Revert "drm/i915: Use crtc_state->active in primary check_plane func"
[deliverable/linux.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
3ea7daa5 27#include <linux/kthread.h>
43b2e5d8 28#include "md.h"
ef740c37 29#include "raid10.h"
dab8b292 30#include "raid0.h"
ef740c37 31#include "bitmap.h"
1da177e4
LT
32
33/*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
c93983bf 40 * far_offset (stored in bit 16 of layout )
475901af 41 * use_far_sets (stored in bit 17 of layout )
1da177e4 42 *
475901af
JB
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
c93983bf
N
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
475901af
JB
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
55 *
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * on a device):
64 * A B C D A B C D E
65 * ... ...
66 * D A B C E A B C D
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
1da177e4
LT
71 */
72
73/*
74 * Number of guaranteed r10bios in case of extreme VM load:
75 */
76#define NR_RAID10_BIOS 256
77
473e87ce
JB
78/* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82 */
83#define IO_BLOCKED ((struct bio *)1)
84/* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
87 */
88#define IO_MADE_GOOD ((struct bio *)2)
89
90#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92/* When there are this many requests queued to be written by
34db0cd6
N
93 * the raid10 thread, we become 'congested' to provide back-pressure
94 * for writeback.
95 */
96static int max_queued_requests = 1024;
97
e879a879
N
98static void allow_barrier(struct r10conf *conf);
99static void lower_barrier(struct r10conf *conf);
635f6416 100static int _enough(struct r10conf *conf, int previous, int ignore);
3ea7daa5
N
101static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 int *skipped);
103static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104static void end_reshape_write(struct bio *bio, int error);
105static void end_reshape(struct r10conf *conf);
0a27ec96 106
dd0fc66f 107static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 108{
e879a879 109 struct r10conf *conf = data;
9f2c9d12 110 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4 111
69335ef3
N
112 /* allocate a r10bio with room for raid_disks entries in the
113 * bios array */
7eaceacc 114 return kzalloc(size, gfp_flags);
1da177e4
LT
115}
116
117static void r10bio_pool_free(void *r10_bio, void *data)
118{
119 kfree(r10_bio);
120}
121
0310fa21 122/* Maximum size of each resync request */
1da177e4 123#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 124#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
125/* amount of memory to reserve for resync requests */
126#define RESYNC_WINDOW (1024*1024)
127/* maximum number of concurrent requests, memory permitting */
128#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
129
130/*
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
135 *
136 */
dd0fc66f 137static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 138{
e879a879 139 struct r10conf *conf = data;
1da177e4 140 struct page *page;
9f2c9d12 141 struct r10bio *r10_bio;
1da177e4
LT
142 struct bio *bio;
143 int i, j;
144 int nalloc;
145
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 147 if (!r10_bio)
1da177e4 148 return NULL;
1da177e4 149
3ea7daa5
N
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
1da177e4
LT
152 nalloc = conf->copies; /* resync */
153 else
154 nalloc = 2; /* recovery */
155
156 /*
157 * Allocate bios.
158 */
159 for (j = nalloc ; j-- ; ) {
6746557f 160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
161 if (!bio)
162 goto out_free_bio;
163 r10_bio->devs[j].bio = bio;
69335ef3
N
164 if (!conf->have_replacement)
165 continue;
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 if (!bio)
168 goto out_free_bio;
169 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
170 }
171 /*
172 * Allocate RESYNC_PAGES data pages and attach them
173 * where needed.
174 */
175 for (j = 0 ; j < nalloc; j++) {
69335ef3 176 struct bio *rbio = r10_bio->devs[j].repl_bio;
1da177e4
LT
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
3ea7daa5
N
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
182 * and reshape */
c65060ad
NK
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
185 get_page(page);
186 } else
187 page = alloc_page(gfp_flags);
1da177e4
LT
188 if (unlikely(!page))
189 goto out_free_pages;
190
191 bio->bi_io_vec[i].bv_page = page;
69335ef3
N
192 if (rbio)
193 rbio->bi_io_vec[i].bv_page = page;
1da177e4
LT
194 }
195 }
196
197 return r10_bio;
198
199out_free_pages:
200 for ( ; i > 0 ; i--)
1345b1d8 201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
202 while (j--)
203 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
5fdd2cf8 205 j = 0;
1da177e4 206out_free_bio:
5fdd2cf8 207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
69335ef3
N
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
212 }
1da177e4
LT
213 r10bio_pool_free(r10_bio, conf);
214 return NULL;
215}
216
217static void r10buf_pool_free(void *__r10_bio, void *data)
218{
219 int i;
e879a879 220 struct r10conf *conf = data;
9f2c9d12 221 struct r10bio *r10bio = __r10_bio;
1da177e4
LT
222 int j;
223
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
226 if (bio) {
227 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 228 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
229 bio->bi_io_vec[i].bv_page = NULL;
230 }
231 bio_put(bio);
232 }
69335ef3
N
233 bio = r10bio->devs[j].repl_bio;
234 if (bio)
235 bio_put(bio);
1da177e4
LT
236 }
237 r10bio_pool_free(r10bio, conf);
238}
239
e879a879 240static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
241{
242 int i;
243
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 246 if (!BIO_SPECIAL(*bio))
1da177e4
LT
247 bio_put(*bio);
248 *bio = NULL;
69335ef3
N
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 bio_put(*bio);
252 *bio = NULL;
1da177e4
LT
253 }
254}
255
9f2c9d12 256static void free_r10bio(struct r10bio *r10_bio)
1da177e4 257{
e879a879 258 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 259
1da177e4
LT
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
262}
263
9f2c9d12 264static void put_buf(struct r10bio *r10_bio)
1da177e4 265{
e879a879 266 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
267
268 mempool_free(r10_bio, conf->r10buf_pool);
269
0a27ec96 270 lower_barrier(conf);
1da177e4
LT
271}
272
9f2c9d12 273static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
274{
275 unsigned long flags;
fd01b88c 276 struct mddev *mddev = r10_bio->mddev;
e879a879 277 struct r10conf *conf = mddev->private;
1da177e4
LT
278
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 281 conf->nr_queued ++;
1da177e4
LT
282 spin_unlock_irqrestore(&conf->device_lock, flags);
283
388667be
AJ
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
286
1da177e4
LT
287 md_wakeup_thread(mddev->thread);
288}
289
290/*
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
293 * cache layer.
294 */
9f2c9d12 295static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
296{
297 struct bio *bio = r10_bio->master_bio;
856e08e2 298 int done;
e879a879 299 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 300
856e08e2
N
301 if (bio->bi_phys_segments) {
302 unsigned long flags;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
307 } else
308 done = 1;
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 if (done) {
312 bio_endio(bio, 0);
313 /*
314 * Wake up any possible resync thread that waits for the device
315 * to go idle.
316 */
317 allow_barrier(conf);
318 }
1da177e4
LT
319 free_r10bio(r10_bio);
320}
321
322/*
323 * Update disk head position estimator based on IRQ completion info.
324 */
9f2c9d12 325static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 326{
e879a879 327 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
328
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
331}
332
778ca018
NK
333/*
334 * Find the disk number which triggered given bio
335 */
e879a879 336static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 337 struct bio *bio, int *slotp, int *replp)
778ca018
NK
338{
339 int slot;
69335ef3 340 int repl = 0;
778ca018 341
69335ef3 342 for (slot = 0; slot < conf->copies; slot++) {
778ca018
NK
343 if (r10_bio->devs[slot].bio == bio)
344 break;
69335ef3
N
345 if (r10_bio->devs[slot].repl_bio == bio) {
346 repl = 1;
347 break;
348 }
349 }
778ca018
NK
350
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
353
749c55e9
N
354 if (slotp)
355 *slotp = slot;
69335ef3
N
356 if (replp)
357 *replp = repl;
778ca018
NK
358 return r10_bio->devs[slot].devnum;
359}
360
6712ecf8 361static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
362{
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 364 struct r10bio *r10_bio = bio->bi_private;
1da177e4 365 int slot, dev;
abbf098e 366 struct md_rdev *rdev;
e879a879 367 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 368
1da177e4
LT
369 slot = r10_bio->read_slot;
370 dev = r10_bio->devs[slot].devnum;
abbf098e 371 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
372 /*
373 * this branch is our 'one mirror IO has finished' event handler:
374 */
4443ae10
N
375 update_head_pos(slot, r10_bio);
376
377 if (uptodate) {
1da177e4
LT
378 /*
379 * Set R10BIO_Uptodate in our master bio, so that
380 * we will return a good error code to the higher
381 * levels even if IO on some other mirrored buffer fails.
382 *
383 * The 'master' represents the composite IO operation to
384 * user-side. So if something waits for IO, then it will
385 * wait for the 'master' bio.
386 */
387 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
388 } else {
389 /* If all other devices that store this block have
390 * failed, we want to return the error upwards rather
391 * than fail the last device. Here we redefine
392 * "uptodate" to mean "Don't want to retry"
393 */
635f6416
N
394 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
395 rdev->raid_disk))
fae8cc5e 396 uptodate = 1;
fae8cc5e
N
397 }
398 if (uptodate) {
1da177e4 399 raid_end_bio_io(r10_bio);
abbf098e 400 rdev_dec_pending(rdev, conf->mddev);
4443ae10 401 } else {
1da177e4 402 /*
7c4e06ff 403 * oops, read error - keep the refcount on the rdev
1da177e4
LT
404 */
405 char b[BDEVNAME_SIZE];
8bda470e
CD
406 printk_ratelimited(KERN_ERR
407 "md/raid10:%s: %s: rescheduling sector %llu\n",
408 mdname(conf->mddev),
abbf098e 409 bdevname(rdev->bdev, b),
8bda470e 410 (unsigned long long)r10_bio->sector);
856e08e2 411 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
412 reschedule_retry(r10_bio);
413 }
1da177e4
LT
414}
415
9f2c9d12 416static void close_write(struct r10bio *r10_bio)
bd870a16
N
417{
418 /* clear the bitmap if all writes complete successfully */
419 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
420 r10_bio->sectors,
421 !test_bit(R10BIO_Degraded, &r10_bio->state),
422 0);
423 md_write_end(r10_bio->mddev);
424}
425
9f2c9d12 426static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
427{
428 if (atomic_dec_and_test(&r10_bio->remaining)) {
429 if (test_bit(R10BIO_WriteError, &r10_bio->state))
430 reschedule_retry(r10_bio);
431 else {
432 close_write(r10_bio);
433 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
434 reschedule_retry(r10_bio);
435 else
436 raid_end_bio_io(r10_bio);
437 }
438 }
439}
440
6712ecf8 441static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
442{
443 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 444 struct r10bio *r10_bio = bio->bi_private;
778ca018 445 int dev;
749c55e9 446 int dec_rdev = 1;
e879a879 447 struct r10conf *conf = r10_bio->mddev->private;
475b0321 448 int slot, repl;
4ca40c2c 449 struct md_rdev *rdev = NULL;
1da177e4 450
475b0321 451 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 452
475b0321
N
453 if (repl)
454 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
455 if (!rdev) {
456 smp_rmb();
457 repl = 0;
475b0321 458 rdev = conf->mirrors[dev].rdev;
4ca40c2c 459 }
1da177e4
LT
460 /*
461 * this branch is our 'one mirror IO has finished' event handler:
462 */
6cce3b23 463 if (!uptodate) {
475b0321
N
464 if (repl)
465 /* Never record new bad blocks to replacement,
466 * just fail it.
467 */
468 md_error(rdev->mddev, rdev);
469 else {
470 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
471 if (!test_and_set_bit(WantReplacement, &rdev->flags))
472 set_bit(MD_RECOVERY_NEEDED,
473 &rdev->mddev->recovery);
475b0321
N
474 set_bit(R10BIO_WriteError, &r10_bio->state);
475 dec_rdev = 0;
476 }
749c55e9 477 } else {
1da177e4
LT
478 /*
479 * Set R10BIO_Uptodate in our master bio, so that
480 * we will return a good error code for to the higher
481 * levels even if IO on some other mirrored buffer fails.
482 *
483 * The 'master' represents the composite IO operation to
484 * user-side. So if something waits for IO, then it will
485 * wait for the 'master' bio.
486 */
749c55e9
N
487 sector_t first_bad;
488 int bad_sectors;
489
3056e3ae
AL
490 /*
491 * Do not set R10BIO_Uptodate if the current device is
492 * rebuilding or Faulty. This is because we cannot use
493 * such device for properly reading the data back (we could
494 * potentially use it, if the current write would have felt
495 * before rdev->recovery_offset, but for simplicity we don't
496 * check this here.
497 */
498 if (test_bit(In_sync, &rdev->flags) &&
499 !test_bit(Faulty, &rdev->flags))
500 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 501
749c55e9 502 /* Maybe we can clear some bad blocks. */
475b0321 503 if (is_badblock(rdev,
749c55e9
N
504 r10_bio->devs[slot].addr,
505 r10_bio->sectors,
506 &first_bad, &bad_sectors)) {
507 bio_put(bio);
475b0321
N
508 if (repl)
509 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510 else
511 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
512 dec_rdev = 0;
513 set_bit(R10BIO_MadeGood, &r10_bio->state);
514 }
515 }
516
1da177e4
LT
517 /*
518 *
519 * Let's see if all mirrored write operations have finished
520 * already.
521 */
19d5f834 522 one_write_done(r10_bio);
749c55e9 523 if (dec_rdev)
884162df 524 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
525}
526
1da177e4
LT
527/*
528 * RAID10 layout manager
25985edc 529 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
530 * parameters: near_copies and far_copies.
531 * near_copies * far_copies must be <= raid_disks.
532 * Normally one of these will be 1.
533 * If both are 1, we get raid0.
534 * If near_copies == raid_disks, we get raid1.
535 *
25985edc 536 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
537 * first chunk, followed by near_copies copies of the next chunk and
538 * so on.
539 * If far_copies > 1, then after 1/far_copies of the array has been assigned
540 * as described above, we start again with a device offset of near_copies.
541 * So we effectively have another copy of the whole array further down all
542 * the drives, but with blocks on different drives.
543 * With this layout, and block is never stored twice on the one device.
544 *
545 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 546 * on each device that it is on.
1da177e4
LT
547 *
548 * raid10_find_virt does the reverse mapping, from a device and a
549 * sector offset to a virtual address
550 */
551
f8c9e74f 552static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
553{
554 int n,f;
555 sector_t sector;
556 sector_t chunk;
557 sector_t stripe;
558 int dev;
1da177e4 559 int slot = 0;
9a3152ab
JB
560 int last_far_set_start, last_far_set_size;
561
562 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563 last_far_set_start *= geo->far_set_size;
564
565 last_far_set_size = geo->far_set_size;
566 last_far_set_size += (geo->raid_disks % geo->far_set_size);
1da177e4
LT
567
568 /* now calculate first sector/dev */
5cf00fcd
N
569 chunk = r10bio->sector >> geo->chunk_shift;
570 sector = r10bio->sector & geo->chunk_mask;
1da177e4 571
5cf00fcd 572 chunk *= geo->near_copies;
1da177e4 573 stripe = chunk;
5cf00fcd
N
574 dev = sector_div(stripe, geo->raid_disks);
575 if (geo->far_offset)
576 stripe *= geo->far_copies;
1da177e4 577
5cf00fcd 578 sector += stripe << geo->chunk_shift;
1da177e4
LT
579
580 /* and calculate all the others */
5cf00fcd 581 for (n = 0; n < geo->near_copies; n++) {
1da177e4 582 int d = dev;
475901af 583 int set;
1da177e4 584 sector_t s = sector;
1da177e4 585 r10bio->devs[slot].devnum = d;
4c0ca26b 586 r10bio->devs[slot].addr = s;
1da177e4
LT
587 slot++;
588
5cf00fcd 589 for (f = 1; f < geo->far_copies; f++) {
475901af 590 set = d / geo->far_set_size;
5cf00fcd 591 d += geo->near_copies;
475901af 592
9a3152ab
JB
593 if ((geo->raid_disks % geo->far_set_size) &&
594 (d > last_far_set_start)) {
595 d -= last_far_set_start;
596 d %= last_far_set_size;
597 d += last_far_set_start;
598 } else {
599 d %= geo->far_set_size;
600 d += geo->far_set_size * set;
601 }
5cf00fcd 602 s += geo->stride;
1da177e4
LT
603 r10bio->devs[slot].devnum = d;
604 r10bio->devs[slot].addr = s;
605 slot++;
606 }
607 dev++;
5cf00fcd 608 if (dev >= geo->raid_disks) {
1da177e4 609 dev = 0;
5cf00fcd 610 sector += (geo->chunk_mask + 1);
1da177e4
LT
611 }
612 }
f8c9e74f
N
613}
614
615static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616{
617 struct geom *geo = &conf->geo;
618
619 if (conf->reshape_progress != MaxSector &&
620 ((r10bio->sector >= conf->reshape_progress) !=
621 conf->mddev->reshape_backwards)) {
622 set_bit(R10BIO_Previous, &r10bio->state);
623 geo = &conf->prev;
624 } else
625 clear_bit(R10BIO_Previous, &r10bio->state);
626
627 __raid10_find_phys(geo, r10bio);
1da177e4
LT
628}
629
e879a879 630static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
631{
632 sector_t offset, chunk, vchunk;
f8c9e74f
N
633 /* Never use conf->prev as this is only called during resync
634 * or recovery, so reshape isn't happening
635 */
5cf00fcd 636 struct geom *geo = &conf->geo;
475901af
JB
637 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638 int far_set_size = geo->far_set_size;
9a3152ab
JB
639 int last_far_set_start;
640
641 if (geo->raid_disks % geo->far_set_size) {
642 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643 last_far_set_start *= geo->far_set_size;
644
645 if (dev >= last_far_set_start) {
646 far_set_size = geo->far_set_size;
647 far_set_size += (geo->raid_disks % geo->far_set_size);
648 far_set_start = last_far_set_start;
649 }
650 }
1da177e4 651
5cf00fcd
N
652 offset = sector & geo->chunk_mask;
653 if (geo->far_offset) {
c93983bf 654 int fc;
5cf00fcd
N
655 chunk = sector >> geo->chunk_shift;
656 fc = sector_div(chunk, geo->far_copies);
657 dev -= fc * geo->near_copies;
475901af
JB
658 if (dev < far_set_start)
659 dev += far_set_size;
c93983bf 660 } else {
5cf00fcd
N
661 while (sector >= geo->stride) {
662 sector -= geo->stride;
475901af
JB
663 if (dev < (geo->near_copies + far_set_start))
664 dev += far_set_size - geo->near_copies;
c93983bf 665 else
5cf00fcd 666 dev -= geo->near_copies;
c93983bf 667 }
5cf00fcd 668 chunk = sector >> geo->chunk_shift;
c93983bf 669 }
5cf00fcd
N
670 vchunk = chunk * geo->raid_disks + dev;
671 sector_div(vchunk, geo->near_copies);
672 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
673}
674
675/**
676 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
64590f45 677 * @mddev: the md device
cc371e66 678 * @bvm: properties of new bio
1da177e4
LT
679 * @biovec: the request that could be merged to it.
680 *
681 * Return amount of bytes we can accept at this offset
050b6615
N
682 * This requires checking for end-of-chunk if near_copies != raid_disks,
683 * and for subordinate merge_bvec_fns if merge_check_needed.
1da177e4 684 */
64590f45 685static int raid10_mergeable_bvec(struct mddev *mddev,
cc371e66
AK
686 struct bvec_merge_data *bvm,
687 struct bio_vec *biovec)
1da177e4 688{
050b6615 689 struct r10conf *conf = mddev->private;
cc371e66 690 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4 691 int max;
3ea7daa5 692 unsigned int chunk_sectors;
cc371e66 693 unsigned int bio_sectors = bvm->bi_size >> 9;
5cf00fcd 694 struct geom *geo = &conf->geo;
1da177e4 695
3ea7daa5 696 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
f8c9e74f
N
697 if (conf->reshape_progress != MaxSector &&
698 ((sector >= conf->reshape_progress) !=
699 conf->mddev->reshape_backwards))
700 geo = &conf->prev;
701
5cf00fcd 702 if (geo->near_copies < geo->raid_disks) {
050b6615
N
703 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
704 + bio_sectors)) << 9;
705 if (max < 0)
706 /* bio_add cannot handle a negative return */
707 max = 0;
708 if (max <= biovec->bv_len && bio_sectors == 0)
709 return biovec->bv_len;
710 } else
711 max = biovec->bv_len;
712
713 if (mddev->merge_check_needed) {
e0ee7785
N
714 struct {
715 struct r10bio r10_bio;
716 struct r10dev devs[conf->copies];
717 } on_stack;
718 struct r10bio *r10_bio = &on_stack.r10_bio;
050b6615 719 int s;
f8c9e74f
N
720 if (conf->reshape_progress != MaxSector) {
721 /* Cannot give any guidance during reshape */
722 if (max <= biovec->bv_len && bio_sectors == 0)
723 return biovec->bv_len;
724 return 0;
725 }
e0ee7785
N
726 r10_bio->sector = sector;
727 raid10_find_phys(conf, r10_bio);
050b6615
N
728 rcu_read_lock();
729 for (s = 0; s < conf->copies; s++) {
e0ee7785 730 int disk = r10_bio->devs[s].devnum;
050b6615
N
731 struct md_rdev *rdev = rcu_dereference(
732 conf->mirrors[disk].rdev);
733 if (rdev && !test_bit(Faulty, &rdev->flags)) {
734 struct request_queue *q =
735 bdev_get_queue(rdev->bdev);
736 if (q->merge_bvec_fn) {
e0ee7785 737 bvm->bi_sector = r10_bio->devs[s].addr
050b6615
N
738 + rdev->data_offset;
739 bvm->bi_bdev = rdev->bdev;
740 max = min(max, q->merge_bvec_fn(
741 q, bvm, biovec));
742 }
743 }
744 rdev = rcu_dereference(conf->mirrors[disk].replacement);
745 if (rdev && !test_bit(Faulty, &rdev->flags)) {
746 struct request_queue *q =
747 bdev_get_queue(rdev->bdev);
748 if (q->merge_bvec_fn) {
e0ee7785 749 bvm->bi_sector = r10_bio->devs[s].addr
050b6615
N
750 + rdev->data_offset;
751 bvm->bi_bdev = rdev->bdev;
752 max = min(max, q->merge_bvec_fn(
753 q, bvm, biovec));
754 }
755 }
756 }
757 rcu_read_unlock();
758 }
759 return max;
1da177e4
LT
760}
761
762/*
763 * This routine returns the disk from which the requested read should
764 * be done. There is a per-array 'next expected sequential IO' sector
765 * number - if this matches on the next IO then we use the last disk.
