md/raid1: Handle write errors by updating badblock log.
[deliverable/linux.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
bff61975 37#include <linux/seq_file.h>
8bda470e 38#include <linux/ratelimit.h>
43b2e5d8 39#include "md.h"
ef740c37
CH
40#include "raid1.h"
41#include "bitmap.h"
191ea9b2
N
42
43#define DEBUG 0
d2eb35ac 44#define PRINTK(x...) do { if (DEBUG) printk(x); } while (0)
1da177e4
LT
45
46/*
47 * Number of guaranteed r1bios in case of extreme VM load:
48 */
49#define NR_RAID1_BIOS 256
50
1da177e4 51
17999be4
N
52static void allow_barrier(conf_t *conf);
53static void lower_barrier(conf_t *conf);
1da177e4 54
dd0fc66f 55static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
56{
57 struct pool_info *pi = data;
1da177e4
LT
58 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
59
60 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 61 return kzalloc(size, gfp_flags);
1da177e4
LT
62}
63
64static void r1bio_pool_free(void *r1_bio, void *data)
65{
66 kfree(r1_bio);
67}
68
69#define RESYNC_BLOCK_SIZE (64*1024)
70//#define RESYNC_BLOCK_SIZE PAGE_SIZE
71#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
72#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
73#define RESYNC_WINDOW (2048*1024)
74
dd0fc66f 75static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
76{
77 struct pool_info *pi = data;
78 struct page *page;
79 r1bio_t *r1_bio;
80 struct bio *bio;
81 int i, j;
82
83 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 84 if (!r1_bio)
1da177e4 85 return NULL;
1da177e4
LT
86
87 /*
88 * Allocate bios : 1 for reading, n-1 for writing
89 */
90 for (j = pi->raid_disks ; j-- ; ) {
6746557f 91 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
92 if (!bio)
93 goto out_free_bio;
94 r1_bio->bios[j] = bio;
95 }
96 /*
97 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
98 * the first bio.
99 * If this is a user-requested check/repair, allocate
100 * RESYNC_PAGES for each bio.
1da177e4 101 */
d11c171e
N
102 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
103 j = pi->raid_disks;
104 else
105 j = 1;
106 while(j--) {
107 bio = r1_bio->bios[j];
108 for (i = 0; i < RESYNC_PAGES; i++) {
109 page = alloc_page(gfp_flags);
110 if (unlikely(!page))
111 goto out_free_pages;
112
113 bio->bi_io_vec[i].bv_page = page;
303a0e11 114 bio->bi_vcnt = i+1;
d11c171e
N
115 }
116 }
117 /* If not user-requests, copy the page pointers to all bios */
118 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
119 for (i=0; i<RESYNC_PAGES ; i++)
120 for (j=1; j<pi->raid_disks; j++)
121 r1_bio->bios[j]->bi_io_vec[i].bv_page =
122 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
123 }
124
125 r1_bio->master_bio = NULL;
126
127 return r1_bio;
128
129out_free_pages:
303a0e11
N
130 for (j=0 ; j < pi->raid_disks; j++)
131 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
132 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 133 j = -1;
1da177e4
LT
134out_free_bio:
135 while ( ++j < pi->raid_disks )
136 bio_put(r1_bio->bios[j]);
137 r1bio_pool_free(r1_bio, data);
138 return NULL;
139}
140
141static void r1buf_pool_free(void *__r1_bio, void *data)
142{
143 struct pool_info *pi = data;
d11c171e 144 int i,j;
1da177e4 145 r1bio_t *r1bio = __r1_bio;
1da177e4 146
d11c171e
N
147 for (i = 0; i < RESYNC_PAGES; i++)
148 for (j = pi->raid_disks; j-- ;) {
149 if (j == 0 ||
150 r1bio->bios[j]->bi_io_vec[i].bv_page !=
151 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 152 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 153 }
1da177e4
LT
154 for (i=0 ; i < pi->raid_disks; i++)
155 bio_put(r1bio->bios[i]);
156
157 r1bio_pool_free(r1bio, data);
158}
159
160static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
161{
162 int i;
163
164 for (i = 0; i < conf->raid_disks; i++) {
165 struct bio **bio = r1_bio->bios + i;
4367af55 166 if (!BIO_SPECIAL(*bio))
1da177e4
LT
167 bio_put(*bio);
168 *bio = NULL;
169 }
170}
171
858119e1 172static void free_r1bio(r1bio_t *r1_bio)
1da177e4 173{
070ec55d 174 conf_t *conf = r1_bio->mddev->private;
1da177e4 175
1da177e4
LT
176 put_all_bios(conf, r1_bio);
177 mempool_free(r1_bio, conf->r1bio_pool);
178}
179
858119e1 180static void put_buf(r1bio_t *r1_bio)
1da177e4 181{
070ec55d 182 conf_t *conf = r1_bio->mddev->private;
3e198f78
N
183 int i;
184
185 for (i=0; i<conf->raid_disks; i++) {
186 struct bio *bio = r1_bio->bios[i];
187 if (bio->bi_end_io)
188 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
189 }
1da177e4
LT
190
191 mempool_free(r1_bio, conf->r1buf_pool);
192
17999be4 193 lower_barrier(conf);
1da177e4
LT
194}
195
196static void reschedule_retry(r1bio_t *r1_bio)
197{
198 unsigned long flags;
199 mddev_t *mddev = r1_bio->mddev;
070ec55d 200 conf_t *conf = mddev->private;
1da177e4
LT
201
202 spin_lock_irqsave(&conf->device_lock, flags);
203 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 204 conf->nr_queued ++;
1da177e4
LT
205 spin_unlock_irqrestore(&conf->device_lock, flags);
206
17999be4 207 wake_up(&conf->wait_barrier);
1da177e4
LT
208 md_wakeup_thread(mddev->thread);
209}
210
211/*
212 * raid_end_bio_io() is called when we have finished servicing a mirrored
213 * operation and are ready to return a success/failure code to the buffer
214 * cache layer.
215 */
d2eb35ac
N
216static void call_bio_endio(r1bio_t *r1_bio)
217{
218 struct bio *bio = r1_bio->master_bio;
219 int done;
220 conf_t *conf = r1_bio->mddev->private;
221
222 if (bio->bi_phys_segments) {
223 unsigned long flags;
224 spin_lock_irqsave(&conf->device_lock, flags);
225 bio->bi_phys_segments--;
226 done = (bio->bi_phys_segments == 0);
227 spin_unlock_irqrestore(&conf->device_lock, flags);
228 } else
229 done = 1;
230
231 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
232 clear_bit(BIO_UPTODATE, &bio->bi_flags);
233 if (done) {
234 bio_endio(bio, 0);
235 /*
236 * Wake up any possible resync thread that waits for the device
237 * to go idle.
238 */
239 allow_barrier(conf);
240 }
241}
242
1da177e4
LT
243static void raid_end_bio_io(r1bio_t *r1_bio)
244{
245 struct bio *bio = r1_bio->master_bio;
246
4b6d287f
N
247 /* if nobody has done the final endio yet, do it now */
248 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
249 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
250 (bio_data_dir(bio) == WRITE) ? "write" : "read",
251 (unsigned long long) bio->bi_sector,
252 (unsigned long long) bio->bi_sector +
253 (bio->bi_size >> 9) - 1);
254
d2eb35ac 255 call_bio_endio(r1_bio);
4b6d287f 256 }
1da177e4
LT
257 free_r1bio(r1_bio);
258}
259
260/*
261 * Update disk head position estimator based on IRQ completion info.
262 */
263static inline void update_head_pos(int disk, r1bio_t *r1_bio)
264{
070ec55d 265 conf_t *conf = r1_bio->mddev->private;
1da177e4
LT
266
267 conf->mirrors[disk].head_position =
268 r1_bio->sector + (r1_bio->sectors);
269}
270
6712ecf8 271static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
272{
273 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 274 r1bio_t *r1_bio = bio->bi_private;
1da177e4 275 int mirror;
070ec55d 276 conf_t *conf = r1_bio->mddev->private;
1da177e4 277
1da177e4
LT
278 mirror = r1_bio->read_disk;
279 /*
280 * this branch is our 'one mirror IO has finished' event handler:
281 */
ddaf22ab
N
282 update_head_pos(mirror, r1_bio);
283
dd00a99e
N
284 if (uptodate)
285 set_bit(R1BIO_Uptodate, &r1_bio->state);
286 else {
287 /* If all other devices have failed, we want to return
288 * the error upwards rather than fail the last device.
289 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 290 */
dd00a99e
N
291 unsigned long flags;
292 spin_lock_irqsave(&conf->device_lock, flags);
293 if (r1_bio->mddev->degraded == conf->raid_disks ||
294 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
295 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
296 uptodate = 1;
297 spin_unlock_irqrestore(&conf->device_lock, flags);
298 }
1da177e4 299
dd00a99e 300 if (uptodate)
1da177e4 301 raid_end_bio_io(r1_bio);
dd00a99e 302 else {
1da177e4
LT
303 /*
304 * oops, read error:
305 */
306 char b[BDEVNAME_SIZE];
8bda470e
CD
307 printk_ratelimited(
308 KERN_ERR "md/raid1:%s: %s: "
309 "rescheduling sector %llu\n",
310 mdname(conf->mddev),
311 bdevname(conf->mirrors[mirror].rdev->bdev,
312 b),
313 (unsigned long long)r1_bio->sector);
d2eb35ac 314 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4
LT
315 reschedule_retry(r1_bio);
316 }
317
318 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
1da177e4
LT
319}
320
cd5ff9a1
N
321static void close_write(r1bio_t *r1_bio)
322{
323 /* it really is the end of this request */
324 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
325 /* free extra copy of the data pages */
326 int i = r1_bio->behind_page_count;
327 while (i--)
328 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
329 kfree(r1_bio->behind_bvecs);
330 r1_bio->behind_bvecs = NULL;
331 }
332 /* clear the bitmap if all writes complete successfully */
333 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
334 r1_bio->sectors,
335 !test_bit(R1BIO_Degraded, &r1_bio->state),
336 test_bit(R1BIO_BehindIO, &r1_bio->state));
337 md_write_end(r1_bio->mddev);
338}
339
af6d7b76 340static void r1_bio_write_done(r1bio_t *r1_bio)
4e78064f 341{
cd5ff9a1
N
342 if (!atomic_dec_and_test(&r1_bio->remaining))
343 return;
344
345 if (test_bit(R1BIO_WriteError, &r1_bio->state))
346 reschedule_retry(r1_bio);
347 else {
348 close_write(r1_bio);
4367af55
N
349 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
350 reschedule_retry(r1_bio);
351 else
352 raid_end_bio_io(r1_bio);
4e78064f
N
353 }
354}
355
6712ecf8 356static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
357{
358 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 359 r1bio_t *r1_bio = bio->bi_private;
a9701a30 360 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
070ec55d 361 conf_t *conf = r1_bio->mddev->private;
04b857f7 362 struct bio *to_put = NULL;
1da177e4 363
1da177e4
LT
364
365 for (mirror = 0; mirror < conf->raid_disks; mirror++)
366 if (r1_bio->bios[mirror] == bio)
367 break;
368
e9c7469b
TH
369 /*
370 * 'one mirror IO has finished' event handler:
371 */
e9c7469b 372 if (!uptodate) {
cd5ff9a1
N
373 set_bit(WriteErrorSeen,
374 &conf->mirrors[mirror].rdev->flags);
375 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 376 } else {
1da177e4 377 /*
e9c7469b
TH
378 * Set R1BIO_Uptodate in our master bio, so that we
379 * will return a good error code for to the higher
380 * levels even if IO on some other mirrored buffer
381 * fails.
382 *
383 * The 'master' represents the composite IO operation
384 * to user-side. So if something waits for IO, then it
385 * will wait for the 'master' bio.
