md: replace strict_strto*() with kstrto*()
[deliverable/linux.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
3ea7daa5 27#include <linux/kthread.h>
43b2e5d8 28#include "md.h"
ef740c37 29#include "raid10.h"
dab8b292 30#include "raid0.h"
ef740c37 31#include "bitmap.h"
1da177e4
LT
32
33/*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
c93983bf 40 * far_offset (stored in bit 16 of layout )
475901af 41 * use_far_sets (stored in bit 17 of layout )
1da177e4 42 *
475901af
JB
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
c93983bf
N
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
475901af
JB
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
55 *
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * on a device):
64 * A B C D A B C D E
65 * ... ...
66 * D A B C E A B C D
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
1da177e4
LT
71 */
72
73/*
74 * Number of guaranteed r10bios in case of extreme VM load:
75 */
76#define NR_RAID10_BIOS 256
77
473e87ce
JB
78/* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82 */
83#define IO_BLOCKED ((struct bio *)1)
84/* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
87 */
88#define IO_MADE_GOOD ((struct bio *)2)
89
90#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92/* When there are this many requests queued to be written by
34db0cd6
N
93 * the raid10 thread, we become 'congested' to provide back-pressure
94 * for writeback.
95 */
96static int max_queued_requests = 1024;
97
e879a879
N
98static void allow_barrier(struct r10conf *conf);
99static void lower_barrier(struct r10conf *conf);
fae8cc5e 100static int enough(struct r10conf *conf, int ignore);
3ea7daa5
N
101static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 int *skipped);
103static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104static void end_reshape_write(struct bio *bio, int error);
105static void end_reshape(struct r10conf *conf);
0a27ec96 106
dd0fc66f 107static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 108{
e879a879 109 struct r10conf *conf = data;
9f2c9d12 110 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4 111
69335ef3
N
112 /* allocate a r10bio with room for raid_disks entries in the
113 * bios array */
7eaceacc 114 return kzalloc(size, gfp_flags);
1da177e4
LT
115}
116
117static void r10bio_pool_free(void *r10_bio, void *data)
118{
119 kfree(r10_bio);
120}
121
0310fa21 122/* Maximum size of each resync request */
1da177e4 123#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 124#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
125/* amount of memory to reserve for resync requests */
126#define RESYNC_WINDOW (1024*1024)
127/* maximum number of concurrent requests, memory permitting */
128#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
129
130/*
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
135 *
136 */
dd0fc66f 137static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 138{
e879a879 139 struct r10conf *conf = data;
1da177e4 140 struct page *page;
9f2c9d12 141 struct r10bio *r10_bio;
1da177e4
LT
142 struct bio *bio;
143 int i, j;
144 int nalloc;
145
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 147 if (!r10_bio)
1da177e4 148 return NULL;
1da177e4 149
3ea7daa5
N
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
1da177e4
LT
152 nalloc = conf->copies; /* resync */
153 else
154 nalloc = 2; /* recovery */
155
156 /*
157 * Allocate bios.
158 */
159 for (j = nalloc ; j-- ; ) {
6746557f 160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
161 if (!bio)
162 goto out_free_bio;
163 r10_bio->devs[j].bio = bio;
69335ef3
N
164 if (!conf->have_replacement)
165 continue;
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 if (!bio)
168 goto out_free_bio;
169 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
170 }
171 /*
172 * Allocate RESYNC_PAGES data pages and attach them
173 * where needed.
174 */
175 for (j = 0 ; j < nalloc; j++) {
69335ef3 176 struct bio *rbio = r10_bio->devs[j].repl_bio;
1da177e4
LT
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
3ea7daa5
N
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
182 * and reshape */
c65060ad
NK
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
185 get_page(page);
186 } else
187 page = alloc_page(gfp_flags);
1da177e4
LT
188 if (unlikely(!page))
189 goto out_free_pages;
190
191 bio->bi_io_vec[i].bv_page = page;
69335ef3
N
192 if (rbio)
193 rbio->bi_io_vec[i].bv_page = page;
1da177e4
LT
194 }
195 }
196
197 return r10_bio;
198
199out_free_pages:
200 for ( ; i > 0 ; i--)
1345b1d8 201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
202 while (j--)
203 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
5fdd2cf8 205 j = 0;
1da177e4 206out_free_bio:
5fdd2cf8 207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
69335ef3
N
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
212 }
1da177e4
LT
213 r10bio_pool_free(r10_bio, conf);
214 return NULL;
215}
216
217static void r10buf_pool_free(void *__r10_bio, void *data)
218{
219 int i;
e879a879 220 struct r10conf *conf = data;
9f2c9d12 221 struct r10bio *r10bio = __r10_bio;
1da177e4
LT
222 int j;
223
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
226 if (bio) {
227 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 228 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
229 bio->bi_io_vec[i].bv_page = NULL;
230 }
231 bio_put(bio);
232 }
69335ef3
N
233 bio = r10bio->devs[j].repl_bio;
234 if (bio)
235 bio_put(bio);
1da177e4
LT
236 }
237 r10bio_pool_free(r10bio, conf);
238}
239
e879a879 240static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
241{
242 int i;
243
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 246 if (!BIO_SPECIAL(*bio))
1da177e4
LT
247 bio_put(*bio);
248 *bio = NULL;
69335ef3
N
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 bio_put(*bio);
252 *bio = NULL;
1da177e4
LT
253 }
254}
255
9f2c9d12 256static void free_r10bio(struct r10bio *r10_bio)
1da177e4 257{
e879a879 258 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 259
1da177e4
LT
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
262}
263
9f2c9d12 264static void put_buf(struct r10bio *r10_bio)
1da177e4 265{
e879a879 266 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
267
268 mempool_free(r10_bio, conf->r10buf_pool);
269
0a27ec96 270 lower_barrier(conf);
1da177e4
LT
271}
272
9f2c9d12 273static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
274{
275 unsigned long flags;
fd01b88c 276 struct mddev *mddev = r10_bio->mddev;
e879a879 277 struct r10conf *conf = mddev->private;
1da177e4
LT
278
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 281 conf->nr_queued ++;
1da177e4
LT
282 spin_unlock_irqrestore(&conf->device_lock, flags);
283
388667be
AJ
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
286
1da177e4
LT
287 md_wakeup_thread(mddev->thread);
288}
289
290/*
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
293 * cache layer.
294 */
9f2c9d12 295static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
296{
297 struct bio *bio = r10_bio->master_bio;
856e08e2 298 int done;
e879a879 299 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 300
856e08e2
N
301 if (bio->bi_phys_segments) {
302 unsigned long flags;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
307 } else
308 done = 1;
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 if (done) {
312 bio_endio(bio, 0);
313 /*
314 * Wake up any possible resync thread that waits for the device
315 * to go idle.
316 */
317 allow_barrier(conf);
318 }
1da177e4
LT
319 free_r10bio(r10_bio);
320}
321
322/*
323 * Update disk head position estimator based on IRQ completion info.
324 */
9f2c9d12 325static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 326{
e879a879 327 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
328
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
331}
332
778ca018
NK
333/*
334 * Find the disk number which triggered given bio
335 */
e879a879 336static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 337 struct bio *bio, int *slotp, int *replp)
778ca018
NK
338{
339 int slot;
69335ef3 340 int repl = 0;
778ca018 341
69335ef3 342 for (slot = 0; slot < conf->copies; slot++) {
778ca018
NK
343 if (r10_bio->devs[slot].bio == bio)
344 break;
69335ef3
N
345 if (r10_bio->devs[slot].repl_bio == bio) {
346 repl = 1;
347 break;
348 }
349 }
778ca018
NK
350
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
353
749c55e9
N
354 if (slotp)
355 *slotp = slot;
69335ef3
N
356 if (replp)
357 *replp = repl;
778ca018
NK
358 return r10_bio->devs[slot].devnum;
359}
360
6712ecf8 361static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
362{
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 364 struct r10bio *r10_bio = bio->bi_private;
1da177e4 365 int slot, dev;
abbf098e 366 struct md_rdev *rdev;
e879a879 367 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 368
1da177e4
LT
369
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
abbf098e 372 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
373 /*
374 * this branch is our 'one mirror IO has finished' event handler:
375 */
4443ae10
N
376 update_head_pos(slot, r10_bio);
377
378 if (uptodate) {
1da177e4
LT
379 /*
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
383 *
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
387 */
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
394 */
395 unsigned long flags;
396 spin_lock_irqsave(&conf->device_lock, flags);
397 if (!enough(conf, rdev->raid_disk))
398 uptodate = 1;
399 spin_unlock_irqrestore(&conf->device_lock, flags);
400 }
401 if (uptodate) {
1da177e4 402 raid_end_bio_io(r10_bio);
abbf098e 403 rdev_dec_pending(rdev, conf->mddev);
4443ae10 404 } else {
1da177e4 405 /*
7c4e06ff 406 * oops, read error - keep the refcount on the rdev
1da177e4
LT
407 */
408 char b[BDEVNAME_SIZE];
8bda470e
CD
409 printk_ratelimited(KERN_ERR
410 "md/raid10:%s: %s: rescheduling sector %llu\n",
411 mdname(conf->mddev),
abbf098e 412 bdevname(rdev->bdev, b),
8bda470e 413 (unsigned long long)r10_bio->sector);
856e08e2 414 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
415 reschedule_retry(r10_bio);
416 }
1da177e4
LT
417}
418
9f2c9d12 419static void close_write(struct r10bio *r10_bio)
bd870a16
N
420{
421 /* clear the bitmap if all writes complete successfully */
422 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
423 r10_bio->sectors,
424 !test_bit(R10BIO_Degraded, &r10_bio->state),
425 0);
426 md_write_end(r10_bio->mddev);
427}
428
9f2c9d12 429static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
430{
431 if (atomic_dec_and_test(&r10_bio->remaining)) {
432 if (test_bit(R10BIO_WriteError, &r10_bio->state))
433 reschedule_retry(r10_bio);
434 else {
435 close_write(r10_bio);
436 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
437 reschedule_retry(r10_bio);
438 else
439 raid_end_bio_io(r10_bio);
440 }
441 }
442}
443
6712ecf8 444static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
445{
446 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 447 struct r10bio *r10_bio = bio->bi_private;
778ca018 448 int dev;
749c55e9 449 int dec_rdev = 1;
e879a879 450 struct r10conf *conf = r10_bio->mddev->private;
475b0321 451 int slot, repl;
4ca40c2c 452 struct md_rdev *rdev = NULL;
1da177e4 453
475b0321 454 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 455
475b0321
N
456 if (repl)
457 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
458 if (!rdev) {
459 smp_rmb();
460 repl = 0;
475b0321 461 rdev = conf->mirrors[dev].rdev;
4ca40c2c 462 }
1da177e4
LT
463 /*
464 * this branch is our 'one mirror IO has finished' event handler:
465 */
6cce3b23 466 if (!uptodate) {
475b0321
N
467 if (repl)
468 /* Never record new bad blocks to replacement,
469 * just fail it.