766 * There is also a per-disk 'last know head position' sector that is
767 * maintained from IRQ contexts, both the normal and the resync IO
768 * completion handlers update this position correctly. If there is no
769 * perfect sequential match then we pick the disk whose head is closest.
770 *
771 * If there are 2 mirrors in the same 2 devices, performance degrades
772 * because position is mirror, not device based.
773 *
774 * The rdev for the device selected will have nr_pending incremented.
775 */
776
777/*
778 * FIXME: possibly should rethink readbalancing and do it differently
779 * depending on near_copies / far_copies geometry.
780 */
96c3fd1f
N
781static struct md_rdev *read_balance(struct r10conf *conf,
782 struct r10bio *r10_bio,
783 int *max_sectors)
1da177e4 784{
af3a2cd6 785 const sector_t this_sector = r10_bio->sector;
56d99121 786 int disk, slot;
856e08e2
N
787 int sectors = r10_bio->sectors;
788 int best_good_sectors;
56d99121 789 sector_t new_distance, best_dist;
3bbae04b 790 struct md_rdev *best_rdev, *rdev = NULL;
56d99121
N
791 int do_balance;
792 int best_slot;
5cf00fcd 793 struct geom *geo = &conf->geo;
1da177e4
LT
794
795 raid10_find_phys(conf, r10_bio);
796 rcu_read_lock();
56d99121 797retry:
856e08e2 798 sectors = r10_bio->sectors;
56d99121 799 best_slot = -1;
abbf098e 800 best_rdev = NULL;
56d99121 801 best_dist = MaxSector;
856e08e2 802 best_good_sectors = 0;
56d99121 803 do_balance = 1;
1da177e4
LT
804 /*
805 * Check if we can balance. We can balance on the whole
6cce3b23
N
806 * device if no resync is going on (recovery is ok), or below
807 * the resync window. We take the first readable disk when
808 * above the resync window.
1da177e4
LT
809 */
810 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
811 && (this_sector + sectors >= conf->next_resync))
812 do_balance = 0;
1da177e4 813
56d99121 814 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
815 sector_t first_bad;
816 int bad_sectors;
817 sector_t dev_sector;
818
56d99121
N
819 if (r10_bio->devs[slot].bio == IO_BLOCKED)
820 continue;
1da177e4 821 disk = r10_bio->devs[slot].devnum;
abbf098e
N
822 rdev = rcu_dereference(conf->mirrors[disk].replacement);
823 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
050b6615 824 test_bit(Unmerged, &rdev->flags) ||
abbf098e
N
825 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
826 rdev = rcu_dereference(conf->mirrors[disk].rdev);
050b6615
N
827 if (rdev == NULL ||
828 test_bit(Faulty, &rdev->flags) ||
829 test_bit(Unmerged, &rdev->flags))
abbf098e
N
830 continue;
831 if (!test_bit(In_sync, &rdev->flags) &&
832 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
833 continue;
834
856e08e2
N
835 dev_sector = r10_bio->devs[slot].addr;
836 if (is_badblock(rdev, dev_sector, sectors,
837 &first_bad, &bad_sectors)) {
838 if (best_dist < MaxSector)
839 /* Already have a better slot */
840 continue;
841 if (first_bad <= dev_sector) {
842 /* Cannot read here. If this is the
843 * 'primary' device, then we must not read
844 * beyond 'bad_sectors' from another device.
845 */
846 bad_sectors -= (dev_sector - first_bad);
847 if (!do_balance && sectors > bad_sectors)
848 sectors = bad_sectors;
849 if (best_good_sectors > sectors)
850 best_good_sectors = sectors;
851 } else {
852 sector_t good_sectors =
853 first_bad - dev_sector;
854 if (good_sectors > best_good_sectors) {
855 best_good_sectors = good_sectors;
856 best_slot = slot;
abbf098e 857 best_rdev = rdev;
856e08e2
N
858 }
859 if (!do_balance)
860 /* Must read from here */
861 break;
862 }
863 continue;
864 } else
865 best_good_sectors = sectors;
866
56d99121
N
867 if (!do_balance)
868 break;
1da177e4 869
22dfdf52
N
870 /* This optimisation is debatable, and completely destroys
871 * sequential read speed for 'far copies' arrays. So only
872 * keep it for 'near' arrays, and review those later.
873 */
5cf00fcd 874 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
1da177e4 875 break;
8ed3a195
KS
876
877 /* for far > 1 always use the lowest address */
5cf00fcd 878 if (geo->far_copies > 1)
56d99121 879 new_distance = r10_bio->devs[slot].addr;
8ed3a195 880 else
56d99121
N
881 new_distance = abs(r10_bio->devs[slot].addr -
882 conf->mirrors[disk].head_position);
883 if (new_distance < best_dist) {
884 best_dist = new_distance;
885 best_slot = slot;
abbf098e 886 best_rdev = rdev;
1da177e4
LT
887 }
888 }
abbf098e 889 if (slot >= conf->copies) {
56d99121 890 slot = best_slot;
abbf098e
N
891 rdev = best_rdev;
892 }
1da177e4 893
56d99121 894 if (slot >= 0) {
56d99121
N
895 atomic_inc(&rdev->nr_pending);
896 if (test_bit(Faulty, &rdev->flags)) {
897 /* Cannot risk returning a device that failed
898 * before we inc'ed nr_pending
899 */
900 rdev_dec_pending(rdev, conf->mddev);
901 goto retry;
902 }
903 r10_bio->read_slot = slot;
904 } else
96c3fd1f 905 rdev = NULL;
1da177e4 906 rcu_read_unlock();
856e08e2 907 *max_sectors = best_good_sectors;
1da177e4 908
96c3fd1f 909 return rdev;
1da177e4
LT
910}
911
5c675f83 912static int raid10_congested(struct mddev *mddev, int bits)
0d129228 913{
e879a879 914 struct r10conf *conf = mddev->private;
0d129228
N
915 int i, ret = 0;
916
4452226e 917 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
918 conf->pending_count >= max_queued_requests)
919 return 1;
920
0d129228 921 rcu_read_lock();
f8c9e74f
N
922 for (i = 0;
923 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
924 && ret == 0;
925 i++) {
3cb03002 926 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 927 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 928 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
929
930 ret |= bdi_congested(&q->backing_dev_info, bits);
931 }
932 }
933 rcu_read_unlock();
934 return ret;
935}
936
e879a879 937static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
938{
939 /* Any writes that have been queued but are awaiting
940 * bitmap updates get flushed here.
a35e63ef 941 */
a35e63ef
N
942 spin_lock_irq(&conf->device_lock);
943
944 if (conf->pending_bio_list.head) {
945 struct bio *bio;
946 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 947 conf->pending_count = 0;
a35e63ef
N
948 spin_unlock_irq(&conf->device_lock);
949 /* flush any pending bitmap writes to disk
950 * before proceeding w/ I/O */
951 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 952 wake_up(&conf->wait_barrier);
a35e63ef
N
953
954 while (bio) { /* submit pending writes */
955 struct bio *next = bio->bi_next;
956 bio->bi_next = NULL;
532a2a3f
SL
957 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
958 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
959 /* Just ignore it */
960 bio_endio(bio, 0);
961 else
962 generic_make_request(bio);
a35e63ef
N
963 bio = next;
964 }
a35e63ef
N
965 } else
966 spin_unlock_irq(&conf->device_lock);
a35e63ef 967}
7eaceacc 968
0a27ec96
N
969/* Barriers....
970 * Sometimes we need to suspend IO while we do something else,
971 * either some resync/recovery, or reconfigure the array.
972 * To do this we raise a 'barrier'.
973 * The 'barrier' is a counter that can be raised multiple times
974 * to count how many activities are happening which preclude
975 * normal IO.
976 * We can only raise the barrier if there is no pending IO.
977 * i.e. if nr_pending == 0.
978 * We choose only to raise the barrier if no-one is waiting for the
979 * barrier to go down. This means that as soon as an IO request
980 * is ready, no other operations which require a barrier will start
981 * until the IO request has had a chance.
982 *
983 * So: regular IO calls 'wait_barrier'. When that returns there
984 * is no backgroup IO happening, It must arrange to call
985 * allow_barrier when it has finished its IO.
986 * backgroup IO calls must call raise_barrier. Once that returns
987 * there is no normal IO happeing. It must arrange to call
988 * lower_barrier when the particular background IO completes.
1da177e4 989 */
1da177e4 990
e879a879 991static void raise_barrier(struct r10conf *conf, int force)
1da177e4 992{
6cce3b23 993 BUG_ON(force && !conf->barrier);
1da177e4 994 spin_lock_irq(&conf->resync_lock);
0a27ec96 995
6cce3b23
N
996 /* Wait until no block IO is waiting (unless 'force') */
997 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
eed8c02e 998 conf->resync_lock);
0a27ec96
N
999
1000 /* block any new IO from starting */
1001 conf->barrier++;
1002
c3b328ac 1003 /* Now wait for all pending IO to complete */
0a27ec96
N
1004 wait_event_lock_irq(conf->wait_barrier,
1005 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
eed8c02e 1006 conf->resync_lock);
0a27ec96
N
1007
1008 spin_unlock_irq(&conf->resync_lock);
1009}
1010
e879a879 1011static void lower_barrier(struct r10conf *conf)
0a27ec96
N
1012{
1013 unsigned long flags;
1014 spin_lock_irqsave(&conf->resync_lock, flags);
1015 conf->barrier--;
1016 spin_unlock_irqrestore(&conf->resync_lock, flags);
1017 wake_up(&conf->wait_barrier);
1018}
1019
e879a879 1020static void wait_barrier(struct r10conf *conf)
0a27ec96
N
1021{
1022 spin_lock_irq(&conf->resync_lock);
1023 if (conf->barrier) {
1024 conf->nr_waiting++;
d6b42dcb
N
1025 /* Wait for the barrier to drop.
1026 * However if there are already pending
1027 * requests (preventing the barrier from
1028 * rising completely), and the
1029 * pre-process bio queue isn't empty,
1030 * then don't wait, as we need to empty
1031 * that queue to get the nr_pending
1032 * count down.
1033 */
1034 wait_event_lock_irq(conf->wait_barrier,
1035 !conf->barrier ||
1036 (conf->nr_pending &&
1037 current->bio_list &&
1038 !bio_list_empty(current->bio_list)),
eed8c02e 1039 conf->resync_lock);
0a27ec96 1040 conf->nr_waiting--;
1da177e4 1041 }
0a27ec96 1042 conf->nr_pending++;
1da177e4
LT
1043 spin_unlock_irq(&conf->resync_lock);
1044}
1045
e879a879 1046static void allow_barrier(struct r10conf *conf)
0a27ec96
N
1047{
1048 unsigned long flags;
1049 spin_lock_irqsave(&conf->resync_lock, flags);
1050 conf->nr_pending--;
1051 spin_unlock_irqrestore(&conf->resync_lock, flags);
1052 wake_up(&conf->wait_barrier);
1053}
1054
e2d59925 1055static void freeze_array(struct r10conf *conf, int extra)
4443ae10
N
1056{
1057 /* stop syncio and normal IO and wait for everything to
f188593e 1058 * go quiet.
4443ae10 1059 * We increment barrier and nr_waiting, and then
e2d59925 1060 * wait until nr_pending match nr_queued+extra
1c830532
N
1061 * This is called in the context of one normal IO request
1062 * that has failed. Thus any sync request that might be pending
1063 * will be blocked by nr_pending, and we need to wait for
1064 * pending IO requests to complete or be queued for re-try.
e2d59925 1065 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
1066 * must match the number of pending IOs (nr_pending) before
1067 * we continue.
4443ae10
N
1068 */
1069 spin_lock_irq(&conf->resync_lock);
1070 conf->barrier++;
1071 conf->nr_waiting++;
eed8c02e 1072 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 1073 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
1074 conf->resync_lock,
1075 flush_pending_writes(conf));
c3b328ac 1076
4443ae10
N
1077 spin_unlock_irq(&conf->resync_lock);
1078}
1079
e879a879 1080static void unfreeze_array(struct r10conf *conf)
4443ae10
N
1081{
1082 /* reverse the effect of the freeze */
1083 spin_lock_irq(&conf->resync_lock);
1084 conf->barrier--;
1085 conf->nr_waiting--;
1086 wake_up(&conf->wait_barrier);
1087 spin_unlock_irq(&conf->resync_lock);
1088}
1089
f8c9e74f
N
1090static sector_t choose_data_offset(struct r10bio *r10_bio,
1091 struct md_rdev *rdev)
1092{
1093 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1094 test_bit(R10BIO_Previous, &r10_bio->state))
1095 return rdev->data_offset;
1096 else
1097 return rdev->new_data_offset;
1098}
1099
57c67df4
N
1100struct raid10_plug_cb {
1101 struct blk_plug_cb cb;
1102 struct bio_list pending;
1103 int pending_cnt;
1104};
1105
1106static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1107{
1108 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1109 cb);
1110 struct mddev *mddev = plug->cb.data;
1111 struct r10conf *conf = mddev->private;
1112 struct bio *bio;
1113
874807a8 1114 if (from_schedule || current->bio_list) {
57c67df4
N
1115 spin_lock_irq(&conf->device_lock);
1116 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1117 conf->pending_count += plug->pending_cnt;
1118 spin_unlock_irq(&conf->device_lock);
ee0b0244 1119 wake_up(&conf->wait_barrier);
57c67df4
N
1120 md_wakeup_thread(mddev->thread);
1121 kfree(plug);
1122 return;
1123 }
1124
1125 /* we aren't scheduling, so we can do the write-out directly. */
1126 bio = bio_list_get(&plug->pending);
1127 bitmap_unplug(mddev->bitmap);
1128 wake_up(&conf->wait_barrier);
1129
1130 while (bio) { /* submit pending writes */
1131 struct bio *next = bio->bi_next;
1132 bio->bi_next = NULL;
32f9f570
SL
1133 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1134 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1135 /* Just ignore it */
1136 bio_endio(bio, 0);
1137 else
1138 generic_make_request(bio);
57c67df4
N
1139 bio = next;
1140 }
1141 kfree(plug);
1142}
1143
20d0189b 1144static void __make_request(struct mddev *mddev, struct bio *bio)
1da177e4 1145{
e879a879 1146 struct r10conf *conf = mddev->private;
9f2c9d12 1147 struct r10bio *r10_bio;
1da177e4
LT
1148 struct bio *read_bio;
1149 int i;
a362357b 1150 const int rw = bio_data_dir(bio);
2c7d46ec 1151 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1152 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
532a2a3f
SL
1153 const unsigned long do_discard = (bio->bi_rw
1154 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1155 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
6cce3b23 1156 unsigned long flags;
3cb03002 1157 struct md_rdev *blocked_rdev;
57c67df4
N
1158 struct blk_plug_cb *cb;
1159 struct raid10_plug_cb *plug = NULL;
d4432c23
N
1160 int sectors_handled;
1161 int max_sectors;
3ea7daa5 1162 int sectors;
1da177e4 1163
cc13b1d1
N
1164 /*
1165 * Register the new request and wait if the reconstruction
1166 * thread has put up a bar for new requests.
1167 * Continue immediately if no resync is active currently.
1168 */
1169 wait_barrier(conf);
1170
aa8b57aa 1171 sectors = bio_sectors(bio);
3ea7daa5 1172 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
4f024f37
KO
1173 bio->bi_iter.bi_sector < conf->reshape_progress &&
1174 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
3ea7daa5
N
1175 /* IO spans the reshape position. Need to wait for
1176 * reshape to pass
1177 */
1178 allow_barrier(conf);
1179 wait_event(conf->wait_barrier,
4f024f37
KO
1180 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1181 conf->reshape_progress >= bio->bi_iter.bi_sector +
1182 sectors);
3ea7daa5
N
1183 wait_barrier(conf);
1184 }
1185 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1186 bio_data_dir(bio) == WRITE &&
1187 (mddev->reshape_backwards
4f024f37
KO
1188 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1189 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1190 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1191 bio->bi_iter.bi_sector < conf->reshape_progress))) {
3ea7daa5
N
1192 /* Need to update reshape_position in metadata */
1193 mddev->reshape_position = conf->reshape_progress;
1194 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1195 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1196 md_wakeup_thread(mddev->thread);
1197 wait_event(mddev->sb_wait,
1198 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1199
1200 conf->reshape_safe = mddev->reshape_position;
1201 }
1202
1da177e4
LT
1203 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1204
1205 r10_bio->master_bio = bio;
3ea7daa5 1206 r10_bio->sectors = sectors;
1da177e4
LT
1207
1208 r10_bio->mddev = mddev;
4f024f37 1209 r10_bio->sector = bio->bi_iter.bi_sector;
6cce3b23 1210 r10_bio->state = 0;
1da177e4 1211
856e08e2
N
1212 /* We might need to issue multiple reads to different
1213 * devices if there are bad blocks around, so we keep
1214 * track of the number of reads in bio->bi_phys_segments.
1215 * If this is 0, there is only one r10_bio and no locking
1216 * will be needed when the request completes. If it is
1217 * non-zero, then it is the number of not-completed requests.
1218 */
1219 bio->bi_phys_segments = 0;
1220 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1221
a362357b 1222 if (rw == READ) {
1da177e4
LT
1223 /*
1224 * read balancing logic:
1225 */
96c3fd1f 1226 struct md_rdev *rdev;
856e08e2
N
1227 int slot;
1228
1229read_again:
96c3fd1f
N
1230 rdev = read_balance(conf, r10_bio, &max_sectors);
1231 if (!rdev) {
1da177e4 1232 raid_end_bio_io(r10_bio);
5a7bbad2 1233 return;
1da177e4 1234 }
96c3fd1f 1235 slot = r10_bio->read_slot;
1da177e4 1236
a167f663 1237 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1238 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1239 max_sectors);
1da177e4
LT
1240
1241 r10_bio->devs[slot].bio = read_bio;
abbf098e 1242 r10_bio->devs[slot].rdev = rdev;
1da177e4 1243
4f024f37 1244 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
f8c9e74f 1245 choose_data_offset(r10_bio, rdev);
96c3fd1f 1246 read_bio->bi_bdev = rdev->bdev;
1da177e4 1247 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 1248 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1249 read_bio->bi_private = r10_bio;
1250
856e08e2
N
1251 if (max_sectors < r10_bio->sectors) {
1252 /* Could not read all from this device, so we will
1253 * need another r10_bio.
1254 */
b50c259e 1255 sectors_handled = (r10_bio->sector + max_sectors
4f024f37 1256 - bio->bi_iter.bi_sector);
856e08e2
N
1257 r10_bio->sectors = max_sectors;
1258 spin_lock_irq(&conf->device_lock);
1259 if (bio->bi_phys_segments == 0)
1260 bio->bi_phys_segments = 2;
1261 else
1262 bio->bi_phys_segments++;
b50c259e 1263 spin_unlock_irq(&conf->device_lock);
856e08e2
N
1264 /* Cannot call generic_make_request directly
1265 * as that will be queued in __generic_make_request
1266 * and subsequent mempool_alloc might block
1267 * waiting for it. so hand bio over to raid10d.
1268 */
1269 reschedule_retry(r10_bio);
1270
1271 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1272
1273 r10_bio->master_bio = bio;
aa8b57aa 1274 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
856e08e2
N
1275 r10_bio->state = 0;
1276 r10_bio->mddev = mddev;
4f024f37
KO
1277 r10_bio->sector = bio->bi_iter.bi_sector +
1278 sectors_handled;
856e08e2
N
1279 goto read_again;
1280 } else
1281 generic_make_request(read_bio);
5a7bbad2 1282 return;
1da177e4
LT
1283 }
1284
1285 /*
1286 * WRITE:
1287 */
34db0cd6
N
1288 if (conf->pending_count >= max_queued_requests) {
1289 md_wakeup_thread(mddev->thread);
1290 wait_event(conf->wait_barrier,
1291 conf->pending_count < max_queued_requests);
1292 }
6bfe0b49 1293 /* first select target devices under rcu_lock and
1da177e4
LT
1294 * inc refcount on their rdev. Record them by setting
1295 * bios[x] to bio
d4432c23
N
1296 * If there are known/acknowledged bad blocks on any device
1297 * on which we have seen a write error, we want to avoid
1298 * writing to those blocks. This potentially requires several
1299 * writes to write around the bad blocks. Each set of writes
1300 * gets its own r10_bio with a set of bios attached. The number
1301 * of r10_bios is recored in bio->bi_phys_segments just as with
1302 * the read case.