1da177e4 386 */
4367af55
N
387 sector_t first_bad;
388 int bad_sectors;
389
cd5ff9a1
N
390 r1_bio->bios[mirror] = NULL;
391 to_put = bio;
e9c7469b
TH
392 set_bit(R1BIO_Uptodate, &r1_bio->state);
393
4367af55
N
394 /* Maybe we can clear some bad blocks. */
395 if (is_badblock(conf->mirrors[mirror].rdev,
396 r1_bio->sector, r1_bio->sectors,
397 &first_bad, &bad_sectors)) {
398 r1_bio->bios[mirror] = IO_MADE_GOOD;
399 set_bit(R1BIO_MadeGood, &r1_bio->state);
400 }
401 }
402
e9c7469b
TH
403 update_head_pos(mirror, r1_bio);
404
405 if (behind) {
406 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
407 atomic_dec(&r1_bio->behind_remaining);
408
409 /*
410 * In behind mode, we ACK the master bio once the I/O
411 * has safely reached all non-writemostly
412 * disks. Setting the Returned bit ensures that this
413 * gets done only once -- we don't ever want to return
414 * -EIO here, instead we'll wait
415 */
416 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
417 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
418 /* Maybe we can return now */
419 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
420 struct bio *mbio = r1_bio->master_bio;
421 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
422 (unsigned long long) mbio->bi_sector,
423 (unsigned long long) mbio->bi_sector +
424 (mbio->bi_size >> 9) - 1);
d2eb35ac 425 call_bio_endio(r1_bio);
4b6d287f
N
426 }
427 }
428 }
4367af55
N
429 if (r1_bio->bios[mirror] == NULL)
430 rdev_dec_pending(conf->mirrors[mirror].rdev,
431 conf->mddev);
e9c7469b 432
1da177e4 433 /*
1da177e4
LT
434 * Let's see if all mirrored write operations have finished
435 * already.
436 */
af6d7b76 437 r1_bio_write_done(r1_bio);
c70810b3 438
04b857f7
N
439 if (to_put)
440 bio_put(to_put);
1da177e4
LT
441}
442
443
444/*
445 * This routine returns the disk from which the requested read should
446 * be done. There is a per-array 'next expected sequential IO' sector
447 * number - if this matches on the next IO then we use the last disk.
448 * There is also a per-disk 'last know head position' sector that is
449 * maintained from IRQ contexts, both the normal and the resync IO
450 * completion handlers update this position correctly. If there is no
451 * perfect sequential match then we pick the disk whose head is closest.
452 *
453 * If there are 2 mirrors in the same 2 devices, performance degrades
454 * because position is mirror, not device based.
455 *
456 * The rdev for the device selected will have nr_pending incremented.
457 */
d2eb35ac 458static int read_balance(conf_t *conf, r1bio_t *r1_bio, int *max_sectors)
1da177e4 459{
af3a2cd6 460 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
461 int sectors;
462 int best_good_sectors;
f3ac8bf7 463 int start_disk;
76073054 464 int best_disk;
f3ac8bf7 465 int i;
76073054 466 sector_t best_dist;
8ddf9efe 467 mdk_rdev_t *rdev;
f3ac8bf7 468 int choose_first;
1da177e4
LT
469
470 rcu_read_lock();
471 /*
8ddf9efe 472 * Check if we can balance. We can balance on the whole
1da177e4
LT
473 * device if no resync is going on, or below the resync window.
474 * We take the first readable disk when above the resync window.
475 */
476 retry:
d2eb35ac 477 sectors = r1_bio->sectors;
76073054
N
478 best_disk = -1;
479 best_dist = MaxSector;
d2eb35ac
N
480 best_good_sectors = 0;
481
1da177e4
LT
482 if (conf->mddev->recovery_cp < MaxSector &&
483 (this_sector + sectors >= conf->next_resync)) {
f3ac8bf7
N
484 choose_first = 1;
485 start_disk = 0;
486 } else {
487 choose_first = 0;
488 start_disk = conf->last_used;
1da177e4
LT
489 }
490
f3ac8bf7 491 for (i = 0 ; i < conf->raid_disks ; i++) {
76073054 492 sector_t dist;
d2eb35ac
N
493 sector_t first_bad;
494 int bad_sectors;
495
f3ac8bf7
N
496 int disk = start_disk + i;
497 if (disk >= conf->raid_disks)
498 disk -= conf->raid_disks;
499
500 rdev = rcu_dereference(conf->mirrors[disk].rdev);
501 if (r1_bio->bios[disk] == IO_BLOCKED
502 || rdev == NULL
76073054 503 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 504 continue;
76073054
N
505 if (!test_bit(In_sync, &rdev->flags) &&
506 rdev->recovery_offset < this_sector + sectors)
1da177e4 507 continue;
76073054
N
508 if (test_bit(WriteMostly, &rdev->flags)) {
509 /* Don't balance among write-mostly, just
510 * use the first as a last resort */
511 if (best_disk < 0)
512 best_disk = disk;
513 continue;
514 }
515 /* This is a reasonable device to use. It might
516 * even be best.
517 */
d2eb35ac
N
518 if (is_badblock(rdev, this_sector, sectors,
519 &first_bad, &bad_sectors)) {
520 if (best_dist < MaxSector)
521 /* already have a better device */
522 continue;
523 if (first_bad <= this_sector) {
524 /* cannot read here. If this is the 'primary'
525 * device, then we must not read beyond
526 * bad_sectors from another device..
527 */
528 bad_sectors -= (this_sector - first_bad);
529 if (choose_first && sectors > bad_sectors)
530 sectors = bad_sectors;
531 if (best_good_sectors > sectors)
532 best_good_sectors = sectors;
533
534 } else {
535 sector_t good_sectors = first_bad - this_sector;
536 if (good_sectors > best_good_sectors) {
537 best_good_sectors = good_sectors;
538 best_disk = disk;
539 }
540 if (choose_first)
541 break;
542 }
543 continue;
544 } else
545 best_good_sectors = sectors;
546
76073054
N
547 dist = abs(this_sector - conf->mirrors[disk].head_position);
548 if (choose_first
549 /* Don't change to another disk for sequential reads */
550 || conf->next_seq_sect == this_sector
551 || dist == 0
552 /* If device is idle, use it */
553 || atomic_read(&rdev->nr_pending) == 0) {
554 best_disk = disk;
1da177e4
LT
555 break;
556 }
76073054
N
557 if (dist < best_dist) {
558 best_dist = dist;
559 best_disk = disk;
1da177e4 560 }
f3ac8bf7 561 }
1da177e4 562
76073054
N
563 if (best_disk >= 0) {
564 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
565 if (!rdev)
566 goto retry;
567 atomic_inc(&rdev->nr_pending);
76073054 568 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
569 /* cannot risk returning a device that failed
570 * before we inc'ed nr_pending
571 */
03c902e1 572 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
573 goto retry;
574 }
d2eb35ac 575 sectors = best_good_sectors;
8ddf9efe 576 conf->next_seq_sect = this_sector + sectors;
76073054 577 conf->last_used = best_disk;
1da177e4
LT
578 }
579 rcu_read_unlock();
d2eb35ac 580 *max_sectors = sectors;
1da177e4 581
76073054 582 return best_disk;
1da177e4
LT
583}
584
1ed7242e 585int md_raid1_congested(mddev_t *mddev, int bits)
0d129228 586{
070ec55d 587 conf_t *conf = mddev->private;
0d129228
N
588 int i, ret = 0;
589
590 rcu_read_lock();
591 for (i = 0; i < mddev->raid_disks; i++) {
592 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
593 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 594 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 595
1ed7242e
JB
596 BUG_ON(!q);
597
0d129228
N
598 /* Note the '|| 1' - when read_balance prefers
599 * non-congested targets, it can be removed
600 */
91a9e99d 601 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
602 ret |= bdi_congested(&q->backing_dev_info, bits);
603 else
604 ret &= bdi_congested(&q->backing_dev_info, bits);
605 }
606 }
607 rcu_read_unlock();
608 return ret;
609}
1ed7242e 610EXPORT_SYMBOL_GPL(md_raid1_congested);
0d129228 611
1ed7242e
JB
612static int raid1_congested(void *data, int bits)
613{
614 mddev_t *mddev = data;
615
616 return mddev_congested(mddev, bits) ||
617 md_raid1_congested(mddev, bits);
618}
0d129228 619
7eaceacc 620static void flush_pending_writes(conf_t *conf)
a35e63ef
N
621{
622 /* Any writes that have been queued but are awaiting
623 * bitmap updates get flushed here.
a35e63ef 624 */
a35e63ef
N
625 spin_lock_irq(&conf->device_lock);
626
627 if (conf->pending_bio_list.head) {
628 struct bio *bio;
629 bio = bio_list_get(&conf->pending_bio_list);
a35e63ef
N
630 spin_unlock_irq(&conf->device_lock);
631 /* flush any pending bitmap writes to
632 * disk before proceeding w/ I/O */
633 bitmap_unplug(conf->mddev->bitmap);
634
635 while (bio) { /* submit pending writes */
636 struct bio *next = bio->bi_next;
637 bio->bi_next = NULL;
638 generic_make_request(bio);
639 bio = next;
640 }
a35e63ef
N
641 } else
642 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
643}
644
17999be4
N
645/* Barriers....
646 * Sometimes we need to suspend IO while we do something else,
647 * either some resync/recovery, or reconfigure the array.
648 * To do this we raise a 'barrier'.
649 * The 'barrier' is a counter that can be raised multiple times
650 * to count how many activities are happening which preclude
651 * normal IO.
652 * We can only raise the barrier if there is no pending IO.
653 * i.e. if nr_pending == 0.
654 * We choose only to raise the barrier if no-one is waiting for the
655 * barrier to go down. This means that as soon as an IO request
656 * is ready, no other operations which require a barrier will start
657 * until the IO request has had a chance.
658 *
659 * So: regular IO calls 'wait_barrier'. When that returns there
660 * is no backgroup IO happening, It must arrange to call
661 * allow_barrier when it has finished its IO.
662 * backgroup IO calls must call raise_barrier. Once that returns
663 * there is no normal IO happeing. It must arrange to call
664 * lower_barrier when the particular background IO completes.
1da177e4
LT
665 */
666#define RESYNC_DEPTH 32
667
17999be4 668static void raise_barrier(conf_t *conf)
1da177e4
LT
669{
670 spin_lock_irq(&conf->resync_lock);
17999be4
N
671
672 /* Wait until no block IO is waiting */
673 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
c3b328ac 674 conf->resync_lock, );
17999be4
N
675
676 /* block any new IO from starting */
677 conf->barrier++;
678
046abeed 679 /* Now wait for all pending IO to complete */
17999be4
N
680 wait_event_lock_irq(conf->wait_barrier,
681 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
c3b328ac 682 conf->resync_lock, );
17999be4
N
683
684 spin_unlock_irq(&conf->resync_lock);
685}
686
687static void lower_barrier(conf_t *conf)
688{
689 unsigned long flags;
709ae487 690 BUG_ON(conf->barrier <= 0);
17999be4
N
691 spin_lock_irqsave(&conf->resync_lock, flags);
692 conf->barrier--;
693 spin_unlock_irqrestore(&conf->resync_lock, flags);
694 wake_up(&conf->wait_barrier);
695}
696
697static void wait_barrier(conf_t *conf)
698{
699 spin_lock_irq(&conf->resync_lock);
700 if (conf->barrier) {
701 conf->nr_waiting++;
702 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
703 conf->resync_lock,
c3b328ac 704 );
17999be4 705 conf->nr_waiting--;
1da177e4 706 }
17999be4 707 conf->nr_pending++;
1da177e4
LT
708 spin_unlock_irq(&conf->resync_lock);
709}
710
17999be4
N
711static void allow_barrier(conf_t *conf)
712{
713 unsigned long flags;
714 spin_lock_irqsave(&conf->resync_lock, flags);
715 conf->nr_pending--;
716 spin_unlock_irqrestore(&conf->resync_lock, flags);
717 wake_up(&conf->wait_barrier);
718}
719
ddaf22ab
N
720static void freeze_array(conf_t *conf)
721{
722 /* stop syncio and normal IO and wait for everything to
723 * go quite.
724 * We increment barrier and nr_waiting, and then
1c830532
N
725 * wait until nr_pending match nr_queued+1
726 * This is called in the context of one normal IO request
727 * that has failed. Thus any sync request that might be pending
728 * will be blocked by nr_pending, and we need to wait for
729 * pending IO requests to complete or be queued for re-try.
