block: kill GENHD_FL_FAIL and use part0->make_it_fail
[deliverable/linux.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
191ea9b2 34#include "dm-bio-list.h"
1da177e4 35#include <linux/raid/raid1.h>
191ea9b2
N
36#include <linux/raid/bitmap.h>
37
38#define DEBUG 0
39#if DEBUG
40#define PRINTK(x...) printk(x)
41#else
42#define PRINTK(x...)
43#endif
1da177e4
LT
44
45/*
46 * Number of guaranteed r1bios in case of extreme VM load:
47 */
48#define NR_RAID1_BIOS 256
49
1da177e4
LT
50
51static void unplug_slaves(mddev_t *mddev);
52
17999be4
N
53static void allow_barrier(conf_t *conf);
54static void lower_barrier(conf_t *conf);
1da177e4 55
dd0fc66f 56static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
57{
58 struct pool_info *pi = data;
59 r1bio_t *r1_bio;
60 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
61
62 /* allocate a r1bio with room for raid_disks entries in the bios array */
9ffae0cf
N
63 r1_bio = kzalloc(size, gfp_flags);
64 if (!r1_bio)
1da177e4
LT
65 unplug_slaves(pi->mddev);
66
67 return r1_bio;
68}
69
70static void r1bio_pool_free(void *r1_bio, void *data)
71{
72 kfree(r1_bio);
73}
74
75#define RESYNC_BLOCK_SIZE (64*1024)
76//#define RESYNC_BLOCK_SIZE PAGE_SIZE
77#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
78#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
79#define RESYNC_WINDOW (2048*1024)
80
dd0fc66f 81static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
82{
83 struct pool_info *pi = data;
84 struct page *page;
85 r1bio_t *r1_bio;
86 struct bio *bio;
87 int i, j;
88
89 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
90 if (!r1_bio) {
91 unplug_slaves(pi->mddev);
92 return NULL;
93 }
94
95 /*
96 * Allocate bios : 1 for reading, n-1 for writing
97 */
98 for (j = pi->raid_disks ; j-- ; ) {
99 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
100 if (!bio)
101 goto out_free_bio;
102 r1_bio->bios[j] = bio;
103 }
104 /*
105 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
106 * the first bio.
107 * If this is a user-requested check/repair, allocate
108 * RESYNC_PAGES for each bio.
1da177e4 109 */
d11c171e
N
110 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
111 j = pi->raid_disks;
112 else
113 j = 1;
114 while(j--) {
115 bio = r1_bio->bios[j];
116 for (i = 0; i < RESYNC_PAGES; i++) {
117 page = alloc_page(gfp_flags);
118 if (unlikely(!page))
119 goto out_free_pages;
120
121 bio->bi_io_vec[i].bv_page = page;
122 }
123 }
124 /* If not user-requests, copy the page pointers to all bios */
125 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
126 for (i=0; i<RESYNC_PAGES ; i++)
127 for (j=1; j<pi->raid_disks; j++)
128 r1_bio->bios[j]->bi_io_vec[i].bv_page =
129 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
130 }
131
132 r1_bio->master_bio = NULL;
133
134 return r1_bio;
135
136out_free_pages:
d11c171e
N
137 for (i=0; i < RESYNC_PAGES ; i++)
138 for (j=0 ; j < pi->raid_disks; j++)
1345b1d8 139 safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 140 j = -1;
1da177e4
LT
141out_free_bio:
142 while ( ++j < pi->raid_disks )
143 bio_put(r1_bio->bios[j]);
144 r1bio_pool_free(r1_bio, data);
145 return NULL;
146}
147
148static void r1buf_pool_free(void *__r1_bio, void *data)
149{
150 struct pool_info *pi = data;
d11c171e 151 int i,j;
1da177e4 152 r1bio_t *r1bio = __r1_bio;
1da177e4 153
d11c171e
N
154 for (i = 0; i < RESYNC_PAGES; i++)
155 for (j = pi->raid_disks; j-- ;) {
156 if (j == 0 ||
157 r1bio->bios[j]->bi_io_vec[i].bv_page !=
158 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 160 }
1da177e4
LT
161 for (i=0 ; i < pi->raid_disks; i++)
162 bio_put(r1bio->bios[i]);
163
164 r1bio_pool_free(r1bio, data);
165}
166
167static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
168{
169 int i;
170
171 for (i = 0; i < conf->raid_disks; i++) {
172 struct bio **bio = r1_bio->bios + i;
cf30a473 173 if (*bio && *bio != IO_BLOCKED)
1da177e4
LT
174 bio_put(*bio);
175 *bio = NULL;
176 }
177}
178
858119e1 179static void free_r1bio(r1bio_t *r1_bio)
1da177e4 180{
1da177e4
LT
181 conf_t *conf = mddev_to_conf(r1_bio->mddev);
182
183 /*
184 * Wake up any possible resync thread that waits for the device
185 * to go idle.
186 */
17999be4 187 allow_barrier(conf);
1da177e4
LT
188
189 put_all_bios(conf, r1_bio);
190 mempool_free(r1_bio, conf->r1bio_pool);
191}
192
858119e1 193static void put_buf(r1bio_t *r1_bio)
1da177e4
LT
194{
195 conf_t *conf = mddev_to_conf(r1_bio->mddev);
3e198f78
N
196 int i;
197
198 for (i=0; i<conf->raid_disks; i++) {
199 struct bio *bio = r1_bio->bios[i];
200 if (bio->bi_end_io)
201 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
202 }
1da177e4
LT
203
204 mempool_free(r1_bio, conf->r1buf_pool);
205
17999be4 206 lower_barrier(conf);
1da177e4
LT
207}
208
209static void reschedule_retry(r1bio_t *r1_bio)
210{
211 unsigned long flags;
212 mddev_t *mddev = r1_bio->mddev;
213 conf_t *conf = mddev_to_conf(mddev);
214
215 spin_lock_irqsave(&conf->device_lock, flags);
216 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 217 conf->nr_queued ++;
1da177e4
LT
218 spin_unlock_irqrestore(&conf->device_lock, flags);
219
17999be4 220 wake_up(&conf->wait_barrier);
1da177e4
LT
221 md_wakeup_thread(mddev->thread);
222}
223
224/*
225 * raid_end_bio_io() is called when we have finished servicing a mirrored
226 * operation and are ready to return a success/failure code to the buffer
227 * cache layer.
228 */
229static void raid_end_bio_io(r1bio_t *r1_bio)
230{
231 struct bio *bio = r1_bio->master_bio;
232
4b6d287f
N
233 /* if nobody has done the final endio yet, do it now */
234 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
235 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
236 (bio_data_dir(bio) == WRITE) ? "write" : "read",
237 (unsigned long long) bio->bi_sector,
238 (unsigned long long) bio->bi_sector +
239 (bio->bi_size >> 9) - 1);
240
6712ecf8 241 bio_endio(bio,
4b6d287f
N
242 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
243 }
1da177e4
LT
244 free_r1bio(r1_bio);
245}
246
247/*
248 * Update disk head position estimator based on IRQ completion info.
249 */
250static inline void update_head_pos(int disk, r1bio_t *r1_bio)
251{
252 conf_t *conf = mddev_to_conf(r1_bio->mddev);
253
254 conf->mirrors[disk].head_position =
255 r1_bio->sector + (r1_bio->sectors);
256}
257
6712ecf8 258static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
259{
260 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
261 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
262 int mirror;
263 conf_t *conf = mddev_to_conf(r1_bio->mddev);
264
1da177e4
LT
265 mirror = r1_bio->read_disk;
266 /*
267 * this branch is our 'one mirror IO has finished' event handler:
268 */
ddaf22ab
N
269 update_head_pos(mirror, r1_bio);
270
dd00a99e
N
271 if (uptodate)
272 set_bit(R1BIO_Uptodate, &r1_bio->state);
273 else {
274 /* If all other devices have failed, we want to return
275 * the error upwards rather than fail the last device.
276 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 277 */
dd00a99e
N
278 unsigned long flags;
279 spin_lock_irqsave(&conf->device_lock, flags);
280 if (r1_bio->mddev->degraded == conf->raid_disks ||
281 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
282 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
283 uptodate = 1;
284 spin_unlock_irqrestore(&conf->device_lock, flags);
285 }
1da177e4 286
dd00a99e 287 if (uptodate)
1da177e4 288 raid_end_bio_io(r1_bio);
dd00a99e 289 else {
1da177e4
LT
290 /*
291 * oops, read error:
292 */
293 char b[BDEVNAME_SIZE];
294 if (printk_ratelimit())
295 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
296 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
297 reschedule_retry(r1_bio);
298 }
299
300 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
1da177e4
LT
301}
302
6712ecf8 303static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
304{
305 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
306 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
a9701a30 307 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
1da177e4 308 conf_t *conf = mddev_to_conf(r1_bio->mddev);
04b857f7 309 struct bio *to_put = NULL;
1da177e4 310
1da177e4
LT
311
312 for (mirror = 0; mirror < conf->raid_disks; mirror++)
313 if (r1_bio->bios[mirror] == bio)
314 break;
315
bea27718 316 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
a9701a30
N
317 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
318 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
319 r1_bio->mddev->barriers_work = 0;
5e7dd2ab 320 /* Don't rdev_dec_pending in this branch - keep it for the retry */
a9701a30 321 } else {
1da177e4 322 /*
a9701a30 323 * this branch is our 'one mirror IO has finished' event handler:
1da177e4 324 */
a9701a30 325 r1_bio->bios[mirror] = NULL;
04b857f7 326 to_put = bio;
a9701a30
N
327 if (!uptodate) {
328 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
329 /* an I/O failed, we can't clear the bitmap */
330 set_bit(R1BIO_Degraded, &r1_bio->state);
331 } else
332 /*
333 * Set R1BIO_Uptodate in our master bio, so that
334 * we will return a good error code for to the higher
335 * levels even if IO on some other mirrored buffer fails.
336 *
337 * The 'master' represents the composite IO operation to
338 * user-side. So if something waits for IO, then it will
339 * wait for the 'master' bio.
