md/raid10: Allow replacement device to be replace old drive.
[deliverable/linux.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
43b2e5d8 27#include "md.h"
ef740c37 28#include "raid10.h"
dab8b292 29#include "raid0.h"
ef740c37 30#include "bitmap.h"
1da177e4
LT
31
32/*
33 * RAID10 provides a combination of RAID0 and RAID1 functionality.
34 * The layout of data is defined by
35 * chunk_size
36 * raid_disks
37 * near_copies (stored in low byte of layout)
38 * far_copies (stored in second byte of layout)
c93983bf 39 * far_offset (stored in bit 16 of layout )
1da177e4
LT
40 *
41 * The data to be stored is divided into chunks using chunksize.
42 * Each device is divided into far_copies sections.
43 * In each section, chunks are laid out in a style similar to raid0, but
44 * near_copies copies of each chunk is stored (each on a different drive).
45 * The starting device for each section is offset near_copies from the starting
46 * device of the previous section.
c93983bf 47 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
1da177e4
LT
48 * drive.
49 * near_copies and far_copies must be at least one, and their product is at most
50 * raid_disks.
c93983bf
N
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of be very far apart
54 * on disk, there are adjacent stripes.
1da177e4
LT
55 */
56
57/*
58 * Number of guaranteed r10bios in case of extreme VM load:
59 */
60#define NR_RAID10_BIOS 256
61
34db0cd6
N
62/* When there are this many requests queue to be written by
63 * the raid10 thread, we become 'congested' to provide back-pressure
64 * for writeback.
65 */
66static int max_queued_requests = 1024;
67
e879a879
N
68static void allow_barrier(struct r10conf *conf);
69static void lower_barrier(struct r10conf *conf);
0a27ec96 70
dd0fc66f 71static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 72{
e879a879 73 struct r10conf *conf = data;
9f2c9d12 74 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4 75
69335ef3
N
76 /* allocate a r10bio with room for raid_disks entries in the
77 * bios array */
7eaceacc 78 return kzalloc(size, gfp_flags);
1da177e4
LT
79}
80
81static void r10bio_pool_free(void *r10_bio, void *data)
82{
83 kfree(r10_bio);
84}
85
0310fa21 86/* Maximum size of each resync request */
1da177e4 87#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 88#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
89/* amount of memory to reserve for resync requests */
90#define RESYNC_WINDOW (1024*1024)
91/* maximum number of concurrent requests, memory permitting */
92#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
93
94/*
95 * When performing a resync, we need to read and compare, so
96 * we need as many pages are there are copies.
97 * When performing a recovery, we need 2 bios, one for read,
98 * one for write (we recover only one drive per r10buf)
99 *
100 */
dd0fc66f 101static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 102{
e879a879 103 struct r10conf *conf = data;
1da177e4 104 struct page *page;
9f2c9d12 105 struct r10bio *r10_bio;
1da177e4
LT
106 struct bio *bio;
107 int i, j;
108 int nalloc;
109
110 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 111 if (!r10_bio)
1da177e4 112 return NULL;
1da177e4
LT
113
114 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
115 nalloc = conf->copies; /* resync */
116 else
117 nalloc = 2; /* recovery */
118
119 /*
120 * Allocate bios.
121 */
122 for (j = nalloc ; j-- ; ) {
6746557f 123 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
124 if (!bio)
125 goto out_free_bio;
126 r10_bio->devs[j].bio = bio;
69335ef3
N
127 if (!conf->have_replacement)
128 continue;
129 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
130 if (!bio)
131 goto out_free_bio;
132 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
133 }
134 /*
135 * Allocate RESYNC_PAGES data pages and attach them
136 * where needed.
137 */
138 for (j = 0 ; j < nalloc; j++) {
69335ef3 139 struct bio *rbio = r10_bio->devs[j].repl_bio;
1da177e4
LT
140 bio = r10_bio->devs[j].bio;
141 for (i = 0; i < RESYNC_PAGES; i++) {
c65060ad
NK
142 if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
143 &conf->mddev->recovery)) {
144 /* we can share bv_page's during recovery */
145 struct bio *rbio = r10_bio->devs[0].bio;
146 page = rbio->bi_io_vec[i].bv_page;
147 get_page(page);
148 } else
149 page = alloc_page(gfp_flags);
1da177e4
LT
150 if (unlikely(!page))
151 goto out_free_pages;
152
153 bio->bi_io_vec[i].bv_page = page;
69335ef3
N
154 if (rbio)
155 rbio->bi_io_vec[i].bv_page = page;
1da177e4
LT
156 }
157 }
158
159 return r10_bio;
160
161out_free_pages:
162 for ( ; i > 0 ; i--)
1345b1d8 163 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
164 while (j--)
165 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 166 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
1da177e4
LT
167 j = -1;
168out_free_bio:
69335ef3 169 while (++j < nalloc) {
1da177e4 170 bio_put(r10_bio->devs[j].bio);
69335ef3
N
171 if (r10_bio->devs[j].repl_bio)
172 bio_put(r10_bio->devs[j].repl_bio);
173 }
1da177e4
LT
174 r10bio_pool_free(r10_bio, conf);
175 return NULL;
176}
177
178static void r10buf_pool_free(void *__r10_bio, void *data)
179{
180 int i;
e879a879 181 struct r10conf *conf = data;
9f2c9d12 182 struct r10bio *r10bio = __r10_bio;
1da177e4
LT
183 int j;
184
185 for (j=0; j < conf->copies; j++) {
186 struct bio *bio = r10bio->devs[j].bio;
187 if (bio) {
188 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 189 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
190 bio->bi_io_vec[i].bv_page = NULL;
191 }
192 bio_put(bio);
193 }
69335ef3
N
194 bio = r10bio->devs[j].repl_bio;
195 if (bio)
196 bio_put(bio);
1da177e4
LT
197 }
198 r10bio_pool_free(r10bio, conf);
199}
200
e879a879 201static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
202{
203 int i;
204
205 for (i = 0; i < conf->copies; i++) {
206 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 207 if (!BIO_SPECIAL(*bio))
1da177e4
LT
208 bio_put(*bio);
209 *bio = NULL;
69335ef3
N
210 bio = &r10_bio->devs[i].repl_bio;
211 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
212 bio_put(*bio);
213 *bio = NULL;
1da177e4
LT
214 }
215}
216
9f2c9d12 217static void free_r10bio(struct r10bio *r10_bio)
1da177e4 218{
e879a879 219 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 220
1da177e4
LT
221 put_all_bios(conf, r10_bio);
222 mempool_free(r10_bio, conf->r10bio_pool);
223}
224
9f2c9d12 225static void put_buf(struct r10bio *r10_bio)
1da177e4 226{
e879a879 227 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
228
229 mempool_free(r10_bio, conf->r10buf_pool);
230
0a27ec96 231 lower_barrier(conf);
1da177e4
LT
232}
233
9f2c9d12 234static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
235{
236 unsigned long flags;
fd01b88c 237 struct mddev *mddev = r10_bio->mddev;
e879a879 238 struct r10conf *conf = mddev->private;
1da177e4
LT
239
240 spin_lock_irqsave(&conf->device_lock, flags);
241 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 242 conf->nr_queued ++;
1da177e4
LT
243 spin_unlock_irqrestore(&conf->device_lock, flags);
244
388667be
AJ
245 /* wake up frozen array... */
246 wake_up(&conf->wait_barrier);
247
1da177e4
LT
248 md_wakeup_thread(mddev->thread);
249}
250
251/*
252 * raid_end_bio_io() is called when we have finished servicing a mirrored
253 * operation and are ready to return a success/failure code to the buffer
254 * cache layer.
255 */
9f2c9d12 256static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
257{
258 struct bio *bio = r10_bio->master_bio;
856e08e2 259 int done;
e879a879 260 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 261
856e08e2
N
262 if (bio->bi_phys_segments) {
263 unsigned long flags;
264 spin_lock_irqsave(&conf->device_lock, flags);
265 bio->bi_phys_segments--;
266 done = (bio->bi_phys_segments == 0);
267 spin_unlock_irqrestore(&conf->device_lock, flags);
268 } else
269 done = 1;
270 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
271 clear_bit(BIO_UPTODATE, &bio->bi_flags);
272 if (done) {
273 bio_endio(bio, 0);
274 /*
275 * Wake up any possible resync thread that waits for the device
276 * to go idle.
277 */
278 allow_barrier(conf);
279 }
1da177e4
LT
280 free_r10bio(r10_bio);
281}
282
283/*
284 * Update disk head position estimator based on IRQ completion info.
285 */
9f2c9d12 286static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 287{
e879a879 288 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
289
290 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
291 r10_bio->devs[slot].addr + (r10_bio->sectors);
292}
293
778ca018
NK
294/*
295 * Find the disk number which triggered given bio
296 */
e879a879 297static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 298 struct bio *bio, int *slotp, int *replp)
778ca018
NK
299{
300 int slot;
69335ef3 301 int repl = 0;
778ca018 302
69335ef3 303 for (slot = 0; slot < conf->copies; slot++) {
778ca018
NK
304 if (r10_bio->devs[slot].bio == bio)
305 break;
69335ef3
N
306 if (r10_bio->devs[slot].repl_bio == bio) {
307 repl = 1;
308 break;
309 }
310 }
778ca018
NK
311
312 BUG_ON(slot == conf->copies);
313 update_head_pos(slot, r10_bio);
314
749c55e9
N
315 if (slotp)
316 *slotp = slot;
69335ef3
N
317 if (replp)
318 *replp = repl;
778ca018
NK
319 return r10_bio->devs[slot].devnum;
320}
321
6712ecf8 322static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
323{
324 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 325 struct r10bio *r10_bio = bio->bi_private;
1da177e4 326 int slot, dev;
abbf098e 327 struct md_rdev *rdev;
e879a879 328 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 329
1da177e4
LT
330
331 slot = r10_bio->read_slot;
332 dev = r10_bio->devs[slot].devnum;
abbf098e 333 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
334 /*
335 * this branch is our 'one mirror IO has finished' event handler:
336 */
4443ae10
N
337 update_head_pos(slot, r10_bio);
338
339 if (uptodate) {
1da177e4
LT
340 /*
341 * Set R10BIO_Uptodate in our master bio, so that
342 * we will return a good error code to the higher
343 * levels even if IO on some other mirrored buffer fails.
344 *
345 * The 'master' represents the composite IO operation to
346 * user-side. So if something waits for IO, then it will
347 * wait for the 'master' bio.
348 */
349 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 350 raid_end_bio_io(r10_bio);
abbf098e 351 rdev_dec_pending(rdev, conf->mddev);
4443ae10 352 } else {
1da177e4 353 /*
7c4e06ff 354 * oops, read error - keep the refcount on the rdev
1da177e4
LT
355 */
356 char b[BDEVNAME_SIZE];
8bda470e
CD
357 printk_ratelimited(KERN_ERR
358 "md/raid10:%s: %s: rescheduling sector %llu\n",
359 mdname(conf->mddev),
abbf098e 360 bdevname(rdev->bdev, b),
8bda470e 361 (unsigned long long)r10_bio->sector);
856e08e2 362 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
363 reschedule_retry(r10_bio);
364 }
1da177e4
LT
365}
366
9f2c9d12 367static void close_write(struct r10bio *r10_bio)
bd870a16
N
368{
369 /* clear the bitmap if all writes complete successfully */
370 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
371 r10_bio->sectors,
372 !test_bit(R10BIO_Degraded, &r10_bio->state),
373 0);
374 md_write_end(r10_bio->mddev);
375}
376
9f2c9d12 377static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
378{
379 if (atomic_dec_and_test(&r10_bio->remaining)) {
380 if (test_bit(R10BIO_WriteError, &r10_bio->state))
381 reschedule_retry(r10_bio);
382 else {
383 close_write(r10_bio);
384 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
385 reschedule_retry(r10_bio);
386 else
387 raid_end_bio_io(r10_bio);
388 }
389 }
390}
391
6712ecf8 392static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
393{
394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 395 struct r10bio *r10_bio = bio->bi_private;
778ca018 396 int dev;
749c55e9 397 int dec_rdev = 1;
e879a879 398 struct r10conf *conf = r10_bio->mddev->private;
475b0321 399 int slot, repl;
4ca40c2c 400 struct md_rdev *rdev = NULL;
1da177e4 401
475b0321 402 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 403
475b0321
N
404 if (repl)
405 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
406 if (!rdev) {
407 smp_rmb();
408 repl = 0;
475b0321 409 rdev = conf->mirrors[dev].rdev;
4ca40c2c 410 }
1da177e4
LT
411 /*
412 * this branch is our 'one mirror IO has finished' event handler:
413 */
6cce3b23 414 if (!uptodate) {
475b0321
N
415 if (repl)
416 /* Never record new bad blocks to replacement,
417 * just fail it.
418 */
419 md_error(rdev->mddev, rdev);
420 else {
421 set_bit(WriteErrorSeen, &rdev->flags);
422 set_bit(R10BIO_WriteError, &r10_bio->state);
423 dec_rdev = 0;
424 }
749c55e9 425 } else {
1da177e4
LT
426 /*
427 * Set R10BIO_Uptodate in our master bio, so that
428 * we will return a good error code for to the higher
429 * levels even if IO on some other mirrored buffer fails.
430 *
431 * The 'master' represents the composite IO operation to
432 * user-side. So if something waits for IO, then it will
433 * wait for the 'master' bio.
434 */
749c55e9
N
435 sector_t first_bad;
436 int bad_sectors;
437
1da177e4
LT
438 set_bit(R10BIO_Uptodate, &r10_bio->state);
439
749c55e9 440 /* Maybe we can clear some bad blocks. */
475b0321 441 if (is_badblock(rdev,
749c55e9
N
442 r10_bio->devs[slot].addr,
443 r10_bio->sectors,
444 &first_bad, &bad_sectors)) {
445 bio_put(bio);
475b0321
N
446 if (repl)
447 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
448 else
449 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
450 dec_rdev = 0;
451 set_bit(R10BIO_MadeGood, &r10_bio->state);
452 }
453 }
454
1da177e4
LT
455 /*
456 *
457 * Let's see if all mirrored write operations have finished
458 * already.
459 */
19d5f834 460 one_write_done(r10_bio);
749c55e9
N
461 if (dec_rdev)
462 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
1da177e4
LT
463}
464
1da177e4
LT
465/*
466 * RAID10 layout manager
25985edc 467 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
468 * parameters: near_copies and far_copies.
469 * near_copies * far_copies must be <= raid_disks.
470 * Normally one of these will be 1.
471 * If both are 1, we get raid0.
472 * If near_copies == raid_disks, we get raid1.
473 *
25985edc 474 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
475 * first chunk, followed by near_copies copies of the next chunk and
476 * so on.
477 * If far_copies > 1, then after 1/far_copies of the array has been assigned
478 * as described above, we start again with a device offset of near_copies.
479 * So we effectively have another copy of the whole array further down all
480 * the drives, but with blocks on different drives.
481 * With this layout, and block is never stored twice on the one device.
482 *
483 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 484 * on each device that it is on.