730 * Thus the number queued (nr_queued) plus this request (1)
731 * must match the number of pending IOs (nr_pending) before
732 * we continue.
ddaf22ab
N
733 */
734 spin_lock_irq(&conf->resync_lock);
735 conf->barrier++;
736 conf->nr_waiting++;
737 wait_event_lock_irq(conf->wait_barrier,
1c830532 738 conf->nr_pending == conf->nr_queued+1,
ddaf22ab 739 conf->resync_lock,
c3b328ac 740 flush_pending_writes(conf));
ddaf22ab
N
741 spin_unlock_irq(&conf->resync_lock);
742}
743static void unfreeze_array(conf_t *conf)
744{
745 /* reverse the effect of the freeze */
746 spin_lock_irq(&conf->resync_lock);
747 conf->barrier--;
748 conf->nr_waiting--;
749 wake_up(&conf->wait_barrier);
750 spin_unlock_irq(&conf->resync_lock);
751}
752
17999be4 753
4e78064f 754/* duplicate the data pages for behind I/O
4e78064f 755 */
af6d7b76 756static void alloc_behind_pages(struct bio *bio, r1bio_t *r1_bio)
4b6d287f
N
757{
758 int i;
759 struct bio_vec *bvec;
2ca68f5e 760 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 761 GFP_NOIO);
2ca68f5e 762 if (unlikely(!bvecs))
af6d7b76 763 return;
4b6d287f 764
4b6d287f 765 bio_for_each_segment(bvec, bio, i) {
2ca68f5e
N
766 bvecs[i] = *bvec;
767 bvecs[i].bv_page = alloc_page(GFP_NOIO);
768 if (unlikely(!bvecs[i].bv_page))
4b6d287f 769 goto do_sync_io;
2ca68f5e
N
770 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
771 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
772 kunmap(bvecs[i].bv_page);
4b6d287f
N
773 kunmap(bvec->bv_page);
774 }
2ca68f5e 775 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
776 r1_bio->behind_page_count = bio->bi_vcnt;
777 set_bit(R1BIO_BehindIO, &r1_bio->state);
778 return;
4b6d287f
N
779
780do_sync_io:
af6d7b76 781 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
782 if (bvecs[i].bv_page)
783 put_page(bvecs[i].bv_page);
784 kfree(bvecs);
4b6d287f 785 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
4b6d287f
N
786}
787
21a52c6d 788static int make_request(mddev_t *mddev, struct bio * bio)
1da177e4 789{
070ec55d 790 conf_t *conf = mddev->private;
1da177e4
LT
791 mirror_info_t *mirror;
792 r1bio_t *r1_bio;
793 struct bio *read_bio;
1f68f0c4 794 int i, disks;
84255d10 795 struct bitmap *bitmap;
191ea9b2 796 unsigned long flags;
a362357b 797 const int rw = bio_data_dir(bio);
2c7d46ec 798 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 799 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
6bfe0b49 800 mdk_rdev_t *blocked_rdev;
c3b328ac 801 int plugged;
1f68f0c4
N
802 int first_clone;
803 int sectors_handled;
804 int max_sectors;
191ea9b2 805
1da177e4
LT
806 /*
807 * Register the new request and wait if the reconstruction
808 * thread has put up a bar for new requests.
809 * Continue immediately if no resync is active currently.
810 */
62de608d 811
3d310eb7
N
812 md_write_start(mddev, bio); /* wait on superblock update early */
813
6eef4b21
N
814 if (bio_data_dir(bio) == WRITE &&
815 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
816 bio->bi_sector < mddev->suspend_hi) {
817 /* As the suspend_* range is controlled by
818 * userspace, we want an interruptible
819 * wait.
820 */
821 DEFINE_WAIT(w);
822 for (;;) {
823 flush_signals(current);
824 prepare_to_wait(&conf->wait_barrier,
825 &w, TASK_INTERRUPTIBLE);
826 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
827 bio->bi_sector >= mddev->suspend_hi)
828 break;
829 schedule();
830 }
831 finish_wait(&conf->wait_barrier, &w);
832 }
62de608d 833
17999be4 834 wait_barrier(conf);
1da177e4 835
84255d10
N
836 bitmap = mddev->bitmap;
837
1da177e4
LT
838 /*
839 * make_request() can abort the operation when READA is being
840 * used and no empty request is available.
841 *
842 */
843 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
844
845 r1_bio->master_bio = bio;
846 r1_bio->sectors = bio->bi_size >> 9;
191ea9b2 847 r1_bio->state = 0;
1da177e4
LT
848 r1_bio->mddev = mddev;
849 r1_bio->sector = bio->bi_sector;
850
d2eb35ac
N
851 /* We might need to issue multiple reads to different
852 * devices if there are bad blocks around, so we keep
853 * track of the number of reads in bio->bi_phys_segments.
854 * If this is 0, there is only one r1_bio and no locking
855 * will be needed when requests complete. If it is
856 * non-zero, then it is the number of not-completed requests.
857 */
858 bio->bi_phys_segments = 0;
859 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
860
a362357b 861 if (rw == READ) {
1da177e4
LT
862 /*
863 * read balancing logic:
864 */
d2eb35ac
N
865 int rdisk;
866
867read_again:
868 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
869
870 if (rdisk < 0) {
871 /* couldn't find anywhere to read from */
872 raid_end_bio_io(r1_bio);
873 return 0;
874 }
875 mirror = conf->mirrors + rdisk;
876
e555190d
N
877 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
878 bitmap) {
879 /* Reading from a write-mostly device must
880 * take care not to over-take any writes
881 * that are 'behind'
882 */
883 wait_event(bitmap->behind_wait,
884 atomic_read(&bitmap->behind_writes) == 0);
885 }
1da177e4
LT
886 r1_bio->read_disk = rdisk;
887
a167f663 888 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d2eb35ac
N
889 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
890 max_sectors);
1da177e4
LT
891
892 r1_bio->bios[rdisk] = read_bio;
893
894 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
895 read_bio->bi_bdev = mirror->rdev->bdev;
896 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 897 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
898 read_bio->bi_private = r1_bio;
899
d2eb35ac
N
900 if (max_sectors < r1_bio->sectors) {
901 /* could not read all from this device, so we will
902 * need another r1_bio.
903 */
d2eb35ac
N
904
905 sectors_handled = (r1_bio->sector + max_sectors
906 - bio->bi_sector);
907 r1_bio->sectors = max_sectors;
908 spin_lock_irq(&conf->device_lock);
909 if (bio->bi_phys_segments == 0)
910 bio->bi_phys_segments = 2;
911 else
912 bio->bi_phys_segments++;
913 spin_unlock_irq(&conf->device_lock);
914 /* Cannot call generic_make_request directly
915 * as that will be queued in __make_request
916 * and subsequent mempool_alloc might block waiting
917 * for it. So hand bio over to raid1d.
918 */
919 reschedule_retry(r1_bio);
920
921 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
922
923 r1_bio->master_bio = bio;
924 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
925 r1_bio->state = 0;
926 r1_bio->mddev = mddev;
927 r1_bio->sector = bio->bi_sector + sectors_handled;
928 goto read_again;
929 } else
930 generic_make_request(read_bio);
1da177e4
LT
931 return 0;
932 }
933
934 /*
935 * WRITE:
936 */
1f68f0c4 937 /* first select target devices under rcu_lock and
1da177e4
LT
938 * inc refcount on their rdev. Record them by setting
939 * bios[x] to bio
1f68f0c4
N
940 * If there are known/acknowledged bad blocks on any device on
941 * which we have seen a write error, we want to avoid writing those
942 * blocks.
943 * This potentially requires several writes to write around
944 * the bad blocks. Each set of writes gets it's own r1bio
945 * with a set of bios attached.
1da177e4 946 */
c3b328ac
N
947 plugged = mddev_check_plugged(mddev);
948
1da177e4 949 disks = conf->raid_disks;
6bfe0b49
DW
950 retry_write:
951 blocked_rdev = NULL;
1da177e4 952 rcu_read_lock();
1f68f0c4 953 max_sectors = r1_bio->sectors;
1da177e4 954 for (i = 0; i < disks; i++) {
6bfe0b49
DW
955 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
956 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
957 atomic_inc(&rdev->nr_pending);
958 blocked_rdev = rdev;
959 break;
960 }
1f68f0c4
N
961 r1_bio->bios[i] = NULL;
962 if (!rdev || test_bit(Faulty, &rdev->flags)) {
963 set_bit(R1BIO_Degraded, &r1_bio->state);
964 continue;
965 }
966
967 atomic_inc(&rdev->nr_pending);
968 if (test_bit(WriteErrorSeen, &rdev->flags)) {
969 sector_t first_bad;
970 int bad_sectors;
971 int is_bad;
972
973 is_bad = is_badblock(rdev, r1_bio->sector,
974 max_sectors,
975 &first_bad, &bad_sectors);
976 if (is_bad < 0) {
977 /* mustn't write here until the bad block is
978 * acknowledged*/
979 set_bit(BlockedBadBlocks, &rdev->flags);
980 blocked_rdev = rdev;
981 break;
982 }
983 if (is_bad && first_bad <= r1_bio->sector) {
984 /* Cannot write here at all */
985 bad_sectors -= (r1_bio->sector - first_bad);
986 if (bad_sectors < max_sectors)
987 /* mustn't write more than bad_sectors
988 * to other devices yet
989 */
990 max_sectors = bad_sectors;
03c902e1 991 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
992 /* We don't set R1BIO_Degraded as that
993 * only applies if the disk is
994 * missing, so it might be re-added,
995 * and we want to know to recover this
996 * chunk.
997 * In this case the device is here,
998 * and the fact that this chunk is not
999 * in-sync is recorded in the bad
1000 * block log
1001 */
1002 continue;
964147d5 1003 }
1f68f0c4
N
1004 if (is_bad) {
1005 int good_sectors = first_bad - r1_bio->sector;
1006 if (good_sectors < max_sectors)
1007 max_sectors = good_sectors;
1008 }
1009 }
1010 r1_bio->bios[i] = bio;
1da177e4
LT
1011 }
1012 rcu_read_unlock();
1013
6bfe0b49
DW
1014 if (unlikely(blocked_rdev)) {
1015 /* Wait for this device to become unblocked */
1016 int j;
1017
1018 for (j = 0; j < i; j++)
1019 if (r1_bio->bios[j])
1020 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1021 r1_bio->state = 0;
6bfe0b49
DW
1022 allow_barrier(conf);
1023 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1024 wait_barrier(conf);
1025 goto retry_write;
1026 }
1027
1f68f0c4
N
1028 if (max_sectors < r1_bio->sectors) {
1029 /* We are splitting this write into multiple parts, so
1030 * we need to prepare for allocating another r1_bio.
1031 */
1032 r1_bio->sectors = max_sectors;
1033 spin_lock_irq(&conf->device_lock);
1034 if (bio->bi_phys_segments == 0)
1035 bio->bi_phys_segments = 2;
1036 else
1037 bio->bi_phys_segments++;
1038 spin_unlock_irq(&conf->device_lock);
191ea9b2 1039 }
1f68f0c4 1040 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
4b6d287f 1041
4e78064f 1042 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1043 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1044
1f68f0c4 1045 first_clone = 1;
1da177e4
LT
1046 for (i = 0; i < disks; i++) {
1047 struct bio *mbio;
1048 if (!r1_bio->bios[i])
1049 continue;
1050
a167f663 1051 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1f68f0c4
N
1052 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1053
1054 if (first_clone) {
1055 /* do behind I/O ?