1da177e4 1303 */
c3b328ac 1304
69335ef3 1305 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1306 raid10_find_phys(conf, r10_bio);
d4432c23 1307retry_write:
cb6969e8 1308 blocked_rdev = NULL;
1da177e4 1309 rcu_read_lock();
d4432c23
N
1310 max_sectors = r10_bio->sectors;
1311
1da177e4
LT
1312 for (i = 0; i < conf->copies; i++) {
1313 int d = r10_bio->devs[i].devnum;
3cb03002 1314 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1315 struct md_rdev *rrdev = rcu_dereference(
1316 conf->mirrors[d].replacement);
4ca40c2c
N
1317 if (rdev == rrdev)
1318 rrdev = NULL;
6bfe0b49
DW
1319 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1320 atomic_inc(&rdev->nr_pending);
1321 blocked_rdev = rdev;
1322 break;
1323 }
475b0321
N
1324 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1325 atomic_inc(&rrdev->nr_pending);
1326 blocked_rdev = rrdev;
1327 break;
1328 }
e7c0c3fa
N
1329 if (rdev && (test_bit(Faulty, &rdev->flags)
1330 || test_bit(Unmerged, &rdev->flags)))
1331 rdev = NULL;
050b6615
N
1332 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1333 || test_bit(Unmerged, &rrdev->flags)))
475b0321
N
1334 rrdev = NULL;
1335
d4432c23 1336 r10_bio->devs[i].bio = NULL;
475b0321 1337 r10_bio->devs[i].repl_bio = NULL;
e7c0c3fa
N
1338
1339 if (!rdev && !rrdev) {
6cce3b23 1340 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1341 continue;
1342 }
e7c0c3fa 1343 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
d4432c23
N
1344 sector_t first_bad;
1345 sector_t dev_sector = r10_bio->devs[i].addr;
1346 int bad_sectors;
1347 int is_bad;
1348
1349 is_bad = is_badblock(rdev, dev_sector,
1350 max_sectors,
1351 &first_bad, &bad_sectors);
1352 if (is_bad < 0) {
1353 /* Mustn't write here until the bad block
1354 * is acknowledged
1355 */
1356 atomic_inc(&rdev->nr_pending);
1357 set_bit(BlockedBadBlocks, &rdev->flags);
1358 blocked_rdev = rdev;
1359 break;
1360 }
1361 if (is_bad && first_bad <= dev_sector) {
1362 /* Cannot write here at all */
1363 bad_sectors -= (dev_sector - first_bad);
1364 if (bad_sectors < max_sectors)
1365 /* Mustn't write more than bad_sectors
1366 * to other devices yet
1367 */
1368 max_sectors = bad_sectors;
1369 /* We don't set R10BIO_Degraded as that
1370 * only applies if the disk is missing,
1371 * so it might be re-added, and we want to
1372 * know to recover this chunk.
1373 * In this case the device is here, and the
1374 * fact that this chunk is not in-sync is
1375 * recorded in the bad block log.
1376 */
1377 continue;
1378 }
1379 if (is_bad) {
1380 int good_sectors = first_bad - dev_sector;
1381 if (good_sectors < max_sectors)
1382 max_sectors = good_sectors;
1383 }
6cce3b23 1384 }
e7c0c3fa
N
1385 if (rdev) {
1386 r10_bio->devs[i].bio = bio;
1387 atomic_inc(&rdev->nr_pending);
1388 }
475b0321
N
1389 if (rrdev) {
1390 r10_bio->devs[i].repl_bio = bio;
1391 atomic_inc(&rrdev->nr_pending);
1392 }
1da177e4
LT
1393 }
1394 rcu_read_unlock();
1395
6bfe0b49
DW
1396 if (unlikely(blocked_rdev)) {
1397 /* Have to wait for this device to get unblocked, then retry */
1398 int j;
1399 int d;
1400
475b0321 1401 for (j = 0; j < i; j++) {
6bfe0b49
DW
1402 if (r10_bio->devs[j].bio) {
1403 d = r10_bio->devs[j].devnum;
1404 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1405 }
475b0321 1406 if (r10_bio->devs[j].repl_bio) {
4ca40c2c 1407 struct md_rdev *rdev;
475b0321 1408 d = r10_bio->devs[j].devnum;
4ca40c2c
N
1409 rdev = conf->mirrors[d].replacement;
1410 if (!rdev) {
1411 /* Race with remove_disk */
1412 smp_mb();
1413 rdev = conf->mirrors[d].rdev;
1414 }
1415 rdev_dec_pending(rdev, mddev);
475b0321
N
1416 }
1417 }
6bfe0b49
DW
1418 allow_barrier(conf);
1419 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1420 wait_barrier(conf);
1421 goto retry_write;
1422 }
1423
d4432c23
N
1424 if (max_sectors < r10_bio->sectors) {
1425 /* We are splitting this into multiple parts, so
1426 * we need to prepare for allocating another r10_bio.
1427 */
1428 r10_bio->sectors = max_sectors;
1429 spin_lock_irq(&conf->device_lock);
1430 if (bio->bi_phys_segments == 0)
1431 bio->bi_phys_segments = 2;
1432 else
1433 bio->bi_phys_segments++;
1434 spin_unlock_irq(&conf->device_lock);
1435 }
4f024f37
KO
1436 sectors_handled = r10_bio->sector + max_sectors -
1437 bio->bi_iter.bi_sector;
d4432c23 1438
4e78064f 1439 atomic_set(&r10_bio->remaining, 1);
d4432c23 1440 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1441
1da177e4
LT
1442 for (i = 0; i < conf->copies; i++) {
1443 struct bio *mbio;
1444 int d = r10_bio->devs[i].devnum;
e7c0c3fa
N
1445 if (r10_bio->devs[i].bio) {
1446 struct md_rdev *rdev = conf->mirrors[d].rdev;
1447 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1448 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1449 max_sectors);
e7c0c3fa
N
1450 r10_bio->devs[i].bio = mbio;
1451
4f024f37 1452 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
e7c0c3fa
N
1453 choose_data_offset(r10_bio,
1454 rdev));
1455 mbio->bi_bdev = rdev->bdev;
1456 mbio->bi_end_io = raid10_end_write_request;
c8dc9c65
JL
1457 mbio->bi_rw =
1458 WRITE | do_sync | do_fua | do_discard | do_same;
e7c0c3fa
N
1459 mbio->bi_private = r10_bio;
1460
1461 atomic_inc(&r10_bio->remaining);
1462
1463 cb = blk_check_plugged(raid10_unplug, mddev,
1464 sizeof(*plug));
1465 if (cb)
1466 plug = container_of(cb, struct raid10_plug_cb,
1467 cb);
1468 else
1469 plug = NULL;
1470 spin_lock_irqsave(&conf->device_lock, flags);
1471 if (plug) {
1472 bio_list_add(&plug->pending, mbio);
1473 plug->pending_cnt++;
1474 } else {
1475 bio_list_add(&conf->pending_bio_list, mbio);
1476 conf->pending_count++;
1477 }
1478 spin_unlock_irqrestore(&conf->device_lock, flags);
1479 if (!plug)
1480 md_wakeup_thread(mddev->thread);
1481 }
57c67df4 1482
e7c0c3fa
N
1483 if (r10_bio->devs[i].repl_bio) {
1484 struct md_rdev *rdev = conf->mirrors[d].replacement;
1485 if (rdev == NULL) {
1486 /* Replacement just got moved to main 'rdev' */
1487 smp_mb();
1488 rdev = conf->mirrors[d].rdev;
1489 }
1490 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1491 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1492 max_sectors);
e7c0c3fa
N
1493 r10_bio->devs[i].repl_bio = mbio;
1494
4f024f37 1495 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
e7c0c3fa
N
1496 choose_data_offset(
1497 r10_bio, rdev));
1498 mbio->bi_bdev = rdev->bdev;
1499 mbio->bi_end_io = raid10_end_write_request;
c8dc9c65
JL
1500 mbio->bi_rw =
1501 WRITE | do_sync | do_fua | do_discard | do_same;
e7c0c3fa
N
1502 mbio->bi_private = r10_bio;
1503
1504 atomic_inc(&r10_bio->remaining);
1505 spin_lock_irqsave(&conf->device_lock, flags);
57c67df4
N
1506 bio_list_add(&conf->pending_bio_list, mbio);
1507 conf->pending_count++;
e7c0c3fa
N
1508 spin_unlock_irqrestore(&conf->device_lock, flags);
1509 if (!mddev_check_plugged(mddev))
1510 md_wakeup_thread(mddev->thread);
57c67df4 1511 }
1da177e4
LT
1512 }
1513
079fa166
N
1514 /* Don't remove the bias on 'remaining' (one_write_done) until
1515 * after checking if we need to go around again.
1516 */
a35e63ef 1517
aa8b57aa 1518 if (sectors_handled < bio_sectors(bio)) {
079fa166 1519 one_write_done(r10_bio);
5e570289 1520 /* We need another r10_bio. It has already been counted
d4432c23
N
1521 * in bio->bi_phys_segments.
1522 */
1523 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1524
1525 r10_bio->master_bio = bio;
aa8b57aa 1526 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
d4432c23
N
1527
1528 r10_bio->mddev = mddev;
4f024f37 1529 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
d4432c23
N
1530 r10_bio->state = 0;
1531 goto retry_write;
1532 }
079fa166 1533 one_write_done(r10_bio);
20d0189b
KO
1534}
1535
1536static void make_request(struct mddev *mddev, struct bio *bio)
1537{
1538 struct r10conf *conf = mddev->private;
1539 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1540 int chunk_sects = chunk_mask + 1;
1541
1542 struct bio *split;
1543
1544 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1545 md_flush_request(mddev, bio);
1546 return;
1547 }
1548
1549 md_write_start(mddev, bio);
1550
20d0189b
KO
1551 do {
1552
1553 /*
1554 * If this request crosses a chunk boundary, we need to split
1555 * it.
1556 */
1557 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1558 bio_sectors(bio) > chunk_sects
1559 && (conf->geo.near_copies < conf->geo.raid_disks
1560 || conf->prev.near_copies <
1561 conf->prev.raid_disks))) {
1562 split = bio_split(bio, chunk_sects -
1563 (bio->bi_iter.bi_sector &
1564 (chunk_sects - 1)),
1565 GFP_NOIO, fs_bio_set);
1566 bio_chain(split, bio);
1567 } else {
1568 split = bio;
1569 }
1570
1571 __make_request(mddev, split);
1572 } while (split != bio);
079fa166
N
1573
1574 /* In case raid10d snuck in to freeze_array */
1575 wake_up(&conf->wait_barrier);
1da177e4
LT
1576}
1577
fd01b88c 1578static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1579{
e879a879 1580 struct r10conf *conf = mddev->private;
1da177e4
LT
1581 int i;
1582
5cf00fcd 1583 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1584 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1585 if (conf->geo.near_copies > 1)
1586 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1587 if (conf->geo.far_copies > 1) {
1588 if (conf->geo.far_offset)
1589 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1590 else
5cf00fcd 1591 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
c93983bf 1592 }
5cf00fcd
N
1593 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1594 conf->geo.raid_disks - mddev->degraded);
1595 for (i = 0; i < conf->geo.raid_disks; i++)
1da177e4
LT
1596 seq_printf(seq, "%s",
1597 conf->mirrors[i].rdev &&
b2d444d7 1598 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1599 seq_printf(seq, "]");
1600}
1601
700c7213
N
1602/* check if there are enough drives for
1603 * every block to appear on atleast one.
1604 * Don't consider the device numbered 'ignore'
1605 * as we might be about to remove it.
1606 */
635f6416 1607static int _enough(struct r10conf *conf, int previous, int ignore)
700c7213
N
1608{
1609 int first = 0;
725d6e57 1610 int has_enough = 0;
635f6416
N
1611 int disks, ncopies;
1612 if (previous) {
1613 disks = conf->prev.raid_disks;
1614 ncopies = conf->prev.near_copies;
1615 } else {
1616 disks = conf->geo.raid_disks;
1617 ncopies = conf->geo.near_copies;
1618 }
700c7213 1619
725d6e57 1620 rcu_read_lock();
700c7213
N
1621 do {
1622 int n = conf->copies;
1623 int cnt = 0;
80b48124 1624 int this = first;
700c7213 1625 while (n--) {
725d6e57
N
1626 struct md_rdev *rdev;
1627 if (this != ignore &&
1628 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1629 test_bit(In_sync, &rdev->flags))
700c7213 1630 cnt++;
635f6416 1631 this = (this+1) % disks;
700c7213
N
1632 }
1633 if (cnt == 0)
725d6e57 1634 goto out;
635f6416 1635 first = (first + ncopies) % disks;
700c7213 1636 } while (first != 0);
725d6e57
N
1637 has_enough = 1;
1638out:
1639 rcu_read_unlock();
1640 return has_enough;
700c7213
N
1641}
1642
f8c9e74f
N
1643static int enough(struct r10conf *conf, int ignore)
1644{
635f6416
N
1645 /* when calling 'enough', both 'prev' and 'geo' must
1646 * be stable.
1647 * This is ensured if ->reconfig_mutex or ->device_lock
1648 * is held.
1649 */
1650 return _enough(conf, 0, ignore) &&
1651 _enough(conf, 1, ignore);
f8c9e74f
N
1652}
1653
fd01b88c 1654static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1655{
1656 char b[BDEVNAME_SIZE];
e879a879 1657 struct r10conf *conf = mddev->private;
635f6416 1658 unsigned long flags;
1da177e4
LT
1659
1660 /*
1661 * If it is not operational, then we have already marked it as dead
1662 * else if it is the last working disks, ignore the error, let the
1663 * next level up know.
1664 * else mark the drive as failed
1665 */
635f6416 1666 spin_lock_irqsave(&conf->device_lock, flags);
b2d444d7 1667 if (test_bit(In_sync, &rdev->flags)
635f6416 1668 && !enough(conf, rdev->raid_disk)) {
1da177e4
LT
1669 /*
1670 * Don't fail the drive, just return an IO error.
1da177e4 1671 */
635f6416 1672 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1673 return;
635f6416 1674 }
2446dba0 1675 if (test_and_clear_bit(In_sync, &rdev->flags))
1da177e4 1676 mddev->degraded++;
2446dba0
N
1677 /*
1678 * If recovery is running, make sure it aborts.
1679 */
1680 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
de393cde 1681 set_bit(Blocked, &rdev->flags);
b2d444d7 1682 set_bit(Faulty, &rdev->flags);
850b2b42 1683 set_bit(MD_CHANGE_DEVS, &mddev->flags);
635f6416 1684 spin_unlock_irqrestore(&conf->device_lock, flags);
067032bc
JP
1685 printk(KERN_ALERT
1686 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1687 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed 1688 mdname(mddev), bdevname(rdev->bdev, b),
5cf00fcd 1689 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
1690}
1691
e879a879 1692static void print_conf(struct r10conf *conf)
1da177e4
LT
1693{
1694 int i;
dc280d98 1695 struct raid10_info *tmp;
1da177e4 1696
128595ed 1697 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1698 if (!conf) {
128595ed 1699 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1700 return;
1701 }
5cf00fcd
N
1702 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1703 conf->geo.raid_disks);
1da177e4 1704
5cf00fcd 1705 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4
LT
1706 char b[BDEVNAME_SIZE];
1707 tmp = conf->mirrors + i;
1708 if (tmp->rdev)
128595ed 1709 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1710 i, !test_bit(In_sync, &tmp->rdev->flags),
1711 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1712 bdevname(tmp->rdev->bdev,b));
1713 }
1714}
1715
e879a879 1716static void close_sync(struct r10conf *conf)
1da177e4 1717{
0a27ec96
N
1718 wait_barrier(conf);
1719 allow_barrier(conf);
1da177e4
LT
1720
1721 mempool_destroy(conf->r10buf_pool);
1722 conf->r10buf_pool = NULL;
1723}
1724
fd01b88c 1725static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1726{
1727 int i;
e879a879 1728 struct r10conf *conf = mddev->private;
dc280d98 1729 struct raid10_info *tmp;
6b965620
N
1730 int count = 0;
1731 unsigned long flags;
1da177e4
LT
1732
1733 /*
1734 * Find all non-in_sync disks within the RAID10 configuration
1735 * and mark them in_sync
1736 */
5cf00fcd 1737 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1738 tmp = conf->mirrors + i;
4ca40c2c
N
1739 if (tmp->replacement
1740 && tmp->replacement->recovery_offset == MaxSector
1741 && !test_bit(Faulty, &tmp->replacement->flags)
1742 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1743 /* Replacement has just become active */
1744 if (!tmp->rdev
1745 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1746 count++;
1747 if (tmp->rdev) {
1748 /* Replaced device not technically faulty,
1749 * but we need to be sure it gets removed
1750 * and never re-added.
1751 */
1752 set_bit(Faulty, &tmp->rdev->flags);
1753 sysfs_notify_dirent_safe(
1754 tmp->rdev->sysfs_state);
1755 }
1756 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1757 } else if (tmp->rdev
61e4947c 1758 && tmp->rdev->recovery_offset == MaxSector
4ca40c2c
N
1759 && !test_bit(Faulty, &tmp->rdev->flags)
1760 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1761 count++;
2863b9eb 1762 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
1763 }
1764 }
6b965620
N
1765 spin_lock_irqsave(&conf->device_lock, flags);
1766 mddev->degraded -= count;
1767 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1768
1769 print_conf(conf);
6b965620 1770 return count;
1da177e4
LT
1771}
1772
fd01b88c 1773static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1774{
e879a879 1775 struct r10conf *conf = mddev->private;
199050ea 1776 int err = -EEXIST;
1da177e4 1777 int mirror;
6c2fce2e 1778 int first = 0;
5cf00fcd 1779 int last = conf->geo.raid_disks - 1;
050b6615 1780 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4
LT
1781
1782 if (mddev->recovery_cp < MaxSector)
1783 /* only hot-add to in-sync arrays, as recovery is
1784 * very different from resync
1785 */
199050ea 1786 return -EBUSY;
635f6416 1787 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
199050ea 1788 return -EINVAL;
1da177e4 1789
a53a6c85 1790 if (rdev->raid_disk >= 0)
6c2fce2e 1791 first = last = rdev->raid_disk;
1da177e4 1792
050b6615
N
1793 if (q->merge_bvec_fn) {
1794 set_bit(Unmerged, &rdev->flags);
1795 mddev->merge_check_needed = 1;
1796 }
1797
2c4193df 1798 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1799 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1800 mirror = rdev->saved_raid_disk;
1801 else
6c2fce2e 1802 mirror = first;
2bb77736 1803 for ( ; mirror <= last ; mirror++) {
dc280d98 1804 struct raid10_info *p = &conf->mirrors[mirror];
2bb77736
N
1805 if (p->recovery_disabled == mddev->recovery_disabled)
1806 continue;
b7044d41
N
1807 if (p->rdev) {
1808 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1809 p->replacement != NULL)
1810 continue;
1811 clear_bit(In_sync, &rdev->flags);
1812 set_bit(Replacement, &rdev->flags);
1813 rdev->raid_disk = mirror;
1814 err = 0;
9092c02d
JB
1815 if (mddev->gendisk)
1816 disk_stack_limits(mddev->gendisk, rdev->bdev,
1817 rdev->data_offset << 9);
b7044d41
N
1818 conf->fullsync = 1;
1819 rcu_assign_pointer(p->replacement, rdev);
1820 break;
1821 }
1da177e4 1822
9092c02d
JB
1823 if (mddev->gendisk)
1824 disk_stack_limits(mddev->gendisk, rdev->bdev,
1825 rdev->data_offset << 9);
1da177e4 1826
2bb77736 1827 p->head_position = 0;
d890fa2b 1828 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1829 rdev->raid_disk = mirror;
1830 err = 0;
1831 if (rdev->saved_raid_disk != mirror)
1832 conf->fullsync = 1;
1833 rcu_assign_pointer(p->rdev, rdev);
1834 break;
1835 }
050b6615
N
1836 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1837 /* Some requests might not have seen this new
1838 * merge_bvec_fn. We must wait for them to complete
1839 * before merging the device fully.
1840 * First we make sure any code which has tested
1841 * our function has submitted the request, then
1842 * we wait for all outstanding requests to complete.