1da177e4
LT
485 *
486 * raid10_find_virt does the reverse mapping, from a device and a
487 * sector offset to a virtual address
488 */
489
e879a879 490static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
1da177e4
LT
491{
492 int n,f;
493 sector_t sector;
494 sector_t chunk;
495 sector_t stripe;
496 int dev;
497
498 int slot = 0;
499
500 /* now calculate first sector/dev */
501 chunk = r10bio->sector >> conf->chunk_shift;
502 sector = r10bio->sector & conf->chunk_mask;
503
504 chunk *= conf->near_copies;
505 stripe = chunk;
506 dev = sector_div(stripe, conf->raid_disks);
c93983bf
N
507 if (conf->far_offset)
508 stripe *= conf->far_copies;
1da177e4
LT
509
510 sector += stripe << conf->chunk_shift;
511
512 /* and calculate all the others */
513 for (n=0; n < conf->near_copies; n++) {
514 int d = dev;
515 sector_t s = sector;
516 r10bio->devs[slot].addr = sector;
517 r10bio->devs[slot].devnum = d;
518 slot++;
519
520 for (f = 1; f < conf->far_copies; f++) {
521 d += conf->near_copies;
522 if (d >= conf->raid_disks)
523 d -= conf->raid_disks;
524 s += conf->stride;
525 r10bio->devs[slot].devnum = d;
526 r10bio->devs[slot].addr = s;
527 slot++;
528 }
529 dev++;
530 if (dev >= conf->raid_disks) {
531 dev = 0;
532 sector += (conf->chunk_mask + 1);
533 }
534 }
535 BUG_ON(slot != conf->copies);
536}
537
e879a879 538static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
539{
540 sector_t offset, chunk, vchunk;
541
1da177e4 542 offset = sector & conf->chunk_mask;
c93983bf
N
543 if (conf->far_offset) {
544 int fc;
545 chunk = sector >> conf->chunk_shift;
546 fc = sector_div(chunk, conf->far_copies);
547 dev -= fc * conf->near_copies;
548 if (dev < 0)
549 dev += conf->raid_disks;
550 } else {
64a742bc 551 while (sector >= conf->stride) {
c93983bf
N
552 sector -= conf->stride;
553 if (dev < conf->near_copies)
554 dev += conf->raid_disks - conf->near_copies;
555 else
556 dev -= conf->near_copies;
557 }
558 chunk = sector >> conf->chunk_shift;
559 }
1da177e4
LT
560 vchunk = chunk * conf->raid_disks + dev;
561 sector_div(vchunk, conf->near_copies);
562 return (vchunk << conf->chunk_shift) + offset;
563}
564
565/**
566 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
567 * @q: request queue
cc371e66 568 * @bvm: properties of new bio
1da177e4
LT
569 * @biovec: the request that could be merged to it.
570 *
571 * Return amount of bytes we can accept at this offset
572 * If near_copies == raid_disk, there are no striping issues,
573 * but in that case, the function isn't called at all.
574 */
cc371e66
AK
575static int raid10_mergeable_bvec(struct request_queue *q,
576 struct bvec_merge_data *bvm,
577 struct bio_vec *biovec)
1da177e4 578{
fd01b88c 579 struct mddev *mddev = q->queuedata;
cc371e66 580 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4 581 int max;
9d8f0363 582 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 583 unsigned int bio_sectors = bvm->bi_size >> 9;
1da177e4
LT
584
585 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
586 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
cc371e66
AK
587 if (max <= biovec->bv_len && bio_sectors == 0)
588 return biovec->bv_len;
1da177e4
LT
589 else
590 return max;
591}
592
593/*
594 * This routine returns the disk from which the requested read should
595 * be done. There is a per-array 'next expected sequential IO' sector
596 * number - if this matches on the next IO then we use the last disk.
597 * There is also a per-disk 'last know head position' sector that is
598 * maintained from IRQ contexts, both the normal and the resync IO
599 * completion handlers update this position correctly. If there is no
600 * perfect sequential match then we pick the disk whose head is closest.
601 *
602 * If there are 2 mirrors in the same 2 devices, performance degrades
603 * because position is mirror, not device based.
604 *
605 * The rdev for the device selected will have nr_pending incremented.
606 */
607
608/*
609 * FIXME: possibly should rethink readbalancing and do it differently
610 * depending on near_copies / far_copies geometry.
611 */
96c3fd1f
N
612static struct md_rdev *read_balance(struct r10conf *conf,
613 struct r10bio *r10_bio,
614 int *max_sectors)
1da177e4 615{
af3a2cd6 616 const sector_t this_sector = r10_bio->sector;
56d99121 617 int disk, slot;
856e08e2
N
618 int sectors = r10_bio->sectors;
619 int best_good_sectors;
56d99121 620 sector_t new_distance, best_dist;
abbf098e 621 struct md_rdev *rdev, *best_rdev;
56d99121
N
622 int do_balance;
623 int best_slot;
1da177e4
LT
624
625 raid10_find_phys(conf, r10_bio);
626 rcu_read_lock();
56d99121 627retry:
856e08e2 628 sectors = r10_bio->sectors;
56d99121 629 best_slot = -1;
abbf098e 630 best_rdev = NULL;
56d99121 631 best_dist = MaxSector;
856e08e2 632 best_good_sectors = 0;
56d99121 633 do_balance = 1;
1da177e4
LT
634 /*
635 * Check if we can balance. We can balance on the whole
6cce3b23
N
636 * device if no resync is going on (recovery is ok), or below
637 * the resync window. We take the first readable disk when
638 * above the resync window.
1da177e4
LT
639 */
640 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
641 && (this_sector + sectors >= conf->next_resync))
642 do_balance = 0;
1da177e4 643
56d99121 644 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
645 sector_t first_bad;
646 int bad_sectors;
647 sector_t dev_sector;
648
56d99121
N
649 if (r10_bio->devs[slot].bio == IO_BLOCKED)
650 continue;
1da177e4 651 disk = r10_bio->devs[slot].devnum;
abbf098e
N
652 rdev = rcu_dereference(conf->mirrors[disk].replacement);
653 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
654 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
655 rdev = rcu_dereference(conf->mirrors[disk].rdev);
56d99121 656 if (rdev == NULL)
1da177e4 657 continue;
abbf098e
N
658 if (test_bit(Faulty, &rdev->flags))
659 continue;
660 if (!test_bit(In_sync, &rdev->flags) &&
661 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
662 continue;
663
856e08e2
N
664 dev_sector = r10_bio->devs[slot].addr;
665 if (is_badblock(rdev, dev_sector, sectors,
666 &first_bad, &bad_sectors)) {
667 if (best_dist < MaxSector)
668 /* Already have a better slot */
669 continue;
670 if (first_bad <= dev_sector) {
671 /* Cannot read here. If this is the
672 * 'primary' device, then we must not read
673 * beyond 'bad_sectors' from another device.
674 */
675 bad_sectors -= (dev_sector - first_bad);
676 if (!do_balance && sectors > bad_sectors)
677 sectors = bad_sectors;
678 if (best_good_sectors > sectors)
679 best_good_sectors = sectors;
680 } else {
681 sector_t good_sectors =
682 first_bad - dev_sector;
683 if (good_sectors > best_good_sectors) {
684 best_good_sectors = good_sectors;
685 best_slot = slot;
abbf098e 686 best_rdev = rdev;
856e08e2
N
687 }
688 if (!do_balance)
689 /* Must read from here */
690 break;
691 }
692 continue;
693 } else
694 best_good_sectors = sectors;
695
56d99121
N
696 if (!do_balance)
697 break;
1da177e4 698
22dfdf52
N
699 /* This optimisation is debatable, and completely destroys
700 * sequential read speed for 'far copies' arrays. So only
701 * keep it for 'near' arrays, and review those later.
702 */
56d99121 703 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
1da177e4 704 break;
8ed3a195
KS
705
706 /* for far > 1 always use the lowest address */
707 if (conf->far_copies > 1)
56d99121 708 new_distance = r10_bio->devs[slot].addr;
8ed3a195 709 else
56d99121
N
710 new_distance = abs(r10_bio->devs[slot].addr -
711 conf->mirrors[disk].head_position);
712 if (new_distance < best_dist) {
713 best_dist = new_distance;
714 best_slot = slot;
abbf098e 715 best_rdev = rdev;
1da177e4
LT
716 }
717 }
abbf098e 718 if (slot >= conf->copies) {
56d99121 719 slot = best_slot;
abbf098e
N
720 rdev = best_rdev;
721 }
1da177e4 722
56d99121 723 if (slot >= 0) {
56d99121
N
724 atomic_inc(&rdev->nr_pending);
725 if (test_bit(Faulty, &rdev->flags)) {
726 /* Cannot risk returning a device that failed
727 * before we inc'ed nr_pending
728 */
729 rdev_dec_pending(rdev, conf->mddev);
730 goto retry;
731 }
732 r10_bio->read_slot = slot;
733 } else
96c3fd1f 734 rdev = NULL;
1da177e4 735 rcu_read_unlock();
856e08e2 736 *max_sectors = best_good_sectors;
1da177e4 737
96c3fd1f 738 return rdev;
1da177e4
LT
739}
740
0d129228
N
741static int raid10_congested(void *data, int bits)
742{
fd01b88c 743 struct mddev *mddev = data;
e879a879 744 struct r10conf *conf = mddev->private;
0d129228
N
745 int i, ret = 0;
746
34db0cd6
N
747 if ((bits & (1 << BDI_async_congested)) &&
748 conf->pending_count >= max_queued_requests)
749 return 1;
750
3fa841d7
N
751 if (mddev_congested(mddev, bits))
752 return 1;
0d129228 753 rcu_read_lock();
84707f38 754 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
3cb03002 755 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 756 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 757 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
758
759 ret |= bdi_congested(&q->backing_dev_info, bits);
760 }
761 }
762 rcu_read_unlock();
763 return ret;
764}
765
e879a879 766static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
767{
768 /* Any writes that have been queued but are awaiting
769 * bitmap updates get flushed here.
a35e63ef 770 */
a35e63ef
N
771 spin_lock_irq(&conf->device_lock);
772
773 if (conf->pending_bio_list.head) {
774 struct bio *bio;
775 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 776 conf->pending_count = 0;
a35e63ef
N
777 spin_unlock_irq(&conf->device_lock);
778 /* flush any pending bitmap writes to disk
779 * before proceeding w/ I/O */
780 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 781 wake_up(&conf->wait_barrier);
a35e63ef
N
782
783 while (bio) { /* submit pending writes */
784 struct bio *next = bio->bi_next;
785 bio->bi_next = NULL;
786 generic_make_request(bio);
787 bio = next;
788 }
a35e63ef
N
789 } else
790 spin_unlock_irq(&conf->device_lock);
a35e63ef 791}
7eaceacc 792
0a27ec96
N
793/* Barriers....
794 * Sometimes we need to suspend IO while we do something else,
795 * either some resync/recovery, or reconfigure the array.
796 * To do this we raise a 'barrier'.
797 * The 'barrier' is a counter that can be raised multiple times
798 * to count how many activities are happening which preclude
799 * normal IO.
800 * We can only raise the barrier if there is no pending IO.
801 * i.e. if nr_pending == 0.
802 * We choose only to raise the barrier if no-one is waiting for the
803 * barrier to go down. This means that as soon as an IO request
804 * is ready, no other operations which require a barrier will start
805 * until the IO request has had a chance.
806 *
807 * So: regular IO calls 'wait_barrier'. When that returns there
808 * is no backgroup IO happening, It must arrange to call
809 * allow_barrier when it has finished its IO.
810 * backgroup IO calls must call raise_barrier. Once that returns
811 * there is no normal IO happeing. It must arrange to call
812 * lower_barrier when the particular background IO completes.
1da177e4 813 */
1da177e4 814
e879a879 815static void raise_barrier(struct r10conf *conf, int force)
1da177e4 816{
6cce3b23 817 BUG_ON(force && !conf->barrier);
1da177e4 818 spin_lock_irq(&conf->resync_lock);
0a27ec96 819
6cce3b23
N
820 /* Wait until no block IO is waiting (unless 'force') */
821 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
c3b328ac 822 conf->resync_lock, );
0a27ec96
N
823
824 /* block any new IO from starting */
825 conf->barrier++;
826
c3b328ac 827 /* Now wait for all pending IO to complete */
0a27ec96
N
828 wait_event_lock_irq(conf->wait_barrier,
829 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
c3b328ac 830 conf->resync_lock, );
0a27ec96
N
831
832 spin_unlock_irq(&conf->resync_lock);
833}
834
e879a879 835static void lower_barrier(struct r10conf *conf)
0a27ec96
N
836{
837 unsigned long flags;
838 spin_lock_irqsave(&conf->resync_lock, flags);
839 conf->barrier--;
840 spin_unlock_irqrestore(&conf->resync_lock, flags);
841 wake_up(&conf->wait_barrier);
842}
843
e879a879 844static void wait_barrier(struct r10conf *conf)
0a27ec96
N
845{
846 spin_lock_irq(&conf->resync_lock);
847 if (conf->barrier) {
848 conf->nr_waiting++;
849 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
850 conf->resync_lock,
c3b328ac 851 );
0a27ec96 852 conf->nr_waiting--;
1da177e4 853 }
0a27ec96 854 conf->nr_pending++;
1da177e4
LT
855 spin_unlock_irq(&conf->resync_lock);
856}
857
e879a879 858static void allow_barrier(struct r10conf *conf)
0a27ec96
N
859{
860 unsigned long flags;
861 spin_lock_irqsave(&conf->resync_lock, flags);
862 conf->nr_pending--;
863 spin_unlock_irqrestore(&conf->resync_lock, flags);
864 wake_up(&conf->wait_barrier);
865}
866
e879a879 867static void freeze_array(struct r10conf *conf)
4443ae10
N
868{
869 /* stop syncio and normal IO and wait for everything to
f188593e 870 * go quiet.
4443ae10 871 * We increment barrier and nr_waiting, and then
1c830532
N
872 * wait until nr_pending match nr_queued+1
873 * This is called in the context of one normal IO request
874 * that has failed. Thus any sync request that might be pending
875 * will be blocked by nr_pending, and we need to wait for
876 * pending IO requests to complete or be queued for re-try.
877 * Thus the number queued (nr_queued) plus this request (1)
878 * must match the number of pending IOs (nr_pending) before
879 * we continue.
4443ae10
N
880 */
881 spin_lock_irq(&conf->resync_lock);
882 conf->barrier++;
883 conf->nr_waiting++;
884 wait_event_lock_irq(conf->wait_barrier,
1c830532 885 conf->nr_pending == conf->nr_queued+1,
4443ae10 886 conf->resync_lock,
c3b328ac
N
887 flush_pending_writes(conf));
888
4443ae10
N
889 spin_unlock_irq(&conf->resync_lock);
890}
891
e879a879 892static void unfreeze_array(struct r10conf *conf)
4443ae10
N
893{
894 /* reverse the effect of the freeze */
895 spin_lock_irq(&conf->resync_lock);
896 conf->barrier--;
897 conf->nr_waiting--;
898 wake_up(&conf->wait_barrier);
899 spin_unlock_irq(&conf->resync_lock);
900}
901
b4fdcb02 902static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 903{
e879a879 904 struct r10conf *conf = mddev->private;
9f2c9d12 905 struct r10bio *r10_bio;
1da177e4
LT
906 struct bio *read_bio;
907 int i;
908 int chunk_sects = conf->chunk_mask + 1;
a362357b 909 const int rw = bio_data_dir(bio);
2c7d46ec 910 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 911 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
6cce3b23 912 unsigned long flags;
3cb03002 913 struct md_rdev *blocked_rdev;
c3b328ac 914 int plugged;
d4432c23
N
915 int sectors_handled;
916 int max_sectors;
1da177e4 917
e9c7469b
TH
918 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
919 md_flush_request(mddev, bio);
5a7bbad2 920 return;
e5dcdd80
N
921 }
922
1da177e4
LT
923 /* If this request crosses a chunk boundary, we need to
924 * split it. This will only happen for 1 PAGE (or less) requests.