1056 * Not if there are too many, or cannot
1057 * allocate memory, or a reader on WriteMostly
1058 * is waiting for behind writes to flush */
1059 if (bitmap &&
1060 (atomic_read(&bitmap->behind_writes)
1061 < mddev->bitmap_info.max_write_behind) &&
1062 !waitqueue_active(&bitmap->behind_wait))
1063 alloc_behind_pages(mbio, r1_bio);
1064
1065 bitmap_startwrite(bitmap, r1_bio->sector,
1066 r1_bio->sectors,
1067 test_bit(R1BIO_BehindIO,
1068 &r1_bio->state));
1069 first_clone = 0;
1070 }
2ca68f5e 1071 if (r1_bio->behind_bvecs) {
4b6d287f
N
1072 struct bio_vec *bvec;
1073 int j;
1074
1075 /* Yes, I really want the '__' version so that
1076 * we clear any unused pointer in the io_vec, rather
1077 * than leave them unchanged. This is important
1078 * because when we come to free the pages, we won't
046abeed 1079 * know the original bi_idx, so we just free
4b6d287f
N
1080 * them all
1081 */
1082 __bio_for_each_segment(bvec, mbio, j, 0)
2ca68f5e 1083 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1084 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1085 atomic_inc(&r1_bio->behind_remaining);
1086 }
1087
1f68f0c4
N
1088 r1_bio->bios[i] = mbio;
1089
1090 mbio->bi_sector = (r1_bio->sector +
1091 conf->mirrors[i].rdev->data_offset);
1092 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1093 mbio->bi_end_io = raid1_end_write_request;
1094 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1095 mbio->bi_private = r1_bio;
1096
1da177e4 1097 atomic_inc(&r1_bio->remaining);
4e78064f
N
1098 spin_lock_irqsave(&conf->device_lock, flags);
1099 bio_list_add(&conf->pending_bio_list, mbio);
4e78064f 1100 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1101 }
af6d7b76 1102 r1_bio_write_done(r1_bio);
1da177e4 1103
4e78064f 1104 /* In case raid1d snuck in to freeze_array */
a35e63ef
N
1105 wake_up(&conf->wait_barrier);
1106
1f68f0c4
N
1107 if (sectors_handled < (bio->bi_size >> 9)) {
1108 /* We need another r1_bio. It has already been counted
1109 * in bio->bi_phys_segments
1110 */
1111 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1112 r1_bio->master_bio = bio;
1113 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1114 r1_bio->state = 0;
1115 r1_bio->mddev = mddev;
1116 r1_bio->sector = bio->bi_sector + sectors_handled;
1117 goto retry_write;
1118 }
1119
c3b328ac 1120 if (do_sync || !bitmap || !plugged)
e3881a68 1121 md_wakeup_thread(mddev->thread);
191ea9b2 1122
1da177e4
LT
1123 return 0;
1124}
1125
1126static void status(struct seq_file *seq, mddev_t *mddev)
1127{
070ec55d 1128 conf_t *conf = mddev->private;
1da177e4
LT
1129 int i;
1130
1131 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1132 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1133 rcu_read_lock();
1134 for (i = 0; i < conf->raid_disks; i++) {
1135 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1136 seq_printf(seq, "%s",
ddac7c7e
N
1137 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1138 }
1139 rcu_read_unlock();
1da177e4
LT
1140 seq_printf(seq, "]");
1141}
1142
1143
1144static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1145{
1146 char b[BDEVNAME_SIZE];
070ec55d 1147 conf_t *conf = mddev->private;
1da177e4
LT
1148
1149 /*
1150 * If it is not operational, then we have already marked it as dead
1151 * else if it is the last working disks, ignore the error, let the
1152 * next level up know.
1153 * else mark the drive as failed
1154 */
b2d444d7 1155 if (test_bit(In_sync, &rdev->flags)
4044ba58 1156 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1157 /*
1158 * Don't fail the drive, act as though we were just a
4044ba58
N
1159 * normal single drive.
1160 * However don't try a recovery from this drive as
1161 * it is very likely to fail.
1da177e4 1162 */
5389042f 1163 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1164 return;
4044ba58 1165 }
de393cde 1166 set_bit(Blocked, &rdev->flags);
c04be0aa
N
1167 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1168 unsigned long flags;
1169 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1170 mddev->degraded++;
dd00a99e 1171 set_bit(Faulty, &rdev->flags);
c04be0aa 1172 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1173 /*
1174 * if recovery is running, make sure it aborts.
1175 */
dfc70645 1176 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
dd00a99e
N
1177 } else
1178 set_bit(Faulty, &rdev->flags);
850b2b42 1179 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1180 printk(KERN_ALERT
1181 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1182 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1183 mdname(mddev), bdevname(rdev->bdev, b),
1184 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1185}
1186
1187static void print_conf(conf_t *conf)
1188{
1189 int i;
1da177e4 1190
9dd1e2fa 1191 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1192 if (!conf) {
9dd1e2fa 1193 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1194 return;
1195 }
9dd1e2fa 1196 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1197 conf->raid_disks);
1198
ddac7c7e 1199 rcu_read_lock();
1da177e4
LT
1200 for (i = 0; i < conf->raid_disks; i++) {
1201 char b[BDEVNAME_SIZE];
ddac7c7e
N
1202 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1203 if (rdev)
9dd1e2fa 1204 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1205 i, !test_bit(In_sync, &rdev->flags),
1206 !test_bit(Faulty, &rdev->flags),
1207 bdevname(rdev->bdev,b));
1da177e4 1208 }
ddac7c7e 1209 rcu_read_unlock();
1da177e4
LT
1210}
1211
1212static void close_sync(conf_t *conf)
1213{
17999be4
N
1214 wait_barrier(conf);
1215 allow_barrier(conf);
1da177e4
LT
1216
1217 mempool_destroy(conf->r1buf_pool);
1218 conf->r1buf_pool = NULL;
1219}
1220
1221static int raid1_spare_active(mddev_t *mddev)
1222{
1223 int i;
1224 conf_t *conf = mddev->private;
6b965620
N
1225 int count = 0;
1226 unsigned long flags;
1da177e4
LT
1227
1228 /*
1229 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1230 * and mark them readable.
1231 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1232 */
1233 for (i = 0; i < conf->raid_disks; i++) {
ddac7c7e
N
1234 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1235 if (rdev
1236 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1237 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1238 count++;
654e8b5a 1239 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1240 }
1241 }
6b965620
N
1242 spin_lock_irqsave(&conf->device_lock, flags);
1243 mddev->degraded -= count;
1244 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1245
1246 print_conf(conf);
6b965620 1247 return count;
1da177e4
LT
1248}
1249
1250
1251static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1252{
1253 conf_t *conf = mddev->private;
199050ea 1254 int err = -EEXIST;
41158c7e 1255 int mirror = 0;
1da177e4 1256 mirror_info_t *p;
6c2fce2e
NB
1257 int first = 0;
1258 int last = mddev->raid_disks - 1;
1da177e4 1259
5389042f
N
1260 if (mddev->recovery_disabled == conf->recovery_disabled)
1261 return -EBUSY;
1262
6c2fce2e
NB
1263 if (rdev->raid_disk >= 0)
1264 first = last = rdev->raid_disk;
1265
1266 for (mirror = first; mirror <= last; mirror++)
1da177e4
LT
1267 if ( !(p=conf->mirrors+mirror)->rdev) {
1268
8f6c2e4b
MP
1269 disk_stack_limits(mddev->gendisk, rdev->bdev,
1270 rdev->data_offset << 9);
627a2d3c
N
1271 /* as we don't honour merge_bvec_fn, we must
1272 * never risk violating it, so limit
1273 * ->max_segments to one lying with a single
1274 * page, as a one page request is never in
1275 * violation.
1da177e4 1276 */
627a2d3c
N
1277 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1278 blk_queue_max_segments(mddev->queue, 1);
1279 blk_queue_segment_boundary(mddev->queue,
1280 PAGE_CACHE_SIZE - 1);
1281 }
1da177e4
LT
1282
1283 p->head_position = 0;
1284 rdev->raid_disk = mirror;
199050ea 1285 err = 0;
6aea114a
N
1286 /* As all devices are equivalent, we don't need a full recovery
1287 * if this was recently any drive of the array
1288 */
1289 if (rdev->saved_raid_disk < 0)
41158c7e 1290 conf->fullsync = 1;
d6065f7b 1291 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1292 break;
1293 }
ac5e7113 1294 md_integrity_add_rdev(rdev, mddev);
1da177e4 1295 print_conf(conf);
199050ea 1296 return err;
1da177e4
LT
1297}
1298
1299static int raid1_remove_disk(mddev_t *mddev, int number)
1300{
1301 conf_t *conf = mddev->private;
1302 int err = 0;
1303 mdk_rdev_t *rdev;
1304 mirror_info_t *p = conf->mirrors+ number;
1305
1306 print_conf(conf);
1307 rdev = p->rdev;
1308 if (rdev) {
b2d444d7 1309 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1310 atomic_read(&rdev->nr_pending)) {
1311 err = -EBUSY;
1312 goto abort;
1313 }
046abeed 1314 /* Only remove non-faulty devices if recovery
dfc70645
N
1315 * is not possible.
1316 */
1317 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1318 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1319 mddev->degraded < conf->raid_disks) {
1320 err = -EBUSY;
1321 goto abort;
1322 }
1da177e4 1323 p->rdev = NULL;
fbd568a3 1324 synchronize_rcu();
1da177e4
LT
1325 if (atomic_read(&rdev->nr_pending)) {
1326 /* lost the race, try later */
1327 err = -EBUSY;
1328 p->rdev = rdev;
ac5e7113 1329 goto abort;
1da177e4 1330 }
a91a2785 1331 err = md_integrity_register(mddev);
1da177e4
LT
1332 }
1333abort:
1334
1335 print_conf(conf);
1336 return err;
1337}
1338
1339
6712ecf8 1340static void end_sync_read(struct bio *bio, int error)
1da177e4 1341{
7b92813c 1342 r1bio_t *r1_bio = bio->bi_private;
d11c171e 1343 int i;
1da177e4 1344
d11c171e
N
1345 for (i=r1_bio->mddev->raid_disks; i--; )
1346 if (r1_bio->bios[i] == bio)
1347 break;
1348 BUG_ON(i < 0);
1349 update_head_pos(i, r1_bio);
1da177e4
LT
1350 /*
1351 * we have read a block, now it needs to be re-written,
1352 * or re-read if the read failed.
1353 * We don't do much here, just schedule handling by raid1d
1354 */
69382e85 1355 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1356 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1357
1358 if (atomic_dec_and_test(&r1_bio->remaining))
1359 reschedule_retry(r1_bio);
1da177e4
LT
1360}
1361
6712ecf8 1362static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1363{
1364 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 1365 r1bio_t *r1_bio = bio->bi_private;
1da177e4 1366 mddev_t *mddev = r1_bio->mddev;
070ec55d 1367 conf_t *conf = mddev->private;
1da177e4
LT
1368 int i;
1369 int mirror=0;
4367af55
N
1370 sector_t first_bad;
1371 int bad_sectors;
1da177e4 1372
1da177e4
LT
1373 for (i = 0; i < conf->raid_disks; i++)
1374 if (r1_bio->bios[i] == bio) {
1375 mirror = i;
1376 break;
1377 }
6b1117d5 1378 if (!uptodate) {
57dab0bd 1379 sector_t sync_blocks = 0;
6b1117d5
N
1380 sector_t s = r1_bio->sector;
1381 long sectors_to_go = r1_bio->sectors;
1382 /* make sure these bits doesn't get cleared. */
1383 do {
5e3db645 1384 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1385 &sync_blocks, 1);
1386 s += sync_blocks;
1387 sectors_to_go -= sync_blocks;
1388 } while (sectors_to_go > 0);
1da177e4 1389 md_error(mddev, conf->mirrors[mirror].rdev);
4367af55
N
1390 } else if (is_badblock(conf->mirrors[mirror].rdev,
1391 r1_bio->sector,
1392 r1_bio->sectors,
1393 &first_bad, &bad_sectors))
1394 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1395
1da177e4
LT
1396 update_head_pos(mirror, r1_bio);
1397
1398 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55
N
1399 int s = r1_bio->sectors;
1400 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
1401 reschedule_retry(r1_bio);
1402 else {
1403 put_buf(r1_bio);
1404 md_done_sync(mddev, s, uptodate);
1405 }
1da177e4 1406 }
1da177e4
LT
1407}
1408
a68e5870 1409static int fix_sync_read_error(r1bio_t *r1_bio)
1da177e4 1410{
a68e5870
N
1411 /* Try some synchronous reads of other devices to get
1412 * good data, much like with normal read errors. Only
1413 * read into the pages we already have so we don't
1414 * need to re-issue the read request.
1415 * We don't need to freeze the array, because being in an
1416 * active sync request, there is no normal IO, and
1417 * no overlapping syncs.
