MD: Move macros from raid1*.h to raid1*.c
[deliverable/linux.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
3ea7daa5 27#include <linux/kthread.h>
43b2e5d8 28#include "md.h"
ef740c37 29#include "raid10.h"
dab8b292 30#include "raid0.h"
ef740c37 31#include "bitmap.h"
1da177e4
LT
32
33/*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
c93983bf 40 * far_offset (stored in bit 16 of layout )
1da177e4
LT
41 *
42 * The data to be stored is divided into chunks using chunksize.
43 * Each device is divided into far_copies sections.
44 * In each section, chunks are laid out in a style similar to raid0, but
45 * near_copies copies of each chunk is stored (each on a different drive).
46 * The starting device for each section is offset near_copies from the starting
47 * device of the previous section.
c93983bf 48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
1da177e4
LT
49 * drive.
50 * near_copies and far_copies must be at least one, and their product is at most
51 * raid_disks.
c93983bf
N
52 *
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of be very far apart
55 * on disk, there are adjacent stripes.
1da177e4
LT
56 */
57
58/*
59 * Number of guaranteed r10bios in case of extreme VM load:
60 */
61#define NR_RAID10_BIOS 256
62
473e87ce
JB
63/* when we get a read error on a read-only array, we redirect to another
64 * device without failing the first device, or trying to over-write to
65 * correct the read error. To keep track of bad blocks on a per-bio
66 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
67 */
68#define IO_BLOCKED ((struct bio *)1)
69/* When we successfully write to a known bad-block, we need to remove the
70 * bad-block marking which must be done from process context. So we record
71 * the success by setting devs[n].bio to IO_MADE_GOOD
72 */
73#define IO_MADE_GOOD ((struct bio *)2)
74
75#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
76
77/* When there are this many requests queued to be written by
34db0cd6
N
78 * the raid10 thread, we become 'congested' to provide back-pressure
79 * for writeback.
80 */
81static int max_queued_requests = 1024;
82
e879a879
N
83static void allow_barrier(struct r10conf *conf);
84static void lower_barrier(struct r10conf *conf);
fae8cc5e 85static int enough(struct r10conf *conf, int ignore);
3ea7daa5
N
86static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
87 int *skipped);
88static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
89static void end_reshape_write(struct bio *bio, int error);
90static void end_reshape(struct r10conf *conf);
0a27ec96 91
dd0fc66f 92static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 93{
e879a879 94 struct r10conf *conf = data;
9f2c9d12 95 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4 96
69335ef3
N
97 /* allocate a r10bio with room for raid_disks entries in the
98 * bios array */
7eaceacc 99 return kzalloc(size, gfp_flags);
1da177e4
LT
100}
101
102static void r10bio_pool_free(void *r10_bio, void *data)
103{
104 kfree(r10_bio);
105}
106
0310fa21 107/* Maximum size of each resync request */
1da177e4 108#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 109#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
110/* amount of memory to reserve for resync requests */
111#define RESYNC_WINDOW (1024*1024)
112/* maximum number of concurrent requests, memory permitting */
113#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
114
115/*
116 * When performing a resync, we need to read and compare, so
117 * we need as many pages are there are copies.
118 * When performing a recovery, we need 2 bios, one for read,
119 * one for write (we recover only one drive per r10buf)
120 *
121 */
dd0fc66f 122static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 123{
e879a879 124 struct r10conf *conf = data;
1da177e4 125 struct page *page;
9f2c9d12 126 struct r10bio *r10_bio;
1da177e4
LT
127 struct bio *bio;
128 int i, j;
129 int nalloc;
130
131 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 132 if (!r10_bio)
1da177e4 133 return NULL;
1da177e4 134
3ea7daa5
N
135 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
136 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
1da177e4
LT
137 nalloc = conf->copies; /* resync */
138 else
139 nalloc = 2; /* recovery */
140
141 /*
142 * Allocate bios.
143 */
144 for (j = nalloc ; j-- ; ) {
6746557f 145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
146 if (!bio)
147 goto out_free_bio;
148 r10_bio->devs[j].bio = bio;
69335ef3
N
149 if (!conf->have_replacement)
150 continue;
151 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
152 if (!bio)
153 goto out_free_bio;
154 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
155 }
156 /*
157 * Allocate RESYNC_PAGES data pages and attach them
158 * where needed.
159 */
160 for (j = 0 ; j < nalloc; j++) {
69335ef3 161 struct bio *rbio = r10_bio->devs[j].repl_bio;
1da177e4
LT
162 bio = r10_bio->devs[j].bio;
163 for (i = 0; i < RESYNC_PAGES; i++) {
3ea7daa5
N
164 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
165 &conf->mddev->recovery)) {
166 /* we can share bv_page's during recovery
167 * and reshape */
c65060ad
NK
168 struct bio *rbio = r10_bio->devs[0].bio;
169 page = rbio->bi_io_vec[i].bv_page;
170 get_page(page);
171 } else
172 page = alloc_page(gfp_flags);
1da177e4
LT
173 if (unlikely(!page))
174 goto out_free_pages;
175
176 bio->bi_io_vec[i].bv_page = page;
69335ef3
N
177 if (rbio)
178 rbio->bi_io_vec[i].bv_page = page;
1da177e4
LT
179 }
180 }
181
182 return r10_bio;
183
184out_free_pages:
185 for ( ; i > 0 ; i--)
1345b1d8 186 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
187 while (j--)
188 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 189 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
5fdd2cf8 190 j = 0;
1da177e4 191out_free_bio:
5fdd2cf8 192 for ( ; j < nalloc; j++) {
193 if (r10_bio->devs[j].bio)
194 bio_put(r10_bio->devs[j].bio);
69335ef3
N
195 if (r10_bio->devs[j].repl_bio)
196 bio_put(r10_bio->devs[j].repl_bio);
197 }
1da177e4
LT
198 r10bio_pool_free(r10_bio, conf);
199 return NULL;
200}
201
202static void r10buf_pool_free(void *__r10_bio, void *data)
203{
204 int i;
e879a879 205 struct r10conf *conf = data;
9f2c9d12 206 struct r10bio *r10bio = __r10_bio;
1da177e4
LT
207 int j;
208
209 for (j=0; j < conf->copies; j++) {
210 struct bio *bio = r10bio->devs[j].bio;
211 if (bio) {
212 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 213 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
214 bio->bi_io_vec[i].bv_page = NULL;
215 }
216 bio_put(bio);
217 }
69335ef3
N
218 bio = r10bio->devs[j].repl_bio;
219 if (bio)
220 bio_put(bio);
1da177e4
LT
221 }
222 r10bio_pool_free(r10bio, conf);
223}
224
e879a879 225static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
226{
227 int i;
228
229 for (i = 0; i < conf->copies; i++) {
230 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 231 if (!BIO_SPECIAL(*bio))
1da177e4
LT
232 bio_put(*bio);
233 *bio = NULL;
69335ef3
N
234 bio = &r10_bio->devs[i].repl_bio;
235 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
236 bio_put(*bio);
237 *bio = NULL;
1da177e4
LT
238 }
239}
240
9f2c9d12 241static void free_r10bio(struct r10bio *r10_bio)
1da177e4 242{
e879a879 243 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 244
1da177e4
LT
245 put_all_bios(conf, r10_bio);
246 mempool_free(r10_bio, conf->r10bio_pool);
247}
248
9f2c9d12 249static void put_buf(struct r10bio *r10_bio)
1da177e4 250{
e879a879 251 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
252
253 mempool_free(r10_bio, conf->r10buf_pool);
254
0a27ec96 255 lower_barrier(conf);
1da177e4
LT
256}
257
9f2c9d12 258static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
259{
260 unsigned long flags;
fd01b88c 261 struct mddev *mddev = r10_bio->mddev;
e879a879 262 struct r10conf *conf = mddev->private;
1da177e4
LT
263
264 spin_lock_irqsave(&conf->device_lock, flags);
265 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 266 conf->nr_queued ++;
1da177e4
LT
267 spin_unlock_irqrestore(&conf->device_lock, flags);
268
388667be
AJ
269 /* wake up frozen array... */
270 wake_up(&conf->wait_barrier);
271
1da177e4
LT
272 md_wakeup_thread(mddev->thread);
273}
274
275/*
276 * raid_end_bio_io() is called when we have finished servicing a mirrored
277 * operation and are ready to return a success/failure code to the buffer
278 * cache layer.
279 */
9f2c9d12 280static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
281{
282 struct bio *bio = r10_bio->master_bio;
856e08e2 283 int done;
e879a879 284 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 285
856e08e2
N
286 if (bio->bi_phys_segments) {
287 unsigned long flags;
288 spin_lock_irqsave(&conf->device_lock, flags);
289 bio->bi_phys_segments--;
290 done = (bio->bi_phys_segments == 0);
291 spin_unlock_irqrestore(&conf->device_lock, flags);
292 } else
293 done = 1;
294 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
295 clear_bit(BIO_UPTODATE, &bio->bi_flags);
296 if (done) {
297 bio_endio(bio, 0);
298 /*
299 * Wake up any possible resync thread that waits for the device
300 * to go idle.
301 */
302 allow_barrier(conf);
303 }
1da177e4
LT
304 free_r10bio(r10_bio);
305}
306
307/*
308 * Update disk head position estimator based on IRQ completion info.
309 */
9f2c9d12 310static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 311{
e879a879 312 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
313
314 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
315 r10_bio->devs[slot].addr + (r10_bio->sectors);
316}
317
778ca018
NK
318/*
319 * Find the disk number which triggered given bio
320 */
e879a879 321static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 322 struct bio *bio, int *slotp, int *replp)
778ca018
NK
323{
324 int slot;
69335ef3 325 int repl = 0;
778ca018 326
69335ef3 327 for (slot = 0; slot < conf->copies; slot++) {
778ca018
NK
328 if (r10_bio->devs[slot].bio == bio)
329 break;
69335ef3
N
330 if (r10_bio->devs[slot].repl_bio == bio) {
331 repl = 1;
332 break;
333 }
334 }
778ca018
NK
335
336 BUG_ON(slot == conf->copies);
337 update_head_pos(slot, r10_bio);
338
749c55e9
N
339 if (slotp)
340 *slotp = slot;
69335ef3
N
341 if (replp)
342 *replp = repl;
778ca018
NK
343 return r10_bio->devs[slot].devnum;
344}
345
6712ecf8 346static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
347{
348 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 349 struct r10bio *r10_bio = bio->bi_private;
1da177e4 350 int slot, dev;
abbf098e 351 struct md_rdev *rdev;
e879a879 352 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 353
1da177e4
LT
354
355 slot = r10_bio->read_slot;
356 dev = r10_bio->devs[slot].devnum;
abbf098e 357 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
358 /*
359 * this branch is our 'one mirror IO has finished' event handler:
360 */
4443ae10
N
361 update_head_pos(slot, r10_bio);
362
363 if (uptodate) {
1da177e4
LT
364 /*
365 * Set R10BIO_Uptodate in our master bio, so that
366 * we will return a good error code to the higher
367 * levels even if IO on some other mirrored buffer fails.
368 *
369 * The 'master' represents the composite IO operation to
370 * user-side. So if something waits for IO, then it will
371 * wait for the 'master' bio.
372 */
373 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
374 } else {
375 /* If all other devices that store this block have
376 * failed, we want to return the error upwards rather
377 * than fail the last device. Here we redefine
378 * "uptodate" to mean "Don't want to retry"
379 */
380 unsigned long flags;
381 spin_lock_irqsave(&conf->device_lock, flags);
382 if (!enough(conf, rdev->raid_disk))
383 uptodate = 1;
384 spin_unlock_irqrestore(&conf->device_lock, flags);
385 }
386 if (uptodate) {
1da177e4 387 raid_end_bio_io(r10_bio);
abbf098e 388 rdev_dec_pending(rdev, conf->mddev);
4443ae10 389 } else {
1da177e4 390 /*
7c4e06ff 391 * oops, read error - keep the refcount on the rdev
1da177e4
LT
392 */
393 char b[BDEVNAME_SIZE];
8bda470e
CD
394 printk_ratelimited(KERN_ERR
395 "md/raid10:%s: %s: rescheduling sector %llu\n",
396 mdname(conf->mddev),
abbf098e 397 bdevname(rdev->bdev, b),
8bda470e 398 (unsigned long long)r10_bio->sector);
856e08e2 399 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
400 reschedule_retry(r10_bio);
401 }
1da177e4
LT
402}
403
9f2c9d12 404static void close_write(struct r10bio *r10_bio)
bd870a16
N
405{
406 /* clear the bitmap if all writes complete successfully */
407 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
408 r10_bio->sectors,
409 !test_bit(R10BIO_Degraded, &r10_bio->state),
410 0);
411 md_write_end(r10_bio->mddev);
412}
413
9f2c9d12 414static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
415{
416 if (atomic_dec_and_test(&r10_bio->remaining)) {
417 if (test_bit(R10BIO_WriteError, &r10_bio->state))
418 reschedule_retry(r10_bio);
419 else {
420 close_write(r10_bio);
421 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
422 reschedule_retry(r10_bio);
423 else
424 raid_end_bio_io(r10_bio);
425 }
426 }
427}
428
6712ecf8 429static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
430{
431 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 432 struct r10bio *r10_bio = bio->bi_private;
778ca018 433 int dev;
749c55e9 434 int dec_rdev = 1;
e879a879 435 struct r10conf *conf = r10_bio->mddev->private;
475b0321 436 int slot, repl;
4ca40c2c 437 struct md_rdev *rdev = NULL;
1da177e4 438
475b0321 439 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 440
475b0321
N
441 if (repl)
442 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
443 if (!rdev) {
444 smp_rmb();
445 repl = 0;
475b0321 446 rdev = conf->mirrors[dev].rdev;
4ca40c2c 447 }
1da177e4
LT
448 /*
449 * this branch is our 'one mirror IO has finished' event handler:
450 */
6cce3b23 451 if (!uptodate) {
475b0321
N
452 if (repl)
453 /* Never record new bad blocks to replacement,
454 * just fail it.
455 */
456 md_error(rdev->mddev, rdev);
457 else {
458 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
459 if (!test_and_set_bit(WantReplacement, &rdev->flags))
460 set_bit(MD_RECOVERY_NEEDED,
461 &rdev->mddev->recovery);
475b0321
N
462 set_bit(R10BIO_WriteError, &r10_bio->state);
463 dec_rdev = 0;
464 }
749c55e9 465 } else {
1da177e4
LT
466 /*
467 * Set R10BIO_Uptodate in our master bio, so that
468 * we will return a good error code for to the higher
469 * levels even if IO on some other mirrored buffer fails.
470 *
471 * The 'master' represents the composite IO operation to
472 * user-side. So if something waits for IO, then it will
473 * wait for the 'master' bio.
474 */
749c55e9
N
475 sector_t first_bad;
476 int bad_sectors;
477
1da177e4
LT
478 set_bit(R10BIO_Uptodate, &r10_bio->state);
479
749c55e9 480 /* Maybe we can clear some bad blocks. */
475b0321 481 if (is_badblock(rdev,
749c55e9
N
482 r10_bio->devs[slot].addr,
483 r10_bio->sectors,
484 &first_bad, &bad_sectors)) {
485 bio_put(bio);
475b0321
N
486 if (repl)
487 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
488 else
489 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
490 dec_rdev = 0;
491 set_bit(R10BIO_MadeGood, &r10_bio->state);
492 }
493 }
494
1da177e4
LT
495 /*
496 *
497 * Let's see if all mirrored write operations have finished
498 * already.
499 */
19d5f834 500 one_write_done(r10_bio);
749c55e9
N
501 if (dec_rdev)
502 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
1da177e4
LT
503}
504
1da177e4
LT
505/*
506 * RAID10 layout manager
25985edc 507 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
508 * parameters: near_copies and far_copies.
509 * near_copies * far_copies must be <= raid_disks.
510 * Normally one of these will be 1.
511 * If both are 1, we get raid0.
512 * If near_copies == raid_disks, we get raid1.
513 *
25985edc 514 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
515 * first chunk, followed by near_copies copies of the next chunk and
516 * so on.
517 * If far_copies > 1, then after 1/far_copies of the array has been assigned
518 * as described above, we start again with a device offset of near_copies.
519 * So we effectively have another copy of the whole array further down all
520 * the drives, but with blocks on different drives.
521 * With this layout, and block is never stored twice on the one device.
522 *
523 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 524 * on each device that it is on.
1da177e4
LT
525 *
526 * raid10_find_virt does the reverse mapping, from a device and a
527 * sector offset to a virtual address
528 */
529
f8c9e74f 530static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
531{
532 int n,f;
533 sector_t sector;
534 sector_t chunk;
535 sector_t stripe;
536 int dev;
1da177e4
LT
537 int slot = 0;
538
539 /* now calculate first sector/dev */
5cf00fcd
N
540 chunk = r10bio->sector >> geo->chunk_shift;
541 sector = r10bio->sector & geo->chunk_mask;
1da177e4 542
5cf00fcd 543 chunk *= geo->near_copies;
1da177e4 544 stripe = chunk;
5cf00fcd
N
545 dev = sector_div(stripe, geo->raid_disks);
546 if (geo->far_offset)
547 stripe *= geo->far_copies;
1da177e4 548
5cf00fcd 549 sector += stripe << geo->chunk_shift;
1da177e4
LT
550
551 /* and calculate all the others */
5cf00fcd 552 for (n = 0; n < geo->near_copies; n++) {
1da177e4
LT
553 int d = dev;
554 sector_t s = sector;
555 r10bio->devs[slot].addr = sector;
556 r10bio->devs[slot].devnum = d;
557 slot++;
558
5cf00fcd
N
559 for (f = 1; f < geo->far_copies; f++) {
560 d += geo->near_copies;
561 if (d >= geo->raid_disks)
562 d -= geo->raid_disks;
563 s += geo->stride;
1da177e4
LT
564 r10bio->devs[slot].devnum = d;
565 r10bio->devs[slot].addr = s;
566 slot++;
567 }
568 dev++;
5cf00fcd 569 if (dev >= geo->raid_disks) {
1da177e4 570 dev = 0;
5cf00fcd 571 sector += (geo->chunk_mask + 1);
1da177e4
LT
572 }
573 }
f8c9e74f
N
574}
575
576static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
577{
578 struct geom *geo = &conf->geo;
579
580 if (conf->reshape_progress != MaxSector &&
581 ((r10bio->sector >= conf->reshape_progress) !=
582 conf->mddev->reshape_backwards)) {
583 set_bit(R10BIO_Previous, &r10bio->state);
584 geo = &conf->prev;
585 } else
586 clear_bit(R10BIO_Previous, &r10bio->state);
587
588 __raid10_find_phys(geo, r10bio);
1da177e4
LT
589}
590
e879a879 591static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
592{
593 sector_t offset, chunk, vchunk;
f8c9e74f
N
594 /* Never use conf->prev as this is only called during resync
595 * or recovery, so reshape isn't happening
596 */
5cf00fcd 597 struct geom *geo = &conf->geo;
1da177e4 598
5cf00fcd
N
599 offset = sector & geo->chunk_mask;
600 if (geo->far_offset) {
c93983bf 601 int fc;
5cf00fcd
N
602 chunk = sector >> geo->chunk_shift;
603 fc = sector_div(chunk, geo->far_copies);
604 dev -= fc * geo->near_copies;
c93983bf 605 if (dev < 0)
5cf00fcd 606 dev += geo->raid_disks;
c93983bf 607 } else {
5cf00fcd
N
608 while (sector >= geo->stride) {
609 sector -= geo->stride;
610 if (dev < geo->near_copies)
611 dev += geo->raid_disks - geo->near_copies;
c93983bf 612 else
5cf00fcd 613 dev -= geo->near_copies;
c93983bf 614 }
5cf00fcd 615 chunk = sector >> geo->chunk_shift;
c93983bf 616 }
5cf00fcd
N
617 vchunk = chunk * geo->raid_disks + dev;
618 sector_div(vchunk, geo->near_copies);
619 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
620}
621
622/**
623 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
624 * @q: request queue
cc371e66 625 * @bvm: properties of new bio
1da177e4
LT
626 * @biovec: the request that could be merged to it.
627 *
628 * Return amount of bytes we can accept at this offset
050b6615
N
629 * This requires checking for end-of-chunk if near_copies != raid_disks,
630 * and for subordinate merge_bvec_fns if merge_check_needed.
