Merge branch 'for-3.11/drivers' of git://git.kernel.dk/linux-block
[deliverable/linux.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
3ea7daa5 27#include <linux/kthread.h>
43b2e5d8 28#include "md.h"
ef740c37 29#include "raid10.h"
dab8b292 30#include "raid0.h"
ef740c37 31#include "bitmap.h"
1da177e4
LT
32
33/*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
c93983bf 40 * far_offset (stored in bit 16 of layout )
475901af 41 * use_far_sets (stored in bit 17 of layout )
1da177e4 42 *
475901af
JB
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
c93983bf
N
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
475901af
JB
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
55 *
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * on a device):
64 * A B C D A B C D E
65 * ... ...
66 * D A B C E A B C D
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
1da177e4
LT
71 */
72
73/*
74 * Number of guaranteed r10bios in case of extreme VM load:
75 */
76#define NR_RAID10_BIOS 256
77
473e87ce
JB
78/* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82 */
83#define IO_BLOCKED ((struct bio *)1)
84/* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
87 */
88#define IO_MADE_GOOD ((struct bio *)2)
89
90#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92/* When there are this many requests queued to be written by
34db0cd6
N
93 * the raid10 thread, we become 'congested' to provide back-pressure
94 * for writeback.
95 */
96static int max_queued_requests = 1024;
97
e879a879
N
98static void allow_barrier(struct r10conf *conf);
99static void lower_barrier(struct r10conf *conf);
635f6416 100static int _enough(struct r10conf *conf, int previous, int ignore);
3ea7daa5
N
101static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 int *skipped);
103static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104static void end_reshape_write(struct bio *bio, int error);
105static void end_reshape(struct r10conf *conf);
0a27ec96 106
dd0fc66f 107static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 108{
e879a879 109 struct r10conf *conf = data;
9f2c9d12 110 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4 111
69335ef3
N
112 /* allocate a r10bio with room for raid_disks entries in the
113 * bios array */
7eaceacc 114 return kzalloc(size, gfp_flags);
1da177e4
LT
115}
116
117static void r10bio_pool_free(void *r10_bio, void *data)
118{
119 kfree(r10_bio);
120}
121
0310fa21 122/* Maximum size of each resync request */
1da177e4 123#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 124#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
125/* amount of memory to reserve for resync requests */
126#define RESYNC_WINDOW (1024*1024)
127/* maximum number of concurrent requests, memory permitting */
128#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
129
130/*
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
135 *
136 */
dd0fc66f 137static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 138{
e879a879 139 struct r10conf *conf = data;
1da177e4 140 struct page *page;
9f2c9d12 141 struct r10bio *r10_bio;
1da177e4
LT
142 struct bio *bio;
143 int i, j;
144 int nalloc;
145
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 147 if (!r10_bio)
1da177e4 148 return NULL;
1da177e4 149
3ea7daa5
N
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
1da177e4
LT
152 nalloc = conf->copies; /* resync */
153 else
154 nalloc = 2; /* recovery */
155
156 /*
157 * Allocate bios.
158 */
159 for (j = nalloc ; j-- ; ) {
6746557f 160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
161 if (!bio)
162 goto out_free_bio;
163 r10_bio->devs[j].bio = bio;
69335ef3
N
164 if (!conf->have_replacement)
165 continue;
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 if (!bio)
168 goto out_free_bio;
169 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
170 }
171 /*
172 * Allocate RESYNC_PAGES data pages and attach them
173 * where needed.
174 */
175 for (j = 0 ; j < nalloc; j++) {
69335ef3 176 struct bio *rbio = r10_bio->devs[j].repl_bio;
1da177e4
LT
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
3ea7daa5
N
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
182 * and reshape */
c65060ad
NK
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
185 get_page(page);
186 } else
187 page = alloc_page(gfp_flags);
1da177e4
LT
188 if (unlikely(!page))
189 goto out_free_pages;
190
191 bio->bi_io_vec[i].bv_page = page;
69335ef3
N
192 if (rbio)
193 rbio->bi_io_vec[i].bv_page = page;
1da177e4
LT
194 }
195 }
196
197 return r10_bio;
198
199out_free_pages:
200 for ( ; i > 0 ; i--)
1345b1d8 201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
202 while (j--)
203 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
5fdd2cf8 205 j = 0;
1da177e4 206out_free_bio:
5fdd2cf8 207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
69335ef3
N
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
212 }
1da177e4
LT
213 r10bio_pool_free(r10_bio, conf);
214 return NULL;
215}
216
217static void r10buf_pool_free(void *__r10_bio, void *data)
218{
219 int i;
e879a879 220 struct r10conf *conf = data;
9f2c9d12 221 struct r10bio *r10bio = __r10_bio;
1da177e4
LT
222 int j;
223
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
226 if (bio) {
227 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 228 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
229 bio->bi_io_vec[i].bv_page = NULL;
230 }
231 bio_put(bio);
232 }
69335ef3
N
233 bio = r10bio->devs[j].repl_bio;
234 if (bio)
235 bio_put(bio);
1da177e4
LT
236 }
237 r10bio_pool_free(r10bio, conf);
238}
239
e879a879 240static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
241{
242 int i;
243
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 246 if (!BIO_SPECIAL(*bio))
1da177e4
LT
247 bio_put(*bio);
248 *bio = NULL;
69335ef3
N
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 bio_put(*bio);
252 *bio = NULL;
1da177e4
LT
253 }
254}
255
9f2c9d12 256static void free_r10bio(struct r10bio *r10_bio)
1da177e4 257{
e879a879 258 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 259
1da177e4
LT
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
262}
263
9f2c9d12 264static void put_buf(struct r10bio *r10_bio)
1da177e4 265{
e879a879 266 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
267
268 mempool_free(r10_bio, conf->r10buf_pool);
269
0a27ec96 270 lower_barrier(conf);
1da177e4
LT
271}
272
9f2c9d12 273static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
274{
275 unsigned long flags;
fd01b88c 276 struct mddev *mddev = r10_bio->mddev;
e879a879 277 struct r10conf *conf = mddev->private;
1da177e4
LT
278
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 281 conf->nr_queued ++;
1da177e4
LT
282 spin_unlock_irqrestore(&conf->device_lock, flags);
283
388667be
AJ
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
286
1da177e4
LT
287 md_wakeup_thread(mddev->thread);
288}
289
290/*
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
293 * cache layer.
294 */
9f2c9d12 295static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
296{
297 struct bio *bio = r10_bio->master_bio;
856e08e2 298 int done;
e879a879 299 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 300
856e08e2
N
301 if (bio->bi_phys_segments) {
302 unsigned long flags;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
307 } else
308 done = 1;
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 if (done) {
312 bio_endio(bio, 0);
313 /*
314 * Wake up any possible resync thread that waits for the device
315 * to go idle.
316 */
317 allow_barrier(conf);
318 }
1da177e4
LT
319 free_r10bio(r10_bio);
320}
321
322/*
323 * Update disk head position estimator based on IRQ completion info.
324 */
9f2c9d12 325static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 326{
e879a879 327 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
328
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
331}
332
778ca018
NK
333/*
334 * Find the disk number which triggered given bio
335 */
e879a879 336static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 337 struct bio *bio, int *slotp, int *replp)
778ca018
NK
338{
339 int slot;
69335ef3 340 int repl = 0;
778ca018 341
69335ef3 342 for (slot = 0; slot < conf->copies; slot++) {
778ca018
NK
343 if (r10_bio->devs[slot].bio == bio)
344 break;
69335ef3
N
345 if (r10_bio->devs[slot].repl_bio == bio) {
346 repl = 1;
347 break;
348 }
349 }
778ca018
NK
350
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
353
749c55e9
N
354 if (slotp)
355 *slotp = slot;
69335ef3
N
356 if (replp)
357 *replp = repl;
778ca018
NK
358 return r10_bio->devs[slot].devnum;
359}
360
6712ecf8 361static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
362{
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 364 struct r10bio *r10_bio = bio->bi_private;
1da177e4 365 int slot, dev;
abbf098e 366 struct md_rdev *rdev;
e879a879 367 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 368
1da177e4
LT
369
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
abbf098e 372 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
373 /*
374 * this branch is our 'one mirror IO has finished' event handler:
375 */
4443ae10
N
376 update_head_pos(slot, r10_bio);
377
378 if (uptodate) {
1da177e4
LT
379 /*
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
383 *
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
387 */
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
394 */
635f6416
N
395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 rdev->raid_disk))
fae8cc5e 397 uptodate = 1;
fae8cc5e
N
398 }
399 if (uptodate) {
1da177e4 400 raid_end_bio_io(r10_bio);
abbf098e 401 rdev_dec_pending(rdev, conf->mddev);
4443ae10 402 } else {
1da177e4 403 /*
7c4e06ff 404 * oops, read error - keep the refcount on the rdev
1da177e4
LT
405 */
406 char b[BDEVNAME_SIZE];
8bda470e
CD
407 printk_ratelimited(KERN_ERR
408 "md/raid10:%s: %s: rescheduling sector %llu\n",
409 mdname(conf->mddev),
abbf098e 410 bdevname(rdev->bdev, b),
8bda470e 411 (unsigned long long)r10_bio->sector);
856e08e2 412 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
413 reschedule_retry(r10_bio);
414 }
1da177e4
LT
415}
416
9f2c9d12 417static void close_write(struct r10bio *r10_bio)
bd870a16
N
418{
419 /* clear the bitmap if all writes complete successfully */
420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 r10_bio->sectors,
422 !test_bit(R10BIO_Degraded, &r10_bio->state),
423 0);
424 md_write_end(r10_bio->mddev);
425}
426
9f2c9d12 427static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
428{
429 if (atomic_dec_and_test(&r10_bio->remaining)) {
430 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 reschedule_retry(r10_bio);
432 else {
433 close_write(r10_bio);
434 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 reschedule_retry(r10_bio);
436 else
437 raid_end_bio_io(r10_bio);
438 }
439 }
440}
441
6712ecf8 442static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
443{
444 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 445 struct r10bio *r10_bio = bio->bi_private;
778ca018 446 int dev;
749c55e9 447 int dec_rdev = 1;
e879a879 448 struct r10conf *conf = r10_bio->mddev->private;
475b0321 449 int slot, repl;
4ca40c2c 450 struct md_rdev *rdev = NULL;
1da177e4 451
475b0321 452 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 453
475b0321
N
454 if (repl)
455 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
456 if (!rdev) {
457 smp_rmb();
458 repl = 0;
475b0321 459 rdev = conf->mirrors[dev].rdev;
4ca40c2c 460 }
1da177e4
LT
461 /*
462 * this branch is our 'one mirror IO has finished' event handler:
463 */
6cce3b23 464 if (!uptodate) {
475b0321
N
465 if (repl)
466 /* Never record new bad blocks to replacement,
467 * just fail it.
468 */
469 md_error(rdev->mddev, rdev);
470 else {
471 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
472 if (!test_and_set_bit(WantReplacement, &rdev->flags))
473 set_bit(MD_RECOVERY_NEEDED,
474 &rdev->mddev->recovery);
475b0321
N
475 set_bit(R10BIO_WriteError, &r10_bio->state);
476 dec_rdev = 0;
477 }
749c55e9 478 } else {
1da177e4
LT
479 /*
480 * Set R10BIO_Uptodate in our master bio, so that
481 * we will return a good error code for to the higher
482 * levels even if IO on some other mirrored buffer fails.
483 *
484 * The 'master' represents the composite IO operation to
485 * user-side. So if something waits for IO, then it will
486 * wait for the 'master' bio.
487 */
749c55e9
N
488 sector_t first_bad;
489 int bad_sectors;
490
3056e3ae
AL
491 /*
492 * Do not set R10BIO_Uptodate if the current device is
493 * rebuilding or Faulty. This is because we cannot use
494 * such device for properly reading the data back (we could
495 * potentially use it, if the current write would have felt
496 * before rdev->recovery_offset, but for simplicity we don't
497 * check this here.
498 */
499 if (test_bit(In_sync, &rdev->flags) &&
500 !test_bit(Faulty, &rdev->flags))
501 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 502
749c55e9 503 /* Maybe we can clear some bad blocks. */
475b0321 504 if (is_badblock(rdev,
749c55e9
N
505 r10_bio->devs[slot].addr,
506 r10_bio->sectors,
507 &first_bad, &bad_sectors)) {
508 bio_put(bio);
475b0321
N
509 if (repl)
510 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
511 else
512 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
513 dec_rdev = 0;
514 set_bit(R10BIO_MadeGood, &r10_bio->state);
515 }
516 }
517
1da177e4
LT
518 /*
519 *
520 * Let's see if all mirrored write operations have finished
521 * already.
522 */
19d5f834 523 one_write_done(r10_bio);
749c55e9 524 if (dec_rdev)
884162df 525 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
526}
527
1da177e4
LT
528/*
529 * RAID10 layout manager
25985edc 530 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
531 * parameters: near_copies and far_copies.
532 * near_copies * far_copies must be <= raid_disks.
533 * Normally one of these will be 1.
534 * If both are 1, we get raid0.
535 * If near_copies == raid_disks, we get raid1.
536 *
25985edc 537 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
538 * first chunk, followed by near_copies copies of the next chunk and
539 * so on.
540 * If far_copies > 1, then after 1/far_copies of the array has been assigned
541 * as described above, we start again with a device offset of near_copies.
542 * So we effectively have another copy of the whole array further down all
543 * the drives, but with blocks on different drives.
544 * With this layout, and block is never stored twice on the one device.
545 *
546 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 547 * on each device that it is on.
1da177e4
LT
548 *
549 * raid10_find_virt does the reverse mapping, from a device and a
550 * sector offset to a virtual address
551 */
552
f8c9e74f 553static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
554{
555 int n,f;
556 sector_t sector;
557 sector_t chunk;
558 sector_t stripe;
559 int dev;
1da177e4 560 int slot = 0;
9a3152ab
JB
561 int last_far_set_start, last_far_set_size;
562
563 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
564 last_far_set_start *= geo->far_set_size;
565
566 last_far_set_size = geo->far_set_size;
567 last_far_set_size += (geo->raid_disks % geo->far_set_size);
1da177e4
LT
568
569 /* now calculate first sector/dev */
5cf00fcd
N
570 chunk = r10bio->sector >> geo->chunk_shift;
571 sector = r10bio->sector & geo->chunk_mask;
1da177e4 572
5cf00fcd 573 chunk *= geo->near_copies;
1da177e4 574 stripe = chunk;
5cf00fcd
N
575 dev = sector_div(stripe, geo->raid_disks);
576 if (geo->far_offset)
577 stripe *= geo->far_copies;
1da177e4 578
5cf00fcd 579 sector += stripe << geo->chunk_shift;
1da177e4
LT
580
581 /* and calculate all the others */
5cf00fcd 582 for (n = 0; n < geo->near_copies; n++) {
1da177e4 583 int d = dev;
475901af 584 int set;
1da177e4 585 sector_t s = sector;
1da177e4 586 r10bio->devs[slot].devnum = d;
4c0ca26b 587 r10bio->devs[slot].addr = s;
1da177e4
LT
588 slot++;
589
5cf00fcd 590 for (f = 1; f < geo->far_copies; f++) {
475901af 591 set = d / geo->far_set_size;
5cf00fcd 592 d += geo->near_copies;
475901af 593
9a3152ab
JB
594 if ((geo->raid_disks % geo->far_set_size) &&
595 (d > last_far_set_start)) {
596 d -= last_far_set_start;
597 d %= last_far_set_size;
598 d += last_far_set_start;
599 } else {
600 d %= geo->far_set_size;
601 d += geo->far_set_size * set;
602 }
5cf00fcd 603 s += geo->stride;
1da177e4
LT
604 r10bio->devs[slot].devnum = d;
605 r10bio->devs[slot].addr = s;
606 slot++;
607 }
608 dev++;
5cf00fcd 609 if (dev >= geo->raid_disks) {
1da177e4 610 dev = 0;
5cf00fcd 611 sector += (geo->chunk_mask + 1);
1da177e4
LT
612 }
613 }
f8c9e74f
N
614}
615
616static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
617{
618 struct geom *geo = &conf->geo;
619
620 if (conf->reshape_progress != MaxSector &&
621 ((r10bio->sector >= conf->reshape_progress) !=
622 conf->mddev->reshape_backwards)) {
623 set_bit(R10BIO_Previous, &r10bio->state);
624 geo = &conf->prev;
625 } else
626 clear_bit(R10BIO_Previous, &r10bio->state);
627
628 __raid10_find_phys(geo, r10bio);
1da177e4
LT
629}
630
e879a879 631static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
632{
633 sector_t offset, chunk, vchunk;
f8c9e74f
N
634 /* Never use conf->prev as this is only called during resync
635 * or recovery, so reshape isn't happening
636 */
5cf00fcd 637 struct geom *geo = &conf->geo;
475901af
JB
638 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
639 int far_set_size = geo->far_set_size;
9a3152ab
JB
640 int last_far_set_start;
641
642 if (geo->raid_disks % geo->far_set_size) {
643 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
644 last_far_set_start *= geo->far_set_size;
645
646 if (dev >= last_far_set_start) {
647 far_set_size = geo->far_set_size;
648 far_set_size += (geo->raid_disks % geo->far_set_size);
649 far_set_start = last_far_set_start;
650 }
651 }
1da177e4 652
5cf00fcd
N
653 offset = sector & geo->chunk_mask;
654 if (geo->far_offset) {
c93983bf 655 int fc;
5cf00fcd
N
656 chunk = sector >> geo->chunk_shift;
657 fc = sector_div(chunk, geo->far_copies);
658 dev -= fc * geo->near_copies;
475901af
JB
659 if (dev < far_set_start)
660 dev += far_set_size;
c93983bf 661 } else {
5cf00fcd
N
662 while (sector >= geo->stride) {
663 sector -= geo->stride;
475901af
JB
664 if (dev < (geo->near_copies + far_set_start))
665 dev += far_set_size - geo->near_copies;
c93983bf 666 else
5cf00fcd 667 dev -= geo->near_copies;
c93983bf 668 }
5cf00fcd 669 chunk = sector >> geo->chunk_shift;
c93983bf 670 }
5cf00fcd
N
671 vchunk = chunk * geo->raid_disks + dev;
672 sector_div(vchunk, geo->near_copies);
673 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
674}
675
676/**
677 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
678 * @q: request queue
cc371e66 679 * @bvm: properties of new bio
1da177e4
LT
680 * @biovec: the request that could be merged to it.
681 *
682 * Return amount of bytes we can accept at this offset
050b6615
N
683 * This requires checking for end-of-chunk if near_copies != raid_disks,
684 * and for subordinate merge_bvec_fns if merge_check_needed.
1da177e4 685 */
cc371e66
AK
686static int raid10_mergeable_bvec(struct request_queue *q,
687 struct bvec_merge_data *bvm,
688 struct bio_vec *biovec)
1da177e4 689{
fd01b88c 690 struct mddev *mddev = q->queuedata;
050b6615 691 struct r10conf *conf = mddev->private;
cc371e66 692 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4 693 int max;
3ea7daa5 694 unsigned int chunk_sectors;
cc371e66 695 unsigned int bio_sectors = bvm->bi_size >> 9;
5cf00fcd 696 struct geom *geo = &conf->geo;
1da177e4 697
3ea7daa5 698 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
f8c9e74f
N
699 if (conf->reshape_progress != MaxSector &&
700 ((sector >= conf->reshape_progress) !=
701 conf->mddev->reshape_backwards))
702 geo = &conf->prev;
703
5cf00fcd 704 if (geo->near_copies < geo->raid_disks) {
050b6615
N
705 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
706 + bio_sectors)) << 9;
707 if (max < 0)
708 /* bio_add cannot handle a negative return */
709 max = 0;
710 if (max <= biovec->bv_len && bio_sectors == 0)
711 return biovec->bv_len;
712 } else
713 max = biovec->bv_len;
714
715 if (mddev->merge_check_needed) {
e0ee7785
N
716 struct {
717 struct r10bio r10_bio;
718 struct r10dev devs[conf->copies];
719 } on_stack;
720 struct r10bio *r10_bio = &on_stack.r10_bio;
050b6615 721 int s;
f8c9e74f
N
722 if (conf->reshape_progress != MaxSector) {
723 /* Cannot give any guidance during reshape */
724 if (max <= biovec->bv_len && bio_sectors == 0)
725 return biovec->bv_len;
726 return 0;
727 }
e0ee7785
N
728 r10_bio->sector = sector;
729 raid10_find_phys(conf, r10_bio);
050b6615
N
730 rcu_read_lock();
731 for (s = 0; s < conf->copies; s++) {
e0ee7785 732 int disk = r10_bio->devs[s].devnum;
050b6615
N
733 struct md_rdev *rdev = rcu_dereference(
734 conf->mirrors[disk].rdev);
735 if (rdev && !test_bit(Faulty, &rdev->flags)) {
736 struct request_queue *q =
737 bdev_get_queue(rdev->bdev);
738 if (q->merge_bvec_fn) {
e0ee7785 739 bvm->bi_sector = r10_bio->devs[s].addr
050b6615
N
740 + rdev->data_offset;
741 bvm->bi_bdev = rdev->bdev;
742 max = min(max, q->merge_bvec_fn(
743 q, bvm, biovec));
744 }
745 }
746 rdev = rcu_dereference(conf->mirrors[disk].replacement);
747 if (rdev && !test_bit(Faulty, &rdev->flags)) {
748 struct request_queue *q =
749 bdev_get_queue(rdev->bdev);
750 if (q->merge_bvec_fn) {
e0ee7785 751 bvm->bi_sector = r10_bio->devs[s].addr
050b6615
N
752 + rdev->data_offset;
753 bvm->bi_bdev = rdev->bdev;
754 max = min(max, q->merge_bvec_fn(
755 q, bvm, biovec));
756 }
757 }
758 }
759 rcu_read_unlock();
760 }
761 return max;
1da177e4
LT
762}
763
764/*
765 * This routine returns the disk from which the requested read should
766 * be done. There is a per-array 'next expected sequential IO' sector
767 * number - if this matches on the next IO then we use the last disk.