470 */
471 md_error(rdev->mddev, rdev);
472 else {
473 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
474 if (!test_and_set_bit(WantReplacement, &rdev->flags))
475 set_bit(MD_RECOVERY_NEEDED,
476 &rdev->mddev->recovery);
475b0321
N
477 set_bit(R10BIO_WriteError, &r10_bio->state);
478 dec_rdev = 0;
479 }
749c55e9 480 } else {
1da177e4
LT
481 /*
482 * Set R10BIO_Uptodate in our master bio, so that
483 * we will return a good error code for to the higher
484 * levels even if IO on some other mirrored buffer fails.
485 *
486 * The 'master' represents the composite IO operation to
487 * user-side. So if something waits for IO, then it will
488 * wait for the 'master' bio.
489 */
749c55e9
N
490 sector_t first_bad;
491 int bad_sectors;
492
3056e3ae
AL
493 /*
494 * Do not set R10BIO_Uptodate if the current device is
495 * rebuilding or Faulty. This is because we cannot use
496 * such device for properly reading the data back (we could
497 * potentially use it, if the current write would have felt
498 * before rdev->recovery_offset, but for simplicity we don't
499 * check this here.
500 */
501 if (test_bit(In_sync, &rdev->flags) &&
502 !test_bit(Faulty, &rdev->flags))
503 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 504
749c55e9 505 /* Maybe we can clear some bad blocks. */
475b0321 506 if (is_badblock(rdev,
749c55e9
N
507 r10_bio->devs[slot].addr,
508 r10_bio->sectors,
509 &first_bad, &bad_sectors)) {
510 bio_put(bio);
475b0321
N
511 if (repl)
512 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
513 else
514 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
515 dec_rdev = 0;
516 set_bit(R10BIO_MadeGood, &r10_bio->state);
517 }
518 }
519
1da177e4
LT
520 /*
521 *
522 * Let's see if all mirrored write operations have finished
523 * already.
524 */
19d5f834 525 one_write_done(r10_bio);
749c55e9 526 if (dec_rdev)
884162df 527 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
528}
529
1da177e4
LT
530/*
531 * RAID10 layout manager
25985edc 532 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
533 * parameters: near_copies and far_copies.
534 * near_copies * far_copies must be <= raid_disks.
535 * Normally one of these will be 1.
536 * If both are 1, we get raid0.
537 * If near_copies == raid_disks, we get raid1.
538 *
25985edc 539 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
540 * first chunk, followed by near_copies copies of the next chunk and
541 * so on.
542 * If far_copies > 1, then after 1/far_copies of the array has been assigned
543 * as described above, we start again with a device offset of near_copies.
544 * So we effectively have another copy of the whole array further down all
545 * the drives, but with blocks on different drives.
546 * With this layout, and block is never stored twice on the one device.
547 *
548 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 549 * on each device that it is on.
1da177e4
LT
550 *
551 * raid10_find_virt does the reverse mapping, from a device and a
552 * sector offset to a virtual address
553 */
554
f8c9e74f 555static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
556{
557 int n,f;
558 sector_t sector;
559 sector_t chunk;
560 sector_t stripe;
561 int dev;
1da177e4 562 int slot = 0;
9a3152ab
JB
563 int last_far_set_start, last_far_set_size;
564
565 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
566 last_far_set_start *= geo->far_set_size;
567
568 last_far_set_size = geo->far_set_size;
569 last_far_set_size += (geo->raid_disks % geo->far_set_size);
1da177e4
LT
570
571 /* now calculate first sector/dev */
5cf00fcd
N
572 chunk = r10bio->sector >> geo->chunk_shift;
573 sector = r10bio->sector & geo->chunk_mask;
1da177e4 574
5cf00fcd 575 chunk *= geo->near_copies;
1da177e4 576 stripe = chunk;
5cf00fcd
N
577 dev = sector_div(stripe, geo->raid_disks);
578 if (geo->far_offset)
579 stripe *= geo->far_copies;
1da177e4 580
5cf00fcd 581 sector += stripe << geo->chunk_shift;
1da177e4
LT
582
583 /* and calculate all the others */
5cf00fcd 584 for (n = 0; n < geo->near_copies; n++) {
1da177e4 585 int d = dev;
475901af 586 int set;
1da177e4 587 sector_t s = sector;
1da177e4 588 r10bio->devs[slot].devnum = d;
4c0ca26b 589 r10bio->devs[slot].addr = s;
1da177e4
LT
590 slot++;
591
5cf00fcd 592 for (f = 1; f < geo->far_copies; f++) {
475901af 593 set = d / geo->far_set_size;
5cf00fcd 594 d += geo->near_copies;
475901af 595
9a3152ab
JB
596 if ((geo->raid_disks % geo->far_set_size) &&
597 (d > last_far_set_start)) {
598 d -= last_far_set_start;
599 d %= last_far_set_size;
600 d += last_far_set_start;
601 } else {
602 d %= geo->far_set_size;
603 d += geo->far_set_size * set;
604 }
5cf00fcd 605 s += geo->stride;
1da177e4
LT
606 r10bio->devs[slot].devnum = d;
607 r10bio->devs[slot].addr = s;
608 slot++;
609 }
610 dev++;
5cf00fcd 611 if (dev >= geo->raid_disks) {
1da177e4 612 dev = 0;
5cf00fcd 613 sector += (geo->chunk_mask + 1);
1da177e4
LT
614 }
615 }
f8c9e74f
N
616}
617
618static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
619{
620 struct geom *geo = &conf->geo;
621
622 if (conf->reshape_progress != MaxSector &&
623 ((r10bio->sector >= conf->reshape_progress) !=
624 conf->mddev->reshape_backwards)) {
625 set_bit(R10BIO_Previous, &r10bio->state);
626 geo = &conf->prev;
627 } else
628 clear_bit(R10BIO_Previous, &r10bio->state);
629
630 __raid10_find_phys(geo, r10bio);
1da177e4
LT
631}
632
e879a879 633static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
634{
635 sector_t offset, chunk, vchunk;
f8c9e74f
N
636 /* Never use conf->prev as this is only called during resync
637 * or recovery, so reshape isn't happening
638 */
5cf00fcd 639 struct geom *geo = &conf->geo;
475901af
JB
640 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
641 int far_set_size = geo->far_set_size;
9a3152ab
JB
642 int last_far_set_start;
643
644 if (geo->raid_disks % geo->far_set_size) {
645 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
646 last_far_set_start *= geo->far_set_size;
647
648 if (dev >= last_far_set_start) {
649 far_set_size = geo->far_set_size;
650 far_set_size += (geo->raid_disks % geo->far_set_size);
651 far_set_start = last_far_set_start;
652 }
653 }
1da177e4 654
5cf00fcd
N
655 offset = sector & geo->chunk_mask;
656 if (geo->far_offset) {
c93983bf 657 int fc;
5cf00fcd
N
658 chunk = sector >> geo->chunk_shift;
659 fc = sector_div(chunk, geo->far_copies);
660 dev -= fc * geo->near_copies;
475901af
JB
661 if (dev < far_set_start)
662 dev += far_set_size;
c93983bf 663 } else {
5cf00fcd
N
664 while (sector >= geo->stride) {
665 sector -= geo->stride;
475901af
JB
666 if (dev < (geo->near_copies + far_set_start))
667 dev += far_set_size - geo->near_copies;
c93983bf 668 else
5cf00fcd 669 dev -= geo->near_copies;
c93983bf 670 }
5cf00fcd 671 chunk = sector >> geo->chunk_shift;
c93983bf 672 }
5cf00fcd
N
673 vchunk = chunk * geo->raid_disks + dev;
674 sector_div(vchunk, geo->near_copies);
675 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
676}
677
678/**
679 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
680 * @q: request queue
cc371e66 681 * @bvm: properties of new bio
1da177e4
LT
682 * @biovec: the request that could be merged to it.
