d != r1_bio->read_disk);
1747
78d7f5f7 1748 if (!success) {
a68e5870 1749 char b[BDEVNAME_SIZE];
3a9f28a5
N
1750 int abort = 0;
1751 /* Cannot read from anywhere, this block is lost.
1752 * Record a bad block on each device. If that doesn't
1753 * work just disable and interrupt the recovery.
1754 * Don't fail devices as that won't really help.
1755 */
a68e5870
N
1756 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1757 " for block %llu\n",
1758 mdname(mddev),
1759 bdevname(bio->bi_bdev, b),
1760 (unsigned long long)r1_bio->sector);
8f19ccb2 1761 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1762 rdev = conf->mirrors[d].rdev;
1763 if (!rdev || test_bit(Faulty, &rdev->flags))
1764 continue;
1765 if (!rdev_set_badblocks(rdev, sect, s, 0))
1766 abort = 1;
1767 }
1768 if (abort) {
d890fa2b
N
1769 conf->recovery_disabled =
1770 mddev->recovery_disabled;
3a9f28a5
N
1771 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1772 md_done_sync(mddev, r1_bio->sectors, 0);
1773 put_buf(r1_bio);
1774 return 0;
1775 }
1776 /* Try next page */
1777 sectors -= s;
1778 sect += s;
1779 idx++;
1780 continue;
d11c171e 1781 }
78d7f5f7
N
1782
1783 start = d;
1784 /* write it back and re-read */
1785 while (d != r1_bio->read_disk) {
1786 if (d == 0)
8f19ccb2 1787 d = conf->raid_disks * 2;
78d7f5f7
N
1788 d--;
1789 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1790 continue;
1791 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1792 if (r1_sync_page_io(rdev, sect, s,
1793 bio->bi_io_vec[idx].bv_page,
1794 WRITE) == 0) {
78d7f5f7
N
1795 r1_bio->bios[d]->bi_end_io = NULL;
1796 rdev_dec_pending(rdev, mddev);
9d3d8011 1797 }
78d7f5f7
N
1798 }
1799 d = start;
1800 while (d != r1_bio->read_disk) {
1801 if (d == 0)
8f19ccb2 1802 d = conf->raid_disks * 2;
78d7f5f7
N
1803 d--;
1804 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1805 continue;
1806 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1807 if (r1_sync_page_io(rdev, sect, s,
1808 bio->bi_io_vec[idx].bv_page,
1809 READ) != 0)
9d3d8011 1810 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1811 }
a68e5870
N
1812 sectors -= s;
1813 sect += s;
1814 idx ++;
1815 }
78d7f5f7 1816 set_bit(R1BIO_Uptodate, &r1_bio->state);
7ca78d57 1817 set_bit(BIO_UPTODATE, &bio->bi_flags);
a68e5870
N
1818 return 1;
1819}
1820
9f2c9d12 1821static int process_checks(struct r1bio *r1_bio)
a68e5870
N
1822{
1823 /* We have read all readable devices. If we haven't
1824 * got the block, then there is no hope left.
1825 * If we have, then we want to do a comparison
1826 * and skip the write if everything is the same.
1827 * If any blocks failed to read, then we need to
1828 * attempt an over-write
1829 */
fd01b88c 1830 struct mddev *mddev = r1_bio->mddev;
e8096360 1831 struct r1conf *conf = mddev->private;
a68e5870
N
1832 int primary;
1833 int i;
f4380a91 1834 int vcnt;
a68e5870 1835
8f19ccb2 1836 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870
N
1837 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1838 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1839 r1_bio->bios[primary]->bi_end_io = NULL;
1840 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1841 break;
1842 }
1843 r1_bio->read_disk = primary;
f4380a91 1844 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
8f19ccb2 1845 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 1846 int j;
78d7f5f7
N
1847 struct bio *pbio = r1_bio->bios[primary];
1848 struct bio *sbio = r1_bio->bios[i];
1849 int size;
a68e5870 1850
2aabaa65 1851 if (sbio->bi_end_io != end_sync_read)
78d7f5f7
N
1852 continue;
1853
1854 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1855 for (j = vcnt; j-- ; ) {
1856 struct page *p, *s;
1857 p = pbio->bi_io_vec[j].bv_page;
1858 s = sbio->bi_io_vec[j].bv_page;
1859 if (memcmp(page_address(p),
1860 page_address(s),
5020ad7d 1861 sbio->bi_io_vec[j].bv_len))
78d7f5f7 1862 break;
69382e85 1863 }
78d7f5f7
N
1864 } else
1865 j = 0;
1866 if (j >= 0)
7f7583d4 1867 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7
N
1868 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1869 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1870 /* No need to write to this device. */
1871 sbio->bi_end_io = NULL;
1872 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1873 continue;
1874 }
1875 /* fixup the bio for reuse */
2aabaa65 1876 bio_reset(sbio);
78d7f5f7
N
1877 sbio->bi_vcnt = vcnt;
1878 sbio->bi_size = r1_bio->sectors << 9;
78d7f5f7
N
1879 sbio->bi_sector = r1_bio->sector +
1880 conf->mirrors[i].rdev->data_offset;
1881 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
2aabaa65
KO
1882 sbio->bi_end_io = end_sync_read;
1883 sbio->bi_private = r1_bio;
1884
78d7f5f7
N
1885 size = sbio->bi_size;
1886 for (j = 0; j < vcnt ; j++) {
1887 struct bio_vec *bi;
1888 bi = &sbio->bi_io_vec[j];
1889 bi->bv_offset = 0;
1890 if (size > PAGE_SIZE)
1891 bi->bv_len = PAGE_SIZE;
1892 else
1893 bi->bv_len = size;
1894 size -= PAGE_SIZE;
69382e85 1895 }
d3b45c2a
KO
1896
1897 bio_copy_data(sbio, pbio);
78d7f5f7 1898 }
a68e5870
N
1899 return 0;
1900}
1901
9f2c9d12 1902static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 1903{
e8096360 1904 struct r1conf *conf = mddev->private;
a68e5870 1905 int i;
8f19ccb2 1906 int disks = conf->raid_disks * 2;
a68e5870
N
1907 struct bio *bio, *wbio;
1908
1909 bio = r1_bio->bios[r1_bio->read_disk];
1910
a68e5870
N
1911 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1912 /* ouch - failed to read all of that. */
1913 if (!fix_sync_read_error(r1_bio))
1914 return;
7ca78d57
N
1915
1916 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1917 if (process_checks(r1_bio) < 0)
1918 return;
d11c171e
N
1919 /*
1920 * schedule writes
1921 */
1da177e4
LT
1922 atomic_set(&r1_bio->remaining, 1);
1923 for (i = 0; i < disks ; i++) {
1924 wbio = r1_bio->bios[i];
3e198f78
N
1925 if (wbio->bi_end_io == NULL ||
1926 (wbio->bi_end_io == end_sync_read &&
1927 (i == r1_bio->read_disk ||
1928 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
1929 continue;
1930
3e198f78
N
1931 wbio->bi_rw = WRITE;
1932 wbio->bi_end_io = end_sync_write;
1da177e4 1933 atomic_inc(&r1_bio->remaining);
aa8b57aa 1934 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 1935
1da177e4
LT
1936 generic_make_request(wbio);
1937 }
1938
1939 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 1940 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
1941 int s = r1_bio->sectors;
1942 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1943 test_bit(R1BIO_WriteError, &r1_bio->state))
1944 reschedule_retry(r1_bio);
1945 else {
1946 put_buf(r1_bio);
1947 md_done_sync(mddev, s, 1);
1948 }
1da177e4
LT
1949 }
1950}
1951
1952/*
1953 * This is a kernel thread which:
1954 *
1955 * 1. Retries failed read operations on working mirrors.