768 * There is also a per-disk 'last know head position' sector that is
769 * maintained from IRQ contexts, both the normal and the resync IO
770 * completion handlers update this position correctly. If there is no
771 * perfect sequential match then we pick the disk whose head is closest.
772 *
773 * If there are 2 mirrors in the same 2 devices, performance degrades
774 * because position is mirror, not device based.
775 *
776 * The rdev for the device selected will have nr_pending incremented.
777 */
778
779/*
780 * FIXME: possibly should rethink readbalancing and do it differently
781 * depending on near_copies / far_copies geometry.
782 */
96c3fd1f
N
783static struct md_rdev *read_balance(struct r10conf *conf,
784 struct r10bio *r10_bio,
785 int *max_sectors)
1da177e4 786{
af3a2cd6 787 const sector_t this_sector = r10_bio->sector;
56d99121 788 int disk, slot;
856e08e2
N
789 int sectors = r10_bio->sectors;
790 int best_good_sectors;
56d99121 791 sector_t new_distance, best_dist;
3bbae04b 792 struct md_rdev *best_rdev, *rdev = NULL;
56d99121
N
793 int do_balance;
794 int best_slot;
5cf00fcd 795 struct geom *geo = &conf->geo;
1da177e4
LT
796
797 raid10_find_phys(conf, r10_bio);
798 rcu_read_lock();
56d99121 799retry:
856e08e2 800 sectors = r10_bio->sectors;
56d99121 801 best_slot = -1;
abbf098e 802 best_rdev = NULL;
56d99121 803 best_dist = MaxSector;
856e08e2 804 best_good_sectors = 0;
56d99121 805 do_balance = 1;
1da177e4
LT
806 /*
807 * Check if we can balance. We can balance on the whole
6cce3b23
N
808 * device if no resync is going on (recovery is ok), or below
809 * the resync window. We take the first readable disk when
810 * above the resync window.
1da177e4
LT
811 */
812 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
813 && (this_sector + sectors >= conf->next_resync))
814 do_balance = 0;
1da177e4 815
56d99121 816 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
817 sector_t first_bad;
818 int bad_sectors;
819 sector_t dev_sector;
820
56d99121
N
821 if (r10_bio->devs[slot].bio == IO_BLOCKED)
822 continue;
1da177e4 823 disk = r10_bio->devs[slot].devnum;
abbf098e
N
824 rdev = rcu_dereference(conf->mirrors[disk].replacement);
825 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
050b6615 826 test_bit(Unmerged, &rdev->flags) ||
abbf098e
N
827 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
828 rdev = rcu_dereference(conf->mirrors[disk].rdev);
050b6615
N
829 if (rdev == NULL ||
830 test_bit(Faulty, &rdev->flags) ||
831 test_bit(Unmerged, &rdev->flags))
abbf098e
N
832 continue;
833 if (!test_bit(In_sync, &rdev->flags) &&
834 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
835 continue;
836
856e08e2
N
837 dev_sector = r10_bio->devs[slot].addr;
838 if (is_badblock(rdev, dev_sector, sectors,
839 &first_bad, &bad_sectors)) {
840 if (best_dist < MaxSector)
841 /* Already have a better slot */
842 continue;
843 if (first_bad <= dev_sector) {
844 /* Cannot read here. If this is the
845 * 'primary' device, then we must not read
846 * beyond 'bad_sectors' from another device.
847 */
848 bad_sectors -= (dev_sector - first_bad);
849 if (!do_balance && sectors > bad_sectors)
850 sectors = bad_sectors;
851 if (best_good_sectors > sectors)
852 best_good_sectors = sectors;
853 } else {
854 sector_t good_sectors =
855 first_bad - dev_sector;
856 if (good_sectors > best_good_sectors) {
857 best_good_sectors = good_sectors;
858 best_slot = slot;
abbf098e 859 best_rdev = rdev;
856e08e2
N
860 }
861 if (!do_balance)
862 /* Must read from here */
863 break;
864 }
865 continue;
866 } else
867 best_good_sectors = sectors;
868
56d99121
N
869 if (!do_balance)
870 break;
1da177e4 871
22dfdf52
N
872 /* This optimisation is debatable, and completely destroys
873 * sequential read speed for 'far copies' arrays. So only
874 * keep it for 'near' arrays, and review those later.
875 */
5cf00fcd 876 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
1da177e4 877 break;
8ed3a195
KS
878
879 /* for far > 1 always use the lowest address */
5cf00fcd 880 if (geo->far_copies > 1)
56d99121 881 new_distance = r10_bio->devs[slot].addr;
8ed3a195 882 else
56d99121
N
883 new_distance = abs(r10_bio->devs[slot].addr -
884 conf->mirrors[disk].head_position);
885 if (new_distance < best_dist) {
886 best_dist = new_distance;
887 best_slot = slot;
abbf098e 888 best_rdev = rdev;
1da177e4
LT
889 }
890 }
abbf098e 891 if (slot >= conf->copies) {
56d99121 892 slot = best_slot;
abbf098e
N
893 rdev = best_rdev;
894 }
1da177e4 895
56d99121 896 if (slot >= 0) {
56d99121
N
897 atomic_inc(&rdev->nr_pending);
898 if (test_bit(Faulty, &rdev->flags)) {
899 /* Cannot risk returning a device that failed
900 * before we inc'ed nr_pending
901 */
902 rdev_dec_pending(rdev, conf->mddev);
903 goto retry;
904 }
905 r10_bio->read_slot = slot;
906 } else
96c3fd1f 907 rdev = NULL;
1da177e4 908 rcu_read_unlock();
856e08e2 909 *max_sectors = best_good_sectors;
1da177e4 910
96c3fd1f 911 return rdev;
1da177e4
LT
912}
913
cc4d1efd 914int md_raid10_congested(struct mddev *mddev, int bits)
0d129228 915{
e879a879 916 struct r10conf *conf = mddev->private;
0d129228
N
917 int i, ret = 0;
918
34db0cd6
N
919 if ((bits & (1 << BDI_async_congested)) &&
920 conf->pending_count >= max_queued_requests)
921 return 1;
922
0d129228 923 rcu_read_lock();
f8c9e74f
N
924 for (i = 0;
925 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
926 && ret == 0;
927 i++) {
3cb03002 928 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 929 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 930 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
931
932 ret |= bdi_congested(&q->backing_dev_info, bits);
933 }
934 }
935 rcu_read_unlock();
936 return ret;
937}
cc4d1efd
JB
938EXPORT_SYMBOL_GPL(md_raid10_congested);
939
940static int raid10_congested(void *data, int bits)
941{
942 struct mddev *mddev = data;
943
944 return mddev_congested(mddev, bits) ||
945 md_raid10_congested(mddev, bits);
946}
0d129228 947
e879a879 948static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
949{
950 /* Any writes that have been queued but are awaiting
951 * bitmap updates get flushed here.
a35e63ef 952 */
a35e63ef
N
953 spin_lock_irq(&conf->device_lock);
954
955 if (conf->pending_bio_list.head) {
956 struct bio *bio;
957 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 958 conf->pending_count = 0;
a35e63ef
N
959 spin_unlock_irq(&conf->device_lock);
960 /* flush any pending bitmap writes to disk
961 * before proceeding w/ I/O */
962 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 963 wake_up(&conf->wait_barrier);
a35e63ef
N
964
965 while (bio) { /* submit pending writes */
966 struct bio *next = bio->bi_next;
967 bio->bi_next = NULL;
532a2a3f
SL
968 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
969 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
970 /* Just ignore it */
971 bio_endio(bio, 0);
972 else
973 generic_make_request(bio);
a35e63ef
N
974 bio = next;
975 }
a35e63ef
N
976 } else
977 spin_unlock_irq(&conf->device_lock);
a35e63ef 978}
7eaceacc 979
0a27ec96
N
980/* Barriers....
981 * Sometimes we need to suspend IO while we do something else,
982 * either some resync/recovery, or reconfigure the array.
983 * To do this we raise a 'barrier'.
984 * The 'barrier' is a counter that can be raised multiple times
985 * to count how many activities are happening which preclude
986 * normal IO.
987 * We can only raise the barrier if there is no pending IO.
988 * i.e. if nr_pending == 0.
989 * We choose only to raise the barrier if no-one is waiting for the
990 * barrier to go down. This means that as soon as an IO request
991 * is ready, no other operations which require a barrier will start
992 * until the IO request has had a chance.
993 *
994 * So: regular IO calls 'wait_barrier'. When that returns there
995 * is no backgroup IO happening, It must arrange to call
996 * allow_barrier when it has finished its IO.
997 * backgroup IO calls must call raise_barrier. Once that returns
998 * there is no normal IO happeing. It must arrange to call
999 * lower_barrier when the particular background IO completes.
1da177e4 1000 */
1da177e4 1001
e879a879 1002static void raise_barrier(struct r10conf *conf, int force)
1da177e4 1003{
6cce3b23 1004 BUG_ON(force && !conf->barrier);
1da177e4 1005 spin_lock_irq(&conf->resync_lock);
0a27ec96 1006
6cce3b23
N
1007 /* Wait until no block IO is waiting (unless 'force') */
1008 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
eed8c02e 1009 conf->resync_lock);
0a27ec96
N
1010
1011 /* block any new IO from starting */
1012 conf->barrier++;
1013
c3b328ac 1014 /* Now wait for all pending IO to complete */
0a27ec96
N
1015 wait_event_lock_irq(conf->wait_barrier,
1016 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
eed8c02e 1017 conf->resync_lock);
0a27ec96
N
1018
1019 spin_unlock_irq(&conf->resync_lock);
1020}
1021
e879a879 1022static void lower_barrier(struct r10conf *conf)
0a27ec96
N
1023{
1024 unsigned long flags;
1025 spin_lock_irqsave(&conf->resync_lock, flags);
1026 conf->barrier--;
1027 spin_unlock_irqrestore(&conf->resync_lock, flags);
1028 wake_up(&conf->wait_barrier);
1029}
1030
e879a879 1031static void wait_barrier(struct r10conf *conf)
0a27ec96
N
1032{
1033 spin_lock_irq(&conf->resync_lock);
1034 if (conf->barrier) {
1035 conf->nr_waiting++;
d6b42dcb
N
1036 /* Wait for the barrier to drop.
1037 * However if there are already pending
1038 * requests (preventing the barrier from
1039 * rising completely), and the
1040 * pre-process bio queue isn't empty,
1041 * then don't wait, as we need to empty
1042 * that queue to get the nr_pending
1043 * count down.
1044 */
1045 wait_event_lock_irq(conf->wait_barrier,
1046 !conf->barrier ||
1047 (conf->nr_pending &&
1048 current->bio_list &&
1049 !bio_list_empty(current->bio_list)),
eed8c02e 1050 conf->resync_lock);
0a27ec96 1051 conf->nr_waiting--;
1da177e4 1052 }
0a27ec96 1053 conf->nr_pending++;
1da177e4
LT
1054 spin_unlock_irq(&conf->resync_lock);
1055}
1056
e879a879 1057static void allow_barrier(struct r10conf *conf)
0a27ec96
N
1058{
1059 unsigned long flags;
1060 spin_lock_irqsave(&conf->resync_lock, flags);
1061 conf->nr_pending--;
1062 spin_unlock_irqrestore(&conf->resync_lock, flags);
1063 wake_up(&conf->wait_barrier);
1064}
1065
e2d59925 1066static void freeze_array(struct r10conf *conf, int extra)
4443ae10
N
1067{
1068 /* stop syncio and normal IO and wait for everything to
f188593e 1069 * go quiet.
4443ae10 1070 * We increment barrier and nr_waiting, and then
e2d59925 1071 * wait until nr_pending match nr_queued+extra
1c830532
N
1072 * This is called in the context of one normal IO request
1073 * that has failed. Thus any sync request that might be pending
1074 * will be blocked by nr_pending, and we need to wait for
1075 * pending IO requests to complete or be queued for re-try.
e2d59925 1076 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
1077 * must match the number of pending IOs (nr_pending) before
1078 * we continue.
4443ae10
N
1079 */
1080 spin_lock_irq(&conf->resync_lock);
1081 conf->barrier++;
1082 conf->nr_waiting++;
eed8c02e 1083 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 1084 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
1085 conf->resync_lock,
1086 flush_pending_writes(conf));
c3b328ac 1087
4443ae10
N
1088 spin_unlock_irq(&conf->resync_lock);
1089}
1090
e879a879 1091static void unfreeze_array(struct r10conf *conf)
4443ae10
N
1092{
1093 /* reverse the effect of the freeze */
1094 spin_lock_irq(&conf->resync_lock);
1095 conf->barrier--;
1096 conf->nr_waiting--;
1097 wake_up(&conf->wait_barrier);
1098 spin_unlock_irq(&conf->resync_lock);
1099}
1100
f8c9e74f
N
1101static sector_t choose_data_offset(struct r10bio *r10_bio,
1102 struct md_rdev *rdev)
1103{
1104 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1105 test_bit(R10BIO_Previous, &r10_bio->state))
1106 return rdev->data_offset;
1107 else
1108 return rdev->new_data_offset;
1109}
1110
57c67df4
N
1111struct raid10_plug_cb {
1112 struct blk_plug_cb cb;
1113 struct bio_list pending;
1114 int pending_cnt;
1115};
1116
1117static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1118{
1119 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1120 cb);
1121 struct mddev *mddev = plug->cb.data;
1122 struct r10conf *conf = mddev->private;
1123 struct bio *bio;
1124
874807a8 1125 if (from_schedule || current->bio_list) {
57c67df4
N
1126 spin_lock_irq(&conf->device_lock);
1127 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1128 conf->pending_count += plug->pending_cnt;
1129 spin_unlock_irq(&conf->device_lock);
ee0b0244 1130 wake_up(&conf->wait_barrier);
57c67df4
N
1131 md_wakeup_thread(mddev->thread);
1132 kfree(plug);
1133 return;
1134 }
1135
1136 /* we aren't scheduling, so we can do the write-out directly. */
1137 bio = bio_list_get(&plug->pending);
1138 bitmap_unplug(mddev->bitmap);
1139 wake_up(&conf->wait_barrier);
1140
1141 while (bio) { /* submit pending writes */
1142 struct bio *next = bio->bi_next;
1143 bio->bi_next = NULL;
32f9f570
SL
1144 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1145 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146 /* Just ignore it */
1147 bio_endio(bio, 0);
1148 else
1149 generic_make_request(bio);
57c67df4
N
1150 bio = next;
1151 }
1152 kfree(plug);
1153}
1154
b4fdcb02 1155static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1156{
e879a879 1157 struct r10conf *conf = mddev->private;
9f2c9d12 1158 struct r10bio *r10_bio;
1da177e4
LT
1159 struct bio *read_bio;
1160 int i;
f8c9e74f 1161 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
5cf00fcd 1162 int chunk_sects = chunk_mask + 1;
a362357b 1163 const int rw = bio_data_dir(bio);
2c7d46ec 1164 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1165 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
532a2a3f
SL
1166 const unsigned long do_discard = (bio->bi_rw
1167 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1168 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
6cce3b23 1169 unsigned long flags;
3cb03002 1170 struct md_rdev *blocked_rdev;
57c67df4
N
1171 struct blk_plug_cb *cb;
1172 struct raid10_plug_cb *plug = NULL;
d4432c23
N
1173 int sectors_handled;
1174 int max_sectors;
3ea7daa5 1175 int sectors;
1da177e4 1176
e9c7469b
TH
1177 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1178 md_flush_request(mddev, bio);
5a7bbad2 1179 return;
e5dcdd80
N
1180 }
1181
1da177e4
LT
1182 /* If this request crosses a chunk boundary, we need to
1183 * split it. This will only happen for 1 PAGE (or less) requests.
1184 */
aa8b57aa 1185 if (unlikely((bio->bi_sector & chunk_mask) + bio_sectors(bio)
5cf00fcd 1186 > chunk_sects
f8c9e74f
N
1187 && (conf->geo.near_copies < conf->geo.raid_disks
1188 || conf->prev.near_copies < conf->prev.raid_disks))) {
1da177e4
LT
1189 struct bio_pair *bp;
1190 /* Sanity check -- queue functions should prevent this happening */
5b83636a 1191 if (bio_segments(bio) > 1)
1da177e4
LT
1192 goto bad_map;
1193 /* This is a one page bio that upper layers
1194 * refuse to split for us, so we need to split it.
1195 */
6feef531 1196 bp = bio_split(bio,
1da177e4 1197 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
51e9ac77
N
1198
1199 /* Each of these 'make_request' calls will call 'wait_barrier'.
1200 * If the first succeeds but the second blocks due to the resync
1201 * thread raising the barrier, we will deadlock because the
1202 * IO to the underlying device will be queued in generic_make_request
1203 * and will never complete, so will never reduce nr_pending.
1204 * So increment nr_waiting here so no new raise_barriers will
1205 * succeed, and so the second wait_barrier cannot block.
1206 */
1207 spin_lock_irq(&conf->resync_lock);
1208 conf->nr_waiting++;
1209 spin_unlock_irq(&conf->resync_lock);
1210
5a7bbad2
CH
1211 make_request(mddev, &bp->bio1);
1212 make_request(mddev, &bp->bio2);
1da177e4 1213
51e9ac77
N
1214 spin_lock_irq(&conf->resync_lock);
1215 conf->nr_waiting--;
1216 wake_up(&conf->wait_barrier);
1217 spin_unlock_irq(&conf->resync_lock);
1218
1da177e4 1219 bio_pair_release(bp);
5a7bbad2 1220 return;
1da177e4 1221 bad_map:
128595ed
N
1222 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1223 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
aa8b57aa 1224 (unsigned long long)bio->bi_sector, bio_sectors(bio) / 2);
1da177e4 1225
6712ecf8 1226 bio_io_error(bio);
5a7bbad2 1227 return;
1da177e4
LT
1228 }
1229
3d310eb7 1230 md_write_start(mddev, bio);
06d91a5f 1231
1da177e4
LT
1232 /*
1233 * Register the new request and wait if the reconstruction
1234 * thread has put up a bar for new requests.
1235 * Continue immediately if no resync is active currently.
1236 */
0a27ec96 1237 wait_barrier(conf);
1da177e4 1238
aa8b57aa 1239 sectors = bio_sectors(bio);
3ea7daa5
N
1240 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1241 bio->bi_sector < conf->reshape_progress &&
1242 bio->bi_sector + sectors > conf->reshape_progress) {
1243 /* IO spans the reshape position. Need to wait for
1244 * reshape to pass
1245 */
1246 allow_barrier(conf);
1247 wait_event(conf->wait_barrier,
1248 conf->reshape_progress <= bio->bi_sector ||
1249 conf->reshape_progress >= bio->bi_sector + sectors);
1250 wait_barrier(conf);
1251 }
1252 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1253 bio_data_dir(bio) == WRITE &&
1254 (mddev->reshape_backwards
1255 ? (bio->bi_sector < conf->reshape_safe &&
1256 bio->bi_sector + sectors > conf->reshape_progress)
1257 : (bio->bi_sector + sectors > conf->reshape_safe &&
1258 bio->bi_sector < conf->reshape_progress))) {
1259 /* Need to update reshape_position in metadata */
1260 mddev->reshape_position = conf->reshape_progress;
1261 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1262 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1263 md_wakeup_thread(mddev->thread);
1264 wait_event(mddev->sb_wait,
1265 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1266
1267 conf->reshape_safe = mddev->reshape_position;
1268 }
1269
1da177e4
LT
1270 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1271
1272 r10_bio->master_bio = bio;
3ea7daa5 1273 r10_bio->sectors = sectors;
1da177e4
LT
1274
1275 r10_bio->mddev = mddev;
1276 r10_bio->sector = bio->bi_sector;
6cce3b23 1277 r10_bio->state = 0;
1da177e4 1278
856e08e2
N
1279 /* We might need to issue multiple reads to different
1280 * devices if there are bad blocks around, so we keep
1281 * track of the number of reads in bio->bi_phys_segments.
1282 * If this is 0, there is only one r10_bio and no locking
1283 * will be needed when the request completes. If it is
1284 * non-zero, then it is the number of not-completed requests.