925 */
926 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
927 > chunk_sects &&
928 conf->near_copies < conf->raid_disks)) {
929 struct bio_pair *bp;
930 /* Sanity check -- queue functions should prevent this happening */
931 if (bio->bi_vcnt != 1 ||
932 bio->bi_idx != 0)
933 goto bad_map;
934 /* This is a one page bio that upper layers
935 * refuse to split for us, so we need to split it.
936 */
6feef531 937 bp = bio_split(bio,
1da177e4 938 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
51e9ac77
N
939
940 /* Each of these 'make_request' calls will call 'wait_barrier'.
941 * If the first succeeds but the second blocks due to the resync
942 * thread raising the barrier, we will deadlock because the
943 * IO to the underlying device will be queued in generic_make_request
944 * and will never complete, so will never reduce nr_pending.
945 * So increment nr_waiting here so no new raise_barriers will
946 * succeed, and so the second wait_barrier cannot block.
947 */
948 spin_lock_irq(&conf->resync_lock);
949 conf->nr_waiting++;
950 spin_unlock_irq(&conf->resync_lock);
951
5a7bbad2
CH
952 make_request(mddev, &bp->bio1);
953 make_request(mddev, &bp->bio2);
1da177e4 954
51e9ac77
N
955 spin_lock_irq(&conf->resync_lock);
956 conf->nr_waiting--;
957 wake_up(&conf->wait_barrier);
958 spin_unlock_irq(&conf->resync_lock);
959
1da177e4 960 bio_pair_release(bp);
5a7bbad2 961 return;
1da177e4 962 bad_map:
128595ed
N
963 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
964 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1da177e4
LT
965 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
966
6712ecf8 967 bio_io_error(bio);
5a7bbad2 968 return;
1da177e4
LT
969 }
970
3d310eb7 971 md_write_start(mddev, bio);
06d91a5f 972
1da177e4
LT
973 /*
974 * Register the new request and wait if the reconstruction
975 * thread has put up a bar for new requests.
976 * Continue immediately if no resync is active currently.
977 */
0a27ec96 978 wait_barrier(conf);
1da177e4 979
1da177e4
LT
980 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
981
982 r10_bio->master_bio = bio;
983 r10_bio->sectors = bio->bi_size >> 9;
984
985 r10_bio->mddev = mddev;
986 r10_bio->sector = bio->bi_sector;
6cce3b23 987 r10_bio->state = 0;
1da177e4 988
856e08e2
N
989 /* We might need to issue multiple reads to different
990 * devices if there are bad blocks around, so we keep
991 * track of the number of reads in bio->bi_phys_segments.
992 * If this is 0, there is only one r10_bio and no locking
993 * will be needed when the request completes. If it is
994 * non-zero, then it is the number of not-completed requests.
995 */
996 bio->bi_phys_segments = 0;
997 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
998
a362357b 999 if (rw == READ) {
1da177e4
LT
1000 /*
1001 * read balancing logic:
1002 */
96c3fd1f 1003 struct md_rdev *rdev;
856e08e2
N
1004 int slot;
1005
1006read_again:
96c3fd1f
N
1007 rdev = read_balance(conf, r10_bio, &max_sectors);
1008 if (!rdev) {
1da177e4 1009 raid_end_bio_io(r10_bio);
5a7bbad2 1010 return;
1da177e4 1011 }
96c3fd1f 1012 slot = r10_bio->read_slot;
1da177e4 1013
a167f663 1014 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
856e08e2
N
1015 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1016 max_sectors);
1da177e4
LT
1017
1018 r10_bio->devs[slot].bio = read_bio;
abbf098e 1019 r10_bio->devs[slot].rdev = rdev;
1da177e4
LT
1020
1021 read_bio->bi_sector = r10_bio->devs[slot].addr +
96c3fd1f
N
1022 rdev->data_offset;
1023 read_bio->bi_bdev = rdev->bdev;
1da177e4 1024 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 1025 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1026 read_bio->bi_private = r10_bio;
1027
856e08e2
N
1028 if (max_sectors < r10_bio->sectors) {
1029 /* Could not read all from this device, so we will
1030 * need another r10_bio.
1031 */
856e08e2
N
1032 sectors_handled = (r10_bio->sectors + max_sectors
1033 - bio->bi_sector);
1034 r10_bio->sectors = max_sectors;
1035 spin_lock_irq(&conf->device_lock);
1036 if (bio->bi_phys_segments == 0)
1037 bio->bi_phys_segments = 2;
1038 else
1039 bio->bi_phys_segments++;
1040 spin_unlock(&conf->device_lock);
1041 /* Cannot call generic_make_request directly
1042 * as that will be queued in __generic_make_request
1043 * and subsequent mempool_alloc might block
1044 * waiting for it. so hand bio over to raid10d.
1045 */
1046 reschedule_retry(r10_bio);
1047
1048 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1049
1050 r10_bio->master_bio = bio;
1051 r10_bio->sectors = ((bio->bi_size >> 9)
1052 - sectors_handled);
1053 r10_bio->state = 0;
1054 r10_bio->mddev = mddev;
1055 r10_bio->sector = bio->bi_sector + sectors_handled;
1056 goto read_again;
1057 } else
1058 generic_make_request(read_bio);
5a7bbad2 1059 return;
1da177e4
LT
1060 }
1061
1062 /*
1063 * WRITE:
1064 */
34db0cd6
N
1065 if (conf->pending_count >= max_queued_requests) {
1066 md_wakeup_thread(mddev->thread);
1067 wait_event(conf->wait_barrier,
1068 conf->pending_count < max_queued_requests);
1069 }
6bfe0b49 1070 /* first select target devices under rcu_lock and
1da177e4
LT
1071 * inc refcount on their rdev. Record them by setting
1072 * bios[x] to bio
d4432c23
N
1073 * If there are known/acknowledged bad blocks on any device
1074 * on which we have seen a write error, we want to avoid
1075 * writing to those blocks. This potentially requires several
1076 * writes to write around the bad blocks. Each set of writes
1077 * gets its own r10_bio with a set of bios attached. The number
1078 * of r10_bios is recored in bio->bi_phys_segments just as with
1079 * the read case.
1da177e4 1080 */
c3b328ac
N
1081 plugged = mddev_check_plugged(mddev);
1082
69335ef3 1083 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1084 raid10_find_phys(conf, r10_bio);
d4432c23 1085retry_write:
cb6969e8 1086 blocked_rdev = NULL;
1da177e4 1087 rcu_read_lock();
d4432c23
N
1088 max_sectors = r10_bio->sectors;
1089
1da177e4
LT
1090 for (i = 0; i < conf->copies; i++) {
1091 int d = r10_bio->devs[i].devnum;
3cb03002 1092 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1093 struct md_rdev *rrdev = rcu_dereference(
1094 conf->mirrors[d].replacement);
4ca40c2c
N
1095 if (rdev == rrdev)
1096 rrdev = NULL;
6bfe0b49
DW
1097 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1098 atomic_inc(&rdev->nr_pending);
1099 blocked_rdev = rdev;
1100 break;
1101 }
475b0321
N
1102 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1103 atomic_inc(&rrdev->nr_pending);
1104 blocked_rdev = rrdev;
1105 break;
1106 }
1107 if (rrdev && test_bit(Faulty, &rrdev->flags))
1108 rrdev = NULL;
1109
d4432c23 1110 r10_bio->devs[i].bio = NULL;
475b0321 1111 r10_bio->devs[i].repl_bio = NULL;
d4432c23 1112 if (!rdev || test_bit(Faulty, &rdev->flags)) {
6cce3b23 1113 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1114 continue;
1115 }
1116 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1117 sector_t first_bad;
1118 sector_t dev_sector = r10_bio->devs[i].addr;
1119 int bad_sectors;
1120 int is_bad;
1121
1122 is_bad = is_badblock(rdev, dev_sector,
1123 max_sectors,
1124 &first_bad, &bad_sectors);
1125 if (is_bad < 0) {
1126 /* Mustn't write here until the bad block
1127 * is acknowledged
1128 */
1129 atomic_inc(&rdev->nr_pending);
1130 set_bit(BlockedBadBlocks, &rdev->flags);
1131 blocked_rdev = rdev;
1132 break;
1133 }
1134 if (is_bad && first_bad <= dev_sector) {
1135 /* Cannot write here at all */
1136 bad_sectors -= (dev_sector - first_bad);
1137 if (bad_sectors < max_sectors)
1138 /* Mustn't write more than bad_sectors
1139 * to other devices yet
1140 */
1141 max_sectors = bad_sectors;
1142 /* We don't set R10BIO_Degraded as that
1143 * only applies if the disk is missing,
1144 * so it might be re-added, and we want to
1145 * know to recover this chunk.
1146 * In this case the device is here, and the
1147 * fact that this chunk is not in-sync is
1148 * recorded in the bad block log.
1149 */
1150 continue;
1151 }
1152 if (is_bad) {
1153 int good_sectors = first_bad - dev_sector;
1154 if (good_sectors < max_sectors)
1155 max_sectors = good_sectors;
1156 }
6cce3b23 1157 }
d4432c23
N
1158 r10_bio->devs[i].bio = bio;
1159 atomic_inc(&rdev->nr_pending);
475b0321
N
1160 if (rrdev) {
1161 r10_bio->devs[i].repl_bio = bio;
1162 atomic_inc(&rrdev->nr_pending);
1163 }
1da177e4
LT
1164 }
1165 rcu_read_unlock();
1166
6bfe0b49
DW
1167 if (unlikely(blocked_rdev)) {
1168 /* Have to wait for this device to get unblocked, then retry */
1169 int j;
1170 int d;
1171
475b0321 1172 for (j = 0; j < i; j++) {
6bfe0b49
DW
1173 if (r10_bio->devs[j].bio) {
1174 d = r10_bio->devs[j].devnum;
1175 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1176 }
475b0321 1177 if (r10_bio->devs[j].repl_bio) {
4ca40c2c 1178 struct md_rdev *rdev;
475b0321 1179 d = r10_bio->devs[j].devnum;
4ca40c2c
N
1180 rdev = conf->mirrors[d].replacement;
1181 if (!rdev) {
1182 /* Race with remove_disk */
1183 smp_mb();
1184 rdev = conf->mirrors[d].rdev;
1185 }
1186 rdev_dec_pending(rdev, mddev);
475b0321
N
1187 }
1188 }
6bfe0b49
DW
1189 allow_barrier(conf);
1190 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1191 wait_barrier(conf);
1192 goto retry_write;
1193 }
1194
d4432c23
N
1195 if (max_sectors < r10_bio->sectors) {
1196 /* We are splitting this into multiple parts, so
1197 * we need to prepare for allocating another r10_bio.
1198 */
1199 r10_bio->sectors = max_sectors;
1200 spin_lock_irq(&conf->device_lock);
1201 if (bio->bi_phys_segments == 0)
1202 bio->bi_phys_segments = 2;
1203 else
1204 bio->bi_phys_segments++;
1205 spin_unlock_irq(&conf->device_lock);
1206 }
1207 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1208
4e78064f 1209 atomic_set(&r10_bio->remaining, 1);
d4432c23 1210 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1211
1da177e4
LT
1212 for (i = 0; i < conf->copies; i++) {
1213 struct bio *mbio;
1214 int d = r10_bio->devs[i].devnum;
1215 if (!r10_bio->devs[i].bio)
1216 continue;
1217
a167f663 1218 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d4432c23
N
1219 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1220 max_sectors);
1da177e4
LT
1221 r10_bio->devs[i].bio = mbio;
1222
d4432c23
N
1223 mbio->bi_sector = (r10_bio->devs[i].addr+
1224 conf->mirrors[d].rdev->data_offset);
1da177e4
LT
1225 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1226 mbio->bi_end_io = raid10_end_write_request;
e9c7469b 1227 mbio->bi_rw = WRITE | do_sync | do_fua;
1da177e4
LT
1228 mbio->bi_private = r10_bio;
1229
1230 atomic_inc(&r10_bio->remaining);
4e78064f
N
1231 spin_lock_irqsave(&conf->device_lock, flags);
1232 bio_list_add(&conf->pending_bio_list, mbio);
34db0cd6 1233 conf->pending_count++;
4e78064f 1234 spin_unlock_irqrestore(&conf->device_lock, flags);
475b0321
N
1235
1236 if (!r10_bio->devs[i].repl_bio)
1237 continue;
1238
1239 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1240 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1241 max_sectors);
1242 r10_bio->devs[i].repl_bio = mbio;
1243
4ca40c2c
N
1244 /* We are actively writing to the original device
1245 * so it cannot disappear, so the replacement cannot
1246 * become NULL here
1247 */
475b0321
N
1248 mbio->bi_sector = (r10_bio->devs[i].addr+
1249 conf->mirrors[d].replacement->data_offset);
1250 mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1251 mbio->bi_end_io = raid10_end_write_request;
1252 mbio->bi_rw = WRITE | do_sync | do_fua;
1253 mbio->bi_private = r10_bio;
1254
1255 atomic_inc(&r10_bio->remaining);
1256 spin_lock_irqsave(&conf->device_lock, flags);
1257 bio_list_add(&conf->pending_bio_list, mbio);
1258 conf->pending_count++;
1259 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1260 }
1261
079fa166
N
1262 /* Don't remove the bias on 'remaining' (one_write_done) until
1263 * after checking if we need to go around again.
1264 */
a35e63ef 1265
d4432c23 1266 if (sectors_handled < (bio->bi_size >> 9)) {
079fa166 1267 one_write_done(r10_bio);
5e570289 1268 /* We need another r10_bio. It has already been counted
d4432c23
N
1269 * in bio->bi_phys_segments.
1270 */
1271 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1272
1273 r10_bio->master_bio = bio;
1274 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1275
1276 r10_bio->mddev = mddev;
1277 r10_bio->sector = bio->bi_sector + sectors_handled;
1278 r10_bio->state = 0;
1279 goto retry_write;
1280 }
079fa166
N
1281 one_write_done(r10_bio);
1282
1283 /* In case raid10d snuck in to freeze_array */
1284 wake_up(&conf->wait_barrier);
d4432c23 1285
c3b328ac 1286 if (do_sync || !mddev->bitmap || !plugged)
e3881a68 1287 md_wakeup_thread(mddev->thread);
1da177e4
LT
1288}
1289
fd01b88c 1290static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1291{
e879a879 1292 struct r10conf *conf = mddev->private;
1da177e4
LT
1293 int i;
1294
1295 if (conf->near_copies < conf->raid_disks)
9d8f0363 1296 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1da177e4
LT
1297 if (conf->near_copies > 1)
1298 seq_printf(seq, " %d near-copies", conf->near_copies);
c93983bf
N
1299 if (conf->far_copies > 1) {
1300 if (conf->far_offset)
1301 seq_printf(seq, " %d offset-copies", conf->far_copies);
1302 else
1303 seq_printf(seq, " %d far-copies", conf->far_copies);
1304 }
1da177e4 1305 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
76186dd8 1306 conf->raid_disks - mddev->degraded);
1da177e4
LT
1307 for (i = 0; i < conf->raid_disks; i++)
1308 seq_printf(seq, "%s",
1309 conf->mirrors[i].rdev &&
b2d444d7 1310 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1311 seq_printf(seq, "]");
1312}
1313
700c7213
N
1314/* check if there are enough drives for
1315 * every block to appear on atleast one.