340 */
341 set_bit(R1BIO_Uptodate, &r1_bio->state);
342
343 update_head_pos(mirror, r1_bio);
344
345 if (behind) {
346 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
347 atomic_dec(&r1_bio->behind_remaining);
348
349 /* In behind mode, we ACK the master bio once the I/O has safely
350 * reached all non-writemostly disks. Setting the Returned bit
351 * ensures that this gets done only once -- we don't ever want to
352 * return -EIO here, instead we'll wait */
353
354 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
355 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
356 /* Maybe we can return now */
357 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
358 struct bio *mbio = r1_bio->master_bio;
359 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
360 (unsigned long long) mbio->bi_sector,
361 (unsigned long long) mbio->bi_sector +
362 (mbio->bi_size >> 9) - 1);
6712ecf8 363 bio_endio(mbio, 0);
a9701a30 364 }
4b6d287f
N
365 }
366 }
5e7dd2ab 367 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
4b6d287f 368 }
1da177e4
LT
369 /*
370 *
371 * Let's see if all mirrored write operations have finished
372 * already.
373 */
374 if (atomic_dec_and_test(&r1_bio->remaining)) {
c70810b3 375 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
a9701a30 376 reschedule_retry(r1_bio);
c70810b3
N
377 else {
378 /* it really is the end of this request */
379 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
380 /* free extra copy of the data pages */
381 int i = bio->bi_vcnt;
382 while (i--)
383 safe_put_page(bio->bi_io_vec[i].bv_page);
384 }
385 /* clear the bitmap if all writes complete successfully */
386 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
387 r1_bio->sectors,
388 !test_bit(R1BIO_Degraded, &r1_bio->state),
389 behind);
390 md_write_end(r1_bio->mddev);
391 raid_end_bio_io(r1_bio);
4b6d287f 392 }
1da177e4 393 }
c70810b3 394
04b857f7
N
395 if (to_put)
396 bio_put(to_put);
1da177e4
LT
397}
398
399
400/*
401 * This routine returns the disk from which the requested read should
402 * be done. There is a per-array 'next expected sequential IO' sector
403 * number - if this matches on the next IO then we use the last disk.
404 * There is also a per-disk 'last know head position' sector that is
405 * maintained from IRQ contexts, both the normal and the resync IO
406 * completion handlers update this position correctly. If there is no
407 * perfect sequential match then we pick the disk whose head is closest.
408 *
409 * If there are 2 mirrors in the same 2 devices, performance degrades
410 * because position is mirror, not device based.
411 *
412 * The rdev for the device selected will have nr_pending incremented.
413 */
414static int read_balance(conf_t *conf, r1bio_t *r1_bio)
415{
416 const unsigned long this_sector = r1_bio->sector;
417 int new_disk = conf->last_used, disk = new_disk;
8ddf9efe 418 int wonly_disk = -1;
1da177e4
LT
419 const int sectors = r1_bio->sectors;
420 sector_t new_distance, current_distance;
8ddf9efe 421 mdk_rdev_t *rdev;
1da177e4
LT
422
423 rcu_read_lock();
424 /*
8ddf9efe 425 * Check if we can balance. We can balance on the whole
1da177e4
LT
426 * device if no resync is going on, or below the resync window.
427 * We take the first readable disk when above the resync window.
428 */
429 retry:
430 if (conf->mddev->recovery_cp < MaxSector &&
431 (this_sector + sectors >= conf->next_resync)) {
432 /* Choose the first operation device, for consistancy */
433 new_disk = 0;
434
d6065f7b 435 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
cf30a473 436 r1_bio->bios[new_disk] == IO_BLOCKED ||
b2d444d7 437 !rdev || !test_bit(In_sync, &rdev->flags)
8ddf9efe 438 || test_bit(WriteMostly, &rdev->flags);
d6065f7b 439 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
8ddf9efe 440
cf30a473
N
441 if (rdev && test_bit(In_sync, &rdev->flags) &&
442 r1_bio->bios[new_disk] != IO_BLOCKED)
8ddf9efe
N
443 wonly_disk = new_disk;
444
445 if (new_disk == conf->raid_disks - 1) {
446 new_disk = wonly_disk;
1da177e4
LT
447 break;
448 }
449 }
450 goto rb_out;
451 }
452
453
454 /* make sure the disk is operational */
d6065f7b 455 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
cf30a473 456 r1_bio->bios[new_disk] == IO_BLOCKED ||
b2d444d7 457 !rdev || !test_bit(In_sync, &rdev->flags) ||
8ddf9efe 458 test_bit(WriteMostly, &rdev->flags);
d6065f7b 459 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
8ddf9efe 460
cf30a473
N
461 if (rdev && test_bit(In_sync, &rdev->flags) &&
462 r1_bio->bios[new_disk] != IO_BLOCKED)
8ddf9efe
N
463 wonly_disk = new_disk;
464
1da177e4
LT
465 if (new_disk <= 0)
466 new_disk = conf->raid_disks;
467 new_disk--;
468 if (new_disk == disk) {
8ddf9efe
N
469 new_disk = wonly_disk;
470 break;
1da177e4
LT
471 }
472 }
8ddf9efe
N
473
474 if (new_disk < 0)
475 goto rb_out;
476
1da177e4
LT
477 disk = new_disk;
478 /* now disk == new_disk == starting point for search */
479
480 /*
481 * Don't change to another disk for sequential reads:
482 */
483 if (conf->next_seq_sect == this_sector)
484 goto rb_out;
485 if (this_sector == conf->mirrors[new_disk].head_position)
486 goto rb_out;
487
488 current_distance = abs(this_sector - conf->mirrors[disk].head_position);
489
490 /* Find the disk whose head is closest */
491
492 do {
493 if (disk <= 0)
494 disk = conf->raid_disks;
495 disk--;
496
d6065f7b 497 rdev = rcu_dereference(conf->mirrors[disk].rdev);
8ddf9efe 498
cf30a473 499 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
b2d444d7 500 !test_bit(In_sync, &rdev->flags) ||
8ddf9efe 501 test_bit(WriteMostly, &rdev->flags))
1da177e4
LT
502 continue;
503
504 if (!atomic_read(&rdev->nr_pending)) {
505 new_disk = disk;
1da177e4
LT
506 break;
507 }
508 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
509 if (new_distance < current_distance) {
510 current_distance = new_distance;
511 new_disk = disk;
1da177e4
LT
512 }
513 } while (disk != conf->last_used);
514
8ddf9efe 515 rb_out:
1da177e4
LT
516
517
518 if (new_disk >= 0) {
d6065f7b 519 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
8ddf9efe
N
520 if (!rdev)
521 goto retry;
522 atomic_inc(&rdev->nr_pending);
b2d444d7 523 if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
524 /* cannot risk returning a device that failed
525 * before we inc'ed nr_pending
526 */
03c902e1 527 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
528 goto retry;
529 }
8ddf9efe
N
530 conf->next_seq_sect = this_sector + sectors;
531 conf->last_used = new_disk;
1da177e4
LT
532 }
533 rcu_read_unlock();
534
535 return new_disk;
536}
537
538static void unplug_slaves(mddev_t *mddev)
539{
540 conf_t *conf = mddev_to_conf(mddev);
541 int i;
542
543 rcu_read_lock();
544 for (i=0; i<mddev->raid_disks; i++) {
d6065f7b 545 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
b2d444d7 546 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 547 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
1da177e4
LT
548
549 atomic_inc(&rdev->nr_pending);
550 rcu_read_unlock();
551
2ad8b1ef 552 blk_unplug(r_queue);
1da177e4
LT
553
554 rdev_dec_pending(rdev, mddev);
555 rcu_read_lock();
556 }
557 }
558 rcu_read_unlock();
559}
560
165125e1 561static void raid1_unplug(struct request_queue *q)
1da177e4 562{
191ea9b2
N
563 mddev_t *mddev = q->queuedata;
564
565 unplug_slaves(mddev);
566 md_wakeup_thread(mddev->thread);
1da177e4
LT
567}
568
0d129228
N
569static int raid1_congested(void *data, int bits)
570{
571 mddev_t *mddev = data;
572 conf_t *conf = mddev_to_conf(mddev);
573 int i, ret = 0;
574
575 rcu_read_lock();
576 for (i = 0; i < mddev->raid_disks; i++) {
577 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
578 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 579 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
580
581 /* Note the '|| 1' - when read_balance prefers
582 * non-congested targets, it can be removed
583 */
584 if ((bits & (1<<BDI_write_congested)) || 1)
585 ret |= bdi_congested(&q->backing_dev_info, bits);
586 else
587 ret &= bdi_congested(&q->backing_dev_info, bits);
588 }
589 }
590 rcu_read_unlock();
591 return ret;
592}
593
594
a35e63ef
N
595static int flush_pending_writes(conf_t *conf)
596{
597 /* Any writes that have been queued but are awaiting
598 * bitmap updates get flushed here.
599 * We return 1 if any requests were actually submitted.
600 */
601 int rv = 0;
602
603 spin_lock_irq(&conf->device_lock);
604
605 if (conf->pending_bio_list.head) {
606 struct bio *bio;
607 bio = bio_list_get(&conf->pending_bio_list);
608 blk_remove_plug(conf->mddev->queue);
609 spin_unlock_irq(&conf->device_lock);
610 /* flush any pending bitmap writes to
611 * disk before proceeding w/ I/O */
612 bitmap_unplug(conf->mddev->bitmap);
613
614 while (bio) { /* submit pending writes */
615 struct bio *next = bio->bi_next;
616 bio->bi_next = NULL;
617 generic_make_request(bio);
618 bio = next;
619 }
620 rv = 1;
621 } else
622 spin_unlock_irq(&conf->device_lock);
623 return rv;
624}
625
17999be4
N
626/* Barriers....
627 * Sometimes we need to suspend IO while we do something else,
628 * either some resync/recovery, or reconfigure the array.
629 * To do this we raise a 'barrier'.
630 * The 'barrier' is a counter that can be raised multiple times
631 * to count how many activities are happening which preclude
632 * normal IO.