1843 */
1844 synchronize_sched();
e2d59925
N
1845 freeze_array(conf, 0);
1846 unfreeze_array(conf);
050b6615
N
1847 clear_bit(Unmerged, &rdev->flags);
1848 }
ac5e7113 1849 md_integrity_add_rdev(rdev, mddev);
ed30be07 1850 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
532a2a3f
SL
1851 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1852
1da177e4 1853 print_conf(conf);
199050ea 1854 return err;
1da177e4
LT
1855}
1856
b8321b68 1857static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1858{
e879a879 1859 struct r10conf *conf = mddev->private;
1da177e4 1860 int err = 0;
b8321b68 1861 int number = rdev->raid_disk;
c8ab903e 1862 struct md_rdev **rdevp;
dc280d98 1863 struct raid10_info *p = conf->mirrors + number;
1da177e4
LT
1864
1865 print_conf(conf);
c8ab903e
N
1866 if (rdev == p->rdev)
1867 rdevp = &p->rdev;
1868 else if (rdev == p->replacement)
1869 rdevp = &p->replacement;
1870 else
1871 return 0;
1872
1873 if (test_bit(In_sync, &rdev->flags) ||
1874 atomic_read(&rdev->nr_pending)) {
1875 err = -EBUSY;
1876 goto abort;
1877 }
1878 /* Only remove faulty devices if recovery
1879 * is not possible.
1880 */
1881 if (!test_bit(Faulty, &rdev->flags) &&
1882 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 1883 (!p->replacement || p->replacement == rdev) &&
63aced61 1884 number < conf->geo.raid_disks &&
c8ab903e
N
1885 enough(conf, -1)) {
1886 err = -EBUSY;
1887 goto abort;
1da177e4 1888 }
c8ab903e
N
1889 *rdevp = NULL;
1890 synchronize_rcu();
1891 if (atomic_read(&rdev->nr_pending)) {
1892 /* lost the race, try later */
1893 err = -EBUSY;
1894 *rdevp = rdev;
1895 goto abort;
4ca40c2c
N
1896 } else if (p->replacement) {
1897 /* We must have just cleared 'rdev' */
1898 p->rdev = p->replacement;
1899 clear_bit(Replacement, &p->replacement->flags);
1900 smp_mb(); /* Make sure other CPUs may see both as identical
1901 * but will never see neither -- if they are careful.
1902 */
1903 p->replacement = NULL;
1904 clear_bit(WantReplacement, &rdev->flags);
1905 } else
1906 /* We might have just remove the Replacement as faulty
1907 * Clear the flag just in case
1908 */
1909 clear_bit(WantReplacement, &rdev->flags);
1910
c8ab903e
N
1911 err = md_integrity_register(mddev);
1912
1da177e4
LT
1913abort:
1914
1915 print_conf(conf);
1916 return err;
1917}
1918
6712ecf8 1919static void end_sync_read(struct bio *bio, int error)
1da177e4 1920{
9f2c9d12 1921 struct r10bio *r10_bio = bio->bi_private;
e879a879 1922 struct r10conf *conf = r10_bio->mddev->private;
778ca018 1923 int d;
1da177e4 1924
3ea7daa5
N
1925 if (bio == r10_bio->master_bio) {
1926 /* this is a reshape read */
1927 d = r10_bio->read_slot; /* really the read dev */
1928 } else
1929 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
0eb3ff12
N
1930
1931 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1932 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1933 else
1934 /* The write handler will notice the lack of
1935 * R10BIO_Uptodate and record any errors etc
1936 */
4dbcdc75
N
1937 atomic_add(r10_bio->sectors,
1938 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1939
1940 /* for reconstruct, we always reschedule after a read.
1941 * for resync, only after all reads
1942 */
73d5c38a 1943 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1944 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1945 atomic_dec_and_test(&r10_bio->remaining)) {
1946 /* we have read all the blocks,
1947 * do the comparison in process context in raid10d
1948 */
1949 reschedule_retry(r10_bio);
1950 }
1da177e4
LT
1951}
1952
9f2c9d12 1953static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1954{
fd01b88c 1955 struct mddev *mddev = r10_bio->mddev;
dfc70645 1956
1da177e4
LT
1957 while (atomic_dec_and_test(&r10_bio->remaining)) {
1958 if (r10_bio->master_bio == NULL) {
1959 /* the primary of several recovery bios */
73d5c38a 1960 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1961 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1962 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1963 reschedule_retry(r10_bio);
1964 else
1965 put_buf(r10_bio);
73d5c38a 1966 md_done_sync(mddev, s, 1);
1da177e4
LT
1967 break;
1968 } else {
9f2c9d12 1969 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1970 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1971 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1972 reschedule_retry(r10_bio);
1973 else
1974 put_buf(r10_bio);
1da177e4
LT
1975 r10_bio = r10_bio2;
1976 }
1977 }
1da177e4
LT
1978}
1979
5e570289
N
1980static void end_sync_write(struct bio *bio, int error)
1981{
1982 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1983 struct r10bio *r10_bio = bio->bi_private;
fd01b88c 1984 struct mddev *mddev = r10_bio->mddev;
e879a879 1985 struct r10conf *conf = mddev->private;
5e570289
N
1986 int d;
1987 sector_t first_bad;
1988 int bad_sectors;
1989 int slot;
9ad1aefc 1990 int repl;
4ca40c2c 1991 struct md_rdev *rdev = NULL;
5e570289 1992
9ad1aefc
N
1993 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1994 if (repl)
1995 rdev = conf->mirrors[d].replacement;
547414d1 1996 else
9ad1aefc 1997 rdev = conf->mirrors[d].rdev;
5e570289
N
1998
1999 if (!uptodate) {
9ad1aefc
N
2000 if (repl)
2001 md_error(mddev, rdev);
2002 else {
2003 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2004 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2005 set_bit(MD_RECOVERY_NEEDED,
2006 &rdev->mddev->recovery);
9ad1aefc
N
2007 set_bit(R10BIO_WriteError, &r10_bio->state);
2008 }
2009 } else if (is_badblock(rdev,
5e570289
N
2010 r10_bio->devs[slot].addr,
2011 r10_bio->sectors,
2012 &first_bad, &bad_sectors))
2013 set_bit(R10BIO_MadeGood, &r10_bio->state);
2014
9ad1aefc 2015 rdev_dec_pending(rdev, mddev);
5e570289
N
2016
2017 end_sync_request(r10_bio);
2018}
2019
1da177e4
LT
2020/*
2021 * Note: sync and recover and handled very differently for raid10
2022 * This code is for resync.
2023 * For resync, we read through virtual addresses and read all blocks.
2024 * If there is any error, we schedule a write. The lowest numbered
2025 * drive is authoritative.
2026 * However requests come for physical address, so we need to map.
2027 * For every physical address there are raid_disks/copies virtual addresses,
2028 * which is always are least one, but is not necessarly an integer.
2029 * This means that a physical address can span multiple chunks, so we may
2030 * have to submit multiple io requests for a single sync request.
2031 */
2032/*
2033 * We check if all blocks are in-sync and only write to blocks that
2034 * aren't in sync
2035 */
9f2c9d12 2036static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2037{
e879a879 2038 struct r10conf *conf = mddev->private;
1da177e4
LT
2039 int i, first;
2040 struct bio *tbio, *fbio;
f4380a91 2041 int vcnt;
1da177e4
LT
2042
2043 atomic_set(&r10_bio->remaining, 1);
2044
2045 /* find the first device with a block */
2046 for (i=0; i<conf->copies; i++)
2047 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2048 break;
2049
2050 if (i == conf->copies)
2051 goto done;
2052
2053 first = i;
2054 fbio = r10_bio->devs[i].bio;
2055
f4380a91 2056 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 2057 /* now find blocks with errors */
0eb3ff12
N
2058 for (i=0 ; i < conf->copies ; i++) {
2059 int j, d;
1da177e4 2060
1da177e4 2061 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
2062
2063 if (tbio->bi_end_io != end_sync_read)
2064 continue;
2065 if (i == first)
1da177e4 2066 continue;
0eb3ff12
N
2067 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2068 /* We know that the bi_io_vec layout is the same for
2069 * both 'first' and 'i', so we just compare them.
2070 * All vec entries are PAGE_SIZE;
2071 */
7bb23c49
N
2072 int sectors = r10_bio->sectors;
2073 for (j = 0; j < vcnt; j++) {
2074 int len = PAGE_SIZE;
2075 if (sectors < (len / 512))
2076 len = sectors * 512;
0eb3ff12
N
2077 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2078 page_address(tbio->bi_io_vec[j].bv_page),
7bb23c49 2079 len))
0eb3ff12 2080 break;
7bb23c49
N
2081 sectors -= len/512;
2082 }
0eb3ff12
N
2083 if (j == vcnt)
2084 continue;
7f7583d4 2085 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
f84ee364
N
2086 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2087 /* Don't fix anything. */
2088 continue;
0eb3ff12 2089 }
f84ee364
N
2090 /* Ok, we need to write this bio, either to correct an
2091 * inconsistency or to correct an unreadable block.
1da177e4
LT
2092 * First we need to fixup bv_offset, bv_len and
2093 * bi_vecs, as the read request might have corrupted these
2094 */
8be185f2
KO
2095 bio_reset(tbio);
2096
1da177e4 2097 tbio->bi_vcnt = vcnt;
4f024f37 2098 tbio->bi_iter.bi_size = r10_bio->sectors << 9;
1da177e4
LT
2099 tbio->bi_rw = WRITE;
2100 tbio->bi_private = r10_bio;
4f024f37 2101 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1da177e4
LT
2102 tbio->bi_end_io = end_sync_write;
2103
c31df25f
KO
2104 bio_copy_data(tbio, fbio);
2105
1da177e4
LT
2106 d = r10_bio->devs[i].devnum;
2107 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2108 atomic_inc(&r10_bio->remaining);
aa8b57aa 2109 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
1da177e4 2110
4f024f37 2111 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
1da177e4
LT
2112 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2113 generic_make_request(tbio);
2114 }
2115
9ad1aefc
N
2116 /* Now write out to any replacement devices
2117 * that are active
2118 */
2119 for (i = 0; i < conf->copies; i++) {
c31df25f 2120 int d;
9ad1aefc
N
2121
2122 tbio = r10_bio->devs[i].repl_bio;
2123 if (!tbio || !tbio->bi_end_io)
2124 continue;
2125 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2126 && r10_bio->devs[i].bio != fbio)
c31df25f 2127 bio_copy_data(tbio, fbio);
9ad1aefc
N
2128 d = r10_bio->devs[i].devnum;
2129 atomic_inc(&r10_bio->remaining);
2130 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2131 bio_sectors(tbio));
9ad1aefc
N
2132 generic_make_request(tbio);
2133 }
2134
1da177e4
LT
2135done:
2136 if (atomic_dec_and_test(&r10_bio->remaining)) {
2137 md_done_sync(mddev, r10_bio->sectors, 1);
2138 put_buf(r10_bio);
2139 }
2140}
2141
2142/*
2143 * Now for the recovery code.
2144 * Recovery happens across physical sectors.
2145 * We recover all non-is_sync drives by finding the virtual address of
2146 * each, and then choose a working drive that also has that virt address.
2147 * There is a separate r10_bio for each non-in_sync drive.
2148 * Only the first two slots are in use. The first for reading,
2149 * The second for writing.
2150 *
2151 */
9f2c9d12 2152static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
2153{
2154 /* We got a read error during recovery.
2155 * We repeat the read in smaller page-sized sections.
2156 * If a read succeeds, write it to the new device or record
2157 * a bad block if we cannot.
2158 * If a read fails, record a bad block on both old and
2159 * new devices.
2160 */
fd01b88c 2161 struct mddev *mddev = r10_bio->mddev;
e879a879 2162 struct r10conf *conf = mddev->private;
5e570289
N
2163 struct bio *bio = r10_bio->devs[0].bio;
2164 sector_t sect = 0;
2165 int sectors = r10_bio->sectors;
2166 int idx = 0;
2167 int dr = r10_bio->devs[0].devnum;
2168 int dw = r10_bio->devs[1].devnum;
2169
2170 while (sectors) {
2171 int s = sectors;
3cb03002 2172 struct md_rdev *rdev;
5e570289
N
2173 sector_t addr;
2174 int ok;
2175
2176 if (s > (PAGE_SIZE>>9))
2177 s = PAGE_SIZE >> 9;
2178
2179 rdev = conf->mirrors[dr].rdev;
2180 addr = r10_bio->devs[0].addr + sect,
2181 ok = sync_page_io(rdev,
2182 addr,
2183 s << 9,
2184 bio->bi_io_vec[idx].bv_page,
2185 READ, false);
2186 if (ok) {
2187 rdev = conf->mirrors[dw].rdev;
2188 addr = r10_bio->devs[1].addr + sect;
2189 ok = sync_page_io(rdev,
2190 addr,
2191 s << 9,
2192 bio->bi_io_vec[idx].bv_page,
2193 WRITE, false);
b7044d41 2194 if (!ok) {
5e570289 2195 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2196 if (!test_and_set_bit(WantReplacement,
2197 &rdev->flags))
2198 set_bit(MD_RECOVERY_NEEDED,
2199 &rdev->mddev->recovery);
2200 }
5e570289
N
2201 }
2202 if (!ok) {
2203 /* We don't worry if we cannot set a bad block -
2204 * it really is bad so there is no loss in not
2205 * recording it yet
2206 */
2207 rdev_set_badblocks(rdev, addr, s, 0);
2208
2209 if (rdev != conf->mirrors[dw].rdev) {
2210 /* need bad block on destination too */
3cb03002 2211 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2212 addr = r10_bio->devs[1].addr + sect;
2213 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2214 if (!ok) {
2215 /* just abort the recovery */
2216 printk(KERN_NOTICE
2217 "md/raid10:%s: recovery aborted"
2218 " due to read error\n",
2219 mdname(mddev));
2220
2221 conf->mirrors[dw].recovery_disabled
2222 = mddev->recovery_disabled;
2223 set_bit(MD_RECOVERY_INTR,
2224 &mddev->recovery);
2225 break;
2226 }
2227 }
2228 }
2229
2230 sectors -= s;
2231 sect += s;
2232 idx++;
2233 }
2234}
1da177e4 2235
9f2c9d12 2236static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2237{
e879a879 2238 struct r10conf *conf = mddev->private;
c65060ad 2239 int d;
24afd80d 2240 struct bio *wbio, *wbio2;
1da177e4 2241
5e570289
N
2242 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2243 fix_recovery_read_error(r10_bio);
2244 end_sync_request(r10_bio);
2245 return;
2246 }
2247
c65060ad
NK
2248 /*
2249 * share the pages with the first bio
1da177e4
LT
2250 * and submit the write request
2251 */
1da177e4 2252 d = r10_bio->devs[1].devnum;
24afd80d
N
2253 wbio = r10_bio->devs[1].bio;
2254 wbio2 = r10_bio->devs[1].repl_bio;
0eb25bb0
N
2255 /* Need to test wbio2->bi_end_io before we call
2256 * generic_make_request as if the former is NULL,
2257 * the latter is free to free wbio2.
2258 */
2259 if (wbio2 && !wbio2->bi_end_io)
2260 wbio2 = NULL;
24afd80d
N
2261 if (wbio->bi_end_io) {
2262 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
aa8b57aa 2263 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
24afd80d
N
2264 generic_make_request(wbio);
2265 }
0eb25bb0 2266 if (wbio2) {
24afd80d
N
2267 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2268 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2269 bio_sectors(wbio2));
24afd80d
N
2270 generic_make_request(wbio2);
2271 }
1da177e4
LT
2272}
2273
1e50915f
RB
2274/*
2275 * Used by fix_read_error() to decay the per rdev read_errors.
2276 * We halve the read error count for every hour that has elapsed
2277 * since the last recorded read error.
2278 *
2279 */
fd01b88c 2280static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f
RB
2281{
2282 struct timespec cur_time_mon;
2283 unsigned long hours_since_last;
2284 unsigned int read_errors = atomic_read(&rdev->read_errors);
2285
2286 ktime_get_ts(&cur_time_mon);
2287
2288 if (rdev->last_read_error.tv_sec == 0 &&
2289 rdev->last_read_error.tv_nsec == 0) {
2290 /* first time we've seen a read error */
2291 rdev->last_read_error = cur_time_mon;
2292 return;
2293 }
2294
2295 hours_since_last = (cur_time_mon.tv_sec -
2296 rdev->last_read_error.tv_sec) / 3600;
2297
2298 rdev->last_read_error = cur_time_mon;
2299
2300 /*
2301 * if hours_since_last is > the number of bits in read_errors
2302 * just set read errors to 0. We do this to avoid
2303 * overflowing the shift of read_errors by hours_since_last.
2304 */
2305 if (hours_since_last >= 8 * sizeof(read_errors))
2306 atomic_set(&rdev->read_errors, 0);
2307 else
2308 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2309}
2310
3cb03002 2311static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
2312 int sectors, struct page *page, int rw)
2313{
2314 sector_t first_bad;
2315 int bad_sectors;
2316
2317 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2318 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2319 return -1;
2320 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2321 /* success */
2322 return 1;
b7044d41 2323 if (rw == WRITE) {
58c54fcc 2324 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2325 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2326 set_bit(MD_RECOVERY_NEEDED,
2327 &rdev->mddev->recovery);
2328 }
58c54fcc
N
2329 /* need to record an error - either for the block or the device */
2330 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2331 md_error(rdev->mddev, rdev);
2332 return 0;
2333}
2334
1da177e4
LT
2335/*
2336 * This is a kernel thread which:
2337 *
2338 * 1. Retries failed read operations on working mirrors.
2339 * 2. Updates the raid superblock when problems encounter.
6814d536 2340 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2341 */
2342
e879a879 2343static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2344{
2345 int sect = 0; /* Offset from r10_bio->sector */
2346 int sectors = r10_bio->sectors;
3cb03002 2347 struct md_rdev*rdev;
1e50915f 2348 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 2349 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 2350
7c4e06ff
N
2351 /* still own a reference to this rdev, so it cannot
2352 * have been cleared recently.
2353 */
2354 rdev = conf->mirrors[d].rdev;
1e50915f 2355
7c4e06ff
N
2356 if (test_bit(Faulty, &rdev->flags))
2357 /* drive has already been failed, just ignore any
2358 more fix_read_error() attempts */
2359 return;
1e50915f 2360
7c4e06ff
N
2361 check_decay_read_errors(mddev, rdev);
2362 atomic_inc(&rdev->read_errors);
2363 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2364 char b[BDEVNAME_SIZE];
2365 bdevname(rdev->bdev, b);
1e50915f 2366
7c4e06ff
N
2367 printk(KERN_NOTICE
2368 "md/raid10:%s: %s: Raid device exceeded "
2369 "read_error threshold [cur %d:max %d]\n",
2370 mdname(mddev), b,
2371 atomic_read(&rdev->read_errors), max_read_errors);
2372 printk(KERN_NOTICE
2373 "md/raid10:%s: %s: Failing raid device\n",
2374 mdname(mddev), b);
2375 md_error(mddev, conf->mirrors[d].rdev);
fae8cc5e 2376 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
7c4e06ff 2377 return;
1e50915f 2378 }
1e50915f 2379
6814d536
N
2380 while(sectors) {
2381 int s = sectors;
2382 int sl = r10_bio->read_slot;
2383 int success = 0;
2384 int start;
2385
2386 if (s > (PAGE_SIZE>>9))
2387 s = PAGE_SIZE >> 9;
2388
2389 rcu_read_lock();
2390 do {
8dbed5ce
N
2391 sector_t first_bad;
2392 int bad_sectors;
2393
0544a21d 2394 d = r10_bio->devs[sl].devnum;
6814d536
N
2395 rdev = rcu_dereference(conf->mirrors[d].rdev);
2396 if (rdev &&
050b6615 2397 !test_bit(Unmerged, &rdev->flags) &&
8dbed5ce
N
2398 test_bit(In_sync, &rdev->flags) &&
2399 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2400 &first_bad, &bad_sectors) == 0) {
6814d536
N
2401 atomic_inc(&rdev->nr_pending);
2402 rcu_read_unlock();
2b193363 2403 success = sync_page_io(rdev,
6814d536 2404 r10_bio->devs[sl].addr +
ccebd4c4 2405 sect,
6814d536 2406 s<<9,
ccebd4c4 2407 conf->tmppage, READ, false);
6814d536
N
2408 rdev_dec_pending(rdev, mddev);
2409 rcu_read_lock();
2410 if (success)
2411 break;
2412 }
2413 sl++;
2414 if (sl == conf->copies)
2415 sl = 0;
2416 } while (!success && sl != r10_bio->read_slot);
2417 rcu_read_unlock();
2418
2419 if (!success) {
58c54fcc
N
2420 /* Cannot read from anywhere, just mark the block
2421 * as bad on the first device to discourage future
2422 * reads.