1285 */
1286 bio->bi_phys_segments = 0;
1287 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1288
a362357b 1289 if (rw == READ) {
1da177e4
LT
1290 /*
1291 * read balancing logic:
1292 */
96c3fd1f 1293 struct md_rdev *rdev;
856e08e2
N
1294 int slot;
1295
1296read_again:
96c3fd1f
N
1297 rdev = read_balance(conf, r10_bio, &max_sectors);
1298 if (!rdev) {
1da177e4 1299 raid_end_bio_io(r10_bio);
5a7bbad2 1300 return;
1da177e4 1301 }
96c3fd1f 1302 slot = r10_bio->read_slot;
1da177e4 1303
a167f663 1304 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
856e08e2
N
1305 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1306 max_sectors);
1da177e4
LT
1307
1308 r10_bio->devs[slot].bio = read_bio;
abbf098e 1309 r10_bio->devs[slot].rdev = rdev;
1da177e4
LT
1310
1311 read_bio->bi_sector = r10_bio->devs[slot].addr +
f8c9e74f 1312 choose_data_offset(r10_bio, rdev);
96c3fd1f 1313 read_bio->bi_bdev = rdev->bdev;
1da177e4 1314 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 1315 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1316 read_bio->bi_private = r10_bio;
1317
856e08e2
N
1318 if (max_sectors < r10_bio->sectors) {
1319 /* Could not read all from this device, so we will
1320 * need another r10_bio.
1321 */
856e08e2
N
1322 sectors_handled = (r10_bio->sectors + max_sectors
1323 - bio->bi_sector);
1324 r10_bio->sectors = max_sectors;
1325 spin_lock_irq(&conf->device_lock);
1326 if (bio->bi_phys_segments == 0)
1327 bio->bi_phys_segments = 2;
1328 else
1329 bio->bi_phys_segments++;
1330 spin_unlock(&conf->device_lock);
1331 /* Cannot call generic_make_request directly
1332 * as that will be queued in __generic_make_request
1333 * and subsequent mempool_alloc might block
1334 * waiting for it. so hand bio over to raid10d.
1335 */
1336 reschedule_retry(r10_bio);
1337
1338 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1339
1340 r10_bio->master_bio = bio;
aa8b57aa 1341 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
856e08e2
N
1342 r10_bio->state = 0;
1343 r10_bio->mddev = mddev;
1344 r10_bio->sector = bio->bi_sector + sectors_handled;
1345 goto read_again;
1346 } else
1347 generic_make_request(read_bio);
5a7bbad2 1348 return;
1da177e4
LT
1349 }
1350
1351 /*
1352 * WRITE:
1353 */
34db0cd6
N
1354 if (conf->pending_count >= max_queued_requests) {
1355 md_wakeup_thread(mddev->thread);
1356 wait_event(conf->wait_barrier,
1357 conf->pending_count < max_queued_requests);
1358 }
6bfe0b49 1359 /* first select target devices under rcu_lock and
1da177e4
LT
1360 * inc refcount on their rdev. Record them by setting
1361 * bios[x] to bio
d4432c23
N
1362 * If there are known/acknowledged bad blocks on any device
1363 * on which we have seen a write error, we want to avoid
1364 * writing to those blocks. This potentially requires several
1365 * writes to write around the bad blocks. Each set of writes
1366 * gets its own r10_bio with a set of bios attached. The number
1367 * of r10_bios is recored in bio->bi_phys_segments just as with
1368 * the read case.
1da177e4 1369 */
c3b328ac 1370
69335ef3 1371 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1372 raid10_find_phys(conf, r10_bio);
d4432c23 1373retry_write:
cb6969e8 1374 blocked_rdev = NULL;
1da177e4 1375 rcu_read_lock();
d4432c23
N
1376 max_sectors = r10_bio->sectors;
1377
1da177e4
LT
1378 for (i = 0; i < conf->copies; i++) {
1379 int d = r10_bio->devs[i].devnum;
3cb03002 1380 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1381 struct md_rdev *rrdev = rcu_dereference(
1382 conf->mirrors[d].replacement);
4ca40c2c
N
1383 if (rdev == rrdev)
1384 rrdev = NULL;
6bfe0b49
DW
1385 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1386 atomic_inc(&rdev->nr_pending);
1387 blocked_rdev = rdev;
1388 break;
1389 }
475b0321
N
1390 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1391 atomic_inc(&rrdev->nr_pending);
1392 blocked_rdev = rrdev;
1393 break;
1394 }
e7c0c3fa
N
1395 if (rdev && (test_bit(Faulty, &rdev->flags)
1396 || test_bit(Unmerged, &rdev->flags)))
1397 rdev = NULL;
050b6615
N
1398 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1399 || test_bit(Unmerged, &rrdev->flags)))
475b0321
N
1400 rrdev = NULL;
1401
d4432c23 1402 r10_bio->devs[i].bio = NULL;
475b0321 1403 r10_bio->devs[i].repl_bio = NULL;
e7c0c3fa
N
1404
1405 if (!rdev && !rrdev) {
6cce3b23 1406 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1407 continue;
1408 }
e7c0c3fa 1409 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
d4432c23
N
1410 sector_t first_bad;
1411 sector_t dev_sector = r10_bio->devs[i].addr;
1412 int bad_sectors;
1413 int is_bad;
1414
1415 is_bad = is_badblock(rdev, dev_sector,
1416 max_sectors,
1417 &first_bad, &bad_sectors);
1418 if (is_bad < 0) {
1419 /* Mustn't write here until the bad block
1420 * is acknowledged
1421 */
1422 atomic_inc(&rdev->nr_pending);
1423 set_bit(BlockedBadBlocks, &rdev->flags);
1424 blocked_rdev = rdev;
1425 break;
1426 }
1427 if (is_bad && first_bad <= dev_sector) {
1428 /* Cannot write here at all */
1429 bad_sectors -= (dev_sector - first_bad);
1430 if (bad_sectors < max_sectors)
1431 /* Mustn't write more than bad_sectors
1432 * to other devices yet
1433 */
1434 max_sectors = bad_sectors;
1435 /* We don't set R10BIO_Degraded as that
1436 * only applies if the disk is missing,
1437 * so it might be re-added, and we want to
1438 * know to recover this chunk.
1439 * In this case the device is here, and the
1440 * fact that this chunk is not in-sync is
1441 * recorded in the bad block log.
1442 */
1443 continue;
1444 }
1445 if (is_bad) {
1446 int good_sectors = first_bad - dev_sector;
1447 if (good_sectors < max_sectors)
1448 max_sectors = good_sectors;
1449 }
6cce3b23 1450 }
e7c0c3fa
N
1451 if (rdev) {
1452 r10_bio->devs[i].bio = bio;
1453 atomic_inc(&rdev->nr_pending);
1454 }
475b0321
N
1455 if (rrdev) {
1456 r10_bio->devs[i].repl_bio = bio;
1457 atomic_inc(&rrdev->nr_pending);
1458 }
1da177e4
LT
1459 }
1460 rcu_read_unlock();
1461
6bfe0b49
DW
1462 if (unlikely(blocked_rdev)) {
1463 /* Have to wait for this device to get unblocked, then retry */
1464 int j;
1465 int d;
1466
475b0321 1467 for (j = 0; j < i; j++) {
6bfe0b49
DW
1468 if (r10_bio->devs[j].bio) {
1469 d = r10_bio->devs[j].devnum;
1470 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1471 }
475b0321 1472 if (r10_bio->devs[j].repl_bio) {
4ca40c2c 1473 struct md_rdev *rdev;
475b0321 1474 d = r10_bio->devs[j].devnum;
4ca40c2c
N
1475 rdev = conf->mirrors[d].replacement;
1476 if (!rdev) {
1477 /* Race with remove_disk */
1478 smp_mb();
1479 rdev = conf->mirrors[d].rdev;
1480 }
1481 rdev_dec_pending(rdev, mddev);
475b0321
N
1482 }
1483 }
6bfe0b49
DW
1484 allow_barrier(conf);
1485 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1486 wait_barrier(conf);
1487 goto retry_write;
1488 }
1489
d4432c23
N
1490 if (max_sectors < r10_bio->sectors) {
1491 /* We are splitting this into multiple parts, so
1492 * we need to prepare for allocating another r10_bio.
1493 */
1494 r10_bio->sectors = max_sectors;
1495 spin_lock_irq(&conf->device_lock);
1496 if (bio->bi_phys_segments == 0)
1497 bio->bi_phys_segments = 2;
1498 else
1499 bio->bi_phys_segments++;
1500 spin_unlock_irq(&conf->device_lock);
1501 }
1502 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1503
4e78064f 1504 atomic_set(&r10_bio->remaining, 1);
d4432c23 1505 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1506
1da177e4
LT
1507 for (i = 0; i < conf->copies; i++) {
1508 struct bio *mbio;
1509 int d = r10_bio->devs[i].devnum;
e7c0c3fa
N
1510 if (r10_bio->devs[i].bio) {
1511 struct md_rdev *rdev = conf->mirrors[d].rdev;
1512 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1513 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1514 max_sectors);
1515 r10_bio->devs[i].bio = mbio;
1516
1517 mbio->bi_sector = (r10_bio->devs[i].addr+
1518 choose_data_offset(r10_bio,
1519 rdev));
1520 mbio->bi_bdev = rdev->bdev;
1521 mbio->bi_end_io = raid10_end_write_request;
c8dc9c65
JL
1522 mbio->bi_rw =
1523 WRITE | do_sync | do_fua | do_discard | do_same;
e7c0c3fa
N
1524 mbio->bi_private = r10_bio;
1525
1526 atomic_inc(&r10_bio->remaining);
1527
1528 cb = blk_check_plugged(raid10_unplug, mddev,
1529 sizeof(*plug));
1530 if (cb)
1531 plug = container_of(cb, struct raid10_plug_cb,
1532 cb);
1533 else
1534 plug = NULL;
1535 spin_lock_irqsave(&conf->device_lock, flags);
1536 if (plug) {
1537 bio_list_add(&plug->pending, mbio);
1538 plug->pending_cnt++;
1539 } else {
1540 bio_list_add(&conf->pending_bio_list, mbio);
1541 conf->pending_count++;
1542 }
1543 spin_unlock_irqrestore(&conf->device_lock, flags);
1544 if (!plug)
1545 md_wakeup_thread(mddev->thread);
1546 }
57c67df4 1547
e7c0c3fa
N
1548 if (r10_bio->devs[i].repl_bio) {
1549 struct md_rdev *rdev = conf->mirrors[d].replacement;
1550 if (rdev == NULL) {
1551 /* Replacement just got moved to main 'rdev' */
1552 smp_mb();
1553 rdev = conf->mirrors[d].rdev;
1554 }
1555 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1556 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1557 max_sectors);
1558 r10_bio->devs[i].repl_bio = mbio;
1559
1560 mbio->bi_sector = (r10_bio->devs[i].addr +
1561 choose_data_offset(
1562 r10_bio, rdev));
1563 mbio->bi_bdev = rdev->bdev;
1564 mbio->bi_end_io = raid10_end_write_request;
c8dc9c65
JL
1565 mbio->bi_rw =
1566 WRITE | do_sync | do_fua | do_discard | do_same;
e7c0c3fa
N
1567 mbio->bi_private = r10_bio;
1568
1569 atomic_inc(&r10_bio->remaining);
1570 spin_lock_irqsave(&conf->device_lock, flags);
57c67df4
N
1571 bio_list_add(&conf->pending_bio_list, mbio);
1572 conf->pending_count++;
e7c0c3fa
N
1573 spin_unlock_irqrestore(&conf->device_lock, flags);
1574 if (!mddev_check_plugged(mddev))
1575 md_wakeup_thread(mddev->thread);
57c67df4 1576 }
1da177e4
LT
1577 }
1578
079fa166
N
1579 /* Don't remove the bias on 'remaining' (one_write_done) until
1580 * after checking if we need to go around again.
1581 */
a35e63ef 1582
aa8b57aa 1583 if (sectors_handled < bio_sectors(bio)) {
079fa166 1584 one_write_done(r10_bio);
5e570289 1585 /* We need another r10_bio. It has already been counted
d4432c23
N
1586 * in bio->bi_phys_segments.
1587 */
1588 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1589
1590 r10_bio->master_bio = bio;
aa8b57aa 1591 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
d4432c23
N
1592
1593 r10_bio->mddev = mddev;
1594 r10_bio->sector = bio->bi_sector + sectors_handled;
1595 r10_bio->state = 0;
1596 goto retry_write;
1597 }
079fa166
N
1598 one_write_done(r10_bio);
1599
1600 /* In case raid10d snuck in to freeze_array */
1601 wake_up(&conf->wait_barrier);
1da177e4
LT
1602}
1603
fd01b88c 1604static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1605{
e879a879 1606 struct r10conf *conf = mddev->private;
1da177e4
LT
1607 int i;
1608
5cf00fcd 1609 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1610 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1611 if (conf->geo.near_copies > 1)
1612 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1613 if (conf->geo.far_copies > 1) {
1614 if (conf->geo.far_offset)
1615 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1616 else
5cf00fcd 1617 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
c93983bf 1618 }
5cf00fcd
N
1619 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1620 conf->geo.raid_disks - mddev->degraded);
1621 for (i = 0; i < conf->geo.raid_disks; i++)
1da177e4
LT
1622 seq_printf(seq, "%s",
1623 conf->mirrors[i].rdev &&
b2d444d7 1624 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1625 seq_printf(seq, "]");
1626}
1627
700c7213
N
1628/* check if there are enough drives for
1629 * every block to appear on atleast one.
1630 * Don't consider the device numbered 'ignore'
1631 * as we might be about to remove it.
1632 */
635f6416 1633static int _enough(struct r10conf *conf, int previous, int ignore)
700c7213
N
1634{
1635 int first = 0;
725d6e57 1636 int has_enough = 0;
635f6416
N
1637 int disks, ncopies;
1638 if (previous) {
1639 disks = conf->prev.raid_disks;
1640 ncopies = conf->prev.near_copies;
1641 } else {
1642 disks = conf->geo.raid_disks;
1643 ncopies = conf->geo.near_copies;
1644 }
700c7213 1645
725d6e57 1646 rcu_read_lock();
700c7213
N
1647 do {
1648 int n = conf->copies;
1649 int cnt = 0;
80b48124 1650 int this = first;
700c7213 1651 while (n--) {
725d6e57
N
1652 struct md_rdev *rdev;
1653 if (this != ignore &&
1654 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1655 test_bit(In_sync, &rdev->flags))
700c7213 1656 cnt++;
635f6416 1657 this = (this+1) % disks;
700c7213
N
1658 }
1659 if (cnt == 0)
725d6e57 1660 goto out;
635f6416 1661 first = (first + ncopies) % disks;
700c7213 1662 } while (first != 0);
725d6e57
N
1663 has_enough = 1;
1664out:
1665 rcu_read_unlock();
1666 return has_enough;
700c7213
N
1667}
1668
f8c9e74f
N
1669static int enough(struct r10conf *conf, int ignore)
1670{
635f6416
N
1671 /* when calling 'enough', both 'prev' and 'geo' must
1672 * be stable.
1673 * This is ensured if ->reconfig_mutex or ->device_lock
1674 * is held.
1675 */
1676 return _enough(conf, 0, ignore) &&
1677 _enough(conf, 1, ignore);
f8c9e74f
N
1678}
1679
fd01b88c 1680static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1681{
1682 char b[BDEVNAME_SIZE];
e879a879 1683 struct r10conf *conf = mddev->private;
635f6416 1684 unsigned long flags;
1da177e4
LT
1685
1686 /*
1687 * If it is not operational, then we have already marked it as dead
1688 * else if it is the last working disks, ignore the error, let the
1689 * next level up know.
1690 * else mark the drive as failed
1691 */
635f6416 1692 spin_lock_irqsave(&conf->device_lock, flags);
b2d444d7 1693 if (test_bit(In_sync, &rdev->flags)
635f6416 1694 && !enough(conf, rdev->raid_disk)) {
1da177e4
LT
1695 /*
1696 * Don't fail the drive, just return an IO error.
1da177e4 1697 */
635f6416 1698 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1699 return;
635f6416 1700 }
c04be0aa 1701 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1da177e4 1702 mddev->degraded++;
635f6416 1703 /*
1da177e4
LT
1704 * if recovery is running, make sure it aborts.
1705 */
dfc70645 1706 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1707 }
de393cde 1708 set_bit(Blocked, &rdev->flags);
b2d444d7 1709 set_bit(Faulty, &rdev->flags);
850b2b42 1710 set_bit(MD_CHANGE_DEVS, &mddev->flags);
635f6416 1711 spin_unlock_irqrestore(&conf->device_lock, flags);
067032bc
JP
1712 printk(KERN_ALERT
1713 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1714 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed 1715 mdname(mddev), bdevname(rdev->bdev, b),
5cf00fcd 1716 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
1717}
1718
e879a879 1719static void print_conf(struct r10conf *conf)
1da177e4
LT
1720{
1721 int i;
dc280d98 1722 struct raid10_info *tmp;
1da177e4 1723
128595ed 1724 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1725 if (!conf) {
128595ed 1726 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1727 return;
1728 }
5cf00fcd
N
1729 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1730 conf->geo.raid_disks);
1da177e4 1731
5cf00fcd 1732 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4
LT
1733 char b[BDEVNAME_SIZE];
1734 tmp = conf->mirrors + i;
1735 if (tmp->rdev)
128595ed 1736 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1737 i, !test_bit(In_sync, &tmp->rdev->flags),
1738 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1739 bdevname(tmp->rdev->bdev,b));
1740 }
1741}
1742
e879a879 1743static void close_sync(struct r10conf *conf)
1da177e4 1744{
0a27ec96
N
1745 wait_barrier(conf);
1746 allow_barrier(conf);
1da177e4
LT
1747
1748 mempool_destroy(conf->r10buf_pool);
1749 conf->r10buf_pool = NULL;
1750}
1751
fd01b88c 1752static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1753{
1754 int i;
e879a879 1755 struct r10conf *conf = mddev->private;
dc280d98 1756 struct raid10_info *tmp;
6b965620
N
1757 int count = 0;
1758 unsigned long flags;
1da177e4
LT
1759
1760 /*
1761 * Find all non-in_sync disks within the RAID10 configuration
1762 * and mark them in_sync
1763 */
5cf00fcd 1764 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1765 tmp = conf->mirrors + i;
4ca40c2c
N
1766 if (tmp->replacement
1767 && tmp->replacement->recovery_offset == MaxSector
1768 && !test_bit(Faulty, &tmp->replacement->flags)
1769 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1770 /* Replacement has just become active */
1771 if (!tmp->rdev
1772 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1773 count++;
1774 if (tmp->rdev) {
1775 /* Replaced device not technically faulty,
1776 * but we need to be sure it gets removed
1777 * and never re-added.
1778 */
1779 set_bit(Faulty, &tmp->rdev->flags);
1780 sysfs_notify_dirent_safe(
1781 tmp->rdev->sysfs_state);
1782 }
1783 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1784 } else if (tmp->rdev
1785 && !test_bit(Faulty, &tmp->rdev->flags)
1786 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1787 count++;
2863b9eb 1788 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
1789 }
1790 }
6b965620
N
1791 spin_lock_irqsave(&conf->device_lock, flags);
1792 mddev->degraded -= count;
1793 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1794
1795 print_conf(conf);
6b965620 1796 return count;
1da177e4
LT
1797}
1798
1799
fd01b88c 1800static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1801{
e879a879 1802 struct r10conf *conf = mddev->private;
199050ea 1803 int err = -EEXIST;
1da177e4 1804 int mirror;
6c2fce2e 1805 int first = 0;
5cf00fcd 1806 int last = conf->geo.raid_disks - 1;
050b6615 1807 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4
LT
1808
1809 if (mddev->recovery_cp < MaxSector)
1810 /* only hot-add to in-sync arrays, as recovery is
1811 * very different from resync
1812 */
199050ea 1813 return -EBUSY;
635f6416 1814 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
199050ea 1815 return -EINVAL;
1da177e4 1816
a53a6c85 1817 if (rdev->raid_disk >= 0)
6c2fce2e 1818 first = last = rdev->raid_disk;
1da177e4 1819
050b6615
N
1820 if (q->merge_bvec_fn) {
1821 set_bit(Unmerged, &rdev->flags);
1822 mddev->merge_check_needed = 1;
1823 }
1824
2c4193df 1825 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1826 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1827 mirror = rdev->saved_raid_disk;
1828 else
6c2fce2e 1829 mirror = first;
2bb77736 1830 for ( ; mirror <= last ; mirror++) {
dc280d98 1831 struct raid10_info *p = &conf->mirrors[mirror];
2bb77736
N
1832 if (p->recovery_disabled == mddev->recovery_disabled)
1833 continue;
b7044d41
N
1834 if (p->rdev) {
1835 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1836 p->replacement != NULL)
1837 continue;
1838 clear_bit(In_sync, &rdev->flags);
1839 set_bit(Replacement, &rdev->flags);
1840 rdev->raid_disk = mirror;
1841 err = 0;
9092c02d
JB
1842 if (mddev->gendisk)
1843 disk_stack_limits(mddev->gendisk, rdev->bdev,
1844 rdev->data_offset << 9);
b7044d41
N
1845 conf->fullsync = 1;
1846 rcu_assign_pointer(p->replacement, rdev);
1847 break;
1848 }
1da177e4 1849
9092c02d
JB
1850 if (mddev->gendisk)
1851 disk_stack_limits(mddev->gendisk, rdev->bdev,
1852 rdev->data_offset << 9);
1da177e4 1853
2bb77736 1854 p->head_position = 0;
d890fa2b 1855 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1856 rdev->raid_disk = mirror;
1857 err = 0;
1858 if (rdev->saved_raid_disk != mirror)
1859 conf->fullsync = 1;
1860 rcu_assign_pointer(p->rdev, rdev);
1861 break;
1862 }
050b6615
N
1863 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1864 /* Some requests might not have seen this new
1865 * merge_bvec_fn. We must wait for them to complete
1866 * before merging the device fully.