1da177e4 631 */
cc371e66
AK
632static int raid10_mergeable_bvec(struct request_queue *q,
633 struct bvec_merge_data *bvm,
634 struct bio_vec *biovec)
1da177e4 635{
fd01b88c 636 struct mddev *mddev = q->queuedata;
050b6615 637 struct r10conf *conf = mddev->private;
cc371e66 638 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4 639 int max;
3ea7daa5 640 unsigned int chunk_sectors;
cc371e66 641 unsigned int bio_sectors = bvm->bi_size >> 9;
5cf00fcd 642 struct geom *geo = &conf->geo;
1da177e4 643
3ea7daa5 644 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
f8c9e74f
N
645 if (conf->reshape_progress != MaxSector &&
646 ((sector >= conf->reshape_progress) !=
647 conf->mddev->reshape_backwards))
648 geo = &conf->prev;
649
5cf00fcd 650 if (geo->near_copies < geo->raid_disks) {
050b6615
N
651 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
652 + bio_sectors)) << 9;
653 if (max < 0)
654 /* bio_add cannot handle a negative return */
655 max = 0;
656 if (max <= biovec->bv_len && bio_sectors == 0)
657 return biovec->bv_len;
658 } else
659 max = biovec->bv_len;
660
661 if (mddev->merge_check_needed) {
662 struct r10bio r10_bio;
663 int s;
f8c9e74f
N
664 if (conf->reshape_progress != MaxSector) {
665 /* Cannot give any guidance during reshape */
666 if (max <= biovec->bv_len && bio_sectors == 0)
667 return biovec->bv_len;
668 return 0;
669 }
050b6615
N
670 r10_bio.sector = sector;
671 raid10_find_phys(conf, &r10_bio);
672 rcu_read_lock();
673 for (s = 0; s < conf->copies; s++) {
674 int disk = r10_bio.devs[s].devnum;
675 struct md_rdev *rdev = rcu_dereference(
676 conf->mirrors[disk].rdev);
677 if (rdev && !test_bit(Faulty, &rdev->flags)) {
678 struct request_queue *q =
679 bdev_get_queue(rdev->bdev);
680 if (q->merge_bvec_fn) {
681 bvm->bi_sector = r10_bio.devs[s].addr
682 + rdev->data_offset;
683 bvm->bi_bdev = rdev->bdev;
684 max = min(max, q->merge_bvec_fn(
685 q, bvm, biovec));
686 }
687 }
688 rdev = rcu_dereference(conf->mirrors[disk].replacement);
689 if (rdev && !test_bit(Faulty, &rdev->flags)) {
690 struct request_queue *q =
691 bdev_get_queue(rdev->bdev);
692 if (q->merge_bvec_fn) {
693 bvm->bi_sector = r10_bio.devs[s].addr
694 + rdev->data_offset;
695 bvm->bi_bdev = rdev->bdev;
696 max = min(max, q->merge_bvec_fn(
697 q, bvm, biovec));
698 }
699 }
700 }
701 rcu_read_unlock();
702 }
703 return max;
1da177e4
LT
704}
705
706/*
707 * This routine returns the disk from which the requested read should
708 * be done. There is a per-array 'next expected sequential IO' sector
709 * number - if this matches on the next IO then we use the last disk.
710 * There is also a per-disk 'last know head position' sector that is
711 * maintained from IRQ contexts, both the normal and the resync IO
712 * completion handlers update this position correctly. If there is no
713 * perfect sequential match then we pick the disk whose head is closest.
714 *
715 * If there are 2 mirrors in the same 2 devices, performance degrades
716 * because position is mirror, not device based.
717 *
718 * The rdev for the device selected will have nr_pending incremented.
719 */
720
721/*
722 * FIXME: possibly should rethink readbalancing and do it differently
723 * depending on near_copies / far_copies geometry.
724 */
96c3fd1f
N
725static struct md_rdev *read_balance(struct r10conf *conf,
726 struct r10bio *r10_bio,
727 int *max_sectors)
1da177e4 728{
af3a2cd6 729 const sector_t this_sector = r10_bio->sector;
56d99121 730 int disk, slot;
856e08e2
N
731 int sectors = r10_bio->sectors;
732 int best_good_sectors;
56d99121 733 sector_t new_distance, best_dist;
3bbae04b 734 struct md_rdev *best_rdev, *rdev = NULL;
56d99121
N
735 int do_balance;
736 int best_slot;
5cf00fcd 737 struct geom *geo = &conf->geo;
1da177e4
LT
738
739 raid10_find_phys(conf, r10_bio);
740 rcu_read_lock();
56d99121 741retry:
856e08e2 742 sectors = r10_bio->sectors;
56d99121 743 best_slot = -1;
abbf098e 744 best_rdev = NULL;
56d99121 745 best_dist = MaxSector;
856e08e2 746 best_good_sectors = 0;
56d99121 747 do_balance = 1;
1da177e4
LT
748 /*
749 * Check if we can balance. We can balance on the whole
6cce3b23
N
750 * device if no resync is going on (recovery is ok), or below
751 * the resync window. We take the first readable disk when
752 * above the resync window.
1da177e4
LT
753 */
754 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
755 && (this_sector + sectors >= conf->next_resync))
756 do_balance = 0;
1da177e4 757
56d99121 758 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
759 sector_t first_bad;
760 int bad_sectors;
761 sector_t dev_sector;
762
56d99121
N
763 if (r10_bio->devs[slot].bio == IO_BLOCKED)
764 continue;
1da177e4 765 disk = r10_bio->devs[slot].devnum;
abbf098e
N
766 rdev = rcu_dereference(conf->mirrors[disk].replacement);
767 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
050b6615 768 test_bit(Unmerged, &rdev->flags) ||
abbf098e
N
769 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
770 rdev = rcu_dereference(conf->mirrors[disk].rdev);
050b6615
N
771 if (rdev == NULL ||
772 test_bit(Faulty, &rdev->flags) ||
773 test_bit(Unmerged, &rdev->flags))
abbf098e
N
774 continue;
775 if (!test_bit(In_sync, &rdev->flags) &&
776 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
777 continue;
778
856e08e2
N
779 dev_sector = r10_bio->devs[slot].addr;
780 if (is_badblock(rdev, dev_sector, sectors,
781 &first_bad, &bad_sectors)) {
782 if (best_dist < MaxSector)
783 /* Already have a better slot */
784 continue;
785 if (first_bad <= dev_sector) {
786 /* Cannot read here. If this is the
787 * 'primary' device, then we must not read
788 * beyond 'bad_sectors' from another device.
789 */
790 bad_sectors -= (dev_sector - first_bad);
791 if (!do_balance && sectors > bad_sectors)
792 sectors = bad_sectors;
793 if (best_good_sectors > sectors)
794 best_good_sectors = sectors;
795 } else {
796 sector_t good_sectors =
797 first_bad - dev_sector;
798 if (good_sectors > best_good_sectors) {
799 best_good_sectors = good_sectors;
800 best_slot = slot;
abbf098e 801 best_rdev = rdev;
856e08e2
N
802 }
803 if (!do_balance)
804 /* Must read from here */
805 break;
806 }
807 continue;
808 } else
809 best_good_sectors = sectors;
810
56d99121
N
811 if (!do_balance)
812 break;
1da177e4 813
22dfdf52
N
814 /* This optimisation is debatable, and completely destroys
815 * sequential read speed for 'far copies' arrays. So only
816 * keep it for 'near' arrays, and review those later.
817 */
5cf00fcd 818 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
1da177e4 819 break;
8ed3a195
KS
820
821 /* for far > 1 always use the lowest address */
5cf00fcd 822 if (geo->far_copies > 1)
56d99121 823 new_distance = r10_bio->devs[slot].addr;
8ed3a195 824 else
56d99121
N
825 new_distance = abs(r10_bio->devs[slot].addr -
826 conf->mirrors[disk].head_position);
827 if (new_distance < best_dist) {
828 best_dist = new_distance;
829 best_slot = slot;
abbf098e 830 best_rdev = rdev;
1da177e4
LT
831 }
832 }
abbf098e 833 if (slot >= conf->copies) {
56d99121 834 slot = best_slot;
abbf098e
N
835 rdev = best_rdev;
836 }
1da177e4 837
56d99121 838 if (slot >= 0) {
56d99121
N
839 atomic_inc(&rdev->nr_pending);
840 if (test_bit(Faulty, &rdev->flags)) {
841 /* Cannot risk returning a device that failed
842 * before we inc'ed nr_pending
843 */
844 rdev_dec_pending(rdev, conf->mddev);
845 goto retry;
846 }
847 r10_bio->read_slot = slot;
848 } else
96c3fd1f 849 rdev = NULL;
1da177e4 850 rcu_read_unlock();
856e08e2 851 *max_sectors = best_good_sectors;
1da177e4 852
96c3fd1f 853 return rdev;
1da177e4
LT
854}
855
0d129228
N
856static int raid10_congested(void *data, int bits)
857{
fd01b88c 858 struct mddev *mddev = data;
e879a879 859 struct r10conf *conf = mddev->private;
0d129228
N
860 int i, ret = 0;
861
34db0cd6
N
862 if ((bits & (1 << BDI_async_congested)) &&
863 conf->pending_count >= max_queued_requests)
864 return 1;
865
3fa841d7
N
866 if (mddev_congested(mddev, bits))
867 return 1;
0d129228 868 rcu_read_lock();
f8c9e74f
N
869 for (i = 0;
870 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
871 && ret == 0;
872 i++) {
3cb03002 873 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 874 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 875 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
876
877 ret |= bdi_congested(&q->backing_dev_info, bits);
878 }
879 }
880 rcu_read_unlock();
881 return ret;
882}
883
e879a879 884static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
885{
886 /* Any writes that have been queued but are awaiting
887 * bitmap updates get flushed here.
a35e63ef 888 */
a35e63ef
N
889 spin_lock_irq(&conf->device_lock);
890
891 if (conf->pending_bio_list.head) {
892 struct bio *bio;
893 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 894 conf->pending_count = 0;
a35e63ef
N
895 spin_unlock_irq(&conf->device_lock);
896 /* flush any pending bitmap writes to disk
897 * before proceeding w/ I/O */
898 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 899 wake_up(&conf->wait_barrier);
a35e63ef
N
900
901 while (bio) { /* submit pending writes */
902 struct bio *next = bio->bi_next;
903 bio->bi_next = NULL;
904 generic_make_request(bio);
905 bio = next;
906 }
a35e63ef
N
907 } else
908 spin_unlock_irq(&conf->device_lock);
a35e63ef 909}
7eaceacc 910
0a27ec96
N
911/* Barriers....
912 * Sometimes we need to suspend IO while we do something else,
913 * either some resync/recovery, or reconfigure the array.
914 * To do this we raise a 'barrier'.
915 * The 'barrier' is a counter that can be raised multiple times
916 * to count how many activities are happening which preclude
917 * normal IO.
918 * We can only raise the barrier if there is no pending IO.
919 * i.e. if nr_pending == 0.
920 * We choose only to raise the barrier if no-one is waiting for the
921 * barrier to go down. This means that as soon as an IO request
922 * is ready, no other operations which require a barrier will start
923 * until the IO request has had a chance.
924 *
925 * So: regular IO calls 'wait_barrier'. When that returns there
926 * is no backgroup IO happening, It must arrange to call
927 * allow_barrier when it has finished its IO.
928 * backgroup IO calls must call raise_barrier. Once that returns
929 * there is no normal IO happeing. It must arrange to call
930 * lower_barrier when the particular background IO completes.
1da177e4 931 */
1da177e4 932
e879a879 933static void raise_barrier(struct r10conf *conf, int force)
1da177e4 934{
6cce3b23 935 BUG_ON(force && !conf->barrier);
1da177e4 936 spin_lock_irq(&conf->resync_lock);
0a27ec96 937
6cce3b23
N
938 /* Wait until no block IO is waiting (unless 'force') */
939 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
c3b328ac 940 conf->resync_lock, );
0a27ec96
N
941
942 /* block any new IO from starting */
943 conf->barrier++;
944
c3b328ac 945 /* Now wait for all pending IO to complete */
0a27ec96
N
946 wait_event_lock_irq(conf->wait_barrier,
947 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
c3b328ac 948 conf->resync_lock, );
0a27ec96
N
949
950 spin_unlock_irq(&conf->resync_lock);
951}
952
e879a879 953static void lower_barrier(struct r10conf *conf)
0a27ec96
N
954{
955 unsigned long flags;
956 spin_lock_irqsave(&conf->resync_lock, flags);
957 conf->barrier--;
958 spin_unlock_irqrestore(&conf->resync_lock, flags);
959 wake_up(&conf->wait_barrier);
960}
961
e879a879 962static void wait_barrier(struct r10conf *conf)
0a27ec96
N
963{
964 spin_lock_irq(&conf->resync_lock);
965 if (conf->barrier) {
966 conf->nr_waiting++;
d6b42dcb
N
967 /* Wait for the barrier to drop.
968 * However if there are already pending
969 * requests (preventing the barrier from
970 * rising completely), and the
971 * pre-process bio queue isn't empty,
972 * then don't wait, as we need to empty
973 * that queue to get the nr_pending
974 * count down.
975 */
976 wait_event_lock_irq(conf->wait_barrier,
977 !conf->barrier ||
978 (conf->nr_pending &&
979 current->bio_list &&
980 !bio_list_empty(current->bio_list)),
0a27ec96 981 conf->resync_lock,
d6b42dcb 982 );
0a27ec96 983 conf->nr_waiting--;
1da177e4 984 }
0a27ec96 985 conf->nr_pending++;
1da177e4
LT
986 spin_unlock_irq(&conf->resync_lock);
987}
988
e879a879 989static void allow_barrier(struct r10conf *conf)
0a27ec96
N
990{
991 unsigned long flags;
992 spin_lock_irqsave(&conf->resync_lock, flags);
993 conf->nr_pending--;
994 spin_unlock_irqrestore(&conf->resync_lock, flags);
995 wake_up(&conf->wait_barrier);
996}
997
e879a879 998static void freeze_array(struct r10conf *conf)
4443ae10
N
999{
1000 /* stop syncio and normal IO and wait for everything to
f188593e 1001 * go quiet.
4443ae10 1002 * We increment barrier and nr_waiting, and then
1c830532
N
1003 * wait until nr_pending match nr_queued+1
1004 * This is called in the context of one normal IO request
1005 * that has failed. Thus any sync request that might be pending
1006 * will be blocked by nr_pending, and we need to wait for
1007 * pending IO requests to complete or be queued for re-try.
1008 * Thus the number queued (nr_queued) plus this request (1)
1009 * must match the number of pending IOs (nr_pending) before
1010 * we continue.
4443ae10
N
1011 */
1012 spin_lock_irq(&conf->resync_lock);
1013 conf->barrier++;
1014 conf->nr_waiting++;
1015 wait_event_lock_irq(conf->wait_barrier,
1c830532 1016 conf->nr_pending == conf->nr_queued+1,
4443ae10 1017 conf->resync_lock,
c3b328ac
N
1018 flush_pending_writes(conf));
1019
4443ae10
N
1020 spin_unlock_irq(&conf->resync_lock);
1021}
1022
e879a879 1023static void unfreeze_array(struct r10conf *conf)
4443ae10
N
1024{
1025 /* reverse the effect of the freeze */
1026 spin_lock_irq(&conf->resync_lock);
1027 conf->barrier--;
1028 conf->nr_waiting--;
1029 wake_up(&conf->wait_barrier);
1030 spin_unlock_irq(&conf->resync_lock);
1031}
1032
f8c9e74f
N
1033static sector_t choose_data_offset(struct r10bio *r10_bio,
1034 struct md_rdev *rdev)
1035{
1036 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1037 test_bit(R10BIO_Previous, &r10_bio->state))
1038 return rdev->data_offset;
1039 else
1040 return rdev->new_data_offset;
1041}
1042
b4fdcb02 1043static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1044{
e879a879 1045 struct r10conf *conf = mddev->private;
9f2c9d12 1046 struct r10bio *r10_bio;
1da177e4
LT
1047 struct bio *read_bio;
1048 int i;
f8c9e74f 1049 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
5cf00fcd 1050 int chunk_sects = chunk_mask + 1;
a362357b 1051 const int rw = bio_data_dir(bio);
2c7d46ec 1052 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1053 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
6cce3b23 1054 unsigned long flags;
3cb03002 1055 struct md_rdev *blocked_rdev;
d4432c23
N
1056 int sectors_handled;
1057 int max_sectors;
3ea7daa5 1058 int sectors;
1da177e4 1059
e9c7469b
TH
1060 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1061 md_flush_request(mddev, bio);
5a7bbad2 1062 return;
e5dcdd80
N
1063 }
1064
1da177e4
LT
1065 /* If this request crosses a chunk boundary, we need to
1066 * split it. This will only happen for 1 PAGE (or less) requests.
1067 */
5cf00fcd
N
1068 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1069 > chunk_sects
f8c9e74f
N
1070 && (conf->geo.near_copies < conf->geo.raid_disks
1071 || conf->prev.near_copies < conf->prev.raid_disks))) {
1da177e4
LT
1072 struct bio_pair *bp;
1073 /* Sanity check -- queue functions should prevent this happening */
1074 if (bio->bi_vcnt != 1 ||
1075 bio->bi_idx != 0)
1076 goto bad_map;
1077 /* This is a one page bio that upper layers
1078 * refuse to split for us, so we need to split it.
1079 */
6feef531 1080 bp = bio_split(bio,
1da177e4 1081 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
51e9ac77
N
1082
1083 /* Each of these 'make_request' calls will call 'wait_barrier'.
1084 * If the first succeeds but the second blocks due to the resync
1085 * thread raising the barrier, we will deadlock because the
1086 * IO to the underlying device will be queued in generic_make_request
1087 * and will never complete, so will never reduce nr_pending.
1088 * So increment nr_waiting here so no new raise_barriers will
1089 * succeed, and so the second wait_barrier cannot block.
1090 */
1091 spin_lock_irq(&conf->resync_lock);
1092 conf->nr_waiting++;
1093 spin_unlock_irq(&conf->resync_lock);
1094
5a7bbad2
CH
1095 make_request(mddev, &bp->bio1);
1096 make_request(mddev, &bp->bio2);
1da177e4 1097
51e9ac77
N
1098 spin_lock_irq(&conf->resync_lock);
1099 conf->nr_waiting--;
1100 wake_up(&conf->wait_barrier);
1101 spin_unlock_irq(&conf->resync_lock);
1102
1da177e4 1103 bio_pair_release(bp);
5a7bbad2 1104 return;
1da177e4 1105 bad_map:
128595ed
N
1106 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1107 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1da177e4
LT
1108 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1109
6712ecf8 1110 bio_io_error(bio);
5a7bbad2 1111 return;
1da177e4
LT
1112 }
1113
3d310eb7 1114 md_write_start(mddev, bio);
06d91a5f 1115
1da177e4
LT
1116 /*
1117 * Register the new request and wait if the reconstruction
1118 * thread has put up a bar for new requests.
1119 * Continue immediately if no resync is active currently.
1120 */
0a27ec96 1121 wait_barrier(conf);
1da177e4 1122
3ea7daa5
N
1123 sectors = bio->bi_size >> 9;
1124 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1125 bio->bi_sector < conf->reshape_progress &&
1126 bio->bi_sector + sectors > conf->reshape_progress) {
1127 /* IO spans the reshape position. Need to wait for
1128 * reshape to pass
1129 */
1130 allow_barrier(conf);
1131 wait_event(conf->wait_barrier,
1132 conf->reshape_progress <= bio->bi_sector ||
1133 conf->reshape_progress >= bio->bi_sector + sectors);
1134 wait_barrier(conf);
1135 }
1136 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1137 bio_data_dir(bio) == WRITE &&
1138 (mddev->reshape_backwards
1139 ? (bio->bi_sector < conf->reshape_safe &&
1140 bio->bi_sector + sectors > conf->reshape_progress)
1141 : (bio->bi_sector + sectors > conf->reshape_safe &&
1142 bio->bi_sector < conf->reshape_progress))) {
1143 /* Need to update reshape_position in metadata */
1144 mddev->reshape_position = conf->reshape_progress;
1145 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1146 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1147 md_wakeup_thread(mddev->thread);
1148 wait_event(mddev->sb_wait,
1149 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1150
1151 conf->reshape_safe = mddev->reshape_position;
1152 }
1153
1da177e4
LT
1154 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1155
1156 r10_bio->master_bio = bio;
3ea7daa5 1157 r10_bio->sectors = sectors;
1da177e4
LT
1158
1159 r10_bio->mddev = mddev;
1160 r10_bio->sector = bio->bi_sector;
6cce3b23 1161 r10_bio->state = 0;
1da177e4 1162
856e08e2
N
1163 /* We might need to issue multiple reads to different
1164 * devices if there are bad blocks around, so we keep
1165 * track of the number of reads in bio->bi_phys_segments.
1166 * If this is 0, there is only one r10_bio and no locking
1167 * will be needed when the request completes. If it is
1168 * non-zero, then it is the number of not-completed requests.