683 *
684 * Return amount of bytes we can accept at this offset
050b6615
N
685 * This requires checking for end-of-chunk if near_copies != raid_disks,
686 * and for subordinate merge_bvec_fns if merge_check_needed.
1da177e4 687 */
cc371e66
AK
688static int raid10_mergeable_bvec(struct request_queue *q,
689 struct bvec_merge_data *bvm,
690 struct bio_vec *biovec)
1da177e4 691{
fd01b88c 692 struct mddev *mddev = q->queuedata;
050b6615 693 struct r10conf *conf = mddev->private;
cc371e66 694 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4 695 int max;
3ea7daa5 696 unsigned int chunk_sectors;
cc371e66 697 unsigned int bio_sectors = bvm->bi_size >> 9;
5cf00fcd 698 struct geom *geo = &conf->geo;
1da177e4 699
3ea7daa5 700 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
f8c9e74f
N
701 if (conf->reshape_progress != MaxSector &&
702 ((sector >= conf->reshape_progress) !=
703 conf->mddev->reshape_backwards))
704 geo = &conf->prev;
705
5cf00fcd 706 if (geo->near_copies < geo->raid_disks) {
050b6615
N
707 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
708 + bio_sectors)) << 9;
709 if (max < 0)
710 /* bio_add cannot handle a negative return */
711 max = 0;
712 if (max <= biovec->bv_len && bio_sectors == 0)
713 return biovec->bv_len;
714 } else
715 max = biovec->bv_len;
716
717 if (mddev->merge_check_needed) {
e0ee7785
N
718 struct {
719 struct r10bio r10_bio;
720 struct r10dev devs[conf->copies];
721 } on_stack;
722 struct r10bio *r10_bio = &on_stack.r10_bio;
050b6615 723 int s;
f8c9e74f
N
724 if (conf->reshape_progress != MaxSector) {
725 /* Cannot give any guidance during reshape */
726 if (max <= biovec->bv_len && bio_sectors == 0)
727 return biovec->bv_len;
728 return 0;
729 }
e0ee7785
N
730 r10_bio->sector = sector;
731 raid10_find_phys(conf, r10_bio);
050b6615
N
732 rcu_read_lock();
733 for (s = 0; s < conf->copies; s++) {
e0ee7785 734 int disk = r10_bio->devs[s].devnum;
050b6615
N
735 struct md_rdev *rdev = rcu_dereference(
736 conf->mirrors[disk].rdev);
737 if (rdev && !test_bit(Faulty, &rdev->flags)) {
738 struct request_queue *q =
739 bdev_get_queue(rdev->bdev);
740 if (q->merge_bvec_fn) {
e0ee7785 741 bvm->bi_sector = r10_bio->devs[s].addr
050b6615
N
742 + rdev->data_offset;
743 bvm->bi_bdev = rdev->bdev;
744 max = min(max, q->merge_bvec_fn(
745 q, bvm, biovec));
746 }
747 }
748 rdev = rcu_dereference(conf->mirrors[disk].replacement);
749 if (rdev && !test_bit(Faulty, &rdev->flags)) {
750 struct request_queue *q =
751 bdev_get_queue(rdev->bdev);
752 if (q->merge_bvec_fn) {
e0ee7785 753 bvm->bi_sector = r10_bio->devs[s].addr
050b6615
N
754 + rdev->data_offset;
755 bvm->bi_bdev = rdev->bdev;
756 max = min(max, q->merge_bvec_fn(
757 q, bvm, biovec));
758 }
759 }
760 }
761 rcu_read_unlock();
762 }
763 return max;
1da177e4
LT
764}
765
766/*
767 * This routine returns the disk from which the requested read should
768 * be done. There is a per-array 'next expected sequential IO' sector
769 * number - if this matches on the next IO then we use the last disk.
770 * There is also a per-disk 'last know head position' sector that is
771 * maintained from IRQ contexts, both the normal and the resync IO
772 * completion handlers update this position correctly. If there is no
773 * perfect sequential match then we pick the disk whose head is closest.
774 *
775 * If there are 2 mirrors in the same 2 devices, performance degrades
776 * because position is mirror, not device based.
777 *
778 * The rdev for the device selected will have nr_pending incremented.
779 */
780
781/*
782 * FIXME: possibly should rethink readbalancing and do it differently
783 * depending on near_copies / far_copies geometry.
784 */
96c3fd1f
N
785static struct md_rdev *read_balance(struct r10conf *conf,
786 struct r10bio *r10_bio,
787 int *max_sectors)
1da177e4 788{
af3a2cd6 789 const sector_t this_sector = r10_bio->sector;
56d99121 790 int disk, slot;
856e08e2
N
791 int sectors = r10_bio->sectors;
792 int best_good_sectors;
56d99121 793 sector_t new_distance, best_dist;
3bbae04b 794 struct md_rdev *best_rdev, *rdev = NULL;
56d99121
N
795 int do_balance;
796 int best_slot;
5cf00fcd 797 struct geom *geo = &conf->geo;
1da177e4
LT
798
799 raid10_find_phys(conf, r10_bio);
800 rcu_read_lock();
56d99121 801retry:
856e08e2 802 sectors = r10_bio->sectors;
56d99121 803 best_slot = -1;
abbf098e 804 best_rdev = NULL;
56d99121 805 best_dist = MaxSector;
856e08e2 806 best_good_sectors = 0;
56d99121 807 do_balance = 1;
1da177e4
LT
808 /*
809 * Check if we can balance. We can balance on the whole
6cce3b23
N
810 * device if no resync is going on (recovery is ok), or below
811 * the resync window. We take the first readable disk when
812 * above the resync window.
1da177e4
LT
813 */
814 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
815 && (this_sector + sectors >= conf->next_resync))
816 do_balance = 0;
1da177e4 817
56d99121 818 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
819 sector_t first_bad;
820 int bad_sectors;
821 sector_t dev_sector;
822
56d99121
N
823 if (r10_bio->devs[slot].bio == IO_BLOCKED)
824 continue;
1da177e4 825 disk = r10_bio->devs[slot].devnum;
abbf098e
N
826 rdev = rcu_dereference(conf->mirrors[disk].replacement);
827 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
050b6615 828 test_bit(Unmerged, &rdev->flags) ||
abbf098e
N
829 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
830 rdev = rcu_dereference(conf->mirrors[disk].rdev);
050b6615
N
831 if (rdev == NULL ||
832 test_bit(Faulty, &rdev->flags) ||
833 test_bit(Unmerged, &rdev->flags))
abbf098e
N
834 continue;
835 if (!test_bit(In_sync, &rdev->flags) &&
836 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
837 continue;
838
856e08e2
N
839 dev_sector = r10_bio->devs[slot].addr;
840 if (is_badblock(rdev, dev_sector, sectors,
841 &first_bad, &bad_sectors)) {
842 if (best_dist < MaxSector)
843 /* Already have a better slot */
844 continue;
845 if (first_bad <= dev_sector) {
846 /* Cannot read here. If this is the
847 * 'primary' device, then we must not read
848 * beyond 'bad_sectors' from another device.
849 */
850 bad_sectors -= (dev_sector - first_bad);
851 if (!do_balance && sectors > bad_sectors)
852 sectors = bad_sectors;
853 if (best_good_sectors > sectors)
854 best_good_sectors = sectors;
855 } else {
856 sector_t good_sectors =
857 first_bad - dev_sector;
858 if (good_sectors > best_good_sectors) {
859 best_good_sectors = good_sectors;
860 best_slot = slot;
abbf098e 861 best_rdev = rdev;
856e08e2
N
862 }
863 if (!do_balance)
864 /* Must read from here */
865 break;
866 }
867 continue;
868 } else
869 best_good_sectors = sectors;
870
56d99121
N
871 if (!do_balance)
872 break;
1da177e4 873
22dfdf52
N
874 /* This optimisation is debatable, and completely destroys
875 * sequential read speed for 'far copies' arrays. So only
876 * keep it for 'near' arrays, and review those later.
877 */
5cf00fcd 878 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
1da177e4 879 break;
8ed3a195
KS
880
881 /* for far > 1 always use the lowest address */
5cf00fcd 882 if (geo->far_copies > 1)
56d99121 883 new_distance = r10_bio->devs[slot].addr;
8ed3a195 884 else
56d99121
N
885 new_distance = abs(r10_bio->devs[slot].addr -
886 conf->mirrors[disk].head_position);
887 if (new_distance < best_dist) {
888 best_dist = new_distance;
889 best_slot = slot;
abbf098e 890 best_rdev = rdev;
1da177e4
LT
891 }
892 }
abbf098e 893 if (slot >= conf->copies) {
56d99121 894 slot = best_slot;
abbf098e
N
895 rdev = best_rdev;
896 }
1da177e4 897
56d99121 898 if (slot >= 0) {
56d99121
N
899 atomic_inc(&rdev->nr_pending);
900 if (test_bit(Faulty, &rdev->flags)) {
901 /* Cannot risk returning a device that failed
902 * before we inc'ed nr_pending
903 */
904 rdev_dec_pending(rdev, conf->mddev);
905 goto retry;
906 }
907 r10_bio->read_slot = slot;
908 } else
96c3fd1f 909 rdev = NULL;
1da177e4 910 rcu_read_unlock();
856e08e2 911 *max_sectors = best_good_sectors;
1da177e4 912
96c3fd1f 913 return rdev;
1da177e4
LT
914}
915
cc4d1efd 916int md_raid10_congested(struct mddev *mddev, int bits)
0d129228 917{
e879a879 918 struct r10conf *conf = mddev->private;
0d129228
N
919 int i, ret = 0;
920
34db0cd6
N
921 if ((bits & (1 << BDI_async_congested)) &&
922 conf->pending_count >= max_queued_requests)
923 return 1;
924
0d129228 925 rcu_read_lock();
f8c9e74f
N
926 for (i = 0;
927 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
928 && ret == 0;
929 i++) {
3cb03002 930 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 931 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 932 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
933
934 ret |= bdi_congested(&q->backing_dev_info, bits);
935 }
936 }
937 rcu_read_unlock();
938 return ret;
939}
cc4d1efd
JB
940EXPORT_SYMBOL_GPL(md_raid10_congested);
941
942static int raid10_congested(void *data, int bits)
943{
944 struct mddev *mddev = data;
945
946 return mddev_congested(mddev, bits) ||
947 md_raid10_congested(mddev, bits);
948}
0d129228 949
e879a879 950static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
951{
952 /* Any writes that have been queued but are awaiting
953 * bitmap updates get flushed here.