1867 * First we make sure any code which has tested
1868 * our function has submitted the request, then
1869 * we wait for all outstanding requests to complete.
1870 */
1871 synchronize_sched();
e2d59925
N
1872 freeze_array(conf, 0);
1873 unfreeze_array(conf);
050b6615
N
1874 clear_bit(Unmerged, &rdev->flags);
1875 }
ac5e7113 1876 md_integrity_add_rdev(rdev, mddev);
ed30be07 1877 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
532a2a3f
SL
1878 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1879
1da177e4 1880 print_conf(conf);
199050ea 1881 return err;
1da177e4
LT
1882}
1883
b8321b68 1884static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1885{
e879a879 1886 struct r10conf *conf = mddev->private;
1da177e4 1887 int err = 0;
b8321b68 1888 int number = rdev->raid_disk;
c8ab903e 1889 struct md_rdev **rdevp;
dc280d98 1890 struct raid10_info *p = conf->mirrors + number;
1da177e4
LT
1891
1892 print_conf(conf);
c8ab903e
N
1893 if (rdev == p->rdev)
1894 rdevp = &p->rdev;
1895 else if (rdev == p->replacement)
1896 rdevp = &p->replacement;
1897 else
1898 return 0;
1899
1900 if (test_bit(In_sync, &rdev->flags) ||
1901 atomic_read(&rdev->nr_pending)) {
1902 err = -EBUSY;
1903 goto abort;
1904 }
1905 /* Only remove faulty devices if recovery
1906 * is not possible.
1907 */
1908 if (!test_bit(Faulty, &rdev->flags) &&
1909 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 1910 (!p->replacement || p->replacement == rdev) &&
63aced61 1911 number < conf->geo.raid_disks &&
c8ab903e
N
1912 enough(conf, -1)) {
1913 err = -EBUSY;
1914 goto abort;
1da177e4 1915 }
c8ab903e
N
1916 *rdevp = NULL;
1917 synchronize_rcu();
1918 if (atomic_read(&rdev->nr_pending)) {
1919 /* lost the race, try later */
1920 err = -EBUSY;
1921 *rdevp = rdev;
1922 goto abort;
4ca40c2c
N
1923 } else if (p->replacement) {
1924 /* We must have just cleared 'rdev' */
1925 p->rdev = p->replacement;
1926 clear_bit(Replacement, &p->replacement->flags);
1927 smp_mb(); /* Make sure other CPUs may see both as identical
1928 * but will never see neither -- if they are careful.
1929 */
1930 p->replacement = NULL;
1931 clear_bit(WantReplacement, &rdev->flags);
1932 } else
1933 /* We might have just remove the Replacement as faulty
1934 * Clear the flag just in case
1935 */
1936 clear_bit(WantReplacement, &rdev->flags);
1937
c8ab903e
N
1938 err = md_integrity_register(mddev);
1939
1da177e4
LT
1940abort:
1941
1942 print_conf(conf);
1943 return err;
1944}
1945
1946
6712ecf8 1947static void end_sync_read(struct bio *bio, int error)
1da177e4 1948{
9f2c9d12 1949 struct r10bio *r10_bio = bio->bi_private;
e879a879 1950 struct r10conf *conf = r10_bio->mddev->private;
778ca018 1951 int d;
1da177e4 1952
3ea7daa5
N
1953 if (bio == r10_bio->master_bio) {
1954 /* this is a reshape read */
1955 d = r10_bio->read_slot; /* really the read dev */
1956 } else
1957 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
0eb3ff12
N
1958
1959 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1960 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1961 else
1962 /* The write handler will notice the lack of
1963 * R10BIO_Uptodate and record any errors etc
1964 */
4dbcdc75
N
1965 atomic_add(r10_bio->sectors,
1966 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1967
1968 /* for reconstruct, we always reschedule after a read.
1969 * for resync, only after all reads
1970 */
73d5c38a 1971 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1972 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1973 atomic_dec_and_test(&r10_bio->remaining)) {
1974 /* we have read all the blocks,
1975 * do the comparison in process context in raid10d
1976 */
1977 reschedule_retry(r10_bio);
1978 }
1da177e4
LT
1979}
1980
9f2c9d12 1981static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1982{
fd01b88c 1983 struct mddev *mddev = r10_bio->mddev;
dfc70645 1984
1da177e4
LT
1985 while (atomic_dec_and_test(&r10_bio->remaining)) {
1986 if (r10_bio->master_bio == NULL) {
1987 /* the primary of several recovery bios */
73d5c38a 1988 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1989 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1990 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1991 reschedule_retry(r10_bio);
1992 else
1993 put_buf(r10_bio);
73d5c38a 1994 md_done_sync(mddev, s, 1);
1da177e4
LT
1995 break;
1996 } else {
9f2c9d12 1997 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1998 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1999 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
2000 reschedule_retry(r10_bio);
2001 else
2002 put_buf(r10_bio);
1da177e4
LT
2003 r10_bio = r10_bio2;
2004 }
2005 }
1da177e4
LT
2006}
2007
5e570289
N
2008static void end_sync_write(struct bio *bio, int error)
2009{
2010 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 2011 struct r10bio *r10_bio = bio->bi_private;
fd01b88c 2012 struct mddev *mddev = r10_bio->mddev;
e879a879 2013 struct r10conf *conf = mddev->private;
5e570289
N
2014 int d;
2015 sector_t first_bad;
2016 int bad_sectors;
2017 int slot;
9ad1aefc 2018 int repl;
4ca40c2c 2019 struct md_rdev *rdev = NULL;
5e570289 2020
9ad1aefc
N
2021 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2022 if (repl)
2023 rdev = conf->mirrors[d].replacement;
547414d1 2024 else
9ad1aefc 2025 rdev = conf->mirrors[d].rdev;
5e570289
N
2026
2027 if (!uptodate) {
9ad1aefc
N
2028 if (repl)
2029 md_error(mddev, rdev);
2030 else {
2031 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2032 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2033 set_bit(MD_RECOVERY_NEEDED,
2034 &rdev->mddev->recovery);
9ad1aefc
N
2035 set_bit(R10BIO_WriteError, &r10_bio->state);
2036 }
2037 } else if (is_badblock(rdev,
5e570289
N
2038 r10_bio->devs[slot].addr,
2039 r10_bio->sectors,
2040 &first_bad, &bad_sectors))
2041 set_bit(R10BIO_MadeGood, &r10_bio->state);
2042
9ad1aefc 2043 rdev_dec_pending(rdev, mddev);
5e570289
N
2044
2045 end_sync_request(r10_bio);
2046}
2047
1da177e4
LT
2048/*
2049 * Note: sync and recover and handled very differently for raid10
2050 * This code is for resync.
2051 * For resync, we read through virtual addresses and read all blocks.
2052 * If there is any error, we schedule a write. The lowest numbered
2053 * drive is authoritative.
2054 * However requests come for physical address, so we need to map.
2055 * For every physical address there are raid_disks/copies virtual addresses,
2056 * which is always are least one, but is not necessarly an integer.
2057 * This means that a physical address can span multiple chunks, so we may
2058 * have to submit multiple io requests for a single sync request.
2059 */
2060/*
2061 * We check if all blocks are in-sync and only write to blocks that
2062 * aren't in sync
2063 */
9f2c9d12 2064static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2065{
e879a879 2066 struct r10conf *conf = mddev->private;
1da177e4
LT
2067 int i, first;
2068 struct bio *tbio, *fbio;
f4380a91 2069 int vcnt;
1da177e4
LT
2070
2071 atomic_set(&r10_bio->remaining, 1);
2072
2073 /* find the first device with a block */
2074 for (i=0; i<conf->copies; i++)
2075 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2076 break;
2077
2078 if (i == conf->copies)
2079 goto done;
2080
2081 first = i;
2082 fbio = r10_bio->devs[i].bio;
2083
f4380a91 2084 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 2085 /* now find blocks with errors */
0eb3ff12
N
2086 for (i=0 ; i < conf->copies ; i++) {
2087 int j, d;
1da177e4 2088
1da177e4 2089 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
2090
2091 if (tbio->bi_end_io != end_sync_read)
2092 continue;
2093 if (i == first)
1da177e4 2094 continue;
0eb3ff12
N
2095 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2096 /* We know that the bi_io_vec layout is the same for
2097 * both 'first' and 'i', so we just compare them.
2098 * All vec entries are PAGE_SIZE;
2099 */
7bb23c49
N
2100 int sectors = r10_bio->sectors;
2101 for (j = 0; j < vcnt; j++) {
2102 int len = PAGE_SIZE;
2103 if (sectors < (len / 512))
2104 len = sectors * 512;
0eb3ff12
N
2105 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2106 page_address(tbio->bi_io_vec[j].bv_page),
7bb23c49 2107 len))
0eb3ff12 2108 break;
7bb23c49
N
2109 sectors -= len/512;
2110 }
0eb3ff12
N
2111 if (j == vcnt)
2112 continue;
7f7583d4 2113 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
f84ee364
N
2114 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2115 /* Don't fix anything. */
2116 continue;
0eb3ff12 2117 }
f84ee364
N
2118 /* Ok, we need to write this bio, either to correct an
2119 * inconsistency or to correct an unreadable block.
1da177e4
LT
2120 * First we need to fixup bv_offset, bv_len and
2121 * bi_vecs, as the read request might have corrupted these
2122 */
8be185f2
KO
2123 bio_reset(tbio);
2124
1da177e4
LT
2125 tbio->bi_vcnt = vcnt;
2126 tbio->bi_size = r10_bio->sectors << 9;
1da177e4
LT
2127 tbio->bi_rw = WRITE;
2128 tbio->bi_private = r10_bio;
2129 tbio->bi_sector = r10_bio->devs[i].addr;
2130
2131 for (j=0; j < vcnt ; j++) {
2132 tbio->bi_io_vec[j].bv_offset = 0;
2133 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2134
2135 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2136 page_address(fbio->bi_io_vec[j].bv_page),
2137 PAGE_SIZE);
2138 }
2139 tbio->bi_end_io = end_sync_write;
2140
2141 d = r10_bio->devs[i].devnum;
2142 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2143 atomic_inc(&r10_bio->remaining);
aa8b57aa 2144 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
1da177e4
LT
2145
2146 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2147 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2148 generic_make_request(tbio);
2149 }
2150
9ad1aefc
N
2151 /* Now write out to any replacement devices
2152 * that are active
2153 */
2154 for (i = 0; i < conf->copies; i++) {
2155 int j, d;
9ad1aefc
N
2156
2157 tbio = r10_bio->devs[i].repl_bio;
2158 if (!tbio || !tbio->bi_end_io)
2159 continue;
2160 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2161 && r10_bio->devs[i].bio != fbio)
2162 for (j = 0; j < vcnt; j++)
2163 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2164 page_address(fbio->bi_io_vec[j].bv_page),
2165 PAGE_SIZE);
2166 d = r10_bio->devs[i].devnum;
2167 atomic_inc(&r10_bio->remaining);
2168 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2169 bio_sectors(tbio));
9ad1aefc
N
2170 generic_make_request(tbio);
2171 }
2172
1da177e4
LT
2173done:
2174 if (atomic_dec_and_test(&r10_bio->remaining)) {
2175 md_done_sync(mddev, r10_bio->sectors, 1);
2176 put_buf(r10_bio);
2177 }
2178}
2179
2180/*
2181 * Now for the recovery code.
2182 * Recovery happens across physical sectors.
2183 * We recover all non-is_sync drives by finding the virtual address of
2184 * each, and then choose a working drive that also has that virt address.
2185 * There is a separate r10_bio for each non-in_sync drive.
2186 * Only the first two slots are in use. The first for reading,
2187 * The second for writing.
2188 *
2189 */
9f2c9d12 2190static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
2191{
2192 /* We got a read error during recovery.
2193 * We repeat the read in smaller page-sized sections.
2194 * If a read succeeds, write it to the new device or record
2195 * a bad block if we cannot.
2196 * If a read fails, record a bad block on both old and
2197 * new devices.
2198 */
fd01b88c 2199 struct mddev *mddev = r10_bio->mddev;
e879a879 2200 struct r10conf *conf = mddev->private;
5e570289
N
2201 struct bio *bio = r10_bio->devs[0].bio;
2202 sector_t sect = 0;
2203 int sectors = r10_bio->sectors;
2204 int idx = 0;
2205 int dr = r10_bio->devs[0].devnum;
2206 int dw = r10_bio->devs[1].devnum;
2207
2208 while (sectors) {
2209 int s = sectors;
3cb03002 2210 struct md_rdev *rdev;
5e570289
N
2211 sector_t addr;
2212 int ok;
2213
2214 if (s > (PAGE_SIZE>>9))
2215 s = PAGE_SIZE >> 9;
2216
2217 rdev = conf->mirrors[dr].rdev;
2218 addr = r10_bio->devs[0].addr + sect,
2219 ok = sync_page_io(rdev,
2220 addr,
2221 s << 9,
2222 bio->bi_io_vec[idx].bv_page,
2223 READ, false);
2224 if (ok) {
2225 rdev = conf->mirrors[dw].rdev;
2226 addr = r10_bio->devs[1].addr + sect;
2227 ok = sync_page_io(rdev,
2228 addr,
2229 s << 9,
2230 bio->bi_io_vec[idx].bv_page,
2231 WRITE, false);
b7044d41 2232 if (!ok) {
5e570289 2233 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2234 if (!test_and_set_bit(WantReplacement,
2235 &rdev->flags))
2236 set_bit(MD_RECOVERY_NEEDED,
2237 &rdev->mddev->recovery);
2238 }
5e570289
N
2239 }
2240 if (!ok) {
2241 /* We don't worry if we cannot set a bad block -
2242 * it really is bad so there is no loss in not
2243 * recording it yet
2244 */
2245 rdev_set_badblocks(rdev, addr, s, 0);
2246
2247 if (rdev != conf->mirrors[dw].rdev) {
2248 /* need bad block on destination too */
3cb03002 2249 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2250 addr = r10_bio->devs[1].addr + sect;
2251 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2252 if (!ok) {
2253 /* just abort the recovery */
2254 printk(KERN_NOTICE
2255 "md/raid10:%s: recovery aborted"
2256 " due to read error\n",
2257 mdname(mddev));
2258
2259 conf->mirrors[dw].recovery_disabled
2260 = mddev->recovery_disabled;
2261 set_bit(MD_RECOVERY_INTR,
2262 &mddev->recovery);
2263 break;
2264 }
2265 }
2266 }
2267
2268 sectors -= s;
2269 sect += s;
2270 idx++;
2271 }
2272}
1da177e4 2273
9f2c9d12 2274static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2275{
e879a879 2276 struct r10conf *conf = mddev->private;
c65060ad 2277 int d;
24afd80d 2278 struct bio *wbio, *wbio2;
1da177e4 2279
5e570289
N
2280 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2281 fix_recovery_read_error(r10_bio);
2282 end_sync_request(r10_bio);
2283 return;
2284 }
2285
c65060ad
NK
2286 /*
2287 * share the pages with the first bio
1da177e4
LT
2288 * and submit the write request
2289 */
1da177e4 2290 d = r10_bio->devs[1].devnum;
24afd80d
N
2291 wbio = r10_bio->devs[1].bio;
2292 wbio2 = r10_bio->devs[1].repl_bio;
2293 if (wbio->bi_end_io) {
2294 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
aa8b57aa 2295 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
24afd80d
N
2296 generic_make_request(wbio);
2297 }
2298 if (wbio2 && wbio2->bi_end_io) {
2299 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2300 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2301 bio_sectors(wbio2));
24afd80d
N
2302 generic_make_request(wbio2);
2303 }
1da177e4
LT
2304}
2305
2306
1e50915f
RB
2307/*
2308 * Used by fix_read_error() to decay the per rdev read_errors.
2309 * We halve the read error count for every hour that has elapsed
2310 * since the last recorded read error.
2311 *
2312 */
fd01b88c 2313static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f
RB
2314{
2315 struct timespec cur_time_mon;
2316 unsigned long hours_since_last;
2317 unsigned int read_errors = atomic_read(&rdev->read_errors);
2318
2319 ktime_get_ts(&cur_time_mon);
2320
2321 if (rdev->last_read_error.tv_sec == 0 &&
2322 rdev->last_read_error.tv_nsec == 0) {
2323 /* first time we've seen a read error */
2324 rdev->last_read_error = cur_time_mon;
2325 return;
2326 }
2327
2328 hours_since_last = (cur_time_mon.tv_sec -
2329 rdev->last_read_error.tv_sec) / 3600;
2330
2331 rdev->last_read_error = cur_time_mon;
2332
2333 /*
2334 * if hours_since_last is > the number of bits in read_errors
2335 * just set read errors to 0. We do this to avoid
2336 * overflowing the shift of read_errors by hours_since_last.
2337 */
2338 if (hours_since_last >= 8 * sizeof(read_errors))
2339 atomic_set(&rdev->read_errors, 0);
2340 else
2341 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2342}
2343
3cb03002 2344static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
2345 int sectors, struct page *page, int rw)
2346{
2347 sector_t first_bad;
2348 int bad_sectors;
2349
2350 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2351 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2352 return -1;
2353 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2354 /* success */
2355 return 1;
b7044d41 2356 if (rw == WRITE) {
58c54fcc 2357 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2358 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2359 set_bit(MD_RECOVERY_NEEDED,
2360 &rdev->mddev->recovery);
2361 }
58c54fcc
N
2362 /* need to record an error - either for the block or the device */
2363 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2364 md_error(rdev->mddev, rdev);
2365 return 0;
2366}
2367
1da177e4
LT
2368/*
2369 * This is a kernel thread which:
2370 *
2371 * 1. Retries failed read operations on working mirrors.
2372 * 2. Updates the raid superblock when problems encounter.
6814d536 2373 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2374 */
2375
e879a879 2376static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2377{
2378 int sect = 0; /* Offset from r10_bio->sector */
2379 int sectors = r10_bio->sectors;
3cb03002 2380 struct md_rdev*rdev;
1e50915f 2381 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 2382 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 2383
7c4e06ff
N
2384 /* still own a reference to this rdev, so it cannot
2385 * have been cleared recently.
2386 */
2387 rdev = conf->mirrors[d].rdev;
1e50915f 2388
7c4e06ff
N
2389 if (test_bit(Faulty, &rdev->flags))
2390 /* drive has already been failed, just ignore any
2391 more fix_read_error() attempts */
2392 return;
1e50915f 2393
7c4e06ff
N
2394 check_decay_read_errors(mddev, rdev);
2395 atomic_inc(&rdev->read_errors);
2396 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2397 char b[BDEVNAME_SIZE];
2398 bdevname(rdev->bdev, b);
1e50915f 2399
7c4e06ff
N
2400 printk(KERN_NOTICE
2401 "md/raid10:%s: %s: Raid device exceeded "
2402 "read_error threshold [cur %d:max %d]\n",
2403 mdname(mddev), b,
2404 atomic_read(&rdev->read_errors), max_read_errors);
2405 printk(KERN_NOTICE
2406 "md/raid10:%s: %s: Failing raid device\n",
2407 mdname(mddev), b);
2408 md_error(mddev, conf->mirrors[d].rdev);
fae8cc5e 2409 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
7c4e06ff 2410 return;
1e50915f 2411 }
1e50915f 2412
6814d536
N
2413 while(sectors) {
2414 int s = sectors;
2415 int sl = r10_bio->read_slot;
2416 int success = 0;
2417 int start;
2418
2419 if (s > (PAGE_SIZE>>9))
2420 s = PAGE_SIZE >> 9;
2421
2422 rcu_read_lock();
2423 do {
8dbed5ce
N
2424 sector_t first_bad;
2425 int bad_sectors;
2426
0544a21d 2427 d = r10_bio->devs[sl].devnum;
6814d536
N
2428 rdev = rcu_dereference(conf->mirrors[d].rdev);
2429 if (rdev &&
050b6615 2430 !test_bit(Unmerged, &rdev->flags) &&
8dbed5ce
N
2431 test_bit(In_sync, &rdev->flags) &&
2432 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2433 &first_bad, &bad_sectors) == 0) {
6814d536
N
2434 atomic_inc(&rdev->nr_pending);
2435 rcu_read_unlock();
2b193363 2436 success = sync_page_io(rdev,
6814d536 2437 r10_bio->devs[sl].addr +
ccebd4c4 2438 sect,
6814d536 2439 s<<9,
ccebd4c4 2440 conf->tmppage, READ, false);
6814d536
N
2441 rdev_dec_pending(rdev, mddev);
2442 rcu_read_lock();
2443 if (success)
2444 break;
2445 }
2446 sl++;
2447 if (sl == conf->copies)
2448 sl = 0;
2449 } while (!success && sl != r10_bio->read_slot);
2450 rcu_read_unlock();
2451
2452 if (!success) {
58c54fcc
N
2453 /* Cannot read from anywhere, just mark the block
2454 * as bad on the first device to discourage future
2455 * reads.