633 * We can only raise the barrier if there is no pending IO.
634 * i.e. if nr_pending == 0.
635 * We choose only to raise the barrier if no-one is waiting for the
636 * barrier to go down. This means that as soon as an IO request
637 * is ready, no other operations which require a barrier will start
638 * until the IO request has had a chance.
639 *
640 * So: regular IO calls 'wait_barrier'. When that returns there
641 * is no backgroup IO happening, It must arrange to call
642 * allow_barrier when it has finished its IO.
643 * backgroup IO calls must call raise_barrier. Once that returns
644 * there is no normal IO happeing. It must arrange to call
645 * lower_barrier when the particular background IO completes.
1da177e4
LT
646 */
647#define RESYNC_DEPTH 32
648
17999be4 649static void raise_barrier(conf_t *conf)
1da177e4
LT
650{
651 spin_lock_irq(&conf->resync_lock);
17999be4
N
652
653 /* Wait until no block IO is waiting */
654 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
655 conf->resync_lock,
656 raid1_unplug(conf->mddev->queue));
657
658 /* block any new IO from starting */
659 conf->barrier++;
660
661 /* No wait for all pending IO to complete */
662 wait_event_lock_irq(conf->wait_barrier,
663 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
664 conf->resync_lock,
665 raid1_unplug(conf->mddev->queue));
666
667 spin_unlock_irq(&conf->resync_lock);
668}
669
670static void lower_barrier(conf_t *conf)
671{
672 unsigned long flags;
673 spin_lock_irqsave(&conf->resync_lock, flags);
674 conf->barrier--;
675 spin_unlock_irqrestore(&conf->resync_lock, flags);
676 wake_up(&conf->wait_barrier);
677}
678
679static void wait_barrier(conf_t *conf)
680{
681 spin_lock_irq(&conf->resync_lock);
682 if (conf->barrier) {
683 conf->nr_waiting++;
684 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
685 conf->resync_lock,
686 raid1_unplug(conf->mddev->queue));
687 conf->nr_waiting--;
1da177e4 688 }
17999be4 689 conf->nr_pending++;
1da177e4
LT
690 spin_unlock_irq(&conf->resync_lock);
691}
692
17999be4
N
693static void allow_barrier(conf_t *conf)
694{
695 unsigned long flags;
696 spin_lock_irqsave(&conf->resync_lock, flags);
697 conf->nr_pending--;
698 spin_unlock_irqrestore(&conf->resync_lock, flags);
699 wake_up(&conf->wait_barrier);
700}
701
ddaf22ab
N
702static void freeze_array(conf_t *conf)
703{
704 /* stop syncio and normal IO and wait for everything to
705 * go quite.
706 * We increment barrier and nr_waiting, and then
1c830532
N
707 * wait until nr_pending match nr_queued+1
708 * This is called in the context of one normal IO request
709 * that has failed. Thus any sync request that might be pending
710 * will be blocked by nr_pending, and we need to wait for
711 * pending IO requests to complete or be queued for re-try.
712 * Thus the number queued (nr_queued) plus this request (1)
713 * must match the number of pending IOs (nr_pending) before
714 * we continue.
ddaf22ab
N
715 */
716 spin_lock_irq(&conf->resync_lock);
717 conf->barrier++;
718 conf->nr_waiting++;
719 wait_event_lock_irq(conf->wait_barrier,
1c830532 720 conf->nr_pending == conf->nr_queued+1,
ddaf22ab 721 conf->resync_lock,
a35e63ef
N
722 ({ flush_pending_writes(conf);
723 raid1_unplug(conf->mddev->queue); }));
ddaf22ab
N
724 spin_unlock_irq(&conf->resync_lock);
725}
726static void unfreeze_array(conf_t *conf)
727{
728 /* reverse the effect of the freeze */
729 spin_lock_irq(&conf->resync_lock);
730 conf->barrier--;
731 conf->nr_waiting--;
732 wake_up(&conf->wait_barrier);
733 spin_unlock_irq(&conf->resync_lock);
734}
735
17999be4 736
4b6d287f
N
737/* duplicate the data pages for behind I/O */
738static struct page **alloc_behind_pages(struct bio *bio)
739{
740 int i;
741 struct bio_vec *bvec;
9ffae0cf 742 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
4b6d287f
N
743 GFP_NOIO);
744 if (unlikely(!pages))
745 goto do_sync_io;
746
4b6d287f
N
747 bio_for_each_segment(bvec, bio, i) {
748 pages[i] = alloc_page(GFP_NOIO);
749 if (unlikely(!pages[i]))
750 goto do_sync_io;
751 memcpy(kmap(pages[i]) + bvec->bv_offset,
752 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
753 kunmap(pages[i]);
754 kunmap(bvec->bv_page);
755 }
756
757 return pages;
758
759do_sync_io:
760 if (pages)
761 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
2d1f3b5d 762 put_page(pages[i]);
4b6d287f
N
763 kfree(pages);
764 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
765 return NULL;
766}
767
165125e1 768static int make_request(struct request_queue *q, struct bio * bio)
1da177e4
LT
769{
770 mddev_t *mddev = q->queuedata;
771 conf_t *conf = mddev_to_conf(mddev);
772 mirror_info_t *mirror;
773 r1bio_t *r1_bio;
774 struct bio *read_bio;
191ea9b2 775 int i, targets = 0, disks;
84255d10 776 struct bitmap *bitmap;
191ea9b2
N
777 unsigned long flags;
778 struct bio_list bl;
4b6d287f 779 struct page **behind_pages = NULL;
a362357b 780 const int rw = bio_data_dir(bio);
e3881a68 781 const int do_sync = bio_sync(bio);
c9959059 782 int cpu, do_barriers;
6bfe0b49 783 mdk_rdev_t *blocked_rdev;
191ea9b2 784
1da177e4
LT
785 /*
786 * Register the new request and wait if the reconstruction
787 * thread has put up a bar for new requests.
788 * Continue immediately if no resync is active currently.
62de608d
N
789 * We test barriers_work *after* md_write_start as md_write_start
790 * may cause the first superblock write, and that will check out
791 * if barriers work.
1da177e4 792 */
62de608d 793
3d310eb7
N
794 md_write_start(mddev, bio); /* wait on superblock update early */
795
62de608d
N
796 if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
797 if (rw == WRITE)
798 md_write_end(mddev);
6712ecf8 799 bio_endio(bio, -EOPNOTSUPP);
62de608d
N
800 return 0;
801 }
802
17999be4 803 wait_barrier(conf);
1da177e4 804
84255d10
N
805 bitmap = mddev->bitmap;
806
c9959059
TH
807 cpu = disk_stat_lock();
808 disk_stat_inc(cpu, mddev->gendisk, ios[rw]);
809 disk_stat_add(cpu, mddev->gendisk, sectors[rw], bio_sectors(bio));
810 disk_stat_unlock();
1da177e4
LT
811
812 /*
813 * make_request() can abort the operation when READA is being
814 * used and no empty request is available.
815 *
816 */
817 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
818
819 r1_bio->master_bio = bio;
820 r1_bio->sectors = bio->bi_size >> 9;
191ea9b2 821 r1_bio->state = 0;
1da177e4
LT
822 r1_bio->mddev = mddev;
823 r1_bio->sector = bio->bi_sector;
824
a362357b 825 if (rw == READ) {
1da177e4
LT
826 /*
827 * read balancing logic:
828 */
829 int rdisk = read_balance(conf, r1_bio);
830
831 if (rdisk < 0) {
832 /* couldn't find anywhere to read from */
833 raid_end_bio_io(r1_bio);
834 return 0;
835 }
836 mirror = conf->mirrors + rdisk;
837
838 r1_bio->read_disk = rdisk;
839
840 read_bio = bio_clone(bio, GFP_NOIO);
841
842 r1_bio->bios[rdisk] = read_bio;
843
844 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
845 read_bio->bi_bdev = mirror->rdev->bdev;
846 read_bio->bi_end_io = raid1_end_read_request;
e3881a68 847 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
848 read_bio->bi_private = r1_bio;
849
850 generic_make_request(read_bio);
851 return 0;
852 }
853
854 /*
855 * WRITE:
856 */
857 /* first select target devices under spinlock and
858 * inc refcount on their rdev. Record them by setting
859 * bios[x] to bio
860 */
861 disks = conf->raid_disks;
191ea9b2
N
862#if 0
863 { static int first=1;
864 if (first) printk("First Write sector %llu disks %d\n",
865 (unsigned long long)r1_bio->sector, disks);
866 first = 0;
867 }
868#endif
6bfe0b49
DW
869 retry_write:
870 blocked_rdev = NULL;
1da177e4
LT
871 rcu_read_lock();
872 for (i = 0; i < disks; i++) {
6bfe0b49
DW
873 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
874 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
875 atomic_inc(&rdev->nr_pending);
876 blocked_rdev = rdev;
877 break;
878 }
879 if (rdev && !test_bit(Faulty, &rdev->flags)) {
1da177e4 880 atomic_inc(&rdev->nr_pending);
b2d444d7 881 if (test_bit(Faulty, &rdev->flags)) {
03c902e1 882 rdev_dec_pending(rdev, mddev);
1da177e4
LT
883 r1_bio->bios[i] = NULL;
884 } else
885 r1_bio->bios[i] = bio;
191ea9b2 886 targets++;
1da177e4
LT
887 } else
888 r1_bio->bios[i] = NULL;
889 }
890 rcu_read_unlock();
891
6bfe0b49
DW
892 if (unlikely(blocked_rdev)) {
893 /* Wait for this device to become unblocked */
894 int j;
895
896 for (j = 0; j < i; j++)
897 if (r1_bio->bios[j])
898 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
899
900 allow_barrier(conf);
901 md_wait_for_blocked_rdev(blocked_rdev, mddev);
902 wait_barrier(conf);
903 goto retry_write;
904 }
905
4b6d287f
N
906 BUG_ON(targets == 0); /* we never fail the last device */
907
191ea9b2
N
908 if (targets < conf->raid_disks) {
909 /* array is degraded, we will not clear the bitmap
910 * on I/O completion (see raid1_end_write_request) */