a35e63ef 954 */
a35e63ef
N
955 spin_lock_irq(&conf->device_lock);
956
957 if (conf->pending_bio_list.head) {
958 struct bio *bio;
959 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 960 conf->pending_count = 0;
a35e63ef
N
961 spin_unlock_irq(&conf->device_lock);
962 /* flush any pending bitmap writes to disk
963 * before proceeding w/ I/O */
964 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 965 wake_up(&conf->wait_barrier);
a35e63ef
N
966
967 while (bio) { /* submit pending writes */
968 struct bio *next = bio->bi_next;
969 bio->bi_next = NULL;
532a2a3f
SL
970 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
971 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
972 /* Just ignore it */
973 bio_endio(bio, 0);
974 else
975 generic_make_request(bio);
a35e63ef
N
976 bio = next;
977 }
a35e63ef
N
978 } else
979 spin_unlock_irq(&conf->device_lock);
a35e63ef 980}
7eaceacc 981
0a27ec96
N
982/* Barriers....
983 * Sometimes we need to suspend IO while we do something else,
984 * either some resync/recovery, or reconfigure the array.
985 * To do this we raise a 'barrier'.
986 * The 'barrier' is a counter that can be raised multiple times
987 * to count how many activities are happening which preclude
988 * normal IO.
989 * We can only raise the barrier if there is no pending IO.
990 * i.e. if nr_pending == 0.
991 * We choose only to raise the barrier if no-one is waiting for the
992 * barrier to go down. This means that as soon as an IO request
993 * is ready, no other operations which require a barrier will start
994 * until the IO request has had a chance.
995 *
996 * So: regular IO calls 'wait_barrier'. When that returns there
997 * is no backgroup IO happening, It must arrange to call
998 * allow_barrier when it has finished its IO.
999 * backgroup IO calls must call raise_barrier. Once that returns
1000 * there is no normal IO happeing. It must arrange to call
1001 * lower_barrier when the particular background IO completes.
1da177e4 1002 */
1da177e4 1003
e879a879 1004static void raise_barrier(struct r10conf *conf, int force)
1da177e4 1005{
6cce3b23 1006 BUG_ON(force && !conf->barrier);
1da177e4 1007 spin_lock_irq(&conf->resync_lock);
0a27ec96 1008
6cce3b23
N
1009 /* Wait until no block IO is waiting (unless 'force') */
1010 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
eed8c02e 1011 conf->resync_lock);
0a27ec96
N
1012
1013 /* block any new IO from starting */
1014 conf->barrier++;
1015
c3b328ac 1016 /* Now wait for all pending IO to complete */
0a27ec96
N
1017 wait_event_lock_irq(conf->wait_barrier,
1018 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
eed8c02e 1019 conf->resync_lock);
0a27ec96
N
1020
1021 spin_unlock_irq(&conf->resync_lock);
1022}
1023
e879a879 1024static void lower_barrier(struct r10conf *conf)
0a27ec96
N
1025{
1026 unsigned long flags;
1027 spin_lock_irqsave(&conf->resync_lock, flags);
1028 conf->barrier--;
1029 spin_unlock_irqrestore(&conf->resync_lock, flags);
1030 wake_up(&conf->wait_barrier);
1031}
1032
e879a879 1033static void wait_barrier(struct r10conf *conf)
0a27ec96
N
1034{
1035 spin_lock_irq(&conf->resync_lock);
1036 if (conf->barrier) {
1037 conf->nr_waiting++;
d6b42dcb
N
1038 /* Wait for the barrier to drop.
1039 * However if there are already pending
1040 * requests (preventing the barrier from
1041 * rising completely), and the
1042 * pre-process bio queue isn't empty,
1043 * then don't wait, as we need to empty
1044 * that queue to get the nr_pending
1045 * count down.
1046 */
1047 wait_event_lock_irq(conf->wait_barrier,
1048 !conf->barrier ||
1049 (conf->nr_pending &&
1050 current->bio_list &&
1051 !bio_list_empty(current->bio_list)),
eed8c02e 1052 conf->resync_lock);
0a27ec96 1053 conf->nr_waiting--;
1da177e4 1054 }
0a27ec96 1055 conf->nr_pending++;
1da177e4
LT
1056 spin_unlock_irq(&conf->resync_lock);
1057}
1058
e879a879 1059static void allow_barrier(struct r10conf *conf)
0a27ec96
N
1060{
1061 unsigned long flags;
1062 spin_lock_irqsave(&conf->resync_lock, flags);
1063 conf->nr_pending--;
1064 spin_unlock_irqrestore(&conf->resync_lock, flags);
1065 wake_up(&conf->wait_barrier);
1066}
1067
e2d59925 1068static void freeze_array(struct r10conf *conf, int extra)
4443ae10
N
1069{
1070 /* stop syncio and normal IO and wait for everything to
f188593e 1071 * go quiet.
4443ae10 1072 * We increment barrier and nr_waiting, and then
e2d59925 1073 * wait until nr_pending match nr_queued+extra
1c830532
N
1074 * This is called in the context of one normal IO request
1075 * that has failed. Thus any sync request that might be pending
1076 * will be blocked by nr_pending, and we need to wait for
1077 * pending IO requests to complete or be queued for re-try.
e2d59925 1078 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
1079 * must match the number of pending IOs (nr_pending) before
1080 * we continue.
4443ae10
N
1081 */
1082 spin_lock_irq(&conf->resync_lock);
1083 conf->barrier++;
1084 conf->nr_waiting++;
eed8c02e 1085 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 1086 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
1087 conf->resync_lock,
1088 flush_pending_writes(conf));
c3b328ac 1089
4443ae10
N
1090 spin_unlock_irq(&conf->resync_lock);
1091}
1092
e879a879 1093static void unfreeze_array(struct r10conf *conf)
4443ae10
N
1094{
1095 /* reverse the effect of the freeze */
1096 spin_lock_irq(&conf->resync_lock);
1097 conf->barrier--;
1098 conf->nr_waiting--;
1099 wake_up(&conf->wait_barrier);
1100 spin_unlock_irq(&conf->resync_lock);
1101}
1102
f8c9e74f
N
1103static sector_t choose_data_offset(struct r10bio *r10_bio,
1104 struct md_rdev *rdev)
1105{
1106 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1107 test_bit(R10BIO_Previous, &r10_bio->state))
1108 return rdev->data_offset;
1109 else
1110 return rdev->new_data_offset;
1111}
1112
57c67df4
N
1113struct raid10_plug_cb {
1114 struct blk_plug_cb cb;
1115 struct bio_list pending;
1116 int pending_cnt;
1117};
1118
1119static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1120{
1121 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1122 cb);
1123 struct mddev *mddev = plug->cb.data;
1124 struct r10conf *conf = mddev->private;
1125 struct bio *bio;
1126
874807a8 1127 if (from_schedule || current->bio_list) {
57c67df4
N
1128 spin_lock_irq(&conf->device_lock);
1129 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1130 conf->pending_count += plug->pending_cnt;
1131 spin_unlock_irq(&conf->device_lock);
ee0b0244 1132 wake_up(&conf->wait_barrier);
57c67df4
N
1133 md_wakeup_thread(mddev->thread);
1134 kfree(plug);
1135 return;
1136 }
1137
1138 /* we aren't scheduling, so we can do the write-out directly. */
1139 bio = bio_list_get(&plug->pending);
1140 bitmap_unplug(mddev->bitmap);
1141 wake_up(&conf->wait_barrier);
1142
1143 while (bio) { /* submit pending writes */
1144 struct bio *next = bio->bi_next;
1145 bio->bi_next = NULL;
32f9f570
SL
1146 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1147 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1148 /* Just ignore it */
1149 bio_endio(bio, 0);
1150 else
1151 generic_make_request(bio);
57c67df4
N
1152 bio = next;
1153 }
1154 kfree(plug);
1155}
1156
b4fdcb02 1157static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1158{
e879a879 1159 struct r10conf *conf = mddev->private;
9f2c9d12 1160 struct r10bio *r10_bio;
1da177e4
LT
1161 struct bio *read_bio;
1162 int i;
f8c9e74f 1163 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
5cf00fcd 1164 int chunk_sects = chunk_mask + 1;
a362357b 1165 const int rw = bio_data_dir(bio);
2c7d46ec 1166 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1167 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
532a2a3f
SL
1168 const unsigned long do_discard = (bio->bi_rw
1169 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1170 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
6cce3b23 1171 unsigned long flags;
3cb03002 1172 struct md_rdev *blocked_rdev;
57c67df4
N
1173 struct blk_plug_cb *cb;
1174 struct raid10_plug_cb *plug = NULL;
d4432c23
N
1175 int sectors_handled;
1176 int max_sectors;
3ea7daa5 1177 int sectors;
1da177e4 1178
e9c7469b
TH
1179 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1180 md_flush_request(mddev, bio);
5a7bbad2 1181 return;
e5dcdd80
N
1182 }
1183
1da177e4
LT
1184 /* If this request crosses a chunk boundary, we need to
1185 * split it. This will only happen for 1 PAGE (or less) requests.