1169 */
1170 bio->bi_phys_segments = 0;
1171 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1172
a362357b 1173 if (rw == READ) {
1da177e4
LT
1174 /*
1175 * read balancing logic:
1176 */
96c3fd1f 1177 struct md_rdev *rdev;
856e08e2
N
1178 int slot;
1179
1180read_again:
96c3fd1f
N
1181 rdev = read_balance(conf, r10_bio, &max_sectors);
1182 if (!rdev) {
1da177e4 1183 raid_end_bio_io(r10_bio);
5a7bbad2 1184 return;
1da177e4 1185 }
96c3fd1f 1186 slot = r10_bio->read_slot;
1da177e4 1187
a167f663 1188 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
856e08e2
N
1189 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1190 max_sectors);
1da177e4
LT
1191
1192 r10_bio->devs[slot].bio = read_bio;
abbf098e 1193 r10_bio->devs[slot].rdev = rdev;
1da177e4
LT
1194
1195 read_bio->bi_sector = r10_bio->devs[slot].addr +
f8c9e74f 1196 choose_data_offset(r10_bio, rdev);
96c3fd1f 1197 read_bio->bi_bdev = rdev->bdev;
1da177e4 1198 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 1199 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1200 read_bio->bi_private = r10_bio;
1201
856e08e2
N
1202 if (max_sectors < r10_bio->sectors) {
1203 /* Could not read all from this device, so we will
1204 * need another r10_bio.
1205 */
856e08e2
N
1206 sectors_handled = (r10_bio->sectors + max_sectors
1207 - bio->bi_sector);
1208 r10_bio->sectors = max_sectors;
1209 spin_lock_irq(&conf->device_lock);
1210 if (bio->bi_phys_segments == 0)
1211 bio->bi_phys_segments = 2;
1212 else
1213 bio->bi_phys_segments++;
1214 spin_unlock(&conf->device_lock);
1215 /* Cannot call generic_make_request directly
1216 * as that will be queued in __generic_make_request
1217 * and subsequent mempool_alloc might block
1218 * waiting for it. so hand bio over to raid10d.
1219 */
1220 reschedule_retry(r10_bio);
1221
1222 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1223
1224 r10_bio->master_bio = bio;
1225 r10_bio->sectors = ((bio->bi_size >> 9)
1226 - sectors_handled);
1227 r10_bio->state = 0;
1228 r10_bio->mddev = mddev;
1229 r10_bio->sector = bio->bi_sector + sectors_handled;
1230 goto read_again;
1231 } else
1232 generic_make_request(read_bio);
5a7bbad2 1233 return;
1da177e4
LT
1234 }
1235
1236 /*
1237 * WRITE:
1238 */
34db0cd6
N
1239 if (conf->pending_count >= max_queued_requests) {
1240 md_wakeup_thread(mddev->thread);
1241 wait_event(conf->wait_barrier,
1242 conf->pending_count < max_queued_requests);
1243 }
6bfe0b49 1244 /* first select target devices under rcu_lock and
1da177e4
LT
1245 * inc refcount on their rdev. Record them by setting
1246 * bios[x] to bio
d4432c23
N
1247 * If there are known/acknowledged bad blocks on any device
1248 * on which we have seen a write error, we want to avoid
1249 * writing to those blocks. This potentially requires several
1250 * writes to write around the bad blocks. Each set of writes
1251 * gets its own r10_bio with a set of bios attached. The number
1252 * of r10_bios is recored in bio->bi_phys_segments just as with
1253 * the read case.
1da177e4 1254 */
c3b328ac 1255
69335ef3 1256 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1257 raid10_find_phys(conf, r10_bio);
d4432c23 1258retry_write:
cb6969e8 1259 blocked_rdev = NULL;
1da177e4 1260 rcu_read_lock();
d4432c23
N
1261 max_sectors = r10_bio->sectors;
1262
1da177e4
LT
1263 for (i = 0; i < conf->copies; i++) {
1264 int d = r10_bio->devs[i].devnum;
3cb03002 1265 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1266 struct md_rdev *rrdev = rcu_dereference(
1267 conf->mirrors[d].replacement);
4ca40c2c
N
1268 if (rdev == rrdev)
1269 rrdev = NULL;
6bfe0b49
DW
1270 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1271 atomic_inc(&rdev->nr_pending);
1272 blocked_rdev = rdev;
1273 break;
1274 }
475b0321
N
1275 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1276 atomic_inc(&rrdev->nr_pending);
1277 blocked_rdev = rrdev;
1278 break;
1279 }
050b6615
N
1280 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1281 || test_bit(Unmerged, &rrdev->flags)))
475b0321
N
1282 rrdev = NULL;
1283
d4432c23 1284 r10_bio->devs[i].bio = NULL;
475b0321 1285 r10_bio->devs[i].repl_bio = NULL;
050b6615
N
1286 if (!rdev || test_bit(Faulty, &rdev->flags) ||
1287 test_bit(Unmerged, &rdev->flags)) {
6cce3b23 1288 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1289 continue;
1290 }
1291 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1292 sector_t first_bad;
1293 sector_t dev_sector = r10_bio->devs[i].addr;
1294 int bad_sectors;
1295 int is_bad;
1296
1297 is_bad = is_badblock(rdev, dev_sector,
1298 max_sectors,
1299 &first_bad, &bad_sectors);
1300 if (is_bad < 0) {
1301 /* Mustn't write here until the bad block
1302 * is acknowledged
1303 */
1304 atomic_inc(&rdev->nr_pending);
1305 set_bit(BlockedBadBlocks, &rdev->flags);
1306 blocked_rdev = rdev;
1307 break;
1308 }
1309 if (is_bad && first_bad <= dev_sector) {
1310 /* Cannot write here at all */
1311 bad_sectors -= (dev_sector - first_bad);
1312 if (bad_sectors < max_sectors)
1313 /* Mustn't write more than bad_sectors
1314 * to other devices yet
1315 */
1316 max_sectors = bad_sectors;
1317 /* We don't set R10BIO_Degraded as that
1318 * only applies if the disk is missing,
1319 * so it might be re-added, and we want to
1320 * know to recover this chunk.
1321 * In this case the device is here, and the
1322 * fact that this chunk is not in-sync is
1323 * recorded in the bad block log.
1324 */
1325 continue;
1326 }
1327 if (is_bad) {
1328 int good_sectors = first_bad - dev_sector;
1329 if (good_sectors < max_sectors)
1330 max_sectors = good_sectors;
1331 }
6cce3b23 1332 }
d4432c23
N
1333 r10_bio->devs[i].bio = bio;
1334 atomic_inc(&rdev->nr_pending);
475b0321
N
1335 if (rrdev) {
1336 r10_bio->devs[i].repl_bio = bio;
1337 atomic_inc(&rrdev->nr_pending);
1338 }
1da177e4
LT
1339 }
1340 rcu_read_unlock();
1341
6bfe0b49
DW
1342 if (unlikely(blocked_rdev)) {
1343 /* Have to wait for this device to get unblocked, then retry */
1344 int j;
1345 int d;
1346
475b0321 1347 for (j = 0; j < i; j++) {
6bfe0b49
DW
1348 if (r10_bio->devs[j].bio) {
1349 d = r10_bio->devs[j].devnum;
1350 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1351 }
475b0321 1352 if (r10_bio->devs[j].repl_bio) {
4ca40c2c 1353 struct md_rdev *rdev;
475b0321 1354 d = r10_bio->devs[j].devnum;
4ca40c2c
N
1355 rdev = conf->mirrors[d].replacement;
1356 if (!rdev) {
1357 /* Race with remove_disk */
1358 smp_mb();
1359 rdev = conf->mirrors[d].rdev;
1360 }
1361 rdev_dec_pending(rdev, mddev);
475b0321
N
1362 }
1363 }
6bfe0b49
DW
1364 allow_barrier(conf);
1365 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1366 wait_barrier(conf);
1367 goto retry_write;
1368 }
1369
d4432c23
N
1370 if (max_sectors < r10_bio->sectors) {
1371 /* We are splitting this into multiple parts, so
1372 * we need to prepare for allocating another r10_bio.
1373 */
1374 r10_bio->sectors = max_sectors;
1375 spin_lock_irq(&conf->device_lock);
1376 if (bio->bi_phys_segments == 0)
1377 bio->bi_phys_segments = 2;
1378 else
1379 bio->bi_phys_segments++;
1380 spin_unlock_irq(&conf->device_lock);
1381 }
1382 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1383
4e78064f 1384 atomic_set(&r10_bio->remaining, 1);
d4432c23 1385 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1386
1da177e4
LT
1387 for (i = 0; i < conf->copies; i++) {
1388 struct bio *mbio;
1389 int d = r10_bio->devs[i].devnum;
1390 if (!r10_bio->devs[i].bio)
1391 continue;
1392
a167f663 1393 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d4432c23
N
1394 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1395 max_sectors);
1da177e4
LT
1396 r10_bio->devs[i].bio = mbio;
1397
d4432c23 1398 mbio->bi_sector = (r10_bio->devs[i].addr+
f8c9e74f
N
1399 choose_data_offset(r10_bio,
1400 conf->mirrors[d].rdev));
1da177e4
LT
1401 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1402 mbio->bi_end_io = raid10_end_write_request;
e9c7469b 1403 mbio->bi_rw = WRITE | do_sync | do_fua;
1da177e4
LT
1404 mbio->bi_private = r10_bio;
1405
1406 atomic_inc(&r10_bio->remaining);
4e78064f
N
1407 spin_lock_irqsave(&conf->device_lock, flags);
1408 bio_list_add(&conf->pending_bio_list, mbio);
34db0cd6 1409 conf->pending_count++;
4e78064f 1410 spin_unlock_irqrestore(&conf->device_lock, flags);
10684112 1411 if (!mddev_check_plugged(mddev))
b357f04a 1412 md_wakeup_thread(mddev->thread);
475b0321
N
1413
1414 if (!r10_bio->devs[i].repl_bio)
1415 continue;
1416
1417 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1418 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1419 max_sectors);
1420 r10_bio->devs[i].repl_bio = mbio;
1421
4ca40c2c
N
1422 /* We are actively writing to the original device
1423 * so it cannot disappear, so the replacement cannot
1424 * become NULL here
1425 */
f8c9e74f
N
1426 mbio->bi_sector = (r10_bio->devs[i].addr +
1427 choose_data_offset(
1428 r10_bio,
1429 conf->mirrors[d].replacement));
475b0321
N
1430 mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1431 mbio->bi_end_io = raid10_end_write_request;
1432 mbio->bi_rw = WRITE | do_sync | do_fua;
1433 mbio->bi_private = r10_bio;
1434
1435 atomic_inc(&r10_bio->remaining);
1436 spin_lock_irqsave(&conf->device_lock, flags);
1437 bio_list_add(&conf->pending_bio_list, mbio);
1438 conf->pending_count++;
1439 spin_unlock_irqrestore(&conf->device_lock, flags);
b357f04a
N
1440 if (!mddev_check_plugged(mddev))
1441 md_wakeup_thread(mddev->thread);
1da177e4
LT
1442 }
1443
079fa166
N
1444 /* Don't remove the bias on 'remaining' (one_write_done) until
1445 * after checking if we need to go around again.
1446 */
a35e63ef 1447
d4432c23 1448 if (sectors_handled < (bio->bi_size >> 9)) {
079fa166 1449 one_write_done(r10_bio);
5e570289 1450 /* We need another r10_bio. It has already been counted
d4432c23
N
1451 * in bio->bi_phys_segments.
1452 */
1453 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1454
1455 r10_bio->master_bio = bio;
1456 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1457
1458 r10_bio->mddev = mddev;
1459 r10_bio->sector = bio->bi_sector + sectors_handled;
1460 r10_bio->state = 0;
1461 goto retry_write;
1462 }
079fa166
N
1463 one_write_done(r10_bio);
1464
1465 /* In case raid10d snuck in to freeze_array */
1466 wake_up(&conf->wait_barrier);
1da177e4
LT
1467}
1468
fd01b88c 1469static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1470{
e879a879 1471 struct r10conf *conf = mddev->private;
1da177e4
LT
1472 int i;
1473
5cf00fcd 1474 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1475 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1476 if (conf->geo.near_copies > 1)
1477 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1478 if (conf->geo.far_copies > 1) {
1479 if (conf->geo.far_offset)
1480 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1481 else
5cf00fcd 1482 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
c93983bf 1483 }
5cf00fcd
N
1484 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1485 conf->geo.raid_disks - mddev->degraded);
1486 for (i = 0; i < conf->geo.raid_disks; i++)
1da177e4
LT
1487 seq_printf(seq, "%s",
1488 conf->mirrors[i].rdev &&
b2d444d7 1489 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1490 seq_printf(seq, "]");
1491}
1492
700c7213
N
1493/* check if there are enough drives for
1494 * every block to appear on atleast one.
1495 * Don't consider the device numbered 'ignore'
1496 * as we might be about to remove it.
1497 */
f8c9e74f 1498static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
700c7213
N
1499{
1500 int first = 0;
1501
1502 do {
1503 int n = conf->copies;
1504 int cnt = 0;
1505 while (n--) {
1506 if (conf->mirrors[first].rdev &&
1507 first != ignore)
1508 cnt++;
f8c9e74f 1509 first = (first+1) % geo->raid_disks;
700c7213
N
1510 }
1511 if (cnt == 0)
1512 return 0;
1513 } while (first != 0);
1514 return 1;
1515}
1516
f8c9e74f
N
1517static int enough(struct r10conf *conf, int ignore)
1518{
1519 return _enough(conf, &conf->geo, ignore) &&
1520 _enough(conf, &conf->prev, ignore);
1521}
1522
fd01b88c 1523static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1524{
1525 char b[BDEVNAME_SIZE];
e879a879 1526 struct r10conf *conf = mddev->private;
1da177e4
LT
1527
1528 /*
1529 * If it is not operational, then we have already marked it as dead
1530 * else if it is the last working disks, ignore the error, let the
1531 * next level up know.
1532 * else mark the drive as failed
1533 */
b2d444d7 1534 if (test_bit(In_sync, &rdev->flags)
700c7213 1535 && !enough(conf, rdev->raid_disk))
1da177e4
LT
1536 /*
1537 * Don't fail the drive, just return an IO error.
1da177e4
LT
1538 */
1539 return;
c04be0aa
N
1540 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1541 unsigned long flags;
1542 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1543 mddev->degraded++;
c04be0aa 1544 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1545 /*
1546 * if recovery is running, make sure it aborts.
1547 */
dfc70645 1548 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1549 }
de393cde 1550 set_bit(Blocked, &rdev->flags);
b2d444d7 1551 set_bit(Faulty, &rdev->flags);
850b2b42 1552 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1553 printk(KERN_ALERT
1554 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1555 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed 1556 mdname(mddev), bdevname(rdev->bdev, b),
5cf00fcd 1557 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
1558}
1559
e879a879 1560static void print_conf(struct r10conf *conf)
1da177e4
LT
1561{
1562 int i;
dc280d98 1563 struct raid10_info *tmp;
1da177e4 1564
128595ed 1565 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1566 if (!conf) {
128595ed 1567 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1568 return;
1569 }
5cf00fcd
N
1570 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1571 conf->geo.raid_disks);
1da177e4 1572
5cf00fcd 1573 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4
LT
1574 char b[BDEVNAME_SIZE];
1575 tmp = conf->mirrors + i;
1576 if (tmp->rdev)
128595ed 1577 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1578 i, !test_bit(In_sync, &tmp->rdev->flags),
1579 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1580 bdevname(tmp->rdev->bdev,b));
1581 }
1582}
1583
e879a879 1584static void close_sync(struct r10conf *conf)
1da177e4 1585{
0a27ec96
N
1586 wait_barrier(conf);
1587 allow_barrier(conf);
1da177e4
LT
1588
1589 mempool_destroy(conf->r10buf_pool);
1590 conf->r10buf_pool = NULL;
1591}
1592
fd01b88c 1593static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1594{
1595 int i;
e879a879 1596 struct r10conf *conf = mddev->private;
dc280d98 1597 struct raid10_info *tmp;
6b965620
N
1598 int count = 0;
1599 unsigned long flags;
1da177e4
LT
1600
1601 /*
1602 * Find all non-in_sync disks within the RAID10 configuration
1603 * and mark them in_sync
1604 */
5cf00fcd 1605 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1606 tmp = conf->mirrors + i;
4ca40c2c
N
1607 if (tmp->replacement
1608 && tmp->replacement->recovery_offset == MaxSector
1609 && !test_bit(Faulty, &tmp->replacement->flags)
1610 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1611 /* Replacement has just become active */
1612 if (!tmp->rdev
1613 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1614 count++;
1615 if (tmp->rdev) {
1616 /* Replaced device not technically faulty,
1617 * but we need to be sure it gets removed
1618 * and never re-added.
1619 */
1620 set_bit(Faulty, &tmp->rdev->flags);
1621 sysfs_notify_dirent_safe(
1622 tmp->rdev->sysfs_state);
1623 }
1624 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1625 } else if (tmp->rdev
1626 && !test_bit(Faulty, &tmp->rdev->flags)
1627 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1628 count++;
e6ffbcb6 1629 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1da177e4
LT
1630 }
1631 }
6b965620
N
1632 spin_lock_irqsave(&conf->device_lock, flags);
1633 mddev->degraded -= count;
1634 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1635
1636 print_conf(conf);
6b965620 1637 return count;
1da177e4
LT
1638}
1639
1640
fd01b88c 1641static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1642{
e879a879 1643 struct r10conf *conf = mddev->private;
199050ea 1644 int err = -EEXIST;
1da177e4 1645 int mirror;
6c2fce2e 1646 int first = 0;
5cf00fcd 1647 int last = conf->geo.raid_disks - 1;
050b6615 1648 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4
LT
1649
1650 if (mddev->recovery_cp < MaxSector)
1651 /* only hot-add to in-sync arrays, as recovery is
1652 * very different from resync
1653 */
199050ea 1654 return -EBUSY;
f8c9e74f 1655 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
199050ea 1656 return -EINVAL;
1da177e4 1657
a53a6c85 1658 if (rdev->raid_disk >= 0)
6c2fce2e 1659 first = last = rdev->raid_disk;
1da177e4 1660
050b6615
N
1661 if (q->merge_bvec_fn) {
1662 set_bit(Unmerged, &rdev->flags);
1663 mddev->merge_check_needed = 1;
1664 }
1665
2c4193df 1666 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1667 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1668 mirror = rdev->saved_raid_disk;
1669 else
6c2fce2e 1670 mirror = first;
2bb77736 1671 for ( ; mirror <= last ; mirror++) {
dc280d98 1672 struct raid10_info *p = &conf->mirrors[mirror];
2bb77736
N
1673 if (p->recovery_disabled == mddev->recovery_disabled)
1674 continue;
b7044d41
N
1675 if (p->rdev) {
1676 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1677 p->replacement != NULL)
1678 continue;
1679 clear_bit(In_sync, &rdev->flags);
1680 set_bit(Replacement, &rdev->flags);
1681 rdev->raid_disk = mirror;
1682 err = 0;
1683 disk_stack_limits(mddev->gendisk, rdev->bdev,
1684 rdev->data_offset << 9);
b7044d41
N
1685 conf->fullsync = 1;
1686 rcu_assign_pointer(p->replacement, rdev);
1687 break;
1688 }
1da177e4 1689
2bb77736
N
1690 disk_stack_limits(mddev->gendisk, rdev->bdev,
1691 rdev->data_offset << 9);
1da177e4 1692
2bb77736 1693 p->head_position = 0;
d890fa2b 1694 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1695 rdev->raid_disk = mirror;
1696 err = 0;
1697 if (rdev->saved_raid_disk != mirror)
1698 conf->fullsync = 1;
1699 rcu_assign_pointer(p->rdev, rdev);
1700 break;
1701 }
050b6615
N
1702 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1703 /* Some requests might not have seen this new
1704 * merge_bvec_fn. We must wait for them to complete
1705 * before merging the device fully.
1706 * First we make sure any code which has tested
1707 * our function has submitted the request, then
1708 * we wait for all outstanding requests to complete.
1709 */
1710 synchronize_sched();
1711 raise_barrier(conf, 0);
1712 lower_barrier(conf);
1713 clear_bit(Unmerged, &rdev->flags);
1714 }
ac5e7113 1715 md_integrity_add_rdev(rdev, mddev);
1da177e4 1716 print_conf(conf);
199050ea 1717 return err;
1da177e4
LT
1718}
1719
b8321b68 1720static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1721{
e879a879 1722 struct r10conf *conf = mddev->private;
1da177e4 1723 int err = 0;
b8321b68 1724 int number = rdev->raid_disk;
c8ab903e 1725 struct md_rdev **rdevp;
dc280d98 1726 struct raid10_info *p = conf->mirrors + number;
1da177e4
LT
1727
1728 print_conf(conf);
c8ab903e
N
1729 if (rdev == p->rdev)
1730 rdevp = &p->rdev;
1731 else if (rdev == p->replacement)
1732 rdevp = &p->replacement;
1733 else
1734 return 0;
1735
1736 if (test_bit(In_sync, &rdev->flags) ||
1737 atomic_read(&rdev->nr_pending)) {
1738 err = -EBUSY;
1739 goto abort;
1740 }
1741 /* Only remove faulty devices if recovery
1742 * is not possible.