1956 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 1957 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1958 */
1959
e8096360 1960static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
1961 sector_t sect, int sectors)
1962{
fd01b88c 1963 struct mddev *mddev = conf->mddev;
867868fb
N
1964 while(sectors) {
1965 int s = sectors;
1966 int d = read_disk;
1967 int success = 0;
1968 int start;
3cb03002 1969 struct md_rdev *rdev;
867868fb
N
1970
1971 if (s > (PAGE_SIZE>>9))
1972 s = PAGE_SIZE >> 9;
1973
1974 do {
1975 /* Note: no rcu protection needed here
1976 * as this is synchronous in the raid1d thread
1977 * which is the thread that might remove
1978 * a device. If raid1d ever becomes multi-threaded....
1979 */
d2eb35ac
N
1980 sector_t first_bad;
1981 int bad_sectors;
1982
867868fb
N
1983 rdev = conf->mirrors[d].rdev;
1984 if (rdev &&
da8840a7 1985 (test_bit(In_sync, &rdev->flags) ||
1986 (!test_bit(Faulty, &rdev->flags) &&
1987 rdev->recovery_offset >= sect + s)) &&
d2eb35ac
N
1988 is_badblock(rdev, sect, s,
1989 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
1990 sync_page_io(rdev, sect, s<<9,
1991 conf->tmppage, READ, false))
867868fb
N
1992 success = 1;
1993 else {
1994 d++;
8f19ccb2 1995 if (d == conf->raid_disks * 2)
867868fb
N
1996 d = 0;
1997 }
1998 } while (!success && d != read_disk);
1999
2000 if (!success) {
d8f05d29 2001 /* Cannot read from anywhere - mark it bad */
3cb03002 2002 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2003 if (!rdev_set_badblocks(rdev, sect, s, 0))
2004 md_error(mddev, rdev);
867868fb
N
2005 break;
2006 }
2007 /* write it back and re-read */
2008 start = d;
2009 while (d != read_disk) {
2010 if (d==0)
8f19ccb2 2011 d = conf->raid_disks * 2;
867868fb
N
2012 d--;
2013 rdev = conf->mirrors[d].rdev;
2014 if (rdev &&
d8f05d29
N
2015 test_bit(In_sync, &rdev->flags))
2016 r1_sync_page_io(rdev, sect, s,
2017 conf->tmppage, WRITE);
867868fb
N
2018 }
2019 d = start;
2020 while (d != read_disk) {
2021 char b[BDEVNAME_SIZE];
2022 if (d==0)
8f19ccb2 2023 d = conf->raid_disks * 2;
867868fb
N
2024 d--;
2025 rdev = conf->mirrors[d].rdev;
2026 if (rdev &&
2027 test_bit(In_sync, &rdev->flags)) {
d8f05d29
N
2028 if (r1_sync_page_io(rdev, sect, s,
2029 conf->tmppage, READ)) {
867868fb
N
2030 atomic_add(s, &rdev->corrected_errors);
2031 printk(KERN_INFO
9dd1e2fa 2032 "md/raid1:%s: read error corrected "
867868fb
N
2033 "(%d sectors at %llu on %s)\n",
2034 mdname(mddev), s,
969b755a
RD
2035 (unsigned long long)(sect +
2036 rdev->data_offset),
867868fb
N
2037 bdevname(rdev->bdev, b));
2038 }
2039 }
2040 }
2041 sectors -= s;
2042 sect += s;
2043 }
2044}
2045
9f2c9d12 2046static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2047{
fd01b88c 2048 struct mddev *mddev = r1_bio->mddev;
e8096360 2049 struct r1conf *conf = mddev->private;
3cb03002 2050 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2051
2052 /* bio has the data to be written to device 'i' where
2053 * we just recently had a write error.
2054 * We repeatedly clone the bio and trim down to one block,
2055 * then try the write. Where the write fails we record
2056 * a bad block.
2057 * It is conceivable that the bio doesn't exactly align with
2058 * blocks. We must handle this somehow.
2059 *
2060 * We currently own a reference on the rdev.