911 set_bit(R1BIO_Degraded, &r1_bio->state);
912 }
913
4b6d287f
N
914 /* do behind I/O ? */
915 if (bitmap &&
916 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
917 (behind_pages = alloc_behind_pages(bio)) != NULL)
918 set_bit(R1BIO_BehindIO, &r1_bio->state);
919
191ea9b2 920 atomic_set(&r1_bio->remaining, 0);
4b6d287f 921 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 922
04b857f7 923 do_barriers = bio_barrier(bio);
a9701a30
N
924 if (do_barriers)
925 set_bit(R1BIO_Barrier, &r1_bio->state);
926
191ea9b2 927 bio_list_init(&bl);
1da177e4
LT
928 for (i = 0; i < disks; i++) {
929 struct bio *mbio;
930 if (!r1_bio->bios[i])
931 continue;
932
933 mbio = bio_clone(bio, GFP_NOIO);
934 r1_bio->bios[i] = mbio;
935
936 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
937 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
938 mbio->bi_end_io = raid1_end_write_request;
e3881a68 939 mbio->bi_rw = WRITE | do_barriers | do_sync;
1da177e4
LT
940 mbio->bi_private = r1_bio;
941
4b6d287f
N
942 if (behind_pages) {
943 struct bio_vec *bvec;
944 int j;
945
946 /* Yes, I really want the '__' version so that
947 * we clear any unused pointer in the io_vec, rather
948 * than leave them unchanged. This is important
949 * because when we come to free the pages, we won't
950 * know the originial bi_idx, so we just free
951 * them all
952 */
953 __bio_for_each_segment(bvec, mbio, j, 0)
954 bvec->bv_page = behind_pages[j];
955 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
956 atomic_inc(&r1_bio->behind_remaining);
957 }
958
1da177e4 959 atomic_inc(&r1_bio->remaining);
1da177e4 960
191ea9b2 961 bio_list_add(&bl, mbio);
1da177e4 962 }
4b6d287f 963 kfree(behind_pages); /* the behind pages are attached to the bios now */
1da177e4 964
4b6d287f
N
965 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
966 test_bit(R1BIO_BehindIO, &r1_bio->state));
191ea9b2
N
967 spin_lock_irqsave(&conf->device_lock, flags);
968 bio_list_merge(&conf->pending_bio_list, &bl);
969 bio_list_init(&bl);
970
971 blk_plug_device(mddev->queue);
972 spin_unlock_irqrestore(&conf->device_lock, flags);
973
a35e63ef
N
974 /* In case raid1d snuck into freeze_array */
975 wake_up(&conf->wait_barrier);
976
e3881a68
LE
977 if (do_sync)
978 md_wakeup_thread(mddev->thread);
191ea9b2
N
979#if 0
980 while ((bio = bio_list_pop(&bl)) != NULL)
981 generic_make_request(bio);
982#endif
983
1da177e4
LT
984 return 0;
985}
986
987static void status(struct seq_file *seq, mddev_t *mddev)
988{
989 conf_t *conf = mddev_to_conf(mddev);
990 int i;
991
992 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 993 conf->raid_disks - mddev->degraded);
ddac7c7e
N
994 rcu_read_lock();
995 for (i = 0; i < conf->raid_disks; i++) {
996 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 997 seq_printf(seq, "%s",
ddac7c7e
N
998 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
999 }
1000 rcu_read_unlock();
1da177e4
LT
1001 seq_printf(seq, "]");
1002}
1003
1004
1005static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1006{
1007 char b[BDEVNAME_SIZE];
1008 conf_t *conf = mddev_to_conf(mddev);
1009
1010 /*
1011 * If it is not operational, then we have already marked it as dead
1012 * else if it is the last working disks, ignore the error, let the
1013 * next level up know.
1014 * else mark the drive as failed
1015 */
b2d444d7 1016 if (test_bit(In_sync, &rdev->flags)
11ce99e6 1017 && (conf->raid_disks - mddev->degraded) == 1)
1da177e4
LT
1018 /*
1019 * Don't fail the drive, act as though we were just a
1020 * normal single drive
1021 */
1022 return;
c04be0aa
N
1023 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1024 unsigned long flags;
1025 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1026 mddev->degraded++;
dd00a99e 1027 set_bit(Faulty, &rdev->flags);
c04be0aa 1028 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1029 /*
1030 * if recovery is running, make sure it aborts.
1031 */
dfc70645 1032 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
dd00a99e
N
1033 } else
1034 set_bit(Faulty, &rdev->flags);
850b2b42 1035 set_bit(MD_CHANGE_DEVS, &mddev->flags);
d7a420c9
NA
1036 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n"
1037 "raid1: Operation continuing on %d devices.\n",
11ce99e6 1038 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4
LT
1039}
1040
1041static void print_conf(conf_t *conf)
1042{
1043 int i;
1da177e4
LT
1044
1045 printk("RAID1 conf printout:\n");
1046 if (!conf) {
1047 printk("(!conf)\n");
1048 return;
1049 }
11ce99e6 1050 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1051 conf->raid_disks);
1052
ddac7c7e 1053 rcu_read_lock();
1da177e4
LT
1054 for (i = 0; i < conf->raid_disks; i++) {
1055 char b[BDEVNAME_SIZE];
ddac7c7e
N
1056 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1057 if (rdev)
1da177e4 1058 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1059 i, !test_bit(In_sync, &rdev->flags),
1060 !test_bit(Faulty, &rdev->flags),
1061 bdevname(rdev->bdev,b));
1da177e4 1062 }
ddac7c7e 1063 rcu_read_unlock();
1da177e4
LT
1064}
1065
1066static void close_sync(conf_t *conf)
1067{
17999be4
N
1068 wait_barrier(conf);
1069 allow_barrier(conf);
1da177e4
LT
1070
1071 mempool_destroy(conf->r1buf_pool);
1072 conf->r1buf_pool = NULL;
1073}
1074
1075static int raid1_spare_active(mddev_t *mddev)
1076{
1077 int i;
1078 conf_t *conf = mddev->private;
1da177e4
LT
1079
1080 /*
1081 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1082 * and mark them readable.
1083 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1084 */
1085 for (i = 0; i < conf->raid_disks; i++) {
ddac7c7e
N
1086 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1087 if (rdev
1088 && !test_bit(Faulty, &rdev->flags)
c04be0aa
N
1089 && !test_and_set_bit(In_sync, &rdev->flags)) {
1090 unsigned long flags;
1091 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1092 mddev->degraded--;
c04be0aa 1093 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1094 }
1095 }
1096
1097 print_conf(conf);
1098 return 0;
1099}
1100
1101
1102static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1103{
1104 conf_t *conf = mddev->private;
199050ea 1105 int err = -EEXIST;
41158c7e 1106 int mirror = 0;
1da177e4 1107 mirror_info_t *p;
6c2fce2e
NB
1108 int first = 0;
1109 int last = mddev->raid_disks - 1;
1da177e4 1110
6c2fce2e
NB
1111 if (rdev->raid_disk >= 0)
1112 first = last = rdev->raid_disk;
1113
1114 for (mirror = first; mirror <= last; mirror++)
1da177e4
LT
1115 if ( !(p=conf->mirrors+mirror)->rdev) {
1116
1117 blk_queue_stack_limits(mddev->queue,
1118 rdev->bdev->bd_disk->queue);
1119 /* as we don't honour merge_bvec_fn, we must never risk
1120 * violating it, so limit ->max_sector to one PAGE, as
1121 * a one page request is never in violation.
1122 */
1123 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1124 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1125 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1126
1127 p->head_position = 0;
1128 rdev->raid_disk = mirror;
199050ea 1129 err = 0;
6aea114a
N
1130 /* As all devices are equivalent, we don't need a full recovery
1131 * if this was recently any drive of the array
1132 */
1133 if (rdev->saved_raid_disk < 0)
41158c7e 1134 conf->fullsync = 1;
d6065f7b 1135 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1136 break;
1137 }
1138
1139 print_conf(conf);
199050ea 1140 return err;
1da177e4
LT
1141}
1142
1143static int raid1_remove_disk(mddev_t *mddev, int number)
1144{
1145 conf_t *conf = mddev->private;
1146 int err = 0;
1147 mdk_rdev_t *rdev;
1148 mirror_info_t *p = conf->mirrors+ number;
1149
1150 print_conf(conf);
1151 rdev = p->rdev;
1152 if (rdev) {
b2d444d7 1153 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1154 atomic_read(&rdev->nr_pending)) {
1155 err = -EBUSY;
1156 goto abort;
1157 }
dfc70645
N
1158 /* Only remove non-faulty devices is recovery
1159 * is not possible.
1160 */
1161 if (!test_bit(Faulty, &rdev->flags) &&
1162 mddev->degraded < conf->raid_disks) {
1163 err = -EBUSY;
1164 goto abort;
1165 }
1da177e4 1166 p->rdev = NULL;
fbd568a3 1167 synchronize_rcu();
1da177e4
LT
1168 if (atomic_read(&rdev->nr_pending)) {
1169 /* lost the race, try later */
1170 err = -EBUSY;
1171 p->rdev = rdev;
1172 }
1173 }
1174abort:
1175
1176 print_conf(conf);
1177 return err;
1178}
1179
1180
6712ecf8 1181static void end_sync_read(struct bio *bio, int error)
1da177e4 1182{
1da177e4 1183 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
d11c171e 1184 int i;
1da177e4 1185
d11c171e
N
1186 for (i=r1_bio->mddev->raid_disks; i--; )
1187 if (r1_bio->bios[i] == bio)
1188 break;
1189 BUG_ON(i < 0);
1190 update_head_pos(i, r1_bio);
1da177e4
LT
1191 /*
1192 * we have read a block, now it needs to be re-written,
1193 * or re-read if the read failed.