2456 */
6814d536 2457 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2458 rdev = conf->mirrors[dn].rdev;
2459
2460 if (!rdev_set_badblocks(
2461 rdev,
2462 r10_bio->devs[r10_bio->read_slot].addr
2463 + sect,
fae8cc5e 2464 s, 0)) {
58c54fcc 2465 md_error(mddev, rdev);
fae8cc5e
N
2466 r10_bio->devs[r10_bio->read_slot].bio
2467 = IO_BLOCKED;
2468 }
6814d536
N
2469 break;
2470 }
2471
2472 start = sl;
2473 /* write it back and re-read */
2474 rcu_read_lock();
2475 while (sl != r10_bio->read_slot) {
67b8dc4b 2476 char b[BDEVNAME_SIZE];
0544a21d 2477
6814d536
N
2478 if (sl==0)
2479 sl = conf->copies;
2480 sl--;
2481 d = r10_bio->devs[sl].devnum;
2482 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2483 if (!rdev ||
050b6615 2484 test_bit(Unmerged, &rdev->flags) ||
1294b9c9
N
2485 !test_bit(In_sync, &rdev->flags))
2486 continue;
2487
2488 atomic_inc(&rdev->nr_pending);
2489 rcu_read_unlock();
58c54fcc
N
2490 if (r10_sync_page_io(rdev,
2491 r10_bio->devs[sl].addr +
2492 sect,
055d3747 2493 s, conf->tmppage, WRITE)
1294b9c9
N
2494 == 0) {
2495 /* Well, this device is dead */
2496 printk(KERN_NOTICE
2497 "md/raid10:%s: read correction "
2498 "write failed"
2499 " (%d sectors at %llu on %s)\n",
2500 mdname(mddev), s,
2501 (unsigned long long)(
f8c9e74f
N
2502 sect +
2503 choose_data_offset(r10_bio,
2504 rdev)),
1294b9c9
N
2505 bdevname(rdev->bdev, b));
2506 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2507 "drive\n",
2508 mdname(mddev),
2509 bdevname(rdev->bdev, b));
6814d536 2510 }
1294b9c9
N
2511 rdev_dec_pending(rdev, mddev);
2512 rcu_read_lock();
6814d536
N
2513 }
2514 sl = start;
2515 while (sl != r10_bio->read_slot) {
1294b9c9 2516 char b[BDEVNAME_SIZE];
0544a21d 2517
6814d536
N
2518 if (sl==0)
2519 sl = conf->copies;
2520 sl--;
2521 d = r10_bio->devs[sl].devnum;
2522 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
2523 if (!rdev ||
2524 !test_bit(In_sync, &rdev->flags))
2525 continue;
6814d536 2526
1294b9c9
N
2527 atomic_inc(&rdev->nr_pending);
2528 rcu_read_unlock();
58c54fcc
N
2529 switch (r10_sync_page_io(rdev,
2530 r10_bio->devs[sl].addr +
2531 sect,
055d3747 2532 s, conf->tmppage,
58c54fcc
N
2533 READ)) {
2534 case 0:
1294b9c9
N
2535 /* Well, this device is dead */
2536 printk(KERN_NOTICE
2537 "md/raid10:%s: unable to read back "
2538 "corrected sectors"
2539 " (%d sectors at %llu on %s)\n",
2540 mdname(mddev), s,
2541 (unsigned long long)(
f8c9e74f
N
2542 sect +
2543 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2544 bdevname(rdev->bdev, b));
2545 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2546 "drive\n",
2547 mdname(mddev),
2548 bdevname(rdev->bdev, b));
58c54fcc
N
2549 break;
2550 case 1:
1294b9c9
N
2551 printk(KERN_INFO
2552 "md/raid10:%s: read error corrected"
2553 " (%d sectors at %llu on %s)\n",
2554 mdname(mddev), s,
2555 (unsigned long long)(
f8c9e74f
N
2556 sect +
2557 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2558 bdevname(rdev->bdev, b));
2559 atomic_add(s, &rdev->corrected_errors);
6814d536 2560 }
1294b9c9
N
2561
2562 rdev_dec_pending(rdev, mddev);
2563 rcu_read_lock();
6814d536
N
2564 }
2565 rcu_read_unlock();
2566
2567 sectors -= s;
2568 sect += s;
2569 }
2570}
2571
9f2c9d12 2572static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2573{
2574 struct bio *bio = r10_bio->master_bio;
fd01b88c 2575 struct mddev *mddev = r10_bio->mddev;
e879a879 2576 struct r10conf *conf = mddev->private;
3cb03002 2577 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2578 /* bio has the data to be written to slot 'i' where
2579 * we just recently had a write error.
2580 * We repeatedly clone the bio and trim down to one block,
2581 * then try the write. Where the write fails we record
2582 * a bad block.
2583 * It is conceivable that the bio doesn't exactly align with
2584 * blocks. We must handle this.
2585 *
2586 * We currently own a reference to the rdev.
2587 */
2588
2589 int block_sectors;
2590 sector_t sector;
2591 int sectors;
2592 int sect_to_write = r10_bio->sectors;
2593 int ok = 1;
2594
2595 if (rdev->badblocks.shift < 0)
2596 return 0;
2597
2598 block_sectors = 1 << rdev->badblocks.shift;
2599 sector = r10_bio->sector;
2600 sectors = ((r10_bio->sector + block_sectors)
2601 & ~(sector_t)(block_sectors - 1))
2602 - sector;
2603
2604 while (sect_to_write) {
2605 struct bio *wbio;
2606 if (sectors > sect_to_write)
2607 sectors = sect_to_write;
2608 /* Write at 'sector' for 'sectors' */
2609 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2610 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2611 wbio->bi_sector = (r10_bio->devs[i].addr+
f8c9e74f 2612 choose_data_offset(r10_bio, rdev) +
bd870a16
N
2613 (sector - r10_bio->sector));
2614 wbio->bi_bdev = rdev->bdev;
2615 if (submit_bio_wait(WRITE, wbio) == 0)
2616 /* Failure! */
2617 ok = rdev_set_badblocks(rdev, sector,
2618 sectors, 0)
2619 && ok;
2620
2621 bio_put(wbio);
2622 sect_to_write -= sectors;
2623 sector += sectors;
2624 sectors = block_sectors;
2625 }
2626 return ok;
2627}
2628
9f2c9d12 2629static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2630{
2631 int slot = r10_bio->read_slot;
560f8e55 2632 struct bio *bio;
e879a879 2633 struct r10conf *conf = mddev->private;
abbf098e 2634 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2635 char b[BDEVNAME_SIZE];
2636 unsigned long do_sync;
856e08e2 2637 int max_sectors;
560f8e55
N
2638
2639 /* we got a read error. Maybe the drive is bad. Maybe just
2640 * the block and we can fix it.
2641 * We freeze all other IO, and try reading the block from
2642 * other devices. When we find one, we re-write
2643 * and check it that fixes the read error.
2644 * This is all done synchronously while the array is
2645 * frozen.
2646 */
fae8cc5e
N
2647 bio = r10_bio->devs[slot].bio;
2648 bdevname(bio->bi_bdev, b);
2649 bio_put(bio);
2650 r10_bio->devs[slot].bio = NULL;
2651
560f8e55 2652 if (mddev->ro == 0) {
e2d59925 2653 freeze_array(conf, 1);
560f8e55
N
2654 fix_read_error(conf, mddev, r10_bio);
2655 unfreeze_array(conf);
fae8cc5e
N
2656 } else
2657 r10_bio->devs[slot].bio = IO_BLOCKED;
2658
abbf098e 2659 rdev_dec_pending(rdev, mddev);
560f8e55 2660
7399c31b 2661read_more:
96c3fd1f
N
2662 rdev = read_balance(conf, r10_bio, &max_sectors);
2663 if (rdev == NULL) {
560f8e55
N
2664 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2665 " read error for block %llu\n",
7399c31b 2666 mdname(mddev), b,
560f8e55
N
2667 (unsigned long long)r10_bio->sector);
2668 raid_end_bio_io(r10_bio);
560f8e55
N
2669 return;
2670 }
2671
2672 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
560f8e55 2673 slot = r10_bio->read_slot;
560f8e55
N
2674 printk_ratelimited(
2675 KERN_ERR
055d3747 2676 "md/raid10:%s: %s: redirecting "
560f8e55
N
2677 "sector %llu to another mirror\n",
2678 mdname(mddev),
2679 bdevname(rdev->bdev, b),
2680 (unsigned long long)r10_bio->sector);
2681 bio = bio_clone_mddev(r10_bio->master_bio,
2682 GFP_NOIO, mddev);
7399c31b
N
2683 md_trim_bio(bio,
2684 r10_bio->sector - bio->bi_sector,
2685 max_sectors);
560f8e55 2686 r10_bio->devs[slot].bio = bio;
abbf098e 2687 r10_bio->devs[slot].rdev = rdev;
560f8e55 2688 bio->bi_sector = r10_bio->devs[slot].addr
f8c9e74f 2689 + choose_data_offset(r10_bio, rdev);
560f8e55
N
2690 bio->bi_bdev = rdev->bdev;
2691 bio->bi_rw = READ | do_sync;
2692 bio->bi_private = r10_bio;
2693 bio->bi_end_io = raid10_end_read_request;
7399c31b
N
2694 if (max_sectors < r10_bio->sectors) {
2695 /* Drat - have to split this up more */
2696 struct bio *mbio = r10_bio->master_bio;
2697 int sectors_handled =
2698 r10_bio->sector + max_sectors
2699 - mbio->bi_sector;
2700 r10_bio->sectors = max_sectors;
2701 spin_lock_irq(&conf->device_lock);
2702 if (mbio->bi_phys_segments == 0)
2703 mbio->bi_phys_segments = 2;
2704 else
2705 mbio->bi_phys_segments++;
2706 spin_unlock_irq(&conf->device_lock);
2707 generic_make_request(bio);
7399c31b
N
2708
2709 r10_bio = mempool_alloc(conf->r10bio_pool,
2710 GFP_NOIO);
2711 r10_bio->master_bio = mbio;
aa8b57aa 2712 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
7399c31b
N
2713 r10_bio->state = 0;
2714 set_bit(R10BIO_ReadError,
2715 &r10_bio->state);
2716 r10_bio->mddev = mddev;
2717 r10_bio->sector = mbio->bi_sector
2718 + sectors_handled;
2719
2720 goto read_more;
2721 } else
2722 generic_make_request(bio);
560f8e55
N
2723}
2724
e879a879 2725static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2726{
2727 /* Some sort of write request has finished and it
2728 * succeeded in writing where we thought there was a
2729 * bad block. So forget the bad block.
1a0b7cd8
N
2730 * Or possibly if failed and we need to record
2731 * a bad block.
749c55e9
N
2732 */
2733 int m;
3cb03002 2734 struct md_rdev *rdev;
749c55e9
N
2735
2736 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2737 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2738 for (m = 0; m < conf->copies; m++) {
2739 int dev = r10_bio->devs[m].devnum;
2740 rdev = conf->mirrors[dev].rdev;
2741 if (r10_bio->devs[m].bio == NULL)
2742 continue;
2743 if (test_bit(BIO_UPTODATE,
749c55e9 2744 &r10_bio->devs[m].bio->bi_flags)) {
749c55e9
N
2745 rdev_clear_badblocks(
2746 rdev,
2747 r10_bio->devs[m].addr,
c6563a8c 2748 r10_bio->sectors, 0);
1a0b7cd8
N
2749 } else {
2750 if (!rdev_set_badblocks(
2751 rdev,
2752 r10_bio->devs[m].addr,
2753 r10_bio->sectors, 0))
2754 md_error(conf->mddev, rdev);
749c55e9 2755 }
9ad1aefc
N
2756 rdev = conf->mirrors[dev].replacement;
2757 if (r10_bio->devs[m].repl_bio == NULL)
2758 continue;
2759 if (test_bit(BIO_UPTODATE,
2760 &r10_bio->devs[m].repl_bio->bi_flags)) {
2761 rdev_clear_badblocks(
2762 rdev,
2763 r10_bio->devs[m].addr,
c6563a8c 2764 r10_bio->sectors, 0);
9ad1aefc
N
2765 } else {
2766 if (!rdev_set_badblocks(
2767 rdev,
2768 r10_bio->devs[m].addr,
2769 r10_bio->sectors, 0))
2770 md_error(conf->mddev, rdev);
2771 }
1a0b7cd8 2772 }
749c55e9
N
2773 put_buf(r10_bio);
2774 } else {
bd870a16
N
2775 for (m = 0; m < conf->copies; m++) {
2776 int dev = r10_bio->devs[m].devnum;
2777 struct bio *bio = r10_bio->devs[m].bio;
2778 rdev = conf->mirrors[dev].rdev;
2779 if (bio == IO_MADE_GOOD) {
749c55e9
N
2780 rdev_clear_badblocks(
2781 rdev,
2782 r10_bio->devs[m].addr,
c6563a8c 2783 r10_bio->sectors, 0);
749c55e9 2784 rdev_dec_pending(rdev, conf->mddev);
bd870a16
N
2785 } else if (bio != NULL &&
2786 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2787 if (!narrow_write_error(r10_bio, m)) {
2788 md_error(conf->mddev, rdev);
2789 set_bit(R10BIO_Degraded,
2790 &r10_bio->state);
2791 }
2792 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2793 }
475b0321
N
2794 bio = r10_bio->devs[m].repl_bio;
2795 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2796 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2797 rdev_clear_badblocks(
2798 rdev,
2799 r10_bio->devs[m].addr,
c6563a8c 2800 r10_bio->sectors, 0);
475b0321
N
2801 rdev_dec_pending(rdev, conf->mddev);
2802 }
bd870a16
N
2803 }
2804 if (test_bit(R10BIO_WriteError,
2805 &r10_bio->state))
2806 close_write(r10_bio);
749c55e9
N
2807 raid_end_bio_io(r10_bio);
2808 }
2809}
2810
4ed8731d 2811static void raid10d(struct md_thread *thread)
1da177e4 2812{
4ed8731d 2813 struct mddev *mddev = thread->mddev;
9f2c9d12 2814 struct r10bio *r10_bio;
1da177e4 2815 unsigned long flags;
e879a879 2816 struct r10conf *conf = mddev->private;
1da177e4 2817 struct list_head *head = &conf->retry_list;
e1dfa0a2 2818 struct blk_plug plug;
1da177e4
LT
2819
2820 md_check_recovery(mddev);
1da177e4 2821
e1dfa0a2 2822 blk_start_plug(&plug);
1da177e4 2823 for (;;) {
6cce3b23 2824
0021b7bc 2825 flush_pending_writes(conf);
6cce3b23 2826
a35e63ef
N
2827 spin_lock_irqsave(&conf->device_lock, flags);
2828 if (list_empty(head)) {
2829 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2830 break;
a35e63ef 2831 }
9f2c9d12 2832 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2833 list_del(head->prev);
4443ae10 2834 conf->nr_queued--;
1da177e4
LT
2835 spin_unlock_irqrestore(&conf->device_lock, flags);
2836
2837 mddev = r10_bio->mddev;
070ec55d 2838 conf = mddev->private;
bd870a16
N
2839 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2840 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 2841 handle_write_completed(conf, r10_bio);
3ea7daa5
N
2842 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2843 reshape_request_write(mddev, r10_bio);
749c55e9 2844 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2845 sync_request_write(mddev, r10_bio);
7eaceacc 2846 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2847 recovery_request_write(mddev, r10_bio);
856e08e2 2848 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2849 handle_read_error(mddev, r10_bio);
856e08e2
N
2850 else {
2851 /* just a partial read to be scheduled from a
2852 * separate context
2853 */
2854 int slot = r10_bio->read_slot;
2855 generic_make_request(r10_bio->devs[slot].bio);
2856 }
560f8e55 2857
1d9d5241 2858 cond_resched();
de393cde
N
2859 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2860 md_check_recovery(mddev);
1da177e4 2861 }
e1dfa0a2 2862 blk_finish_plug(&plug);
1da177e4
LT
2863}
2864
2865
e879a879 2866static int init_resync(struct r10conf *conf)
1da177e4
LT
2867{
2868 int buffs;
69335ef3 2869 int i;
1da177e4
LT
2870
2871 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2872 BUG_ON(conf->r10buf_pool);
69335ef3 2873 conf->have_replacement = 0;
5cf00fcd 2874 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
2875 if (conf->mirrors[i].replacement)
2876 conf->have_replacement = 1;
1da177e4
LT
2877 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2878 if (!conf->r10buf_pool)
2879 return -ENOMEM;
2880 conf->next_resync = 0;
2881 return 0;
2882}
2883
2884/*
2885 * perform a "sync" on one "block"
2886 *
2887 * We need to make sure that no normal I/O request - particularly write
2888 * requests - conflict with active sync requests.
2889 *
2890 * This is achieved by tracking pending requests and a 'barrier' concept
2891 * that can be installed to exclude normal IO requests.
2892 *
2893 * Resync and recovery are handled very differently.
2894 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2895 *
2896 * For resync, we iterate over virtual addresses, read all copies,
2897 * and update if there are differences. If only one copy is live,
2898 * skip it.
2899 * For recovery, we iterate over physical addresses, read a good
2900 * value for each non-in_sync drive, and over-write.
2901 *
2902 * So, for recovery we may have several outstanding complex requests for a
2903 * given address, one for each out-of-sync device. We model this by allocating
2904 * a number of r10_bio structures, one for each out-of-sync device.
2905 * As we setup these structures, we collect all bio's together into a list
2906 * which we then process collectively to add pages, and then process again
2907 * to pass to generic_make_request.
2908 *
2909 * The r10_bio structures are linked using a borrowed master_bio pointer.
2910 * This link is counted in ->remaining. When the r10_bio that points to NULL
2911 * has its remaining count decremented to 0, the whole complex operation
2912 * is complete.
2913 *
2914 */
2915
fd01b88c 2916static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
ab9d47e9 2917 int *skipped, int go_faster)
1da177e4 2918{
e879a879 2919 struct r10conf *conf = mddev->private;
9f2c9d12 2920 struct r10bio *r10_bio;
1da177e4
LT
2921 struct bio *biolist = NULL, *bio;
2922 sector_t max_sector, nr_sectors;
1da177e4 2923 int i;
6cce3b23 2924 int max_sync;
57dab0bd 2925 sector_t sync_blocks;
1da177e4
LT
2926 sector_t sectors_skipped = 0;
2927 int chunks_skipped = 0;
5cf00fcd 2928 sector_t chunk_mask = conf->geo.chunk_mask;
1da177e4
LT
2929
2930 if (!conf->r10buf_pool)
2931 if (init_resync(conf))
57afd89f 2932 return 0;
1da177e4 2933
7e83ccbe
MW
2934 /*
2935 * Allow skipping a full rebuild for incremental assembly
2936 * of a clean array, like RAID1 does.
2937 */
2938 if (mddev->bitmap == NULL &&
2939 mddev->recovery_cp == MaxSector &&
13765120
N
2940 mddev->reshape_position == MaxSector &&
2941 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7e83ccbe 2942 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
13765120 2943 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7e83ccbe
MW
2944 conf->fullsync == 0) {
2945 *skipped = 1;
13765120 2946 return mddev->dev_sectors - sector_nr;
7e83ccbe
MW
2947 }
2948
1da177e4 2949 skipped:
58c0fed4 2950 max_sector = mddev->dev_sectors;
3ea7daa5
N
2951 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2952 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1da177e4
LT
2953 max_sector = mddev->resync_max_sectors;
2954 if (sector_nr >= max_sector) {
6cce3b23
N
2955 /* If we aborted, we need to abort the
2956 * sync on the 'current' bitmap chucks (there can
2957 * be several when recovering multiple devices).
2958 * as we may have started syncing it but not finished.
2959 * We can find the current address in
2960 * mddev->curr_resync, but for recovery,
2961 * we need to convert that to several
2962 * virtual addresses.
2963 */
3ea7daa5
N
2964 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2965 end_reshape(conf);
2966 return 0;
2967 }
2968
6cce3b23
N
2969 if (mddev->curr_resync < max_sector) { /* aborted */
2970 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2971 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2972 &sync_blocks, 1);
5cf00fcd 2973 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
2974 sector_t sect =
2975 raid10_find_virt(conf, mddev->curr_resync, i);
2976 bitmap_end_sync(mddev->bitmap, sect,
2977 &sync_blocks, 1);
2978 }
9ad1aefc
N
2979 } else {
2980 /* completed sync */
2981 if ((!mddev->bitmap || conf->fullsync)
2982 && conf->have_replacement
2983 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2984 /* Completed a full sync so the replacements
2985 * are now fully recovered.
2986 */
5cf00fcd 2987 for (i = 0; i < conf->geo.raid_disks; i++)
9ad1aefc
N
2988 if (conf->mirrors[i].replacement)
2989 conf->mirrors[i].replacement
2990 ->recovery_offset
2991 = MaxSector;
2992 }
6cce3b23 2993 conf->fullsync = 0;
9ad1aefc 2994 }
6cce3b23 2995 bitmap_close_sync(mddev->bitmap);
1da177e4 2996 close_sync(conf);
57afd89f 2997 *skipped = 1;
1da177e4
LT
2998 return sectors_skipped;
2999 }
3ea7daa5
N
3000
3001 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3002 return reshape_request(mddev, sector_nr, skipped);
3003
5cf00fcd 3004 if (chunks_skipped >= conf->geo.raid_disks) {
1da177e4
LT
3005 /* if there has been nothing to do on any drive,
3006 * then there is nothing to do at all..