1316 * Don't consider the device numbered 'ignore'
1317 * as we might be about to remove it.
1318 */
e879a879 1319static int enough(struct r10conf *conf, int ignore)
700c7213
N
1320{
1321 int first = 0;
1322
1323 do {
1324 int n = conf->copies;
1325 int cnt = 0;
1326 while (n--) {
1327 if (conf->mirrors[first].rdev &&
1328 first != ignore)
1329 cnt++;
1330 first = (first+1) % conf->raid_disks;
1331 }
1332 if (cnt == 0)
1333 return 0;
1334 } while (first != 0);
1335 return 1;
1336}
1337
fd01b88c 1338static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1339{
1340 char b[BDEVNAME_SIZE];
e879a879 1341 struct r10conf *conf = mddev->private;
1da177e4
LT
1342
1343 /*
1344 * If it is not operational, then we have already marked it as dead
1345 * else if it is the last working disks, ignore the error, let the
1346 * next level up know.
1347 * else mark the drive as failed
1348 */
b2d444d7 1349 if (test_bit(In_sync, &rdev->flags)
700c7213 1350 && !enough(conf, rdev->raid_disk))
1da177e4
LT
1351 /*
1352 * Don't fail the drive, just return an IO error.
1da177e4
LT
1353 */
1354 return;
c04be0aa
N
1355 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1356 unsigned long flags;
1357 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1358 mddev->degraded++;
c04be0aa 1359 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1360 /*
1361 * if recovery is running, make sure it aborts.
1362 */
dfc70645 1363 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1364 }
de393cde 1365 set_bit(Blocked, &rdev->flags);
b2d444d7 1366 set_bit(Faulty, &rdev->flags);
850b2b42 1367 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1368 printk(KERN_ALERT
1369 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1370 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed
N
1371 mdname(mddev), bdevname(rdev->bdev, b),
1372 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1373}
1374
e879a879 1375static void print_conf(struct r10conf *conf)
1da177e4
LT
1376{
1377 int i;
0f6d02d5 1378 struct mirror_info *tmp;
1da177e4 1379
128595ed 1380 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1381 if (!conf) {
128595ed 1382 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1383 return;
1384 }
128595ed 1385 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1386 conf->raid_disks);
1387
1388 for (i = 0; i < conf->raid_disks; i++) {
1389 char b[BDEVNAME_SIZE];
1390 tmp = conf->mirrors + i;
1391 if (tmp->rdev)
128595ed 1392 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1393 i, !test_bit(In_sync, &tmp->rdev->flags),
1394 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1395 bdevname(tmp->rdev->bdev,b));
1396 }
1397}
1398
e879a879 1399static void close_sync(struct r10conf *conf)
1da177e4 1400{
0a27ec96
N
1401 wait_barrier(conf);
1402 allow_barrier(conf);
1da177e4
LT
1403
1404 mempool_destroy(conf->r10buf_pool);
1405 conf->r10buf_pool = NULL;
1406}
1407
fd01b88c 1408static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1409{
1410 int i;
e879a879 1411 struct r10conf *conf = mddev->private;
0f6d02d5 1412 struct mirror_info *tmp;
6b965620
N
1413 int count = 0;
1414 unsigned long flags;
1da177e4
LT
1415
1416 /*
1417 * Find all non-in_sync disks within the RAID10 configuration
1418 * and mark them in_sync
1419 */
1420 for (i = 0; i < conf->raid_disks; i++) {
1421 tmp = conf->mirrors + i;
4ca40c2c
N
1422 if (tmp->replacement
1423 && tmp->replacement->recovery_offset == MaxSector
1424 && !test_bit(Faulty, &tmp->replacement->flags)
1425 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1426 /* Replacement has just become active */
1427 if (!tmp->rdev
1428 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1429 count++;
1430 if (tmp->rdev) {
1431 /* Replaced device not technically faulty,
1432 * but we need to be sure it gets removed
1433 * and never re-added.
1434 */
1435 set_bit(Faulty, &tmp->rdev->flags);
1436 sysfs_notify_dirent_safe(
1437 tmp->rdev->sysfs_state);
1438 }
1439 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1440 } else if (tmp->rdev
1441 && !test_bit(Faulty, &tmp->rdev->flags)
1442 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1443 count++;
e6ffbcb6 1444 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1da177e4
LT
1445 }
1446 }
6b965620
N
1447 spin_lock_irqsave(&conf->device_lock, flags);
1448 mddev->degraded -= count;
1449 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1450
1451 print_conf(conf);
6b965620 1452 return count;
1da177e4
LT
1453}
1454
1455
fd01b88c 1456static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1457{
e879a879 1458 struct r10conf *conf = mddev->private;
199050ea 1459 int err = -EEXIST;
1da177e4 1460 int mirror;
6c2fce2e 1461 int first = 0;
84707f38 1462 int last = conf->raid_disks - 1;
1da177e4
LT
1463
1464 if (mddev->recovery_cp < MaxSector)
1465 /* only hot-add to in-sync arrays, as recovery is
1466 * very different from resync
1467 */
199050ea 1468 return -EBUSY;
700c7213 1469 if (!enough(conf, -1))
199050ea 1470 return -EINVAL;
1da177e4 1471
a53a6c85 1472 if (rdev->raid_disk >= 0)
6c2fce2e 1473 first = last = rdev->raid_disk;
1da177e4 1474
2c4193df 1475 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1476 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1477 mirror = rdev->saved_raid_disk;
1478 else
6c2fce2e 1479 mirror = first;
2bb77736 1480 for ( ; mirror <= last ; mirror++) {
0f6d02d5 1481 struct mirror_info *p = &conf->mirrors[mirror];
2bb77736
N
1482 if (p->recovery_disabled == mddev->recovery_disabled)
1483 continue;
7fcc7c8a 1484 if (p->rdev)
2bb77736 1485 continue;
1da177e4 1486
2bb77736
N
1487 disk_stack_limits(mddev->gendisk, rdev->bdev,
1488 rdev->data_offset << 9);
1489 /* as we don't honour merge_bvec_fn, we must
1490 * never risk violating it, so limit
1491 * ->max_segments to one lying with a single
1492 * page, as a one page request is never in
1493 * violation.
1494 */
1495 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1496 blk_queue_max_segments(mddev->queue, 1);
1497 blk_queue_segment_boundary(mddev->queue,
1498 PAGE_CACHE_SIZE - 1);
1da177e4
LT
1499 }
1500
2bb77736 1501 p->head_position = 0;
d890fa2b 1502 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1503 rdev->raid_disk = mirror;
1504 err = 0;
1505 if (rdev->saved_raid_disk != mirror)
1506 conf->fullsync = 1;
1507 rcu_assign_pointer(p->rdev, rdev);
1508 break;
1509 }
1510
ac5e7113 1511 md_integrity_add_rdev(rdev, mddev);
1da177e4 1512 print_conf(conf);
199050ea 1513 return err;
1da177e4
LT
1514}
1515
b8321b68 1516static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1517{
e879a879 1518 struct r10conf *conf = mddev->private;
1da177e4 1519 int err = 0;
b8321b68 1520 int number = rdev->raid_disk;
c8ab903e
N
1521 struct md_rdev **rdevp;
1522 struct mirror_info *p = conf->mirrors + number;
1da177e4
LT
1523
1524 print_conf(conf);
c8ab903e
N
1525 if (rdev == p->rdev)
1526 rdevp = &p->rdev;
1527 else if (rdev == p->replacement)
1528 rdevp = &p->replacement;
1529 else
1530 return 0;
1531
1532 if (test_bit(In_sync, &rdev->flags) ||
1533 atomic_read(&rdev->nr_pending)) {
1534 err = -EBUSY;
1535 goto abort;
1536 }
1537 /* Only remove faulty devices if recovery
1538 * is not possible.
1539 */
1540 if (!test_bit(Faulty, &rdev->flags) &&
1541 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 1542 (!p->replacement || p->replacement == rdev) &&
c8ab903e
N
1543 enough(conf, -1)) {
1544 err = -EBUSY;
1545 goto abort;
1da177e4 1546 }
c8ab903e
N
1547 *rdevp = NULL;
1548 synchronize_rcu();
1549 if (atomic_read(&rdev->nr_pending)) {
1550 /* lost the race, try later */
1551 err = -EBUSY;
1552 *rdevp = rdev;
1553 goto abort;
4ca40c2c
N
1554 } else if (p->replacement) {
1555 /* We must have just cleared 'rdev' */
1556 p->rdev = p->replacement;
1557 clear_bit(Replacement, &p->replacement->flags);
1558 smp_mb(); /* Make sure other CPUs may see both as identical
1559 * but will never see neither -- if they are careful.
1560 */
1561 p->replacement = NULL;
1562 clear_bit(WantReplacement, &rdev->flags);
1563 } else
1564 /* We might have just remove the Replacement as faulty
1565 * Clear the flag just in case
1566 */
1567 clear_bit(WantReplacement, &rdev->flags);
1568
c8ab903e
N
1569 err = md_integrity_register(mddev);
1570
1da177e4
LT
1571abort:
1572
1573 print_conf(conf);
1574 return err;
1575}
1576
1577
6712ecf8 1578static void end_sync_read(struct bio *bio, int error)
1da177e4 1579{
9f2c9d12 1580 struct r10bio *r10_bio = bio->bi_private;
e879a879 1581 struct r10conf *conf = r10_bio->mddev->private;
778ca018 1582 int d;
1da177e4 1583
69335ef3 1584 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
0eb3ff12
N
1585
1586 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1587 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1588 else
1589 /* The write handler will notice the lack of
1590 * R10BIO_Uptodate and record any errors etc
1591 */
4dbcdc75
N
1592 atomic_add(r10_bio->sectors,
1593 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1594
1595 /* for reconstruct, we always reschedule after a read.
1596 * for resync, only after all reads
1597 */
73d5c38a 1598 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1599 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1600 atomic_dec_and_test(&r10_bio->remaining)) {
1601 /* we have read all the blocks,
1602 * do the comparison in process context in raid10d
1603 */
1604 reschedule_retry(r10_bio);
1605 }
1da177e4
LT
1606}
1607
9f2c9d12 1608static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1609{
fd01b88c 1610 struct mddev *mddev = r10_bio->mddev;
dfc70645 1611
1da177e4
LT
1612 while (atomic_dec_and_test(&r10_bio->remaining)) {
1613 if (r10_bio->master_bio == NULL) {
1614 /* the primary of several recovery bios */
73d5c38a 1615 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1616 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1617 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1618 reschedule_retry(r10_bio);
1619 else
1620 put_buf(r10_bio);
73d5c38a 1621 md_done_sync(mddev, s, 1);
1da177e4
LT
1622 break;
1623 } else {
9f2c9d12 1624 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1625 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1626 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1627 reschedule_retry(r10_bio);
1628 else
1629 put_buf(r10_bio);
1da177e4
LT
1630 r10_bio = r10_bio2;
1631 }
1632 }
1da177e4
LT
1633}
1634
5e570289
N
1635static void end_sync_write(struct bio *bio, int error)
1636{
1637 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1638 struct r10bio *r10_bio = bio->bi_private;
fd01b88c 1639 struct mddev *mddev = r10_bio->mddev;
e879a879 1640 struct r10conf *conf = mddev->private;
5e570289
N
1641 int d;
1642 sector_t first_bad;
1643 int bad_sectors;
1644 int slot;
9ad1aefc 1645 int repl;
4ca40c2c 1646 struct md_rdev *rdev = NULL;
5e570289 1647
9ad1aefc
N
1648 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1649 if (repl)
1650 rdev = conf->mirrors[d].replacement;
4ca40c2c
N
1651 if (!rdev) {
1652 smp_mb();
9ad1aefc 1653 rdev = conf->mirrors[d].rdev;
4ca40c2c 1654 }
5e570289
N
1655
1656 if (!uptodate) {
9ad1aefc
N
1657 if (repl)
1658 md_error(mddev, rdev);
1659 else {
1660 set_bit(WriteErrorSeen, &rdev->flags);
1661 set_bit(R10BIO_WriteError, &r10_bio->state);
1662 }
1663 } else if (is_badblock(rdev,
5e570289
N
1664 r10_bio->devs[slot].addr,
1665 r10_bio->sectors,
1666 &first_bad, &bad_sectors))
1667 set_bit(R10BIO_MadeGood, &r10_bio->state);
1668
9ad1aefc 1669 rdev_dec_pending(rdev, mddev);
5e570289
N
1670
1671 end_sync_request(r10_bio);
1672}
1673
1da177e4
LT
1674/*
1675 * Note: sync and recover and handled very differently for raid10
1676 * This code is for resync.
1677 * For resync, we read through virtual addresses and read all blocks.
1678 * If there is any error, we schedule a write. The lowest numbered
1679 * drive is authoritative.
1680 * However requests come for physical address, so we need to map.
1681 * For every physical address there are raid_disks/copies virtual addresses,
1682 * which is always are least one, but is not necessarly an integer.
1683 * This means that a physical address can span multiple chunks, so we may
1684 * have to submit multiple io requests for a single sync request.
1685 */
1686/*
1687 * We check if all blocks are in-sync and only write to blocks that
1688 * aren't in sync
1689 */
9f2c9d12 1690static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 1691{
e879a879 1692 struct r10conf *conf = mddev->private;
1da177e4
LT
1693 int i, first;
1694 struct bio *tbio, *fbio;
1695
1696 atomic_set(&r10_bio->remaining, 1);
1697
1698 /* find the first device with a block */
1699 for (i=0; i<conf->copies; i++)
1700 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1701 break;
1702
1703 if (i == conf->copies)
1704 goto done;
1705
1706 first = i;
1707 fbio = r10_bio->devs[i].bio;
1708
1709 /* now find blocks with errors */
0eb3ff12
N
1710 for (i=0 ; i < conf->copies ; i++) {
1711 int j, d;
1712 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1da177e4 1713
1da177e4 1714 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
1715
1716 if (tbio->bi_end_io != end_sync_read)
1717 continue;
1718 if (i == first)
1da177e4 1719 continue;
0eb3ff12
N
1720 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1721 /* We know that the bi_io_vec layout is the same for
1722 * both 'first' and 'i', so we just compare them.
1723 * All vec entries are PAGE_SIZE;
1724 */
1725 for (j = 0; j < vcnt; j++)
1726 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1727 page_address(tbio->bi_io_vec[j].bv_page),
1728 PAGE_SIZE))
1729 break;
1730 if (j == vcnt)
1731 continue;
1732 mddev->resync_mismatches += r10_bio->sectors;
f84ee364
N
1733 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1734 /* Don't fix anything. */
1735 continue;
0eb3ff12 1736 }
f84ee364
N
1737 /* Ok, we need to write this bio, either to correct an
1738 * inconsistency or to correct an unreadable block.