2061 */
2062
2063 int block_sectors;
2064 sector_t sector;
2065 int sectors;
2066 int sect_to_write = r1_bio->sectors;
2067 int ok = 1;
2068
2069 if (rdev->badblocks.shift < 0)
2070 return 0;
2071
2072 block_sectors = 1 << rdev->badblocks.shift;
2073 sector = r1_bio->sector;
2074 sectors = ((sector + block_sectors)
2075 & ~(sector_t)(block_sectors - 1))
2076 - sector;
2077
cd5ff9a1
N
2078 while (sect_to_write) {
2079 struct bio *wbio;
2080 if (sectors > sect_to_write)
2081 sectors = sect_to_write;
2082 /* Write at 'sector' for 'sectors'*/
2083
b783863f
KO
2084 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2085 unsigned vcnt = r1_bio->behind_page_count;
2086 struct bio_vec *vec = r1_bio->behind_bvecs;
2087
2088 while (!vec->bv_page) {
2089 vec++;
2090 vcnt--;
2091 }
2092
2093 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2094 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2095
2096 wbio->bi_vcnt = vcnt;
2097 } else {
2098 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2099 }
2100
cd5ff9a1 2101 wbio->bi_rw = WRITE;
b783863f 2102 wbio->bi_sector = r1_bio->sector;
cd5ff9a1 2103 wbio->bi_size = r1_bio->sectors << 9;
cd5ff9a1
N
2104
2105 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2106 wbio->bi_sector += rdev->data_offset;
2107 wbio->bi_bdev = rdev->bdev;
2108 if (submit_bio_wait(WRITE, wbio) == 0)
2109 /* failure! */
2110 ok = rdev_set_badblocks(rdev, sector,
2111 sectors, 0)
2112 && ok;
2113
2114 bio_put(wbio);
2115 sect_to_write -= sectors;
2116 sector += sectors;
2117 sectors = block_sectors;
2118 }
2119 return ok;
2120}
2121
e8096360 2122static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2123{
2124 int m;
2125 int s = r1_bio->sectors;
8f19ccb2 2126 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2127 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2128 struct bio *bio = r1_bio->bios[m];
2129 if (bio->bi_end_io == NULL)
2130 continue;
2131 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2132 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2133 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce
N
2134 }
2135 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2136 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2137 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2138 md_error(conf->mddev, rdev);
2139 }
2140 }
2141 put_buf(r1_bio);
2142 md_done_sync(conf->mddev, s, 1);
2143}
2144
e8096360 2145static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2146{
2147 int m;
8f19ccb2 2148 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2149 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2150 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2151 rdev_clear_badblocks(rdev,
2152 r1_bio->sector,
c6563a8c 2153 r1_bio->sectors, 0);
62096bce
N
2154 rdev_dec_pending(rdev, conf->mddev);
2155 } else if (r1_bio->bios[m] != NULL) {
2156 /* This drive got a write error. We need to
2157 * narrow down and record precise write
2158 * errors.
2159 */
2160 if (!narrow_write_error(r1_bio, m)) {
2161 md_error(conf->mddev,
2162 conf->mirrors[m].rdev);
2163 /* an I/O failed, we can't clear the bitmap */
2164 set_bit(R1BIO_Degraded, &r1_bio->state);
2165 }
2166 rdev_dec_pending(conf->mirrors[m].rdev,
2167 conf->mddev);
2168 }
2169 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2170 close_write(r1_bio);
2171 raid_end_bio_io(r1_bio);
2172}
2173
e8096360 2174static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2175{
2176 int disk;
2177 int max_sectors;
fd01b88c 2178 struct mddev *mddev = conf->mddev;
62096bce
N
2179 struct bio *bio;
2180 char b[BDEVNAME_SIZE];
3cb03002 2181 struct md_rdev *rdev;
62096bce
N
2182
2183 clear_bit(R1BIO_ReadError, &r1_bio->state);
2184 /* we got a read error. Maybe the drive is bad. Maybe just
2185 * the block and we can fix it.
2186 * We freeze all other IO, and try reading the block from
2187 * other devices. When we find one, we re-write
2188 * and check it that fixes the read error.
2189 * This is all done synchronously while the array is
2190 * frozen
2191 */
2192 if (mddev->ro == 0) {
2193 freeze_array(conf);
2194 fix_read_error(conf, r1_bio->read_disk,
2195 r1_bio->sector, r1_bio->sectors);
2196 unfreeze_array(conf);
2197 } else
2198 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
7ad4d4a6 2199 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
62096bce
N
2200
2201 bio = r1_bio->bios[r1_bio->read_disk];
2202 bdevname(bio->bi_bdev, b);
2203read_more:
2204 disk = read_balance(conf, r1_bio, &max_sectors);
2205 if (disk == -1) {
2206 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2207 " read error for block %llu\n",
2208 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2209 raid_end_bio_io(r1_bio);
2210 } else {
2211 const unsigned long do_sync
2212 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2213 if (bio) {
2214 r1_bio->bios[r1_bio->read_disk] =
2215 mddev->ro ? IO_BLOCKED : NULL;
2216 bio_put(bio);
2217 }
2218 r1_bio->read_disk = disk;
2219 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2220 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2221 r1_bio->bios[r1_bio->read_disk] = bio;
2222 rdev = conf->mirrors[disk].rdev;
2223 printk_ratelimited(KERN_ERR
2224 "md/raid1:%s: redirecting sector %llu"
2225 " to other mirror: %s\n",
2226 mdname(mddev),
2227 (unsigned long long)r1_bio->sector,
2228 bdevname(rdev->bdev, b));
2229 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2230 bio->bi_bdev = rdev->bdev;
2231 bio->bi_end_io = raid1_end_read_request;
2232 bio->bi_rw = READ | do_sync;
2233 bio->bi_private = r1_bio;
2234 if (max_sectors < r1_bio->sectors) {