1743 */
1744 if (!test_bit(Faulty, &rdev->flags) &&
1745 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 1746 (!p->replacement || p->replacement == rdev) &&
63aced61 1747 number < conf->geo.raid_disks &&
c8ab903e
N
1748 enough(conf, -1)) {
1749 err = -EBUSY;
1750 goto abort;
1da177e4 1751 }
c8ab903e
N
1752 *rdevp = NULL;
1753 synchronize_rcu();
1754 if (atomic_read(&rdev->nr_pending)) {
1755 /* lost the race, try later */
1756 err = -EBUSY;
1757 *rdevp = rdev;
1758 goto abort;
4ca40c2c
N
1759 } else if (p->replacement) {
1760 /* We must have just cleared 'rdev' */
1761 p->rdev = p->replacement;
1762 clear_bit(Replacement, &p->replacement->flags);
1763 smp_mb(); /* Make sure other CPUs may see both as identical
1764 * but will never see neither -- if they are careful.
1765 */
1766 p->replacement = NULL;
1767 clear_bit(WantReplacement, &rdev->flags);
1768 } else
1769 /* We might have just remove the Replacement as faulty
1770 * Clear the flag just in case
1771 */
1772 clear_bit(WantReplacement, &rdev->flags);
1773
c8ab903e
N
1774 err = md_integrity_register(mddev);
1775
1da177e4
LT
1776abort:
1777
1778 print_conf(conf);
1779 return err;
1780}
1781
1782
6712ecf8 1783static void end_sync_read(struct bio *bio, int error)
1da177e4 1784{
9f2c9d12 1785 struct r10bio *r10_bio = bio->bi_private;
e879a879 1786 struct r10conf *conf = r10_bio->mddev->private;
778ca018 1787 int d;
1da177e4 1788
3ea7daa5
N
1789 if (bio == r10_bio->master_bio) {
1790 /* this is a reshape read */
1791 d = r10_bio->read_slot; /* really the read dev */
1792 } else
1793 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
0eb3ff12
N
1794
1795 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1796 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1797 else
1798 /* The write handler will notice the lack of
1799 * R10BIO_Uptodate and record any errors etc
1800 */
4dbcdc75
N
1801 atomic_add(r10_bio->sectors,
1802 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1803
1804 /* for reconstruct, we always reschedule after a read.
1805 * for resync, only after all reads
1806 */
73d5c38a 1807 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1808 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1809 atomic_dec_and_test(&r10_bio->remaining)) {
1810 /* we have read all the blocks,
1811 * do the comparison in process context in raid10d
1812 */
1813 reschedule_retry(r10_bio);
1814 }
1da177e4
LT
1815}
1816
9f2c9d12 1817static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1818{
fd01b88c 1819 struct mddev *mddev = r10_bio->mddev;
dfc70645 1820
1da177e4
LT
1821 while (atomic_dec_and_test(&r10_bio->remaining)) {
1822 if (r10_bio->master_bio == NULL) {
1823 /* the primary of several recovery bios */
73d5c38a 1824 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1825 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1826 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1827 reschedule_retry(r10_bio);
1828 else
1829 put_buf(r10_bio);
73d5c38a 1830 md_done_sync(mddev, s, 1);
1da177e4
LT
1831 break;
1832 } else {
9f2c9d12 1833 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1834 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1835 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1836 reschedule_retry(r10_bio);
1837 else
1838 put_buf(r10_bio);
1da177e4
LT
1839 r10_bio = r10_bio2;
1840 }
1841 }
1da177e4
LT
1842}
1843
5e570289
N
1844static void end_sync_write(struct bio *bio, int error)
1845{
1846 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1847 struct r10bio *r10_bio = bio->bi_private;
fd01b88c 1848 struct mddev *mddev = r10_bio->mddev;
e879a879 1849 struct r10conf *conf = mddev->private;
5e570289
N
1850 int d;
1851 sector_t first_bad;
1852 int bad_sectors;
1853 int slot;
9ad1aefc 1854 int repl;
4ca40c2c 1855 struct md_rdev *rdev = NULL;
5e570289 1856
9ad1aefc
N
1857 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1858 if (repl)
1859 rdev = conf->mirrors[d].replacement;
547414d1 1860 else
9ad1aefc 1861 rdev = conf->mirrors[d].rdev;
5e570289
N
1862
1863 if (!uptodate) {
9ad1aefc
N
1864 if (repl)
1865 md_error(mddev, rdev);
1866 else {
1867 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
1868 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1869 set_bit(MD_RECOVERY_NEEDED,
1870 &rdev->mddev->recovery);
9ad1aefc
N
1871 set_bit(R10BIO_WriteError, &r10_bio->state);
1872 }
1873 } else if (is_badblock(rdev,
5e570289
N
1874 r10_bio->devs[slot].addr,
1875 r10_bio->sectors,
1876 &first_bad, &bad_sectors))
1877 set_bit(R10BIO_MadeGood, &r10_bio->state);
1878
9ad1aefc 1879 rdev_dec_pending(rdev, mddev);
5e570289
N
1880
1881 end_sync_request(r10_bio);
1882}
1883
1da177e4
LT
1884/*
1885 * Note: sync and recover and handled very differently for raid10
1886 * This code is for resync.
1887 * For resync, we read through virtual addresses and read all blocks.
1888 * If there is any error, we schedule a write. The lowest numbered
1889 * drive is authoritative.
1890 * However requests come for physical address, so we need to map.
1891 * For every physical address there are raid_disks/copies virtual addresses,
1892 * which is always are least one, but is not necessarly an integer.
1893 * This means that a physical address can span multiple chunks, so we may
1894 * have to submit multiple io requests for a single sync request.
1895 */
1896/*
1897 * We check if all blocks are in-sync and only write to blocks that
1898 * aren't in sync
1899 */
9f2c9d12 1900static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 1901{
e879a879 1902 struct r10conf *conf = mddev->private;
1da177e4
LT
1903 int i, first;
1904 struct bio *tbio, *fbio;
f4380a91 1905 int vcnt;
1da177e4
LT
1906
1907 atomic_set(&r10_bio->remaining, 1);
1908
1909 /* find the first device with a block */
1910 for (i=0; i<conf->copies; i++)
1911 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1912 break;
1913
1914 if (i == conf->copies)
1915 goto done;
1916
1917 first = i;
1918 fbio = r10_bio->devs[i].bio;
1919
f4380a91 1920 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 1921 /* now find blocks with errors */
0eb3ff12
N
1922 for (i=0 ; i < conf->copies ; i++) {
1923 int j, d;
1da177e4 1924
1da177e4 1925 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
1926
1927 if (tbio->bi_end_io != end_sync_read)
1928 continue;
1929 if (i == first)
1da177e4 1930 continue;
0eb3ff12
N
1931 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1932 /* We know that the bi_io_vec layout is the same for
1933 * both 'first' and 'i', so we just compare them.
1934 * All vec entries are PAGE_SIZE;
1935 */
1936 for (j = 0; j < vcnt; j++)
1937 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1938 page_address(tbio->bi_io_vec[j].bv_page),
5020ad7d 1939 fbio->bi_io_vec[j].bv_len))
0eb3ff12
N
1940 break;
1941 if (j == vcnt)
1942 continue;
1943 mddev->resync_mismatches += r10_bio->sectors;
f84ee364
N
1944 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1945 /* Don't fix anything. */
1946 continue;
0eb3ff12 1947 }
f84ee364
N
1948 /* Ok, we need to write this bio, either to correct an
1949 * inconsistency or to correct an unreadable block.
1da177e4
LT
1950 * First we need to fixup bv_offset, bv_len and
1951 * bi_vecs, as the read request might have corrupted these
1952 */
1953 tbio->bi_vcnt = vcnt;
1954 tbio->bi_size = r10_bio->sectors << 9;
1955 tbio->bi_idx = 0;
1956 tbio->bi_phys_segments = 0;
1da177e4
LT
1957 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1958 tbio->bi_flags |= 1 << BIO_UPTODATE;
1959 tbio->bi_next = NULL;
1960 tbio->bi_rw = WRITE;
1961 tbio->bi_private = r10_bio;
1962 tbio->bi_sector = r10_bio->devs[i].addr;
1963
1964 for (j=0; j < vcnt ; j++) {
1965 tbio->bi_io_vec[j].bv_offset = 0;
1966 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1967
1968 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1969 page_address(fbio->bi_io_vec[j].bv_page),
1970 PAGE_SIZE);
1971 }
1972 tbio->bi_end_io = end_sync_write;
1973
1974 d = r10_bio->devs[i].devnum;
1975 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1976 atomic_inc(&r10_bio->remaining);
1977 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1978
1979 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1980 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1981 generic_make_request(tbio);
1982 }
1983
9ad1aefc
N
1984 /* Now write out to any replacement devices
1985 * that are active
1986 */
1987 for (i = 0; i < conf->copies; i++) {
1988 int j, d;
9ad1aefc
N
1989
1990 tbio = r10_bio->devs[i].repl_bio;
1991 if (!tbio || !tbio->bi_end_io)
1992 continue;
1993 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
1994 && r10_bio->devs[i].bio != fbio)
1995 for (j = 0; j < vcnt; j++)
1996 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1997 page_address(fbio->bi_io_vec[j].bv_page),
1998 PAGE_SIZE);
1999 d = r10_bio->devs[i].devnum;
2000 atomic_inc(&r10_bio->remaining);
2001 md_sync_acct(conf->mirrors[d].replacement->bdev,
2002 tbio->bi_size >> 9);
2003 generic_make_request(tbio);
2004 }
2005
1da177e4
LT
2006done:
2007 if (atomic_dec_and_test(&r10_bio->remaining)) {
2008 md_done_sync(mddev, r10_bio->sectors, 1);
2009 put_buf(r10_bio);
2010 }
2011}
2012
2013/*
2014 * Now for the recovery code.
2015 * Recovery happens across physical sectors.
2016 * We recover all non-is_sync drives by finding the virtual address of
2017 * each, and then choose a working drive that also has that virt address.
2018 * There is a separate r10_bio for each non-in_sync drive.
2019 * Only the first two slots are in use. The first for reading,
2020 * The second for writing.
2021 *
2022 */
9f2c9d12 2023static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
2024{
2025 /* We got a read error during recovery.
2026 * We repeat the read in smaller page-sized sections.
2027 * If a read succeeds, write it to the new device or record
2028 * a bad block if we cannot.
2029 * If a read fails, record a bad block on both old and
2030 * new devices.
2031 */
fd01b88c 2032 struct mddev *mddev = r10_bio->mddev;
e879a879 2033 struct r10conf *conf = mddev->private;
5e570289
N
2034 struct bio *bio = r10_bio->devs[0].bio;
2035 sector_t sect = 0;
2036 int sectors = r10_bio->sectors;
2037 int idx = 0;
2038 int dr = r10_bio->devs[0].devnum;
2039 int dw = r10_bio->devs[1].devnum;
2040
2041 while (sectors) {
2042 int s = sectors;
3cb03002 2043 struct md_rdev *rdev;
5e570289
N
2044 sector_t addr;
2045 int ok;
2046
2047 if (s > (PAGE_SIZE>>9))
2048 s = PAGE_SIZE >> 9;
2049
2050 rdev = conf->mirrors[dr].rdev;
2051 addr = r10_bio->devs[0].addr + sect,
2052 ok = sync_page_io(rdev,
2053 addr,
2054 s << 9,
2055 bio->bi_io_vec[idx].bv_page,
2056 READ, false);
2057 if (ok) {
2058 rdev = conf->mirrors[dw].rdev;
2059 addr = r10_bio->devs[1].addr + sect;
2060 ok = sync_page_io(rdev,
2061 addr,
2062 s << 9,
2063 bio->bi_io_vec[idx].bv_page,
2064 WRITE, false);
b7044d41 2065 if (!ok) {
5e570289 2066 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2067 if (!test_and_set_bit(WantReplacement,
2068 &rdev->flags))
2069 set_bit(MD_RECOVERY_NEEDED,
2070 &rdev->mddev->recovery);
2071 }
5e570289
N
2072 }
2073 if (!ok) {
2074 /* We don't worry if we cannot set a bad block -
2075 * it really is bad so there is no loss in not
2076 * recording it yet
2077 */
2078 rdev_set_badblocks(rdev, addr, s, 0);
2079
2080 if (rdev != conf->mirrors[dw].rdev) {
2081 /* need bad block on destination too */
3cb03002 2082 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2083 addr = r10_bio->devs[1].addr + sect;
2084 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2085 if (!ok) {
2086 /* just abort the recovery */
2087 printk(KERN_NOTICE
2088 "md/raid10:%s: recovery aborted"
2089 " due to read error\n",
2090 mdname(mddev));
2091
2092 conf->mirrors[dw].recovery_disabled
2093 = mddev->recovery_disabled;
2094 set_bit(MD_RECOVERY_INTR,
2095 &mddev->recovery);
2096 break;
2097 }
2098 }
2099 }
2100
2101 sectors -= s;
2102 sect += s;
2103 idx++;
2104 }
2105}
1da177e4 2106
9f2c9d12 2107static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2108{
e879a879 2109 struct r10conf *conf = mddev->private;
c65060ad 2110 int d;
24afd80d 2111 struct bio *wbio, *wbio2;
1da177e4 2112
5e570289
N
2113 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2114 fix_recovery_read_error(r10_bio);
2115 end_sync_request(r10_bio);
2116 return;
2117 }
2118
c65060ad
NK
2119 /*
2120 * share the pages with the first bio
1da177e4
LT
2121 * and submit the write request
2122 */
1da177e4 2123 d = r10_bio->devs[1].devnum;
24afd80d
N
2124 wbio = r10_bio->devs[1].bio;
2125 wbio2 = r10_bio->devs[1].repl_bio;
2126 if (wbio->bi_end_io) {
2127 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2128 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2129 generic_make_request(wbio);
2130 }
2131 if (wbio2 && wbio2->bi_end_io) {
2132 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2133 md_sync_acct(conf->mirrors[d].replacement->bdev,
2134 wbio2->bi_size >> 9);
2135 generic_make_request(wbio2);
2136 }
1da177e4
LT
2137}
2138
2139
1e50915f
RB
2140/*
2141 * Used by fix_read_error() to decay the per rdev read_errors.
2142 * We halve the read error count for every hour that has elapsed
2143 * since the last recorded read error.
2144 *
2145 */
fd01b88c 2146static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f
RB
2147{
2148 struct timespec cur_time_mon;
2149 unsigned long hours_since_last;
2150 unsigned int read_errors = atomic_read(&rdev->read_errors);
2151
2152 ktime_get_ts(&cur_time_mon);
2153
2154 if (rdev->last_read_error.tv_sec == 0 &&
2155 rdev->last_read_error.tv_nsec == 0) {
2156 /* first time we've seen a read error */
2157 rdev->last_read_error = cur_time_mon;
2158 return;
2159 }
2160
2161 hours_since_last = (cur_time_mon.tv_sec -
2162 rdev->last_read_error.tv_sec) / 3600;
2163
2164 rdev->last_read_error = cur_time_mon;
2165
2166 /*
2167 * if hours_since_last is > the number of bits in read_errors
2168 * just set read errors to 0. We do this to avoid
2169 * overflowing the shift of read_errors by hours_since_last.
2170 */
2171 if (hours_since_last >= 8 * sizeof(read_errors))
2172 atomic_set(&rdev->read_errors, 0);
2173 else
2174 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2175}
2176
3cb03002 2177static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
2178 int sectors, struct page *page, int rw)
2179{
2180 sector_t first_bad;
2181 int bad_sectors;
2182
2183 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2184 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2185 return -1;
2186 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2187 /* success */
2188 return 1;
b7044d41 2189 if (rw == WRITE) {
58c54fcc 2190 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2191 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2192 set_bit(MD_RECOVERY_NEEDED,
2193 &rdev->mddev->recovery);
2194 }
58c54fcc
N
2195 /* need to record an error - either for the block or the device */
2196 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2197 md_error(rdev->mddev, rdev);
2198 return 0;
2199}
2200
1da177e4
LT
2201/*
2202 * This is a kernel thread which:
2203 *
2204 * 1. Retries failed read operations on working mirrors.
2205 * 2. Updates the raid superblock when problems encounter.
6814d536 2206 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2207 */
2208
e879a879 2209static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2210{
2211 int sect = 0; /* Offset from r10_bio->sector */
2212 int sectors = r10_bio->sectors;
3cb03002 2213 struct md_rdev*rdev;
1e50915f 2214 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 2215 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 2216
7c4e06ff
N
2217 /* still own a reference to this rdev, so it cannot
2218 * have been cleared recently.
2219 */
2220 rdev = conf->mirrors[d].rdev;
1e50915f 2221
7c4e06ff
N
2222 if (test_bit(Faulty, &rdev->flags))
2223 /* drive has already been failed, just ignore any
2224 more fix_read_error() attempts */
2225 return;
1e50915f 2226
7c4e06ff
N
2227 check_decay_read_errors(mddev, rdev);
2228 atomic_inc(&rdev->read_errors);
2229 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2230 char b[BDEVNAME_SIZE];
2231 bdevname(rdev->bdev, b);
1e50915f 2232
7c4e06ff
N
2233 printk(KERN_NOTICE
2234 "md/raid10:%s: %s: Raid device exceeded "
2235 "read_error threshold [cur %d:max %d]\n",
2236 mdname(mddev), b,
2237 atomic_read(&rdev->read_errors), max_read_errors);
2238 printk(KERN_NOTICE
2239 "md/raid10:%s: %s: Failing raid device\n",
2240 mdname(mddev), b);
2241 md_error(mddev, conf->mirrors[d].rdev);
fae8cc5e 2242 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
7c4e06ff 2243 return;
1e50915f 2244 }
1e50915f 2245
6814d536
N
2246 while(sectors) {
2247 int s = sectors;
2248 int sl = r10_bio->read_slot;
2249 int success = 0;
2250 int start;
2251
2252 if (s > (PAGE_SIZE>>9))
2253 s = PAGE_SIZE >> 9;
2254
2255 rcu_read_lock();
2256 do {
8dbed5ce
N
2257 sector_t first_bad;
2258 int bad_sectors;
2259
0544a21d 2260 d = r10_bio->devs[sl].devnum;
6814d536
N
2261 rdev = rcu_dereference(conf->mirrors[d].rdev);
2262 if (rdev &&
050b6615 2263 !test_bit(Unmerged, &rdev->flags) &&
8dbed5ce
N
2264 test_bit(In_sync, &rdev->flags) &&
2265 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2266 &first_bad, &bad_sectors) == 0) {
6814d536
N
2267 atomic_inc(&rdev->nr_pending);
2268 rcu_read_unlock();
2b193363 2269 success = sync_page_io(rdev,
6814d536 2270 r10_bio->devs[sl].addr +
ccebd4c4 2271 sect,
6814d536 2272 s<<9,
ccebd4c4 2273 conf->tmppage, READ, false);
6814d536
N
2274 rdev_dec_pending(rdev, mddev);
2275 rcu_read_lock();
2276 if (success)
2277 break;
2278 }
2279 sl++;
2280 if (sl == conf->copies)
2281 sl = 0;
2282 } while (!success && sl != r10_bio->read_slot);
2283 rcu_read_unlock();
2284
2285 if (!success) {
58c54fcc
N
2286 /* Cannot read from anywhere, just mark the block
2287 * as bad on the first device to discourage future
2288 * reads.