1186 */
aa8b57aa 1187 if (unlikely((bio->bi_sector & chunk_mask) + bio_sectors(bio)
5cf00fcd 1188 > chunk_sects
f8c9e74f
N
1189 && (conf->geo.near_copies < conf->geo.raid_disks
1190 || conf->prev.near_copies < conf->prev.raid_disks))) {
1da177e4
LT
1191 struct bio_pair *bp;
1192 /* Sanity check -- queue functions should prevent this happening */
5b83636a 1193 if (bio_segments(bio) > 1)
1da177e4
LT
1194 goto bad_map;
1195 /* This is a one page bio that upper layers
1196 * refuse to split for us, so we need to split it.
1197 */
6feef531 1198 bp = bio_split(bio,
1da177e4 1199 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
51e9ac77
N
1200
1201 /* Each of these 'make_request' calls will call 'wait_barrier'.
1202 * If the first succeeds but the second blocks due to the resync
1203 * thread raising the barrier, we will deadlock because the
1204 * IO to the underlying device will be queued in generic_make_request
1205 * and will never complete, so will never reduce nr_pending.
1206 * So increment nr_waiting here so no new raise_barriers will
1207 * succeed, and so the second wait_barrier cannot block.
1208 */
1209 spin_lock_irq(&conf->resync_lock);
1210 conf->nr_waiting++;
1211 spin_unlock_irq(&conf->resync_lock);
1212
5a7bbad2
CH
1213 make_request(mddev, &bp->bio1);
1214 make_request(mddev, &bp->bio2);
1da177e4 1215
51e9ac77
N
1216 spin_lock_irq(&conf->resync_lock);
1217 conf->nr_waiting--;
1218 wake_up(&conf->wait_barrier);
1219 spin_unlock_irq(&conf->resync_lock);
1220
1da177e4 1221 bio_pair_release(bp);
5a7bbad2 1222 return;
1da177e4 1223 bad_map:
128595ed
N
1224 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1225 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
aa8b57aa 1226 (unsigned long long)bio->bi_sector, bio_sectors(bio) / 2);
1da177e4 1227
6712ecf8 1228 bio_io_error(bio);
5a7bbad2 1229 return;
1da177e4
LT
1230 }
1231
3d310eb7 1232 md_write_start(mddev, bio);
06d91a5f 1233
1da177e4
LT
1234 /*
1235 * Register the new request and wait if the reconstruction
1236 * thread has put up a bar for new requests.
1237 * Continue immediately if no resync is active currently.
1238 */
0a27ec96 1239 wait_barrier(conf);
1da177e4 1240
aa8b57aa 1241 sectors = bio_sectors(bio);
3ea7daa5
N
1242 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1243 bio->bi_sector < conf->reshape_progress &&
1244 bio->bi_sector + sectors > conf->reshape_progress) {
1245 /* IO spans the reshape position. Need to wait for
1246 * reshape to pass
1247 */
1248 allow_barrier(conf);
1249 wait_event(conf->wait_barrier,
1250 conf->reshape_progress <= bio->bi_sector ||
1251 conf->reshape_progress >= bio->bi_sector + sectors);
1252 wait_barrier(conf);
1253 }
1254 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1255 bio_data_dir(bio) == WRITE &&
1256 (mddev->reshape_backwards
1257 ? (bio->bi_sector < conf->reshape_safe &&
1258 bio->bi_sector + sectors > conf->reshape_progress)
1259 : (bio->bi_sector + sectors > conf->reshape_safe &&
1260 bio->bi_sector < conf->reshape_progress))) {
1261 /* Need to update reshape_position in metadata */
1262 mddev->reshape_position = conf->reshape_progress;
1263 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1264 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1265 md_wakeup_thread(mddev->thread);
1266 wait_event(mddev->sb_wait,
1267 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1268
1269 conf->reshape_safe = mddev->reshape_position;
1270 }
1271
1da177e4
LT
1272 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1273
1274 r10_bio->master_bio = bio;
3ea7daa5 1275 r10_bio->sectors = sectors;
1da177e4
LT
1276
1277 r10_bio->mddev = mddev;
1278 r10_bio->sector = bio->bi_sector;
6cce3b23 1279 r10_bio->state = 0;
1da177e4 1280
856e08e2
N
1281 /* We might need to issue multiple reads to different
1282 * devices if there are bad blocks around, so we keep
1283 * track of the number of reads in bio->bi_phys_segments.
1284 * If this is 0, there is only one r10_bio and no locking
1285 * will be needed when the request completes. If it is
1286 * non-zero, then it is the number of not-completed requests.
1287 */
1288 bio->bi_phys_segments = 0;
1289 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1290
a362357b 1291 if (rw == READ) {
1da177e4
LT
1292 /*
1293 * read balancing logic:
1294 */
96c3fd1f 1295 struct md_rdev *rdev;
856e08e2
N
1296 int slot;
1297
1298read_again:
96c3fd1f
N
1299 rdev = read_balance(conf, r10_bio, &max_sectors);
1300 if (!rdev) {
1da177e4 1301 raid_end_bio_io(r10_bio);
5a7bbad2 1302 return;
1da177e4 1303 }
96c3fd1f 1304 slot = r10_bio->read_slot;
1da177e4 1305
a167f663 1306 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
856e08e2
N
1307 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1308 max_sectors);
1da177e4
LT
1309
1310 r10_bio->devs[slot].bio = read_bio;
abbf098e 1311 r10_bio->devs[slot].rdev = rdev;
1da177e4
LT
1312
1313 read_bio->bi_sector = r10_bio->devs[slot].addr +
f8c9e74f 1314 choose_data_offset(r10_bio, rdev);
96c3fd1f 1315 read_bio->bi_bdev = rdev->bdev;
1da177e4 1316 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 1317 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1318 read_bio->bi_private = r10_bio;
1319
856e08e2
N
1320 if (max_sectors < r10_bio->sectors) {
1321 /* Could not read all from this device, so we will
1322 * need another r10_bio.
1323 */
856e08e2
N
1324 sectors_handled = (r10_bio->sectors + max_sectors
1325 - bio->bi_sector);
1326 r10_bio->sectors = max_sectors;
1327 spin_lock_irq(&conf->device_lock);
1328 if (bio->bi_phys_segments == 0)
1329 bio->bi_phys_segments = 2;
1330 else
1331 bio->bi_phys_segments++;
1332 spin_unlock(&conf->device_lock);
1333 /* Cannot call generic_make_request directly
1334 * as that will be queued in __generic_make_request
1335 * and subsequent mempool_alloc might block
1336 * waiting for it. so hand bio over to raid10d.
1337 */
1338 reschedule_retry(r10_bio);
1339
1340 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1341
1342 r10_bio->master_bio = bio;
aa8b57aa 1343 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
856e08e2
N
1344 r10_bio->state = 0;
1345 r10_bio->mddev = mddev;
1346 r10_bio->sector = bio->bi_sector + sectors_handled;
1347 goto read_again;
1348 } else
1349 generic_make_request(read_bio);
5a7bbad2 1350 return;
1da177e4
LT
1351 }
1352
1353 /*
1354 * WRITE:
1355 */
34db0cd6
N
1356 if (conf->pending_count >= max_queued_requests) {
1357 md_wakeup_thread(mddev->thread);
1358 wait_event(conf->wait_barrier,
1359 conf->pending_count < max_queued_requests);
1360 }
6bfe0b49 1361 /* first select target devices under rcu_lock and
1da177e4
LT
1362 * inc refcount on their rdev. Record them by setting
1363 * bios[x] to bio
d4432c23
N
1364 * If there are known/acknowledged bad blocks on any device
1365 * on which we have seen a write error, we want to avoid
1366 * writing to those blocks. This potentially requires several
1367 * writes to write around the bad blocks. Each set of writes
1368 * gets its own r10_bio with a set of bios attached. The number
1369 * of r10_bios is recored in bio->bi_phys_segments just as with
1370 * the read case.