3007 */
57afd89f
N
3008 *skipped = 1;
3009 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
3010 }
3011
c6207277
N
3012 if (max_sector > mddev->resync_max)
3013 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3014
1da177e4
LT
3015 /* make sure whole request will fit in a chunk - if chunks
3016 * are meaningful
3017 */
5cf00fcd
N
3018 if (conf->geo.near_copies < conf->geo.raid_disks &&
3019 max_sector > (sector_nr | chunk_mask))
3020 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4
LT
3021 /*
3022 * If there is non-resync activity waiting for us then
3023 * put in a delay to throttle resync.
3024 */
0a27ec96 3025 if (!go_faster && conf->nr_waiting)
1da177e4 3026 msleep_interruptible(1000);
1da177e4
LT
3027
3028 /* Again, very different code for resync and recovery.
3029 * Both must result in an r10bio with a list of bios that
3030 * have bi_end_io, bi_sector, bi_bdev set,
3031 * and bi_private set to the r10bio.
3032 * For recovery, we may actually create several r10bios
3033 * with 2 bios in each, that correspond to the bios in the main one.
3034 * In this case, the subordinate r10bios link back through a
3035 * borrowed master_bio pointer, and the counter in the master
3036 * includes a ref from each subordinate.
3037 */
3038 /* First, we decide what to do and set ->bi_end_io
3039 * To end_sync_read if we want to read, and
3040 * end_sync_write if we will want to write.
3041 */
3042
6cce3b23 3043 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
3044 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3045 /* recovery... the complicated one */
e875ecea 3046 int j;
1da177e4
LT
3047 r10_bio = NULL;
3048
5cf00fcd 3049 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 3050 int still_degraded;
9f2c9d12 3051 struct r10bio *rb2;
ab9d47e9
N
3052 sector_t sect;
3053 int must_sync;
e875ecea 3054 int any_working;
dc280d98 3055 struct raid10_info *mirror = &conf->mirrors[i];
24afd80d
N
3056
3057 if ((mirror->rdev == NULL ||
3058 test_bit(In_sync, &mirror->rdev->flags))
3059 &&
3060 (mirror->replacement == NULL ||
3061 test_bit(Faulty,
3062 &mirror->replacement->flags)))
ab9d47e9 3063 continue;
1da177e4 3064
ab9d47e9
N
3065 still_degraded = 0;
3066 /* want to reconstruct this device */
3067 rb2 = r10_bio;
3068 sect = raid10_find_virt(conf, sector_nr, i);
fc448a18
N
3069 if (sect >= mddev->resync_max_sectors) {
3070 /* last stripe is not complete - don't
3071 * try to recover this sector.
3072 */
3073 continue;
3074 }
24afd80d
N
3075 /* Unless we are doing a full sync, or a replacement
3076 * we only need to recover the block if it is set in
3077 * the bitmap
ab9d47e9
N
3078 */
3079 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3080 &sync_blocks, 1);
3081 if (sync_blocks < max_sync)
3082 max_sync = sync_blocks;
3083 if (!must_sync &&
24afd80d 3084 mirror->replacement == NULL &&
ab9d47e9
N
3085 !conf->fullsync) {
3086 /* yep, skip the sync_blocks here, but don't assume
3087 * that there will never be anything to do here
3088 */
3089 chunks_skipped = -1;
3090 continue;
3091 }
6cce3b23 3092
ab9d47e9
N
3093 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3094 raise_barrier(conf, rb2 != NULL);
3095 atomic_set(&r10_bio->remaining, 0);
18055569 3096
ab9d47e9
N
3097 r10_bio->master_bio = (struct bio*)rb2;
3098 if (rb2)
3099 atomic_inc(&rb2->remaining);
3100 r10_bio->mddev = mddev;
3101 set_bit(R10BIO_IsRecover, &r10_bio->state);
3102 r10_bio->sector = sect;
1da177e4 3103
ab9d47e9
N
3104 raid10_find_phys(conf, r10_bio);
3105
3106 /* Need to check if the array will still be
3107 * degraded
3108 */
5cf00fcd 3109 for (j = 0; j < conf->geo.raid_disks; j++)
ab9d47e9
N
3110 if (conf->mirrors[j].rdev == NULL ||
3111 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3112 still_degraded = 1;
87fc767b 3113 break;
1da177e4 3114 }
ab9d47e9
N
3115
3116 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3117 &sync_blocks, still_degraded);
3118
e875ecea 3119 any_working = 0;
ab9d47e9 3120 for (j=0; j<conf->copies;j++) {
e875ecea 3121 int k;
ab9d47e9 3122 int d = r10_bio->devs[j].devnum;
5e570289 3123 sector_t from_addr, to_addr;
3cb03002 3124 struct md_rdev *rdev;
40c356ce
N
3125 sector_t sector, first_bad;
3126 int bad_sectors;
ab9d47e9
N
3127 if (!conf->mirrors[d].rdev ||
3128 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3129 continue;
3130 /* This is where we read from */
e875ecea 3131 any_working = 1;
40c356ce
N
3132 rdev = conf->mirrors[d].rdev;
3133 sector = r10_bio->devs[j].addr;
3134
3135 if (is_badblock(rdev, sector, max_sync,
3136 &first_bad, &bad_sectors)) {
3137 if (first_bad > sector)
3138 max_sync = first_bad - sector;
3139 else {
3140 bad_sectors -= (sector
3141 - first_bad);
3142 if (max_sync > bad_sectors)
3143 max_sync = bad_sectors;
3144 continue;
3145 }
3146 }
ab9d47e9 3147 bio = r10_bio->devs[0].bio;
8be185f2 3148 bio_reset(bio);
ab9d47e9
N
3149 bio->bi_next = biolist;
3150 biolist = bio;
3151 bio->bi_private = r10_bio;
3152 bio->bi_end_io = end_sync_read;
3153 bio->bi_rw = READ;
5e570289 3154 from_addr = r10_bio->devs[j].addr;
24afd80d
N
3155 bio->bi_sector = from_addr + rdev->data_offset;
3156 bio->bi_bdev = rdev->bdev;
3157 atomic_inc(&rdev->nr_pending);
3158 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
3159
3160 for (k=0; k<conf->copies; k++)
3161 if (r10_bio->devs[k].devnum == i)
3162 break;
3163 BUG_ON(k == conf->copies);
5e570289 3164 to_addr = r10_bio->devs[k].addr;
ab9d47e9 3165 r10_bio->devs[0].devnum = d;
5e570289 3166 r10_bio->devs[0].addr = from_addr;
ab9d47e9 3167 r10_bio->devs[1].devnum = i;
5e570289 3168 r10_bio->devs[1].addr = to_addr;
ab9d47e9 3169
24afd80d
N
3170 rdev = mirror->rdev;
3171 if (!test_bit(In_sync, &rdev->flags)) {
3172 bio = r10_bio->devs[1].bio;
8be185f2 3173 bio_reset(bio);
24afd80d
N
3174 bio->bi_next = biolist;
3175 biolist = bio;
3176 bio->bi_private = r10_bio;
3177 bio->bi_end_io = end_sync_write;
3178 bio->bi_rw = WRITE;
3179 bio->bi_sector = to_addr
3180 + rdev->data_offset;
3181 bio->bi_bdev = rdev->bdev;
3182 atomic_inc(&r10_bio->remaining);
3183 } else
3184 r10_bio->devs[1].bio->bi_end_io = NULL;
3185
3186 /* and maybe write to replacement */
3187 bio = r10_bio->devs[1].repl_bio;
3188 if (bio)
3189 bio->bi_end_io = NULL;
3190 rdev = mirror->replacement;
3191 /* Note: if rdev != NULL, then bio
3192 * cannot be NULL as r10buf_pool_alloc will
3193 * have allocated it.
3194 * So the second test here is pointless.
3195 * But it keeps semantic-checkers happy, and
3196 * this comment keeps human reviewers
3197 * happy.
3198 */
3199 if (rdev == NULL || bio == NULL ||
3200 test_bit(Faulty, &rdev->flags))
3201 break;
8be185f2 3202 bio_reset(bio);
24afd80d
N
3203 bio->bi_next = biolist;
3204 biolist = bio;
3205 bio->bi_private = r10_bio;
3206 bio->bi_end_io = end_sync_write;
3207 bio->bi_rw = WRITE;
3208 bio->bi_sector = to_addr + rdev->data_offset;
3209 bio->bi_bdev = rdev->bdev;
3210 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
3211 break;
3212 }
3213 if (j == conf->copies) {
e875ecea
N
3214 /* Cannot recover, so abort the recovery or
3215 * record a bad block */
ab9d47e9
N
3216 put_buf(r10_bio);
3217 if (rb2)
3218 atomic_dec(&rb2->remaining);
3219 r10_bio = rb2;
e875ecea
N
3220 if (any_working) {
3221 /* problem is that there are bad blocks
3222 * on other device(s)
3223 */
3224 int k;
3225 for (k = 0; k < conf->copies; k++)
3226 if (r10_bio->devs[k].devnum == i)
3227 break;
24afd80d
N
3228 if (!test_bit(In_sync,
3229 &mirror->rdev->flags)
3230 && !rdev_set_badblocks(
3231 mirror->rdev,
3232 r10_bio->devs[k].addr,
3233 max_sync, 0))
3234 any_working = 0;
3235 if (mirror->replacement &&
3236 !rdev_set_badblocks(
3237 mirror->replacement,
e875ecea
N
3238 r10_bio->devs[k].addr,
3239 max_sync, 0))
3240 any_working = 0;
3241 }
3242 if (!any_working) {
3243 if (!test_and_set_bit(MD_RECOVERY_INTR,
3244 &mddev->recovery))
3245 printk(KERN_INFO "md/raid10:%s: insufficient "
3246 "working devices for recovery.\n",
3247 mdname(mddev));
24afd80d 3248 mirror->recovery_disabled
e875ecea
N
3249 = mddev->recovery_disabled;
3250 }
ab9d47e9 3251 break;
1da177e4 3252 }
ab9d47e9 3253 }
1da177e4
LT
3254 if (biolist == NULL) {
3255 while (r10_bio) {
9f2c9d12
N
3256 struct r10bio *rb2 = r10_bio;
3257 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3258 rb2->master_bio = NULL;
3259 put_buf(rb2);
3260 }
3261 goto giveup;
3262 }
3263 } else {
3264 /* resync. Schedule a read for every block at this virt offset */
3265 int count = 0;
6cce3b23 3266
78200d45
N
3267 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3268
6cce3b23
N
3269 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3270 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3271 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3272 &mddev->recovery)) {
6cce3b23
N
3273 /* We can skip this block */
3274 *skipped = 1;
3275 return sync_blocks + sectors_skipped;
3276 }
3277 if (sync_blocks < max_sync)
3278 max_sync = sync_blocks;
1da177e4
LT
3279 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3280
1da177e4
LT
3281 r10_bio->mddev = mddev;
3282 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3283 raise_barrier(conf, 0);
3284 conf->next_resync = sector_nr;
1da177e4
LT
3285
3286 r10_bio->master_bio = NULL;
3287 r10_bio->sector = sector_nr;
3288 set_bit(R10BIO_IsSync, &r10_bio->state);
3289 raid10_find_phys(conf, r10_bio);
5cf00fcd 3290 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3291
5cf00fcd 3292 for (i = 0; i < conf->copies; i++) {
1da177e4 3293 int d = r10_bio->devs[i].devnum;
40c356ce
N
3294 sector_t first_bad, sector;
3295 int bad_sectors;
3296
9ad1aefc
N
3297 if (r10_bio->devs[i].repl_bio)
3298 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3299
1da177e4 3300 bio = r10_bio->devs[i].bio;
8be185f2 3301 bio_reset(bio);
af03b8e4 3302 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 3303 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 3304 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4 3305 continue;
40c356ce
N
3306 sector = r10_bio->devs[i].addr;
3307 if (is_badblock(conf->mirrors[d].rdev,
3308 sector, max_sync,
3309 &first_bad, &bad_sectors)) {
3310 if (first_bad > sector)
3311 max_sync = first_bad - sector;
3312 else {
3313 bad_sectors -= (sector - first_bad);
3314 if (max_sync > bad_sectors)
91502f09 3315 max_sync = bad_sectors;
40c356ce
N
3316 continue;
3317 }
3318 }
1da177e4
LT
3319 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3320 atomic_inc(&r10_bio->remaining);
3321 bio->bi_next = biolist;
3322 biolist = bio;
3323 bio->bi_private = r10_bio;
3324 bio->bi_end_io = end_sync_read;
802ba064 3325 bio->bi_rw = READ;
40c356ce 3326 bio->bi_sector = sector +
1da177e4
LT
3327 conf->mirrors[d].rdev->data_offset;
3328 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3329 count++;
9ad1aefc
N
3330
3331 if (conf->mirrors[d].replacement == NULL ||
3332 test_bit(Faulty,
3333 &conf->mirrors[d].replacement->flags))
3334 continue;
3335
3336 /* Need to set up for writing to the replacement */
3337 bio = r10_bio->devs[i].repl_bio;
8be185f2 3338 bio_reset(bio);
9ad1aefc
N
3339 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3340
3341 sector = r10_bio->devs[i].addr;
3342 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3343 bio->bi_next = biolist;
3344 biolist = bio;
3345 bio->bi_private = r10_bio;
3346 bio->bi_end_io = end_sync_write;
3347 bio->bi_rw = WRITE;
3348 bio->bi_sector = sector +
3349 conf->mirrors[d].replacement->data_offset;
3350 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3351 count++;
1da177e4
LT
3352 }
3353
3354 if (count < 2) {
3355 for (i=0; i<conf->copies; i++) {
3356 int d = r10_bio->devs[i].devnum;
3357 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3358 rdev_dec_pending(conf->mirrors[d].rdev,
3359 mddev);
9ad1aefc
N
3360 if (r10_bio->devs[i].repl_bio &&
3361 r10_bio->devs[i].repl_bio->bi_end_io)
3362 rdev_dec_pending(
3363 conf->mirrors[d].replacement,
3364 mddev);
1da177e4
LT
3365 }
3366 put_buf(r10_bio);
3367 biolist = NULL;
3368 goto giveup;
3369 }
3370 }
3371
1da177e4 3372 nr_sectors = 0;
6cce3b23
N
3373 if (sector_nr + max_sync < max_sector)
3374 max_sector = sector_nr + max_sync;
1da177e4
LT
3375 do {
3376 struct page *page;
3377 int len = PAGE_SIZE;
1da177e4
LT
3378 if (sector_nr + (len>>9) > max_sector)
3379 len = (max_sector - sector_nr) << 9;
3380 if (len == 0)
3381 break;
3382 for (bio= biolist ; bio ; bio=bio->bi_next) {
ab9d47e9 3383 struct bio *bio2;
1da177e4 3384 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
ab9d47e9
N
3385 if (bio_add_page(bio, page, len, 0))
3386 continue;
3387
3388 /* stop here */
3389 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3390 for (bio2 = biolist;
3391 bio2 && bio2 != bio;
3392 bio2 = bio2->bi_next) {
3393 /* remove last page from this bio */
3394 bio2->bi_vcnt--;
3395 bio2->bi_size -= len;
3396 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1da177e4 3397 }
ab9d47e9 3398 goto bio_full;
1da177e4
LT
3399 }
3400 nr_sectors += len>>9;
3401 sector_nr += len>>9;
3402 } while (biolist->bi_vcnt < RESYNC_PAGES);
3403 bio_full:
3404 r10_bio->sectors = nr_sectors;
3405
3406 while (biolist) {
3407 bio = biolist;
3408 biolist = biolist->bi_next;
3409
3410 bio->bi_next = NULL;
3411 r10_bio = bio->bi_private;
3412 r10_bio->sectors = nr_sectors;
3413
3414 if (bio->bi_end_io == end_sync_read) {
3415 md_sync_acct(bio->bi_bdev, nr_sectors);
7bb23c49 3416 set_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4
LT
3417 generic_make_request(bio);
3418 }
3419 }
3420
57afd89f
N
3421 if (sectors_skipped)
3422 /* pretend they weren't skipped, it makes
3423 * no important difference in this case
3424 */
3425 md_done_sync(mddev, sectors_skipped, 1);
3426
1da177e4
LT
3427 return sectors_skipped + nr_sectors;
3428 giveup:
3429 /* There is nowhere to write, so all non-sync
e875ecea
N
3430 * drives must be failed or in resync, all drives
3431 * have a bad block, so try the next chunk...
1da177e4 3432 */
09b4068a
N
3433 if (sector_nr + max_sync < max_sector)
3434 max_sector = sector_nr + max_sync;
3435
3436 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3437 chunks_skipped ++;
3438 sector_nr = max_sector;
1da177e4 3439 goto skipped;
1da177e4
LT
3440}
3441
80c3a6ce 3442static sector_t
fd01b88c 3443raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3444{
3445 sector_t size;
e879a879 3446 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3447
3448 if (!raid_disks)
3ea7daa5
N
3449 raid_disks = min(conf->geo.raid_disks,
3450 conf->prev.raid_disks);
80c3a6ce 3451 if (!sectors)
dab8b292 3452 sectors = conf->dev_sectors;
80c3a6ce 3453
5cf00fcd
N
3454 size = sectors >> conf->geo.chunk_shift;
3455 sector_div(size, conf->geo.far_copies);
80c3a6ce 3456 size = size * raid_disks;
5cf00fcd 3457 sector_div(size, conf->geo.near_copies);
80c3a6ce 3458
5cf00fcd 3459 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3460}
3461
6508fdbf
N
3462static void calc_sectors(struct r10conf *conf, sector_t size)
3463{
3464 /* Calculate the number of sectors-per-device that will
3465 * actually be used, and set conf->dev_sectors and
3466 * conf->stride
3467 */
3468
5cf00fcd
N
3469 size = size >> conf->geo.chunk_shift;
3470 sector_div(size, conf->geo.far_copies);
3471 size = size * conf->geo.raid_disks;
3472 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3473 /* 'size' is now the number of chunks in the array */
3474 /* calculate "used chunks per device" */
3475 size = size * conf->copies;
3476
3477 /* We need to round up when dividing by raid_disks to
3478 * get the stride size.