2289 */
6814d536 2290 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2291 rdev = conf->mirrors[dn].rdev;
2292
2293 if (!rdev_set_badblocks(
2294 rdev,
2295 r10_bio->devs[r10_bio->read_slot].addr
2296 + sect,
fae8cc5e 2297 s, 0)) {
58c54fcc 2298 md_error(mddev, rdev);
fae8cc5e
N
2299 r10_bio->devs[r10_bio->read_slot].bio
2300 = IO_BLOCKED;
2301 }
6814d536
N
2302 break;
2303 }
2304
2305 start = sl;
2306 /* write it back and re-read */
2307 rcu_read_lock();
2308 while (sl != r10_bio->read_slot) {
67b8dc4b 2309 char b[BDEVNAME_SIZE];
0544a21d 2310
6814d536
N
2311 if (sl==0)
2312 sl = conf->copies;
2313 sl--;
2314 d = r10_bio->devs[sl].devnum;
2315 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2316 if (!rdev ||
050b6615 2317 test_bit(Unmerged, &rdev->flags) ||
1294b9c9
N
2318 !test_bit(In_sync, &rdev->flags))
2319 continue;
2320
2321 atomic_inc(&rdev->nr_pending);
2322 rcu_read_unlock();
58c54fcc
N
2323 if (r10_sync_page_io(rdev,
2324 r10_bio->devs[sl].addr +
2325 sect,
055d3747 2326 s, conf->tmppage, WRITE)
1294b9c9
N
2327 == 0) {
2328 /* Well, this device is dead */
2329 printk(KERN_NOTICE
2330 "md/raid10:%s: read correction "
2331 "write failed"
2332 " (%d sectors at %llu on %s)\n",
2333 mdname(mddev), s,
2334 (unsigned long long)(
f8c9e74f
N
2335 sect +
2336 choose_data_offset(r10_bio,
2337 rdev)),
1294b9c9
N
2338 bdevname(rdev->bdev, b));
2339 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2340 "drive\n",
2341 mdname(mddev),
2342 bdevname(rdev->bdev, b));
6814d536 2343 }
1294b9c9
N
2344 rdev_dec_pending(rdev, mddev);
2345 rcu_read_lock();
6814d536
N
2346 }
2347 sl = start;
2348 while (sl != r10_bio->read_slot) {
1294b9c9 2349 char b[BDEVNAME_SIZE];
0544a21d 2350
6814d536
N
2351 if (sl==0)
2352 sl = conf->copies;
2353 sl--;
2354 d = r10_bio->devs[sl].devnum;
2355 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
2356 if (!rdev ||
2357 !test_bit(In_sync, &rdev->flags))
2358 continue;
6814d536 2359
1294b9c9
N
2360 atomic_inc(&rdev->nr_pending);
2361 rcu_read_unlock();
58c54fcc
N
2362 switch (r10_sync_page_io(rdev,
2363 r10_bio->devs[sl].addr +
2364 sect,
055d3747 2365 s, conf->tmppage,
58c54fcc
N
2366 READ)) {
2367 case 0:
1294b9c9
N
2368 /* Well, this device is dead */
2369 printk(KERN_NOTICE
2370 "md/raid10:%s: unable to read back "
2371 "corrected sectors"
2372 " (%d sectors at %llu on %s)\n",
2373 mdname(mddev), s,
2374 (unsigned long long)(
f8c9e74f
N
2375 sect +
2376 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2377 bdevname(rdev->bdev, b));
2378 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2379 "drive\n",
2380 mdname(mddev),
2381 bdevname(rdev->bdev, b));
58c54fcc
N
2382 break;
2383 case 1:
1294b9c9
N
2384 printk(KERN_INFO
2385 "md/raid10:%s: read error corrected"
2386 " (%d sectors at %llu on %s)\n",
2387 mdname(mddev), s,
2388 (unsigned long long)(
f8c9e74f
N
2389 sect +
2390 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2391 bdevname(rdev->bdev, b));
2392 atomic_add(s, &rdev->corrected_errors);
6814d536 2393 }
1294b9c9
N
2394
2395 rdev_dec_pending(rdev, mddev);
2396 rcu_read_lock();
6814d536
N
2397 }
2398 rcu_read_unlock();
2399
2400 sectors -= s;
2401 sect += s;
2402 }
2403}
2404
bd870a16
N
2405static void bi_complete(struct bio *bio, int error)
2406{
2407 complete((struct completion *)bio->bi_private);
2408}
2409
2410static int submit_bio_wait(int rw, struct bio *bio)
2411{
2412 struct completion event;
2413 rw |= REQ_SYNC;
2414
2415 init_completion(&event);
2416 bio->bi_private = &event;
2417 bio->bi_end_io = bi_complete;
2418 submit_bio(rw, bio);
2419 wait_for_completion(&event);
2420
2421 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2422}
2423
9f2c9d12 2424static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2425{
2426 struct bio *bio = r10_bio->master_bio;
fd01b88c 2427 struct mddev *mddev = r10_bio->mddev;
e879a879 2428 struct r10conf *conf = mddev->private;
3cb03002 2429 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2430 /* bio has the data to be written to slot 'i' where
2431 * we just recently had a write error.
2432 * We repeatedly clone the bio and trim down to one block,
2433 * then try the write. Where the write fails we record
2434 * a bad block.
2435 * It is conceivable that the bio doesn't exactly align with
2436 * blocks. We must handle this.
2437 *
2438 * We currently own a reference to the rdev.
2439 */
2440
2441 int block_sectors;
2442 sector_t sector;
2443 int sectors;
2444 int sect_to_write = r10_bio->sectors;
2445 int ok = 1;
2446
2447 if (rdev->badblocks.shift < 0)
2448 return 0;
2449
2450 block_sectors = 1 << rdev->badblocks.shift;
2451 sector = r10_bio->sector;
2452 sectors = ((r10_bio->sector + block_sectors)
2453 & ~(sector_t)(block_sectors - 1))
2454 - sector;
2455
2456 while (sect_to_write) {
2457 struct bio *wbio;
2458 if (sectors > sect_to_write)
2459 sectors = sect_to_write;
2460 /* Write at 'sector' for 'sectors' */
2461 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2462 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2463 wbio->bi_sector = (r10_bio->devs[i].addr+
f8c9e74f 2464 choose_data_offset(r10_bio, rdev) +
bd870a16
N
2465 (sector - r10_bio->sector));
2466 wbio->bi_bdev = rdev->bdev;
2467 if (submit_bio_wait(WRITE, wbio) == 0)
2468 /* Failure! */
2469 ok = rdev_set_badblocks(rdev, sector,
2470 sectors, 0)
2471 && ok;
2472
2473 bio_put(wbio);
2474 sect_to_write -= sectors;
2475 sector += sectors;
2476 sectors = block_sectors;
2477 }
2478 return ok;
2479}
2480
9f2c9d12 2481static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2482{
2483 int slot = r10_bio->read_slot;
560f8e55 2484 struct bio *bio;
e879a879 2485 struct r10conf *conf = mddev->private;
abbf098e 2486 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2487 char b[BDEVNAME_SIZE];
2488 unsigned long do_sync;
856e08e2 2489 int max_sectors;
560f8e55
N
2490
2491 /* we got a read error. Maybe the drive is bad. Maybe just
2492 * the block and we can fix it.
2493 * We freeze all other IO, and try reading the block from
2494 * other devices. When we find one, we re-write
2495 * and check it that fixes the read error.
2496 * This is all done synchronously while the array is
2497 * frozen.
2498 */
fae8cc5e
N
2499 bio = r10_bio->devs[slot].bio;
2500 bdevname(bio->bi_bdev, b);
2501 bio_put(bio);
2502 r10_bio->devs[slot].bio = NULL;
2503
560f8e55
N
2504 if (mddev->ro == 0) {
2505 freeze_array(conf);
2506 fix_read_error(conf, mddev, r10_bio);
2507 unfreeze_array(conf);
fae8cc5e
N
2508 } else
2509 r10_bio->devs[slot].bio = IO_BLOCKED;
2510
abbf098e 2511 rdev_dec_pending(rdev, mddev);
560f8e55 2512
7399c31b 2513read_more:
96c3fd1f
N
2514 rdev = read_balance(conf, r10_bio, &max_sectors);
2515 if (rdev == NULL) {
560f8e55
N
2516 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2517 " read error for block %llu\n",
7399c31b 2518 mdname(mddev), b,
560f8e55
N
2519 (unsigned long long)r10_bio->sector);
2520 raid_end_bio_io(r10_bio);
560f8e55
N
2521 return;
2522 }
2523
2524 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
560f8e55 2525 slot = r10_bio->read_slot;
560f8e55
N
2526 printk_ratelimited(
2527 KERN_ERR
055d3747 2528 "md/raid10:%s: %s: redirecting "
560f8e55
N
2529 "sector %llu to another mirror\n",
2530 mdname(mddev),
2531 bdevname(rdev->bdev, b),
2532 (unsigned long long)r10_bio->sector);
2533 bio = bio_clone_mddev(r10_bio->master_bio,
2534 GFP_NOIO, mddev);
7399c31b
N
2535 md_trim_bio(bio,
2536 r10_bio->sector - bio->bi_sector,
2537 max_sectors);
560f8e55 2538 r10_bio->devs[slot].bio = bio;
abbf098e 2539 r10_bio->devs[slot].rdev = rdev;
560f8e55 2540 bio->bi_sector = r10_bio->devs[slot].addr
f8c9e74f 2541 + choose_data_offset(r10_bio, rdev);
560f8e55
N
2542 bio->bi_bdev = rdev->bdev;
2543 bio->bi_rw = READ | do_sync;
2544 bio->bi_private = r10_bio;
2545 bio->bi_end_io = raid10_end_read_request;
7399c31b
N
2546 if (max_sectors < r10_bio->sectors) {
2547 /* Drat - have to split this up more */
2548 struct bio *mbio = r10_bio->master_bio;
2549 int sectors_handled =
2550 r10_bio->sector + max_sectors
2551 - mbio->bi_sector;
2552 r10_bio->sectors = max_sectors;
2553 spin_lock_irq(&conf->device_lock);
2554 if (mbio->bi_phys_segments == 0)
2555 mbio->bi_phys_segments = 2;
2556 else
2557 mbio->bi_phys_segments++;
2558 spin_unlock_irq(&conf->device_lock);
2559 generic_make_request(bio);
7399c31b
N
2560
2561 r10_bio = mempool_alloc(conf->r10bio_pool,
2562 GFP_NOIO);
2563 r10_bio->master_bio = mbio;
2564 r10_bio->sectors = (mbio->bi_size >> 9)
2565 - sectors_handled;
2566 r10_bio->state = 0;
2567 set_bit(R10BIO_ReadError,
2568 &r10_bio->state);
2569 r10_bio->mddev = mddev;
2570 r10_bio->sector = mbio->bi_sector
2571 + sectors_handled;
2572
2573 goto read_more;
2574 } else
2575 generic_make_request(bio);
560f8e55
N
2576}
2577
e879a879 2578static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2579{
2580 /* Some sort of write request has finished and it
2581 * succeeded in writing where we thought there was a
2582 * bad block. So forget the bad block.
1a0b7cd8
N
2583 * Or possibly if failed and we need to record
2584 * a bad block.
749c55e9
N
2585 */
2586 int m;
3cb03002 2587 struct md_rdev *rdev;
749c55e9
N
2588
2589 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2590 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2591 for (m = 0; m < conf->copies; m++) {
2592 int dev = r10_bio->devs[m].devnum;
2593 rdev = conf->mirrors[dev].rdev;
2594 if (r10_bio->devs[m].bio == NULL)
2595 continue;
2596 if (test_bit(BIO_UPTODATE,
749c55e9 2597 &r10_bio->devs[m].bio->bi_flags)) {
749c55e9
N
2598 rdev_clear_badblocks(
2599 rdev,
2600 r10_bio->devs[m].addr,
c6563a8c 2601 r10_bio->sectors, 0);
1a0b7cd8
N
2602 } else {
2603 if (!rdev_set_badblocks(
2604 rdev,
2605 r10_bio->devs[m].addr,
2606 r10_bio->sectors, 0))
2607 md_error(conf->mddev, rdev);
749c55e9 2608 }
9ad1aefc
N
2609 rdev = conf->mirrors[dev].replacement;
2610 if (r10_bio->devs[m].repl_bio == NULL)
2611 continue;
2612 if (test_bit(BIO_UPTODATE,
2613 &r10_bio->devs[m].repl_bio->bi_flags)) {
2614 rdev_clear_badblocks(
2615 rdev,
2616 r10_bio->devs[m].addr,
c6563a8c 2617 r10_bio->sectors, 0);
9ad1aefc
N
2618 } else {
2619 if (!rdev_set_badblocks(
2620 rdev,
2621 r10_bio->devs[m].addr,
2622 r10_bio->sectors, 0))
2623 md_error(conf->mddev, rdev);
2624 }
1a0b7cd8 2625 }
749c55e9
N
2626 put_buf(r10_bio);
2627 } else {
bd870a16
N
2628 for (m = 0; m < conf->copies; m++) {
2629 int dev = r10_bio->devs[m].devnum;
2630 struct bio *bio = r10_bio->devs[m].bio;
2631 rdev = conf->mirrors[dev].rdev;
2632 if (bio == IO_MADE_GOOD) {
749c55e9
N
2633 rdev_clear_badblocks(
2634 rdev,
2635 r10_bio->devs[m].addr,
c6563a8c 2636 r10_bio->sectors, 0);
749c55e9 2637 rdev_dec_pending(rdev, conf->mddev);
bd870a16
N
2638 } else if (bio != NULL &&
2639 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2640 if (!narrow_write_error(r10_bio, m)) {
2641 md_error(conf->mddev, rdev);
2642 set_bit(R10BIO_Degraded,
2643 &r10_bio->state);
2644 }
2645 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2646 }
475b0321
N
2647 bio = r10_bio->devs[m].repl_bio;
2648 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2649 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2650 rdev_clear_badblocks(
2651 rdev,
2652 r10_bio->devs[m].addr,
c6563a8c 2653 r10_bio->sectors, 0);
475b0321
N
2654 rdev_dec_pending(rdev, conf->mddev);
2655 }
bd870a16
N
2656 }
2657 if (test_bit(R10BIO_WriteError,
2658 &r10_bio->state))
2659 close_write(r10_bio);
749c55e9
N
2660 raid_end_bio_io(r10_bio);
2661 }
2662}
2663
fd01b88c 2664static void raid10d(struct mddev *mddev)
1da177e4 2665{
9f2c9d12 2666 struct r10bio *r10_bio;
1da177e4 2667 unsigned long flags;
e879a879 2668 struct r10conf *conf = mddev->private;
1da177e4 2669 struct list_head *head = &conf->retry_list;
e1dfa0a2 2670 struct blk_plug plug;
1da177e4
LT
2671
2672 md_check_recovery(mddev);
1da177e4 2673
e1dfa0a2 2674 blk_start_plug(&plug);
1da177e4 2675 for (;;) {
6cce3b23 2676
b357f04a
N
2677 if (atomic_read(&mddev->plug_cnt) == 0)
2678 flush_pending_writes(conf);
6cce3b23 2679
a35e63ef
N
2680 spin_lock_irqsave(&conf->device_lock, flags);
2681 if (list_empty(head)) {
2682 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2683 break;
a35e63ef 2684 }
9f2c9d12 2685 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2686 list_del(head->prev);
4443ae10 2687 conf->nr_queued--;
1da177e4
LT
2688 spin_unlock_irqrestore(&conf->device_lock, flags);
2689
2690 mddev = r10_bio->mddev;
070ec55d 2691 conf = mddev->private;
bd870a16
N
2692 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2693 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 2694 handle_write_completed(conf, r10_bio);
3ea7daa5
N
2695 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2696 reshape_request_write(mddev, r10_bio);
749c55e9 2697 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2698 sync_request_write(mddev, r10_bio);
7eaceacc 2699 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2700 recovery_request_write(mddev, r10_bio);
856e08e2 2701 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2702 handle_read_error(mddev, r10_bio);
856e08e2
N
2703 else {
2704 /* just a partial read to be scheduled from a
2705 * separate context
2706 */
2707 int slot = r10_bio->read_slot;
2708 generic_make_request(r10_bio->devs[slot].bio);
2709 }
560f8e55 2710
1d9d5241 2711 cond_resched();
de393cde
N
2712 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2713 md_check_recovery(mddev);
1da177e4 2714 }
e1dfa0a2 2715 blk_finish_plug(&plug);
1da177e4
LT
2716}
2717
2718
e879a879 2719static int init_resync(struct r10conf *conf)
1da177e4
LT
2720{
2721 int buffs;
69335ef3 2722 int i;
1da177e4
LT
2723
2724 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2725 BUG_ON(conf->r10buf_pool);
69335ef3 2726 conf->have_replacement = 0;
5cf00fcd 2727 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
2728 if (conf->mirrors[i].replacement)
2729 conf->have_replacement = 1;
1da177e4
LT
2730 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2731 if (!conf->r10buf_pool)
2732 return -ENOMEM;
2733 conf->next_resync = 0;
2734 return 0;
2735}
2736
2737/*
2738 * perform a "sync" on one "block"
2739 *
2740 * We need to make sure that no normal I/O request - particularly write
2741 * requests - conflict with active sync requests.
2742 *
2743 * This is achieved by tracking pending requests and a 'barrier' concept
2744 * that can be installed to exclude normal IO requests.
2745 *
2746 * Resync and recovery are handled very differently.
2747 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2748 *
2749 * For resync, we iterate over virtual addresses, read all copies,
2750 * and update if there are differences. If only one copy is live,
2751 * skip it.
2752 * For recovery, we iterate over physical addresses, read a good
2753 * value for each non-in_sync drive, and over-write.
2754 *
2755 * So, for recovery we may have several outstanding complex requests for a
2756 * given address, one for each out-of-sync device. We model this by allocating
2757 * a number of r10_bio structures, one for each out-of-sync device.
2758 * As we setup these structures, we collect all bio's together into a list
2759 * which we then process collectively to add pages, and then process again
2760 * to pass to generic_make_request.
2761 *
2762 * The r10_bio structures are linked using a borrowed master_bio pointer.
2763 * This link is counted in ->remaining. When the r10_bio that points to NULL
2764 * has its remaining count decremented to 0, the whole complex operation
2765 * is complete.
2766 *
2767 */
2768
fd01b88c 2769static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
ab9d47e9 2770 int *skipped, int go_faster)
1da177e4 2771{
e879a879 2772 struct r10conf *conf = mddev->private;
9f2c9d12 2773 struct r10bio *r10_bio;
1da177e4
LT
2774 struct bio *biolist = NULL, *bio;
2775 sector_t max_sector, nr_sectors;
1da177e4 2776 int i;
6cce3b23 2777 int max_sync;
57dab0bd 2778 sector_t sync_blocks;
1da177e4
LT
2779 sector_t sectors_skipped = 0;
2780 int chunks_skipped = 0;
5cf00fcd 2781 sector_t chunk_mask = conf->geo.chunk_mask;
1da177e4
LT
2782
2783 if (!conf->r10buf_pool)
2784 if (init_resync(conf))
57afd89f 2785 return 0;
1da177e4
LT
2786
2787 skipped:
58c0fed4 2788 max_sector = mddev->dev_sectors;
3ea7daa5
N
2789 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2790 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1da177e4
LT
2791 max_sector = mddev->resync_max_sectors;
2792 if (sector_nr >= max_sector) {
6cce3b23
N
2793 /* If we aborted, we need to abort the
2794 * sync on the 'current' bitmap chucks (there can
2795 * be several when recovering multiple devices).
2796 * as we may have started syncing it but not finished.
2797 * We can find the current address in
2798 * mddev->curr_resync, but for recovery,
2799 * we need to convert that to several
2800 * virtual addresses.
2801 */
3ea7daa5
N
2802 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2803 end_reshape(conf);
2804 return 0;
2805 }
2806
6cce3b23
N
2807 if (mddev->curr_resync < max_sector) { /* aborted */
2808 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2809 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2810 &sync_blocks, 1);
5cf00fcd 2811 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
2812 sector_t sect =
2813 raid10_find_virt(conf, mddev->curr_resync, i);
2814 bitmap_end_sync(mddev->bitmap, sect,
2815 &sync_blocks, 1);
2816 }
9ad1aefc
N
2817 } else {
2818 /* completed sync */
2819 if ((!mddev->bitmap || conf->fullsync)
2820 && conf->have_replacement
2821 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2822 /* Completed a full sync so the replacements
2823 * are now fully recovered.
2824 */
5cf00fcd 2825 for (i = 0; i < conf->geo.raid_disks; i++)
9ad1aefc
N
2826 if (conf->mirrors[i].replacement)
2827 conf->mirrors[i].replacement
2828 ->recovery_offset
2829 = MaxSector;
2830 }
6cce3b23 2831 conf->fullsync = 0;
9ad1aefc 2832 }
6cce3b23 2833 bitmap_close_sync(mddev->bitmap);
1da177e4 2834 close_sync(conf);
57afd89f 2835 *skipped = 1;
1da177e4
LT
2836 return sectors_skipped;
2837 }
3ea7daa5
N
2838
2839 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2840 return reshape_request(mddev, sector_nr, skipped);
2841
5cf00fcd 2842 if (chunks_skipped >= conf->geo.raid_disks) {
1da177e4
LT
2843 /* if there has been nothing to do on any drive,
2844 * then there is nothing to do at all..