2235 /* Drat - have to split this up more */
2236 struct bio *mbio = r1_bio->master_bio;
2237 int sectors_handled = (r1_bio->sector + max_sectors
2238 - mbio->bi_sector);
2239 r1_bio->sectors = max_sectors;
2240 spin_lock_irq(&conf->device_lock);
2241 if (mbio->bi_phys_segments == 0)
2242 mbio->bi_phys_segments = 2;
2243 else
2244 mbio->bi_phys_segments++;
2245 spin_unlock_irq(&conf->device_lock);
2246 generic_make_request(bio);
2247 bio = NULL;
2248
2249 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2250
2251 r1_bio->master_bio = mbio;
aa8b57aa 2252 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
62096bce
N
2253 r1_bio->state = 0;
2254 set_bit(R1BIO_ReadError, &r1_bio->state);
2255 r1_bio->mddev = mddev;
2256 r1_bio->sector = mbio->bi_sector + sectors_handled;
2257
2258 goto read_more;
2259 } else
2260 generic_make_request(bio);
2261 }
2262}
2263
4ed8731d 2264static void raid1d(struct md_thread *thread)
1da177e4 2265{
4ed8731d 2266 struct mddev *mddev = thread->mddev;
9f2c9d12 2267 struct r1bio *r1_bio;
1da177e4 2268 unsigned long flags;
e8096360 2269 struct r1conf *conf = mddev->private;
1da177e4 2270 struct list_head *head = &conf->retry_list;
e1dfa0a2 2271 struct blk_plug plug;
1da177e4
LT
2272
2273 md_check_recovery(mddev);
e1dfa0a2
N
2274
2275 blk_start_plug(&plug);
1da177e4 2276 for (;;) {
191ea9b2 2277
0021b7bc 2278 flush_pending_writes(conf);
191ea9b2 2279
a35e63ef
N
2280 spin_lock_irqsave(&conf->device_lock, flags);
2281 if (list_empty(head)) {
2282 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2283 break;
a35e63ef 2284 }
9f2c9d12 2285 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2286 list_del(head->prev);
ddaf22ab 2287 conf->nr_queued--;
1da177e4
LT
2288 spin_unlock_irqrestore(&conf->device_lock, flags);
2289
2290 mddev = r1_bio->mddev;
070ec55d 2291 conf = mddev->private;
4367af55 2292 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2293 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2294 test_bit(R1BIO_WriteError, &r1_bio->state))
2295 handle_sync_write_finished(conf, r1_bio);
2296 else
4367af55 2297 sync_request_write(mddev, r1_bio);
cd5ff9a1 2298 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2299 test_bit(R1BIO_WriteError, &r1_bio->state))
2300 handle_write_finished(conf, r1_bio);
2301 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2302 handle_read_error(conf, r1_bio);
2303 else
d2eb35ac
N
2304 /* just a partial read to be scheduled from separate
2305 * context
2306 */
2307 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2308
1d9d5241 2309 cond_resched();
de393cde
N
2310 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2311 md_check_recovery(mddev);
1da177e4 2312 }
e1dfa0a2 2313 blk_finish_plug(&plug);
1da177e4
LT
2314}
2315
2316
e8096360 2317static int init_resync(struct r1conf *conf)
1da177e4
LT
2318{
2319 int buffs;
2320
2321 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2322 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2323 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2324 conf->poolinfo);
2325 if (!conf->r1buf_pool)
2326 return -ENOMEM;
2327 conf->next_resync = 0;
2328 return 0;
2329}
2330
2331/*
2332 * perform a "sync" on one "block"
2333 *
2334 * We need to make sure that no normal I/O request - particularly write
2335 * requests - conflict with active sync requests.
2336 *
2337 * This is achieved by tracking pending requests and a 'barrier' concept
2338 * that can be installed to exclude normal IO requests.
2339 */
2340
fd01b88c 2341static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 2342{
e8096360 2343 struct r1conf *conf = mddev->private;
9f2c9d12 2344 struct r1bio *r1_bio;
1da177e4
LT
2345 struct bio *bio;
2346 sector_t max_sector, nr_sectors;
3e198f78 2347 int disk = -1;
1da177e4 2348 int i;
3e198f78
N
2349 int wonly = -1;
2350 int write_targets = 0, read_targets = 0;
57dab0bd 2351 sector_t sync_blocks;
e3b9703e 2352 int still_degraded = 0;
06f60385
N
2353 int good_sectors = RESYNC_SECTORS;
2354 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2355
2356 if (!conf->r1buf_pool)
2357 if (init_resync(conf))
57afd89f 2358 return 0;
1da177e4 2359
58c0fed4 2360 max_sector = mddev->dev_sectors;
1da177e4 2361 if (sector_nr >= max_sector) {
191ea9b2
N
2362 /* If we aborted, we need to abort the
2363 * sync on the 'current' bitmap chunk (there will
2364 * only be one in raid1 resync.
2365 * We can find the current addess in mddev->curr_resync
2366 */
6a806c51
N
2367 if (mddev->curr_resync < max_sector) /* aborted */
2368 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2369 &sync_blocks, 1);
6a806c51 2370 else /* completed sync */
191ea9b2 2371 conf->fullsync = 0;
6a806c51
N
2372
2373 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2374 close_sync(conf);
2375 return 0;
2376 }
2377
07d84d10
N
2378 if (mddev->bitmap == NULL &&
2379 mddev->recovery_cp == MaxSector &&
6394cca5 2380 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2381 conf->fullsync == 0) {
2382 *skipped = 1;
2383 return max_sector - sector_nr;
2384 }
6394cca5
N
2385 /* before building a request, check if we can skip these blocks..
2386 * This call the bitmap_start_sync doesn't actually record anything
2387 */
e3b9703e 2388 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2389 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2390 /* We can skip this block, and probably several more */
2391 *skipped = 1;
2392 return sync_blocks;
2393 }
1da177e4 2394 /*
17999be4
N
2395 * If there is non-resync activity waiting for a turn,
2396 * and resync is going fast enough,
2397 * then let it though before starting on this new sync request.