2423 */
6814d536 2424 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2425 rdev = conf->mirrors[dn].rdev;
2426
2427 if (!rdev_set_badblocks(
2428 rdev,
2429 r10_bio->devs[r10_bio->read_slot].addr
2430 + sect,
fae8cc5e 2431 s, 0)) {
58c54fcc 2432 md_error(mddev, rdev);
fae8cc5e
N
2433 r10_bio->devs[r10_bio->read_slot].bio
2434 = IO_BLOCKED;
2435 }
6814d536
N
2436 break;
2437 }
2438
2439 start = sl;
2440 /* write it back and re-read */
2441 rcu_read_lock();
2442 while (sl != r10_bio->read_slot) {
67b8dc4b 2443 char b[BDEVNAME_SIZE];
0544a21d 2444
6814d536
N
2445 if (sl==0)
2446 sl = conf->copies;
2447 sl--;
2448 d = r10_bio->devs[sl].devnum;
2449 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2450 if (!rdev ||
050b6615 2451 test_bit(Unmerged, &rdev->flags) ||
1294b9c9
N
2452 !test_bit(In_sync, &rdev->flags))
2453 continue;
2454
2455 atomic_inc(&rdev->nr_pending);
2456 rcu_read_unlock();
58c54fcc
N
2457 if (r10_sync_page_io(rdev,
2458 r10_bio->devs[sl].addr +
2459 sect,
055d3747 2460 s, conf->tmppage, WRITE)
1294b9c9
N
2461 == 0) {
2462 /* Well, this device is dead */
2463 printk(KERN_NOTICE
2464 "md/raid10:%s: read correction "
2465 "write failed"
2466 " (%d sectors at %llu on %s)\n",
2467 mdname(mddev), s,
2468 (unsigned long long)(
f8c9e74f
N
2469 sect +
2470 choose_data_offset(r10_bio,
2471 rdev)),
1294b9c9
N
2472 bdevname(rdev->bdev, b));
2473 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2474 "drive\n",
2475 mdname(mddev),
2476 bdevname(rdev->bdev, b));
6814d536 2477 }
1294b9c9
N
2478 rdev_dec_pending(rdev, mddev);
2479 rcu_read_lock();
6814d536
N
2480 }
2481 sl = start;
2482 while (sl != r10_bio->read_slot) {
1294b9c9 2483 char b[BDEVNAME_SIZE];
0544a21d 2484
6814d536
N
2485 if (sl==0)
2486 sl = conf->copies;
2487 sl--;
2488 d = r10_bio->devs[sl].devnum;
2489 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
2490 if (!rdev ||
2491 !test_bit(In_sync, &rdev->flags))
2492 continue;
6814d536 2493
1294b9c9
N
2494 atomic_inc(&rdev->nr_pending);
2495 rcu_read_unlock();
58c54fcc
N
2496 switch (r10_sync_page_io(rdev,
2497 r10_bio->devs[sl].addr +
2498 sect,
055d3747 2499 s, conf->tmppage,
58c54fcc
N
2500 READ)) {
2501 case 0:
1294b9c9
N
2502 /* Well, this device is dead */
2503 printk(KERN_NOTICE
2504 "md/raid10:%s: unable to read back "
2505 "corrected sectors"
2506 " (%d sectors at %llu on %s)\n",
2507 mdname(mddev), s,
2508 (unsigned long long)(
f8c9e74f
N
2509 sect +
2510 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2511 bdevname(rdev->bdev, b));
2512 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2513 "drive\n",
2514 mdname(mddev),
2515 bdevname(rdev->bdev, b));
58c54fcc
N
2516 break;
2517 case 1:
1294b9c9
N
2518 printk(KERN_INFO
2519 "md/raid10:%s: read error corrected"
2520 " (%d sectors at %llu on %s)\n",
2521 mdname(mddev), s,
2522 (unsigned long long)(
f8c9e74f
N
2523 sect +
2524 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2525 bdevname(rdev->bdev, b));
2526 atomic_add(s, &rdev->corrected_errors);
6814d536 2527 }
1294b9c9
N
2528
2529 rdev_dec_pending(rdev, mddev);
2530 rcu_read_lock();
6814d536
N
2531 }
2532 rcu_read_unlock();
2533
2534 sectors -= s;
2535 sect += s;
2536 }
2537}
2538
9f2c9d12 2539static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2540{
2541 struct bio *bio = r10_bio->master_bio;
fd01b88c 2542 struct mddev *mddev = r10_bio->mddev;
e879a879 2543 struct r10conf *conf = mddev->private;
3cb03002 2544 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2545 /* bio has the data to be written to slot 'i' where
2546 * we just recently had a write error.
2547 * We repeatedly clone the bio and trim down to one block,
2548 * then try the write. Where the write fails we record
2549 * a bad block.
2550 * It is conceivable that the bio doesn't exactly align with
2551 * blocks. We must handle this.
2552 *
2553 * We currently own a reference to the rdev.
2554 */
2555
2556 int block_sectors;
2557 sector_t sector;
2558 int sectors;
2559 int sect_to_write = r10_bio->sectors;
2560 int ok = 1;
2561
2562 if (rdev->badblocks.shift < 0)
2563 return 0;
2564
f04ebb0b
N
2565 block_sectors = roundup(1 << rdev->badblocks.shift,
2566 bdev_logical_block_size(rdev->bdev) >> 9);
bd870a16
N
2567 sector = r10_bio->sector;
2568 sectors = ((r10_bio->sector + block_sectors)
2569 & ~(sector_t)(block_sectors - 1))
2570 - sector;
2571
2572 while (sect_to_write) {
2573 struct bio *wbio;
2574 if (sectors > sect_to_write)
2575 sectors = sect_to_write;
2576 /* Write at 'sector' for 'sectors' */
2577 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37
KO
2578 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2579 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
f8c9e74f 2580 choose_data_offset(r10_bio, rdev) +
bd870a16
N
2581 (sector - r10_bio->sector));
2582 wbio->bi_bdev = rdev->bdev;
2583 if (submit_bio_wait(WRITE, wbio) == 0)
2584 /* Failure! */
2585 ok = rdev_set_badblocks(rdev, sector,
2586 sectors, 0)
2587 && ok;
2588
2589 bio_put(wbio);
2590 sect_to_write -= sectors;
2591 sector += sectors;
2592 sectors = block_sectors;
2593 }
2594 return ok;
2595}
2596
9f2c9d12 2597static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2598{
2599 int slot = r10_bio->read_slot;
560f8e55 2600 struct bio *bio;
e879a879 2601 struct r10conf *conf = mddev->private;
abbf098e 2602 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2603 char b[BDEVNAME_SIZE];
2604 unsigned long do_sync;
856e08e2 2605 int max_sectors;
560f8e55
N
2606
2607 /* we got a read error. Maybe the drive is bad. Maybe just
2608 * the block and we can fix it.
2609 * We freeze all other IO, and try reading the block from
2610 * other devices. When we find one, we re-write
2611 * and check it that fixes the read error.
2612 * This is all done synchronously while the array is
2613 * frozen.
2614 */
fae8cc5e
N
2615 bio = r10_bio->devs[slot].bio;
2616 bdevname(bio->bi_bdev, b);
2617 bio_put(bio);
2618 r10_bio->devs[slot].bio = NULL;
2619
560f8e55 2620 if (mddev->ro == 0) {
e2d59925 2621 freeze_array(conf, 1);
560f8e55
N
2622 fix_read_error(conf, mddev, r10_bio);
2623 unfreeze_array(conf);
fae8cc5e
N
2624 } else
2625 r10_bio->devs[slot].bio = IO_BLOCKED;
2626
abbf098e 2627 rdev_dec_pending(rdev, mddev);
560f8e55 2628
7399c31b 2629read_more:
96c3fd1f
N
2630 rdev = read_balance(conf, r10_bio, &max_sectors);
2631 if (rdev == NULL) {
560f8e55
N
2632 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2633 " read error for block %llu\n",
7399c31b 2634 mdname(mddev), b,
560f8e55
N
2635 (unsigned long long)r10_bio->sector);
2636 raid_end_bio_io(r10_bio);
560f8e55
N
2637 return;
2638 }
2639
2640 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
560f8e55 2641 slot = r10_bio->read_slot;
560f8e55
N
2642 printk_ratelimited(
2643 KERN_ERR
055d3747 2644 "md/raid10:%s: %s: redirecting "
560f8e55
N
2645 "sector %llu to another mirror\n",
2646 mdname(mddev),
2647 bdevname(rdev->bdev, b),
2648 (unsigned long long)r10_bio->sector);
2649 bio = bio_clone_mddev(r10_bio->master_bio,
2650 GFP_NOIO, mddev);
4f024f37 2651 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
560f8e55 2652 r10_bio->devs[slot].bio = bio;
abbf098e 2653 r10_bio->devs[slot].rdev = rdev;
4f024f37 2654 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
f8c9e74f 2655 + choose_data_offset(r10_bio, rdev);
560f8e55
N
2656 bio->bi_bdev = rdev->bdev;
2657 bio->bi_rw = READ | do_sync;
2658 bio->bi_private = r10_bio;
2659 bio->bi_end_io = raid10_end_read_request;
7399c31b
N
2660 if (max_sectors < r10_bio->sectors) {
2661 /* Drat - have to split this up more */
2662 struct bio *mbio = r10_bio->master_bio;
2663 int sectors_handled =
2664 r10_bio->sector + max_sectors
4f024f37 2665 - mbio->bi_iter.bi_sector;
7399c31b
N
2666 r10_bio->sectors = max_sectors;
2667 spin_lock_irq(&conf->device_lock);
2668 if (mbio->bi_phys_segments == 0)
2669 mbio->bi_phys_segments = 2;
2670 else
2671 mbio->bi_phys_segments++;
2672 spin_unlock_irq(&conf->device_lock);
2673 generic_make_request(bio);
7399c31b
N
2674
2675 r10_bio = mempool_alloc(conf->r10bio_pool,
2676 GFP_NOIO);
2677 r10_bio->master_bio = mbio;
aa8b57aa 2678 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
7399c31b
N
2679 r10_bio->state = 0;
2680 set_bit(R10BIO_ReadError,
2681 &r10_bio->state);
2682 r10_bio->mddev = mddev;
4f024f37 2683 r10_bio->sector = mbio->bi_iter.bi_sector
7399c31b
N
2684 + sectors_handled;
2685
2686 goto read_more;
2687 } else
2688 generic_make_request(bio);
560f8e55
N
2689}
2690
e879a879 2691static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2692{
2693 /* Some sort of write request has finished and it
2694 * succeeded in writing where we thought there was a
2695 * bad block. So forget the bad block.
1a0b7cd8
N
2696 * Or possibly if failed and we need to record
2697 * a bad block.
749c55e9
N
2698 */
2699 int m;
3cb03002 2700 struct md_rdev *rdev;
749c55e9
N
2701
2702 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2703 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2704 for (m = 0; m < conf->copies; m++) {
2705 int dev = r10_bio->devs[m].devnum;
2706 rdev = conf->mirrors[dev].rdev;
2707 if (r10_bio->devs[m].bio == NULL)
2708 continue;
2709 if (test_bit(BIO_UPTODATE,
749c55e9 2710 &r10_bio->devs[m].bio->bi_flags)) {
749c55e9
N
2711 rdev_clear_badblocks(
2712 rdev,
2713 r10_bio->devs[m].addr,
c6563a8c 2714 r10_bio->sectors, 0);
1a0b7cd8
N
2715 } else {
2716 if (!rdev_set_badblocks(
2717 rdev,
2718 r10_bio->devs[m].addr,
2719 r10_bio->sectors, 0))
2720 md_error(conf->mddev, rdev);
749c55e9 2721 }
9ad1aefc
N
2722 rdev = conf->mirrors[dev].replacement;
2723 if (r10_bio->devs[m].repl_bio == NULL)
2724 continue;
2725 if (test_bit(BIO_UPTODATE,
2726 &r10_bio->devs[m].repl_bio->bi_flags)) {
2727 rdev_clear_badblocks(
2728 rdev,
2729 r10_bio->devs[m].addr,
c6563a8c 2730 r10_bio->sectors, 0);
9ad1aefc
N
2731 } else {
2732 if (!rdev_set_badblocks(
2733 rdev,
2734 r10_bio->devs[m].addr,
2735 r10_bio->sectors, 0))
2736 md_error(conf->mddev, rdev);
2737 }
1a0b7cd8 2738 }
749c55e9
N
2739 put_buf(r10_bio);
2740 } else {
bd870a16
N
2741 for (m = 0; m < conf->copies; m++) {
2742 int dev = r10_bio->devs[m].devnum;
2743 struct bio *bio = r10_bio->devs[m].bio;
2744 rdev = conf->mirrors[dev].rdev;
2745 if (bio == IO_MADE_GOOD) {
749c55e9
N
2746 rdev_clear_badblocks(
2747 rdev,
2748 r10_bio->devs[m].addr,
c6563a8c 2749 r10_bio->sectors, 0);
749c55e9 2750 rdev_dec_pending(rdev, conf->mddev);
bd870a16
N
2751 } else if (bio != NULL &&
2752 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2753 if (!narrow_write_error(r10_bio, m)) {
2754 md_error(conf->mddev, rdev);
2755 set_bit(R10BIO_Degraded,
2756 &r10_bio->state);
2757 }
2758 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2759 }
475b0321
N
2760 bio = r10_bio->devs[m].repl_bio;
2761 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2762 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2763 rdev_clear_badblocks(
2764 rdev,
2765 r10_bio->devs[m].addr,
c6563a8c 2766 r10_bio->sectors, 0);
475b0321
N
2767 rdev_dec_pending(rdev, conf->mddev);
2768 }
bd870a16
N
2769 }
2770 if (test_bit(R10BIO_WriteError,
2771 &r10_bio->state))
2772 close_write(r10_bio);
749c55e9
N
2773 raid_end_bio_io(r10_bio);
2774 }
2775}
2776
4ed8731d 2777static void raid10d(struct md_thread *thread)
1da177e4 2778{
4ed8731d 2779 struct mddev *mddev = thread->mddev;
9f2c9d12 2780 struct r10bio *r10_bio;
1da177e4 2781 unsigned long flags;
e879a879 2782 struct r10conf *conf = mddev->private;
1da177e4 2783 struct list_head *head = &conf->retry_list;
e1dfa0a2 2784 struct blk_plug plug;
1da177e4
LT
2785
2786 md_check_recovery(mddev);
1da177e4 2787
e1dfa0a2 2788 blk_start_plug(&plug);
1da177e4 2789 for (;;) {
6cce3b23 2790
0021b7bc 2791 flush_pending_writes(conf);
6cce3b23 2792
a35e63ef
N
2793 spin_lock_irqsave(&conf->device_lock, flags);
2794 if (list_empty(head)) {
2795 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2796 break;
a35e63ef 2797 }
9f2c9d12 2798 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2799 list_del(head->prev);
4443ae10 2800 conf->nr_queued--;
1da177e4
LT
2801 spin_unlock_irqrestore(&conf->device_lock, flags);
2802
2803 mddev = r10_bio->mddev;
070ec55d 2804 conf = mddev->private;
bd870a16
N
2805 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2806 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 2807 handle_write_completed(conf, r10_bio);
3ea7daa5
N
2808 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2809 reshape_request_write(mddev, r10_bio);
749c55e9 2810 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2811 sync_request_write(mddev, r10_bio);
7eaceacc 2812 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2813 recovery_request_write(mddev, r10_bio);
856e08e2 2814 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2815 handle_read_error(mddev, r10_bio);
856e08e2
N
2816 else {
2817 /* just a partial read to be scheduled from a
2818 * separate context
2819 */
2820 int slot = r10_bio->read_slot;
2821 generic_make_request(r10_bio->devs[slot].bio);
2822 }
560f8e55 2823
1d9d5241 2824 cond_resched();
de393cde
N
2825 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2826 md_check_recovery(mddev);
1da177e4 2827 }
e1dfa0a2 2828 blk_finish_plug(&plug);
1da177e4
LT
2829}
2830
e879a879 2831static int init_resync(struct r10conf *conf)
1da177e4
LT
2832{
2833 int buffs;
69335ef3 2834 int i;
1da177e4
LT
2835
2836 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2837 BUG_ON(conf->r10buf_pool);
69335ef3 2838 conf->have_replacement = 0;
5cf00fcd 2839 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
2840 if (conf->mirrors[i].replacement)
2841 conf->have_replacement = 1;
1da177e4
LT
2842 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2843 if (!conf->r10buf_pool)
2844 return -ENOMEM;
2845 conf->next_resync = 0;
2846 return 0;
2847}
2848
2849/*
2850 * perform a "sync" on one "block"
2851 *
2852 * We need to make sure that no normal I/O request - particularly write
2853 * requests - conflict with active sync requests.
2854 *
2855 * This is achieved by tracking pending requests and a 'barrier' concept
2856 * that can be installed to exclude normal IO requests.
2857 *
2858 * Resync and recovery are handled very differently.
2859 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2860 *
2861 * For resync, we iterate over virtual addresses, read all copies,
2862 * and update if there are differences. If only one copy is live,
2863 * skip it.
2864 * For recovery, we iterate over physical addresses, read a good
2865 * value for each non-in_sync drive, and over-write.
2866 *
2867 * So, for recovery we may have several outstanding complex requests for a
2868 * given address, one for each out-of-sync device. We model this by allocating
2869 * a number of r10_bio structures, one for each out-of-sync device.
2870 * As we setup these structures, we collect all bio's together into a list
2871 * which we then process collectively to add pages, and then process again
2872 * to pass to generic_make_request.
2873 *
2874 * The r10_bio structures are linked using a borrowed master_bio pointer.
2875 * This link is counted in ->remaining. When the r10_bio that points to NULL
2876 * has its remaining count decremented to 0, the whole complex operation
2877 * is complete.
2878 *
2879 */
2880
fd01b88c 2881static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
09314799 2882 int *skipped)
1da177e4 2883{
e879a879 2884 struct r10conf *conf = mddev->private;
9f2c9d12 2885 struct r10bio *r10_bio;
1da177e4
LT
2886 struct bio *biolist = NULL, *bio;
2887 sector_t max_sector, nr_sectors;
1da177e4 2888 int i;
6cce3b23 2889 int max_sync;
57dab0bd 2890 sector_t sync_blocks;
1da177e4
LT
2891 sector_t sectors_skipped = 0;
2892 int chunks_skipped = 0;
5cf00fcd 2893 sector_t chunk_mask = conf->geo.chunk_mask;
1da177e4
LT
2894
2895 if (!conf->r10buf_pool)
2896 if (init_resync(conf))
57afd89f 2897 return 0;
1da177e4 2898
7e83ccbe
MW
2899 /*
2900 * Allow skipping a full rebuild for incremental assembly
2901 * of a clean array, like RAID1 does.
2902 */
2903 if (mddev->bitmap == NULL &&
2904 mddev->recovery_cp == MaxSector &&
13765120
N
2905 mddev->reshape_position == MaxSector &&
2906 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7e83ccbe 2907 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
13765120 2908 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7e83ccbe
MW
2909 conf->fullsync == 0) {
2910 *skipped = 1;
13765120 2911 return mddev->dev_sectors - sector_nr;
7e83ccbe
MW
2912 }
2913
1da177e4 2914 skipped:
58c0fed4 2915 max_sector = mddev->dev_sectors;
3ea7daa5
N
2916 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2917 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1da177e4
LT
2918 max_sector = mddev->resync_max_sectors;
2919 if (sector_nr >= max_sector) {
6cce3b23
N
2920 /* If we aborted, we need to abort the
2921 * sync on the 'current' bitmap chucks (there can
2922 * be several when recovering multiple devices).
2923 * as we may have started syncing it but not finished.
2924 * We can find the current address in
2925 * mddev->curr_resync, but for recovery,
2926 * we need to convert that to several
2927 * virtual addresses.
2928 */
3ea7daa5
N
2929 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2930 end_reshape(conf);
b3968552 2931 close_sync(conf);
3ea7daa5
N
2932 return 0;
2933 }
2934
6cce3b23
N
2935 if (mddev->curr_resync < max_sector) { /* aborted */
2936 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2937 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2938 &sync_blocks, 1);
5cf00fcd 2939 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
2940 sector_t sect =
2941 raid10_find_virt(conf, mddev->curr_resync, i);
2942 bitmap_end_sync(mddev->bitmap, sect,
2943 &sync_blocks, 1);
2944 }
9ad1aefc
N
2945 } else {
2946 /* completed sync */
2947 if ((!mddev->bitmap || conf->fullsync)
2948 && conf->have_replacement
2949 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2950 /* Completed a full sync so the replacements
2951 * are now fully recovered.
2952 */
5cf00fcd 2953 for (i = 0; i < conf->geo.raid_disks; i++)
9ad1aefc
N
2954 if (conf->mirrors[i].replacement)
2955 conf->mirrors[i].replacement
2956 ->recovery_offset
2957 = MaxSector;
2958 }
6cce3b23 2959 conf->fullsync = 0;
9ad1aefc 2960 }
6cce3b23 2961 bitmap_close_sync(mddev->bitmap);
1da177e4 2962 close_sync(conf);
57afd89f 2963 *skipped = 1;
1da177e4
LT
2964 return sectors_skipped;
2965 }
3ea7daa5
N
2966
2967 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2968 return reshape_request(mddev, sector_nr, skipped);
2969
5cf00fcd 2970 if (chunks_skipped >= conf->geo.raid_disks) {
1da177e4
LT
2971 /* if there has been nothing to do on any drive,
2972 * then there is nothing to do at all..
2973 */
57afd89f
N
2974 *skipped = 1;
2975 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
2976 }
2977
c6207277
N
2978 if (max_sector > mddev->resync_max)
2979 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2980
1da177e4
LT
2981 /* make sure whole request will fit in a chunk - if chunks
2982 * are meaningful
2983 */
5cf00fcd
N
2984 if (conf->geo.near_copies < conf->geo.raid_disks &&
2985 max_sector > (sector_nr | chunk_mask))
2986 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4
LT
2987
2988 /* Again, very different code for resync and recovery.
2989 * Both must result in an r10bio with a list of bios that
2990 * have bi_end_io, bi_sector, bi_bdev set,
2991 * and bi_private set to the r10bio.