2845 */
57afd89f
N
2846 *skipped = 1;
2847 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
2848 }
2849
c6207277
N
2850 if (max_sector > mddev->resync_max)
2851 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2852
1da177e4
LT
2853 /* make sure whole request will fit in a chunk - if chunks
2854 * are meaningful
2855 */
5cf00fcd
N
2856 if (conf->geo.near_copies < conf->geo.raid_disks &&
2857 max_sector > (sector_nr | chunk_mask))
2858 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4
LT
2859 /*
2860 * If there is non-resync activity waiting for us then
2861 * put in a delay to throttle resync.
2862 */
0a27ec96 2863 if (!go_faster && conf->nr_waiting)
1da177e4 2864 msleep_interruptible(1000);
1da177e4
LT
2865
2866 /* Again, very different code for resync and recovery.
2867 * Both must result in an r10bio with a list of bios that
2868 * have bi_end_io, bi_sector, bi_bdev set,
2869 * and bi_private set to the r10bio.
2870 * For recovery, we may actually create several r10bios
2871 * with 2 bios in each, that correspond to the bios in the main one.
2872 * In this case, the subordinate r10bios link back through a
2873 * borrowed master_bio pointer, and the counter in the master
2874 * includes a ref from each subordinate.
2875 */
2876 /* First, we decide what to do and set ->bi_end_io
2877 * To end_sync_read if we want to read, and
2878 * end_sync_write if we will want to write.
2879 */
2880
6cce3b23 2881 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
2882 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2883 /* recovery... the complicated one */
e875ecea 2884 int j;
1da177e4
LT
2885 r10_bio = NULL;
2886
5cf00fcd 2887 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 2888 int still_degraded;
9f2c9d12 2889 struct r10bio *rb2;
ab9d47e9
N
2890 sector_t sect;
2891 int must_sync;
e875ecea 2892 int any_working;
dc280d98 2893 struct raid10_info *mirror = &conf->mirrors[i];
24afd80d
N
2894
2895 if ((mirror->rdev == NULL ||
2896 test_bit(In_sync, &mirror->rdev->flags))
2897 &&
2898 (mirror->replacement == NULL ||
2899 test_bit(Faulty,
2900 &mirror->replacement->flags)))
ab9d47e9 2901 continue;
1da177e4 2902
ab9d47e9
N
2903 still_degraded = 0;
2904 /* want to reconstruct this device */
2905 rb2 = r10_bio;
2906 sect = raid10_find_virt(conf, sector_nr, i);
fc448a18
N
2907 if (sect >= mddev->resync_max_sectors) {
2908 /* last stripe is not complete - don't
2909 * try to recover this sector.
2910 */
2911 continue;
2912 }
24afd80d
N
2913 /* Unless we are doing a full sync, or a replacement
2914 * we only need to recover the block if it is set in
2915 * the bitmap
ab9d47e9
N
2916 */
2917 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2918 &sync_blocks, 1);
2919 if (sync_blocks < max_sync)
2920 max_sync = sync_blocks;
2921 if (!must_sync &&
24afd80d 2922 mirror->replacement == NULL &&
ab9d47e9
N
2923 !conf->fullsync) {
2924 /* yep, skip the sync_blocks here, but don't assume
2925 * that there will never be anything to do here
2926 */
2927 chunks_skipped = -1;
2928 continue;
2929 }
6cce3b23 2930
ab9d47e9
N
2931 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2932 raise_barrier(conf, rb2 != NULL);
2933 atomic_set(&r10_bio->remaining, 0);
18055569 2934
ab9d47e9
N
2935 r10_bio->master_bio = (struct bio*)rb2;
2936 if (rb2)
2937 atomic_inc(&rb2->remaining);
2938 r10_bio->mddev = mddev;
2939 set_bit(R10BIO_IsRecover, &r10_bio->state);
2940 r10_bio->sector = sect;
1da177e4 2941
ab9d47e9
N
2942 raid10_find_phys(conf, r10_bio);
2943
2944 /* Need to check if the array will still be
2945 * degraded
2946 */
5cf00fcd 2947 for (j = 0; j < conf->geo.raid_disks; j++)
ab9d47e9
N
2948 if (conf->mirrors[j].rdev == NULL ||
2949 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2950 still_degraded = 1;
87fc767b 2951 break;
1da177e4 2952 }
ab9d47e9
N
2953
2954 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2955 &sync_blocks, still_degraded);
2956
e875ecea 2957 any_working = 0;
ab9d47e9 2958 for (j=0; j<conf->copies;j++) {
e875ecea 2959 int k;
ab9d47e9 2960 int d = r10_bio->devs[j].devnum;
5e570289 2961 sector_t from_addr, to_addr;
3cb03002 2962 struct md_rdev *rdev;
40c356ce
N
2963 sector_t sector, first_bad;
2964 int bad_sectors;
ab9d47e9
N
2965 if (!conf->mirrors[d].rdev ||
2966 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2967 continue;
2968 /* This is where we read from */
e875ecea 2969 any_working = 1;
40c356ce
N
2970 rdev = conf->mirrors[d].rdev;
2971 sector = r10_bio->devs[j].addr;
2972
2973 if (is_badblock(rdev, sector, max_sync,
2974 &first_bad, &bad_sectors)) {
2975 if (first_bad > sector)
2976 max_sync = first_bad - sector;
2977 else {
2978 bad_sectors -= (sector
2979 - first_bad);
2980 if (max_sync > bad_sectors)
2981 max_sync = bad_sectors;
2982 continue;
2983 }
2984 }
ab9d47e9
N
2985 bio = r10_bio->devs[0].bio;
2986 bio->bi_next = biolist;
2987 biolist = bio;
2988 bio->bi_private = r10_bio;
2989 bio->bi_end_io = end_sync_read;
2990 bio->bi_rw = READ;
5e570289 2991 from_addr = r10_bio->devs[j].addr;
24afd80d
N
2992 bio->bi_sector = from_addr + rdev->data_offset;
2993 bio->bi_bdev = rdev->bdev;
2994 atomic_inc(&rdev->nr_pending);
2995 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
2996
2997 for (k=0; k<conf->copies; k++)
2998 if (r10_bio->devs[k].devnum == i)
2999 break;
3000 BUG_ON(k == conf->copies);
5e570289 3001 to_addr = r10_bio->devs[k].addr;
ab9d47e9 3002 r10_bio->devs[0].devnum = d;
5e570289 3003 r10_bio->devs[0].addr = from_addr;
ab9d47e9 3004 r10_bio->devs[1].devnum = i;
5e570289 3005 r10_bio->devs[1].addr = to_addr;
ab9d47e9 3006
24afd80d
N
3007 rdev = mirror->rdev;
3008 if (!test_bit(In_sync, &rdev->flags)) {
3009 bio = r10_bio->devs[1].bio;
3010 bio->bi_next = biolist;
3011 biolist = bio;
3012 bio->bi_private = r10_bio;
3013 bio->bi_end_io = end_sync_write;
3014 bio->bi_rw = WRITE;
3015 bio->bi_sector = to_addr
3016 + rdev->data_offset;
3017 bio->bi_bdev = rdev->bdev;
3018 atomic_inc(&r10_bio->remaining);
3019 } else
3020 r10_bio->devs[1].bio->bi_end_io = NULL;
3021
3022 /* and maybe write to replacement */
3023 bio = r10_bio->devs[1].repl_bio;
3024 if (bio)
3025 bio->bi_end_io = NULL;
3026 rdev = mirror->replacement;
3027 /* Note: if rdev != NULL, then bio
3028 * cannot be NULL as r10buf_pool_alloc will
3029 * have allocated it.
3030 * So the second test here is pointless.
3031 * But it keeps semantic-checkers happy, and
3032 * this comment keeps human reviewers
3033 * happy.
3034 */
3035 if (rdev == NULL || bio == NULL ||
3036 test_bit(Faulty, &rdev->flags))
3037 break;
3038 bio->bi_next = biolist;
3039 biolist = bio;
3040 bio->bi_private = r10_bio;
3041 bio->bi_end_io = end_sync_write;
3042 bio->bi_rw = WRITE;
3043 bio->bi_sector = to_addr + rdev->data_offset;
3044 bio->bi_bdev = rdev->bdev;
3045 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
3046 break;
3047 }
3048 if (j == conf->copies) {
e875ecea
N
3049 /* Cannot recover, so abort the recovery or
3050 * record a bad block */
ab9d47e9
N
3051 put_buf(r10_bio);
3052 if (rb2)
3053 atomic_dec(&rb2->remaining);
3054 r10_bio = rb2;
e875ecea
N
3055 if (any_working) {
3056 /* problem is that there are bad blocks
3057 * on other device(s)
3058 */
3059 int k;
3060 for (k = 0; k < conf->copies; k++)
3061 if (r10_bio->devs[k].devnum == i)
3062 break;
24afd80d
N
3063 if (!test_bit(In_sync,
3064 &mirror->rdev->flags)
3065 && !rdev_set_badblocks(
3066 mirror->rdev,
3067 r10_bio->devs[k].addr,
3068 max_sync, 0))
3069 any_working = 0;
3070 if (mirror->replacement &&
3071 !rdev_set_badblocks(
3072 mirror->replacement,
e875ecea
N
3073 r10_bio->devs[k].addr,
3074 max_sync, 0))
3075 any_working = 0;
3076 }
3077 if (!any_working) {
3078 if (!test_and_set_bit(MD_RECOVERY_INTR,
3079 &mddev->recovery))
3080 printk(KERN_INFO "md/raid10:%s: insufficient "
3081 "working devices for recovery.\n",
3082 mdname(mddev));
24afd80d 3083 mirror->recovery_disabled
e875ecea
N
3084 = mddev->recovery_disabled;
3085 }
ab9d47e9 3086 break;
1da177e4 3087 }
ab9d47e9 3088 }
1da177e4
LT
3089 if (biolist == NULL) {
3090 while (r10_bio) {
9f2c9d12
N
3091 struct r10bio *rb2 = r10_bio;
3092 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3093 rb2->master_bio = NULL;
3094 put_buf(rb2);
3095 }
3096 goto giveup;
3097 }
3098 } else {
3099 /* resync. Schedule a read for every block at this virt offset */
3100 int count = 0;
6cce3b23 3101
78200d45
N
3102 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3103
6cce3b23
N
3104 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3105 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3106 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3107 &mddev->recovery)) {
6cce3b23
N
3108 /* We can skip this block */
3109 *skipped = 1;
3110 return sync_blocks + sectors_skipped;
3111 }
3112 if (sync_blocks < max_sync)
3113 max_sync = sync_blocks;
1da177e4
LT
3114 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3115
1da177e4
LT
3116 r10_bio->mddev = mddev;
3117 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3118 raise_barrier(conf, 0);
3119 conf->next_resync = sector_nr;
1da177e4
LT
3120
3121 r10_bio->master_bio = NULL;
3122 r10_bio->sector = sector_nr;
3123 set_bit(R10BIO_IsSync, &r10_bio->state);
3124 raid10_find_phys(conf, r10_bio);
5cf00fcd 3125 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3126
5cf00fcd 3127 for (i = 0; i < conf->copies; i++) {
1da177e4 3128 int d = r10_bio->devs[i].devnum;
40c356ce
N
3129 sector_t first_bad, sector;
3130 int bad_sectors;
3131
9ad1aefc
N
3132 if (r10_bio->devs[i].repl_bio)
3133 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3134
1da177e4
LT
3135 bio = r10_bio->devs[i].bio;
3136 bio->bi_end_io = NULL;
af03b8e4 3137 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 3138 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 3139 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4 3140 continue;
40c356ce
N
3141 sector = r10_bio->devs[i].addr;
3142 if (is_badblock(conf->mirrors[d].rdev,
3143 sector, max_sync,
3144 &first_bad, &bad_sectors)) {
3145 if (first_bad > sector)
3146 max_sync = first_bad - sector;
3147 else {
3148 bad_sectors -= (sector - first_bad);
3149 if (max_sync > bad_sectors)
3150 max_sync = max_sync;
3151 continue;
3152 }
3153 }
1da177e4
LT
3154 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3155 atomic_inc(&r10_bio->remaining);
3156 bio->bi_next = biolist;
3157 biolist = bio;
3158 bio->bi_private = r10_bio;
3159 bio->bi_end_io = end_sync_read;
802ba064 3160 bio->bi_rw = READ;
40c356ce 3161 bio->bi_sector = sector +
1da177e4
LT
3162 conf->mirrors[d].rdev->data_offset;
3163 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3164 count++;
9ad1aefc
N
3165
3166 if (conf->mirrors[d].replacement == NULL ||
3167 test_bit(Faulty,
3168 &conf->mirrors[d].replacement->flags))
3169 continue;
3170
3171 /* Need to set up for writing to the replacement */
3172 bio = r10_bio->devs[i].repl_bio;
3173 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3174
3175 sector = r10_bio->devs[i].addr;
3176 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3177 bio->bi_next = biolist;
3178 biolist = bio;
3179 bio->bi_private = r10_bio;
3180 bio->bi_end_io = end_sync_write;
3181 bio->bi_rw = WRITE;
3182 bio->bi_sector = sector +
3183 conf->mirrors[d].replacement->data_offset;
3184 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3185 count++;
1da177e4
LT
3186 }
3187
3188 if (count < 2) {
3189 for (i=0; i<conf->copies; i++) {
3190 int d = r10_bio->devs[i].devnum;
3191 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3192 rdev_dec_pending(conf->mirrors[d].rdev,
3193 mddev);
9ad1aefc
N
3194 if (r10_bio->devs[i].repl_bio &&
3195 r10_bio->devs[i].repl_bio->bi_end_io)
3196 rdev_dec_pending(
3197 conf->mirrors[d].replacement,
3198 mddev);
1da177e4
LT
3199 }
3200 put_buf(r10_bio);
3201 biolist = NULL;
3202 goto giveup;
3203 }
3204 }
3205
3206 for (bio = biolist; bio ; bio=bio->bi_next) {
3207
3208 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3209 if (bio->bi_end_io)
3210 bio->bi_flags |= 1 << BIO_UPTODATE;
3211 bio->bi_vcnt = 0;
3212 bio->bi_idx = 0;
3213 bio->bi_phys_segments = 0;
1da177e4
LT
3214 bio->bi_size = 0;
3215 }
3216
3217 nr_sectors = 0;
6cce3b23
N
3218 if (sector_nr + max_sync < max_sector)
3219 max_sector = sector_nr + max_sync;
1da177e4
LT
3220 do {
3221 struct page *page;
3222 int len = PAGE_SIZE;
1da177e4
LT
3223 if (sector_nr + (len>>9) > max_sector)
3224 len = (max_sector - sector_nr) << 9;
3225 if (len == 0)
3226 break;
3227 for (bio= biolist ; bio ; bio=bio->bi_next) {
ab9d47e9 3228 struct bio *bio2;
1da177e4 3229 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
ab9d47e9
N
3230 if (bio_add_page(bio, page, len, 0))
3231 continue;
3232
3233 /* stop here */
3234 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3235 for (bio2 = biolist;
3236 bio2 && bio2 != bio;
3237 bio2 = bio2->bi_next) {
3238 /* remove last page from this bio */
3239 bio2->bi_vcnt--;
3240 bio2->bi_size -= len;
3241 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1da177e4 3242 }
ab9d47e9 3243 goto bio_full;
1da177e4
LT
3244 }
3245 nr_sectors += len>>9;
3246 sector_nr += len>>9;
3247 } while (biolist->bi_vcnt < RESYNC_PAGES);
3248 bio_full:
3249 r10_bio->sectors = nr_sectors;
3250
3251 while (biolist) {
3252 bio = biolist;
3253 biolist = biolist->bi_next;
3254
3255 bio->bi_next = NULL;
3256 r10_bio = bio->bi_private;
3257 r10_bio->sectors = nr_sectors;
3258
3259 if (bio->bi_end_io == end_sync_read) {
3260 md_sync_acct(bio->bi_bdev, nr_sectors);
3261 generic_make_request(bio);
3262 }
3263 }
3264
57afd89f
N
3265 if (sectors_skipped)
3266 /* pretend they weren't skipped, it makes
3267 * no important difference in this case
3268 */
3269 md_done_sync(mddev, sectors_skipped, 1);
3270
1da177e4
LT
3271 return sectors_skipped + nr_sectors;
3272 giveup:
3273 /* There is nowhere to write, so all non-sync
e875ecea
N
3274 * drives must be failed or in resync, all drives
3275 * have a bad block, so try the next chunk...
1da177e4 3276 */
09b4068a
N
3277 if (sector_nr + max_sync < max_sector)
3278 max_sector = sector_nr + max_sync;
3279
3280 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3281 chunks_skipped ++;
3282 sector_nr = max_sector;
1da177e4 3283 goto skipped;
1da177e4
LT
3284}
3285
80c3a6ce 3286static sector_t
fd01b88c 3287raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3288{
3289 sector_t size;
e879a879 3290 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3291
3292 if (!raid_disks)
3ea7daa5
N
3293 raid_disks = min(conf->geo.raid_disks,
3294 conf->prev.raid_disks);
80c3a6ce 3295 if (!sectors)
dab8b292 3296 sectors = conf->dev_sectors;
80c3a6ce 3297
5cf00fcd
N
3298 size = sectors >> conf->geo.chunk_shift;
3299 sector_div(size, conf->geo.far_copies);
80c3a6ce 3300 size = size * raid_disks;
5cf00fcd 3301 sector_div(size, conf->geo.near_copies);
80c3a6ce 3302
5cf00fcd 3303 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3304}
3305
6508fdbf
N
3306static void calc_sectors(struct r10conf *conf, sector_t size)
3307{
3308 /* Calculate the number of sectors-per-device that will
3309 * actually be used, and set conf->dev_sectors and
3310 * conf->stride
3311 */
3312
5cf00fcd
N
3313 size = size >> conf->geo.chunk_shift;
3314 sector_div(size, conf->geo.far_copies);
3315 size = size * conf->geo.raid_disks;
3316 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3317 /* 'size' is now the number of chunks in the array */
3318 /* calculate "used chunks per device" */
3319 size = size * conf->copies;
3320
3321 /* We need to round up when dividing by raid_disks to
3322 * get the stride size.