1da177e4 2398 */
17999be4 2399 if (!go_faster && conf->nr_waiting)
1da177e4 2400 msleep_interruptible(1000);
17999be4 2401
b47490c9 2402 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2403 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4
N
2404 raise_barrier(conf);
2405
2406 conf->next_resync = sector_nr;
1da177e4 2407
3e198f78 2408 rcu_read_lock();
1da177e4 2409 /*
3e198f78
N
2410 * If we get a correctably read error during resync or recovery,
2411 * we might want to read from a different device. So we
2412 * flag all drives that could conceivably be read from for READ,
2413 * and any others (which will be non-In_sync devices) for WRITE.
2414 * If a read fails, we try reading from something else for which READ
2415 * is OK.
1da177e4 2416 */
1da177e4 2417
1da177e4
LT
2418 r1_bio->mddev = mddev;
2419 r1_bio->sector = sector_nr;
191ea9b2 2420 r1_bio->state = 0;
1da177e4 2421 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2422
8f19ccb2 2423 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2424 struct md_rdev *rdev;
1da177e4 2425 bio = r1_bio->bios[i];
2aabaa65 2426 bio_reset(bio);
1da177e4 2427
3e198f78
N
2428 rdev = rcu_dereference(conf->mirrors[i].rdev);
2429 if (rdev == NULL ||
06f60385 2430 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2431 if (i < conf->raid_disks)
2432 still_degraded = 1;
3e198f78 2433 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2434 bio->bi_rw = WRITE;
2435 bio->bi_end_io = end_sync_write;
2436 write_targets ++;
3e198f78
N
2437 } else {
2438 /* may need to read from here */
06f60385
N
2439 sector_t first_bad = MaxSector;
2440 int bad_sectors;
2441
2442 if (is_badblock(rdev, sector_nr, good_sectors,
2443 &first_bad, &bad_sectors)) {
2444 if (first_bad > sector_nr)
2445 good_sectors = first_bad - sector_nr;
2446 else {
2447 bad_sectors -= (sector_nr - first_bad);
2448 if (min_bad == 0 ||
2449 min_bad > bad_sectors)
2450 min_bad = bad_sectors;
2451 }
2452 }
2453 if (sector_nr < first_bad) {
2454 if (test_bit(WriteMostly, &rdev->flags)) {
2455 if (wonly < 0)
2456 wonly = i;
2457 } else {
2458 if (disk < 0)
2459 disk = i;
2460 }
2461 bio->bi_rw = READ;
2462 bio->bi_end_io = end_sync_read;
2463 read_targets++;
d57368af
AL
2464 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2465 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2466 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2467 /*
2468 * The device is suitable for reading (InSync),
2469 * but has bad block(s) here. Let's try to correct them,
2470 * if we are doing resync or repair. Otherwise, leave
2471 * this device alone for this sync request.
2472 */
2473 bio->bi_rw = WRITE;
2474 bio->bi_end_io = end_sync_write;
2475 write_targets++;
3e198f78 2476 }
3e198f78 2477 }
06f60385
N
2478 if (bio->bi_end_io) {
2479 atomic_inc(&rdev->nr_pending);
2480 bio->bi_sector = sector_nr + rdev->data_offset;
2481 bio->bi_bdev = rdev->bdev;
2482 bio->bi_private = r1_bio;
2483 }
1da177e4 2484 }
3e198f78
N
2485 rcu_read_unlock();
2486 if (disk < 0)
2487 disk = wonly;
2488 r1_bio->read_disk = disk;
191ea9b2 2489
06f60385
N
2490 if (read_targets == 0 && min_bad > 0) {
2491 /* These sectors are bad on all InSync devices, so we
2492 * need to mark them bad on all write targets
2493 */
2494 int ok = 1;
8f19ccb2 2495 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2496 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2497 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2498 ok = rdev_set_badblocks(rdev, sector_nr,
2499 min_bad, 0
2500 ) && ok;
2501 }
2502 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2503 *skipped = 1;
2504 put_buf(r1_bio);
2505
2506 if (!ok) {
2507 /* Cannot record the badblocks, so need to
2508 * abort the resync.
2509 * If there are multiple read targets, could just
2510 * fail the really bad ones ???
2511 */
2512 conf->recovery_disabled = mddev->recovery_disabled;
2513 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2514 return 0;
2515 } else
2516 return min_bad;
2517
2518 }
2519 if (min_bad > 0 && min_bad < good_sectors) {
2520 /* only resync enough to reach the next bad->good
2521 * transition */
2522 good_sectors = min_bad;
2523 }
2524
3e198f78
N
2525 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2526 /* extra read targets are also write targets */
2527 write_targets += read_targets-1;
2528
2529 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2530 /* There is nowhere to write, so all non-sync
2531 * drives must be failed - so we are finished
2532 */
b7219ccb
N
2533 sector_t rv;
2534 if (min_bad > 0)
2535 max_sector = sector_nr + min_bad;
2536 rv = max_sector - sector_nr;
57afd89f 2537 *skipped = 1;
1da177e4 2538 put_buf(r1_bio);
1da177e4
LT
2539 return rv;
2540 }
2541
c6207277
N
2542 if (max_sector > mddev->resync_max)
2543 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2544 if (max_sector > sector_nr + good_sectors)
2545 max_sector = sector_nr + good_sectors;
1da177e4 2546 nr_sectors = 0;
289e99e8 2547 sync_blocks = 0;
1da177e4
LT
2548 do {
2549 struct page *page;
2550 int len = PAGE_SIZE;
2551 if (sector_nr + (len>>9) > max_sector)
2552 len = (max_sector - sector_nr) << 9;
2553 if (len == 0)
2554 break;
6a806c51
N
2555 if (sync_blocks == 0) {
2556 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2557 &sync_blocks, still_degraded) &&
2558 !conf->fullsync &&
2559 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2560 break;
9e77c485 2561 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2562 if ((len >> 9) > sync_blocks)
6a806c51 2563 len = sync_blocks<<9;
ab7a30c7 2564 }
191ea9b2 2565