2992 * For recovery, we may actually create several r10bios
2993 * with 2 bios in each, that correspond to the bios in the main one.
2994 * In this case, the subordinate r10bios link back through a
2995 * borrowed master_bio pointer, and the counter in the master
2996 * includes a ref from each subordinate.
2997 */
2998 /* First, we decide what to do and set ->bi_end_io
2999 * To end_sync_read if we want to read, and
3000 * end_sync_write if we will want to write.
3001 */
3002
6cce3b23 3003 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
3004 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3005 /* recovery... the complicated one */
e875ecea 3006 int j;
1da177e4
LT
3007 r10_bio = NULL;
3008
5cf00fcd 3009 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 3010 int still_degraded;
9f2c9d12 3011 struct r10bio *rb2;
ab9d47e9
N
3012 sector_t sect;
3013 int must_sync;
e875ecea 3014 int any_working;
dc280d98 3015 struct raid10_info *mirror = &conf->mirrors[i];
24afd80d
N
3016
3017 if ((mirror->rdev == NULL ||
3018 test_bit(In_sync, &mirror->rdev->flags))
3019 &&
3020 (mirror->replacement == NULL ||
3021 test_bit(Faulty,
3022 &mirror->replacement->flags)))
ab9d47e9 3023 continue;
1da177e4 3024
ab9d47e9
N
3025 still_degraded = 0;
3026 /* want to reconstruct this device */
3027 rb2 = r10_bio;
3028 sect = raid10_find_virt(conf, sector_nr, i);
fc448a18
N
3029 if (sect >= mddev->resync_max_sectors) {
3030 /* last stripe is not complete - don't
3031 * try to recover this sector.
3032 */
3033 continue;
3034 }
24afd80d
N
3035 /* Unless we are doing a full sync, or a replacement
3036 * we only need to recover the block if it is set in
3037 * the bitmap
ab9d47e9
N
3038 */
3039 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3040 &sync_blocks, 1);
3041 if (sync_blocks < max_sync)
3042 max_sync = sync_blocks;
3043 if (!must_sync &&
24afd80d 3044 mirror->replacement == NULL &&
ab9d47e9
N
3045 !conf->fullsync) {
3046 /* yep, skip the sync_blocks here, but don't assume
3047 * that there will never be anything to do here
3048 */
3049 chunks_skipped = -1;
3050 continue;
3051 }
6cce3b23 3052
ab9d47e9 3053 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
cb8b12b5 3054 r10_bio->state = 0;
ab9d47e9
N
3055 raise_barrier(conf, rb2 != NULL);
3056 atomic_set(&r10_bio->remaining, 0);
18055569 3057
ab9d47e9
N
3058 r10_bio->master_bio = (struct bio*)rb2;
3059 if (rb2)
3060 atomic_inc(&rb2->remaining);
3061 r10_bio->mddev = mddev;
3062 set_bit(R10BIO_IsRecover, &r10_bio->state);
3063 r10_bio->sector = sect;
1da177e4 3064
ab9d47e9
N
3065 raid10_find_phys(conf, r10_bio);
3066
3067 /* Need to check if the array will still be
3068 * degraded
3069 */
5cf00fcd 3070 for (j = 0; j < conf->geo.raid_disks; j++)
ab9d47e9
N
3071 if (conf->mirrors[j].rdev == NULL ||
3072 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3073 still_degraded = 1;
87fc767b 3074 break;
1da177e4 3075 }
ab9d47e9
N
3076
3077 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3078 &sync_blocks, still_degraded);
3079
e875ecea 3080 any_working = 0;
ab9d47e9 3081 for (j=0; j<conf->copies;j++) {
e875ecea 3082 int k;
ab9d47e9 3083 int d = r10_bio->devs[j].devnum;
5e570289 3084 sector_t from_addr, to_addr;
3cb03002 3085 struct md_rdev *rdev;
40c356ce
N
3086 sector_t sector, first_bad;
3087 int bad_sectors;
ab9d47e9
N
3088 if (!conf->mirrors[d].rdev ||
3089 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3090 continue;
3091 /* This is where we read from */
e875ecea 3092 any_working = 1;
40c356ce
N
3093 rdev = conf->mirrors[d].rdev;
3094 sector = r10_bio->devs[j].addr;
3095
3096 if (is_badblock(rdev, sector, max_sync,
3097 &first_bad, &bad_sectors)) {
3098 if (first_bad > sector)
3099 max_sync = first_bad - sector;
3100 else {
3101 bad_sectors -= (sector
3102 - first_bad);
3103 if (max_sync > bad_sectors)
3104 max_sync = bad_sectors;
3105 continue;
3106 }
3107 }
ab9d47e9 3108 bio = r10_bio->devs[0].bio;
8be185f2 3109 bio_reset(bio);
ab9d47e9
N
3110 bio->bi_next = biolist;
3111 biolist = bio;
3112 bio->bi_private = r10_bio;
3113 bio->bi_end_io = end_sync_read;
3114 bio->bi_rw = READ;
5e570289 3115 from_addr = r10_bio->devs[j].addr;
4f024f37
KO
3116 bio->bi_iter.bi_sector = from_addr +
3117 rdev->data_offset;
24afd80d
N
3118 bio->bi_bdev = rdev->bdev;
3119 atomic_inc(&rdev->nr_pending);
3120 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
3121
3122 for (k=0; k<conf->copies; k++)
3123 if (r10_bio->devs[k].devnum == i)
3124 break;
3125 BUG_ON(k == conf->copies);
5e570289 3126 to_addr = r10_bio->devs[k].addr;
ab9d47e9 3127 r10_bio->devs[0].devnum = d;
5e570289 3128 r10_bio->devs[0].addr = from_addr;
ab9d47e9 3129 r10_bio->devs[1].devnum = i;
5e570289 3130 r10_bio->devs[1].addr = to_addr;
ab9d47e9 3131
24afd80d
N
3132 rdev = mirror->rdev;
3133 if (!test_bit(In_sync, &rdev->flags)) {
3134 bio = r10_bio->devs[1].bio;
8be185f2 3135 bio_reset(bio);
24afd80d
N
3136 bio->bi_next = biolist;
3137 biolist = bio;
3138 bio->bi_private = r10_bio;
3139 bio->bi_end_io = end_sync_write;
3140 bio->bi_rw = WRITE;
4f024f37 3141 bio->bi_iter.bi_sector = to_addr
24afd80d
N
3142 + rdev->data_offset;
3143 bio->bi_bdev = rdev->bdev;
3144 atomic_inc(&r10_bio->remaining);
3145 } else
3146 r10_bio->devs[1].bio->bi_end_io = NULL;
3147
3148 /* and maybe write to replacement */
3149 bio = r10_bio->devs[1].repl_bio;
3150 if (bio)
3151 bio->bi_end_io = NULL;
3152 rdev = mirror->replacement;
3153 /* Note: if rdev != NULL, then bio
3154 * cannot be NULL as r10buf_pool_alloc will
3155 * have allocated it.
3156 * So the second test here is pointless.
3157 * But it keeps semantic-checkers happy, and
3158 * this comment keeps human reviewers
3159 * happy.
3160 */
3161 if (rdev == NULL || bio == NULL ||
3162 test_bit(Faulty, &rdev->flags))
3163 break;
8be185f2 3164 bio_reset(bio);
24afd80d
N
3165 bio->bi_next = biolist;
3166 biolist = bio;
3167 bio->bi_private = r10_bio;
3168 bio->bi_end_io = end_sync_write;
3169 bio->bi_rw = WRITE;
4f024f37
KO
3170 bio->bi_iter.bi_sector = to_addr +
3171 rdev->data_offset;
24afd80d
N
3172 bio->bi_bdev = rdev->bdev;
3173 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
3174 break;
3175 }
3176 if (j == conf->copies) {
e875ecea
N
3177 /* Cannot recover, so abort the recovery or
3178 * record a bad block */
e875ecea
N
3179 if (any_working) {
3180 /* problem is that there are bad blocks
3181 * on other device(s)
3182 */
3183 int k;
3184 for (k = 0; k < conf->copies; k++)
3185 if (r10_bio->devs[k].devnum == i)
3186 break;
24afd80d
N
3187 if (!test_bit(In_sync,
3188 &mirror->rdev->flags)
3189 && !rdev_set_badblocks(
3190 mirror->rdev,
3191 r10_bio->devs[k].addr,
3192 max_sync, 0))
3193 any_working = 0;
3194 if (mirror->replacement &&
3195 !rdev_set_badblocks(
3196 mirror->replacement,
e875ecea
N
3197 r10_bio->devs[k].addr,
3198 max_sync, 0))
3199 any_working = 0;
3200 }
3201 if (!any_working) {
3202 if (!test_and_set_bit(MD_RECOVERY_INTR,
3203 &mddev->recovery))
3204 printk(KERN_INFO "md/raid10:%s: insufficient "
3205 "working devices for recovery.\n",
3206 mdname(mddev));
24afd80d 3207 mirror->recovery_disabled
e875ecea
N
3208 = mddev->recovery_disabled;
3209 }
e8b84915
N
3210 put_buf(r10_bio);
3211 if (rb2)
3212 atomic_dec(&rb2->remaining);
3213 r10_bio = rb2;
ab9d47e9 3214 break;
1da177e4 3215 }
ab9d47e9 3216 }
1da177e4
LT
3217 if (biolist == NULL) {
3218 while (r10_bio) {
9f2c9d12
N
3219 struct r10bio *rb2 = r10_bio;
3220 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3221 rb2->master_bio = NULL;
3222 put_buf(rb2);
3223 }
3224 goto giveup;
3225 }
3226 } else {
3227 /* resync. Schedule a read for every block at this virt offset */
3228 int count = 0;
6cce3b23 3229
78200d45
N
3230 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3231
6cce3b23
N
3232 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3233 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3234 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3235 &mddev->recovery)) {
6cce3b23
N
3236 /* We can skip this block */
3237 *skipped = 1;
3238 return sync_blocks + sectors_skipped;
3239 }
3240 if (sync_blocks < max_sync)
3241 max_sync = sync_blocks;
1da177e4 3242 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
cb8b12b5 3243 r10_bio->state = 0;
1da177e4 3244
1da177e4
LT
3245 r10_bio->mddev = mddev;
3246 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3247 raise_barrier(conf, 0);
3248 conf->next_resync = sector_nr;
1da177e4
LT
3249
3250 r10_bio->master_bio = NULL;
3251 r10_bio->sector = sector_nr;
3252 set_bit(R10BIO_IsSync, &r10_bio->state);
3253 raid10_find_phys(conf, r10_bio);
5cf00fcd 3254 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3255
5cf00fcd 3256 for (i = 0; i < conf->copies; i++) {
1da177e4 3257 int d = r10_bio->devs[i].devnum;
40c356ce
N
3258 sector_t first_bad, sector;
3259 int bad_sectors;
3260
9ad1aefc
N
3261 if (r10_bio->devs[i].repl_bio)
3262 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3263
1da177e4 3264 bio = r10_bio->devs[i].bio;
8be185f2 3265 bio_reset(bio);
af03b8e4 3266 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 3267 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 3268 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4 3269 continue;
40c356ce
N
3270 sector = r10_bio->devs[i].addr;
3271 if (is_badblock(conf->mirrors[d].rdev,
3272 sector, max_sync,
3273 &first_bad, &bad_sectors)) {
3274 if (first_bad > sector)
3275 max_sync = first_bad - sector;
3276 else {
3277 bad_sectors -= (sector - first_bad);
3278 if (max_sync > bad_sectors)
91502f09 3279 max_sync = bad_sectors;
40c356ce
N
3280 continue;
3281 }
3282 }
1da177e4
LT
3283 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3284 atomic_inc(&r10_bio->remaining);
3285 bio->bi_next = biolist;
3286 biolist = bio;
3287 bio->bi_private = r10_bio;
3288 bio->bi_end_io = end_sync_read;
802ba064 3289 bio->bi_rw = READ;
4f024f37 3290 bio->bi_iter.bi_sector = sector +
1da177e4
LT
3291 conf->mirrors[d].rdev->data_offset;
3292 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3293 count++;
9ad1aefc
N
3294
3295 if (conf->mirrors[d].replacement == NULL ||
3296 test_bit(Faulty,
3297 &conf->mirrors[d].replacement->flags))
3298 continue;
3299
3300 /* Need to set up for writing to the replacement */
3301 bio = r10_bio->devs[i].repl_bio;
8be185f2 3302 bio_reset(bio);
9ad1aefc
N
3303 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3304
3305 sector = r10_bio->devs[i].addr;
3306 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3307 bio->bi_next = biolist;
3308 biolist = bio;
3309 bio->bi_private = r10_bio;
3310 bio->bi_end_io = end_sync_write;
3311 bio->bi_rw = WRITE;
4f024f37 3312 bio->bi_iter.bi_sector = sector +
9ad1aefc
N
3313 conf->mirrors[d].replacement->data_offset;
3314 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3315 count++;
1da177e4
LT
3316 }
3317
3318 if (count < 2) {
3319 for (i=0; i<conf->copies; i++) {
3320 int d = r10_bio->devs[i].devnum;
3321 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3322 rdev_dec_pending(conf->mirrors[d].rdev,
3323 mddev);
9ad1aefc
N
3324 if (r10_bio->devs[i].repl_bio &&
3325 r10_bio->devs[i].repl_bio->bi_end_io)
3326 rdev_dec_pending(
3327 conf->mirrors[d].replacement,
3328 mddev);
1da177e4
LT
3329 }
3330 put_buf(r10_bio);
3331 biolist = NULL;
3332 goto giveup;
3333 }
3334 }
3335
1da177e4 3336 nr_sectors = 0;
6cce3b23
N
3337 if (sector_nr + max_sync < max_sector)
3338 max_sector = sector_nr + max_sync;
1da177e4
LT
3339 do {
3340 struct page *page;
3341 int len = PAGE_SIZE;
1da177e4
LT
3342 if (sector_nr + (len>>9) > max_sector)
3343 len = (max_sector - sector_nr) << 9;
3344 if (len == 0)
3345 break;
3346 for (bio= biolist ; bio ; bio=bio->bi_next) {
ab9d47e9 3347 struct bio *bio2;
1da177e4 3348 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
ab9d47e9
N
3349 if (bio_add_page(bio, page, len, 0))
3350 continue;
3351
3352 /* stop here */
3353 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3354 for (bio2 = biolist;
3355 bio2 && bio2 != bio;
3356 bio2 = bio2->bi_next) {
3357 /* remove last page from this bio */
3358 bio2->bi_vcnt--;
4f024f37 3359 bio2->bi_iter.bi_size -= len;
3fd83717 3360 __clear_bit(BIO_SEG_VALID, &bio2->bi_flags);
1da177e4 3361 }
ab9d47e9 3362 goto bio_full;
1da177e4
LT
3363 }
3364 nr_sectors += len>>9;
3365 sector_nr += len>>9;
3366 } while (biolist->bi_vcnt < RESYNC_PAGES);
3367 bio_full:
3368 r10_bio->sectors = nr_sectors;
3369
3370 while (biolist) {
3371 bio = biolist;
3372 biolist = biolist->bi_next;
3373
3374 bio->bi_next = NULL;
3375 r10_bio = bio->bi_private;
3376 r10_bio->sectors = nr_sectors;
3377
3378 if (bio->bi_end_io == end_sync_read) {
3379 md_sync_acct(bio->bi_bdev, nr_sectors);
7bb23c49 3380 set_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4
LT
3381 generic_make_request(bio);
3382 }
3383 }
3384
57afd89f
N
3385 if (sectors_skipped)
3386 /* pretend they weren't skipped, it makes
3387 * no important difference in this case
3388 */
3389 md_done_sync(mddev, sectors_skipped, 1);
3390
1da177e4
LT
3391 return sectors_skipped + nr_sectors;
3392 giveup:
3393 /* There is nowhere to write, so all non-sync
e875ecea
N
3394 * drives must be failed or in resync, all drives
3395 * have a bad block, so try the next chunk...
1da177e4 3396 */
09b4068a
N
3397 if (sector_nr + max_sync < max_sector)
3398 max_sector = sector_nr + max_sync;
3399
3400 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3401 chunks_skipped ++;
3402 sector_nr = max_sector;
1da177e4 3403 goto skipped;
1da177e4
LT
3404}
3405
80c3a6ce 3406static sector_t
fd01b88c 3407raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3408{
3409 sector_t size;
e879a879 3410 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3411
3412 if (!raid_disks)
3ea7daa5
N
3413 raid_disks = min(conf->geo.raid_disks,
3414 conf->prev.raid_disks);
80c3a6ce 3415 if (!sectors)
dab8b292 3416 sectors = conf->dev_sectors;
80c3a6ce 3417
5cf00fcd
N
3418 size = sectors >> conf->geo.chunk_shift;
3419 sector_div(size, conf->geo.far_copies);
80c3a6ce 3420 size = size * raid_disks;
5cf00fcd 3421 sector_div(size, conf->geo.near_copies);
80c3a6ce 3422
5cf00fcd 3423 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3424}
3425
6508fdbf
N
3426static void calc_sectors(struct r10conf *conf, sector_t size)
3427{
3428 /* Calculate the number of sectors-per-device that will
3429 * actually be used, and set conf->dev_sectors and
3430 * conf->stride
3431 */
3432
5cf00fcd
N
3433 size = size >> conf->geo.chunk_shift;
3434 sector_div(size, conf->geo.far_copies);
3435 size = size * conf->geo.raid_disks;
3436 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3437 /* 'size' is now the number of chunks in the array */
3438 /* calculate "used chunks per device" */
3439 size = size * conf->copies;
3440
3441 /* We need to round up when dividing by raid_disks to
3442 * get the stride size.