1da177e4
LT
1739 * First we need to fixup bv_offset, bv_len and
1740 * bi_vecs, as the read request might have corrupted these
1741 */
1742 tbio->bi_vcnt = vcnt;
1743 tbio->bi_size = r10_bio->sectors << 9;
1744 tbio->bi_idx = 0;
1745 tbio->bi_phys_segments = 0;
1da177e4
LT
1746 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1747 tbio->bi_flags |= 1 << BIO_UPTODATE;
1748 tbio->bi_next = NULL;
1749 tbio->bi_rw = WRITE;
1750 tbio->bi_private = r10_bio;
1751 tbio->bi_sector = r10_bio->devs[i].addr;
1752
1753 for (j=0; j < vcnt ; j++) {
1754 tbio->bi_io_vec[j].bv_offset = 0;
1755 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1756
1757 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1758 page_address(fbio->bi_io_vec[j].bv_page),
1759 PAGE_SIZE);
1760 }
1761 tbio->bi_end_io = end_sync_write;
1762
1763 d = r10_bio->devs[i].devnum;
1764 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1765 atomic_inc(&r10_bio->remaining);
1766 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1767
1768 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1769 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1770 generic_make_request(tbio);
1771 }
1772
9ad1aefc
N
1773 /* Now write out to any replacement devices
1774 * that are active
1775 */
1776 for (i = 0; i < conf->copies; i++) {
1777 int j, d;
1778 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1779
1780 tbio = r10_bio->devs[i].repl_bio;
1781 if (!tbio || !tbio->bi_end_io)
1782 continue;
1783 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
1784 && r10_bio->devs[i].bio != fbio)
1785 for (j = 0; j < vcnt; j++)
1786 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1787 page_address(fbio->bi_io_vec[j].bv_page),
1788 PAGE_SIZE);
1789 d = r10_bio->devs[i].devnum;
1790 atomic_inc(&r10_bio->remaining);
1791 md_sync_acct(conf->mirrors[d].replacement->bdev,
1792 tbio->bi_size >> 9);
1793 generic_make_request(tbio);
1794 }
1795
1da177e4
LT
1796done:
1797 if (atomic_dec_and_test(&r10_bio->remaining)) {
1798 md_done_sync(mddev, r10_bio->sectors, 1);
1799 put_buf(r10_bio);
1800 }
1801}
1802
1803/*
1804 * Now for the recovery code.
1805 * Recovery happens across physical sectors.
1806 * We recover all non-is_sync drives by finding the virtual address of
1807 * each, and then choose a working drive that also has that virt address.
1808 * There is a separate r10_bio for each non-in_sync drive.
1809 * Only the first two slots are in use. The first for reading,
1810 * The second for writing.
1811 *
1812 */
9f2c9d12 1813static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
1814{
1815 /* We got a read error during recovery.
1816 * We repeat the read in smaller page-sized sections.
1817 * If a read succeeds, write it to the new device or record
1818 * a bad block if we cannot.
1819 * If a read fails, record a bad block on both old and
1820 * new devices.
1821 */
fd01b88c 1822 struct mddev *mddev = r10_bio->mddev;
e879a879 1823 struct r10conf *conf = mddev->private;
5e570289
N
1824 struct bio *bio = r10_bio->devs[0].bio;
1825 sector_t sect = 0;
1826 int sectors = r10_bio->sectors;
1827 int idx = 0;
1828 int dr = r10_bio->devs[0].devnum;
1829 int dw = r10_bio->devs[1].devnum;
1830
1831 while (sectors) {
1832 int s = sectors;
3cb03002 1833 struct md_rdev *rdev;
5e570289
N
1834 sector_t addr;
1835 int ok;
1836
1837 if (s > (PAGE_SIZE>>9))
1838 s = PAGE_SIZE >> 9;
1839
1840 rdev = conf->mirrors[dr].rdev;
1841 addr = r10_bio->devs[0].addr + sect,
1842 ok = sync_page_io(rdev,
1843 addr,
1844 s << 9,
1845 bio->bi_io_vec[idx].bv_page,
1846 READ, false);
1847 if (ok) {
1848 rdev = conf->mirrors[dw].rdev;
1849 addr = r10_bio->devs[1].addr + sect;
1850 ok = sync_page_io(rdev,
1851 addr,
1852 s << 9,
1853 bio->bi_io_vec[idx].bv_page,
1854 WRITE, false);
1855 if (!ok)
1856 set_bit(WriteErrorSeen, &rdev->flags);
1857 }
1858 if (!ok) {
1859 /* We don't worry if we cannot set a bad block -
1860 * it really is bad so there is no loss in not
1861 * recording it yet
1862 */
1863 rdev_set_badblocks(rdev, addr, s, 0);
1864
1865 if (rdev != conf->mirrors[dw].rdev) {
1866 /* need bad block on destination too */
3cb03002 1867 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
1868 addr = r10_bio->devs[1].addr + sect;
1869 ok = rdev_set_badblocks(rdev2, addr, s, 0);
1870 if (!ok) {
1871 /* just abort the recovery */
1872 printk(KERN_NOTICE
1873 "md/raid10:%s: recovery aborted"
1874 " due to read error\n",
1875 mdname(mddev));
1876
1877 conf->mirrors[dw].recovery_disabled
1878 = mddev->recovery_disabled;
1879 set_bit(MD_RECOVERY_INTR,
1880 &mddev->recovery);
1881 break;
1882 }
1883 }
1884 }
1885
1886 sectors -= s;
1887 sect += s;
1888 idx++;
1889 }
1890}
1da177e4 1891
9f2c9d12 1892static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 1893{
e879a879 1894 struct r10conf *conf = mddev->private;
c65060ad 1895 int d;
24afd80d 1896 struct bio *wbio, *wbio2;
1da177e4 1897
5e570289
N
1898 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
1899 fix_recovery_read_error(r10_bio);
1900 end_sync_request(r10_bio);
1901 return;
1902 }
1903
c65060ad
NK
1904 /*
1905 * share the pages with the first bio
1da177e4
LT
1906 * and submit the write request
1907 */
1da177e4 1908 d = r10_bio->devs[1].devnum;
24afd80d
N
1909 wbio = r10_bio->devs[1].bio;
1910 wbio2 = r10_bio->devs[1].repl_bio;
1911 if (wbio->bi_end_io) {
1912 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1913 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1914 generic_make_request(wbio);
1915 }
1916 if (wbio2 && wbio2->bi_end_io) {
1917 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
1918 md_sync_acct(conf->mirrors[d].replacement->bdev,
1919 wbio2->bi_size >> 9);
1920 generic_make_request(wbio2);
1921 }
1da177e4
LT
1922}
1923
1924
1e50915f
RB
1925/*
1926 * Used by fix_read_error() to decay the per rdev read_errors.
1927 * We halve the read error count for every hour that has elapsed
1928 * since the last recorded read error.
1929 *
1930 */
fd01b88c 1931static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f
RB
1932{
1933 struct timespec cur_time_mon;
1934 unsigned long hours_since_last;
1935 unsigned int read_errors = atomic_read(&rdev->read_errors);
1936
1937 ktime_get_ts(&cur_time_mon);
1938
1939 if (rdev->last_read_error.tv_sec == 0 &&
1940 rdev->last_read_error.tv_nsec == 0) {
1941 /* first time we've seen a read error */
1942 rdev->last_read_error = cur_time_mon;
1943 return;
1944 }
1945
1946 hours_since_last = (cur_time_mon.tv_sec -
1947 rdev->last_read_error.tv_sec) / 3600;
1948
1949 rdev->last_read_error = cur_time_mon;
1950
1951 /*
1952 * if hours_since_last is > the number of bits in read_errors
1953 * just set read errors to 0. We do this to avoid
1954 * overflowing the shift of read_errors by hours_since_last.
1955 */
1956 if (hours_since_last >= 8 * sizeof(read_errors))
1957 atomic_set(&rdev->read_errors, 0);
1958 else
1959 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1960}
1961
3cb03002 1962static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
1963 int sectors, struct page *page, int rw)
1964{
1965 sector_t first_bad;
1966 int bad_sectors;
1967
1968 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
1969 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
1970 return -1;
1971 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1972 /* success */
1973 return 1;
1974 if (rw == WRITE)
1975 set_bit(WriteErrorSeen, &rdev->flags);
1976 /* need to record an error - either for the block or the device */
1977 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1978 md_error(rdev->mddev, rdev);
1979 return 0;
1980}
1981
1da177e4
LT
1982/*
1983 * This is a kernel thread which:
1984 *
1985 * 1. Retries failed read operations on working mirrors.
1986 * 2. Updates the raid superblock when problems encounter.
6814d536 1987 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1988 */
1989
e879a879 1990static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
1991{
1992 int sect = 0; /* Offset from r10_bio->sector */
1993 int sectors = r10_bio->sectors;
3cb03002 1994 struct md_rdev*rdev;
1e50915f 1995 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 1996 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 1997
7c4e06ff
N
1998 /* still own a reference to this rdev, so it cannot
1999 * have been cleared recently.
2000 */
2001 rdev = conf->mirrors[d].rdev;
1e50915f 2002
7c4e06ff
N
2003 if (test_bit(Faulty, &rdev->flags))
2004 /* drive has already been failed, just ignore any
2005 more fix_read_error() attempts */
2006 return;
1e50915f 2007
7c4e06ff
N
2008 check_decay_read_errors(mddev, rdev);
2009 atomic_inc(&rdev->read_errors);
2010 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2011 char b[BDEVNAME_SIZE];
2012 bdevname(rdev->bdev, b);
1e50915f 2013
7c4e06ff
N
2014 printk(KERN_NOTICE
2015 "md/raid10:%s: %s: Raid device exceeded "
2016 "read_error threshold [cur %d:max %d]\n",
2017 mdname(mddev), b,
2018 atomic_read(&rdev->read_errors), max_read_errors);
2019 printk(KERN_NOTICE
2020 "md/raid10:%s: %s: Failing raid device\n",
2021 mdname(mddev), b);
2022 md_error(mddev, conf->mirrors[d].rdev);
2023 return;
1e50915f 2024 }
1e50915f 2025
6814d536
N
2026 while(sectors) {
2027 int s = sectors;
2028 int sl = r10_bio->read_slot;
2029 int success = 0;
2030 int start;
2031
2032 if (s > (PAGE_SIZE>>9))
2033 s = PAGE_SIZE >> 9;
2034
2035 rcu_read_lock();
2036 do {
8dbed5ce
N
2037 sector_t first_bad;
2038 int bad_sectors;
2039
0544a21d 2040 d = r10_bio->devs[sl].devnum;
6814d536
N
2041 rdev = rcu_dereference(conf->mirrors[d].rdev);
2042 if (rdev &&
8dbed5ce
N
2043 test_bit(In_sync, &rdev->flags) &&
2044 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2045 &first_bad, &bad_sectors) == 0) {
6814d536
N
2046 atomic_inc(&rdev->nr_pending);
2047 rcu_read_unlock();
2b193363 2048 success = sync_page_io(rdev,
6814d536 2049 r10_bio->devs[sl].addr +
ccebd4c4 2050 sect,
6814d536 2051 s<<9,
ccebd4c4 2052 conf->tmppage, READ, false);
6814d536
N
2053 rdev_dec_pending(rdev, mddev);
2054 rcu_read_lock();
2055 if (success)
2056 break;
2057 }
2058 sl++;
2059 if (sl == conf->copies)
2060 sl = 0;
2061 } while (!success && sl != r10_bio->read_slot);
2062 rcu_read_unlock();
2063
2064 if (!success) {
58c54fcc
N
2065 /* Cannot read from anywhere, just mark the block
2066 * as bad on the first device to discourage future
2067 * reads.
2068 */
6814d536 2069 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2070 rdev = conf->mirrors[dn].rdev;
2071
2072 if (!rdev_set_badblocks(
2073 rdev,
2074 r10_bio->devs[r10_bio->read_slot].addr
2075 + sect,
2076 s, 0))
2077 md_error(mddev, rdev);
6814d536
N
2078 break;
2079 }
2080
2081 start = sl;
2082 /* write it back and re-read */
2083 rcu_read_lock();
2084 while (sl != r10_bio->read_slot) {
67b8dc4b 2085 char b[BDEVNAME_SIZE];
0544a21d 2086
6814d536
N
2087 if (sl==0)
2088 sl = conf->copies;
2089 sl--;
2090 d = r10_bio->devs[sl].devnum;
2091 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
2092 if (!rdev ||
2093 !test_bit(In_sync, &rdev->flags))
2094 continue;
2095
2096 atomic_inc(&rdev->nr_pending);
2097 rcu_read_unlock();
58c54fcc
N
2098 if (r10_sync_page_io(rdev,
2099 r10_bio->devs[sl].addr +
2100 sect,
2101 s<<9, conf->tmppage, WRITE)
1294b9c9
N
2102 == 0) {
2103 /* Well, this device is dead */
2104 printk(KERN_NOTICE
2105 "md/raid10:%s: read correction "
2106 "write failed"
2107 " (%d sectors at %llu on %s)\n",
2108 mdname(mddev), s,
2109 (unsigned long long)(
2110 sect + rdev->data_offset),
2111 bdevname(rdev->bdev, b));
2112 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2113 "drive\n",
2114 mdname(mddev),
2115 bdevname(rdev->bdev, b));
6814d536 2116 }
1294b9c9
N
2117 rdev_dec_pending(rdev, mddev);
2118 rcu_read_lock();
6814d536
N
2119 }
2120 sl = start;
2121 while (sl != r10_bio->read_slot) {
1294b9c9 2122 char b[BDEVNAME_SIZE];
0544a21d 2123
6814d536
N
2124 if (sl==0)
2125 sl = conf->copies;
2126 sl--;
2127 d = r10_bio->devs[sl].devnum;
2128 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
2129 if (!rdev ||
2130 !test_bit(In_sync, &rdev->flags))
2131 continue;
6814d536 2132
1294b9c9
N
2133 atomic_inc(&rdev->nr_pending);
2134 rcu_read_unlock();
58c54fcc
N
2135 switch (r10_sync_page_io(rdev,
2136 r10_bio->devs[sl].addr +
2137 sect,
2138 s<<9, conf->tmppage,
2139 READ)) {
2140 case 0:
1294b9c9
N
2141 /* Well, this device is dead */
2142 printk(KERN_NOTICE
2143 "md/raid10:%s: unable to read back "
2144 "corrected sectors"
2145 " (%d sectors at %llu on %s)\n",
2146 mdname(mddev), s,
2147 (unsigned long long)(
2148 sect + rdev->data_offset),
2149 bdevname(rdev->bdev, b));
2150 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2151 "drive\n",
2152 mdname(mddev),
2153 bdevname(rdev->bdev, b));
58c54fcc
N
2154 break;
2155 case 1:
1294b9c9
N
2156 printk(KERN_INFO
2157 "md/raid10:%s: read error corrected"
2158 " (%d sectors at %llu on %s)\n",
2159 mdname(mddev), s,
2160 (unsigned long long)(
2161 sect + rdev->data_offset),
2162 bdevname(rdev->bdev, b));
2163 atomic_add(s, &rdev->corrected_errors);
6814d536 2164 }
1294b9c9
N
2165
2166 rdev_dec_pending(rdev, mddev);
2167 rcu_read_lock();
6814d536
N
2168 }
2169 rcu_read_unlock();
2170
2171 sectors -= s;
2172 sect += s;
2173 }
2174}
2175
bd870a16
N
2176static void bi_complete(struct bio *bio, int error)
2177{
2178 complete((struct completion *)bio->bi_private);
2179}
2180
2181static int submit_bio_wait(int rw, struct bio *bio)
2182{
2183 struct completion event;
2184 rw |= REQ_SYNC;
2185
2186 init_completion(&event);
2187 bio->bi_private = &event;
2188 bio->bi_end_io = bi_complete;
2189 submit_bio(rw, bio);
2190 wait_for_completion(&event);
2191
2192 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2193}
2194
9f2c9d12 2195static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2196{
2197 struct bio *bio = r10_bio->master_bio;
fd01b88c 2198 struct mddev *mddev = r10_bio->mddev;
e879a879 2199 struct r10conf *conf = mddev->private;
3cb03002 2200 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2201 /* bio has the data to be written to slot 'i' where
2202 * we just recently had a write error.