1194 * We don't do much here, just schedule handling by raid1d
1195 */
69382e85 1196 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1197 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1198
1199 if (atomic_dec_and_test(&r1_bio->remaining))
1200 reschedule_retry(r1_bio);
1da177e4
LT
1201}
1202
6712ecf8 1203static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1204{
1205 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1206 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1207 mddev_t *mddev = r1_bio->mddev;
1208 conf_t *conf = mddev_to_conf(mddev);
1209 int i;
1210 int mirror=0;
1211
1da177e4
LT
1212 for (i = 0; i < conf->raid_disks; i++)
1213 if (r1_bio->bios[i] == bio) {
1214 mirror = i;
1215 break;
1216 }
6b1117d5
N
1217 if (!uptodate) {
1218 int sync_blocks = 0;
1219 sector_t s = r1_bio->sector;
1220 long sectors_to_go = r1_bio->sectors;
1221 /* make sure these bits doesn't get cleared. */
1222 do {
5e3db645 1223 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1224 &sync_blocks, 1);
1225 s += sync_blocks;
1226 sectors_to_go -= sync_blocks;
1227 } while (sectors_to_go > 0);
1da177e4 1228 md_error(mddev, conf->mirrors[mirror].rdev);
6b1117d5 1229 }
e3b9703e 1230
1da177e4
LT
1231 update_head_pos(mirror, r1_bio);
1232
1233 if (atomic_dec_and_test(&r1_bio->remaining)) {
1234 md_done_sync(mddev, r1_bio->sectors, uptodate);
1235 put_buf(r1_bio);
1236 }
1da177e4
LT
1237}
1238
1239static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1240{
1241 conf_t *conf = mddev_to_conf(mddev);
1242 int i;
1243 int disks = conf->raid_disks;
1244 struct bio *bio, *wbio;
1245
1246 bio = r1_bio->bios[r1_bio->read_disk];
1247
69382e85 1248
d11c171e
N
1249 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1250 /* We have read all readable devices. If we haven't
1251 * got the block, then there is no hope left.
1252 * If we have, then we want to do a comparison
1253 * and skip the write if everything is the same.
1254 * If any blocks failed to read, then we need to
1255 * attempt an over-write
1256 */
1257 int primary;
1258 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1259 for (i=0; i<mddev->raid_disks; i++)
1260 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1261 md_error(mddev, conf->mirrors[i].rdev);
1262
1263 md_done_sync(mddev, r1_bio->sectors, 1);
1264 put_buf(r1_bio);
1265 return;
1266 }
1267 for (primary=0; primary<mddev->raid_disks; primary++)
1268 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1269 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1270 r1_bio->bios[primary]->bi_end_io = NULL;
03c902e1 1271 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
d11c171e
N
1272 break;
1273 }
1274 r1_bio->read_disk = primary;
1275 for (i=0; i<mddev->raid_disks; i++)
ed456662 1276 if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
d11c171e
N
1277 int j;
1278 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1279 struct bio *pbio = r1_bio->bios[primary];
1280 struct bio *sbio = r1_bio->bios[i];
ed456662
MA
1281
1282 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1283 for (j = vcnt; j-- ; ) {
1284 struct page *p, *s;
1285 p = pbio->bi_io_vec[j].bv_page;
1286 s = sbio->bi_io_vec[j].bv_page;
1287 if (memcmp(page_address(p),
1288 page_address(s),
1289 PAGE_SIZE))
1290 break;
1291 }
1292 } else
1293 j = 0;
d11c171e
N
1294 if (j >= 0)
1295 mddev->resync_mismatches += r1_bio->sectors;
cf7a4416
N
1296 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1297 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
d11c171e 1298 sbio->bi_end_io = NULL;
03c902e1
N
1299 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1300 } else {
d11c171e 1301 /* fixup the bio for reuse */
698b18c1 1302 int size;
d11c171e
N
1303 sbio->bi_vcnt = vcnt;
1304 sbio->bi_size = r1_bio->sectors << 9;
1305 sbio->bi_idx = 0;
1306 sbio->bi_phys_segments = 0;
d11c171e
N
1307 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1308 sbio->bi_flags |= 1 << BIO_UPTODATE;
1309 sbio->bi_next = NULL;
1310 sbio->bi_sector = r1_bio->sector +
1311 conf->mirrors[i].rdev->data_offset;
1312 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
698b18c1
N
1313 size = sbio->bi_size;
1314 for (j = 0; j < vcnt ; j++) {
1315 struct bio_vec *bi;
1316 bi = &sbio->bi_io_vec[j];
1317 bi->bv_offset = 0;
1318 if (size > PAGE_SIZE)
1319 bi->bv_len = PAGE_SIZE;
1320 else
1321 bi->bv_len = size;
1322 size -= PAGE_SIZE;
1323 memcpy(page_address(bi->bv_page),
3eda22d1
N
1324 page_address(pbio->bi_io_vec[j].bv_page),
1325 PAGE_SIZE);
698b18c1 1326 }
3eda22d1 1327
d11c171e
N
1328 }
1329 }
1330 }
1da177e4 1331 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
69382e85
N
1332 /* ouch - failed to read all of that.
1333 * Try some synchronous reads of other devices to get
1334 * good data, much like with normal read errors. Only
ddac7c7e 1335 * read into the pages we already have so we don't
69382e85
N
1336 * need to re-issue the read request.
1337 * We don't need to freeze the array, because being in an
1338 * active sync request, there is no normal IO, and
1339 * no overlapping syncs.
1da177e4 1340 */
69382e85
N
1341 sector_t sect = r1_bio->sector;
1342 int sectors = r1_bio->sectors;
1343 int idx = 0;
1344
1345 while(sectors) {
1346 int s = sectors;
1347 int d = r1_bio->read_disk;
1348 int success = 0;
1349 mdk_rdev_t *rdev;
1350
1351 if (s > (PAGE_SIZE>>9))
1352 s = PAGE_SIZE >> 9;
1353 do {
1354 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
ddac7c7e
N
1355 /* No rcu protection needed here devices
1356 * can only be removed when no resync is
1357 * active, and resync is currently active
1358 */
69382e85
N
1359 rdev = conf->mirrors[d].rdev;
1360 if (sync_page_io(rdev->bdev,
1361 sect + rdev->data_offset,
1362 s<<9,
1363 bio->bi_io_vec[idx].bv_page,
1364 READ)) {
1365 success = 1;
1366 break;
1367 }
1368 }
1369 d++;
1370 if (d == conf->raid_disks)
1371 d = 0;
1372 } while (!success && d != r1_bio->read_disk);
1373
1374 if (success) {
097426f6 1375 int start = d;
69382e85
N
1376 /* write it back and re-read */
1377 set_bit(R1BIO_Uptodate, &r1_bio->state);
1378 while (d != r1_bio->read_disk) {
1379 if (d == 0)
1380 d = conf->raid_disks;
1381 d--;
1382 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1383 continue;
1384 rdev = conf->mirrors[d].rdev;
4dbcdc75 1385 atomic_add(s, &rdev->corrected_errors);
69382e85
N
1386 if (sync_page_io(rdev->bdev,
1387 sect + rdev->data_offset,
1388 s<<9,
1389 bio->bi_io_vec[idx].bv_page,
097426f6
N
1390 WRITE) == 0)
1391 md_error(mddev, rdev);
1392 }
1393 d = start;
1394 while (d != r1_bio->read_disk) {
1395 if (d == 0)
1396 d = conf->raid_disks;
1397 d--;
1398 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1399 continue;
1400 rdev = conf->mirrors[d].rdev;
1401 if (sync_page_io(rdev->bdev,
69382e85
N
1402 sect + rdev->data_offset,
1403 s<<9,
1404 bio->bi_io_vec[idx].bv_page,
097426f6 1405 READ) == 0)
69382e85 1406 md_error(mddev, rdev);
69382e85
N
1407 }
1408 } else {
1409 char b[BDEVNAME_SIZE];
1410 /* Cannot read from anywhere, array is toast */
1411 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1412 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1413 " for block %llu\n",
1414 bdevname(bio->bi_bdev,b),
1415 (unsigned long long)r1_bio->sector);
1416 md_done_sync(mddev, r1_bio->sectors, 0);
1417 put_buf(r1_bio);
1418 return;
1419 }
1420 sectors -= s;
1421 sect += s;
1422 idx ++;
1423 }
1da177e4 1424 }
d11c171e
N
1425
1426 /*
1427 * schedule writes
1428 */
1da177e4
LT
1429 atomic_set(&r1_bio->remaining, 1);
1430 for (i = 0; i < disks ; i++) {
1431 wbio = r1_bio->bios[i];
3e198f78
N
1432 if (wbio->bi_end_io == NULL ||
1433 (wbio->bi_end_io == end_sync_read &&
1434 (i == r1_bio->read_disk ||
1435 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
1436 continue;
1437
3e198f78
N
1438 wbio->bi_rw = WRITE;
1439 wbio->bi_end_io = end_sync_write;
1da177e4
LT
1440 atomic_inc(&r1_bio->remaining);
1441 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
191ea9b2 1442
1da177e4
LT
1443 generic_make_request(wbio);
1444 }
1445
1446 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 1447 /* if we're here, all write(s) have completed, so clean up */
1da177e4
LT
1448 md_done_sync(mddev, r1_bio->sectors, 1);
1449 put_buf(r1_bio);
1450 }
1451}
1452
1453/*
1454 * This is a kernel thread which:
1455 *
1456 * 1. Retries failed read operations on working mirrors.
1457 * 2. Updates the raid superblock when problems encounter.
1458 * 3. Performs writes following reads for array syncronising.
1459 */
1460
867868fb
N
1461static void fix_read_error(conf_t *conf, int read_disk,
1462 sector_t sect, int sectors)
1463{
1464 mddev_t *mddev = conf->mddev;
1465 while(sectors) {
1466 int s = sectors;
1467 int d = read_disk;
1468 int success = 0;
1469 int start;
1470 mdk_rdev_t *rdev;
1471
1472 if (s > (PAGE_SIZE>>9))
1473 s = PAGE_SIZE >> 9;
1474
1475 do {
1476 /* Note: no rcu protection needed here
1477 * as this is synchronous in the raid1d thread
1478 * which is the thread that might remove
1479 * a device. If raid1d ever becomes multi-threaded....