3479 */
5cf00fcd 3480 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3481
5cf00fcd 3482 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3483
5cf00fcd
N
3484 if (conf->geo.far_offset)
3485 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3486 else {
5cf00fcd
N
3487 sector_div(size, conf->geo.far_copies);
3488 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3489 }
3490}
dab8b292 3491
deb200d0
N
3492enum geo_type {geo_new, geo_old, geo_start};
3493static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3494{
3495 int nc, fc, fo;
3496 int layout, chunk, disks;
3497 switch (new) {
3498 case geo_old:
3499 layout = mddev->layout;
3500 chunk = mddev->chunk_sectors;
3501 disks = mddev->raid_disks - mddev->delta_disks;
3502 break;
3503 case geo_new:
3504 layout = mddev->new_layout;
3505 chunk = mddev->new_chunk_sectors;
3506 disks = mddev->raid_disks;
3507 break;
3508 default: /* avoid 'may be unused' warnings */
3509 case geo_start: /* new when starting reshape - raid_disks not
3510 * updated yet. */
3511 layout = mddev->new_layout;
3512 chunk = mddev->new_chunk_sectors;
3513 disks = mddev->raid_disks + mddev->delta_disks;
3514 break;
3515 }
475901af 3516 if (layout >> 18)
deb200d0
N
3517 return -1;
3518 if (chunk < (PAGE_SIZE >> 9) ||
3519 !is_power_of_2(chunk))
3520 return -2;
3521 nc = layout & 255;
3522 fc = (layout >> 8) & 255;
3523 fo = layout & (1<<16);
3524 geo->raid_disks = disks;
3525 geo->near_copies = nc;
3526 geo->far_copies = fc;
3527 geo->far_offset = fo;
475901af 3528 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
deb200d0
N
3529 geo->chunk_mask = chunk - 1;
3530 geo->chunk_shift = ffz(~chunk);
3531 return nc*fc;
3532}
3533
e879a879 3534static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3535{
e879a879 3536 struct r10conf *conf = NULL;
dab8b292 3537 int err = -EINVAL;
deb200d0
N
3538 struct geom geo;
3539 int copies;
3540
3541 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 3542
deb200d0 3543 if (copies == -2) {
128595ed
N
3544 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3545 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3546 mdname(mddev), PAGE_SIZE);
dab8b292 3547 goto out;
1da177e4 3548 }
2604b703 3549
deb200d0 3550 if (copies < 2 || copies > mddev->raid_disks) {
128595ed 3551 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 3552 mdname(mddev), mddev->new_layout);
1da177e4
LT
3553 goto out;
3554 }
dab8b292
TM
3555
3556 err = -ENOMEM;
e879a879 3557 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3558 if (!conf)
1da177e4 3559 goto out;
dab8b292 3560
3ea7daa5 3561 /* FIXME calc properly */
dc280d98 3562 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
78eaa0d4 3563 max(0,-mddev->delta_disks)),
dab8b292
TM
3564 GFP_KERNEL);
3565 if (!conf->mirrors)
3566 goto out;
4443ae10
N
3567
3568 conf->tmppage = alloc_page(GFP_KERNEL);
3569 if (!conf->tmppage)
dab8b292
TM
3570 goto out;
3571
deb200d0
N
3572 conf->geo = geo;
3573 conf->copies = copies;
dab8b292
TM
3574 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3575 r10bio_pool_free, conf);
3576 if (!conf->r10bio_pool)
3577 goto out;
3578
6508fdbf 3579 calc_sectors(conf, mddev->dev_sectors);
3ea7daa5
N
3580 if (mddev->reshape_position == MaxSector) {
3581 conf->prev = conf->geo;
3582 conf->reshape_progress = MaxSector;
3583 } else {
3584 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3585 err = -EINVAL;
3586 goto out;
3587 }
3588 conf->reshape_progress = mddev->reshape_position;
3589 if (conf->prev.far_offset)
3590 conf->prev.stride = 1 << conf->prev.chunk_shift;
3591 else
3592 /* far_copies must be 1 */
3593 conf->prev.stride = conf->dev_sectors;
3594 }
e7e72bf6 3595 spin_lock_init(&conf->device_lock);
dab8b292
TM
3596 INIT_LIST_HEAD(&conf->retry_list);
3597
3598 spin_lock_init(&conf->resync_lock);
3599 init_waitqueue_head(&conf->wait_barrier);
3600
0232605d 3601 conf->thread = md_register_thread(raid10d, mddev, "raid10");
dab8b292
TM
3602 if (!conf->thread)
3603 goto out;
3604
dab8b292
TM
3605 conf->mddev = mddev;
3606 return conf;
3607
3608 out:
3ea7daa5
N
3609 if (err == -ENOMEM)
3610 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3611 mdname(mddev));
dab8b292
TM
3612 if (conf) {
3613 if (conf->r10bio_pool)
3614 mempool_destroy(conf->r10bio_pool);
3615 kfree(conf->mirrors);
3616 safe_put_page(conf->tmppage);
3617 kfree(conf);
3618 }
3619 return ERR_PTR(err);
3620}
3621
fd01b88c 3622static int run(struct mddev *mddev)
dab8b292 3623{
e879a879 3624 struct r10conf *conf;
dab8b292 3625 int i, disk_idx, chunk_size;
dc280d98 3626 struct raid10_info *disk;
3cb03002 3627 struct md_rdev *rdev;
dab8b292 3628 sector_t size;
3ea7daa5
N
3629 sector_t min_offset_diff = 0;
3630 int first = 1;
532a2a3f 3631 bool discard_supported = false;
dab8b292
TM
3632
3633 if (mddev->private == NULL) {
3634 conf = setup_conf(mddev);
3635 if (IS_ERR(conf))
3636 return PTR_ERR(conf);
3637 mddev->private = conf;
3638 }
3639 conf = mddev->private;
3640 if (!conf)
3641 goto out;
3642
dab8b292
TM
3643 mddev->thread = conf->thread;
3644 conf->thread = NULL;
3645
8f6c2e4b 3646 chunk_size = mddev->chunk_sectors << 9;
cc4d1efd 3647 if (mddev->queue) {
532a2a3f
SL
3648 blk_queue_max_discard_sectors(mddev->queue,
3649 mddev->chunk_sectors);
5026d7a9 3650 blk_queue_max_write_same_sectors(mddev->queue, 0);
cc4d1efd
JB
3651 blk_queue_io_min(mddev->queue, chunk_size);
3652 if (conf->geo.raid_disks % conf->geo.near_copies)
3653 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3654 else
3655 blk_queue_io_opt(mddev->queue, chunk_size *
3656 (conf->geo.raid_disks / conf->geo.near_copies));
3657 }
8f6c2e4b 3658
dafb20fa 3659 rdev_for_each(rdev, mddev) {
3ea7daa5 3660 long long diff;
aba336bd 3661 struct request_queue *q;
34b343cf 3662
1da177e4 3663 disk_idx = rdev->raid_disk;
f8c9e74f
N
3664 if (disk_idx < 0)
3665 continue;
3666 if (disk_idx >= conf->geo.raid_disks &&
3667 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
3668 continue;
3669 disk = conf->mirrors + disk_idx;
3670
56a2559b
N
3671 if (test_bit(Replacement, &rdev->flags)) {
3672 if (disk->replacement)
3673 goto out_free_conf;
3674 disk->replacement = rdev;
3675 } else {
3676 if (disk->rdev)
3677 goto out_free_conf;
3678 disk->rdev = rdev;
3679 }
aba336bd
N
3680 q = bdev_get_queue(rdev->bdev);
3681 if (q->merge_bvec_fn)
3682 mddev->merge_check_needed = 1;
3ea7daa5
N
3683 diff = (rdev->new_data_offset - rdev->data_offset);
3684 if (!mddev->reshape_backwards)
3685 diff = -diff;
3686 if (diff < 0)
3687 diff = 0;
3688 if (first || diff < min_offset_diff)
3689 min_offset_diff = diff;
56a2559b 3690
cc4d1efd
JB
3691 if (mddev->gendisk)
3692 disk_stack_limits(mddev->gendisk, rdev->bdev,
3693 rdev->data_offset << 9);
1da177e4
LT
3694
3695 disk->head_position = 0;
532a2a3f
SL
3696
3697 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3698 discard_supported = true;
1da177e4 3699 }
3ea7daa5 3700
ed30be07
JB
3701 if (mddev->queue) {
3702 if (discard_supported)
3703 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3704 mddev->queue);
3705 else
3706 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3707 mddev->queue);
3708 }
6d508242 3709 /* need to check that every block has at least one working mirror */
700c7213 3710 if (!enough(conf, -1)) {
128595ed 3711 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 3712 mdname(mddev));
1da177e4
LT
3713 goto out_free_conf;
3714 }
3715
3ea7daa5
N
3716 if (conf->reshape_progress != MaxSector) {
3717 /* must ensure that shape change is supported */
3718 if (conf->geo.far_copies != 1 &&
3719 conf->geo.far_offset == 0)
3720 goto out_free_conf;
3721 if (conf->prev.far_copies != 1 &&
78eaa0d4 3722 conf->prev.far_offset == 0)
3ea7daa5
N
3723 goto out_free_conf;
3724 }
3725
1da177e4 3726 mddev->degraded = 0;
f8c9e74f
N
3727 for (i = 0;
3728 i < conf->geo.raid_disks
3729 || i < conf->prev.raid_disks;
3730 i++) {
1da177e4
LT
3731
3732 disk = conf->mirrors + i;
3733
56a2559b
N
3734 if (!disk->rdev && disk->replacement) {
3735 /* The replacement is all we have - use it */
3736 disk->rdev = disk->replacement;
3737 disk->replacement = NULL;
3738 clear_bit(Replacement, &disk->rdev->flags);
3739 }
3740
5fd6c1dc 3741 if (!disk->rdev ||
2e333e89 3742 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
3743 disk->head_position = 0;
3744 mddev->degraded++;
8c2e870a
NB
3745 if (disk->rdev)
3746 conf->fullsync = 1;
1da177e4 3747 }
d890fa2b 3748 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
3749 }
3750
8c6ac868 3751 if (mddev->recovery_cp != MaxSector)
128595ed 3752 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
3753 " -- starting background reconstruction\n",
3754 mdname(mddev));
1da177e4 3755 printk(KERN_INFO
128595ed 3756 "md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
3757 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3758 conf->geo.raid_disks);
1da177e4
LT
3759 /*
3760 * Ok, everything is just fine now
3761 */
dab8b292
TM
3762 mddev->dev_sectors = conf->dev_sectors;
3763 size = raid10_size(mddev, 0, 0);
3764 md_set_array_sectors(mddev, size);
3765 mddev->resync_max_sectors = size;
1da177e4 3766
cc4d1efd 3767 if (mddev->queue) {
5cf00fcd 3768 int stripe = conf->geo.raid_disks *
9d8f0363 3769 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
cc4d1efd
JB
3770 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3771 mddev->queue->backing_dev_info.congested_data = mddev;
3772
3773 /* Calculate max read-ahead size.
3774 * We need to readahead at least twice a whole stripe....
3775 * maybe...
3776 */
5cf00fcd 3777 stripe /= conf->geo.near_copies;
3ea7daa5
N
3778 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3779 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
cc4d1efd 3780 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
1da177e4
LT
3781 }
3782
a91a2785
MP
3783
3784 if (md_integrity_register(mddev))
3785 goto out_free_conf;
3786
3ea7daa5
N
3787 if (conf->reshape_progress != MaxSector) {
3788 unsigned long before_length, after_length;
3789
3790 before_length = ((1 << conf->prev.chunk_shift) *
3791 conf->prev.far_copies);
3792 after_length = ((1 << conf->geo.chunk_shift) *
3793 conf->geo.far_copies);
3794
3795 if (max(before_length, after_length) > min_offset_diff) {
3796 /* This cannot work */
3797 printk("md/raid10: offset difference not enough to continue reshape\n");
3798 goto out_free_conf;
3799 }
3800 conf->offset_diff = min_offset_diff;
3801
3802 conf->reshape_safe = conf->reshape_progress;
3803 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3804 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3805 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3806 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3807 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3808 "reshape");
3809 }
3810
1da177e4
LT
3811 return 0;
3812
3813out_free_conf:
01f96c0a 3814 md_unregister_thread(&mddev->thread);
1da177e4
LT
3815 if (conf->r10bio_pool)
3816 mempool_destroy(conf->r10bio_pool);
1345b1d8 3817 safe_put_page(conf->tmppage);
990a8baf 3818 kfree(conf->mirrors);
1da177e4
LT
3819 kfree(conf);
3820 mddev->private = NULL;
3821out:
3822 return -EIO;
3823}
3824
fd01b88c 3825static int stop(struct mddev *mddev)
1da177e4 3826{
e879a879 3827 struct r10conf *conf = mddev->private;
1da177e4 3828
409c57f3
N
3829 raise_barrier(conf, 0);
3830 lower_barrier(conf);
3831
01f96c0a 3832 md_unregister_thread(&mddev->thread);
cc4d1efd
JB
3833 if (mddev->queue)
3834 /* the unplug fn references 'conf'*/
3835 blk_sync_queue(mddev->queue);
3836
1da177e4
LT
3837 if (conf->r10bio_pool)
3838 mempool_destroy(conf->r10bio_pool);
0fea7ed8 3839 safe_put_page(conf->tmppage);
990a8baf 3840 kfree(conf->mirrors);
1da177e4
LT
3841 kfree(conf);
3842 mddev->private = NULL;
3843 return 0;
3844}
3845
fd01b88c 3846static void raid10_quiesce(struct mddev *mddev, int state)
6cce3b23 3847{
e879a879 3848 struct r10conf *conf = mddev->private;
6cce3b23
N
3849
3850 switch(state) {
3851 case 1:
3852 raise_barrier(conf, 0);
3853 break;
3854 case 0:
3855 lower_barrier(conf);
3856 break;
3857 }
6cce3b23 3858}
1da177e4 3859
006a09a0
N
3860static int raid10_resize(struct mddev *mddev, sector_t sectors)
3861{
3862 /* Resize of 'far' arrays is not supported.
3863 * For 'near' and 'offset' arrays we can set the
3864 * number of sectors used to be an appropriate multiple
3865 * of the chunk size.
3866 * For 'offset', this is far_copies*chunksize.
3867 * For 'near' the multiplier is the LCM of
3868 * near_copies and raid_disks.
3869 * So if far_copies > 1 && !far_offset, fail.
3870 * Else find LCM(raid_disks, near_copy)*far_copies and
3871 * multiply by chunk_size. Then round to this number.
3872 * This is mostly done by raid10_size()
3873 */
3874 struct r10conf *conf = mddev->private;
3875 sector_t oldsize, size;
3876
f8c9e74f
N
3877 if (mddev->reshape_position != MaxSector)
3878 return -EBUSY;
3879
5cf00fcd 3880 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
3881 return -EINVAL;
3882
3883 oldsize = raid10_size(mddev, 0, 0);
3884 size = raid10_size(mddev, sectors, 0);
a4a6125a
N
3885 if (mddev->external_size &&
3886 mddev->array_sectors > size)
006a09a0 3887 return -EINVAL;
a4a6125a
N
3888 if (mddev->bitmap) {
3889 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3890 if (ret)
3891 return ret;
3892 }
3893 md_set_array_sectors(mddev, size);
006a09a0
N
3894 set_capacity(mddev->gendisk, mddev->array_sectors);
3895 revalidate_disk(mddev->gendisk);
3896 if (sectors > mddev->dev_sectors &&
3897 mddev->recovery_cp > oldsize) {
3898 mddev->recovery_cp = oldsize;
3899 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3900 }
6508fdbf
N
3901 calc_sectors(conf, sectors);
3902 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
3903 mddev->resync_max_sectors = size;
3904 return 0;
3905}
3906
fd01b88c 3907static void *raid10_takeover_raid0(struct mddev *mddev)
dab8b292 3908{
3cb03002 3909 struct md_rdev *rdev;
e879a879 3910 struct r10conf *conf;
dab8b292
TM
3911
3912 if (mddev->degraded > 0) {
128595ed
N
3913 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3914 mdname(mddev));
dab8b292
TM
3915 return ERR_PTR(-EINVAL);
3916 }
3917
dab8b292
TM
3918 /* Set new parameters */
3919 mddev->new_level = 10;
3920 /* new layout: far_copies = 1, near_copies = 2 */
3921 mddev->new_layout = (1<<8) + 2;
3922 mddev->new_chunk_sectors = mddev->chunk_sectors;
3923 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
3924 mddev->raid_disks *= 2;
3925 /* make sure it will be not marked as dirty */
3926 mddev->recovery_cp = MaxSector;
3927
3928 conf = setup_conf(mddev);
02214dc5 3929 if (!IS_ERR(conf)) {
dafb20fa 3930 rdev_for_each(rdev, mddev)
e93f68a1
N
3931 if (rdev->raid_disk >= 0)
3932 rdev->new_raid_disk = rdev->raid_disk * 2;
02214dc5
KW
3933 conf->barrier = 1;
3934 }
3935
dab8b292
TM
3936 return conf;
3937}
3938
fd01b88c 3939static void *raid10_takeover(struct mddev *mddev)
dab8b292 3940{
e373ab10 3941 struct r0conf *raid0_conf;
dab8b292
TM
3942
3943 /* raid10 can take over:
3944 * raid0 - providing it has only two drives
3945 */
3946 if (mddev->level == 0) {
3947 /* for raid0 takeover only one zone is supported */
e373ab10
N
3948 raid0_conf = mddev->private;
3949 if (raid0_conf->nr_strip_zones > 1) {
128595ed
N
3950 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3951 " with more than one zone.\n",
3952 mdname(mddev));
dab8b292
TM
3953 return ERR_PTR(-EINVAL);
3954 }
3955 return raid10_takeover_raid0(mddev);
3956 }
3957 return ERR_PTR(-EINVAL);
3958}
3959
3ea7daa5
N
3960static int raid10_check_reshape(struct mddev *mddev)
3961{
3962 /* Called when there is a request to change
3963 * - layout (to ->new_layout)
3964 * - chunk size (to ->new_chunk_sectors)
3965 * - raid_disks (by delta_disks)
3966 * or when trying to restart a reshape that was ongoing.
3967 *
3968 * We need to validate the request and possibly allocate
3969 * space if that might be an issue later.
3970 *
3971 * Currently we reject any reshape of a 'far' mode array,
3972 * allow chunk size to change if new is generally acceptable,
3973 * allow raid_disks to increase, and allow
3974 * a switch between 'near' mode and 'offset' mode.
3975 */
3976 struct r10conf *conf = mddev->private;
3977 struct geom geo;
3978
3979 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3980 return -EINVAL;
3981
3982 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3983 /* mustn't change number of copies */
3984 return -EINVAL;
3985 if (geo.far_copies > 1 && !geo.far_offset)
3986 /* Cannot switch to 'far' mode */
3987 return -EINVAL;
3988
3989 if (mddev->array_sectors & geo.chunk_mask)
3990 /* not factor of array size */
3991 return -EINVAL;
3992
3ea7daa5
N
3993 if (!enough(conf, -1))
3994 return -EINVAL;
3995
3996 kfree(conf->mirrors_new);
3997 conf->mirrors_new = NULL;
3998 if (mddev->delta_disks > 0) {
3999 /* allocate new 'mirrors' list */
4000 conf->mirrors_new = kzalloc(
dc280d98 4001 sizeof(struct raid10_info)
3ea7daa5
N
4002 *(mddev->raid_disks +
4003 mddev->delta_disks),
4004 GFP_KERNEL);
4005 if (!conf->mirrors_new)
4006 return -ENOMEM;
4007 }
4008 return 0;
4009}
4010
4011/*
4012 * Need to check if array has failed when deciding whether to:
4013 * - start an array
4014 * - remove non-faulty devices
4015 * - add a spare
4016 * - allow a reshape
4017 * This determination is simple when no reshape is happening.
4018 * However if there is a reshape, we need to carefully check
4019 * both the before and after sections.
4020 * This is because some failed devices may only affect one
4021 * of the two sections, and some non-in_sync devices may
4022 * be insync in the section most affected by failed devices.
4023 */
4024static int calc_degraded(struct r10conf *conf)
4025{
4026 int degraded, degraded2;
4027 int i;
4028
4029 rcu_read_lock();
4030 degraded = 0;
4031 /* 'prev' section first */
4032 for (i = 0; i < conf->prev.raid_disks; i++) {
4033 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4034 if (!rdev || test_bit(Faulty, &rdev->flags))
4035 degraded++;
4036 else if (!test_bit(In_sync, &rdev->flags))
4037 /* When we can reduce the number of devices in
4038 * an array, this might not contribute to
4039 * 'degraded'. It does now.
4040 */
4041 degraded++;
4042 }
4043 rcu_read_unlock();
4044 if (conf->geo.raid_disks == conf->prev.raid_disks)
4045 return degraded;
4046 rcu_read_lock();
4047 degraded2 = 0;
4048 for (i = 0; i < conf->geo.raid_disks; i++) {
4049 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4050 if (!rdev || test_bit(Faulty, &rdev->flags))
4051 degraded2++;
4052 else if (!test_bit(In_sync, &rdev->flags)) {
4053 /* If reshape is increasing the number of devices,
4054 * this section has already been recovered, so
4055 * it doesn't contribute to degraded.
4056 * else it does.
4057 */
4058 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4059 degraded2++;
4060 }
4061 }
4062 rcu_read_unlock();
4063 if (degraded2 > degraded)
4064 return degraded2;
4065 return degraded;
4066}
4067
4068static int raid10_start_reshape(struct mddev *mddev)
4069{
4070 /* A 'reshape' has been requested. This commits
4071 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4072 * This also checks if there are enough spares and adds them
4073 * to the array.
4074 * We currently require enough spares to make the final
4075 * array non-degraded. We also require that the difference
4076 * between old and new data_offset - on each device - is
4077 * enough that we never risk over-writing.
4078 */
4079
4080 unsigned long before_length, after_length;
4081 sector_t min_offset_diff = 0;
4082 int first = 1;
4083 struct geom new;
4084 struct r10conf *conf = mddev->private;
4085 struct md_rdev *rdev;
4086 int spares = 0;
bb63a701 4087 int ret;
3ea7daa5
N
4088
4089 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4090 return -EBUSY;
4091
4092 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4093 return -EINVAL;
4094
4095 before_length = ((1 << conf->prev.chunk_shift) *
4096 conf->prev.far_copies);
4097 after_length = ((1 << conf->geo.chunk_shift) *
4098 conf->geo.far_copies);
4099
4100 rdev_for_each(rdev, mddev) {
4101 if (!test_bit(In_sync, &rdev->flags)
4102 && !test_bit(Faulty, &rdev->flags))
4103 spares++;
4104 if (rdev->raid_disk >= 0) {
4105 long long diff = (rdev->new_data_offset
4106 - rdev->data_offset);
4107 if (!mddev->reshape_backwards)
4108 diff = -diff;
4109 if (diff < 0)
4110 diff = 0;
4111 if (first || diff < min_offset_diff)
4112 min_offset_diff = diff;
4113 }
4114 }
4115
4116 if (max(before_length, after_length) > min_offset_diff)
4117 return -EINVAL;
4118
4119 if (spares < mddev->delta_disks)
4120 return -EINVAL;
4121
4122 conf->offset_diff = min_offset_diff;
4123 spin_lock_irq(&conf->device_lock);
4124 if (conf->mirrors_new) {
4125 memcpy(conf->mirrors_new, conf->mirrors,
dc280d98 4126 sizeof(struct raid10_info)*conf->prev.raid_disks);
3ea7daa5
N
4127 smp_mb();
4128 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4129 conf->mirrors_old = conf->mirrors;
4130 conf->mirrors = conf->mirrors_new;
4131 conf->mirrors_new = NULL;
4132 }
4133 setup_geo(&conf->geo, mddev, geo_start);
4134 smp_mb();
4135 if (mddev->reshape_backwards) {
4136 sector_t size = raid10_size(mddev, 0, 0);
4137 if (size < mddev->array_sectors) {
4138 spin_unlock_irq(&conf->device_lock);
4139 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4140 mdname(mddev));
4141 return -EINVAL;
4142 }
4143 mddev->resync_max_sectors = size;
4144 conf->reshape_progress = size;
4145 } else
4146 conf->reshape_progress = 0;
4147 spin_unlock_irq(&conf->device_lock);
4148
bb63a701
N
4149 if (mddev->delta_disks && mddev->bitmap) {
4150 ret = bitmap_resize(mddev->bitmap,
4151 raid10_size(mddev, 0,
4152 conf->geo.raid_disks),
4153 0, 0);
4154 if (ret)
4155 goto abort;
4156 }
3ea7daa5
N
4157 if (mddev->delta_disks > 0) {
4158 rdev_for_each(rdev, mddev)
4159 if (rdev->raid_disk < 0 &&
4160 !test_bit(Faulty, &rdev->flags)) {
4161 if (raid10_add_disk(mddev, rdev) == 0) {
4162 if (rdev->raid_disk >=
4163 conf->prev.raid_disks)
4164 set_bit(In_sync, &rdev->flags);
4165 else
4166 rdev->recovery_offset = 0;
4167
4168 if (sysfs_link_rdev(mddev, rdev))
4169 /* Failure here is OK */;
4170 }
4171 } else if (rdev->raid_disk >= conf->prev.raid_disks
4172 && !test_bit(Faulty, &rdev->flags)) {
4173 /* This is a spare that was manually added */
4174 set_bit(In_sync, &rdev->flags);
4175 }
4176 }
4177 /* When a reshape changes the number of devices,
4178 * ->degraded is measured against the larger of the
4179 * pre and post numbers.