2203 * We repeatedly clone the bio and trim down to one block,
2204 * then try the write. Where the write fails we record
2205 * a bad block.
2206 * It is conceivable that the bio doesn't exactly align with
2207 * blocks. We must handle this.
2208 *
2209 * We currently own a reference to the rdev.
2210 */
2211
2212 int block_sectors;
2213 sector_t sector;
2214 int sectors;
2215 int sect_to_write = r10_bio->sectors;
2216 int ok = 1;
2217
2218 if (rdev->badblocks.shift < 0)
2219 return 0;
2220
2221 block_sectors = 1 << rdev->badblocks.shift;
2222 sector = r10_bio->sector;
2223 sectors = ((r10_bio->sector + block_sectors)
2224 & ~(sector_t)(block_sectors - 1))
2225 - sector;
2226
2227 while (sect_to_write) {
2228 struct bio *wbio;
2229 if (sectors > sect_to_write)
2230 sectors = sect_to_write;
2231 /* Write at 'sector' for 'sectors' */
2232 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2233 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2234 wbio->bi_sector = (r10_bio->devs[i].addr+
2235 rdev->data_offset+
2236 (sector - r10_bio->sector));
2237 wbio->bi_bdev = rdev->bdev;
2238 if (submit_bio_wait(WRITE, wbio) == 0)
2239 /* Failure! */
2240 ok = rdev_set_badblocks(rdev, sector,
2241 sectors, 0)
2242 && ok;
2243
2244 bio_put(wbio);
2245 sect_to_write -= sectors;
2246 sector += sectors;
2247 sectors = block_sectors;
2248 }
2249 return ok;
2250}
2251
9f2c9d12 2252static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2253{
2254 int slot = r10_bio->read_slot;
560f8e55 2255 struct bio *bio;
e879a879 2256 struct r10conf *conf = mddev->private;
abbf098e 2257 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2258 char b[BDEVNAME_SIZE];
2259 unsigned long do_sync;
856e08e2 2260 int max_sectors;
560f8e55
N
2261
2262 /* we got a read error. Maybe the drive is bad. Maybe just
2263 * the block and we can fix it.
2264 * We freeze all other IO, and try reading the block from
2265 * other devices. When we find one, we re-write
2266 * and check it that fixes the read error.
2267 * This is all done synchronously while the array is
2268 * frozen.
2269 */
2270 if (mddev->ro == 0) {
2271 freeze_array(conf);
2272 fix_read_error(conf, mddev, r10_bio);
2273 unfreeze_array(conf);
2274 }
abbf098e 2275 rdev_dec_pending(rdev, mddev);
560f8e55
N
2276
2277 bio = r10_bio->devs[slot].bio;
7399c31b 2278 bdevname(bio->bi_bdev, b);
560f8e55
N
2279 r10_bio->devs[slot].bio =
2280 mddev->ro ? IO_BLOCKED : NULL;
7399c31b 2281read_more:
96c3fd1f
N
2282 rdev = read_balance(conf, r10_bio, &max_sectors);
2283 if (rdev == NULL) {
560f8e55
N
2284 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2285 " read error for block %llu\n",
7399c31b 2286 mdname(mddev), b,
560f8e55
N
2287 (unsigned long long)r10_bio->sector);
2288 raid_end_bio_io(r10_bio);
2289 bio_put(bio);
2290 return;
2291 }
2292
2293 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
7399c31b
N
2294 if (bio)
2295 bio_put(bio);
560f8e55 2296 slot = r10_bio->read_slot;
560f8e55
N
2297 printk_ratelimited(
2298 KERN_ERR
2299 "md/raid10:%s: %s: redirecting"
2300 "sector %llu to another mirror\n",
2301 mdname(mddev),
2302 bdevname(rdev->bdev, b),
2303 (unsigned long long)r10_bio->sector);
2304 bio = bio_clone_mddev(r10_bio->master_bio,
2305 GFP_NOIO, mddev);
7399c31b
N
2306 md_trim_bio(bio,
2307 r10_bio->sector - bio->bi_sector,
2308 max_sectors);
560f8e55 2309 r10_bio->devs[slot].bio = bio;
abbf098e 2310 r10_bio->devs[slot].rdev = rdev;
560f8e55
N
2311 bio->bi_sector = r10_bio->devs[slot].addr
2312 + rdev->data_offset;
2313 bio->bi_bdev = rdev->bdev;
2314 bio->bi_rw = READ | do_sync;
2315 bio->bi_private = r10_bio;
2316 bio->bi_end_io = raid10_end_read_request;
7399c31b
N
2317 if (max_sectors < r10_bio->sectors) {
2318 /* Drat - have to split this up more */
2319 struct bio *mbio = r10_bio->master_bio;
2320 int sectors_handled =
2321 r10_bio->sector + max_sectors
2322 - mbio->bi_sector;
2323 r10_bio->sectors = max_sectors;
2324 spin_lock_irq(&conf->device_lock);
2325 if (mbio->bi_phys_segments == 0)
2326 mbio->bi_phys_segments = 2;
2327 else
2328 mbio->bi_phys_segments++;
2329 spin_unlock_irq(&conf->device_lock);
2330 generic_make_request(bio);
2331 bio = NULL;
2332
2333 r10_bio = mempool_alloc(conf->r10bio_pool,
2334 GFP_NOIO);
2335 r10_bio->master_bio = mbio;
2336 r10_bio->sectors = (mbio->bi_size >> 9)
2337 - sectors_handled;
2338 r10_bio->state = 0;
2339 set_bit(R10BIO_ReadError,
2340 &r10_bio->state);
2341 r10_bio->mddev = mddev;
2342 r10_bio->sector = mbio->bi_sector
2343 + sectors_handled;
2344
2345 goto read_more;
2346 } else
2347 generic_make_request(bio);
560f8e55
N
2348}
2349
e879a879 2350static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2351{
2352 /* Some sort of write request has finished and it
2353 * succeeded in writing where we thought there was a
2354 * bad block. So forget the bad block.
1a0b7cd8
N
2355 * Or possibly if failed and we need to record
2356 * a bad block.
749c55e9
N
2357 */
2358 int m;
3cb03002 2359 struct md_rdev *rdev;
749c55e9
N
2360
2361 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2362 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2363 for (m = 0; m < conf->copies; m++) {
2364 int dev = r10_bio->devs[m].devnum;
2365 rdev = conf->mirrors[dev].rdev;
2366 if (r10_bio->devs[m].bio == NULL)
2367 continue;
2368 if (test_bit(BIO_UPTODATE,
749c55e9 2369 &r10_bio->devs[m].bio->bi_flags)) {
749c55e9
N
2370 rdev_clear_badblocks(
2371 rdev,
2372 r10_bio->devs[m].addr,
2373 r10_bio->sectors);
1a0b7cd8
N
2374 } else {
2375 if (!rdev_set_badblocks(
2376 rdev,
2377 r10_bio->devs[m].addr,
2378 r10_bio->sectors, 0))
2379 md_error(conf->mddev, rdev);
749c55e9 2380 }
9ad1aefc
N
2381 rdev = conf->mirrors[dev].replacement;
2382 if (r10_bio->devs[m].repl_bio == NULL)
2383 continue;
2384 if (test_bit(BIO_UPTODATE,
2385 &r10_bio->devs[m].repl_bio->bi_flags)) {
2386 rdev_clear_badblocks(
2387 rdev,
2388 r10_bio->devs[m].addr,
2389 r10_bio->sectors);
2390 } else {
2391 if (!rdev_set_badblocks(
2392 rdev,
2393 r10_bio->devs[m].addr,
2394 r10_bio->sectors, 0))
2395 md_error(conf->mddev, rdev);
2396 }
1a0b7cd8 2397 }
749c55e9
N
2398 put_buf(r10_bio);
2399 } else {
bd870a16
N
2400 for (m = 0; m < conf->copies; m++) {
2401 int dev = r10_bio->devs[m].devnum;
2402 struct bio *bio = r10_bio->devs[m].bio;
2403 rdev = conf->mirrors[dev].rdev;
2404 if (bio == IO_MADE_GOOD) {
749c55e9
N
2405 rdev_clear_badblocks(
2406 rdev,
2407 r10_bio->devs[m].addr,
2408 r10_bio->sectors);
2409 rdev_dec_pending(rdev, conf->mddev);
bd870a16
N
2410 } else if (bio != NULL &&
2411 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2412 if (!narrow_write_error(r10_bio, m)) {
2413 md_error(conf->mddev, rdev);
2414 set_bit(R10BIO_Degraded,
2415 &r10_bio->state);
2416 }
2417 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2418 }
475b0321
N
2419 bio = r10_bio->devs[m].repl_bio;
2420 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2421 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2422 rdev_clear_badblocks(
2423 rdev,
2424 r10_bio->devs[m].addr,
2425 r10_bio->sectors);
2426 rdev_dec_pending(rdev, conf->mddev);
2427 }
bd870a16
N
2428 }
2429 if (test_bit(R10BIO_WriteError,
2430 &r10_bio->state))
2431 close_write(r10_bio);
749c55e9
N
2432 raid_end_bio_io(r10_bio);
2433 }
2434}
2435
fd01b88c 2436static void raid10d(struct mddev *mddev)
1da177e4 2437{
9f2c9d12 2438 struct r10bio *r10_bio;
1da177e4 2439 unsigned long flags;
e879a879 2440 struct r10conf *conf = mddev->private;
1da177e4 2441 struct list_head *head = &conf->retry_list;
e1dfa0a2 2442 struct blk_plug plug;
1da177e4
LT
2443
2444 md_check_recovery(mddev);
1da177e4 2445
e1dfa0a2 2446 blk_start_plug(&plug);
1da177e4 2447 for (;;) {
6cce3b23 2448
7eaceacc 2449 flush_pending_writes(conf);
6cce3b23 2450
a35e63ef
N
2451 spin_lock_irqsave(&conf->device_lock, flags);
2452 if (list_empty(head)) {
2453 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2454 break;
a35e63ef 2455 }
9f2c9d12 2456 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2457 list_del(head->prev);
4443ae10 2458 conf->nr_queued--;
1da177e4
LT
2459 spin_unlock_irqrestore(&conf->device_lock, flags);
2460
2461 mddev = r10_bio->mddev;
070ec55d 2462 conf = mddev->private;
bd870a16
N
2463 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2464 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
2465 handle_write_completed(conf, r10_bio);
2466 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2467 sync_request_write(mddev, r10_bio);
7eaceacc 2468 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2469 recovery_request_write(mddev, r10_bio);
856e08e2 2470 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2471 handle_read_error(mddev, r10_bio);
856e08e2
N
2472 else {
2473 /* just a partial read to be scheduled from a
2474 * separate context
2475 */
2476 int slot = r10_bio->read_slot;
2477 generic_make_request(r10_bio->devs[slot].bio);
2478 }
560f8e55 2479
1d9d5241 2480 cond_resched();
de393cde
N
2481 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2482 md_check_recovery(mddev);
1da177e4 2483 }
e1dfa0a2 2484 blk_finish_plug(&plug);
1da177e4
LT
2485}
2486
2487
e879a879 2488static int init_resync(struct r10conf *conf)
1da177e4
LT
2489{
2490 int buffs;
69335ef3 2491 int i;
1da177e4
LT
2492
2493 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2494 BUG_ON(conf->r10buf_pool);
69335ef3
N
2495 conf->have_replacement = 0;
2496 for (i = 0; i < conf->raid_disks; i++)
2497 if (conf->mirrors[i].replacement)
2498 conf->have_replacement = 1;
1da177e4
LT
2499 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2500 if (!conf->r10buf_pool)
2501 return -ENOMEM;
2502 conf->next_resync = 0;
2503 return 0;
2504}
2505
2506/*
2507 * perform a "sync" on one "block"
2508 *
2509 * We need to make sure that no normal I/O request - particularly write
2510 * requests - conflict with active sync requests.
2511 *
2512 * This is achieved by tracking pending requests and a 'barrier' concept
2513 * that can be installed to exclude normal IO requests.
2514 *
2515 * Resync and recovery are handled very differently.
2516 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2517 *
2518 * For resync, we iterate over virtual addresses, read all copies,
2519 * and update if there are differences. If only one copy is live,
2520 * skip it.
2521 * For recovery, we iterate over physical addresses, read a good
2522 * value for each non-in_sync drive, and over-write.
2523 *
2524 * So, for recovery we may have several outstanding complex requests for a
2525 * given address, one for each out-of-sync device. We model this by allocating
2526 * a number of r10_bio structures, one for each out-of-sync device.
2527 * As we setup these structures, we collect all bio's together into a list
2528 * which we then process collectively to add pages, and then process again
2529 * to pass to generic_make_request.
2530 *
2531 * The r10_bio structures are linked using a borrowed master_bio pointer.
2532 * This link is counted in ->remaining. When the r10_bio that points to NULL
2533 * has its remaining count decremented to 0, the whole complex operation
2534 * is complete.
2535 *
2536 */
2537
fd01b88c 2538static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
ab9d47e9 2539 int *skipped, int go_faster)
1da177e4 2540{
e879a879 2541 struct r10conf *conf = mddev->private;
9f2c9d12 2542 struct r10bio *r10_bio;
1da177e4
LT
2543 struct bio *biolist = NULL, *bio;
2544 sector_t max_sector, nr_sectors;
1da177e4 2545 int i;
6cce3b23 2546 int max_sync;
57dab0bd 2547 sector_t sync_blocks;
1da177e4
LT
2548 sector_t sectors_skipped = 0;
2549 int chunks_skipped = 0;
2550
2551 if (!conf->r10buf_pool)
2552 if (init_resync(conf))
57afd89f 2553 return 0;
1da177e4
LT
2554
2555 skipped:
58c0fed4 2556 max_sector = mddev->dev_sectors;
1da177e4
LT
2557 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2558 max_sector = mddev->resync_max_sectors;
2559 if (sector_nr >= max_sector) {
6cce3b23
N
2560 /* If we aborted, we need to abort the
2561 * sync on the 'current' bitmap chucks (there can
2562 * be several when recovering multiple devices).
2563 * as we may have started syncing it but not finished.
2564 * We can find the current address in
2565 * mddev->curr_resync, but for recovery,
2566 * we need to convert that to several
2567 * virtual addresses.
2568 */
2569 if (mddev->curr_resync < max_sector) { /* aborted */
2570 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2571 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2572 &sync_blocks, 1);
2573 else for (i=0; i<conf->raid_disks; i++) {
2574 sector_t sect =
2575 raid10_find_virt(conf, mddev->curr_resync, i);
2576 bitmap_end_sync(mddev->bitmap, sect,
2577 &sync_blocks, 1);
2578 }
9ad1aefc
N
2579 } else {
2580 /* completed sync */
2581 if ((!mddev->bitmap || conf->fullsync)
2582 && conf->have_replacement
2583 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2584 /* Completed a full sync so the replacements
2585 * are now fully recovered.
2586 */
2587 for (i = 0; i < conf->raid_disks; i++)
2588 if (conf->mirrors[i].replacement)
2589 conf->mirrors[i].replacement
2590 ->recovery_offset
2591 = MaxSector;
2592 }
6cce3b23 2593 conf->fullsync = 0;
9ad1aefc 2594 }
6cce3b23 2595 bitmap_close_sync(mddev->bitmap);
1da177e4 2596 close_sync(conf);
57afd89f 2597 *skipped = 1;
1da177e4
LT
2598 return sectors_skipped;
2599 }
2600 if (chunks_skipped >= conf->raid_disks) {
2601 /* if there has been nothing to do on any drive,
2602 * then there is nothing to do at all..