3323 */
5cf00fcd 3324 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3325
5cf00fcd 3326 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3327
5cf00fcd
N
3328 if (conf->geo.far_offset)
3329 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3330 else {
5cf00fcd
N
3331 sector_div(size, conf->geo.far_copies);
3332 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3333 }
3334}
dab8b292 3335
deb200d0
N
3336enum geo_type {geo_new, geo_old, geo_start};
3337static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3338{
3339 int nc, fc, fo;
3340 int layout, chunk, disks;
3341 switch (new) {
3342 case geo_old:
3343 layout = mddev->layout;
3344 chunk = mddev->chunk_sectors;
3345 disks = mddev->raid_disks - mddev->delta_disks;
3346 break;
3347 case geo_new:
3348 layout = mddev->new_layout;
3349 chunk = mddev->new_chunk_sectors;
3350 disks = mddev->raid_disks;
3351 break;
3352 default: /* avoid 'may be unused' warnings */
3353 case geo_start: /* new when starting reshape - raid_disks not
3354 * updated yet. */
3355 layout = mddev->new_layout;
3356 chunk = mddev->new_chunk_sectors;
3357 disks = mddev->raid_disks + mddev->delta_disks;
3358 break;
3359 }
3360 if (layout >> 17)
3361 return -1;
3362 if (chunk < (PAGE_SIZE >> 9) ||
3363 !is_power_of_2(chunk))
3364 return -2;
3365 nc = layout & 255;
3366 fc = (layout >> 8) & 255;
3367 fo = layout & (1<<16);
3368 geo->raid_disks = disks;
3369 geo->near_copies = nc;
3370 geo->far_copies = fc;
3371 geo->far_offset = fo;
3372 geo->chunk_mask = chunk - 1;
3373 geo->chunk_shift = ffz(~chunk);
3374 return nc*fc;
3375}
3376
e879a879 3377static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3378{
e879a879 3379 struct r10conf *conf = NULL;
dab8b292 3380 int err = -EINVAL;
deb200d0
N
3381 struct geom geo;
3382 int copies;
3383
3384 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 3385
deb200d0 3386 if (copies == -2) {
128595ed
N
3387 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3388 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3389 mdname(mddev), PAGE_SIZE);
dab8b292 3390 goto out;
1da177e4 3391 }
2604b703 3392
deb200d0 3393 if (copies < 2 || copies > mddev->raid_disks) {
128595ed 3394 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 3395 mdname(mddev), mddev->new_layout);
1da177e4
LT
3396 goto out;
3397 }
dab8b292
TM
3398
3399 err = -ENOMEM;
e879a879 3400 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3401 if (!conf)
1da177e4 3402 goto out;
dab8b292 3403
3ea7daa5 3404 /* FIXME calc properly */
dc280d98 3405 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3ea7daa5 3406 max(0,mddev->delta_disks)),
dab8b292
TM
3407 GFP_KERNEL);
3408 if (!conf->mirrors)
3409 goto out;
4443ae10
N
3410
3411 conf->tmppage = alloc_page(GFP_KERNEL);
3412 if (!conf->tmppage)
dab8b292
TM
3413 goto out;
3414
deb200d0
N
3415 conf->geo = geo;
3416 conf->copies = copies;
dab8b292
TM
3417 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3418 r10bio_pool_free, conf);
3419 if (!conf->r10bio_pool)
3420 goto out;
3421
6508fdbf 3422 calc_sectors(conf, mddev->dev_sectors);
3ea7daa5
N
3423 if (mddev->reshape_position == MaxSector) {
3424 conf->prev = conf->geo;
3425 conf->reshape_progress = MaxSector;
3426 } else {
3427 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3428 err = -EINVAL;
3429 goto out;
3430 }
3431 conf->reshape_progress = mddev->reshape_position;
3432 if (conf->prev.far_offset)
3433 conf->prev.stride = 1 << conf->prev.chunk_shift;
3434 else
3435 /* far_copies must be 1 */
3436 conf->prev.stride = conf->dev_sectors;
3437 }
e7e72bf6 3438 spin_lock_init(&conf->device_lock);
dab8b292
TM
3439 INIT_LIST_HEAD(&conf->retry_list);
3440
3441 spin_lock_init(&conf->resync_lock);
3442 init_waitqueue_head(&conf->wait_barrier);
3443
0232605d 3444 conf->thread = md_register_thread(raid10d, mddev, "raid10");
dab8b292
TM
3445 if (!conf->thread)
3446 goto out;
3447
dab8b292
TM
3448 conf->mddev = mddev;
3449 return conf;
3450
3451 out:
3ea7daa5
N
3452 if (err == -ENOMEM)
3453 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3454 mdname(mddev));
dab8b292
TM
3455 if (conf) {
3456 if (conf->r10bio_pool)
3457 mempool_destroy(conf->r10bio_pool);
3458 kfree(conf->mirrors);
3459 safe_put_page(conf->tmppage);
3460 kfree(conf);
3461 }
3462 return ERR_PTR(err);
3463}
3464
fd01b88c 3465static int run(struct mddev *mddev)
dab8b292 3466{
e879a879 3467 struct r10conf *conf;
dab8b292 3468 int i, disk_idx, chunk_size;
dc280d98 3469 struct raid10_info *disk;
3cb03002 3470 struct md_rdev *rdev;
dab8b292 3471 sector_t size;
3ea7daa5
N
3472 sector_t min_offset_diff = 0;
3473 int first = 1;
dab8b292
TM
3474
3475 if (mddev->private == NULL) {
3476 conf = setup_conf(mddev);
3477 if (IS_ERR(conf))
3478 return PTR_ERR(conf);
3479 mddev->private = conf;
3480 }
3481 conf = mddev->private;
3482 if (!conf)
3483 goto out;
3484
dab8b292
TM
3485 mddev->thread = conf->thread;
3486 conf->thread = NULL;
3487
8f6c2e4b
MP
3488 chunk_size = mddev->chunk_sectors << 9;
3489 blk_queue_io_min(mddev->queue, chunk_size);
5cf00fcd
N
3490 if (conf->geo.raid_disks % conf->geo.near_copies)
3491 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
8f6c2e4b
MP
3492 else
3493 blk_queue_io_opt(mddev->queue, chunk_size *
5cf00fcd 3494 (conf->geo.raid_disks / conf->geo.near_copies));
8f6c2e4b 3495
dafb20fa 3496 rdev_for_each(rdev, mddev) {
3ea7daa5 3497 long long diff;
aba336bd 3498 struct request_queue *q;
34b343cf 3499
1da177e4 3500 disk_idx = rdev->raid_disk;
f8c9e74f
N
3501 if (disk_idx < 0)
3502 continue;
3503 if (disk_idx >= conf->geo.raid_disks &&
3504 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
3505 continue;
3506 disk = conf->mirrors + disk_idx;
3507
56a2559b
N
3508 if (test_bit(Replacement, &rdev->flags)) {
3509 if (disk->replacement)
3510 goto out_free_conf;
3511 disk->replacement = rdev;
3512 } else {
3513 if (disk->rdev)
3514 goto out_free_conf;
3515 disk->rdev = rdev;
3516 }
aba336bd
N
3517 q = bdev_get_queue(rdev->bdev);
3518 if (q->merge_bvec_fn)
3519 mddev->merge_check_needed = 1;
3ea7daa5
N
3520 diff = (rdev->new_data_offset - rdev->data_offset);
3521 if (!mddev->reshape_backwards)
3522 diff = -diff;
3523 if (diff < 0)
3524 diff = 0;
3525 if (first || diff < min_offset_diff)
3526 min_offset_diff = diff;
56a2559b 3527
8f6c2e4b
MP
3528 disk_stack_limits(mddev->gendisk, rdev->bdev,
3529 rdev->data_offset << 9);
1da177e4
LT
3530
3531 disk->head_position = 0;
1da177e4 3532 }
3ea7daa5 3533
6d508242 3534 /* need to check that every block has at least one working mirror */
700c7213 3535 if (!enough(conf, -1)) {
128595ed 3536 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 3537 mdname(mddev));
1da177e4
LT
3538 goto out_free_conf;
3539 }
3540
3ea7daa5
N
3541 if (conf->reshape_progress != MaxSector) {
3542 /* must ensure that shape change is supported */
3543 if (conf->geo.far_copies != 1 &&
3544 conf->geo.far_offset == 0)
3545 goto out_free_conf;
3546 if (conf->prev.far_copies != 1 &&
3547 conf->geo.far_offset == 0)
3548 goto out_free_conf;
3549 }
3550
1da177e4 3551 mddev->degraded = 0;
f8c9e74f
N
3552 for (i = 0;
3553 i < conf->geo.raid_disks
3554 || i < conf->prev.raid_disks;
3555 i++) {
1da177e4
LT
3556
3557 disk = conf->mirrors + i;
3558
56a2559b
N
3559 if (!disk->rdev && disk->replacement) {
3560 /* The replacement is all we have - use it */
3561 disk->rdev = disk->replacement;
3562 disk->replacement = NULL;
3563 clear_bit(Replacement, &disk->rdev->flags);
3564 }
3565
5fd6c1dc 3566 if (!disk->rdev ||
2e333e89 3567 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
3568 disk->head_position = 0;
3569 mddev->degraded++;
8c2e870a
NB
3570 if (disk->rdev)
3571 conf->fullsync = 1;
1da177e4 3572 }
d890fa2b 3573 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
3574 }
3575
8c6ac868 3576 if (mddev->recovery_cp != MaxSector)
128595ed 3577 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
3578 " -- starting background reconstruction\n",
3579 mdname(mddev));
1da177e4 3580 printk(KERN_INFO
128595ed 3581 "md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
3582 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3583 conf->geo.raid_disks);
1da177e4
LT
3584 /*
3585 * Ok, everything is just fine now
3586 */
dab8b292
TM
3587 mddev->dev_sectors = conf->dev_sectors;
3588 size = raid10_size(mddev, 0, 0);
3589 md_set_array_sectors(mddev, size);
3590 mddev->resync_max_sectors = size;
1da177e4 3591
0d129228
N
3592 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3593 mddev->queue->backing_dev_info.congested_data = mddev;
7a5febe9 3594
1da177e4
LT
3595 /* Calculate max read-ahead size.
3596 * We need to readahead at least twice a whole stripe....
3597 * maybe...
3598 */
3599 {
5cf00fcd 3600 int stripe = conf->geo.raid_disks *
9d8f0363 3601 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5cf00fcd 3602 stripe /= conf->geo.near_copies;
3ea7daa5
N
3603 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3604 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
1da177e4
LT
3605 }
3606
050b6615 3607 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
a91a2785
MP
3608
3609 if (md_integrity_register(mddev))
3610 goto out_free_conf;
3611
3ea7daa5
N
3612 if (conf->reshape_progress != MaxSector) {
3613 unsigned long before_length, after_length;
3614
3615 before_length = ((1 << conf->prev.chunk_shift) *
3616 conf->prev.far_copies);
3617 after_length = ((1 << conf->geo.chunk_shift) *
3618 conf->geo.far_copies);
3619
3620 if (max(before_length, after_length) > min_offset_diff) {
3621 /* This cannot work */
3622 printk("md/raid10: offset difference not enough to continue reshape\n");
3623 goto out_free_conf;
3624 }
3625 conf->offset_diff = min_offset_diff;
3626
3627 conf->reshape_safe = conf->reshape_progress;
3628 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3629 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3630 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3631 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3632 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3633 "reshape");
3634 }
3635
1da177e4
LT
3636 return 0;
3637
3638out_free_conf:
01f96c0a 3639 md_unregister_thread(&mddev->thread);
1da177e4
LT
3640 if (conf->r10bio_pool)
3641 mempool_destroy(conf->r10bio_pool);
1345b1d8 3642 safe_put_page(conf->tmppage);
990a8baf 3643 kfree(conf->mirrors);
1da177e4
LT
3644 kfree(conf);
3645 mddev->private = NULL;
3646out:
3647 return -EIO;
3648}
3649
fd01b88c 3650static int stop(struct mddev *mddev)
1da177e4 3651{
e879a879 3652 struct r10conf *conf = mddev->private;
1da177e4 3653
409c57f3
N
3654 raise_barrier(conf, 0);
3655 lower_barrier(conf);
3656
01f96c0a 3657 md_unregister_thread(&mddev->thread);
1da177e4
LT
3658 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3659 if (conf->r10bio_pool)
3660 mempool_destroy(conf->r10bio_pool);
990a8baf 3661 kfree(conf->mirrors);
1da177e4
LT
3662 kfree(conf);
3663 mddev->private = NULL;
3664 return 0;
3665}
3666
fd01b88c 3667static void raid10_quiesce(struct mddev *mddev, int state)
6cce3b23 3668{
e879a879 3669 struct r10conf *conf = mddev->private;
6cce3b23
N
3670
3671 switch(state) {
3672 case 1:
3673 raise_barrier(conf, 0);
3674 break;
3675 case 0:
3676 lower_barrier(conf);
3677 break;
3678 }
6cce3b23 3679}
1da177e4 3680
006a09a0
N
3681static int raid10_resize(struct mddev *mddev, sector_t sectors)
3682{
3683 /* Resize of 'far' arrays is not supported.
3684 * For 'near' and 'offset' arrays we can set the
3685 * number of sectors used to be an appropriate multiple
3686 * of the chunk size.
3687 * For 'offset', this is far_copies*chunksize.
3688 * For 'near' the multiplier is the LCM of
3689 * near_copies and raid_disks.
3690 * So if far_copies > 1 && !far_offset, fail.
3691 * Else find LCM(raid_disks, near_copy)*far_copies and
3692 * multiply by chunk_size. Then round to this number.
3693 * This is mostly done by raid10_size()
3694 */
3695 struct r10conf *conf = mddev->private;
3696 sector_t oldsize, size;
3697
f8c9e74f
N
3698 if (mddev->reshape_position != MaxSector)
3699 return -EBUSY;
3700
5cf00fcd 3701 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
3702 return -EINVAL;
3703
3704 oldsize = raid10_size(mddev, 0, 0);
3705 size = raid10_size(mddev, sectors, 0);
a4a6125a
N
3706 if (mddev->external_size &&
3707 mddev->array_sectors > size)
006a09a0 3708 return -EINVAL;
a4a6125a
N
3709 if (mddev->bitmap) {
3710 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3711 if (ret)
3712 return ret;
3713 }
3714 md_set_array_sectors(mddev, size);
006a09a0
N
3715 set_capacity(mddev->gendisk, mddev->array_sectors);
3716 revalidate_disk(mddev->gendisk);
3717 if (sectors > mddev->dev_sectors &&
3718 mddev->recovery_cp > oldsize) {
3719 mddev->recovery_cp = oldsize;
3720 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3721 }
6508fdbf
N
3722 calc_sectors(conf, sectors);
3723 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
3724 mddev->resync_max_sectors = size;
3725 return 0;
3726}
3727
fd01b88c 3728static void *raid10_takeover_raid0(struct mddev *mddev)
dab8b292 3729{
3cb03002 3730 struct md_rdev *rdev;
e879a879 3731 struct r10conf *conf;
dab8b292
TM
3732
3733 if (mddev->degraded > 0) {
128595ed
N
3734 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3735 mdname(mddev));
dab8b292
TM
3736 return ERR_PTR(-EINVAL);
3737 }
3738
dab8b292
TM
3739 /* Set new parameters */
3740 mddev->new_level = 10;
3741 /* new layout: far_copies = 1, near_copies = 2 */
3742 mddev->new_layout = (1<<8) + 2;
3743 mddev->new_chunk_sectors = mddev->chunk_sectors;
3744 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
3745 mddev->raid_disks *= 2;
3746 /* make sure it will be not marked as dirty */
3747 mddev->recovery_cp = MaxSector;
3748
3749 conf = setup_conf(mddev);
02214dc5 3750 if (!IS_ERR(conf)) {
dafb20fa 3751 rdev_for_each(rdev, mddev)
e93f68a1
N
3752 if (rdev->raid_disk >= 0)
3753 rdev->new_raid_disk = rdev->raid_disk * 2;
02214dc5
KW
3754 conf->barrier = 1;
3755 }
3756
dab8b292
TM
3757 return conf;
3758}
3759
fd01b88c 3760static void *raid10_takeover(struct mddev *mddev)
dab8b292 3761{
e373ab10 3762 struct r0conf *raid0_conf;
dab8b292
TM
3763
3764 /* raid10 can take over:
3765 * raid0 - providing it has only two drives
3766 */
3767 if (mddev->level == 0) {
3768 /* for raid0 takeover only one zone is supported */
e373ab10
N
3769 raid0_conf = mddev->private;
3770 if (raid0_conf->nr_strip_zones > 1) {
128595ed
N
3771 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3772 " with more than one zone.\n",
3773 mdname(mddev));
dab8b292
TM
3774 return ERR_PTR(-EINVAL);
3775 }
3776 return raid10_takeover_raid0(mddev);
3777 }
3778 return ERR_PTR(-EINVAL);
3779}
3780
3ea7daa5
N
3781static int raid10_check_reshape(struct mddev *mddev)
3782{
3783 /* Called when there is a request to change
3784 * - layout (to ->new_layout)
3785 * - chunk size (to ->new_chunk_sectors)
3786 * - raid_disks (by delta_disks)
3787 * or when trying to restart a reshape that was ongoing.
3788 *
3789 * We need to validate the request and possibly allocate
3790 * space if that might be an issue later.
3791 *
3792 * Currently we reject any reshape of a 'far' mode array,
3793 * allow chunk size to change if new is generally acceptable,
3794 * allow raid_disks to increase, and allow
3795 * a switch between 'near' mode and 'offset' mode.
3796 */
3797 struct r10conf *conf = mddev->private;
3798 struct geom geo;
3799
3800 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3801 return -EINVAL;
3802
3803 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3804 /* mustn't change number of copies */
3805 return -EINVAL;
3806 if (geo.far_copies > 1 && !geo.far_offset)
3807 /* Cannot switch to 'far' mode */
3808 return -EINVAL;
3809
3810 if (mddev->array_sectors & geo.chunk_mask)
3811 /* not factor of array size */
3812 return -EINVAL;
3813
3ea7daa5
N
3814 if (!enough(conf, -1))
3815 return -EINVAL;
3816
3817 kfree(conf->mirrors_new);
3818 conf->mirrors_new = NULL;
3819 if (mddev->delta_disks > 0) {
3820 /* allocate new 'mirrors' list */
3821 conf->mirrors_new = kzalloc(
dc280d98 3822 sizeof(struct raid10_info)
3ea7daa5
N
3823 *(mddev->raid_disks +
3824 mddev->delta_disks),
3825 GFP_KERNEL);
3826 if (!conf->mirrors_new)
3827 return -ENOMEM;
3828 }
3829 return 0;
3830}
3831
3832/*
3833 * Need to check if array has failed when deciding whether to:
3834 * - start an array
3835 * - remove non-faulty devices
3836 * - add a spare
3837 * - allow a reshape
3838 * This determination is simple when no reshape is happening.
3839 * However if there is a reshape, we need to carefully check
3840 * both the before and after sections.
3841 * This is because some failed devices may only affect one
3842 * of the two sections, and some non-in_sync devices may
3843 * be insync in the section most affected by failed devices.
3844 */
3845static int calc_degraded(struct r10conf *conf)
3846{
3847 int degraded, degraded2;
3848 int i;
3849
3850 rcu_read_lock();
3851 degraded = 0;
3852 /* 'prev' section first */
3853 for (i = 0; i < conf->prev.raid_disks; i++) {
3854 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3855 if (!rdev || test_bit(Faulty, &rdev->flags))
3856 degraded++;
3857 else if (!test_bit(In_sync, &rdev->flags))
3858 /* When we can reduce the number of devices in
3859 * an array, this might not contribute to
3860 * 'degraded'. It does now.
3861 */
3862 degraded++;
3863 }
3864 rcu_read_unlock();
3865 if (conf->geo.raid_disks == conf->prev.raid_disks)
3866 return degraded;
3867 rcu_read_lock();
3868 degraded2 = 0;
3869 for (i = 0; i < conf->geo.raid_disks; i++) {
3870 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3871 if (!rdev || test_bit(Faulty, &rdev->flags))
3872 degraded2++;
3873 else if (!test_bit(In_sync, &rdev->flags)) {
3874 /* If reshape is increasing the number of devices,
3875 * this section has already been recovered, so
3876 * it doesn't contribute to degraded.
3877 * else it does.
3878 */
3879 if (conf->geo.raid_disks <= conf->prev.raid_disks)
3880 degraded2++;
3881 }
3882 }
3883 rcu_read_unlock();
3884 if (degraded2 > degraded)
3885 return degraded2;
3886 return degraded;
3887}
3888
3889static int raid10_start_reshape(struct mddev *mddev)
3890{
3891 /* A 'reshape' has been requested. This commits
3892 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3893 * This also checks if there are enough spares and adds them
3894 * to the array.
3895 * We currently require enough spares to make the final
3896 * array non-degraded. We also require that the difference
3897 * between old and new data_offset - on each device - is
3898 * enough that we never risk over-writing.
3899 */
3900
3901 unsigned long before_length, after_length;
3902 sector_t min_offset_diff = 0;
3903 int first = 1;
3904 struct geom new;
3905 struct r10conf *conf = mddev->private;
3906 struct md_rdev *rdev;
3907 int spares = 0;
bb63a701 3908 int ret;
3ea7daa5
N
3909
3910 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3911 return -EBUSY;
3912
3913 if (setup_geo(&new, mddev, geo_start) != conf->copies)
3914 return -EINVAL;
3915
3916 before_length = ((1 << conf->prev.chunk_shift) *
3917 conf->prev.far_copies);
3918 after_length = ((1 << conf->geo.chunk_shift) *
3919 conf->geo.far_copies);
3920
3921 rdev_for_each(rdev, mddev) {
3922 if (!test_bit(In_sync, &rdev->flags)
3923 && !test_bit(Faulty, &rdev->flags))
3924 spares++;
3925 if (rdev->raid_disk >= 0) {
3926 long long diff = (rdev->new_data_offset
3927 - rdev->data_offset);
3928 if (!mddev->reshape_backwards)
3929 diff = -diff;
3930 if (diff < 0)
3931 diff = 0;
3932 if (first || diff < min_offset_diff)
3933 min_offset_diff = diff;
3934 }
3935 }
3936
3937 if (max(before_length, after_length) > min_offset_diff)
3938 return -EINVAL;
3939
3940 if (spares < mddev->delta_disks)
3941 return -EINVAL;
3942
3943 conf->offset_diff = min_offset_diff;
3944 spin_lock_irq(&conf->device_lock);
3945 if (conf->mirrors_new) {
3946 memcpy(conf->mirrors_new, conf->mirrors,
dc280d98 3947 sizeof(struct raid10_info)*conf->prev.raid_disks);
3ea7daa5
N
3948 smp_mb();
3949 kfree(conf->mirrors_old); /* FIXME and elsewhere */
3950 conf->mirrors_old = conf->mirrors;
3951 conf->mirrors = conf->mirrors_new;
3952 conf->mirrors_new = NULL;
3953 }
3954 setup_geo(&conf->geo, mddev, geo_start);
3955 smp_mb();
3956 if (mddev->reshape_backwards) {
3957 sector_t size = raid10_size(mddev, 0, 0);
3958 if (size < mddev->array_sectors) {
3959 spin_unlock_irq(&conf->device_lock);
3960 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
3961 mdname(mddev));
3962 return -EINVAL;
3963 }
3964 mddev->resync_max_sectors = size;
3965 conf->reshape_progress = size;
3966 } else
3967 conf->reshape_progress = 0;
3968 spin_unlock_irq(&conf->device_lock);
3969
bb63a701
N
3970 if (mddev->delta_disks && mddev->bitmap) {
3971 ret = bitmap_resize(mddev->bitmap,
3972 raid10_size(mddev, 0,
3973 conf->geo.raid_disks),
3974 0, 0);
3975 if (ret)
3976 goto abort;
3977 }
3ea7daa5
N
3978 if (mddev->delta_disks > 0) {
3979 rdev_for_each(rdev, mddev)
3980 if (rdev->raid_disk < 0 &&
3981 !test_bit(Faulty, &rdev->flags)) {
3982 if (raid10_add_disk(mddev, rdev) == 0) {
3983 if (rdev->raid_disk >=
3984 conf->prev.raid_disks)
3985 set_bit(In_sync, &rdev->flags);
3986 else
3987 rdev->recovery_offset = 0;
3988
3989 if (sysfs_link_rdev(mddev, rdev))
3990 /* Failure here is OK */;
3991 }
3992 } else if (rdev->raid_disk >= conf->prev.raid_disks
3993 && !test_bit(Faulty, &rdev->flags)) {
3994 /* This is a spare that was manually added */
3995 set_bit(In_sync, &rdev->flags);
3996 }
3997 }
3998 /* When a reshape changes the number of devices,
3999 * ->degraded is measured against the larger of the
4000 * pre and post numbers.