8f19ccb2 2566 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2567 bio = r1_bio->bios[i];
2568 if (bio->bi_end_io) {
d11c171e 2569 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2570 if (bio_add_page(bio, page, len, 0) == 0) {
2571 /* stop here */
d11c171e 2572 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2573 while (i > 0) {
2574 i--;
2575 bio = r1_bio->bios[i];
6a806c51
N
2576 if (bio->bi_end_io==NULL)
2577 continue;
1da177e4
LT
2578 /* remove last page from this bio */
2579 bio->bi_vcnt--;
2580 bio->bi_size -= len;
2581 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2582 }
2583 goto bio_full;
2584 }
2585 }
2586 }
2587 nr_sectors += len>>9;
2588 sector_nr += len>>9;
191ea9b2 2589 sync_blocks -= (len>>9);
1da177e4
LT
2590 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2591 bio_full:
1da177e4
LT
2592 r1_bio->sectors = nr_sectors;
2593
d11c171e
N
2594 /* For a user-requested sync, we read all readable devices and do a
2595 * compare
2596 */
2597 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2598 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2599 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2600 bio = r1_bio->bios[i];
2601 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2602 read_targets--;
ddac7c7e 2603 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2604 generic_make_request(bio);
2605 }
2606 }
2607 } else {
2608 atomic_set(&r1_bio->remaining, 1);
2609 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2610 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2611 generic_make_request(bio);
1da177e4 2612
d11c171e 2613 }
1da177e4
LT
2614 return nr_sectors;
2615}
2616
fd01b88c 2617static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2618{
2619 if (sectors)
2620 return sectors;
2621
2622 return mddev->dev_sectors;
2623}
2624
e8096360 2625static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2626{
e8096360 2627 struct r1conf *conf;
709ae487 2628 int i;
0eaf822c 2629 struct raid1_info *disk;
3cb03002 2630 struct md_rdev *rdev;
709ae487 2631 int err = -ENOMEM;
1da177e4 2632
e8096360 2633 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2634 if (!conf)
709ae487 2635 goto abort;
1da177e4 2636
0eaf822c 2637 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2638 * mddev->raid_disks * 2,
1da177e4
LT
2639 GFP_KERNEL);
2640 if (!conf->mirrors)
709ae487 2641 goto abort;
1da177e4 2642
ddaf22ab
N
2643 conf->tmppage = alloc_page(GFP_KERNEL);
2644 if (!conf->tmppage)
709ae487 2645 goto abort;
ddaf22ab 2646
709ae487 2647 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2648 if (!conf->poolinfo)
709ae487 2649 goto abort;
8f19ccb2 2650 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2651 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2652 r1bio_pool_free,
2653 conf->poolinfo);
2654 if (!conf->r1bio_pool)
709ae487
N
2655 goto abort;
2656
ed9bfdf1 2657 conf->poolinfo->mddev = mddev;
1da177e4 2658
c19d5798 2659 err = -EINVAL;
e7e72bf6 2660 spin_lock_init(&conf->device_lock);
dafb20fa 2661 rdev_for_each(rdev, mddev) {
aba336bd 2662 struct request_queue *q;
709ae487 2663 int disk_idx = rdev->raid_disk;
1da177e4
LT
2664 if (disk_idx >= mddev->raid_disks
2665 || disk_idx < 0)
2666 continue;
c19d5798 2667 if (test_bit(Replacement, &rdev->flags))
02b898f2 2668 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2669 else
2670 disk = conf->mirrors + disk_idx;
1da177e4 2671
c19d5798
N
2672 if (disk->rdev)
2673 goto abort;
1da177e4 2674 disk->rdev = rdev;
aba336bd
N
2675 q = bdev_get_queue(rdev->bdev);
2676 if (q->merge_bvec_fn)
2677 mddev->merge_check_needed = 1;
1da177e4
LT
2678
2679 disk->head_position = 0;
12cee5a8 2680 disk->seq_start = MaxSector;
1da177e4
LT
2681 }
2682 conf->raid_disks = mddev->raid_disks;
2683 conf->mddev = mddev;
1da177e4 2684 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2685
2686 spin_lock_init(&conf->resync_lock);
17999be4 2687 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2688
191ea9b2 2689 bio_list_init(&conf->pending_bio_list);
34db0cd6 2690 conf->pending_count = 0;
d890fa2b 2691 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2692
c19d5798 2693 err = -EIO;
8f19ccb2 2694 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2695
2696 disk = conf->mirrors + i;
2697
c19d5798
N
2698 if (i < conf->raid_disks &&
2699 disk[conf->raid_disks].rdev) {
2700 /* This slot has a replacement. */
2701 if (!disk->rdev) {
2702 /* No original, just make the replacement
2703 * a recovering spare
2704 */
2705 disk->rdev =
2706 disk[conf->raid_disks].rdev;
2707 disk[conf->raid_disks].rdev = NULL;
2708 } else if (!test_bit(In_sync, &disk->rdev->flags))
2709 /* Original is not in_sync - bad */
2710 goto abort;
2711 }
2712
5fd6c1dc
N
2713 if (!disk->rdev ||
2714 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2715 disk->head_position = 0;
4f0a5e01
JB
2716 if (disk->rdev &&
2717 (disk->rdev->saved_raid_disk < 0))
918f0238 2718 conf->fullsync = 1;
be4d3280 2719 }
1da177e4 2720 }
709ae487 2721
709ae487 2722 err = -ENOMEM;
0232605d 2723 conf->thread = md_register_thread(raid1d, mddev, "raid1");
709ae487
N
2724 if (!conf->thread) {
2725 printk(KERN_ERR
9dd1e2fa 2726 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2727 mdname(mddev));
2728 goto abort;
11ce99e6 2729 }
1da177e4 2730
709ae487
N
2731 return conf;
2732
2733 abort:
2734 if (conf) {
2735 if (conf->r1bio_pool)
2736 mempool_destroy(conf->r1bio_pool);
2737 kfree(conf->mirrors);
2738 safe_put_page(conf->tmppage);
2739 kfree(conf->poolinfo);
2740 kfree(conf);
2741 }
2742 return ERR_PTR(err);
2743}
2744
5220ea1e 2745static int stop(struct mddev *mddev);