2603 */
57afd89f
N
2604 *skipped = 1;
2605 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
2606 }
2607
c6207277
N
2608 if (max_sector > mddev->resync_max)
2609 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2610
1da177e4
LT
2611 /* make sure whole request will fit in a chunk - if chunks
2612 * are meaningful
2613 */
2614 if (conf->near_copies < conf->raid_disks &&
2615 max_sector > (sector_nr | conf->chunk_mask))
2616 max_sector = (sector_nr | conf->chunk_mask) + 1;
2617 /*
2618 * If there is non-resync activity waiting for us then
2619 * put in a delay to throttle resync.
2620 */
0a27ec96 2621 if (!go_faster && conf->nr_waiting)
1da177e4 2622 msleep_interruptible(1000);
1da177e4
LT
2623
2624 /* Again, very different code for resync and recovery.
2625 * Both must result in an r10bio with a list of bios that
2626 * have bi_end_io, bi_sector, bi_bdev set,
2627 * and bi_private set to the r10bio.
2628 * For recovery, we may actually create several r10bios
2629 * with 2 bios in each, that correspond to the bios in the main one.
2630 * In this case, the subordinate r10bios link back through a
2631 * borrowed master_bio pointer, and the counter in the master
2632 * includes a ref from each subordinate.
2633 */
2634 /* First, we decide what to do and set ->bi_end_io
2635 * To end_sync_read if we want to read, and
2636 * end_sync_write if we will want to write.
2637 */
2638
6cce3b23 2639 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
2640 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2641 /* recovery... the complicated one */
e875ecea 2642 int j;
1da177e4
LT
2643 r10_bio = NULL;
2644
ab9d47e9
N
2645 for (i=0 ; i<conf->raid_disks; i++) {
2646 int still_degraded;
9f2c9d12 2647 struct r10bio *rb2;
ab9d47e9
N
2648 sector_t sect;
2649 int must_sync;
e875ecea 2650 int any_working;
24afd80d
N
2651 struct mirror_info *mirror = &conf->mirrors[i];
2652
2653 if ((mirror->rdev == NULL ||
2654 test_bit(In_sync, &mirror->rdev->flags))
2655 &&
2656 (mirror->replacement == NULL ||
2657 test_bit(Faulty,
2658 &mirror->replacement->flags)))
ab9d47e9 2659 continue;
1da177e4 2660
ab9d47e9
N
2661 still_degraded = 0;
2662 /* want to reconstruct this device */
2663 rb2 = r10_bio;
2664 sect = raid10_find_virt(conf, sector_nr, i);
24afd80d
N
2665 /* Unless we are doing a full sync, or a replacement
2666 * we only need to recover the block if it is set in
2667 * the bitmap
ab9d47e9
N
2668 */
2669 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2670 &sync_blocks, 1);
2671 if (sync_blocks < max_sync)
2672 max_sync = sync_blocks;
2673 if (!must_sync &&
24afd80d 2674 mirror->replacement == NULL &&
ab9d47e9
N
2675 !conf->fullsync) {
2676 /* yep, skip the sync_blocks here, but don't assume
2677 * that there will never be anything to do here
2678 */
2679 chunks_skipped = -1;
2680 continue;
2681 }
6cce3b23 2682
ab9d47e9
N
2683 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2684 raise_barrier(conf, rb2 != NULL);
2685 atomic_set(&r10_bio->remaining, 0);
18055569 2686
ab9d47e9
N
2687 r10_bio->master_bio = (struct bio*)rb2;
2688 if (rb2)
2689 atomic_inc(&rb2->remaining);
2690 r10_bio->mddev = mddev;
2691 set_bit(R10BIO_IsRecover, &r10_bio->state);
2692 r10_bio->sector = sect;
1da177e4 2693
ab9d47e9
N
2694 raid10_find_phys(conf, r10_bio);
2695
2696 /* Need to check if the array will still be
2697 * degraded
2698 */
2699 for (j=0; j<conf->raid_disks; j++)
2700 if (conf->mirrors[j].rdev == NULL ||
2701 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2702 still_degraded = 1;
87fc767b 2703 break;
1da177e4 2704 }
ab9d47e9
N
2705
2706 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2707 &sync_blocks, still_degraded);
2708
e875ecea 2709 any_working = 0;
ab9d47e9 2710 for (j=0; j<conf->copies;j++) {
e875ecea 2711 int k;
ab9d47e9 2712 int d = r10_bio->devs[j].devnum;
5e570289 2713 sector_t from_addr, to_addr;
3cb03002 2714 struct md_rdev *rdev;
40c356ce
N
2715 sector_t sector, first_bad;
2716 int bad_sectors;
ab9d47e9
N
2717 if (!conf->mirrors[d].rdev ||
2718 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2719 continue;
2720 /* This is where we read from */
e875ecea 2721 any_working = 1;
40c356ce
N
2722 rdev = conf->mirrors[d].rdev;
2723 sector = r10_bio->devs[j].addr;
2724
2725 if (is_badblock(rdev, sector, max_sync,
2726 &first_bad, &bad_sectors)) {
2727 if (first_bad > sector)
2728 max_sync = first_bad - sector;
2729 else {
2730 bad_sectors -= (sector
2731 - first_bad);
2732 if (max_sync > bad_sectors)
2733 max_sync = bad_sectors;
2734 continue;
2735 }
2736 }
ab9d47e9
N
2737 bio = r10_bio->devs[0].bio;
2738 bio->bi_next = biolist;
2739 biolist = bio;
2740 bio->bi_private = r10_bio;
2741 bio->bi_end_io = end_sync_read;
2742 bio->bi_rw = READ;
5e570289 2743 from_addr = r10_bio->devs[j].addr;
24afd80d
N
2744 bio->bi_sector = from_addr + rdev->data_offset;
2745 bio->bi_bdev = rdev->bdev;
2746 atomic_inc(&rdev->nr_pending);
2747 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
2748
2749 for (k=0; k<conf->copies; k++)
2750 if (r10_bio->devs[k].devnum == i)
2751 break;
2752 BUG_ON(k == conf->copies);
5e570289 2753 to_addr = r10_bio->devs[k].addr;
ab9d47e9 2754 r10_bio->devs[0].devnum = d;
5e570289 2755 r10_bio->devs[0].addr = from_addr;
ab9d47e9 2756 r10_bio->devs[1].devnum = i;
5e570289 2757 r10_bio->devs[1].addr = to_addr;
ab9d47e9 2758
24afd80d
N
2759 rdev = mirror->rdev;
2760 if (!test_bit(In_sync, &rdev->flags)) {
2761 bio = r10_bio->devs[1].bio;
2762 bio->bi_next = biolist;
2763 biolist = bio;
2764 bio->bi_private = r10_bio;
2765 bio->bi_end_io = end_sync_write;
2766 bio->bi_rw = WRITE;
2767 bio->bi_sector = to_addr
2768 + rdev->data_offset;
2769 bio->bi_bdev = rdev->bdev;
2770 atomic_inc(&r10_bio->remaining);
2771 } else
2772 r10_bio->devs[1].bio->bi_end_io = NULL;
2773
2774 /* and maybe write to replacement */
2775 bio = r10_bio->devs[1].repl_bio;
2776 if (bio)
2777 bio->bi_end_io = NULL;
2778 rdev = mirror->replacement;
2779 /* Note: if rdev != NULL, then bio
2780 * cannot be NULL as r10buf_pool_alloc will
2781 * have allocated it.
2782 * So the second test here is pointless.
2783 * But it keeps semantic-checkers happy, and
2784 * this comment keeps human reviewers
2785 * happy.
2786 */
2787 if (rdev == NULL || bio == NULL ||
2788 test_bit(Faulty, &rdev->flags))
2789 break;
2790 bio->bi_next = biolist;
2791 biolist = bio;
2792 bio->bi_private = r10_bio;
2793 bio->bi_end_io = end_sync_write;
2794 bio->bi_rw = WRITE;
2795 bio->bi_sector = to_addr + rdev->data_offset;
2796 bio->bi_bdev = rdev->bdev;
2797 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
2798 break;
2799 }
2800 if (j == conf->copies) {
e875ecea
N
2801 /* Cannot recover, so abort the recovery or
2802 * record a bad block */
ab9d47e9
N
2803 put_buf(r10_bio);
2804 if (rb2)
2805 atomic_dec(&rb2->remaining);
2806 r10_bio = rb2;
e875ecea
N
2807 if (any_working) {
2808 /* problem is that there are bad blocks
2809 * on other device(s)
2810 */
2811 int k;
2812 for (k = 0; k < conf->copies; k++)
2813 if (r10_bio->devs[k].devnum == i)
2814 break;
24afd80d
N
2815 if (!test_bit(In_sync,
2816 &mirror->rdev->flags)
2817 && !rdev_set_badblocks(
2818 mirror->rdev,
2819 r10_bio->devs[k].addr,
2820 max_sync, 0))
2821 any_working = 0;
2822 if (mirror->replacement &&
2823 !rdev_set_badblocks(
2824 mirror->replacement,
e875ecea
N
2825 r10_bio->devs[k].addr,
2826 max_sync, 0))
2827 any_working = 0;
2828 }
2829 if (!any_working) {
2830 if (!test_and_set_bit(MD_RECOVERY_INTR,
2831 &mddev->recovery))
2832 printk(KERN_INFO "md/raid10:%s: insufficient "
2833 "working devices for recovery.\n",
2834 mdname(mddev));
24afd80d 2835 mirror->recovery_disabled
e875ecea
N
2836 = mddev->recovery_disabled;
2837 }
ab9d47e9 2838 break;
1da177e4 2839 }
ab9d47e9 2840 }
1da177e4
LT
2841 if (biolist == NULL) {
2842 while (r10_bio) {
9f2c9d12
N
2843 struct r10bio *rb2 = r10_bio;
2844 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
2845 rb2->master_bio = NULL;
2846 put_buf(rb2);
2847 }
2848 goto giveup;
2849 }
2850 } else {
2851 /* resync. Schedule a read for every block at this virt offset */
2852 int count = 0;
6cce3b23 2853
78200d45
N
2854 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2855
6cce3b23
N
2856 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2857 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
2858 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2859 &mddev->recovery)) {
6cce3b23
N
2860 /* We can skip this block */
2861 *skipped = 1;
2862 return sync_blocks + sectors_skipped;
2863 }
2864 if (sync_blocks < max_sync)
2865 max_sync = sync_blocks;
1da177e4
LT
2866 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2867
1da177e4
LT
2868 r10_bio->mddev = mddev;
2869 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
2870 raise_barrier(conf, 0);
2871 conf->next_resync = sector_nr;
1da177e4
LT
2872
2873 r10_bio->master_bio = NULL;
2874 r10_bio->sector = sector_nr;
2875 set_bit(R10BIO_IsSync, &r10_bio->state);
2876 raid10_find_phys(conf, r10_bio);
2877 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2878
2879 for (i=0; i<conf->copies; i++) {
2880 int d = r10_bio->devs[i].devnum;
40c356ce
N
2881 sector_t first_bad, sector;
2882 int bad_sectors;
2883
9ad1aefc
N
2884 if (r10_bio->devs[i].repl_bio)
2885 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
2886
1da177e4
LT
2887 bio = r10_bio->devs[i].bio;
2888 bio->bi_end_io = NULL;
af03b8e4 2889 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 2890 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 2891 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4 2892 continue;
40c356ce
N
2893 sector = r10_bio->devs[i].addr;
2894 if (is_badblock(conf->mirrors[d].rdev,
2895 sector, max_sync,
2896 &first_bad, &bad_sectors)) {
2897 if (first_bad > sector)
2898 max_sync = first_bad - sector;
2899 else {
2900 bad_sectors -= (sector - first_bad);
2901 if (max_sync > bad_sectors)
2902 max_sync = max_sync;
2903 continue;
2904 }
2905 }
1da177e4
LT
2906 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2907 atomic_inc(&r10_bio->remaining);
2908 bio->bi_next = biolist;
2909 biolist = bio;
2910 bio->bi_private = r10_bio;
2911 bio->bi_end_io = end_sync_read;
802ba064 2912 bio->bi_rw = READ;
40c356ce 2913 bio->bi_sector = sector +
1da177e4
LT
2914 conf->mirrors[d].rdev->data_offset;
2915 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2916 count++;
9ad1aefc
N
2917
2918 if (conf->mirrors[d].replacement == NULL ||
2919 test_bit(Faulty,
2920 &conf->mirrors[d].replacement->flags))
2921 continue;
2922
2923 /* Need to set up for writing to the replacement */
2924 bio = r10_bio->devs[i].repl_bio;
2925 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2926
2927 sector = r10_bio->devs[i].addr;
2928 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2929 bio->bi_next = biolist;
2930 biolist = bio;
2931 bio->bi_private = r10_bio;
2932 bio->bi_end_io = end_sync_write;
2933 bio->bi_rw = WRITE;
2934 bio->bi_sector = sector +
2935 conf->mirrors[d].replacement->data_offset;
2936 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
2937 count++;
1da177e4
LT
2938 }
2939
2940 if (count < 2) {
2941 for (i=0; i<conf->copies; i++) {
2942 int d = r10_bio->devs[i].devnum;
2943 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
2944 rdev_dec_pending(conf->mirrors[d].rdev,
2945 mddev);
9ad1aefc
N
2946 if (r10_bio->devs[i].repl_bio &&
2947 r10_bio->devs[i].repl_bio->bi_end_io)
2948 rdev_dec_pending(
2949 conf->mirrors[d].replacement,
2950 mddev);
1da177e4
LT
2951 }
2952 put_buf(r10_bio);
2953 biolist = NULL;
2954 goto giveup;
2955 }
2956 }
2957
2958 for (bio = biolist; bio ; bio=bio->bi_next) {
2959
2960 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2961 if (bio->bi_end_io)
2962 bio->bi_flags |= 1 << BIO_UPTODATE;
2963 bio->bi_vcnt = 0;
2964 bio->bi_idx = 0;
2965 bio->bi_phys_segments = 0;
1da177e4
LT
2966 bio->bi_size = 0;
2967 }
2968
2969 nr_sectors = 0;
6cce3b23
N
2970 if (sector_nr + max_sync < max_sector)
2971 max_sector = sector_nr + max_sync;
1da177e4
LT
2972 do {
2973 struct page *page;
2974 int len = PAGE_SIZE;
1da177e4
LT
2975 if (sector_nr + (len>>9) > max_sector)
2976 len = (max_sector - sector_nr) << 9;
2977 if (len == 0)
2978 break;
2979 for (bio= biolist ; bio ; bio=bio->bi_next) {
ab9d47e9 2980 struct bio *bio2;
1da177e4 2981 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
ab9d47e9
N
2982 if (bio_add_page(bio, page, len, 0))
2983 continue;
2984
2985 /* stop here */
2986 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2987 for (bio2 = biolist;
2988 bio2 && bio2 != bio;
2989 bio2 = bio2->bi_next) {
2990 /* remove last page from this bio */
2991 bio2->bi_vcnt--;
2992 bio2->bi_size -= len;
2993 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1da177e4 2994 }
ab9d47e9 2995 goto bio_full;
1da177e4
LT
2996 }
2997 nr_sectors += len>>9;
2998 sector_nr += len>>9;
2999 } while (biolist->bi_vcnt < RESYNC_PAGES);
3000 bio_full:
3001 r10_bio->sectors = nr_sectors;
3002
3003 while (biolist) {
3004 bio = biolist;
3005 biolist = biolist->bi_next;
3006
3007 bio->bi_next = NULL;
3008 r10_bio = bio->bi_private;
3009 r10_bio->sectors = nr_sectors;
3010
3011 if (bio->bi_end_io == end_sync_read) {
3012 md_sync_acct(bio->bi_bdev, nr_sectors);
3013 generic_make_request(bio);
3014 }
3015 }
3016
57afd89f
N
3017 if (sectors_skipped)
3018 /* pretend they weren't skipped, it makes
3019 * no important difference in this case
3020 */
3021 md_done_sync(mddev, sectors_skipped, 1);
3022
1da177e4
LT
3023 return sectors_skipped + nr_sectors;
3024 giveup:
3025 /* There is nowhere to write, so all non-sync
e875ecea
N
3026 * drives must be failed or in resync, all drives
3027 * have a bad block, so try the next chunk...