1480 */
1481 rdev = conf->mirrors[d].rdev;
1482 if (rdev &&
1483 test_bit(In_sync, &rdev->flags) &&
1484 sync_page_io(rdev->bdev,
1485 sect + rdev->data_offset,
1486 s<<9,
1487 conf->tmppage, READ))
1488 success = 1;
1489 else {
1490 d++;
1491 if (d == conf->raid_disks)
1492 d = 0;
1493 }
1494 } while (!success && d != read_disk);
1495
1496 if (!success) {
1497 /* Cannot read from anywhere -- bye bye array */
1498 md_error(mddev, conf->mirrors[read_disk].rdev);
1499 break;
1500 }
1501 /* write it back and re-read */
1502 start = d;
1503 while (d != read_disk) {
1504 if (d==0)
1505 d = conf->raid_disks;
1506 d--;
1507 rdev = conf->mirrors[d].rdev;
1508 if (rdev &&
1509 test_bit(In_sync, &rdev->flags)) {
1510 if (sync_page_io(rdev->bdev,
1511 sect + rdev->data_offset,
1512 s<<9, conf->tmppage, WRITE)
1513 == 0)
1514 /* Well, this device is dead */
1515 md_error(mddev, rdev);
1516 }
1517 }
1518 d = start;
1519 while (d != read_disk) {
1520 char b[BDEVNAME_SIZE];
1521 if (d==0)
1522 d = conf->raid_disks;
1523 d--;
1524 rdev = conf->mirrors[d].rdev;
1525 if (rdev &&
1526 test_bit(In_sync, &rdev->flags)) {
1527 if (sync_page_io(rdev->bdev,
1528 sect + rdev->data_offset,
1529 s<<9, conf->tmppage, READ)
1530 == 0)
1531 /* Well, this device is dead */
1532 md_error(mddev, rdev);
1533 else {
1534 atomic_add(s, &rdev->corrected_errors);
1535 printk(KERN_INFO
1536 "raid1:%s: read error corrected "
1537 "(%d sectors at %llu on %s)\n",
1538 mdname(mddev), s,
969b755a
RD
1539 (unsigned long long)(sect +
1540 rdev->data_offset),
867868fb
N
1541 bdevname(rdev->bdev, b));
1542 }
1543 }
1544 }
1545 sectors -= s;
1546 sect += s;
1547 }
1548}
1549
1da177e4
LT
1550static void raid1d(mddev_t *mddev)
1551{
1552 r1bio_t *r1_bio;
1553 struct bio *bio;
1554 unsigned long flags;
1555 conf_t *conf = mddev_to_conf(mddev);
1556 struct list_head *head = &conf->retry_list;
1557 int unplug=0;
1558 mdk_rdev_t *rdev;
1559
1560 md_check_recovery(mddev);
1da177e4
LT
1561
1562 for (;;) {
1563 char b[BDEVNAME_SIZE];
191ea9b2 1564
a35e63ef 1565 unplug += flush_pending_writes(conf);
191ea9b2 1566
a35e63ef
N
1567 spin_lock_irqsave(&conf->device_lock, flags);
1568 if (list_empty(head)) {
1569 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1570 break;
a35e63ef 1571 }
1da177e4
LT
1572 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1573 list_del(head->prev);
ddaf22ab 1574 conf->nr_queued--;
1da177e4
LT
1575 spin_unlock_irqrestore(&conf->device_lock, flags);
1576
1577 mddev = r1_bio->mddev;
1578 conf = mddev_to_conf(mddev);
1579 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1580 sync_request_write(mddev, r1_bio);
1581 unplug = 1;
a9701a30
N
1582 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1583 /* some requests in the r1bio were BIO_RW_BARRIER
bea27718 1584 * requests which failed with -EOPNOTSUPP. Hohumm..
a9701a30
N
1585 * Better resubmit without the barrier.
1586 * We know which devices to resubmit for, because
1587 * all others have had their bios[] entry cleared.
5e7dd2ab 1588 * We already have a nr_pending reference on these rdevs.
a9701a30
N
1589 */
1590 int i;
e3881a68 1591 const int do_sync = bio_sync(r1_bio->master_bio);
a9701a30
N
1592 clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1593 clear_bit(R1BIO_Barrier, &r1_bio->state);
2f889129
N
1594 for (i=0; i < conf->raid_disks; i++)
1595 if (r1_bio->bios[i])
1596 atomic_inc(&r1_bio->remaining);
a9701a30
N
1597 for (i=0; i < conf->raid_disks; i++)
1598 if (r1_bio->bios[i]) {
1599 struct bio_vec *bvec;
1600 int j;
1601
1602 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1603 /* copy pages from the failed bio, as
1604 * this might be a write-behind device */
1605 __bio_for_each_segment(bvec, bio, j, 0)
1606 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1607 bio_put(r1_bio->bios[i]);
1608 bio->bi_sector = r1_bio->sector +
1609 conf->mirrors[i].rdev->data_offset;
1610 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1611 bio->bi_end_io = raid1_end_write_request;
e3881a68 1612 bio->bi_rw = WRITE | do_sync;
a9701a30
N
1613 bio->bi_private = r1_bio;
1614 r1_bio->bios[i] = bio;
1615 generic_make_request(bio);
1616 }
1da177e4
LT
1617 } else {
1618 int disk;
ddaf22ab
N
1619
1620 /* we got a read error. Maybe the drive is bad. Maybe just
1621 * the block and we can fix it.
1622 * We freeze all other IO, and try reading the block from
1623 * other devices. When we find one, we re-write
1624 * and check it that fixes the read error.
1625 * This is all done synchronously while the array is
1626 * frozen
1627 */
867868fb
N
1628 if (mddev->ro == 0) {
1629 freeze_array(conf);
1630 fix_read_error(conf, r1_bio->read_disk,
1631 r1_bio->sector,
1632 r1_bio->sectors);
1633 unfreeze_array(conf);
ddaf22ab
N
1634 }
1635
1da177e4
LT
1636 bio = r1_bio->bios[r1_bio->read_disk];
1637 if ((disk=read_balance(conf, r1_bio)) == -1) {
1638 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1639 " read error for block %llu\n",
1640 bdevname(bio->bi_bdev,b),
1641 (unsigned long long)r1_bio->sector);
1642 raid_end_bio_io(r1_bio);
1643 } else {
e3881a68 1644 const int do_sync = bio_sync(r1_bio->master_bio);
cf30a473
N
1645 r1_bio->bios[r1_bio->read_disk] =
1646 mddev->ro ? IO_BLOCKED : NULL;
1da177e4
LT
1647 r1_bio->read_disk = disk;
1648 bio_put(bio);
1649 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1650 r1_bio->bios[r1_bio->read_disk] = bio;
1651 rdev = conf->mirrors[disk].rdev;
1652 if (printk_ratelimit())
1653 printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1654 " another mirror\n",
1655 bdevname(rdev->bdev,b),
1656 (unsigned long long)r1_bio->sector);
1657 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1658 bio->bi_bdev = rdev->bdev;
1659 bio->bi_end_io = raid1_end_read_request;
e3881a68 1660 bio->bi_rw = READ | do_sync;
1da177e4
LT
1661 bio->bi_private = r1_bio;
1662 unplug = 1;
1663 generic_make_request(bio);
1664 }
1665 }
1666 }
1da177e4
LT
1667 if (unplug)
1668 unplug_slaves(mddev);
1669}
1670
1671
1672static int init_resync(conf_t *conf)
1673{
1674 int buffs;
1675
1676 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 1677 BUG_ON(conf->r1buf_pool);
1da177e4
LT
1678 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1679 conf->poolinfo);
1680 if (!conf->r1buf_pool)
1681 return -ENOMEM;
1682 conf->next_resync = 0;
1683 return 0;
1684}
1685
1686/*
1687 * perform a "sync" on one "block"
1688 *
1689 * We need to make sure that no normal I/O request - particularly write
1690 * requests - conflict with active sync requests.
1691 *
1692 * This is achieved by tracking pending requests and a 'barrier' concept
1693 * that can be installed to exclude normal IO requests.
1694 */
1695
57afd89f 1696static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4
LT
1697{
1698 conf_t *conf = mddev_to_conf(mddev);
1da177e4
LT
1699 r1bio_t *r1_bio;
1700 struct bio *bio;
1701 sector_t max_sector, nr_sectors;
3e198f78 1702 int disk = -1;
1da177e4 1703 int i;
3e198f78
N
1704 int wonly = -1;
1705 int write_targets = 0, read_targets = 0;
191ea9b2 1706 int sync_blocks;
e3b9703e 1707 int still_degraded = 0;
1da177e4
LT
1708
1709 if (!conf->r1buf_pool)
191ea9b2
N
1710 {
1711/*
1712 printk("sync start - bitmap %p\n", mddev->bitmap);
1713*/
1da177e4 1714 if (init_resync(conf))
57afd89f 1715 return 0;
191ea9b2 1716 }
1da177e4
LT
1717
1718 max_sector = mddev->size << 1;
1719 if (sector_nr >= max_sector) {
191ea9b2
N
1720 /* If we aborted, we need to abort the
1721 * sync on the 'current' bitmap chunk (there will
1722 * only be one in raid1 resync.
1723 * We can find the current addess in mddev->curr_resync
1724 */
6a806c51
N
1725 if (mddev->curr_resync < max_sector) /* aborted */
1726 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 1727 &sync_blocks, 1);
6a806c51 1728 else /* completed sync */
191ea9b2 1729 conf->fullsync = 0;
6a806c51
N
1730
1731 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
1732 close_sync(conf);
1733 return 0;
1734 }
1735
07d84d10
N
1736 if (mddev->bitmap == NULL &&
1737 mddev->recovery_cp == MaxSector &&
6394cca5 1738 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
1739 conf->fullsync == 0) {
1740 *skipped = 1;
1741 return max_sector - sector_nr;
1742 }
6394cca5
N
1743 /* before building a request, check if we can skip these blocks..