06f60385
N
1418 * We don't need to check is_badblock() again as we
1419 * made sure that anything with a bad block in range
1420 * will have bi_end_io clear.
a68e5870
N
1421 */
1422 mddev_t *mddev = r1_bio->mddev;
070ec55d 1423 conf_t *conf = mddev->private;
a68e5870
N
1424 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1425 sector_t sect = r1_bio->sector;
1426 int sectors = r1_bio->sectors;
1427 int idx = 0;
1428
1429 while(sectors) {
1430 int s = sectors;
1431 int d = r1_bio->read_disk;
1432 int success = 0;
1433 mdk_rdev_t *rdev;
78d7f5f7 1434 int start;
a68e5870
N
1435
1436 if (s > (PAGE_SIZE>>9))
1437 s = PAGE_SIZE >> 9;
1438 do {
1439 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1440 /* No rcu protection needed here devices
1441 * can only be removed when no resync is
1442 * active, and resync is currently active
1443 */
1444 rdev = conf->mirrors[d].rdev;
9d3d8011 1445 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1446 bio->bi_io_vec[idx].bv_page,
1447 READ, false)) {
1448 success = 1;
1449 break;
1450 }
1451 }
1452 d++;
1453 if (d == conf->raid_disks)
1454 d = 0;
1455 } while (!success && d != r1_bio->read_disk);
1456
78d7f5f7 1457 if (!success) {
a68e5870
N
1458 char b[BDEVNAME_SIZE];
1459 /* Cannot read from anywhere, array is toast */
1460 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1461 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1462 " for block %llu\n",
1463 mdname(mddev),
1464 bdevname(bio->bi_bdev, b),
1465 (unsigned long long)r1_bio->sector);
1466 md_done_sync(mddev, r1_bio->sectors, 0);
d11c171e 1467 put_buf(r1_bio);
a68e5870 1468 return 0;
d11c171e 1469 }
78d7f5f7
N
1470
1471 start = d;
1472 /* write it back and re-read */
1473 while (d != r1_bio->read_disk) {
1474 if (d == 0)
1475 d = conf->raid_disks;
1476 d--;
1477 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1478 continue;
1479 rdev = conf->mirrors[d].rdev;
9d3d8011 1480 if (sync_page_io(rdev, sect, s<<9,
78d7f5f7
N
1481 bio->bi_io_vec[idx].bv_page,
1482 WRITE, false) == 0) {
1483 r1_bio->bios[d]->bi_end_io = NULL;
1484 rdev_dec_pending(rdev, mddev);
1485 md_error(mddev, rdev);
9d3d8011 1486 }
78d7f5f7
N
1487 }
1488 d = start;
1489 while (d != r1_bio->read_disk) {
1490 if (d == 0)
1491 d = conf->raid_disks;
1492 d--;
1493 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1494 continue;
1495 rdev = conf->mirrors[d].rdev;
9d3d8011 1496 if (sync_page_io(rdev, sect, s<<9,
78d7f5f7
N
1497 bio->bi_io_vec[idx].bv_page,
1498 READ, false) == 0)
1499 md_error(mddev, rdev);
9d3d8011
NK
1500 else
1501 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1502 }
a68e5870
N
1503 sectors -= s;
1504 sect += s;
1505 idx ++;
1506 }
78d7f5f7 1507 set_bit(R1BIO_Uptodate, &r1_bio->state);
7ca78d57 1508 set_bit(BIO_UPTODATE, &bio->bi_flags);
a68e5870
N
1509 return 1;
1510}
1511
1512static int process_checks(r1bio_t *r1_bio)
1513{
1514 /* We have read all readable devices. If we haven't
1515 * got the block, then there is no hope left.
1516 * If we have, then we want to do a comparison
1517 * and skip the write if everything is the same.
1518 * If any blocks failed to read, then we need to
1519 * attempt an over-write
1520 */
1521 mddev_t *mddev = r1_bio->mddev;
1522 conf_t *conf = mddev->private;
1523 int primary;
1524 int i;
1525
78d7f5f7 1526 for (primary = 0; primary < conf->raid_disks; primary++)
a68e5870
N
1527 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1528 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1529 r1_bio->bios[primary]->bi_end_io = NULL;
1530 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1531 break;
1532 }
1533 r1_bio->read_disk = primary;
78d7f5f7
N
1534 for (i = 0; i < conf->raid_disks; i++) {
1535 int j;
1536 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1537 struct bio *pbio = r1_bio->bios[primary];
1538 struct bio *sbio = r1_bio->bios[i];
1539 int size;
a68e5870 1540
78d7f5f7
N
1541 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1542 continue;
1543
1544 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1545 for (j = vcnt; j-- ; ) {
1546 struct page *p, *s;
1547 p = pbio->bi_io_vec[j].bv_page;
1548 s = sbio->bi_io_vec[j].bv_page;
1549 if (memcmp(page_address(p),
1550 page_address(s),
1551 PAGE_SIZE))
1552 break;
69382e85 1553 }
78d7f5f7
N
1554 } else
1555 j = 0;
1556 if (j >= 0)
1557 mddev->resync_mismatches += r1_bio->sectors;
1558 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1559 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1560 /* No need to write to this device. */
1561 sbio->bi_end_io = NULL;
1562 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1563 continue;
1564 }
1565 /* fixup the bio for reuse */
1566 sbio->bi_vcnt = vcnt;
1567 sbio->bi_size = r1_bio->sectors << 9;
1568 sbio->bi_idx = 0;
1569 sbio->bi_phys_segments = 0;
1570 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1571 sbio->bi_flags |= 1 << BIO_UPTODATE;
1572 sbio->bi_next = NULL;
1573 sbio->bi_sector = r1_bio->sector +
1574 conf->mirrors[i].rdev->data_offset;
1575 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1576 size = sbio->bi_size;
1577 for (j = 0; j < vcnt ; j++) {
1578 struct bio_vec *bi;
1579 bi = &sbio->bi_io_vec[j];
1580 bi->bv_offset = 0;
1581 if (size > PAGE_SIZE)
1582 bi->bv_len = PAGE_SIZE;
1583 else
1584 bi->bv_len = size;
1585 size -= PAGE_SIZE;
1586 memcpy(page_address(bi->bv_page),
1587 page_address(pbio->bi_io_vec[j].bv_page),
1588 PAGE_SIZE);
69382e85 1589 }
78d7f5f7 1590 }
a68e5870
N
1591 return 0;
1592}
1593
1594static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1595{
1596 conf_t *conf = mddev->private;
1597 int i;
1598 int disks = conf->raid_disks;
1599 struct bio *bio, *wbio;
1600
1601 bio = r1_bio->bios[r1_bio->read_disk];
1602
a68e5870
N
1603 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1604 /* ouch - failed to read all of that. */
1605 if (!fix_sync_read_error(r1_bio))
1606 return;
7ca78d57
N
1607
1608 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1609 if (process_checks(r1_bio) < 0)
1610 return;
d11c171e
N
1611 /*
1612 * schedule writes
1613 */
1da177e4
LT
1614 atomic_set(&r1_bio->remaining, 1);
1615 for (i = 0; i < disks ; i++) {
1616 wbio = r1_bio->bios[i];
3e198f78
N
1617 if (wbio->bi_end_io == NULL ||
1618 (wbio->bi_end_io == end_sync_read &&
1619 (i == r1_bio->read_disk ||
1620 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
1621 continue;
1622
3e198f78
N
1623 wbio->bi_rw = WRITE;
1624 wbio->bi_end_io = end_sync_write;
1da177e4
LT
1625 atomic_inc(&r1_bio->remaining);
1626 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
191ea9b2 1627
1da177e4
LT
1628 generic_make_request(wbio);
1629 }
1630
1631 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 1632 /* if we're here, all write(s) have completed, so clean up */
1da177e4
LT
1633 md_done_sync(mddev, r1_bio->sectors, 1);
1634 put_buf(r1_bio);
1635 }
1636}
1637
1638/*
1639 * This is a kernel thread which:
1640 *
1641 * 1. Retries failed read operations on working mirrors.
1642 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 1643 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1644 */
1645
867868fb
N
1646static void fix_read_error(conf_t *conf, int read_disk,
1647 sector_t sect, int sectors)
1648{
1649 mddev_t *mddev = conf->mddev;
1650 while(sectors) {
1651 int s = sectors;
1652 int d = read_disk;
1653 int success = 0;
1654 int start;
1655 mdk_rdev_t *rdev;
1656
1657 if (s > (PAGE_SIZE>>9))
1658 s = PAGE_SIZE >> 9;
1659
1660 do {
1661 /* Note: no rcu protection needed here
1662 * as this is synchronous in the raid1d thread
1663 * which is the thread that might remove
1664 * a device. If raid1d ever becomes multi-threaded....
1665 */
d2eb35ac
N
1666 sector_t first_bad;
1667 int bad_sectors;
1668
867868fb
N
1669 rdev = conf->mirrors[d].rdev;
1670 if (rdev &&
1671 test_bit(In_sync, &rdev->flags) &&
d2eb35ac
N
1672 is_badblock(rdev, sect, s,
1673 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
1674 sync_page_io(rdev, sect, s<<9,
1675 conf->tmppage, READ, false))
867868fb
N
1676 success = 1;
1677 else {
1678 d++;
1679 if (d == conf->raid_disks)
1680 d = 0;
1681 }
1682 } while (!success && d != read_disk);
1683
1684 if (!success) {
1685 /* Cannot read from anywhere -- bye bye array */
1686 md_error(mddev, conf->mirrors[read_disk].rdev);
1687 break;
1688 }
1689 /* write it back and re-read */
1690 start = d;
1691 while (d != read_disk) {
1692 if (d==0)
1693 d = conf->raid_disks;
1694 d--;
1695 rdev = conf->mirrors[d].rdev;
1696 if (rdev &&
1697 test_bit(In_sync, &rdev->flags)) {
ccebd4c4
JB
1698 if (sync_page_io(rdev, sect, s<<9,
1699 conf->tmppage, WRITE, false)
867868fb
N
1700 == 0)
1701 /* Well, this device is dead */
1702 md_error(mddev, rdev);
1703 }
1704 }
1705 d = start;
1706 while (d != read_disk) {
1707 char b[BDEVNAME_SIZE];
1708 if (d==0)
1709 d = conf->raid_disks;
1710 d--;
1711 rdev = conf->mirrors[d].rdev;
1712 if (rdev &&
1713 test_bit(In_sync, &rdev->flags)) {
ccebd4c4
JB
1714 if (sync_page_io(rdev, sect, s<<9,
1715 conf->tmppage, READ, false)
867868fb
N
1716 == 0)
1717 /* Well, this device is dead */
1718 md_error(mddev, rdev);
1719 else {
1720 atomic_add(s, &rdev->corrected_errors);
1721 printk(KERN_INFO
9dd1e2fa 1722 "md/raid1:%s: read error corrected "
867868fb
N
1723 "(%d sectors at %llu on %s)\n",
1724 mdname(mddev), s,
969b755a
RD
1725 (unsigned long long)(sect +
1726 rdev->data_offset),
867868fb
N
1727 bdevname(rdev->bdev, b));
1728 }
1729 }
1730 }
1731 sectors -= s;
1732 sect += s;
1733 }
1734}
1735
cd5ff9a1
N
1736static void bi_complete(struct bio *bio, int error)
1737{
1738 complete((struct completion *)bio->bi_private);
1739}
1740
1741static int submit_bio_wait(int rw, struct bio *bio)
1742{
1743 struct completion event;
1744 rw |= REQ_SYNC;
1745
1746 init_completion(&event);
1747 bio->bi_private = &event;
1748 bio->bi_end_io = bi_complete;
1749 submit_bio(rw, bio);
1750 wait_for_completion(&event);
1751
1752 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1753}
1754
1755static int narrow_write_error(r1bio_t *r1_bio, int i)
1756{
1757 mddev_t *mddev = r1_bio->mddev;
1758 conf_t *conf = mddev->private;
1759 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1760 int vcnt, idx;
1761 struct bio_vec *vec;
1762
1763 /* bio has the data to be written to device 'i' where
1764 * we just recently had a write error.