4180 */
4181 spin_lock_irq(&conf->device_lock);
4182 mddev->degraded = calc_degraded(conf);
4183 spin_unlock_irq(&conf->device_lock);
4184 mddev->raid_disks = conf->geo.raid_disks;
4185 mddev->reshape_position = conf->reshape_progress;
4186 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4187
4188 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4189 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4190 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4191 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4192
4193 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4194 "reshape");
4195 if (!mddev->sync_thread) {
bb63a701
N
4196 ret = -EAGAIN;
4197 goto abort;
3ea7daa5
N
4198 }
4199 conf->reshape_checkpoint = jiffies;
4200 md_wakeup_thread(mddev->sync_thread);
4201 md_new_event(mddev);
4202 return 0;
bb63a701
N
4203
4204abort:
4205 mddev->recovery = 0;
4206 spin_lock_irq(&conf->device_lock);
4207 conf->geo = conf->prev;
4208 mddev->raid_disks = conf->geo.raid_disks;
4209 rdev_for_each(rdev, mddev)
4210 rdev->new_data_offset = rdev->data_offset;
4211 smp_wmb();
4212 conf->reshape_progress = MaxSector;
4213 mddev->reshape_position = MaxSector;
4214 spin_unlock_irq(&conf->device_lock);
4215 return ret;
3ea7daa5
N
4216}
4217
4218/* Calculate the last device-address that could contain
4219 * any block from the chunk that includes the array-address 's'
4220 * and report the next address.
4221 * i.e. the address returned will be chunk-aligned and after
4222 * any data that is in the chunk containing 's'.
4223 */
4224static sector_t last_dev_address(sector_t s, struct geom *geo)
4225{
4226 s = (s | geo->chunk_mask) + 1;
4227 s >>= geo->chunk_shift;
4228 s *= geo->near_copies;
4229 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4230 s *= geo->far_copies;
4231 s <<= geo->chunk_shift;
4232 return s;
4233}
4234
4235/* Calculate the first device-address that could contain
4236 * any block from the chunk that includes the array-address 's'.
4237 * This too will be the start of a chunk
4238 */
4239static sector_t first_dev_address(sector_t s, struct geom *geo)
4240{
4241 s >>= geo->chunk_shift;
4242 s *= geo->near_copies;
4243 sector_div(s, geo->raid_disks);
4244 s *= geo->far_copies;
4245 s <<= geo->chunk_shift;
4246 return s;
4247}
4248
4249static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4250 int *skipped)
4251{
4252 /* We simply copy at most one chunk (smallest of old and new)
4253 * at a time, possibly less if that exceeds RESYNC_PAGES,
4254 * or we hit a bad block or something.
4255 * This might mean we pause for normal IO in the middle of
4256 * a chunk, but that is not a problem was mddev->reshape_position
4257 * can record any location.
4258 *
4259 * If we will want to write to a location that isn't
4260 * yet recorded as 'safe' (i.e. in metadata on disk) then
4261 * we need to flush all reshape requests and update the metadata.
4262 *
4263 * When reshaping forwards (e.g. to more devices), we interpret
4264 * 'safe' as the earliest block which might not have been copied
4265 * down yet. We divide this by previous stripe size and multiply
4266 * by previous stripe length to get lowest device offset that we
4267 * cannot write to yet.
4268 * We interpret 'sector_nr' as an address that we want to write to.
4269 * From this we use last_device_address() to find where we might
4270 * write to, and first_device_address on the 'safe' position.
4271 * If this 'next' write position is after the 'safe' position,
4272 * we must update the metadata to increase the 'safe' position.
4273 *
4274 * When reshaping backwards, we round in the opposite direction
4275 * and perform the reverse test: next write position must not be
4276 * less than current safe position.
4277 *
4278 * In all this the minimum difference in data offsets
4279 * (conf->offset_diff - always positive) allows a bit of slack,
4280 * so next can be after 'safe', but not by more than offset_disk
4281 *
4282 * We need to prepare all the bios here before we start any IO
4283 * to ensure the size we choose is acceptable to all devices.
4284 * The means one for each copy for write-out and an extra one for
4285 * read-in.
4286 * We store the read-in bio in ->master_bio and the others in
4287 * ->devs[x].bio and ->devs[x].repl_bio.
4288 */
4289 struct r10conf *conf = mddev->private;
4290 struct r10bio *r10_bio;
4291 sector_t next, safe, last;
4292 int max_sectors;
4293 int nr_sectors;
4294 int s;
4295 struct md_rdev *rdev;
4296 int need_flush = 0;
4297 struct bio *blist;
4298 struct bio *bio, *read_bio;
4299 int sectors_done = 0;
4300
4301 if (sector_nr == 0) {
4302 /* If restarting in the middle, skip the initial sectors */
4303 if (mddev->reshape_backwards &&
4304 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4305 sector_nr = (raid10_size(mddev, 0, 0)
4306 - conf->reshape_progress);
4307 } else if (!mddev->reshape_backwards &&
4308 conf->reshape_progress > 0)
4309 sector_nr = conf->reshape_progress;
4310 if (sector_nr) {
4311 mddev->curr_resync_completed = sector_nr;
4312 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4313 *skipped = 1;
4314 return sector_nr;
4315 }
4316 }
4317
4318 /* We don't use sector_nr to track where we are up to
4319 * as that doesn't work well for ->reshape_backwards.
4320 * So just use ->reshape_progress.
4321 */
4322 if (mddev->reshape_backwards) {
4323 /* 'next' is the earliest device address that we might
4324 * write to for this chunk in the new layout
4325 */
4326 next = first_dev_address(conf->reshape_progress - 1,
4327 &conf->geo);
4328
4329 /* 'safe' is the last device address that we might read from
4330 * in the old layout after a restart
4331 */
4332 safe = last_dev_address(conf->reshape_safe - 1,
4333 &conf->prev);
4334
4335 if (next + conf->offset_diff < safe)
4336 need_flush = 1;
4337
4338 last = conf->reshape_progress - 1;
4339 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4340 & conf->prev.chunk_mask);
4341 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4342 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4343 } else {
4344 /* 'next' is after the last device address that we
4345 * might write to for this chunk in the new layout
4346 */
4347 next = last_dev_address(conf->reshape_progress, &conf->geo);
4348
4349 /* 'safe' is the earliest device address that we might
4350 * read from in the old layout after a restart
4351 */
4352 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4353
4354 /* Need to update metadata if 'next' might be beyond 'safe'
4355 * as that would possibly corrupt data
4356 */
4357 if (next > safe + conf->offset_diff)
4358 need_flush = 1;
4359
4360 sector_nr = conf->reshape_progress;
4361 last = sector_nr | (conf->geo.chunk_mask
4362 & conf->prev.chunk_mask);
4363
4364 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4365 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4366 }
4367
4368 if (need_flush ||
4369 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4370 /* Need to update reshape_position in metadata */
4371 wait_barrier(conf);
4372 mddev->reshape_position = conf->reshape_progress;
4373 if (mddev->reshape_backwards)
4374 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4375 - conf->reshape_progress;
4376 else
4377 mddev->curr_resync_completed = conf->reshape_progress;
4378 conf->reshape_checkpoint = jiffies;
4379 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4380 md_wakeup_thread(mddev->thread);
4381 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4382 kthread_should_stop());
4383 conf->reshape_safe = mddev->reshape_position;
4384 allow_barrier(conf);
4385 }
4386
4387read_more:
4388 /* Now schedule reads for blocks from sector_nr to last */
4389 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4390 raise_barrier(conf, sectors_done != 0);
4391 atomic_set(&r10_bio->remaining, 0);
4392 r10_bio->mddev = mddev;
4393 r10_bio->sector = sector_nr;
4394 set_bit(R10BIO_IsReshape, &r10_bio->state);
4395 r10_bio->sectors = last - sector_nr + 1;
4396 rdev = read_balance(conf, r10_bio, &max_sectors);
4397 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4398
4399 if (!rdev) {
4400 /* Cannot read from here, so need to record bad blocks
4401 * on all the target devices.
4402 */
4403 // FIXME
4404 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4405 return sectors_done;
4406 }
4407
4408 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4409
4410 read_bio->bi_bdev = rdev->bdev;
4411 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4412 + rdev->data_offset);
4413 read_bio->bi_private = r10_bio;
4414 read_bio->bi_end_io = end_sync_read;
4415 read_bio->bi_rw = READ;
4416 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4417 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4418 read_bio->bi_vcnt = 0;
3ea7daa5
N
4419 read_bio->bi_size = 0;
4420 r10_bio->master_bio = read_bio;
4421 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4422
4423 /* Now find the locations in the new layout */
4424 __raid10_find_phys(&conf->geo, r10_bio);
4425
4426 blist = read_bio;
4427 read_bio->bi_next = NULL;
4428
4429 for (s = 0; s < conf->copies*2; s++) {
4430 struct bio *b;
4431 int d = r10_bio->devs[s/2].devnum;
4432 struct md_rdev *rdev2;
4433 if (s&1) {
4434 rdev2 = conf->mirrors[d].replacement;
4435 b = r10_bio->devs[s/2].repl_bio;
4436 } else {
4437 rdev2 = conf->mirrors[d].rdev;
4438 b = r10_bio->devs[s/2].bio;
4439 }
4440 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4441 continue;
8be185f2
KO
4442
4443 bio_reset(b);
3ea7daa5
N
4444 b->bi_bdev = rdev2->bdev;
4445 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4446 b->bi_private = r10_bio;
4447 b->bi_end_io = end_reshape_write;
4448 b->bi_rw = WRITE;
3ea7daa5 4449 b->bi_next = blist;
3ea7daa5
N
4450 blist = b;
4451 }
4452
4453 /* Now add as many pages as possible to all of these bios. */
4454
4455 nr_sectors = 0;
4456 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4457 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4458 int len = (max_sectors - s) << 9;
4459 if (len > PAGE_SIZE)
4460 len = PAGE_SIZE;
4461 for (bio = blist; bio ; bio = bio->bi_next) {
4462 struct bio *bio2;
4463 if (bio_add_page(bio, page, len, 0))
4464 continue;
4465
4466 /* Didn't fit, must stop */
4467 for (bio2 = blist;
4468 bio2 && bio2 != bio;
4469 bio2 = bio2->bi_next) {
4470 /* Remove last page from this bio */
4471 bio2->bi_vcnt--;
4472 bio2->bi_size -= len;
4473 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4474 }
4475 goto bio_full;
4476 }
4477 sector_nr += len >> 9;
4478 nr_sectors += len >> 9;
4479 }
4480bio_full:
4481 r10_bio->sectors = nr_sectors;
4482
4483 /* Now submit the read */
4484 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4485 atomic_inc(&r10_bio->remaining);
4486 read_bio->bi_next = NULL;
4487 generic_make_request(read_bio);
4488 sector_nr += nr_sectors;
4489 sectors_done += nr_sectors;
4490 if (sector_nr <= last)
4491 goto read_more;
4492
4493 /* Now that we have done the whole section we can
4494 * update reshape_progress
4495 */
4496 if (mddev->reshape_backwards)
4497 conf->reshape_progress -= sectors_done;
4498 else
4499 conf->reshape_progress += sectors_done;
4500
4501 return sectors_done;
4502}
4503
4504static void end_reshape_request(struct r10bio *r10_bio);
4505static int handle_reshape_read_error(struct mddev *mddev,
4506 struct r10bio *r10_bio);
4507static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4508{
4509 /* Reshape read completed. Hopefully we have a block
4510 * to write out.
4511 * If we got a read error then we do sync 1-page reads from
4512 * elsewhere until we find the data - or give up.
4513 */
4514 struct r10conf *conf = mddev->private;
4515 int s;
4516
4517 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4518 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4519 /* Reshape has been aborted */
4520 md_done_sync(mddev, r10_bio->sectors, 0);
4521 return;
4522 }
4523
4524 /* We definitely have the data in the pages, schedule the
4525 * writes.
4526 */
4527 atomic_set(&r10_bio->remaining, 1);
4528 for (s = 0; s < conf->copies*2; s++) {
4529 struct bio *b;
4530 int d = r10_bio->devs[s/2].devnum;
4531 struct md_rdev *rdev;
4532 if (s&1) {
4533 rdev = conf->mirrors[d].replacement;
4534 b = r10_bio->devs[s/2].repl_bio;
4535 } else {
4536 rdev = conf->mirrors[d].rdev;
4537 b = r10_bio->devs[s/2].bio;
4538 }
4539 if (!rdev || test_bit(Faulty, &rdev->flags))
4540 continue;
4541 atomic_inc(&rdev->nr_pending);
4542 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4543 atomic_inc(&r10_bio->remaining);
4544 b->bi_next = NULL;
4545 generic_make_request(b);
4546 }
4547 end_reshape_request(r10_bio);
4548}
4549
4550static void end_reshape(struct r10conf *conf)
4551{
4552 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4553 return;
4554
4555 spin_lock_irq(&conf->device_lock);
4556 conf->prev = conf->geo;
4557 md_finish_reshape(conf->mddev);
4558 smp_wmb();
4559 conf->reshape_progress = MaxSector;
4560 spin_unlock_irq(&conf->device_lock);
4561
4562 /* read-ahead size must cover two whole stripes, which is
4563 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4564 */
4565 if (conf->mddev->queue) {
4566 int stripe = conf->geo.raid_disks *
4567 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4568 stripe /= conf->geo.near_copies;
4569 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4570 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4571 }
4572 conf->fullsync = 0;
4573}
4574
4575
4576static int handle_reshape_read_error(struct mddev *mddev,
4577 struct r10bio *r10_bio)
4578{
4579 /* Use sync reads to get the blocks from somewhere else */
4580 int sectors = r10_bio->sectors;
3ea7daa5 4581 struct r10conf *conf = mddev->private;
e0ee7785
N
4582 struct {
4583 struct r10bio r10_bio;
4584 struct r10dev devs[conf->copies];
4585 } on_stack;
4586 struct r10bio *r10b = &on_stack.r10_bio;
3ea7daa5
N
4587 int slot = 0;
4588 int idx = 0;
4589 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4590
e0ee7785
N
4591 r10b->sector = r10_bio->sector;
4592 __raid10_find_phys(&conf->prev, r10b);
3ea7daa5
N
4593
4594 while (sectors) {
4595 int s = sectors;
4596 int success = 0;
4597 int first_slot = slot;
4598
4599 if (s > (PAGE_SIZE >> 9))
4600 s = PAGE_SIZE >> 9;
4601
4602 while (!success) {
e0ee7785 4603 int d = r10b->devs[slot].devnum;
3ea7daa5
N
4604 struct md_rdev *rdev = conf->mirrors[d].rdev;
4605 sector_t addr;
4606 if (rdev == NULL ||
4607 test_bit(Faulty, &rdev->flags) ||
4608 !test_bit(In_sync, &rdev->flags))
4609 goto failed;
4610
e0ee7785 4611 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
3ea7daa5
N
4612 success = sync_page_io(rdev,
4613 addr,
4614 s << 9,
4615 bvec[idx].bv_page,
4616 READ, false);
4617 if (success)
4618 break;
4619 failed:
4620 slot++;
4621 if (slot >= conf->copies)
4622 slot = 0;
4623 if (slot == first_slot)
4624 break;
4625 }
4626 if (!success) {
4627 /* couldn't read this block, must give up */
4628 set_bit(MD_RECOVERY_INTR,
4629 &mddev->recovery);
4630 return -EIO;
4631 }
4632 sectors -= s;
4633 idx++;
4634 }
4635 return 0;
4636}
4637
4638static void end_reshape_write(struct bio *bio, int error)
4639{
4640 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4641 struct r10bio *r10_bio = bio->bi_private;
4642 struct mddev *mddev = r10_bio->mddev;
4643 struct r10conf *conf = mddev->private;
4644 int d;
4645 int slot;
4646 int repl;
4647 struct md_rdev *rdev = NULL;
4648
4649 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4650 if (repl)
4651 rdev = conf->mirrors[d].replacement;
4652 if (!rdev) {
4653 smp_mb();
4654 rdev = conf->mirrors[d].rdev;
4655 }
4656
4657 if (!uptodate) {
4658 /* FIXME should record badblock */
4659 md_error(mddev, rdev);
4660 }
4661
4662 rdev_dec_pending(rdev, mddev);
4663 end_reshape_request(r10_bio);
4664}
4665
4666static void end_reshape_request(struct r10bio *r10_bio)
4667{
4668 if (!atomic_dec_and_test(&r10_bio->remaining))
4669 return;
4670 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4671 bio_put(r10_bio->master_bio);
4672 put_buf(r10_bio);
4673}
4674
4675static void raid10_finish_reshape(struct mddev *mddev)
4676{
4677 struct r10conf *conf = mddev->private;
4678
4679 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4680 return;
4681
4682 if (mddev->delta_disks > 0) {
4683 sector_t size = raid10_size(mddev, 0, 0);
4684 md_set_array_sectors(mddev, size);
4685 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4686 mddev->recovery_cp = mddev->resync_max_sectors;
4687 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4688 }
4689 mddev->resync_max_sectors = size;
4690 set_capacity(mddev->gendisk, mddev->array_sectors);
4691 revalidate_disk(mddev->gendisk);
63aced61
N
4692 } else {
4693 int d;
4694 for (d = conf->geo.raid_disks ;
4695 d < conf->geo.raid_disks - mddev->delta_disks;
4696 d++) {
4697 struct md_rdev *rdev = conf->mirrors[d].rdev;
4698 if (rdev)
4699 clear_bit(In_sync, &rdev->flags);
4700 rdev = conf->mirrors[d].replacement;
4701 if (rdev)
4702 clear_bit(In_sync, &rdev->flags);
4703 }
3ea7daa5
N
4704 }
4705 mddev->layout = mddev->new_layout;
4706 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4707 mddev->reshape_position = MaxSector;
4708 mddev->delta_disks = 0;
4709 mddev->reshape_backwards = 0;
4710}
4711
84fc4b56 4712static struct md_personality raid10_personality =
1da177e4
LT
4713{
4714 .name = "raid10",
2604b703 4715 .level = 10,
1da177e4
LT
4716 .owner = THIS_MODULE,
4717 .make_request = make_request,
4718 .run = run,
4719 .stop = stop,
4720 .status = status,
4721 .error_handler = error,
4722 .hot_add_disk = raid10_add_disk,
4723 .hot_remove_disk= raid10_remove_disk,
4724 .spare_active = raid10_spare_active,
4725 .sync_request = sync_request,
6cce3b23 4726 .quiesce = raid10_quiesce,
80c3a6ce 4727 .size = raid10_size,
006a09a0 4728 .resize = raid10_resize,
dab8b292 4729 .takeover = raid10_takeover,
3ea7daa5
N
4730 .check_reshape = raid10_check_reshape,
4731 .start_reshape = raid10_start_reshape,
4732 .finish_reshape = raid10_finish_reshape,
1da177e4
LT
4733};
4734
4735static int __init raid_init(void)
4736{
2604b703 4737 return register_md_personality(&raid10_personality);
1da177e4
LT
4738}
4739
4740static void raid_exit(void)
4741{
2604b703 4742 unregister_md_personality(&raid10_personality);
1da177e4
LT
4743}
4744
4745module_init(raid_init);
4746module_exit(raid_exit);
4747MODULE_LICENSE("GPL");
0efb9e61 4748MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 4749MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 4750MODULE_ALIAS("md-raid10");
2604b703 4751MODULE_ALIAS("md-level-10");
34db0cd6
N
4752
4753module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 1.45074 seconds and 5 git commands to generate.