4001 */
4002 spin_lock_irq(&conf->device_lock);
4003 mddev->degraded = calc_degraded(conf);
4004 spin_unlock_irq(&conf->device_lock);
4005 mddev->raid_disks = conf->geo.raid_disks;
4006 mddev->reshape_position = conf->reshape_progress;
4007 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4008
4009 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4010 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4011 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4012 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4013
4014 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4015 "reshape");
4016 if (!mddev->sync_thread) {
bb63a701
N
4017 ret = -EAGAIN;
4018 goto abort;
3ea7daa5
N
4019 }
4020 conf->reshape_checkpoint = jiffies;
4021 md_wakeup_thread(mddev->sync_thread);
4022 md_new_event(mddev);
4023 return 0;
bb63a701
N
4024
4025abort:
4026 mddev->recovery = 0;
4027 spin_lock_irq(&conf->device_lock);
4028 conf->geo = conf->prev;
4029 mddev->raid_disks = conf->geo.raid_disks;
4030 rdev_for_each(rdev, mddev)
4031 rdev->new_data_offset = rdev->data_offset;
4032 smp_wmb();
4033 conf->reshape_progress = MaxSector;
4034 mddev->reshape_position = MaxSector;
4035 spin_unlock_irq(&conf->device_lock);
4036 return ret;
3ea7daa5
N
4037}
4038
4039/* Calculate the last device-address that could contain
4040 * any block from the chunk that includes the array-address 's'
4041 * and report the next address.
4042 * i.e. the address returned will be chunk-aligned and after
4043 * any data that is in the chunk containing 's'.
4044 */
4045static sector_t last_dev_address(sector_t s, struct geom *geo)
4046{
4047 s = (s | geo->chunk_mask) + 1;
4048 s >>= geo->chunk_shift;
4049 s *= geo->near_copies;
4050 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4051 s *= geo->far_copies;
4052 s <<= geo->chunk_shift;
4053 return s;
4054}
4055
4056/* Calculate the first device-address that could contain
4057 * any block from the chunk that includes the array-address 's'.
4058 * This too will be the start of a chunk
4059 */
4060static sector_t first_dev_address(sector_t s, struct geom *geo)
4061{
4062 s >>= geo->chunk_shift;
4063 s *= geo->near_copies;
4064 sector_div(s, geo->raid_disks);
4065 s *= geo->far_copies;
4066 s <<= geo->chunk_shift;
4067 return s;
4068}
4069
4070static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4071 int *skipped)
4072{
4073 /* We simply copy at most one chunk (smallest of old and new)
4074 * at a time, possibly less if that exceeds RESYNC_PAGES,
4075 * or we hit a bad block or something.
4076 * This might mean we pause for normal IO in the middle of
4077 * a chunk, but that is not a problem was mddev->reshape_position
4078 * can record any location.
4079 *
4080 * If we will want to write to a location that isn't
4081 * yet recorded as 'safe' (i.e. in metadata on disk) then
4082 * we need to flush all reshape requests and update the metadata.
4083 *
4084 * When reshaping forwards (e.g. to more devices), we interpret
4085 * 'safe' as the earliest block which might not have been copied
4086 * down yet. We divide this by previous stripe size and multiply
4087 * by previous stripe length to get lowest device offset that we
4088 * cannot write to yet.
4089 * We interpret 'sector_nr' as an address that we want to write to.
4090 * From this we use last_device_address() to find where we might
4091 * write to, and first_device_address on the 'safe' position.
4092 * If this 'next' write position is after the 'safe' position,
4093 * we must update the metadata to increase the 'safe' position.
4094 *
4095 * When reshaping backwards, we round in the opposite direction
4096 * and perform the reverse test: next write position must not be
4097 * less than current safe position.
4098 *
4099 * In all this the minimum difference in data offsets
4100 * (conf->offset_diff - always positive) allows a bit of slack,
4101 * so next can be after 'safe', but not by more than offset_disk
4102 *
4103 * We need to prepare all the bios here before we start any IO
4104 * to ensure the size we choose is acceptable to all devices.
4105 * The means one for each copy for write-out and an extra one for
4106 * read-in.
4107 * We store the read-in bio in ->master_bio and the others in
4108 * ->devs[x].bio and ->devs[x].repl_bio.
4109 */
4110 struct r10conf *conf = mddev->private;
4111 struct r10bio *r10_bio;
4112 sector_t next, safe, last;
4113 int max_sectors;
4114 int nr_sectors;
4115 int s;
4116 struct md_rdev *rdev;
4117 int need_flush = 0;
4118 struct bio *blist;
4119 struct bio *bio, *read_bio;
4120 int sectors_done = 0;
4121
4122 if (sector_nr == 0) {
4123 /* If restarting in the middle, skip the initial sectors */
4124 if (mddev->reshape_backwards &&
4125 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4126 sector_nr = (raid10_size(mddev, 0, 0)
4127 - conf->reshape_progress);
4128 } else if (!mddev->reshape_backwards &&
4129 conf->reshape_progress > 0)
4130 sector_nr = conf->reshape_progress;
4131 if (sector_nr) {
4132 mddev->curr_resync_completed = sector_nr;
4133 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4134 *skipped = 1;
4135 return sector_nr;
4136 }
4137 }
4138
4139 /* We don't use sector_nr to track where we are up to
4140 * as that doesn't work well for ->reshape_backwards.
4141 * So just use ->reshape_progress.
4142 */
4143 if (mddev->reshape_backwards) {
4144 /* 'next' is the earliest device address that we might
4145 * write to for this chunk in the new layout
4146 */
4147 next = first_dev_address(conf->reshape_progress - 1,
4148 &conf->geo);
4149
4150 /* 'safe' is the last device address that we might read from
4151 * in the old layout after a restart
4152 */
4153 safe = last_dev_address(conf->reshape_safe - 1,
4154 &conf->prev);
4155
4156 if (next + conf->offset_diff < safe)
4157 need_flush = 1;
4158
4159 last = conf->reshape_progress - 1;
4160 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4161 & conf->prev.chunk_mask);
4162 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4163 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4164 } else {
4165 /* 'next' is after the last device address that we
4166 * might write to for this chunk in the new layout
4167 */
4168 next = last_dev_address(conf->reshape_progress, &conf->geo);
4169
4170 /* 'safe' is the earliest device address that we might
4171 * read from in the old layout after a restart
4172 */
4173 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4174
4175 /* Need to update metadata if 'next' might be beyond 'safe'
4176 * as that would possibly corrupt data
4177 */
4178 if (next > safe + conf->offset_diff)
4179 need_flush = 1;
4180
4181 sector_nr = conf->reshape_progress;
4182 last = sector_nr | (conf->geo.chunk_mask
4183 & conf->prev.chunk_mask);
4184
4185 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4186 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4187 }
4188
4189 if (need_flush ||
4190 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4191 /* Need to update reshape_position in metadata */
4192 wait_barrier(conf);
4193 mddev->reshape_position = conf->reshape_progress;
4194 if (mddev->reshape_backwards)
4195 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4196 - conf->reshape_progress;
4197 else
4198 mddev->curr_resync_completed = conf->reshape_progress;
4199 conf->reshape_checkpoint = jiffies;
4200 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4201 md_wakeup_thread(mddev->thread);
4202 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4203 kthread_should_stop());
4204 conf->reshape_safe = mddev->reshape_position;
4205 allow_barrier(conf);
4206 }
4207
4208read_more:
4209 /* Now schedule reads for blocks from sector_nr to last */
4210 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4211 raise_barrier(conf, sectors_done != 0);
4212 atomic_set(&r10_bio->remaining, 0);
4213 r10_bio->mddev = mddev;
4214 r10_bio->sector = sector_nr;
4215 set_bit(R10BIO_IsReshape, &r10_bio->state);
4216 r10_bio->sectors = last - sector_nr + 1;
4217 rdev = read_balance(conf, r10_bio, &max_sectors);
4218 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4219
4220 if (!rdev) {
4221 /* Cannot read from here, so need to record bad blocks
4222 * on all the target devices.
4223 */
4224 // FIXME
4225 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4226 return sectors_done;
4227 }
4228
4229 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4230
4231 read_bio->bi_bdev = rdev->bdev;
4232 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4233 + rdev->data_offset);
4234 read_bio->bi_private = r10_bio;
4235 read_bio->bi_end_io = end_sync_read;
4236 read_bio->bi_rw = READ;
4237 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4238 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4239 read_bio->bi_vcnt = 0;
4240 read_bio->bi_idx = 0;
4241 read_bio->bi_size = 0;
4242 r10_bio->master_bio = read_bio;
4243 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4244
4245 /* Now find the locations in the new layout */
4246 __raid10_find_phys(&conf->geo, r10_bio);
4247
4248 blist = read_bio;
4249 read_bio->bi_next = NULL;
4250
4251 for (s = 0; s < conf->copies*2; s++) {
4252 struct bio *b;
4253 int d = r10_bio->devs[s/2].devnum;
4254 struct md_rdev *rdev2;
4255 if (s&1) {
4256 rdev2 = conf->mirrors[d].replacement;
4257 b = r10_bio->devs[s/2].repl_bio;
4258 } else {
4259 rdev2 = conf->mirrors[d].rdev;
4260 b = r10_bio->devs[s/2].bio;
4261 }
4262 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4263 continue;
4264 b->bi_bdev = rdev2->bdev;
4265 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4266 b->bi_private = r10_bio;
4267 b->bi_end_io = end_reshape_write;
4268 b->bi_rw = WRITE;
4269 b->bi_flags &= ~(BIO_POOL_MASK - 1);
4270 b->bi_flags |= 1 << BIO_UPTODATE;
4271 b->bi_next = blist;
4272 b->bi_vcnt = 0;
4273 b->bi_idx = 0;
4274 b->bi_size = 0;
4275 blist = b;
4276 }
4277
4278 /* Now add as many pages as possible to all of these bios. */
4279
4280 nr_sectors = 0;
4281 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4282 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4283 int len = (max_sectors - s) << 9;
4284 if (len > PAGE_SIZE)
4285 len = PAGE_SIZE;
4286 for (bio = blist; bio ; bio = bio->bi_next) {
4287 struct bio *bio2;
4288 if (bio_add_page(bio, page, len, 0))
4289 continue;
4290
4291 /* Didn't fit, must stop */
4292 for (bio2 = blist;
4293 bio2 && bio2 != bio;
4294 bio2 = bio2->bi_next) {
4295 /* Remove last page from this bio */
4296 bio2->bi_vcnt--;
4297 bio2->bi_size -= len;
4298 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4299 }
4300 goto bio_full;
4301 }
4302 sector_nr += len >> 9;
4303 nr_sectors += len >> 9;
4304 }
4305bio_full:
4306 r10_bio->sectors = nr_sectors;
4307
4308 /* Now submit the read */
4309 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4310 atomic_inc(&r10_bio->remaining);
4311 read_bio->bi_next = NULL;
4312 generic_make_request(read_bio);
4313 sector_nr += nr_sectors;
4314 sectors_done += nr_sectors;
4315 if (sector_nr <= last)
4316 goto read_more;
4317
4318 /* Now that we have done the whole section we can
4319 * update reshape_progress
4320 */
4321 if (mddev->reshape_backwards)
4322 conf->reshape_progress -= sectors_done;
4323 else
4324 conf->reshape_progress += sectors_done;
4325
4326 return sectors_done;
4327}
4328
4329static void end_reshape_request(struct r10bio *r10_bio);
4330static int handle_reshape_read_error(struct mddev *mddev,
4331 struct r10bio *r10_bio);
4332static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4333{
4334 /* Reshape read completed. Hopefully we have a block
4335 * to write out.
4336 * If we got a read error then we do sync 1-page reads from
4337 * elsewhere until we find the data - or give up.
4338 */
4339 struct r10conf *conf = mddev->private;
4340 int s;
4341
4342 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4343 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4344 /* Reshape has been aborted */
4345 md_done_sync(mddev, r10_bio->sectors, 0);
4346 return;
4347 }
4348
4349 /* We definitely have the data in the pages, schedule the
4350 * writes.
4351 */
4352 atomic_set(&r10_bio->remaining, 1);
4353 for (s = 0; s < conf->copies*2; s++) {
4354 struct bio *b;
4355 int d = r10_bio->devs[s/2].devnum;
4356 struct md_rdev *rdev;
4357 if (s&1) {
4358 rdev = conf->mirrors[d].replacement;
4359 b = r10_bio->devs[s/2].repl_bio;
4360 } else {
4361 rdev = conf->mirrors[d].rdev;
4362 b = r10_bio->devs[s/2].bio;
4363 }
4364 if (!rdev || test_bit(Faulty, &rdev->flags))
4365 continue;
4366 atomic_inc(&rdev->nr_pending);
4367 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4368 atomic_inc(&r10_bio->remaining);
4369 b->bi_next = NULL;
4370 generic_make_request(b);
4371 }
4372 end_reshape_request(r10_bio);
4373}
4374
4375static void end_reshape(struct r10conf *conf)
4376{
4377 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4378 return;
4379
4380 spin_lock_irq(&conf->device_lock);
4381 conf->prev = conf->geo;
4382 md_finish_reshape(conf->mddev);
4383 smp_wmb();
4384 conf->reshape_progress = MaxSector;
4385 spin_unlock_irq(&conf->device_lock);
4386
4387 /* read-ahead size must cover two whole stripes, which is
4388 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4389 */
4390 if (conf->mddev->queue) {
4391 int stripe = conf->geo.raid_disks *
4392 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4393 stripe /= conf->geo.near_copies;
4394 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4395 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4396 }
4397 conf->fullsync = 0;
4398}
4399
4400
4401static int handle_reshape_read_error(struct mddev *mddev,
4402 struct r10bio *r10_bio)
4403{
4404 /* Use sync reads to get the blocks from somewhere else */
4405 int sectors = r10_bio->sectors;
4406 struct r10bio r10b;
4407 struct r10conf *conf = mddev->private;
4408 int slot = 0;
4409 int idx = 0;
4410 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4411
4412 r10b.sector = r10_bio->sector;
4413 __raid10_find_phys(&conf->prev, &r10b);
4414
4415 while (sectors) {
4416 int s = sectors;
4417 int success = 0;
4418 int first_slot = slot;
4419
4420 if (s > (PAGE_SIZE >> 9))
4421 s = PAGE_SIZE >> 9;
4422
4423 while (!success) {
4424 int d = r10b.devs[slot].devnum;
4425 struct md_rdev *rdev = conf->mirrors[d].rdev;
4426 sector_t addr;
4427 if (rdev == NULL ||
4428 test_bit(Faulty, &rdev->flags) ||
4429 !test_bit(In_sync, &rdev->flags))
4430 goto failed;
4431
4432 addr = r10b.devs[slot].addr + idx * PAGE_SIZE;
4433 success = sync_page_io(rdev,
4434 addr,
4435 s << 9,
4436 bvec[idx].bv_page,
4437 READ, false);
4438 if (success)
4439 break;
4440 failed:
4441 slot++;
4442 if (slot >= conf->copies)
4443 slot = 0;
4444 if (slot == first_slot)
4445 break;
4446 }
4447 if (!success) {
4448 /* couldn't read this block, must give up */
4449 set_bit(MD_RECOVERY_INTR,
4450 &mddev->recovery);
4451 return -EIO;
4452 }
4453 sectors -= s;
4454 idx++;
4455 }
4456 return 0;
4457}
4458
4459static void end_reshape_write(struct bio *bio, int error)
4460{
4461 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4462 struct r10bio *r10_bio = bio->bi_private;
4463 struct mddev *mddev = r10_bio->mddev;
4464 struct r10conf *conf = mddev->private;
4465 int d;
4466 int slot;
4467 int repl;
4468 struct md_rdev *rdev = NULL;
4469
4470 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4471 if (repl)
4472 rdev = conf->mirrors[d].replacement;
4473 if (!rdev) {
4474 smp_mb();
4475 rdev = conf->mirrors[d].rdev;
4476 }
4477
4478 if (!uptodate) {
4479 /* FIXME should record badblock */
4480 md_error(mddev, rdev);
4481 }
4482
4483 rdev_dec_pending(rdev, mddev);
4484 end_reshape_request(r10_bio);
4485}
4486
4487static void end_reshape_request(struct r10bio *r10_bio)
4488{
4489 if (!atomic_dec_and_test(&r10_bio->remaining))
4490 return;
4491 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4492 bio_put(r10_bio->master_bio);
4493 put_buf(r10_bio);
4494}
4495
4496static void raid10_finish_reshape(struct mddev *mddev)
4497{
4498 struct r10conf *conf = mddev->private;
4499
4500 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4501 return;
4502
4503 if (mddev->delta_disks > 0) {
4504 sector_t size = raid10_size(mddev, 0, 0);
4505 md_set_array_sectors(mddev, size);
4506 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4507 mddev->recovery_cp = mddev->resync_max_sectors;
4508 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4509 }
4510 mddev->resync_max_sectors = size;
4511 set_capacity(mddev->gendisk, mddev->array_sectors);
4512 revalidate_disk(mddev->gendisk);
63aced61
N
4513 } else {
4514 int d;
4515 for (d = conf->geo.raid_disks ;
4516 d < conf->geo.raid_disks - mddev->delta_disks;
4517 d++) {
4518 struct md_rdev *rdev = conf->mirrors[d].rdev;
4519 if (rdev)
4520 clear_bit(In_sync, &rdev->flags);
4521 rdev = conf->mirrors[d].replacement;
4522 if (rdev)
4523 clear_bit(In_sync, &rdev->flags);
4524 }
3ea7daa5
N
4525 }
4526 mddev->layout = mddev->new_layout;
4527 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4528 mddev->reshape_position = MaxSector;
4529 mddev->delta_disks = 0;
4530 mddev->reshape_backwards = 0;
4531}
4532
84fc4b56 4533static struct md_personality raid10_personality =
1da177e4
LT
4534{
4535 .name = "raid10",
2604b703 4536 .level = 10,
1da177e4
LT
4537 .owner = THIS_MODULE,
4538 .make_request = make_request,
4539 .run = run,
4540 .stop = stop,
4541 .status = status,
4542 .error_handler = error,
4543 .hot_add_disk = raid10_add_disk,
4544 .hot_remove_disk= raid10_remove_disk,
4545 .spare_active = raid10_spare_active,
4546 .sync_request = sync_request,
6cce3b23 4547 .quiesce = raid10_quiesce,
80c3a6ce 4548 .size = raid10_size,
006a09a0 4549 .resize = raid10_resize,
dab8b292 4550 .takeover = raid10_takeover,
3ea7daa5
N
4551 .check_reshape = raid10_check_reshape,
4552 .start_reshape = raid10_start_reshape,
4553 .finish_reshape = raid10_finish_reshape,
1da177e4
LT
4554};
4555
4556static int __init raid_init(void)
4557{
2604b703 4558 return register_md_personality(&raid10_personality);
1da177e4
LT
4559}
4560
4561static void raid_exit(void)
4562{
2604b703 4563 unregister_md_personality(&raid10_personality);
1da177e4
LT
4564}
4565
4566module_init(raid_init);
4567module_exit(raid_exit);
4568MODULE_LICENSE("GPL");
0efb9e61 4569MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 4570MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 4571MODULE_ALIAS("md-raid10");
2604b703 4572MODULE_ALIAS("md-level-10");
34db0cd6
N
4573
4574module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.863525 seconds and 5 git commands to generate.