1765 * We repeatedly clone the bio and trim down to one block,
1766 * then try the write. Where the write fails we record
1767 * a bad block.
1768 * It is conceivable that the bio doesn't exactly align with
1769 * blocks. We must handle this somehow.
1770 *
1771 * We currently own a reference on the rdev.
1772 */
1773
1774 int block_sectors;
1775 sector_t sector;
1776 int sectors;
1777 int sect_to_write = r1_bio->sectors;
1778 int ok = 1;
1779
1780 if (rdev->badblocks.shift < 0)
1781 return 0;
1782
1783 block_sectors = 1 << rdev->badblocks.shift;
1784 sector = r1_bio->sector;
1785 sectors = ((sector + block_sectors)
1786 & ~(sector_t)(block_sectors - 1))
1787 - sector;
1788
1789 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1790 vcnt = r1_bio->behind_page_count;
1791 vec = r1_bio->behind_bvecs;
1792 idx = 0;
1793 while (vec[idx].bv_page == NULL)
1794 idx++;
1795 } else {
1796 vcnt = r1_bio->master_bio->bi_vcnt;
1797 vec = r1_bio->master_bio->bi_io_vec;
1798 idx = r1_bio->master_bio->bi_idx;
1799 }
1800 while (sect_to_write) {
1801 struct bio *wbio;
1802 if (sectors > sect_to_write)
1803 sectors = sect_to_write;
1804 /* Write at 'sector' for 'sectors'*/
1805
1806 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1807 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1808 wbio->bi_sector = r1_bio->sector;
1809 wbio->bi_rw = WRITE;
1810 wbio->bi_vcnt = vcnt;
1811 wbio->bi_size = r1_bio->sectors << 9;
1812 wbio->bi_idx = idx;
1813
1814 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1815 wbio->bi_sector += rdev->data_offset;
1816 wbio->bi_bdev = rdev->bdev;
1817 if (submit_bio_wait(WRITE, wbio) == 0)
1818 /* failure! */
1819 ok = rdev_set_badblocks(rdev, sector,
1820 sectors, 0)
1821 && ok;
1822
1823 bio_put(wbio);
1824 sect_to_write -= sectors;
1825 sector += sectors;
1826 sectors = block_sectors;
1827 }
1828 return ok;
1829}
1830
1da177e4
LT
1831static void raid1d(mddev_t *mddev)
1832{
1833 r1bio_t *r1_bio;
1834 struct bio *bio;
1835 unsigned long flags;
070ec55d 1836 conf_t *conf = mddev->private;
1da177e4 1837 struct list_head *head = &conf->retry_list;
1da177e4 1838 mdk_rdev_t *rdev;
e1dfa0a2 1839 struct blk_plug plug;
1da177e4
LT
1840
1841 md_check_recovery(mddev);
e1dfa0a2
N
1842
1843 blk_start_plug(&plug);
1da177e4
LT
1844 for (;;) {
1845 char b[BDEVNAME_SIZE];
191ea9b2 1846
c3b328ac
N
1847 if (atomic_read(&mddev->plug_cnt) == 0)
1848 flush_pending_writes(conf);
191ea9b2 1849
a35e63ef
N
1850 spin_lock_irqsave(&conf->device_lock, flags);
1851 if (list_empty(head)) {
1852 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1853 break;
a35e63ef 1854 }
1da177e4
LT
1855 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1856 list_del(head->prev);
ddaf22ab 1857 conf->nr_queued--;
1da177e4
LT
1858 spin_unlock_irqrestore(&conf->device_lock, flags);
1859
1860 mddev = r1_bio->mddev;
070ec55d 1861 conf = mddev->private;
4367af55
N
1862 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1863 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1864 int m;
1865 int s = r1_bio->sectors;
1866 for (m = 0; m < conf->raid_disks ; m++) {
1867 struct bio *bio = r1_bio->bios[m];
1868 if (bio->bi_end_io != NULL &&
1869 test_bit(BIO_UPTODATE,
1870 &bio->bi_flags)) {
1871 rdev = conf->mirrors[m].rdev;
1872 rdev_clear_badblocks(
1873 rdev,
1874 r1_bio->sector,
1875 r1_bio->sectors);
1876 }
1877 }
1878 put_buf(r1_bio);
1879 md_done_sync(mddev, s, 1);
1880 } else
1881 sync_request_write(mddev, r1_bio);
cd5ff9a1
N
1882 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1883 test_bit(R1BIO_WriteError, &r1_bio->state)) {
4367af55
N
1884 int m;
1885 for (m = 0; m < conf->raid_disks ; m++)
1886 if (r1_bio->bios[m] == IO_MADE_GOOD) {
1887 rdev = conf->mirrors[m].rdev;
1888 rdev_clear_badblocks(
1889 rdev,
1890 r1_bio->sector,
1891 r1_bio->sectors);
1892 rdev_dec_pending(rdev, mddev);
cd5ff9a1
N
1893 } else if (r1_bio->bios[m] != NULL) {
1894 /* This drive got a write error. We
1895 * need to narrow down and record
1896 * precise write errors.
1897 */
1898 if (!narrow_write_error(r1_bio, m)) {
1899 md_error(mddev,
1900 conf->mirrors[m].rdev);
1901 /* an I/O failed, we can't clear
1902 * the bitmap */
1903 set_bit(R1BIO_Degraded,
1904 &r1_bio->state);
1905 }
1906 rdev_dec_pending(conf->mirrors[m].rdev,
1907 mddev);
4367af55 1908 }
cd5ff9a1
N
1909 if (test_bit(R1BIO_WriteError, &r1_bio->state))
1910 close_write(r1_bio);
4367af55
N
1911 raid_end_bio_io(r1_bio);
1912 } else if (test_bit(R1BIO_ReadError, &r1_bio->state)) {
1da177e4 1913 int disk;
d2eb35ac 1914 int max_sectors;
ddaf22ab 1915
d2eb35ac 1916 clear_bit(R1BIO_ReadError, &r1_bio->state);
ddaf22ab
N
1917 /* we got a read error. Maybe the drive is bad. Maybe just
1918 * the block and we can fix it.
1919 * We freeze all other IO, and try reading the block from
1920 * other devices. When we find one, we re-write
1921 * and check it that fixes the read error.
1922 * This is all done synchronously while the array is
1923 * frozen
1924 */
867868fb
N
1925 if (mddev->ro == 0) {
1926 freeze_array(conf);
1927 fix_read_error(conf, r1_bio->read_disk,
1928 r1_bio->sector,
1929 r1_bio->sectors);
1930 unfreeze_array(conf);
d0e26078
N
1931 } else
1932 md_error(mddev,
1933 conf->mirrors[r1_bio->read_disk].rdev);
ddaf22ab 1934
1da177e4 1935 bio = r1_bio->bios[r1_bio->read_disk];
d2eb35ac
N
1936 bdevname(bio->bi_bdev, b);
1937read_more:
1938 disk = read_balance(conf, r1_bio, &max_sectors);
1939 if (disk == -1) {
9dd1e2fa 1940 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1da177e4 1941 " read error for block %llu\n",
d2eb35ac 1942 mdname(mddev), b,
1da177e4
LT
1943 (unsigned long long)r1_bio->sector);
1944 raid_end_bio_io(r1_bio);
1945 } else {
2c7d46ec 1946 const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC;
d2eb35ac
N
1947 if (bio) {
1948 r1_bio->bios[r1_bio->read_disk] =
1949 mddev->ro ? IO_BLOCKED : NULL;
1950 bio_put(bio);
1951 }
1da177e4 1952 r1_bio->read_disk = disk;
a167f663
N
1953 bio = bio_clone_mddev(r1_bio->master_bio,
1954 GFP_NOIO, mddev);
d2eb35ac
N
1955 md_trim_bio(bio,
1956 r1_bio->sector - bio->bi_sector,
1957 max_sectors);
1da177e4
LT
1958 r1_bio->bios[r1_bio->read_disk] = bio;
1959 rdev = conf->mirrors[disk].rdev;
8bda470e
CD
1960 printk_ratelimited(
1961 KERN_ERR
1962 "md/raid1:%s: redirecting sector %llu"
1963 " to other mirror: %s\n",
1964 mdname(mddev),
1965 (unsigned long long)r1_bio->sector,
1966 bdevname(rdev->bdev, b));
1da177e4
LT
1967 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1968 bio->bi_bdev = rdev->bdev;
1969 bio->bi_end_io = raid1_end_read_request;
7b6d91da 1970 bio->bi_rw = READ | do_sync;
1da177e4 1971 bio->bi_private = r1_bio;
d2eb35ac
N
1972 if (max_sectors < r1_bio->sectors) {
1973 /* Drat - have to split this up more */
1974 struct bio *mbio = r1_bio->master_bio;
1975 int sectors_handled =
1976 r1_bio->sector + max_sectors
1977 - mbio->bi_sector;
1978 r1_bio->sectors = max_sectors;
1979 spin_lock_irq(&conf->device_lock);
1980 if (mbio->bi_phys_segments == 0)
1981 mbio->bi_phys_segments = 2;
1982 else
1983 mbio->bi_phys_segments++;
1984 spin_unlock_irq(&conf->device_lock);
1985 generic_make_request(bio);
1986 bio = NULL;
1987
1988 r1_bio = mempool_alloc(conf->r1bio_pool,
1989 GFP_NOIO);
1990
1991 r1_bio->master_bio = mbio;
1992 r1_bio->sectors = (mbio->bi_size >> 9)
1993 - sectors_handled;
1994 r1_bio->state = 0;
1995 set_bit(R1BIO_ReadError,
1996 &r1_bio->state);
1997 r1_bio->mddev = mddev;
1998 r1_bio->sector = mbio->bi_sector
1999 + sectors_handled;
2000
2001 goto read_more;
2002 } else
2003 generic_make_request(bio);
1da177e4 2004 }
d2eb35ac
N
2005 } else {
2006 /* just a partial read to be scheduled from separate
2007 * context
2008 */
2009 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
1da177e4 2010 }
1d9d5241 2011 cond_resched();
de393cde
N
2012 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2013 md_check_recovery(mddev);
1da177e4 2014 }
e1dfa0a2 2015 blk_finish_plug(&plug);
1da177e4
LT
2016}
2017
2018
2019static int init_resync(conf_t *conf)
2020{
2021 int buffs;
2022
2023 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2024 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2025 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2026 conf->poolinfo);
2027 if (!conf->r1buf_pool)
2028 return -ENOMEM;
2029 conf->next_resync = 0;
2030 return 0;
2031}
2032
2033/*
2034 * perform a "sync" on one "block"
2035 *
2036 * We need to make sure that no normal I/O request - particularly write
2037 * requests - conflict with active sync requests.
2038 *
2039 * This is achieved by tracking pending requests and a 'barrier' concept
2040 * that can be installed to exclude normal IO requests.
2041 */
2042
57afd89f 2043static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 2044{
070ec55d 2045 conf_t *conf = mddev->private;
1da177e4
LT
2046 r1bio_t *r1_bio;
2047 struct bio *bio;
2048 sector_t max_sector, nr_sectors;
3e198f78 2049 int disk = -1;
1da177e4 2050 int i;
3e198f78
N
2051 int wonly = -1;
2052 int write_targets = 0, read_targets = 0;
57dab0bd 2053 sector_t sync_blocks;
e3b9703e 2054 int still_degraded = 0;
06f60385
N
2055 int good_sectors = RESYNC_SECTORS;
2056 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2057
2058 if (!conf->r1buf_pool)
2059 if (init_resync(conf))
57afd89f 2060 return 0;
1da177e4 2061
58c0fed4 2062 max_sector = mddev->dev_sectors;
1da177e4 2063 if (sector_nr >= max_sector) {
191ea9b2
N
2064 /* If we aborted, we need to abort the
2065 * sync on the 'current' bitmap chunk (there will
2066 * only be one in raid1 resync.