1da177e4 1371 */
c3b328ac 1372
69335ef3 1373 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1374 raid10_find_phys(conf, r10_bio);
d4432c23 1375retry_write:
cb6969e8 1376 blocked_rdev = NULL;
1da177e4 1377 rcu_read_lock();
d4432c23
N
1378 max_sectors = r10_bio->sectors;
1379
1da177e4
LT
1380 for (i = 0; i < conf->copies; i++) {
1381 int d = r10_bio->devs[i].devnum;
3cb03002 1382 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1383 struct md_rdev *rrdev = rcu_dereference(
1384 conf->mirrors[d].replacement);
4ca40c2c
N
1385 if (rdev == rrdev)
1386 rrdev = NULL;
6bfe0b49
DW
1387 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1388 atomic_inc(&rdev->nr_pending);
1389 blocked_rdev = rdev;
1390 break;
1391 }
475b0321
N
1392 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1393 atomic_inc(&rrdev->nr_pending);
1394 blocked_rdev = rrdev;
1395 break;
1396 }
e7c0c3fa
N
1397 if (rdev && (test_bit(Faulty, &rdev->flags)
1398 || test_bit(Unmerged, &rdev->flags)))
1399 rdev = NULL;
050b6615
N
1400 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1401 || test_bit(Unmerged, &rrdev->flags)))
475b0321
N
1402 rrdev = NULL;
1403
d4432c23 1404 r10_bio->devs[i].bio = NULL;
475b0321 1405 r10_bio->devs[i].repl_bio = NULL;
e7c0c3fa
N
1406
1407 if (!rdev && !rrdev) {
6cce3b23 1408 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1409 continue;
1410 }
e7c0c3fa 1411 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
d4432c23
N
1412 sector_t first_bad;
1413 sector_t dev_sector = r10_bio->devs[i].addr;
1414 int bad_sectors;
1415 int is_bad;
1416
1417 is_bad = is_badblock(rdev, dev_sector,
1418 max_sectors,
1419 &first_bad, &bad_sectors);
1420 if (is_bad < 0) {
1421 /* Mustn't write here until the bad block
1422 * is acknowledged
1423 */
1424 atomic_inc(&rdev->nr_pending);
1425 set_bit(BlockedBadBlocks, &rdev->flags);
1426 blocked_rdev = rdev;
1427 break;
1428 }
1429 if (is_bad && first_bad <= dev_sector) {
1430 /* Cannot write here at all */
1431 bad_sectors -= (dev_sector - first_bad);
1432 if (bad_sectors < max_sectors)
1433 /* Mustn't write more than bad_sectors
1434 * to other devices yet
1435 */
1436 max_sectors = bad_sectors;
1437 /* We don't set R10BIO_Degraded as that
1438 * only applies if the disk is missing,
1439 * so it might be re-added, and we want to
1440 * know to recover this chunk.
1441 * In this case the device is here, and the
1442 * fact that this chunk is not in-sync is
1443 * recorded in the bad block log.
1444 */
1445 continue;
1446 }
1447 if (is_bad) {
1448 int good_sectors = first_bad - dev_sector;
1449 if (good_sectors < max_sectors)
1450 max_sectors = good_sectors;
1451 }
6cce3b23 1452 }
e7c0c3fa
N
1453 if (rdev) {
1454 r10_bio->devs[i].bio = bio;
1455 atomic_inc(&rdev->nr_pending);
1456 }
475b0321
N
1457 if (rrdev) {
1458 r10_bio->devs[i].repl_bio = bio;
1459 atomic_inc(&rrdev->nr_pending);
1460 }
1da177e4
LT
1461 }
1462 rcu_read_unlock();
1463
6bfe0b49
DW
1464 if (unlikely(blocked_rdev)) {
1465 /* Have to wait for this device to get unblocked, then retry */
1466 int j;
1467 int d;
1468
475b0321 1469 for (j = 0; j < i; j++) {
6bfe0b49
DW
1470 if (r10_bio->devs[j].bio) {
1471 d = r10_bio->devs[j].devnum;
1472 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1473 }
475b0321 1474 if (r10_bio->devs[j].repl_bio) {
4ca40c2c 1475 struct md_rdev *rdev;
475b0321 1476 d = r10_bio->devs[j].devnum;
4ca40c2c
N
1477 rdev = conf->mirrors[d].replacement;
1478 if (!rdev) {
1479 /* Race with remove_disk */
1480 smp_mb();
1481 rdev = conf->mirrors[d].rdev;
1482 }
1483 rdev_dec_pending(rdev, mddev);
475b0321
N
1484 }
1485 }
6bfe0b49
DW
1486 allow_barrier(conf);
1487 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1488 wait_barrier(conf);
1489 goto retry_write;
1490 }
1491
d4432c23
N
1492 if (max_sectors < r10_bio->sectors) {
1493 /* We are splitting this into multiple parts, so
1494 * we need to prepare for allocating another r10_bio.
1495 */
1496 r10_bio->sectors = max_sectors;
1497 spin_lock_irq(&conf->device_lock);
1498 if (bio->bi_phys_segments == 0)
1499 bio->bi_phys_segments = 2;
1500 else
1501 bio->bi_phys_segments++;
1502 spin_unlock_irq(&conf->device_lock);
1503 }
1504 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1505
4e78064f 1506 atomic_set(&r10_bio->remaining, 1);
d4432c23 1507 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1508
1da177e4
LT
1509 for (i = 0; i < conf->copies; i++) {
1510 struct bio *mbio;
1511 int d = r10_bio->devs[i].devnum;
e7c0c3fa
N
1512 if (r10_bio->devs[i].bio) {
1513 struct md_rdev *rdev = conf->mirrors[d].rdev;
1514 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1515 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1516 max_sectors);
1517 r10_bio->devs[i].bio = mbio;
1518
1519 mbio->bi_sector = (r10_bio->devs[i].addr+
1520 choose_data_offset(r10_bio,
1521 rdev));
1522 mbio->bi_bdev = rdev->bdev;
1523 mbio->bi_end_io = raid10_end_write_request;
c8dc9c65
JL
1524 mbio->bi_rw =
1525 WRITE | do_sync | do_fua | do_discard | do_same;
e7c0c3fa
N
1526 mbio->bi_private = r10_bio;
1527
1528 atomic_inc(&r10_bio->remaining);
1529
1530 cb = blk_check_plugged(raid10_unplug, mddev,
1531 sizeof(*plug));
1532 if (cb)
1533 plug = container_of(cb, struct raid10_plug_cb,
1534 cb);
1535 else
1536 plug = NULL;
1537 spin_lock_irqsave(&conf->device_lock, flags);
1538 if (plug) {
1539 bio_list_add(&plug->pending, mbio);
1540 plug->pending_cnt++;
1541 } else {
1542 bio_list_add(&conf->pending_bio_list, mbio);
1543 conf->pending_count++;
1544 }
1545 spin_unlock_irqrestore(&conf->device_lock, flags);
1546 if (!plug)
1547 md_wakeup_thread(mddev->thread);
1548 }
57c67df4 1549
e7c0c3fa
N
1550 if (r10_bio->devs[i].repl_bio) {
1551 struct md_rdev *rdev = conf->mirrors[d].replacement;
1552 if (rdev == NULL) {
1553 /* Replacement just got moved to main 'rdev' */
1554 smp_mb();
1555 rdev = conf->mirrors[d].rdev;
1556 }
1557 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1558 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1559 max_sectors);
1560 r10_bio->devs[i].repl_bio = mbio;
1561
1562 mbio->bi_sector = (r10_bio->devs[i].addr +
1563 choose_data_offset(
1564 r10_bio, rdev));
1565 mbio->bi_bdev = rdev->bdev;
1566 mbio->bi_end_io = raid10_end_write_request;
c8dc9c65
JL
1567 mbio->bi_rw =
1568 WRITE | do_sync | do_fua | do_discard | do_same;
e7c0c3fa
N
1569 mbio->bi_private = r10_bio;
1570
1571 atomic_inc(&r10_bio->remaining);
1572 spin_lock_irqsave(&conf->device_lock, flags);
57c67df4
N
1573 bio_list_add(&conf->pending_bio_list, mbio);
1574 conf->pending_count++;
e7c0c3fa
N
1575 spin_unlock_irqrestore(&conf->device_lock, flags);
1576 if (!mddev_check_plugged(mddev))
1577 md_wakeup_thread(mddev->thread);
57c67df4 1578 }
1da177e4
LT
1579 }
1580
079fa166
N
1581 /* Don't remove the bias on 'remaining' (one_write_done) until
1582 * after checking if we need to go around again.
1583 */
a35e63ef 1584
aa8b57aa 1585 if (sectors_handled < bio_sectors(bio)) {
079fa166 1586 one_write_done(r10_bio);
5e570289 1587 /* We need another r10_bio. It has already been counted
d4432c23
N
1588 * in bio->bi_phys_segments.
1589 */
1590 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1591
1592 r10_bio->master_bio = bio;
aa8b57aa 1593 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
d4432c23
N
1594
1595 r10_bio->mddev = mddev;
1596 r10_bio->sector = bio->bi_sector + sectors_handled;
1597 r10_bio->state = 0;
1598 goto retry_write;
1599 }
079fa166
N
1600 one_write_done(r10_bio);
1601
1602 /* In case raid10d snuck in to freeze_array */
1603 wake_up(&conf->wait_barrier);
1da177e4
LT
1604}
1605
fd01b88c 1606static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1607{
e879a879 1608 struct r10conf *conf = mddev->private;
1da177e4
LT
1609 int i;
1610
5cf00fcd 1611 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1612 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1613 if (conf->geo.near_copies > 1)
1614 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1615 if (conf->geo.far_copies > 1) {
1616 if (conf->geo.far_offset)
1617 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1618 else
5cf00fcd 1619 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
c93983bf 1620 }
5cf00fcd
N
1621 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1622 conf->geo.raid_disks - mddev->degraded);
1623 for (i = 0; i < conf->geo.raid_disks; i++)
1da177e4
LT
1624 seq_printf(seq, "%s",
1625 conf->mirrors[i].rdev &&
b2d444d7 1626 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1627 seq_printf(seq, "]");
1628}
1629
700c7213
N
1630/* check if there are enough drives for
1631 * every block to appear on atleast one.