1744 * This call the bitmap_start_sync doesn't actually record anything
1745 */
e3b9703e 1746 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 1747 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
1748 /* We can skip this block, and probably several more */
1749 *skipped = 1;
1750 return sync_blocks;
1751 }
1da177e4 1752 /*
17999be4
N
1753 * If there is non-resync activity waiting for a turn,
1754 * and resync is going fast enough,
1755 * then let it though before starting on this new sync request.
1da177e4 1756 */
17999be4 1757 if (!go_faster && conf->nr_waiting)
1da177e4 1758 msleep_interruptible(1000);
17999be4 1759
b47490c9 1760 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
17999be4
N
1761 raise_barrier(conf);
1762
1763 conf->next_resync = sector_nr;
1da177e4 1764
3e198f78
N
1765 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1766 rcu_read_lock();
1da177e4 1767 /*
3e198f78
N
1768 * If we get a correctably read error during resync or recovery,
1769 * we might want to read from a different device. So we
1770 * flag all drives that could conceivably be read from for READ,
1771 * and any others (which will be non-In_sync devices) for WRITE.
1772 * If a read fails, we try reading from something else for which READ
1773 * is OK.
1da177e4 1774 */
1da177e4 1775
1da177e4
LT
1776 r1_bio->mddev = mddev;
1777 r1_bio->sector = sector_nr;
191ea9b2 1778 r1_bio->state = 0;
1da177e4 1779 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4
LT
1780
1781 for (i=0; i < conf->raid_disks; i++) {
3e198f78 1782 mdk_rdev_t *rdev;
1da177e4
LT
1783 bio = r1_bio->bios[i];
1784
1785 /* take from bio_init */
1786 bio->bi_next = NULL;
1787 bio->bi_flags |= 1 << BIO_UPTODATE;
802ba064 1788 bio->bi_rw = READ;
1da177e4
LT
1789 bio->bi_vcnt = 0;
1790 bio->bi_idx = 0;
1791 bio->bi_phys_segments = 0;
1da177e4
LT
1792 bio->bi_size = 0;
1793 bio->bi_end_io = NULL;
1794 bio->bi_private = NULL;
1795
3e198f78
N
1796 rdev = rcu_dereference(conf->mirrors[i].rdev);
1797 if (rdev == NULL ||
1798 test_bit(Faulty, &rdev->flags)) {
e3b9703e
N
1799 still_degraded = 1;
1800 continue;
3e198f78 1801 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
1802 bio->bi_rw = WRITE;
1803 bio->bi_end_io = end_sync_write;
1804 write_targets ++;
3e198f78
N
1805 } else {
1806 /* may need to read from here */
1807 bio->bi_rw = READ;
1808 bio->bi_end_io = end_sync_read;
1809 if (test_bit(WriteMostly, &rdev->flags)) {
1810 if (wonly < 0)
1811 wonly = i;
1812 } else {
1813 if (disk < 0)
1814 disk = i;
1815 }
1816 read_targets++;
1817 }
1818 atomic_inc(&rdev->nr_pending);
1819 bio->bi_sector = sector_nr + rdev->data_offset;
1820 bio->bi_bdev = rdev->bdev;
1da177e4
LT
1821 bio->bi_private = r1_bio;
1822 }
3e198f78
N
1823 rcu_read_unlock();
1824 if (disk < 0)
1825 disk = wonly;
1826 r1_bio->read_disk = disk;
191ea9b2 1827
3e198f78
N
1828 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1829 /* extra read targets are also write targets */
1830 write_targets += read_targets-1;
1831
1832 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
1833 /* There is nowhere to write, so all non-sync
1834 * drives must be failed - so we are finished
1835 */
57afd89f
N
1836 sector_t rv = max_sector - sector_nr;
1837 *skipped = 1;
1da177e4 1838 put_buf(r1_bio);
1da177e4
LT
1839 return rv;
1840 }
1841
c6207277
N
1842 if (max_sector > mddev->resync_max)
1843 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1da177e4 1844 nr_sectors = 0;
289e99e8 1845 sync_blocks = 0;
1da177e4
LT
1846 do {
1847 struct page *page;
1848 int len = PAGE_SIZE;
1849 if (sector_nr + (len>>9) > max_sector)
1850 len = (max_sector - sector_nr) << 9;
1851 if (len == 0)
1852 break;
6a806c51
N
1853 if (sync_blocks == 0) {
1854 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
1855 &sync_blocks, still_degraded) &&
1856 !conf->fullsync &&
1857 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 1858 break;
9e77c485 1859 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
6a806c51
N
1860 if (len > (sync_blocks<<9))
1861 len = sync_blocks<<9;
ab7a30c7 1862 }
191ea9b2 1863
1da177e4
LT
1864 for (i=0 ; i < conf->raid_disks; i++) {
1865 bio = r1_bio->bios[i];
1866 if (bio->bi_end_io) {
d11c171e 1867 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
1868 if (bio_add_page(bio, page, len, 0) == 0) {
1869 /* stop here */
d11c171e 1870 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
1871 while (i > 0) {
1872 i--;
1873 bio = r1_bio->bios[i];
6a806c51
N
1874 if (bio->bi_end_io==NULL)
1875 continue;
1da177e4
LT
1876 /* remove last page from this bio */
1877 bio->bi_vcnt--;
1878 bio->bi_size -= len;
1879 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1880 }
1881 goto bio_full;
1882 }
1883 }
1884 }
1885 nr_sectors += len>>9;
1886 sector_nr += len>>9;
191ea9b2 1887 sync_blocks -= (len>>9);
1da177e4
LT
1888 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1889 bio_full:
1da177e4
LT
1890 r1_bio->sectors = nr_sectors;
1891
d11c171e
N
1892 /* For a user-requested sync, we read all readable devices and do a
1893 * compare
1894 */
1895 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1896 atomic_set(&r1_bio->remaining, read_targets);
1897 for (i=0; i<conf->raid_disks; i++) {
1898 bio = r1_bio->bios[i];
1899 if (bio->bi_end_io == end_sync_read) {
ddac7c7e 1900 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
1901 generic_make_request(bio);
1902 }
1903 }
1904 } else {
1905 atomic_set(&r1_bio->remaining, 1);
1906 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 1907 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 1908 generic_make_request(bio);
1da177e4 1909
d11c171e 1910 }
1da177e4
LT
1911 return nr_sectors;
1912}
1913
1914static int run(mddev_t *mddev)
1915{
1916 conf_t *conf;
1917 int i, j, disk_idx;
1918 mirror_info_t *disk;
1919 mdk_rdev_t *rdev;
1920 struct list_head *tmp;
1921
1922 if (mddev->level != 1) {
1923 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1924 mdname(mddev), mddev->level);
1925 goto out;
1926 }
f6705578
N
1927 if (mddev->reshape_position != MaxSector) {
1928 printk("raid1: %s: reshape_position set but not supported\n",
1929 mdname(mddev));
1930 goto out;
1931 }
1da177e4
LT
1932 /*
1933 * copy the already verified devices into our private RAID1
1934 * bookkeeping area. [whatever we allocate in run(),
1935 * should be freed in stop()]
1936 */
9ffae0cf 1937 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1da177e4
LT
1938 mddev->private = conf;
1939 if (!conf)
1940 goto out_no_mem;
1941
9ffae0cf 1942 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1da177e4
LT
1943 GFP_KERNEL);
1944 if (!conf->mirrors)
1945 goto out_no_mem;
1946
ddaf22ab
N
1947 conf->tmppage = alloc_page(GFP_KERNEL);
1948 if (!conf->tmppage)
1949 goto out_no_mem;
1950
1da177e4
LT
1951 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1952 if (!conf->poolinfo)
1953 goto out_no_mem;
1954 conf->poolinfo->mddev = mddev;
1955 conf->poolinfo->raid_disks = mddev->raid_disks;
1956 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1957 r1bio_pool_free,
1958 conf->poolinfo);
1959 if (!conf->r1bio_pool)
1960 goto out_no_mem;
1961
e7e72bf6
NB
1962 spin_lock_init(&conf->device_lock);
1963 mddev->queue->queue_lock = &conf->device_lock;
1964
d089c6af 1965 rdev_for_each(rdev, tmp, mddev) {
1da177e4
LT
1966 disk_idx = rdev->raid_disk;
1967 if (disk_idx >= mddev->raid_disks
1968 || disk_idx < 0)
1969 continue;
1970 disk = conf->mirrors + disk_idx;
1971
1972 disk->rdev = rdev;
1973
1974 blk_queue_stack_limits(mddev->queue,
1975 rdev->bdev->bd_disk->queue);
1976 /* as we don't honour merge_bvec_fn, we must never risk
1977 * violating it, so limit ->max_sector to one PAGE, as
1978 * a one page request is never in violation.
1979 */
1980 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1981 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1982 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1983
1984 disk->head_position = 0;
1da177e4
LT
1985 }
1986 conf->raid_disks = mddev->raid_disks;
1987 conf->mddev = mddev;
1da177e4 1988 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
1989
1990 spin_lock_init(&conf->resync_lock);
17999be4 1991 init_waitqueue_head(&conf->wait_barrier);
1da177e4 1992
191ea9b2
N
1993 bio_list_init(&conf->pending_bio_list);
1994 bio_list_init(&conf->flushing_bio_list);
1995
1da177e4
LT
1996
1997 mddev->degraded = 0;
1998 for (i = 0; i < conf->raid_disks; i++) {
1999
2000 disk = conf->mirrors + i;
2001
5fd6c1dc
N
2002 if (!disk->rdev ||
2003 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
2004 disk->head_position = 0;
2005 mddev->degraded++;
918f0238
N
2006 if (disk->rdev)
2007 conf->fullsync = 1;
1da177e4
LT
2008 }
2009 }
11ce99e6
N
2010 if (mddev->degraded == conf->raid_disks) {
2011 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
2012 mdname(mddev));
2013 goto out_free_conf;
2014 }
2015 if (conf->raid_disks - mddev->degraded == 1)
2016 mddev->recovery_cp = MaxSector;
1da177e4
LT
2017
2018 /*
2019 * find the first working one and use it as a starting point
2020 * to read balancing.