fd01b88c 2746static int run(struct mddev *mddev)
709ae487 2747{
e8096360 2748 struct r1conf *conf;
709ae487 2749 int i;
3cb03002 2750 struct md_rdev *rdev;
5220ea1e 2751 int ret;
2ff8cc2c 2752 bool discard_supported = false;
709ae487
N
2753
2754 if (mddev->level != 1) {
9dd1e2fa 2755 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2756 mdname(mddev), mddev->level);
2757 return -EIO;
2758 }
2759 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2760 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2761 mdname(mddev));
2762 return -EIO;
2763 }
1da177e4 2764 /*
709ae487
N
2765 * copy the already verified devices into our private RAID1
2766 * bookkeeping area. [whatever we allocate in run(),
2767 * should be freed in stop()]
1da177e4 2768 */
709ae487
N
2769 if (mddev->private == NULL)
2770 conf = setup_conf(mddev);
2771 else
2772 conf = mddev->private;
1da177e4 2773
709ae487
N
2774 if (IS_ERR(conf))
2775 return PTR_ERR(conf);
1da177e4 2776
c8dc9c65
JL
2777 if (mddev->queue)
2778 blk_queue_max_write_same_sectors(mddev->queue,
2779 mddev->chunk_sectors);
dafb20fa 2780 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2781 if (!mddev->gendisk)
2782 continue;
709ae487
N
2783 disk_stack_limits(mddev->gendisk, rdev->bdev,
2784 rdev->data_offset << 9);
2ff8cc2c
SL
2785 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2786 discard_supported = true;
1da177e4 2787 }
191ea9b2 2788
709ae487
N
2789 mddev->degraded = 0;
2790 for (i=0; i < conf->raid_disks; i++)
2791 if (conf->mirrors[i].rdev == NULL ||
2792 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2793 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2794 mddev->degraded++;
2795
2796 if (conf->raid_disks - mddev->degraded == 1)
2797 mddev->recovery_cp = MaxSector;
2798
8c6ac868 2799 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2800 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2801 " -- starting background reconstruction\n",
2802 mdname(mddev));
1da177e4 2803 printk(KERN_INFO
9dd1e2fa 2804 "md/raid1:%s: active with %d out of %d mirrors\n",
1da177e4
LT
2805 mdname(mddev), mddev->raid_disks - mddev->degraded,
2806 mddev->raid_disks);
709ae487 2807
1da177e4
LT
2808 /*
2809 * Ok, everything is just fine now
2810 */
709ae487
N
2811 mddev->thread = conf->thread;
2812 conf->thread = NULL;
2813 mddev->private = conf;
2814
1f403624 2815 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2816
1ed7242e
JB
2817 if (mddev->queue) {
2818 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2819 mddev->queue->backing_dev_info.congested_data = mddev;
6b740b8d 2820 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2ff8cc2c
SL
2821
2822 if (discard_supported)
2823 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2824 mddev->queue);
2825 else
2826 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2827 mddev->queue);
1ed7242e 2828 }
5220ea1e 2829
2830 ret = md_integrity_register(mddev);
2831 if (ret)
2832 stop(mddev);
2833 return ret;
1da177e4
LT
2834}
2835
fd01b88c 2836static int stop(struct mddev *mddev)
1da177e4 2837{
e8096360 2838 struct r1conf *conf = mddev->private;
4b6d287f 2839 struct bitmap *bitmap = mddev->bitmap;
4b6d287f
N
2840
2841 /* wait for behind writes to complete */
e555190d 2842 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
9dd1e2fa
N
2843 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2844 mdname(mddev));
4b6d287f 2845 /* need to kick something here to make sure I/O goes? */
e555190d
N
2846 wait_event(bitmap->behind_wait,
2847 atomic_read(&bitmap->behind_writes) == 0);
4b6d287f 2848 }
1da177e4 2849
409c57f3
N
2850 raise_barrier(conf);
2851 lower_barrier(conf);
2852
01f96c0a 2853 md_unregister_thread(&mddev->thread);
1da177e4
LT
2854 if (conf->r1bio_pool)
2855 mempool_destroy(conf->r1bio_pool);
990a8baf
JJ
2856 kfree(conf->mirrors);
2857 kfree(conf->poolinfo);
1da177e4
LT
2858 kfree(conf);
2859 mddev->private = NULL;
2860 return 0;
2861}
2862
fd01b88c 2863static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2864{
2865 /* no resync is happening, and there is enough space
2866 * on all devices, so we can resize.
2867 * We need to make sure resync covers any new space.
2868 * If the array is shrinking we should possibly wait until
2869 * any io in the removed space completes, but it hardly seems
2870 * worth it.
2871 */
a4a6125a
N
2872 sector_t newsize = raid1_size(mddev, sectors, 0);
2873 if (mddev->external_size &&
2874 mddev->array_sectors > newsize)
b522adcd 2875 return -EINVAL;
a4a6125a
N
2876 if (mddev->bitmap) {
2877 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2878 if (ret)
2879 return ret;
2880 }
2881 md_set_array_sectors(mddev, newsize);
f233ea5c 2882 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 2883 revalidate_disk(mddev->gendisk);
b522adcd 2884 if (sectors > mddev->dev_sectors &&
b098636c 2885 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 2886 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
2887 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2888 }
b522adcd 2889 mddev->dev_sectors = sectors;
4b5c7ae8 2890 mddev->resync_max_sectors = sectors;
1da177e4
LT
2891 return 0;
2892}
2893
fd01b88c 2894static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
2895{
2896 /* We need to:
2897 * 1/ resize the r1bio_pool
2898 * 2/ resize conf->mirrors
2899 *
2900 * We allocate a new r1bio_pool if we can.
2901 * Then raise a device barrier and wait until all IO stops.
2902 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
2903 *
2904 * At the same time, we "pack" the devices so that all the missing
2905 * devices have the higher raid_disk numbers.