1632 * Don't consider the device numbered 'ignore'
1633 * as we might be about to remove it.
1634 */
f8c9e74f 1635static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
700c7213
N
1636{
1637 int first = 0;
1638
1639 do {
1640 int n = conf->copies;
1641 int cnt = 0;
80b48124 1642 int this = first;
700c7213 1643 while (n--) {
80b48124
N
1644 if (conf->mirrors[this].rdev &&
1645 this != ignore)
700c7213 1646 cnt++;
80b48124 1647 this = (this+1) % geo->raid_disks;
700c7213
N
1648 }
1649 if (cnt == 0)
1650 return 0;
80b48124 1651 first = (first + geo->near_copies) % geo->raid_disks;
700c7213
N
1652 } while (first != 0);
1653 return 1;
1654}
1655
f8c9e74f
N
1656static int enough(struct r10conf *conf, int ignore)
1657{
1658 return _enough(conf, &conf->geo, ignore) &&
1659 _enough(conf, &conf->prev, ignore);
1660}
1661
fd01b88c 1662static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1663{
1664 char b[BDEVNAME_SIZE];
e879a879 1665 struct r10conf *conf = mddev->private;
1da177e4
LT
1666
1667 /*
1668 * If it is not operational, then we have already marked it as dead
1669 * else if it is the last working disks, ignore the error, let the
1670 * next level up know.
1671 * else mark the drive as failed
1672 */
b2d444d7 1673 if (test_bit(In_sync, &rdev->flags)
700c7213 1674 && !enough(conf, rdev->raid_disk))
1da177e4
LT
1675 /*
1676 * Don't fail the drive, just return an IO error.
1da177e4
LT
1677 */
1678 return;
c04be0aa
N
1679 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1680 unsigned long flags;
1681 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1682 mddev->degraded++;
c04be0aa 1683 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1684 /*
1685 * if recovery is running, make sure it aborts.
1686 */
dfc70645 1687 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1688 }
de393cde 1689 set_bit(Blocked, &rdev->flags);
b2d444d7 1690 set_bit(Faulty, &rdev->flags);
850b2b42 1691 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1692 printk(KERN_ALERT
1693 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1694 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed 1695 mdname(mddev), bdevname(rdev->bdev, b),
5cf00fcd 1696 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
1697}
1698
e879a879 1699static void print_conf(struct r10conf *conf)
1da177e4
LT
1700{
1701 int i;
dc280d98 1702 struct raid10_info *tmp;
1da177e4 1703
128595ed 1704 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1705 if (!conf) {
128595ed 1706 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1707 return;
1708 }
5cf00fcd
N
1709 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1710 conf->geo.raid_disks);
1da177e4 1711
5cf00fcd 1712 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4
LT
1713 char b[BDEVNAME_SIZE];
1714 tmp = conf->mirrors + i;
1715 if (tmp->rdev)
128595ed 1716 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1717 i, !test_bit(In_sync, &tmp->rdev->flags),
1718 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1719 bdevname(tmp->rdev->bdev,b));
1720 }
1721}
1722
e879a879 1723static void close_sync(struct r10conf *conf)
1da177e4 1724{
0a27ec96
N
1725 wait_barrier(conf);
1726 allow_barrier(conf);
1da177e4
LT
1727
1728 mempool_destroy(conf->r10buf_pool);
1729 conf->r10buf_pool = NULL;
1730}
1731
fd01b88c 1732static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1733{
1734 int i;
e879a879 1735 struct r10conf *conf = mddev->private;
dc280d98 1736 struct raid10_info *tmp;
6b965620
N
1737 int count = 0;
1738 unsigned long flags;
1da177e4
LT
1739
1740 /*
1741 * Find all non-in_sync disks within the RAID10 configuration
1742 * and mark them in_sync
1743 */
5cf00fcd 1744 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1745 tmp = conf->mirrors + i;
4ca40c2c
N
1746 if (tmp->replacement
1747 && tmp->replacement->recovery_offset == MaxSector
1748 && !test_bit(Faulty, &tmp->replacement->flags)
1749 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1750 /* Replacement has just become active */
1751 if (!tmp->rdev
1752 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1753 count++;
1754 if (tmp->rdev) {
1755 /* Replaced device not technically faulty,
1756 * but we need to be sure it gets removed
1757 * and never re-added.
1758 */
1759 set_bit(Faulty, &tmp->rdev->flags);
1760 sysfs_notify_dirent_safe(
1761 tmp->rdev->sysfs_state);
1762 }
1763 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1764 } else if (tmp->rdev
1765 && !test_bit(Faulty, &tmp->rdev->flags)
1766 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1767 count++;
2863b9eb 1768 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
1769 }
1770 }
6b965620
N
1771 spin_lock_irqsave(&conf->device_lock, flags);
1772 mddev->degraded -= count;
1773 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1774
1775 print_conf(conf);
6b965620 1776 return count;
1da177e4
LT
1777}
1778
1779
fd01b88c 1780static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1781{
e879a879 1782 struct r10conf *conf = mddev->private;
199050ea 1783 int err = -EEXIST;
1da177e4 1784 int mirror;
6c2fce2e 1785 int first = 0;
5cf00fcd 1786 int last = conf->geo.raid_disks - 1;
050b6615 1787 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4
LT
1788
1789 if (mddev->recovery_cp < MaxSector)
1790 /* only hot-add to in-sync arrays, as recovery is
1791 * very different from resync
1792 */
199050ea 1793 return -EBUSY;
f8c9e74f 1794 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
199050ea 1795 return -EINVAL;
1da177e4 1796
a53a6c85 1797 if (rdev->raid_disk >= 0)
6c2fce2e 1798 first = last = rdev->raid_disk;
1da177e4 1799
050b6615
N
1800 if (q->merge_bvec_fn) {
1801 set_bit(Unmerged, &rdev->flags);
1802 mddev->merge_check_needed = 1;
1803 }
1804
2c4193df 1805 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1806 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1807 mirror = rdev->saved_raid_disk;
1808 else
6c2fce2e 1809 mirror = first;
2bb77736 1810 for ( ; mirror <= last ; mirror++) {
dc280d98 1811 struct raid10_info *p = &conf->mirrors[mirror];
2bb77736
N
1812 if (p->recovery_disabled == mddev->recovery_disabled)
1813 continue;
b7044d41
N
1814 if (p->rdev) {
1815 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1816 p->replacement != NULL)
1817 continue;
1818 clear_bit(In_sync, &rdev->flags);
1819 set_bit(Replacement, &rdev->flags);
1820 rdev->raid_disk = mirror;
1821 err = 0;
9092c02d
JB
1822 if (mddev->gendisk)
1823 disk_stack_limits(mddev->gendisk, rdev->bdev,
1824 rdev->data_offset << 9);
b7044d41
N
1825 conf->fullsync = 1;
1826 rcu_assign_pointer(p->replacement, rdev);
1827 break;
1828 }
1da177e4 1829
9092c02d
JB
1830 if (mddev->gendisk)
1831 disk_stack_limits(mddev->gendisk, rdev->bdev,
1832 rdev->data_offset << 9);
1da177e4 1833
2bb77736 1834 p->head_position = 0;
d890fa2b 1835 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1836 rdev->raid_disk = mirror;
1837 err = 0;
1838 if (rdev->saved_raid_disk != mirror)
1839 conf->fullsync = 1;
1840 rcu_assign_pointer(p->rdev, rdev);
1841 break;
1842 }
050b6615
N
1843 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1844 /* Some requests might not have seen this new
1845 * merge_bvec_fn. We must wait for them to complete
1846 * before merging the device fully.
1847 * First we make sure any code which has tested
1848 * our function has submitted the request, then
1849 * we wait for all outstanding requests to complete.
1850 */
1851 synchronize_sched();
e2d59925
N
1852 freeze_array(conf, 0);
1853 unfreeze_array(conf);
050b6615
N
1854 clear_bit(Unmerged, &rdev->flags);
1855 }
ac5e7113 1856 md_integrity_add_rdev(rdev, mddev);
ed30be07 1857 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
532a2a3f
SL
1858 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1859
1da177e4 1860 print_conf(conf);
199050ea 1861 return err;
1da177e4
LT
1862}
1863
b8321b68 1864static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1865{
e879a879 1866 struct r10conf *conf = mddev->private;
1da177e4 1867 int err = 0;
b8321b68 1868 int number = rdev->raid_disk;
c8ab903e 1869 struct md_rdev **rdevp;
dc280d98 1870 struct raid10_info *p = conf->mirrors + number;
1da177e4
LT
1871
1872 print_conf(conf);
c8ab903e
N
1873 if (rdev == p->rdev)
1874 rdevp = &p->rdev;
1875 else if (rdev == p->replacement)
1876 rdevp = &p->replacement;
1877 else
1878 return 0;
1879
1880 if (test_bit(In_sync, &rdev->flags) ||
1881 atomic_read(&rdev->nr_pending)) {
1882 err = -EBUSY;
1883 goto abort;
1884 }
1885 /* Only remove faulty devices if recovery
1886 * is not possible.