1da177e4 3028 */
09b4068a
N
3029 if (sector_nr + max_sync < max_sector)
3030 max_sector = sector_nr + max_sync;
3031
3032 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3033 chunks_skipped ++;
3034 sector_nr = max_sector;
1da177e4 3035 goto skipped;
1da177e4
LT
3036}
3037
80c3a6ce 3038static sector_t
fd01b88c 3039raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3040{
3041 sector_t size;
e879a879 3042 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3043
3044 if (!raid_disks)
84707f38 3045 raid_disks = conf->raid_disks;
80c3a6ce 3046 if (!sectors)
dab8b292 3047 sectors = conf->dev_sectors;
80c3a6ce
DW
3048
3049 size = sectors >> conf->chunk_shift;
3050 sector_div(size, conf->far_copies);
3051 size = size * raid_disks;
3052 sector_div(size, conf->near_copies);
3053
3054 return size << conf->chunk_shift;
3055}
3056
dab8b292 3057
e879a879 3058static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3059{
e879a879 3060 struct r10conf *conf = NULL;
c93983bf 3061 int nc, fc, fo;
1da177e4 3062 sector_t stride, size;
dab8b292 3063 int err = -EINVAL;
1da177e4 3064
f73ea873
MT
3065 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
3066 !is_power_of_2(mddev->new_chunk_sectors)) {
128595ed
N
3067 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3068 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3069 mdname(mddev), PAGE_SIZE);
dab8b292 3070 goto out;
1da177e4 3071 }
2604b703 3072
f73ea873
MT
3073 nc = mddev->new_layout & 255;
3074 fc = (mddev->new_layout >> 8) & 255;
3075 fo = mddev->new_layout & (1<<16);
dab8b292 3076
1da177e4 3077 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
f73ea873 3078 (mddev->new_layout >> 17)) {
128595ed 3079 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 3080 mdname(mddev), mddev->new_layout);
1da177e4
LT
3081 goto out;
3082 }
dab8b292
TM
3083
3084 err = -ENOMEM;
e879a879 3085 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3086 if (!conf)
1da177e4 3087 goto out;
dab8b292 3088
4443ae10 3089 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
dab8b292
TM
3090 GFP_KERNEL);
3091 if (!conf->mirrors)
3092 goto out;
4443ae10
N
3093
3094 conf->tmppage = alloc_page(GFP_KERNEL);
3095 if (!conf->tmppage)
dab8b292
TM
3096 goto out;
3097
1da177e4 3098
64a742bc 3099 conf->raid_disks = mddev->raid_disks;
1da177e4
LT
3100 conf->near_copies = nc;
3101 conf->far_copies = fc;
3102 conf->copies = nc*fc;
c93983bf 3103 conf->far_offset = fo;
dab8b292
TM
3104 conf->chunk_mask = mddev->new_chunk_sectors - 1;
3105 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
3106
3107 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3108 r10bio_pool_free, conf);
3109 if (!conf->r10bio_pool)
3110 goto out;
3111
58c0fed4 3112 size = mddev->dev_sectors >> conf->chunk_shift;
64a742bc
N
3113 sector_div(size, fc);
3114 size = size * conf->raid_disks;
3115 sector_div(size, nc);
3116 /* 'size' is now the number of chunks in the array */
3117 /* calculate "used chunks per device" in 'stride' */
3118 stride = size * conf->copies;
af03b8e4
N
3119
3120 /* We need to round up when dividing by raid_disks to
3121 * get the stride size.
3122 */
3123 stride += conf->raid_disks - 1;
64a742bc 3124 sector_div(stride, conf->raid_disks);
dab8b292
TM
3125
3126 conf->dev_sectors = stride << conf->chunk_shift;
64a742bc 3127
c93983bf 3128 if (fo)
64a742bc
N
3129 stride = 1;
3130 else
c93983bf 3131 sector_div(stride, fc);
64a742bc
N
3132 conf->stride = stride << conf->chunk_shift;
3133
1da177e4 3134
e7e72bf6 3135 spin_lock_init(&conf->device_lock);
dab8b292
TM
3136 INIT_LIST_HEAD(&conf->retry_list);
3137
3138 spin_lock_init(&conf->resync_lock);
3139 init_waitqueue_head(&conf->wait_barrier);
3140
3141 conf->thread = md_register_thread(raid10d, mddev, NULL);
3142 if (!conf->thread)
3143 goto out;
3144
dab8b292
TM
3145 conf->mddev = mddev;
3146 return conf;
3147
3148 out:
128595ed 3149 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
dab8b292
TM
3150 mdname(mddev));
3151 if (conf) {
3152 if (conf->r10bio_pool)
3153 mempool_destroy(conf->r10bio_pool);
3154 kfree(conf->mirrors);
3155 safe_put_page(conf->tmppage);
3156 kfree(conf);
3157 }
3158 return ERR_PTR(err);
3159}
3160
fd01b88c 3161static int run(struct mddev *mddev)
dab8b292 3162{
e879a879 3163 struct r10conf *conf;
dab8b292 3164 int i, disk_idx, chunk_size;
0f6d02d5 3165 struct mirror_info *disk;
3cb03002 3166 struct md_rdev *rdev;
dab8b292
TM
3167 sector_t size;
3168
3169 /*
3170 * copy the already verified devices into our private RAID10
3171 * bookkeeping area. [whatever we allocate in run(),
3172 * should be freed in stop()]
3173 */
3174
3175 if (mddev->private == NULL) {
3176 conf = setup_conf(mddev);
3177 if (IS_ERR(conf))
3178 return PTR_ERR(conf);
3179 mddev->private = conf;
3180 }
3181 conf = mddev->private;
3182 if (!conf)
3183 goto out;
3184
dab8b292
TM
3185 mddev->thread = conf->thread;
3186 conf->thread = NULL;
3187
8f6c2e4b
MP
3188 chunk_size = mddev->chunk_sectors << 9;
3189 blk_queue_io_min(mddev->queue, chunk_size);
3190 if (conf->raid_disks % conf->near_copies)
3191 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
3192 else
3193 blk_queue_io_opt(mddev->queue, chunk_size *
3194 (conf->raid_disks / conf->near_copies));
3195
159ec1fc 3196 list_for_each_entry(rdev, &mddev->disks, same_set) {
34b343cf 3197
1da177e4 3198 disk_idx = rdev->raid_disk;
84707f38 3199 if (disk_idx >= conf->raid_disks
1da177e4
LT
3200 || disk_idx < 0)
3201 continue;
3202 disk = conf->mirrors + disk_idx;
3203
3204 disk->rdev = rdev;
8f6c2e4b
MP
3205 disk_stack_limits(mddev->gendisk, rdev->bdev,
3206 rdev->data_offset << 9);
1da177e4 3207 /* as we don't honour merge_bvec_fn, we must never risk
627a2d3c
N
3208 * violating it, so limit max_segments to 1 lying
3209 * within a single page.
1da177e4 3210 */
627a2d3c
N
3211 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
3212 blk_queue_max_segments(mddev->queue, 1);
3213 blk_queue_segment_boundary(mddev->queue,
3214 PAGE_CACHE_SIZE - 1);
3215 }
1da177e4
LT
3216
3217 disk->head_position = 0;
1da177e4 3218 }
6d508242 3219 /* need to check that every block has at least one working mirror */
700c7213 3220 if (!enough(conf, -1)) {
128595ed 3221 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 3222 mdname(mddev));
1da177e4
LT
3223 goto out_free_conf;
3224 }
3225
3226 mddev->degraded = 0;
3227 for (i = 0; i < conf->raid_disks; i++) {
3228
3229 disk = conf->mirrors + i;
3230
5fd6c1dc 3231 if (!disk->rdev ||
2e333e89 3232 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
3233 disk->head_position = 0;
3234 mddev->degraded++;
8c2e870a
NB
3235 if (disk->rdev)
3236 conf->fullsync = 1;
1da177e4 3237 }
d890fa2b 3238 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
3239 }
3240
8c6ac868 3241 if (mddev->recovery_cp != MaxSector)
128595ed 3242 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
3243 " -- starting background reconstruction\n",
3244 mdname(mddev));
1da177e4 3245 printk(KERN_INFO
128595ed 3246 "md/raid10:%s: active with %d out of %d devices\n",
84707f38
N
3247 mdname(mddev), conf->raid_disks - mddev->degraded,
3248 conf->raid_disks);
1da177e4
LT
3249 /*
3250 * Ok, everything is just fine now
3251 */
dab8b292
TM
3252 mddev->dev_sectors = conf->dev_sectors;
3253 size = raid10_size(mddev, 0, 0);
3254 md_set_array_sectors(mddev, size);
3255 mddev->resync_max_sectors = size;
1da177e4 3256
0d129228
N
3257 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3258 mddev->queue->backing_dev_info.congested_data = mddev;
7a5febe9 3259
1da177e4
LT
3260 /* Calculate max read-ahead size.
3261 * We need to readahead at least twice a whole stripe....
3262 * maybe...
3263 */
3264 {
9d8f0363
AN
3265 int stripe = conf->raid_disks *
3266 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
1da177e4
LT
3267 stripe /= conf->near_copies;
3268 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
3269 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
3270 }
3271
84707f38 3272 if (conf->near_copies < conf->raid_disks)
1da177e4 3273 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
a91a2785
MP
3274
3275 if (md_integrity_register(mddev))
3276 goto out_free_conf;
3277
1da177e4
LT
3278 return 0;
3279
3280out_free_conf:
01f96c0a 3281 md_unregister_thread(&mddev->thread);
1da177e4
LT
3282 if (conf->r10bio_pool)
3283 mempool_destroy(conf->r10bio_pool);
1345b1d8 3284 safe_put_page(conf->tmppage);
990a8baf 3285 kfree(conf->mirrors);
1da177e4
LT
3286 kfree(conf);
3287 mddev->private = NULL;
3288out:
3289 return -EIO;
3290}
3291
fd01b88c 3292static int stop(struct mddev *mddev)
1da177e4 3293{
e879a879 3294 struct r10conf *conf = mddev->private;
1da177e4 3295
409c57f3
N
3296 raise_barrier(conf, 0);
3297 lower_barrier(conf);
3298
01f96c0a 3299 md_unregister_thread(&mddev->thread);
1da177e4
LT
3300 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3301 if (conf->r10bio_pool)
3302 mempool_destroy(conf->r10bio_pool);
990a8baf 3303 kfree(conf->mirrors);
1da177e4
LT
3304 kfree(conf);
3305 mddev->private = NULL;
3306 return 0;
3307}
3308
fd01b88c 3309static void raid10_quiesce(struct mddev *mddev, int state)
6cce3b23 3310{
e879a879 3311 struct r10conf *conf = mddev->private;
6cce3b23
N
3312
3313 switch(state) {
3314 case 1:
3315 raise_barrier(conf, 0);
3316 break;
3317 case 0:
3318 lower_barrier(conf);
3319 break;
3320 }
6cce3b23 3321}
1da177e4 3322
fd01b88c 3323static void *raid10_takeover_raid0(struct mddev *mddev)
dab8b292 3324{
3cb03002 3325 struct md_rdev *rdev;
e879a879 3326 struct r10conf *conf;
dab8b292
TM
3327
3328 if (mddev->degraded > 0) {
128595ed
N
3329 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3330 mdname(mddev));
dab8b292
TM
3331 return ERR_PTR(-EINVAL);
3332 }
3333
dab8b292
TM
3334 /* Set new parameters */
3335 mddev->new_level = 10;
3336 /* new layout: far_copies = 1, near_copies = 2 */
3337 mddev->new_layout = (1<<8) + 2;
3338 mddev->new_chunk_sectors = mddev->chunk_sectors;
3339 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
3340 mddev->raid_disks *= 2;
3341 /* make sure it will be not marked as dirty */
3342 mddev->recovery_cp = MaxSector;
3343
3344 conf = setup_conf(mddev);
02214dc5 3345 if (!IS_ERR(conf)) {
e93f68a1
N
3346 list_for_each_entry(rdev, &mddev->disks, same_set)
3347 if (rdev->raid_disk >= 0)
3348 rdev->new_raid_disk = rdev->raid_disk * 2;
02214dc5
KW
3349 conf->barrier = 1;
3350 }
3351
dab8b292
TM
3352 return conf;
3353}
3354
fd01b88c 3355static void *raid10_takeover(struct mddev *mddev)
dab8b292 3356{
e373ab10 3357 struct r0conf *raid0_conf;
dab8b292
TM
3358
3359 /* raid10 can take over:
3360 * raid0 - providing it has only two drives
3361 */
3362 if (mddev->level == 0) {
3363 /* for raid0 takeover only one zone is supported */
e373ab10
N
3364 raid0_conf = mddev->private;
3365 if (raid0_conf->nr_strip_zones > 1) {
128595ed
N
3366 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3367 " with more than one zone.\n",
3368 mdname(mddev));
dab8b292
TM
3369 return ERR_PTR(-EINVAL);
3370 }
3371 return raid10_takeover_raid0(mddev);
3372 }
3373 return ERR_PTR(-EINVAL);
3374}
3375
84fc4b56 3376static struct md_personality raid10_personality =
1da177e4
LT
3377{
3378 .name = "raid10",
2604b703 3379 .level = 10,
1da177e4
LT
3380 .owner = THIS_MODULE,
3381 .make_request = make_request,
3382 .run = run,
3383 .stop = stop,
3384 .status = status,
3385 .error_handler = error,
3386 .hot_add_disk = raid10_add_disk,
3387 .hot_remove_disk= raid10_remove_disk,
3388 .spare_active = raid10_spare_active,
3389 .sync_request = sync_request,
6cce3b23 3390 .quiesce = raid10_quiesce,
80c3a6ce 3391 .size = raid10_size,
dab8b292 3392 .takeover = raid10_takeover,
1da177e4
LT
3393};
3394
3395static int __init raid_init(void)
3396{
2604b703 3397 return register_md_personality(&raid10_personality);
1da177e4
LT
3398}
3399
3400static void raid_exit(void)
3401{
2604b703 3402 unregister_md_personality(&raid10_personality);
1da177e4
LT
3403}
3404
3405module_init(raid_init);
3406module_exit(raid_exit);
3407MODULE_LICENSE("GPL");
0efb9e61 3408MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 3409MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 3410MODULE_ALIAS("md-raid10");
2604b703 3411MODULE_ALIAS("md-level-10");
34db0cd6
N
3412
3413module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.777342 seconds and 5 git commands to generate.