3443 */
5cf00fcd 3444 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3445
5cf00fcd 3446 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3447
5cf00fcd
N
3448 if (conf->geo.far_offset)
3449 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3450 else {
5cf00fcd
N
3451 sector_div(size, conf->geo.far_copies);
3452 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3453 }
3454}
dab8b292 3455
deb200d0
N
3456enum geo_type {geo_new, geo_old, geo_start};
3457static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3458{
3459 int nc, fc, fo;
3460 int layout, chunk, disks;
3461 switch (new) {
3462 case geo_old:
3463 layout = mddev->layout;
3464 chunk = mddev->chunk_sectors;
3465 disks = mddev->raid_disks - mddev->delta_disks;
3466 break;
3467 case geo_new:
3468 layout = mddev->new_layout;
3469 chunk = mddev->new_chunk_sectors;
3470 disks = mddev->raid_disks;
3471 break;
3472 default: /* avoid 'may be unused' warnings */
3473 case geo_start: /* new when starting reshape - raid_disks not
3474 * updated yet. */
3475 layout = mddev->new_layout;
3476 chunk = mddev->new_chunk_sectors;
3477 disks = mddev->raid_disks + mddev->delta_disks;
3478 break;
3479 }
475901af 3480 if (layout >> 18)
deb200d0
N
3481 return -1;
3482 if (chunk < (PAGE_SIZE >> 9) ||
3483 !is_power_of_2(chunk))
3484 return -2;
3485 nc = layout & 255;
3486 fc = (layout >> 8) & 255;
3487 fo = layout & (1<<16);
3488 geo->raid_disks = disks;
3489 geo->near_copies = nc;
3490 geo->far_copies = fc;
3491 geo->far_offset = fo;
475901af 3492 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
deb200d0
N
3493 geo->chunk_mask = chunk - 1;
3494 geo->chunk_shift = ffz(~chunk);
3495 return nc*fc;
3496}
3497
e879a879 3498static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3499{
e879a879 3500 struct r10conf *conf = NULL;
dab8b292 3501 int err = -EINVAL;
deb200d0
N
3502 struct geom geo;
3503 int copies;
3504
3505 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 3506
deb200d0 3507 if (copies == -2) {
128595ed
N
3508 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3509 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3510 mdname(mddev), PAGE_SIZE);
dab8b292 3511 goto out;
1da177e4 3512 }
2604b703 3513
deb200d0 3514 if (copies < 2 || copies > mddev->raid_disks) {
128595ed 3515 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 3516 mdname(mddev), mddev->new_layout);
1da177e4
LT
3517 goto out;
3518 }
dab8b292
TM
3519
3520 err = -ENOMEM;
e879a879 3521 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3522 if (!conf)
1da177e4 3523 goto out;
dab8b292 3524
3ea7daa5 3525 /* FIXME calc properly */
dc280d98 3526 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
78eaa0d4 3527 max(0,-mddev->delta_disks)),
dab8b292
TM
3528 GFP_KERNEL);
3529 if (!conf->mirrors)
3530 goto out;
4443ae10
N
3531
3532 conf->tmppage = alloc_page(GFP_KERNEL);
3533 if (!conf->tmppage)
dab8b292
TM
3534 goto out;
3535
deb200d0
N
3536 conf->geo = geo;
3537 conf->copies = copies;
dab8b292
TM
3538 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3539 r10bio_pool_free, conf);
3540 if (!conf->r10bio_pool)
3541 goto out;
3542
6508fdbf 3543 calc_sectors(conf, mddev->dev_sectors);
3ea7daa5
N
3544 if (mddev->reshape_position == MaxSector) {
3545 conf->prev = conf->geo;
3546 conf->reshape_progress = MaxSector;
3547 } else {
3548 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3549 err = -EINVAL;
3550 goto out;
3551 }
3552 conf->reshape_progress = mddev->reshape_position;
3553 if (conf->prev.far_offset)
3554 conf->prev.stride = 1 << conf->prev.chunk_shift;
3555 else
3556 /* far_copies must be 1 */
3557 conf->prev.stride = conf->dev_sectors;
3558 }
e7e72bf6 3559 spin_lock_init(&conf->device_lock);
dab8b292
TM
3560 INIT_LIST_HEAD(&conf->retry_list);
3561
3562 spin_lock_init(&conf->resync_lock);
3563 init_waitqueue_head(&conf->wait_barrier);
3564
0232605d 3565 conf->thread = md_register_thread(raid10d, mddev, "raid10");
dab8b292
TM
3566 if (!conf->thread)
3567 goto out;
3568
dab8b292
TM
3569 conf->mddev = mddev;
3570 return conf;
3571
3572 out:
3ea7daa5
N
3573 if (err == -ENOMEM)
3574 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3575 mdname(mddev));
dab8b292
TM
3576 if (conf) {
3577 if (conf->r10bio_pool)
3578 mempool_destroy(conf->r10bio_pool);
3579 kfree(conf->mirrors);
3580 safe_put_page(conf->tmppage);
3581 kfree(conf);
3582 }
3583 return ERR_PTR(err);
3584}
3585
fd01b88c 3586static int run(struct mddev *mddev)
dab8b292 3587{
e879a879 3588 struct r10conf *conf;
dab8b292 3589 int i, disk_idx, chunk_size;
dc280d98 3590 struct raid10_info *disk;
3cb03002 3591 struct md_rdev *rdev;
dab8b292 3592 sector_t size;
3ea7daa5
N
3593 sector_t min_offset_diff = 0;
3594 int first = 1;
532a2a3f 3595 bool discard_supported = false;
dab8b292
TM
3596
3597 if (mddev->private == NULL) {
3598 conf = setup_conf(mddev);
3599 if (IS_ERR(conf))
3600 return PTR_ERR(conf);
3601 mddev->private = conf;
3602 }
3603 conf = mddev->private;
3604 if (!conf)
3605 goto out;
3606
dab8b292
TM
3607 mddev->thread = conf->thread;
3608 conf->thread = NULL;
3609
8f6c2e4b 3610 chunk_size = mddev->chunk_sectors << 9;
cc4d1efd 3611 if (mddev->queue) {
532a2a3f
SL
3612 blk_queue_max_discard_sectors(mddev->queue,
3613 mddev->chunk_sectors);
5026d7a9 3614 blk_queue_max_write_same_sectors(mddev->queue, 0);
cc4d1efd
JB
3615 blk_queue_io_min(mddev->queue, chunk_size);
3616 if (conf->geo.raid_disks % conf->geo.near_copies)
3617 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3618 else
3619 blk_queue_io_opt(mddev->queue, chunk_size *
3620 (conf->geo.raid_disks / conf->geo.near_copies));
3621 }
8f6c2e4b 3622
dafb20fa 3623 rdev_for_each(rdev, mddev) {
3ea7daa5 3624 long long diff;
aba336bd 3625 struct request_queue *q;
34b343cf 3626
1da177e4 3627 disk_idx = rdev->raid_disk;
f8c9e74f
N
3628 if (disk_idx < 0)
3629 continue;
3630 if (disk_idx >= conf->geo.raid_disks &&
3631 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
3632 continue;
3633 disk = conf->mirrors + disk_idx;
3634
56a2559b
N
3635 if (test_bit(Replacement, &rdev->flags)) {
3636 if (disk->replacement)
3637 goto out_free_conf;
3638 disk->replacement = rdev;
3639 } else {
3640 if (disk->rdev)
3641 goto out_free_conf;
3642 disk->rdev = rdev;
3643 }
aba336bd
N
3644 q = bdev_get_queue(rdev->bdev);
3645 if (q->merge_bvec_fn)
3646 mddev->merge_check_needed = 1;
3ea7daa5
N
3647 diff = (rdev->new_data_offset - rdev->data_offset);
3648 if (!mddev->reshape_backwards)
3649 diff = -diff;
3650 if (diff < 0)
3651 diff = 0;
3652 if (first || diff < min_offset_diff)
3653 min_offset_diff = diff;
56a2559b 3654
cc4d1efd
JB
3655 if (mddev->gendisk)
3656 disk_stack_limits(mddev->gendisk, rdev->bdev,
3657 rdev->data_offset << 9);
1da177e4
LT
3658
3659 disk->head_position = 0;
532a2a3f
SL
3660
3661 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3662 discard_supported = true;
1da177e4 3663 }
3ea7daa5 3664
ed30be07
JB
3665 if (mddev->queue) {
3666 if (discard_supported)
3667 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3668 mddev->queue);
3669 else
3670 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3671 mddev->queue);
3672 }
6d508242 3673 /* need to check that every block has at least one working mirror */
700c7213 3674 if (!enough(conf, -1)) {
128595ed 3675 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 3676 mdname(mddev));
1da177e4
LT
3677 goto out_free_conf;
3678 }
3679
3ea7daa5
N
3680 if (conf->reshape_progress != MaxSector) {
3681 /* must ensure that shape change is supported */
3682 if (conf->geo.far_copies != 1 &&
3683 conf->geo.far_offset == 0)
3684 goto out_free_conf;
3685 if (conf->prev.far_copies != 1 &&
78eaa0d4 3686 conf->prev.far_offset == 0)
3ea7daa5
N
3687 goto out_free_conf;
3688 }
3689
1da177e4 3690 mddev->degraded = 0;
f8c9e74f
N
3691 for (i = 0;
3692 i < conf->geo.raid_disks
3693 || i < conf->prev.raid_disks;
3694 i++) {
1da177e4
LT
3695
3696 disk = conf->mirrors + i;
3697
56a2559b
N
3698 if (!disk->rdev && disk->replacement) {
3699 /* The replacement is all we have - use it */
3700 disk->rdev = disk->replacement;
3701 disk->replacement = NULL;
3702 clear_bit(Replacement, &disk->rdev->flags);
3703 }
3704
5fd6c1dc 3705 if (!disk->rdev ||
2e333e89 3706 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
3707 disk->head_position = 0;
3708 mddev->degraded++;
0b59bb64
N
3709 if (disk->rdev &&
3710 disk->rdev->saved_raid_disk < 0)
8c2e870a 3711 conf->fullsync = 1;
1da177e4 3712 }
d890fa2b 3713 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
3714 }
3715
8c6ac868 3716 if (mddev->recovery_cp != MaxSector)
128595ed 3717 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
3718 " -- starting background reconstruction\n",
3719 mdname(mddev));
1da177e4 3720 printk(KERN_INFO
128595ed 3721 "md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
3722 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3723 conf->geo.raid_disks);
1da177e4
LT
3724 /*
3725 * Ok, everything is just fine now
3726 */
dab8b292
TM
3727 mddev->dev_sectors = conf->dev_sectors;
3728 size = raid10_size(mddev, 0, 0);
3729 md_set_array_sectors(mddev, size);
3730 mddev->resync_max_sectors = size;
1da177e4 3731
cc4d1efd 3732 if (mddev->queue) {
5cf00fcd 3733 int stripe = conf->geo.raid_disks *
9d8f0363 3734 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
cc4d1efd
JB
3735
3736 /* Calculate max read-ahead size.
3737 * We need to readahead at least twice a whole stripe....
3738 * maybe...
3739 */
5cf00fcd 3740 stripe /= conf->geo.near_copies;
3ea7daa5
N
3741 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3742 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
1da177e4
LT
3743 }
3744
a91a2785
MP
3745 if (md_integrity_register(mddev))
3746 goto out_free_conf;
3747
3ea7daa5
N
3748 if (conf->reshape_progress != MaxSector) {
3749 unsigned long before_length, after_length;
3750
3751 before_length = ((1 << conf->prev.chunk_shift) *
3752 conf->prev.far_copies);
3753 after_length = ((1 << conf->geo.chunk_shift) *
3754 conf->geo.far_copies);
3755
3756 if (max(before_length, after_length) > min_offset_diff) {
3757 /* This cannot work */
3758 printk("md/raid10: offset difference not enough to continue reshape\n");
3759 goto out_free_conf;
3760 }
3761 conf->offset_diff = min_offset_diff;
3762
3763 conf->reshape_safe = conf->reshape_progress;
3764 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3765 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3766 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3767 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3768 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3769 "reshape");
3770 }
3771
1da177e4
LT
3772 return 0;
3773
3774out_free_conf:
01f96c0a 3775 md_unregister_thread(&mddev->thread);
1da177e4
LT
3776 if (conf->r10bio_pool)
3777 mempool_destroy(conf->r10bio_pool);
1345b1d8 3778 safe_put_page(conf->tmppage);
990a8baf 3779 kfree(conf->mirrors);
1da177e4
LT
3780 kfree(conf);
3781 mddev->private = NULL;
3782out:
3783 return -EIO;
3784}
3785
afa0f557 3786static void raid10_free(struct mddev *mddev, void *priv)
1da177e4 3787{
afa0f557 3788 struct r10conf *conf = priv;
1da177e4 3789
1da177e4
LT
3790 if (conf->r10bio_pool)
3791 mempool_destroy(conf->r10bio_pool);
0fea7ed8 3792 safe_put_page(conf->tmppage);
990a8baf 3793 kfree(conf->mirrors);
c4796e21
N
3794 kfree(conf->mirrors_old);
3795 kfree(conf->mirrors_new);
1da177e4 3796 kfree(conf);
1da177e4
LT
3797}
3798
fd01b88c 3799static void raid10_quiesce(struct mddev *mddev, int state)
6cce3b23 3800{
e879a879 3801 struct r10conf *conf = mddev->private;
6cce3b23
N
3802
3803 switch(state) {
3804 case 1:
3805 raise_barrier(conf, 0);
3806 break;
3807 case 0:
3808 lower_barrier(conf);
3809 break;
3810 }
6cce3b23 3811}
1da177e4 3812
006a09a0
N
3813static int raid10_resize(struct mddev *mddev, sector_t sectors)
3814{
3815 /* Resize of 'far' arrays is not supported.
3816 * For 'near' and 'offset' arrays we can set the
3817 * number of sectors used to be an appropriate multiple
3818 * of the chunk size.
3819 * For 'offset', this is far_copies*chunksize.
3820 * For 'near' the multiplier is the LCM of
3821 * near_copies and raid_disks.
3822 * So if far_copies > 1 && !far_offset, fail.
3823 * Else find LCM(raid_disks, near_copy)*far_copies and
3824 * multiply by chunk_size. Then round to this number.
3825 * This is mostly done by raid10_size()
3826 */
3827 struct r10conf *conf = mddev->private;
3828 sector_t oldsize, size;
3829
f8c9e74f
N
3830 if (mddev->reshape_position != MaxSector)
3831 return -EBUSY;
3832
5cf00fcd 3833 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
3834 return -EINVAL;
3835
3836 oldsize = raid10_size(mddev, 0, 0);
3837 size = raid10_size(mddev, sectors, 0);
a4a6125a
N
3838 if (mddev->external_size &&
3839 mddev->array_sectors > size)
006a09a0 3840 return -EINVAL;
a4a6125a
N
3841 if (mddev->bitmap) {
3842 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3843 if (ret)
3844 return ret;
3845 }
3846 md_set_array_sectors(mddev, size);
006a09a0
N
3847 set_capacity(mddev->gendisk, mddev->array_sectors);
3848 revalidate_disk(mddev->gendisk);
3849 if (sectors > mddev->dev_sectors &&
3850 mddev->recovery_cp > oldsize) {
3851 mddev->recovery_cp = oldsize;
3852 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3853 }
6508fdbf
N
3854 calc_sectors(conf, sectors);
3855 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
3856 mddev->resync_max_sectors = size;
3857 return 0;
3858}
3859
53a6ab4d 3860static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
dab8b292 3861{
3cb03002 3862 struct md_rdev *rdev;
e879a879 3863 struct r10conf *conf;
dab8b292
TM
3864
3865 if (mddev->degraded > 0) {
128595ed
N
3866 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3867 mdname(mddev));
dab8b292
TM
3868 return ERR_PTR(-EINVAL);
3869 }
53a6ab4d 3870 sector_div(size, devs);
dab8b292 3871
dab8b292
TM
3872 /* Set new parameters */
3873 mddev->new_level = 10;
3874 /* new layout: far_copies = 1, near_copies = 2 */
3875 mddev->new_layout = (1<<8) + 2;
3876 mddev->new_chunk_sectors = mddev->chunk_sectors;
3877 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
3878 mddev->raid_disks *= 2;
3879 /* make sure it will be not marked as dirty */
3880 mddev->recovery_cp = MaxSector;
53a6ab4d 3881 mddev->dev_sectors = size;
dab8b292
TM
3882
3883 conf = setup_conf(mddev);
02214dc5 3884 if (!IS_ERR(conf)) {
dafb20fa 3885 rdev_for_each(rdev, mddev)
53a6ab4d 3886 if (rdev->raid_disk >= 0) {
e93f68a1 3887 rdev->new_raid_disk = rdev->raid_disk * 2;
53a6ab4d
N
3888 rdev->sectors = size;
3889 }
02214dc5
KW
3890 conf->barrier = 1;
3891 }
3892
dab8b292
TM
3893 return conf;
3894}
3895
fd01b88c 3896static void *raid10_takeover(struct mddev *mddev)
dab8b292 3897{
e373ab10 3898 struct r0conf *raid0_conf;
dab8b292
TM
3899
3900 /* raid10 can take over:
3901 * raid0 - providing it has only two drives
3902 */
3903 if (mddev->level == 0) {
3904 /* for raid0 takeover only one zone is supported */
e373ab10
N
3905 raid0_conf = mddev->private;
3906 if (raid0_conf->nr_strip_zones > 1) {
128595ed
N
3907 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3908 " with more than one zone.\n",
3909 mdname(mddev));
dab8b292
TM
3910 return ERR_PTR(-EINVAL);
3911 }
53a6ab4d
N
3912 return raid10_takeover_raid0(mddev,
3913 raid0_conf->strip_zone->zone_end,
3914 raid0_conf->strip_zone->nb_dev);
dab8b292
TM
3915 }
3916 return ERR_PTR(-EINVAL);
3917}
3918
3ea7daa5
N
3919static int raid10_check_reshape(struct mddev *mddev)
3920{
3921 /* Called when there is a request to change
3922 * - layout (to ->new_layout)
3923 * - chunk size (to ->new_chunk_sectors)
3924 * - raid_disks (by delta_disks)
3925 * or when trying to restart a reshape that was ongoing.
3926 *
3927 * We need to validate the request and possibly allocate
3928 * space if that might be an issue later.
3929 *
3930 * Currently we reject any reshape of a 'far' mode array,
3931 * allow chunk size to change if new is generally acceptable,
3932 * allow raid_disks to increase, and allow
3933 * a switch between 'near' mode and 'offset' mode.
3934 */
3935 struct r10conf *conf = mddev->private;
3936 struct geom geo;
3937
3938 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3939 return -EINVAL;
3940
3941 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3942 /* mustn't change number of copies */
3943 return -EINVAL;
3944 if (geo.far_copies > 1 && !geo.far_offset)
3945 /* Cannot switch to 'far' mode */
3946 return -EINVAL;
3947
3948 if (mddev->array_sectors & geo.chunk_mask)
3949 /* not factor of array size */
3950 return -EINVAL;
3951
3ea7daa5
N
3952 if (!enough(conf, -1))
3953 return -EINVAL;
3954
3955 kfree(conf->mirrors_new);
3956 conf->mirrors_new = NULL;
3957 if (mddev->delta_disks > 0) {
3958 /* allocate new 'mirrors' list */
3959 conf->mirrors_new = kzalloc(
dc280d98 3960 sizeof(struct raid10_info)
3ea7daa5
N
3961 *(mddev->raid_disks +
3962 mddev->delta_disks),
3963 GFP_KERNEL);
3964 if (!conf->mirrors_new)
3965 return -ENOMEM;
3966 }
3967 return 0;
3968}
3969
3970/*
3971 * Need to check if array has failed when deciding whether to:
3972 * - start an array
3973 * - remove non-faulty devices
3974 * - add a spare
3975 * - allow a reshape
3976 * This determination is simple when no reshape is happening.
3977 * However if there is a reshape, we need to carefully check
3978 * both the before and after sections.
3979 * This is because some failed devices may only affect one
3980 * of the two sections, and some non-in_sync devices may
3981 * be insync in the section most affected by failed devices.
3982 */
3983static int calc_degraded(struct r10conf *conf)
3984{
3985 int degraded, degraded2;
3986 int i;
3987
3988 rcu_read_lock();
3989 degraded = 0;
3990 /* 'prev' section first */
3991 for (i = 0; i < conf->prev.raid_disks; i++) {
3992 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3993 if (!rdev || test_bit(Faulty, &rdev->flags))
3994 degraded++;
3995 else if (!test_bit(In_sync, &rdev->flags))
3996 /* When we can reduce the number of devices in
3997 * an array, this might not contribute to
3998 * 'degraded'. It does now.
3999 */
4000 degraded++;
4001 }
4002 rcu_read_unlock();
4003 if (conf->geo.raid_disks == conf->prev.raid_disks)
4004 return degraded;
4005 rcu_read_lock();
4006 degraded2 = 0;
4007 for (i = 0; i < conf->geo.raid_disks; i++) {
4008 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4009 if (!rdev || test_bit(Faulty, &rdev->flags))
4010 degraded2++;
4011 else if (!test_bit(In_sync, &rdev->flags)) {
4012 /* If reshape is increasing the number of devices,
4013 * this section has already been recovered, so
4014 * it doesn't contribute to degraded.
4015 * else it does.
4016 */
4017 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4018 degraded2++;
4019 }
4020 }
4021 rcu_read_unlock();
4022 if (degraded2 > degraded)
4023 return degraded2;
4024 return degraded;
4025}
4026
4027static int raid10_start_reshape(struct mddev *mddev)
4028{
4029 /* A 'reshape' has been requested. This commits
4030 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4031 * This also checks if there are enough spares and adds them
4032 * to the array.
4033 * We currently require enough spares to make the final
4034 * array non-degraded. We also require that the difference
4035 * between old and new data_offset - on each device - is
4036 * enough that we never risk over-writing.
4037 */
4038
4039 unsigned long before_length, after_length;
4040 sector_t min_offset_diff = 0;
4041 int first = 1;
4042 struct geom new;
4043 struct r10conf *conf = mddev->private;
4044 struct md_rdev *rdev;
4045 int spares = 0;
bb63a701 4046 int ret;
3ea7daa5
N
4047
4048 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4049 return -EBUSY;
4050
4051 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4052 return -EINVAL;
4053
4054 before_length = ((1 << conf->prev.chunk_shift) *
4055 conf->prev.far_copies);
4056 after_length = ((1 << conf->geo.chunk_shift) *
4057 conf->geo.far_copies);
4058
4059 rdev_for_each(rdev, mddev) {
4060 if (!test_bit(In_sync, &rdev->flags)
4061 && !test_bit(Faulty, &rdev->flags))
4062 spares++;
4063 if (rdev->raid_disk >= 0) {
4064 long long diff = (rdev->new_data_offset
4065 - rdev->data_offset);
4066 if (!mddev->reshape_backwards)
4067 diff = -diff;
4068 if (diff < 0)
4069 diff = 0;
4070 if (first || diff < min_offset_diff)
4071 min_offset_diff = diff;
4072 }
4073 }
4074
4075 if (max(before_length, after_length) > min_offset_diff)
4076 return -EINVAL;
4077
4078 if (spares < mddev->delta_disks)
4079 return -EINVAL;
4080
4081 conf->offset_diff = min_offset_diff;
4082 spin_lock_irq(&conf->device_lock);
4083 if (conf->mirrors_new) {
4084 memcpy(conf->mirrors_new, conf->mirrors,
dc280d98 4085 sizeof(struct raid10_info)*conf->prev.raid_disks);
3ea7daa5 4086 smp_mb();
c4796e21 4087 kfree(conf->mirrors_old);
3ea7daa5
N
4088 conf->mirrors_old = conf->mirrors;
4089 conf->mirrors = conf->mirrors_new;
4090 conf->mirrors_new = NULL;
4091 }
4092 setup_geo(&conf->geo, mddev, geo_start);
4093 smp_mb();
4094 if (mddev->reshape_backwards) {
4095 sector_t size = raid10_size(mddev, 0, 0);
4096 if (size < mddev->array_sectors) {
4097 spin_unlock_irq(&conf->device_lock);
4098 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4099 mdname(mddev));
4100 return -EINVAL;
4101 }
4102 mddev->resync_max_sectors = size;
4103 conf->reshape_progress = size;
4104 } else
4105 conf->reshape_progress = 0;
4106 spin_unlock_irq(&conf->device_lock);
4107
bb63a701
N
4108 if (mddev->delta_disks && mddev->bitmap) {
4109 ret = bitmap_resize(mddev->bitmap,
4110 raid10_size(mddev, 0,
4111 conf->geo.raid_disks),
4112 0, 0);
4113 if (ret)
4114 goto abort;
4115 }
3ea7daa5
N
4116 if (mddev->delta_disks > 0) {
4117 rdev_for_each(rdev, mddev)
4118 if (rdev->raid_disk < 0 &&
4119 !test_bit(Faulty, &rdev->flags)) {
4120 if (raid10_add_disk(mddev, rdev) == 0) {
4121 if (rdev->raid_disk >=
4122 conf->prev.raid_disks)
4123 set_bit(In_sync, &rdev->flags);
4124 else
4125 rdev->recovery_offset = 0;
4126
4127 if (sysfs_link_rdev(mddev, rdev))
4128 /* Failure here is OK */;
4129 }
4130 } else if (rdev->raid_disk >= conf->prev.raid_disks
4131 && !test_bit(Faulty, &rdev->flags)) {
4132 /* This is a spare that was manually added */
4133 set_bit(In_sync, &rdev->flags);
4134 }
4135 }
4136 /* When a reshape changes the number of devices,
4137 * ->degraded is measured against the larger of the
4138 * pre and post numbers.