1da177e4
LT
2906 */
2907 mempool_t *newpool, *oldpool;
2908 struct pool_info *newpoolinfo;
0eaf822c 2909 struct raid1_info *newmirrors;
e8096360 2910 struct r1conf *conf = mddev->private;
63c70c4f 2911 int cnt, raid_disks;
c04be0aa 2912 unsigned long flags;
b5470dc5 2913 int d, d2, err;
1da177e4 2914
63c70c4f 2915 /* Cannot change chunk_size, layout, or level */
664e7c41 2916 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
2917 mddev->layout != mddev->new_layout ||
2918 mddev->level != mddev->new_level) {
664e7c41 2919 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
2920 mddev->new_layout = mddev->layout;
2921 mddev->new_level = mddev->level;
2922 return -EINVAL;
2923 }
2924
b5470dc5
DW
2925 err = md_allow_write(mddev);
2926 if (err)
2927 return err;
2a2275d6 2928
63c70c4f
N
2929 raid_disks = mddev->raid_disks + mddev->delta_disks;
2930
6ea9c07c
N
2931 if (raid_disks < conf->raid_disks) {
2932 cnt=0;
2933 for (d= 0; d < conf->raid_disks; d++)
2934 if (conf->mirrors[d].rdev)
2935 cnt++;
2936 if (cnt > raid_disks)
1da177e4 2937 return -EBUSY;
6ea9c07c 2938 }
1da177e4
LT
2939
2940 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2941 if (!newpoolinfo)
2942 return -ENOMEM;
2943 newpoolinfo->mddev = mddev;
8f19ccb2 2944 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
2945
2946 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2947 r1bio_pool_free, newpoolinfo);
2948 if (!newpool) {
2949 kfree(newpoolinfo);
2950 return -ENOMEM;
2951 }
0eaf822c 2952 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 2953 GFP_KERNEL);
1da177e4
LT
2954 if (!newmirrors) {
2955 kfree(newpoolinfo);
2956 mempool_destroy(newpool);
2957 return -ENOMEM;
2958 }
1da177e4 2959
17999be4 2960 raise_barrier(conf);
1da177e4
LT
2961
2962 /* ok, everything is stopped */
2963 oldpool = conf->r1bio_pool;
2964 conf->r1bio_pool = newpool;
6ea9c07c 2965
a88aa786 2966 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 2967 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 2968 if (rdev && rdev->raid_disk != d2) {
36fad858 2969 sysfs_unlink_rdev(mddev, rdev);
a88aa786 2970 rdev->raid_disk = d2;
36fad858
NK
2971 sysfs_unlink_rdev(mddev, rdev);
2972 if (sysfs_link_rdev(mddev, rdev))
a88aa786 2973 printk(KERN_WARNING
36fad858
NK
2974 "md/raid1:%s: cannot register rd%d\n",
2975 mdname(mddev), rdev->raid_disk);
6ea9c07c 2976 }
a88aa786
N
2977 if (rdev)
2978 newmirrors[d2++].rdev = rdev;
2979 }
1da177e4
LT
2980 kfree(conf->mirrors);
2981 conf->mirrors = newmirrors;
2982 kfree(conf->poolinfo);
2983 conf->poolinfo = newpoolinfo;
2984
c04be0aa 2985 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 2986 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 2987 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2988 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 2989 mddev->delta_disks = 0;
1da177e4 2990
17999be4 2991 lower_barrier(conf);
1da177e4
LT
2992
2993 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2994 md_wakeup_thread(mddev->thread);
2995
2996 mempool_destroy(oldpool);
2997 return 0;
2998}
2999
fd01b88c 3000static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3001{
e8096360 3002 struct r1conf *conf = mddev->private;
36fa3063
N
3003
3004 switch(state) {
6eef4b21
N
3005 case 2: /* wake for suspend */
3006 wake_up(&conf->wait_barrier);
3007 break;
9e6603da 3008 case 1:
17999be4 3009 raise_barrier(conf);
36fa3063 3010 break;
9e6603da 3011 case 0:
17999be4 3012 lower_barrier(conf);
36fa3063
N
3013 break;
3014 }
36fa3063
N
3015}
3016
fd01b88c 3017static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3018{
3019 /* raid1 can take over:
3020 * raid5 with 2 devices, any layout or chunk size
3021 */
3022 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3023 struct r1conf *conf;
709ae487
N
3024 mddev->new_level = 1;
3025 mddev->new_layout = 0;
3026 mddev->new_chunk_sectors = 0;
3027 conf = setup_conf(mddev);
3028 if (!IS_ERR(conf))
3029 conf->barrier = 1;
3030 return conf;
3031 }
3032 return ERR_PTR(-EINVAL);
3033}
1da177e4 3034
84fc4b56 3035static struct md_personality raid1_personality =
1da177e4
LT
3036{
3037 .name = "raid1",
2604b703 3038 .level = 1,
1da177e4
LT
3039 .owner = THIS_MODULE,
3040 .make_request = make_request,
3041 .run = run,
3042 .stop = stop,
3043 .status = status,
3044 .error_handler = error,
3045 .hot_add_disk = raid1_add_disk,
3046 .hot_remove_disk= raid1_remove_disk,
3047 .spare_active = raid1_spare_active,
3048 .sync_request = sync_request,
3049 .resize = raid1_resize,
80c3a6ce 3050 .size = raid1_size,
63c70c4f 3051 .check_reshape = raid1_reshape,
36fa3063 3052 .quiesce = raid1_quiesce,
709ae487 3053 .takeover = raid1_takeover,
1da177e4
LT
3054};
3055
3056static int __init raid_init(void)
3057{
2604b703 3058 return register_md_personality(&raid1_personality);
1da177e4
LT
3059}
3060
3061static void raid_exit(void)
3062{
2604b703 3063 unregister_md_personality(&raid1_personality);
1da177e4
LT
3064}
3065
3066module_init(raid_init);
3067module_exit(raid_exit);
3068MODULE_LICENSE("GPL");
0efb9e61 3069MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3070MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3071MODULE_ALIAS("md-raid1");
2604b703 3072MODULE_ALIAS("md-level-1");
34db0cd6
N
3073
3074module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.978228 seconds and 5 git commands to generate.