2021 */
2022 for (j = 0; j < conf->raid_disks &&
2023 (!conf->mirrors[j].rdev ||
b2d444d7 2024 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
1da177e4
LT
2025 /* nothing */;
2026 conf->last_used = j;
2027
2028
191ea9b2
N
2029 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
2030 if (!mddev->thread) {
2031 printk(KERN_ERR
2032 "raid1: couldn't allocate thread for %s\n",
2033 mdname(mddev));
2034 goto out_free_conf;
1da177e4 2035 }
191ea9b2 2036
1da177e4
LT
2037 printk(KERN_INFO
2038 "raid1: raid set %s active with %d out of %d mirrors\n",
2039 mdname(mddev), mddev->raid_disks - mddev->degraded,
2040 mddev->raid_disks);
2041 /*
2042 * Ok, everything is just fine now
2043 */
f233ea5c 2044 mddev->array_sectors = mddev->size * 2;
1da177e4 2045
7a5febe9 2046 mddev->queue->unplug_fn = raid1_unplug;
0d129228
N
2047 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2048 mddev->queue->backing_dev_info.congested_data = mddev;
7a5febe9 2049
1da177e4
LT
2050 return 0;
2051
2052out_no_mem:
2053 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
2054 mdname(mddev));
2055
2056out_free_conf:
2057 if (conf) {
2058 if (conf->r1bio_pool)
2059 mempool_destroy(conf->r1bio_pool);
990a8baf 2060 kfree(conf->mirrors);
1345b1d8 2061 safe_put_page(conf->tmppage);
990a8baf 2062 kfree(conf->poolinfo);
1da177e4
LT
2063 kfree(conf);
2064 mddev->private = NULL;
2065 }
2066out:
2067 return -EIO;
2068}
2069
2070static int stop(mddev_t *mddev)
2071{
2072 conf_t *conf = mddev_to_conf(mddev);
4b6d287f
N
2073 struct bitmap *bitmap = mddev->bitmap;
2074 int behind_wait = 0;
2075
2076 /* wait for behind writes to complete */
2077 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2078 behind_wait++;
2079 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2080 set_current_state(TASK_UNINTERRUPTIBLE);
2081 schedule_timeout(HZ); /* wait a second */
2082 /* need to kick something here to make sure I/O goes? */
2083 }
1da177e4
LT
2084
2085 md_unregister_thread(mddev->thread);
2086 mddev->thread = NULL;
2087 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2088 if (conf->r1bio_pool)
2089 mempool_destroy(conf->r1bio_pool);
990a8baf
JJ
2090 kfree(conf->mirrors);
2091 kfree(conf->poolinfo);
1da177e4
LT
2092 kfree(conf);
2093 mddev->private = NULL;
2094 return 0;
2095}
2096
2097static int raid1_resize(mddev_t *mddev, sector_t sectors)
2098{
2099 /* no resync is happening, and there is enough space
2100 * on all devices, so we can resize.
2101 * We need to make sure resync covers any new space.
2102 * If the array is shrinking we should possibly wait until
2103 * any io in the removed space completes, but it hardly seems
2104 * worth it.
2105 */
f233ea5c
AN
2106 mddev->array_sectors = sectors;
2107 set_capacity(mddev->gendisk, mddev->array_sectors);
44ce6294 2108 mddev->changed = 1;
f233ea5c
AN
2109 if (mddev->array_sectors / 2 > mddev->size &&
2110 mddev->recovery_cp == MaxSector) {
1da177e4
LT
2111 mddev->recovery_cp = mddev->size << 1;
2112 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2113 }
f233ea5c 2114 mddev->size = mddev->array_sectors / 2;
4b5c7ae8 2115 mddev->resync_max_sectors = sectors;
1da177e4
LT
2116 return 0;
2117}
2118
63c70c4f 2119static int raid1_reshape(mddev_t *mddev)
1da177e4
LT
2120{
2121 /* We need to:
2122 * 1/ resize the r1bio_pool
2123 * 2/ resize conf->mirrors
2124 *
2125 * We allocate a new r1bio_pool if we can.
2126 * Then raise a device barrier and wait until all IO stops.
2127 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
2128 *
2129 * At the same time, we "pack" the devices so that all the missing
2130 * devices have the higher raid_disk numbers.
1da177e4
LT
2131 */
2132 mempool_t *newpool, *oldpool;
2133 struct pool_info *newpoolinfo;
2134 mirror_info_t *newmirrors;
2135 conf_t *conf = mddev_to_conf(mddev);
63c70c4f 2136 int cnt, raid_disks;
c04be0aa 2137 unsigned long flags;
b5470dc5 2138 int d, d2, err;
1da177e4 2139
63c70c4f
N
2140 /* Cannot change chunk_size, layout, or level */
2141 if (mddev->chunk_size != mddev->new_chunk ||
2142 mddev->layout != mddev->new_layout ||
2143 mddev->level != mddev->new_level) {
2144 mddev->new_chunk = mddev->chunk_size;
2145 mddev->new_layout = mddev->layout;
2146 mddev->new_level = mddev->level;
2147 return -EINVAL;
2148 }
2149
b5470dc5
DW
2150 err = md_allow_write(mddev);
2151 if (err)
2152 return err;
2a2275d6 2153
63c70c4f
N
2154 raid_disks = mddev->raid_disks + mddev->delta_disks;
2155
6ea9c07c
N
2156 if (raid_disks < conf->raid_disks) {
2157 cnt=0;
2158 for (d= 0; d < conf->raid_disks; d++)
2159 if (conf->mirrors[d].rdev)
2160 cnt++;
2161 if (cnt > raid_disks)
1da177e4 2162 return -EBUSY;
6ea9c07c 2163 }
1da177e4
LT
2164
2165 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2166 if (!newpoolinfo)
2167 return -ENOMEM;
2168 newpoolinfo->mddev = mddev;
2169 newpoolinfo->raid_disks = raid_disks;
2170
2171 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2172 r1bio_pool_free, newpoolinfo);
2173 if (!newpool) {
2174 kfree(newpoolinfo);
2175 return -ENOMEM;
2176 }
9ffae0cf 2177 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
1da177e4
LT
2178 if (!newmirrors) {
2179 kfree(newpoolinfo);
2180 mempool_destroy(newpool);
2181 return -ENOMEM;
2182 }
1da177e4 2183
17999be4 2184 raise_barrier(conf);
1da177e4
LT
2185
2186 /* ok, everything is stopped */
2187 oldpool = conf->r1bio_pool;
2188 conf->r1bio_pool = newpool;
6ea9c07c 2189
a88aa786
N
2190 for (d = d2 = 0; d < conf->raid_disks; d++) {
2191 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2192 if (rdev && rdev->raid_disk != d2) {
2193 char nm[20];
2194 sprintf(nm, "rd%d", rdev->raid_disk);
2195 sysfs_remove_link(&mddev->kobj, nm);
2196 rdev->raid_disk = d2;
2197 sprintf(nm, "rd%d", rdev->raid_disk);
2198 sysfs_remove_link(&mddev->kobj, nm);
2199 if (sysfs_create_link(&mddev->kobj,
2200 &rdev->kobj, nm))
2201 printk(KERN_WARNING
2202 "md/raid1: cannot register "
2203 "%s for %s\n",
2204 nm, mdname(mddev));
6ea9c07c 2205 }
a88aa786
N
2206 if (rdev)
2207 newmirrors[d2++].rdev = rdev;
2208 }
1da177e4
LT
2209 kfree(conf->mirrors);
2210 conf->mirrors = newmirrors;
2211 kfree(conf->poolinfo);
2212 conf->poolinfo = newpoolinfo;
2213
c04be0aa 2214 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 2215 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 2216 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2217 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 2218 mddev->delta_disks = 0;
1da177e4 2219
6ea9c07c 2220 conf->last_used = 0; /* just make sure it is in-range */
17999be4 2221 lower_barrier(conf);
1da177e4
LT
2222
2223 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2224 md_wakeup_thread(mddev->thread);
2225
2226 mempool_destroy(oldpool);
2227 return 0;
2228}
2229
500af87a 2230static void raid1_quiesce(mddev_t *mddev, int state)
36fa3063
N
2231{
2232 conf_t *conf = mddev_to_conf(mddev);
2233
2234 switch(state) {
9e6603da 2235 case 1:
17999be4 2236 raise_barrier(conf);
36fa3063 2237 break;
9e6603da 2238 case 0:
17999be4 2239 lower_barrier(conf);
36fa3063
N
2240 break;
2241 }
36fa3063
N
2242}
2243
1da177e4 2244
2604b703 2245static struct mdk_personality raid1_personality =
1da177e4
LT
2246{
2247 .name = "raid1",
2604b703 2248 .level = 1,
1da177e4
LT
2249 .owner = THIS_MODULE,
2250 .make_request = make_request,
2251 .run = run,
2252 .stop = stop,
2253 .status = status,
2254 .error_handler = error,
2255 .hot_add_disk = raid1_add_disk,
2256 .hot_remove_disk= raid1_remove_disk,
2257 .spare_active = raid1_spare_active,
2258 .sync_request = sync_request,
2259 .resize = raid1_resize,
63c70c4f 2260 .check_reshape = raid1_reshape,
36fa3063 2261 .quiesce = raid1_quiesce,
1da177e4
LT
2262};
2263
2264static int __init raid_init(void)
2265{
2604b703 2266 return register_md_personality(&raid1_personality);
1da177e4
LT
2267}
2268
2269static void raid_exit(void)
2270{
2604b703 2271 unregister_md_personality(&raid1_personality);
1da177e4
LT
2272}
2273
2274module_init(raid_init);
2275module_exit(raid_exit);
2276MODULE_LICENSE("GPL");
2277MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 2278MODULE_ALIAS("md-raid1");
2604b703 2279MODULE_ALIAS("md-level-1");
This page took 0.73974 seconds and 5 git commands to generate.