4139 */
4140 spin_lock_irq(&conf->device_lock);
4141 mddev->degraded = calc_degraded(conf);
4142 spin_unlock_irq(&conf->device_lock);
4143 mddev->raid_disks = conf->geo.raid_disks;
4144 mddev->reshape_position = conf->reshape_progress;
4145 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4146
4147 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4148 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 4149 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
3ea7daa5
N
4150 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4151 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4152
4153 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4154 "reshape");
4155 if (!mddev->sync_thread) {
bb63a701
N
4156 ret = -EAGAIN;
4157 goto abort;
3ea7daa5
N
4158 }
4159 conf->reshape_checkpoint = jiffies;
4160 md_wakeup_thread(mddev->sync_thread);
4161 md_new_event(mddev);
4162 return 0;
bb63a701
N
4163
4164abort:
4165 mddev->recovery = 0;
4166 spin_lock_irq(&conf->device_lock);
4167 conf->geo = conf->prev;
4168 mddev->raid_disks = conf->geo.raid_disks;
4169 rdev_for_each(rdev, mddev)
4170 rdev->new_data_offset = rdev->data_offset;
4171 smp_wmb();
4172 conf->reshape_progress = MaxSector;
4173 mddev->reshape_position = MaxSector;
4174 spin_unlock_irq(&conf->device_lock);
4175 return ret;
3ea7daa5
N
4176}
4177
4178/* Calculate the last device-address that could contain
4179 * any block from the chunk that includes the array-address 's'
4180 * and report the next address.
4181 * i.e. the address returned will be chunk-aligned and after
4182 * any data that is in the chunk containing 's'.
4183 */
4184static sector_t last_dev_address(sector_t s, struct geom *geo)
4185{
4186 s = (s | geo->chunk_mask) + 1;
4187 s >>= geo->chunk_shift;
4188 s *= geo->near_copies;
4189 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4190 s *= geo->far_copies;
4191 s <<= geo->chunk_shift;
4192 return s;
4193}
4194
4195/* Calculate the first device-address that could contain
4196 * any block from the chunk that includes the array-address 's'.
4197 * This too will be the start of a chunk
4198 */
4199static sector_t first_dev_address(sector_t s, struct geom *geo)
4200{
4201 s >>= geo->chunk_shift;
4202 s *= geo->near_copies;
4203 sector_div(s, geo->raid_disks);
4204 s *= geo->far_copies;
4205 s <<= geo->chunk_shift;
4206 return s;
4207}
4208
4209static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4210 int *skipped)
4211{
4212 /* We simply copy at most one chunk (smallest of old and new)
4213 * at a time, possibly less if that exceeds RESYNC_PAGES,
4214 * or we hit a bad block or something.
4215 * This might mean we pause for normal IO in the middle of
4216 * a chunk, but that is not a problem was mddev->reshape_position
4217 * can record any location.
4218 *
4219 * If we will want to write to a location that isn't
4220 * yet recorded as 'safe' (i.e. in metadata on disk) then
4221 * we need to flush all reshape requests and update the metadata.
4222 *
4223 * When reshaping forwards (e.g. to more devices), we interpret
4224 * 'safe' as the earliest block which might not have been copied
4225 * down yet. We divide this by previous stripe size and multiply
4226 * by previous stripe length to get lowest device offset that we
4227 * cannot write to yet.
4228 * We interpret 'sector_nr' as an address that we want to write to.
4229 * From this we use last_device_address() to find where we might
4230 * write to, and first_device_address on the 'safe' position.
4231 * If this 'next' write position is after the 'safe' position,
4232 * we must update the metadata to increase the 'safe' position.
4233 *
4234 * When reshaping backwards, we round in the opposite direction
4235 * and perform the reverse test: next write position must not be
4236 * less than current safe position.
4237 *
4238 * In all this the minimum difference in data offsets
4239 * (conf->offset_diff - always positive) allows a bit of slack,
4240 * so next can be after 'safe', but not by more than offset_disk
4241 *
4242 * We need to prepare all the bios here before we start any IO
4243 * to ensure the size we choose is acceptable to all devices.
4244 * The means one for each copy for write-out and an extra one for
4245 * read-in.
4246 * We store the read-in bio in ->master_bio and the others in
4247 * ->devs[x].bio and ->devs[x].repl_bio.
4248 */
4249 struct r10conf *conf = mddev->private;
4250 struct r10bio *r10_bio;
4251 sector_t next, safe, last;
4252 int max_sectors;
4253 int nr_sectors;
4254 int s;
4255 struct md_rdev *rdev;
4256 int need_flush = 0;
4257 struct bio *blist;
4258 struct bio *bio, *read_bio;
4259 int sectors_done = 0;
4260
4261 if (sector_nr == 0) {
4262 /* If restarting in the middle, skip the initial sectors */
4263 if (mddev->reshape_backwards &&
4264 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4265 sector_nr = (raid10_size(mddev, 0, 0)
4266 - conf->reshape_progress);
4267 } else if (!mddev->reshape_backwards &&
4268 conf->reshape_progress > 0)
4269 sector_nr = conf->reshape_progress;
4270 if (sector_nr) {
4271 mddev->curr_resync_completed = sector_nr;
4272 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4273 *skipped = 1;
4274 return sector_nr;
4275 }
4276 }
4277
4278 /* We don't use sector_nr to track where we are up to
4279 * as that doesn't work well for ->reshape_backwards.
4280 * So just use ->reshape_progress.
4281 */
4282 if (mddev->reshape_backwards) {
4283 /* 'next' is the earliest device address that we might
4284 * write to for this chunk in the new layout
4285 */
4286 next = first_dev_address(conf->reshape_progress - 1,
4287 &conf->geo);
4288
4289 /* 'safe' is the last device address that we might read from
4290 * in the old layout after a restart
4291 */
4292 safe = last_dev_address(conf->reshape_safe - 1,
4293 &conf->prev);
4294
4295 if (next + conf->offset_diff < safe)
4296 need_flush = 1;
4297
4298 last = conf->reshape_progress - 1;
4299 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4300 & conf->prev.chunk_mask);
4301 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4302 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4303 } else {
4304 /* 'next' is after the last device address that we
4305 * might write to for this chunk in the new layout
4306 */
4307 next = last_dev_address(conf->reshape_progress, &conf->geo);
4308
4309 /* 'safe' is the earliest device address that we might
4310 * read from in the old layout after a restart
4311 */
4312 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4313
4314 /* Need to update metadata if 'next' might be beyond 'safe'
4315 * as that would possibly corrupt data
4316 */
4317 if (next > safe + conf->offset_diff)
4318 need_flush = 1;
4319
4320 sector_nr = conf->reshape_progress;
4321 last = sector_nr | (conf->geo.chunk_mask
4322 & conf->prev.chunk_mask);
4323
4324 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4325 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4326 }
4327
4328 if (need_flush ||
4329 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4330 /* Need to update reshape_position in metadata */
4331 wait_barrier(conf);
4332 mddev->reshape_position = conf->reshape_progress;
4333 if (mddev->reshape_backwards)
4334 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4335 - conf->reshape_progress;
4336 else
4337 mddev->curr_resync_completed = conf->reshape_progress;
4338 conf->reshape_checkpoint = jiffies;
4339 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4340 md_wakeup_thread(mddev->thread);
4341 wait_event(mddev->sb_wait, mddev->flags == 0 ||
c91abf5a
N
4342 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4343 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4344 allow_barrier(conf);
4345 return sectors_done;
4346 }
3ea7daa5
N
4347 conf->reshape_safe = mddev->reshape_position;
4348 allow_barrier(conf);
4349 }
4350
4351read_more:
4352 /* Now schedule reads for blocks from sector_nr to last */
4353 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
cb8b12b5 4354 r10_bio->state = 0;
3ea7daa5
N
4355 raise_barrier(conf, sectors_done != 0);
4356 atomic_set(&r10_bio->remaining, 0);
4357 r10_bio->mddev = mddev;
4358 r10_bio->sector = sector_nr;
4359 set_bit(R10BIO_IsReshape, &r10_bio->state);
4360 r10_bio->sectors = last - sector_nr + 1;
4361 rdev = read_balance(conf, r10_bio, &max_sectors);
4362 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4363
4364 if (!rdev) {
4365 /* Cannot read from here, so need to record bad blocks
4366 * on all the target devices.
4367 */
4368 // FIXME
e337aead 4369 mempool_free(r10_bio, conf->r10buf_pool);
3ea7daa5
N
4370 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4371 return sectors_done;
4372 }
4373
4374 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4375
4376 read_bio->bi_bdev = rdev->bdev;
4f024f37 4377 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
3ea7daa5
N
4378 + rdev->data_offset);
4379 read_bio->bi_private = r10_bio;
4380 read_bio->bi_end_io = end_sync_read;
4381 read_bio->bi_rw = READ;
ce0b0a46 4382 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
3fd83717 4383 __set_bit(BIO_UPTODATE, &read_bio->bi_flags);
3ea7daa5 4384 read_bio->bi_vcnt = 0;
4f024f37 4385 read_bio->bi_iter.bi_size = 0;
3ea7daa5
N
4386 r10_bio->master_bio = read_bio;
4387 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4388
4389 /* Now find the locations in the new layout */
4390 __raid10_find_phys(&conf->geo, r10_bio);
4391
4392 blist = read_bio;
4393 read_bio->bi_next = NULL;
4394
4395 for (s = 0; s < conf->copies*2; s++) {
4396 struct bio *b;
4397 int d = r10_bio->devs[s/2].devnum;
4398 struct md_rdev *rdev2;
4399 if (s&1) {
4400 rdev2 = conf->mirrors[d].replacement;
4401 b = r10_bio->devs[s/2].repl_bio;
4402 } else {
4403 rdev2 = conf->mirrors[d].rdev;
4404 b = r10_bio->devs[s/2].bio;
4405 }
4406 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4407 continue;
8be185f2
KO
4408
4409 bio_reset(b);
3ea7daa5 4410 b->bi_bdev = rdev2->bdev;
4f024f37
KO
4411 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4412 rdev2->new_data_offset;
3ea7daa5
N
4413 b->bi_private = r10_bio;
4414 b->bi_end_io = end_reshape_write;
4415 b->bi_rw = WRITE;
3ea7daa5 4416 b->bi_next = blist;
3ea7daa5
N
4417 blist = b;
4418 }
4419
4420 /* Now add as many pages as possible to all of these bios. */
4421
4422 nr_sectors = 0;
4423 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4424 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4425 int len = (max_sectors - s) << 9;
4426 if (len > PAGE_SIZE)
4427 len = PAGE_SIZE;
4428 for (bio = blist; bio ; bio = bio->bi_next) {
4429 struct bio *bio2;
4430 if (bio_add_page(bio, page, len, 0))
4431 continue;
4432
4433 /* Didn't fit, must stop */
4434 for (bio2 = blist;
4435 bio2 && bio2 != bio;
4436 bio2 = bio2->bi_next) {
4437 /* Remove last page from this bio */
4438 bio2->bi_vcnt--;
4f024f37 4439 bio2->bi_iter.bi_size -= len;
3fd83717 4440 __clear_bit(BIO_SEG_VALID, &bio2->bi_flags);
3ea7daa5
N
4441 }
4442 goto bio_full;
4443 }
4444 sector_nr += len >> 9;
4445 nr_sectors += len >> 9;
4446 }
4447bio_full:
4448 r10_bio->sectors = nr_sectors;
4449
4450 /* Now submit the read */
4451 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4452 atomic_inc(&r10_bio->remaining);
4453 read_bio->bi_next = NULL;
4454 generic_make_request(read_bio);
4455 sector_nr += nr_sectors;
4456 sectors_done += nr_sectors;
4457 if (sector_nr <= last)
4458 goto read_more;
4459
4460 /* Now that we have done the whole section we can
4461 * update reshape_progress
4462 */
4463 if (mddev->reshape_backwards)
4464 conf->reshape_progress -= sectors_done;
4465 else
4466 conf->reshape_progress += sectors_done;
4467
4468 return sectors_done;
4469}
4470
4471static void end_reshape_request(struct r10bio *r10_bio);
4472static int handle_reshape_read_error(struct mddev *mddev,
4473 struct r10bio *r10_bio);
4474static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4475{
4476 /* Reshape read completed. Hopefully we have a block
4477 * to write out.
4478 * If we got a read error then we do sync 1-page reads from
4479 * elsewhere until we find the data - or give up.
4480 */
4481 struct r10conf *conf = mddev->private;
4482 int s;
4483
4484 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4485 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4486 /* Reshape has been aborted */
4487 md_done_sync(mddev, r10_bio->sectors, 0);
4488 return;
4489 }
4490
4491 /* We definitely have the data in the pages, schedule the
4492 * writes.
4493 */
4494 atomic_set(&r10_bio->remaining, 1);
4495 for (s = 0; s < conf->copies*2; s++) {
4496 struct bio *b;
4497 int d = r10_bio->devs[s/2].devnum;
4498 struct md_rdev *rdev;
4499 if (s&1) {
4500 rdev = conf->mirrors[d].replacement;
4501 b = r10_bio->devs[s/2].repl_bio;
4502 } else {
4503 rdev = conf->mirrors[d].rdev;
4504 b = r10_bio->devs[s/2].bio;
4505 }
4506 if (!rdev || test_bit(Faulty, &rdev->flags))
4507 continue;
4508 atomic_inc(&rdev->nr_pending);
4509 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4510 atomic_inc(&r10_bio->remaining);
4511 b->bi_next = NULL;
4512 generic_make_request(b);
4513 }
4514 end_reshape_request(r10_bio);
4515}
4516
4517static void end_reshape(struct r10conf *conf)
4518{
4519 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4520 return;
4521
4522 spin_lock_irq(&conf->device_lock);
4523 conf->prev = conf->geo;
4524 md_finish_reshape(conf->mddev);
4525 smp_wmb();
4526 conf->reshape_progress = MaxSector;
4527 spin_unlock_irq(&conf->device_lock);
4528
4529 /* read-ahead size must cover two whole stripes, which is
4530 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4531 */
4532 if (conf->mddev->queue) {
4533 int stripe = conf->geo.raid_disks *
4534 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4535 stripe /= conf->geo.near_copies;
4536 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4537 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4538 }
4539 conf->fullsync = 0;
4540}
4541
3ea7daa5
N
4542static int handle_reshape_read_error(struct mddev *mddev,
4543 struct r10bio *r10_bio)
4544{
4545 /* Use sync reads to get the blocks from somewhere else */
4546 int sectors = r10_bio->sectors;
3ea7daa5 4547 struct r10conf *conf = mddev->private;
e0ee7785
N
4548 struct {
4549 struct r10bio r10_bio;
4550 struct r10dev devs[conf->copies];
4551 } on_stack;
4552 struct r10bio *r10b = &on_stack.r10_bio;
3ea7daa5
N
4553 int slot = 0;
4554 int idx = 0;
4555 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4556
e0ee7785
N
4557 r10b->sector = r10_bio->sector;
4558 __raid10_find_phys(&conf->prev, r10b);
3ea7daa5
N
4559
4560 while (sectors) {
4561 int s = sectors;
4562 int success = 0;
4563 int first_slot = slot;
4564
4565 if (s > (PAGE_SIZE >> 9))
4566 s = PAGE_SIZE >> 9;
4567
4568 while (!success) {
e0ee7785 4569 int d = r10b->devs[slot].devnum;
3ea7daa5
N
4570 struct md_rdev *rdev = conf->mirrors[d].rdev;
4571 sector_t addr;
4572 if (rdev == NULL ||
4573 test_bit(Faulty, &rdev->flags) ||
4574 !test_bit(In_sync, &rdev->flags))
4575 goto failed;
4576
e0ee7785 4577 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
3ea7daa5
N
4578 success = sync_page_io(rdev,
4579 addr,
4580 s << 9,
4581 bvec[idx].bv_page,
4582 READ, false);
4583 if (success)
4584 break;
4585 failed:
4586 slot++;
4587 if (slot >= conf->copies)
4588 slot = 0;
4589 if (slot == first_slot)
4590 break;
4591 }
4592 if (!success) {
4593 /* couldn't read this block, must give up */
4594 set_bit(MD_RECOVERY_INTR,
4595 &mddev->recovery);
4596 return -EIO;
4597 }
4598 sectors -= s;
4599 idx++;
4600 }
4601 return 0;
4602}
4603
4604static void end_reshape_write(struct bio *bio, int error)
4605{
4606 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4607 struct r10bio *r10_bio = bio->bi_private;
4608 struct mddev *mddev = r10_bio->mddev;
4609 struct r10conf *conf = mddev->private;
4610 int d;
4611 int slot;
4612 int repl;
4613 struct md_rdev *rdev = NULL;
4614
4615 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4616 if (repl)
4617 rdev = conf->mirrors[d].replacement;
4618 if (!rdev) {
4619 smp_mb();
4620 rdev = conf->mirrors[d].rdev;
4621 }
4622
4623 if (!uptodate) {
4624 /* FIXME should record badblock */
4625 md_error(mddev, rdev);
4626 }
4627
4628 rdev_dec_pending(rdev, mddev);
4629 end_reshape_request(r10_bio);
4630}
4631
4632static void end_reshape_request(struct r10bio *r10_bio)
4633{
4634 if (!atomic_dec_and_test(&r10_bio->remaining))
4635 return;
4636 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4637 bio_put(r10_bio->master_bio);
4638 put_buf(r10_bio);
4639}
4640
4641static void raid10_finish_reshape(struct mddev *mddev)
4642{
4643 struct r10conf *conf = mddev->private;
4644
4645 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4646 return;
4647
4648 if (mddev->delta_disks > 0) {
4649 sector_t size = raid10_size(mddev, 0, 0);
4650 md_set_array_sectors(mddev, size);
4651 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4652 mddev->recovery_cp = mddev->resync_max_sectors;
4653 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4654 }
4655 mddev->resync_max_sectors = size;
4656 set_capacity(mddev->gendisk, mddev->array_sectors);
4657 revalidate_disk(mddev->gendisk);
63aced61
N
4658 } else {
4659 int d;
4660 for (d = conf->geo.raid_disks ;
4661 d < conf->geo.raid_disks - mddev->delta_disks;
4662 d++) {
4663 struct md_rdev *rdev = conf->mirrors[d].rdev;
4664 if (rdev)
4665 clear_bit(In_sync, &rdev->flags);
4666 rdev = conf->mirrors[d].replacement;
4667 if (rdev)
4668 clear_bit(In_sync, &rdev->flags);
4669 }
3ea7daa5
N
4670 }
4671 mddev->layout = mddev->new_layout;
4672 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4673 mddev->reshape_position = MaxSector;
4674 mddev->delta_disks = 0;
4675 mddev->reshape_backwards = 0;
4676}
4677
84fc4b56 4678static struct md_personality raid10_personality =
1da177e4
LT
4679{
4680 .name = "raid10",
2604b703 4681 .level = 10,
1da177e4
LT
4682 .owner = THIS_MODULE,
4683 .make_request = make_request,
4684 .run = run,
afa0f557 4685 .free = raid10_free,
1da177e4
LT
4686 .status = status,
4687 .error_handler = error,
4688 .hot_add_disk = raid10_add_disk,
4689 .hot_remove_disk= raid10_remove_disk,
4690 .spare_active = raid10_spare_active,
4691 .sync_request = sync_request,
6cce3b23 4692 .quiesce = raid10_quiesce,
80c3a6ce 4693 .size = raid10_size,
006a09a0 4694 .resize = raid10_resize,
dab8b292 4695 .takeover = raid10_takeover,
3ea7daa5
N
4696 .check_reshape = raid10_check_reshape,
4697 .start_reshape = raid10_start_reshape,
4698 .finish_reshape = raid10_finish_reshape,
5c675f83 4699 .congested = raid10_congested,
64590f45 4700 .mergeable_bvec = raid10_mergeable_bvec,
1da177e4
LT
4701};
4702
4703static int __init raid_init(void)
4704{
2604b703 4705 return register_md_personality(&raid10_personality);
1da177e4
LT
4706}
4707
4708static void raid_exit(void)
4709{
2604b703 4710 unregister_md_personality(&raid10_personality);
1da177e4
LT
4711}
4712
4713module_init(raid_init);
4714module_exit(raid_exit);
4715MODULE_LICENSE("GPL");
0efb9e61 4716MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 4717MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 4718MODULE_ALIAS("md-raid10");
2604b703 4719MODULE_ALIAS("md-level-10");
34db0cd6
N
4720
4721module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 1.1602 seconds and 5 git commands to generate.