2067 * We can find the current addess in mddev->curr_resync
2068 */
6a806c51
N
2069 if (mddev->curr_resync < max_sector) /* aborted */
2070 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2071 &sync_blocks, 1);
6a806c51 2072 else /* completed sync */
191ea9b2 2073 conf->fullsync = 0;
6a806c51
N
2074
2075 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2076 close_sync(conf);
2077 return 0;
2078 }
2079
07d84d10
N
2080 if (mddev->bitmap == NULL &&
2081 mddev->recovery_cp == MaxSector &&
6394cca5 2082 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2083 conf->fullsync == 0) {
2084 *skipped = 1;
2085 return max_sector - sector_nr;
2086 }
6394cca5
N
2087 /* before building a request, check if we can skip these blocks..
2088 * This call the bitmap_start_sync doesn't actually record anything
2089 */
e3b9703e 2090 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2091 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2092 /* We can skip this block, and probably several more */
2093 *skipped = 1;
2094 return sync_blocks;
2095 }
1da177e4 2096 /*
17999be4
N
2097 * If there is non-resync activity waiting for a turn,
2098 * and resync is going fast enough,
2099 * then let it though before starting on this new sync request.
1da177e4 2100 */
17999be4 2101 if (!go_faster && conf->nr_waiting)
1da177e4 2102 msleep_interruptible(1000);
17999be4 2103
b47490c9 2104 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2105 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4
N
2106 raise_barrier(conf);
2107
2108 conf->next_resync = sector_nr;
1da177e4 2109
3e198f78 2110 rcu_read_lock();
1da177e4 2111 /*
3e198f78
N
2112 * If we get a correctably read error during resync or recovery,
2113 * we might want to read from a different device. So we
2114 * flag all drives that could conceivably be read from for READ,
2115 * and any others (which will be non-In_sync devices) for WRITE.
2116 * If a read fails, we try reading from something else for which READ
2117 * is OK.
1da177e4 2118 */
1da177e4 2119
1da177e4
LT
2120 r1_bio->mddev = mddev;
2121 r1_bio->sector = sector_nr;
191ea9b2 2122 r1_bio->state = 0;
1da177e4 2123 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4
LT
2124
2125 for (i=0; i < conf->raid_disks; i++) {
3e198f78 2126 mdk_rdev_t *rdev;
1da177e4
LT
2127 bio = r1_bio->bios[i];
2128
2129 /* take from bio_init */
2130 bio->bi_next = NULL;
db8d9d35 2131 bio->bi_flags &= ~(BIO_POOL_MASK-1);
1da177e4 2132 bio->bi_flags |= 1 << BIO_UPTODATE;
db8d9d35 2133 bio->bi_comp_cpu = -1;
802ba064 2134 bio->bi_rw = READ;
1da177e4
LT
2135 bio->bi_vcnt = 0;
2136 bio->bi_idx = 0;
2137 bio->bi_phys_segments = 0;
1da177e4
LT
2138 bio->bi_size = 0;
2139 bio->bi_end_io = NULL;
2140 bio->bi_private = NULL;
2141
3e198f78
N
2142 rdev = rcu_dereference(conf->mirrors[i].rdev);
2143 if (rdev == NULL ||
06f60385 2144 test_bit(Faulty, &rdev->flags)) {
e3b9703e 2145 still_degraded = 1;
3e198f78 2146 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2147 bio->bi_rw = WRITE;
2148 bio->bi_end_io = end_sync_write;
2149 write_targets ++;
3e198f78
N
2150 } else {
2151 /* may need to read from here */
06f60385
N
2152 sector_t first_bad = MaxSector;
2153 int bad_sectors;
2154
2155 if (is_badblock(rdev, sector_nr, good_sectors,
2156 &first_bad, &bad_sectors)) {
2157 if (first_bad > sector_nr)
2158 good_sectors = first_bad - sector_nr;
2159 else {
2160 bad_sectors -= (sector_nr - first_bad);
2161 if (min_bad == 0 ||
2162 min_bad > bad_sectors)
2163 min_bad = bad_sectors;
2164 }
2165 }
2166 if (sector_nr < first_bad) {
2167 if (test_bit(WriteMostly, &rdev->flags)) {
2168 if (wonly < 0)
2169 wonly = i;
2170 } else {
2171 if (disk < 0)
2172 disk = i;
2173 }
2174 bio->bi_rw = READ;
2175 bio->bi_end_io = end_sync_read;
2176 read_targets++;
3e198f78 2177 }
3e198f78 2178 }
06f60385
N
2179 if (bio->bi_end_io) {
2180 atomic_inc(&rdev->nr_pending);
2181 bio->bi_sector = sector_nr + rdev->data_offset;
2182 bio->bi_bdev = rdev->bdev;
2183 bio->bi_private = r1_bio;
2184 }
1da177e4 2185 }
3e198f78
N
2186 rcu_read_unlock();
2187 if (disk < 0)
2188 disk = wonly;
2189 r1_bio->read_disk = disk;
191ea9b2 2190
06f60385
N
2191 if (read_targets == 0 && min_bad > 0) {
2192 /* These sectors are bad on all InSync devices, so we
2193 * need to mark them bad on all write targets
2194 */
2195 int ok = 1;
2196 for (i = 0 ; i < conf->raid_disks ; i++)
2197 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2198 mdk_rdev_t *rdev =
2199 rcu_dereference(conf->mirrors[i].rdev);
2200 ok = rdev_set_badblocks(rdev, sector_nr,
2201 min_bad, 0
2202 ) && ok;
2203 }
2204 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2205 *skipped = 1;
2206 put_buf(r1_bio);
2207
2208 if (!ok) {
2209 /* Cannot record the badblocks, so need to
2210 * abort the resync.
2211 * If there are multiple read targets, could just
2212 * fail the really bad ones ???
2213 */
2214 conf->recovery_disabled = mddev->recovery_disabled;
2215 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2216 return 0;
2217 } else
2218 return min_bad;
2219
2220 }
2221 if (min_bad > 0 && min_bad < good_sectors) {
2222 /* only resync enough to reach the next bad->good
2223 * transition */
2224 good_sectors = min_bad;
2225 }
2226
3e198f78
N
2227 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2228 /* extra read targets are also write targets */
2229 write_targets += read_targets-1;
2230
2231 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2232 /* There is nowhere to write, so all non-sync
2233 * drives must be failed - so we are finished
2234 */
57afd89f
N
2235 sector_t rv = max_sector - sector_nr;
2236 *skipped = 1;
1da177e4 2237 put_buf(r1_bio);
1da177e4
LT
2238 return rv;
2239 }
2240
c6207277
N
2241 if (max_sector > mddev->resync_max)
2242 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2243 if (max_sector > sector_nr + good_sectors)
2244 max_sector = sector_nr + good_sectors;
1da177e4 2245 nr_sectors = 0;
289e99e8 2246 sync_blocks = 0;
1da177e4
LT
2247 do {
2248 struct page *page;
2249 int len = PAGE_SIZE;
2250 if (sector_nr + (len>>9) > max_sector)
2251 len = (max_sector - sector_nr) << 9;
2252 if (len == 0)
2253 break;
6a806c51
N
2254 if (sync_blocks == 0) {
2255 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2256 &sync_blocks, still_degraded) &&
2257 !conf->fullsync &&
2258 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2259 break;
9e77c485 2260 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2261 if ((len >> 9) > sync_blocks)
6a806c51 2262 len = sync_blocks<<9;
ab7a30c7 2263 }
191ea9b2 2264
1da177e4
LT
2265 for (i=0 ; i < conf->raid_disks; i++) {
2266 bio = r1_bio->bios[i];
2267 if (bio->bi_end_io) {
d11c171e 2268 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2269 if (bio_add_page(bio, page, len, 0) == 0) {
2270 /* stop here */
d11c171e 2271 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2272 while (i > 0) {
2273 i--;
2274 bio = r1_bio->bios[i];
6a806c51
N
2275 if (bio->bi_end_io==NULL)
2276 continue;
1da177e4
LT
2277 /* remove last page from this bio */
2278 bio->bi_vcnt--;
2279 bio->bi_size -= len;
2280 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2281 }
2282 goto bio_full;
2283 }
2284 }
2285 }
2286 nr_sectors += len>>9;
2287 sector_nr += len>>9;
191ea9b2 2288 sync_blocks -= (len>>9);
1da177e4
LT
2289 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2290 bio_full:
1da177e4
LT
2291 r1_bio->sectors = nr_sectors;
2292
d11c171e
N
2293 /* For a user-requested sync, we read all readable devices and do a
2294 * compare
2295 */
2296 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2297 atomic_set(&r1_bio->remaining, read_targets);
2298 for (i=0; i<conf->raid_disks; i++) {
2299 bio = r1_bio->bios[i];
2300 if (bio->bi_end_io == end_sync_read) {
ddac7c7e 2301 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2302 generic_make_request(bio);
2303 }
2304 }
2305 } else {
2306 atomic_set(&r1_bio->remaining, 1);
2307 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2308 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2309 generic_make_request(bio);
1da177e4 2310
d11c171e 2311 }
1da177e4
LT
2312 return nr_sectors;
2313}
2314
80c3a6ce
DW
2315static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2316{
2317 if (sectors)
2318 return sectors;
2319
2320 return mddev->dev_sectors;
2321}
2322
709ae487 2323static conf_t *setup_conf(mddev_t *mddev)
1da177e4
LT
2324{
2325 conf_t *conf;
709ae487 2326 int i;
1da177e4
LT
2327 mirror_info_t *disk;
2328 mdk_rdev_t *rdev;
709ae487 2329 int err = -ENOMEM;
1da177e4 2330
9ffae0cf 2331 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1da177e4 2332 if (!conf)
709ae487 2333 goto abort;
1da177e4 2334
9ffae0cf 2335 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1da177e4
LT
2336 GFP_KERNEL);
2337 if (!conf->mirrors)
709ae487 2338 goto abort;
1da177e4 2339
ddaf22ab
N
2340 conf->tmppage = alloc_page(GFP_KERNEL);
2341 if (!conf->tmppage)
709ae487 2342 goto abort;
ddaf22ab 2343
709ae487 2344 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2345 if (!conf->poolinfo)
709ae487 2346 goto abort;
1da177e4
LT
2347 conf->poolinfo->raid_disks = mddev->raid_disks;
2348 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2349 r1bio_pool_free,
2350 conf->poolinfo);
2351 if (!conf->r1bio_pool)
709ae487
N
2352 goto abort;
2353
ed9bfdf1 2354 conf->poolinfo->mddev = mddev;
1da177e4 2355
e7e72bf6 2356 spin_lock_init(&conf->device_lock);
159ec1fc 2357 list_for_each_entry(rdev, &mddev->disks, same_set) {
709ae487 2358 int disk_idx = rdev->raid_disk;
1da177e4
LT
2359 if (disk_idx >= mddev->raid_disks
2360 || disk_idx < 0)
2361 continue;
2362 disk = conf->mirrors + disk_idx;
2363
2364 disk->rdev = rdev;
1da177e4
LT
2365
2366 disk->head_position = 0;
1da177e4
LT
2367 }
2368 conf->raid_disks = mddev->raid_disks;
2369 conf->mddev = mddev;
1da177e4 2370 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2371
2372 spin_lock_init(&conf->resync_lock);
17999be4 2373 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2374
191ea9b2 2375 bio_list_init(&conf->pending_bio_list);
191ea9b2 2376
709ae487 2377 conf->last_used = -1;
1da177e4
LT
2378 for (i = 0; i < conf->raid_disks; i++) {
2379
2380 disk = conf->mirrors + i;
2381
5fd6c1dc
N
2382 if (!disk->rdev ||
2383 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2384 disk->head_position = 0;
918f0238
N
2385 if (disk->rdev)
2386 conf->fullsync = 1;
709ae487
N
2387 } else if (conf->last_used < 0)
2388 /*
2389 * The first working device is used as a
2390 * starting point to read balancing.
2391 */
2392 conf->last_used = i;
1da177e4 2393 }
709ae487
N
2394
2395 err = -EIO;
2396 if (conf->last_used < 0) {
9dd1e2fa 2397 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
709ae487
N
2398 mdname(mddev));
2399 goto abort;
2400 }
2401 err = -ENOMEM;
2402 conf->thread = md_register_thread(raid1d, mddev, NULL);
2403 if (!conf->thread) {
2404 printk(KERN_ERR
9dd1e2fa 2405 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2406 mdname(mddev));
2407 goto abort;
11ce99e6 2408 }
1da177e4 2409
709ae487
N
2410 return conf;
2411
2412 abort:
2413 if (conf) {
2414 if (conf->r1bio_pool)
2415 mempool_destroy(conf->r1bio_pool);
2416 kfree(conf->mirrors);
2417 safe_put_page(conf->tmppage);
2418 kfree(conf->poolinfo);
2419 kfree(conf);
2420 }
2421 return ERR_PTR(err);
2422}
2423
2424static int run(mddev_t *mddev)
2425{
2426 conf_t *conf;
2427 int i;
2428 mdk_rdev_t *rdev;
2429
2430 if (mddev->level != 1) {
9dd1e2fa 2431 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2432 mdname(mddev), mddev->level);
2433 return -EIO;
2434 }
2435 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2436 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2437 mdname(mddev));
2438 return -EIO;
2439 }
1da177e4 2440 /*
709ae487
N
2441 * copy the already verified devices into our private RAID1
2442 * bookkeeping area. [whatever we allocate in run(),
2443 * should be freed in stop()]
1da177e4 2444 */
709ae487
N
2445 if (mddev->private == NULL)
2446 conf = setup_conf(mddev);
2447 else
2448 conf = mddev->private;
1da177e4 2449
709ae487
N
2450 if (IS_ERR(conf))
2451 return PTR_ERR(conf);
1da177e4 2452
709ae487 2453 list_for_each_entry(rdev, &mddev->disks, same_set) {
1ed7242e
JB
2454 if (!mddev->gendisk)
2455 continue;
709ae487
N
2456 disk_stack_limits(mddev->gendisk, rdev->bdev,
2457 rdev->data_offset << 9);
2458 /* as we don't honour merge_bvec_fn, we must never risk
627a2d3c
N
2459 * violating it, so limit ->max_segments to 1 lying within
2460 * a single page, as a one page request is never in violation.
709ae487 2461 */
627a2d3c
N
2462 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2463 blk_queue_max_segments(mddev->queue, 1);
2464 blk_queue_segment_boundary(mddev->queue,
2465 PAGE_CACHE_SIZE - 1);
2466 }
1da177e4 2467 }
191ea9b2 2468
709ae487
N
2469 mddev->degraded = 0;
2470 for (i=0; i < conf->raid_disks; i++)
2471 if (conf->mirrors[i].rdev == NULL ||
2472 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2473 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2474 mddev->degraded++;
2475
2476 if (conf->raid_disks - mddev->degraded == 1)
2477 mddev->recovery_cp = MaxSector;
2478
8c6ac868 2479 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2480 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2481 " -- starting background reconstruction\n",
2482 mdname(mddev));
1da177e4 2483 printk(KERN_INFO
9dd1e2fa 2484 "md/raid1:%s: active with %d out of %d mirrors\n",
1da177e4
LT
2485 mdname(mddev), mddev->raid_disks - mddev->degraded,
2486 mddev->raid_disks);
709ae487 2487
1da177e4
LT
2488 /*
2489 * Ok, everything is just fine now
2490 */
709ae487
N
2491 mddev->thread = conf->thread;
2492 conf->thread = NULL;
2493 mddev->private = conf;
2494
1f403624 2495 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2496
1ed7242e
JB
2497 if (mddev->queue) {
2498 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2499 mddev->queue->backing_dev_info.congested_data = mddev;
2500 }
a91a2785 2501 return md_integrity_register(mddev);
1da177e4
LT
2502}
2503
2504static int stop(mddev_t *mddev)
2505{
070ec55d 2506 conf_t *conf = mddev->private;
4b6d287f 2507 struct bitmap *bitmap = mddev->bitmap;
4b6d287f
N
2508
2509 /* wait for behind writes to complete */
e555190d 2510 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
9dd1e2fa
N
2511 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2512 mdname(mddev));
4b6d287f 2513 /* need to kick something here to make sure I/O goes? */
e555190d
N
2514 wait_event(bitmap->behind_wait,
2515 atomic_read(&bitmap->behind_writes) == 0);
4b6d287f 2516 }
1da177e4 2517
409c57f3
N
2518 raise_barrier(conf);
2519 lower_barrier(conf);
2520
1da177e4
LT
2521 md_unregister_thread(mddev->thread);
2522 mddev->thread = NULL;
1da177e4
LT
2523 if (conf->r1bio_pool)
2524 mempool_destroy(conf->r1bio_pool);
990a8baf
JJ
2525 kfree(conf->mirrors);
2526 kfree(conf->poolinfo);
1da177e4
LT
2527 kfree(conf);
2528 mddev->private = NULL;
2529 return 0;
2530}
2531
2532static int raid1_resize(mddev_t *mddev, sector_t sectors)
2533{
2534 /* no resync is happening, and there is enough space
2535 * on all devices, so we can resize.
2536 * We need to make sure resync covers any new space.
2537 * If the array is shrinking we should possibly wait until
2538 * any io in the removed space completes, but it hardly seems
2539 * worth it.
2540 */
1f403624 2541 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
b522adcd
DW
2542 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2543 return -EINVAL;
f233ea5c 2544 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 2545 revalidate_disk(mddev->gendisk);
b522adcd 2546 if (sectors > mddev->dev_sectors &&
b098636c 2547 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 2548 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
2549 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2550 }
b522adcd 2551 mddev->dev_sectors = sectors;
4b5c7ae8 2552 mddev->resync_max_sectors = sectors;
1da177e4
LT
2553 return 0;
2554}
2555
63c70c4f 2556static int raid1_reshape(mddev_t *mddev)
1da177e4
LT
2557{
2558 /* We need to:
2559 * 1/ resize the r1bio_pool
2560 * 2/ resize conf->mirrors
2561 *
2562 * We allocate a new r1bio_pool if we can.
2563 * Then raise a device barrier and wait until all IO stops.
2564 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
2565 *
2566 * At the same time, we "pack" the devices so that all the missing
2567 * devices have the higher raid_disk numbers.
1da177e4
LT
2568 */
2569 mempool_t *newpool, *oldpool;
2570 struct pool_info *newpoolinfo;
2571 mirror_info_t *newmirrors;
070ec55d 2572 conf_t *conf = mddev->private;
63c70c4f 2573 int cnt, raid_disks;
c04be0aa 2574 unsigned long flags;
b5470dc5 2575 int d, d2, err;
1da177e4 2576
63c70c4f 2577 /* Cannot change chunk_size, layout, or level */
664e7c41 2578 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
2579 mddev->layout != mddev->new_layout ||
2580 mddev->level != mddev->new_level) {
664e7c41 2581 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
2582 mddev->new_layout = mddev->layout;
2583 mddev->new_level = mddev->level;
2584 return -EINVAL;
2585 }
2586
b5470dc5
DW
2587 err = md_allow_write(mddev);
2588 if (err)
2589 return err;
2a2275d6 2590
63c70c4f
N
2591 raid_disks = mddev->raid_disks + mddev->delta_disks;
2592
6ea9c07c
N
2593 if (raid_disks < conf->raid_disks) {
2594 cnt=0;
2595 for (d= 0; d < conf->raid_disks; d++)
2596 if (conf->mirrors[d].rdev)
2597 cnt++;
2598 if (cnt > raid_disks)
1da177e4 2599 return -EBUSY;
6ea9c07c 2600 }
1da177e4
LT
2601
2602 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2603 if (!newpoolinfo)
2604 return -ENOMEM;
2605 newpoolinfo->mddev = mddev;
2606 newpoolinfo->raid_disks = raid_disks;
2607
2608 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2609 r1bio_pool_free, newpoolinfo);
2610 if (!newpool) {
2611 kfree(newpoolinfo);
2612 return -ENOMEM;
2613 }
9ffae0cf 2614 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
1da177e4
LT
2615 if (!newmirrors) {
2616 kfree(newpoolinfo);
2617 mempool_destroy(newpool);
2618 return -ENOMEM;
2619 }
1da177e4 2620
17999be4 2621 raise_barrier(conf);
1da177e4
LT
2622
2623 /* ok, everything is stopped */
2624 oldpool = conf->r1bio_pool;
2625 conf->r1bio_pool = newpool;
6ea9c07c 2626
a88aa786
N
2627 for (d = d2 = 0; d < conf->raid_disks; d++) {
2628 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2629 if (rdev && rdev->raid_disk != d2) {
36fad858 2630 sysfs_unlink_rdev(mddev, rdev);
a88aa786 2631 rdev->raid_disk = d2;
36fad858
NK
2632 sysfs_unlink_rdev(mddev, rdev);
2633 if (sysfs_link_rdev(mddev, rdev))
a88aa786 2634 printk(KERN_WARNING
36fad858
NK
2635 "md/raid1:%s: cannot register rd%d\n",
2636 mdname(mddev), rdev->raid_disk);
6ea9c07c 2637 }
a88aa786
N
2638 if (rdev)
2639 newmirrors[d2++].rdev = rdev;
2640 }
1da177e4
LT
2641 kfree(conf->mirrors);
2642 conf->mirrors = newmirrors;
2643 kfree(conf->poolinfo);
2644 conf->poolinfo = newpoolinfo;
2645
c04be0aa 2646 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 2647 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 2648 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2649 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 2650 mddev->delta_disks = 0;
1da177e4 2651
6ea9c07c 2652 conf->last_used = 0; /* just make sure it is in-range */
17999be4 2653 lower_barrier(conf);
1da177e4
LT
2654
2655 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2656 md_wakeup_thread(mddev->thread);
2657
2658 mempool_destroy(oldpool);
2659 return 0;
2660}
2661
500af87a 2662static void raid1_quiesce(mddev_t *mddev, int state)
36fa3063 2663{
070ec55d 2664 conf_t *conf = mddev->private;
36fa3063
N
2665
2666 switch(state) {
6eef4b21
N
2667 case 2: /* wake for suspend */
2668 wake_up(&conf->wait_barrier);
2669 break;
9e6603da 2670 case 1:
17999be4 2671 raise_barrier(conf);
36fa3063 2672 break;
9e6603da 2673 case 0:
17999be4 2674 lower_barrier(conf);
36fa3063
N
2675 break;
2676 }
36fa3063
N
2677}
2678
709ae487
N
2679static void *raid1_takeover(mddev_t *mddev)
2680{
2681 /* raid1 can take over:
2682 * raid5 with 2 devices, any layout or chunk size
2683 */
2684 if (mddev->level == 5 && mddev->raid_disks == 2) {
2685 conf_t *conf;
2686 mddev->new_level = 1;
2687 mddev->new_layout = 0;
2688 mddev->new_chunk_sectors = 0;
2689 conf = setup_conf(mddev);
2690 if (!IS_ERR(conf))
2691 conf->barrier = 1;
2692 return conf;
2693 }
2694 return ERR_PTR(-EINVAL);
2695}
1da177e4 2696
2604b703 2697static struct mdk_personality raid1_personality =
1da177e4
LT
2698{
2699 .name = "raid1",
2604b703 2700 .level = 1,
1da177e4
LT
2701 .owner = THIS_MODULE,
2702 .make_request = make_request,
2703 .run = run,
2704 .stop = stop,
2705 .status = status,
2706 .error_handler = error,
2707 .hot_add_disk = raid1_add_disk,
2708 .hot_remove_disk= raid1_remove_disk,
2709 .spare_active = raid1_spare_active,
2710 .sync_request = sync_request,
2711 .resize = raid1_resize,
80c3a6ce 2712 .size = raid1_size,
63c70c4f 2713 .check_reshape = raid1_reshape,
36fa3063 2714 .quiesce = raid1_quiesce,
709ae487 2715 .takeover = raid1_takeover,
1da177e4
LT
2716};
2717
2718static int __init raid_init(void)
2719{
2604b703 2720 return register_md_personality(&raid1_personality);
1da177e4
LT
2721}
2722
2723static void raid_exit(void)
2724{
2604b703 2725 unregister_md_personality(&raid1_personality);
1da177e4
LT
2726}
2727
2728module_init(raid_init);
2729module_exit(raid_exit);
2730MODULE_LICENSE("GPL");
0efb9e61 2731MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 2732MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 2733MODULE_ALIAS("md-raid1");
2604b703 2734MODULE_ALIAS("md-level-1");
This page took 0.856869 seconds and 5 git commands to generate.