1887 */
1888 if (!test_bit(Faulty, &rdev->flags) &&
1889 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 1890 (!p->replacement || p->replacement == rdev) &&
63aced61 1891 number < conf->geo.raid_disks &&
c8ab903e
N
1892 enough(conf, -1)) {
1893 err = -EBUSY;
1894 goto abort;
1da177e4 1895 }
c8ab903e
N
1896 *rdevp = NULL;
1897 synchronize_rcu();
1898 if (atomic_read(&rdev->nr_pending)) {
1899 /* lost the race, try later */
1900 err = -EBUSY;
1901 *rdevp = rdev;
1902 goto abort;
4ca40c2c
N
1903 } else if (p->replacement) {
1904 /* We must have just cleared 'rdev' */
1905 p->rdev = p->replacement;
1906 clear_bit(Replacement, &p->replacement->flags);
1907 smp_mb(); /* Make sure other CPUs may see both as identical
1908 * but will never see neither -- if they are careful.
1909 */
1910 p->replacement = NULL;
1911 clear_bit(WantReplacement, &rdev->flags);
1912 } else
1913 /* We might have just remove the Replacement as faulty
1914 * Clear the flag just in case
1915 */
1916 clear_bit(WantReplacement, &rdev->flags);
1917
c8ab903e
N
1918 err = md_integrity_register(mddev);
1919
1da177e4
LT
1920abort:
1921
1922 print_conf(conf);
1923 return err;
1924}
1925
1926
6712ecf8 1927static void end_sync_read(struct bio *bio, int error)
1da177e4 1928{
9f2c9d12 1929 struct r10bio *r10_bio = bio->bi_private;
e879a879 1930 struct r10conf *conf = r10_bio->mddev->private;
778ca018 1931 int d;
1da177e4 1932
3ea7daa5
N
1933 if (bio == r10_bio->master_bio) {
1934 /* this is a reshape read */
1935 d = r10_bio->read_slot; /* really the read dev */
1936 } else
1937 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
0eb3ff12
N
1938
1939 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1940 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1941 else
1942 /* The write handler will notice the lack of
1943 * R10BIO_Uptodate and record any errors etc
1944 */
4dbcdc75
N
1945 atomic_add(r10_bio->sectors,
1946 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1947
1948 /* for reconstruct, we always reschedule after a read.
1949 * for resync, only after all reads
1950 */
73d5c38a 1951 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1952 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1953 atomic_dec_and_test(&r10_bio->remaining)) {
1954 /* we have read all the blocks,
1955 * do the comparison in process context in raid10d
1956 */
1957 reschedule_retry(r10_bio);
1958 }
1da177e4
LT
1959}
1960
9f2c9d12 1961static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1962{
fd01b88c 1963 struct mddev *mddev = r10_bio->mddev;
dfc70645 1964
1da177e4
LT
1965 while (atomic_dec_and_test(&r10_bio->remaining)) {
1966 if (r10_bio->master_bio == NULL) {
1967 /* the primary of several recovery bios */
73d5c38a 1968 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1969 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1970 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1971 reschedule_retry(r10_bio);
1972 else
1973 put_buf(r10_bio);
73d5c38a 1974 md_done_sync(mddev, s, 1);
1da177e4
LT
1975 break;
1976 } else {
9f2c9d12 1977 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1978 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1979 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1980 reschedule_retry(r10_bio);
1981 else
1982 put_buf(r10_bio);
1da177e4
LT
1983 r10_bio = r10_bio2;
1984 }
1985 }
1da177e4
LT
1986}
1987
5e570289
N
1988static void end_sync_write(struct bio *bio, int error)
1989{
1990 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1991 struct r10bio *r10_bio = bio->bi_private;
fd01b88c 1992 struct mddev *mddev = r10_bio->mddev;
e879a879 1993 struct r10conf *conf = mddev->private;
5e570289
N
1994 int d;
1995 sector_t first_bad;
1996 int bad_sectors;
1997 int slot;
9ad1aefc 1998 int repl;
4ca40c2c 1999 struct md_rdev *rdev = NULL;
5e570289 2000
9ad1aefc
N
2001 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2002 if (repl)
2003 rdev = conf->mirrors[d].replacement;
547414d1 2004 else
9ad1aefc 2005 rdev = conf->mirrors[d].rdev;
5e570289
N
2006
2007 if (!uptodate) {
9ad1aefc
N
2008 if (repl)
2009 md_error(mddev, rdev);
2010 else {
2011 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2012 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2013 set_bit(MD_RECOVERY_NEEDED,
2014 &rdev->mddev->recovery);
9ad1aefc
N
2015 set_bit(R10BIO_WriteError, &r10_bio->state);
2016 }
2017 } else if (is_badblock(rdev,
5e570289
N
2018 r10_bio->devs[slot].addr,
2019 r10_bio->sectors,
2020 &first_bad, &bad_sectors))
2021 set_bit(R10BIO_MadeGood, &r10_bio->state);
2022
9ad1aefc 2023 rdev_dec_pending(rdev, mddev);
5e570289
N
2024
2025 end_sync_request(r10_bio);
2026}
2027
1da177e4
LT
2028/*
2029 * Note: sync and recover and handled very differently for raid10
2030 * This code is for resync.
2031 * For resync, we read through virtual addresses and read all blocks.
2032 * If there is any error, we schedule a write. The lowest numbered
2033 * drive is authoritative.
2034 * However requests come for physical address, so we need to map.
2035 * For every physical address there are raid_disks/copies virtual addresses,
2036 * which is always are least one, but is not necessarly an integer.
2037 * This means that a physical address can span multiple chunks, so we may
2038 * have to submit multiple io requests for a single sync request.
2039 */
2040/*
2041 * We check if all blocks are in-sync and only write to blocks that
2042 * aren't in sync
2043 */
9f2c9d12 2044static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2045{
e879a879 2046 struct r10conf *conf = mddev->private;
1da177e4
LT
2047 int i, first;
2048 struct bio *tbio, *fbio;
f4380a91 2049 int vcnt;
1da177e4
LT
2050
2051 atomic_set(&r10_bio->remaining, 1);
2052
2053 /* find the first device with a block */
2054 for (i=0; i<conf->copies; i++)
2055 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2056 break;
2057
2058 if (i == conf->copies)
2059 goto done;
2060
2061 first = i;
2062 fbio = r10_bio->devs[i].bio;
2063
f4380a91 2064 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 2065 /* now find blocks with errors */
0eb3ff12
N
2066 for (i=0 ; i < conf->copies ; i++) {
2067 int j, d;
1da177e4 2068
1da177e4 2069 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
2070
2071 if (tbio->bi_end_io != end_sync_read)
2072 continue;
2073 if (i == first)
1da177e4 2074 continue;
0eb3ff12
N
2075 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2076 /* We know that the bi_io_vec layout is the same for
2077 * both 'first' and 'i', so we just compare them.
2078 * All vec entries are PAGE_SIZE;
2079 */
2080 for (j = 0; j < vcnt; j++)
2081 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2082 page_address(tbio->bi_io_vec[j].bv_page),
5020ad7d 2083 fbio->bi_io_vec[j].bv_len))
0eb3ff12
N
2084 break;
2085 if (j == vcnt)
2086 continue;
7f7583d4 2087 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
f84ee364
N
2088 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2089 /* Don't fix anything. */
2090 continue;
0eb3ff12 2091 }
f84ee364
N
2092 /* Ok, we need to write this bio, either to correct an
2093 * inconsistency or to correct an unreadable block.
1da177e4
LT
2094 * First we need to fixup bv_offset, bv_len and
2095 * bi_vecs, as the read request might have corrupted these
2096 */
8be185f2
KO
2097 bio_reset(tbio);
2098
1da177e4
LT
2099 tbio->bi_vcnt = vcnt;
2100 tbio->bi_size = r10_bio->sectors << 9;
1da177e4
LT
2101 tbio->bi_rw = WRITE;
2102 tbio->bi_private = r10_bio;
2103 tbio->bi_sector = r10_bio->devs[i].addr;
2104
2105 for (j=0; j < vcnt ; j++) {
2106 tbio->bi_io_vec[j].bv_offset = 0;
2107 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2108
2109 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2110 page_address(fbio->bi_io_vec[j].bv_page),
2111 PAGE_SIZE);
2112 }
2113 tbio->bi_end_io = end_sync_write;
2114
2115 d = r10_bio->devs[i].devnum;
2116 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2117 atomic_inc(&r10_bio->remaining);
aa8b57aa 2118 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
1da177e4
LT
2119
2120 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2121 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2122 generic_make_request(tbio);
2123 }
2124
9ad1aefc
N
2125 /* Now write out to any replacement devices
2126 * that are active
2127 */
2128 for (i = 0; i < conf->copies; i++) {
2129 int j, d;
9ad1aefc
N
2130
2131 tbio = r10_bio->devs[i].repl_bio;
2132 if (!tbio || !tbio->bi_end_io)
2133 continue;
2134 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2135 && r10_bio->devs[i].bio != fbio)
2136 for (j = 0; j < vcnt; j++)
2137 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2138 page_address(fbio->bi_io_vec[j].bv_page),
2139 PAGE_SIZE);
2140 d = r10_bio->devs[i].devnum;
2141 atomic_inc(&r10_bio->remaining);
2142 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2143 bio_sectors(tbio));
9ad1aefc
N
2144 generic_make_request(tbio);
2145 }
2146
1da177e4
LT
2147done:
2148 if (atomic_dec_and_test(&r10_bio->remaining)) {
2149 md_done_sync(mddev, r10_bio->sectors, 1);
2150 put_buf(r10_bio);
2151 }
2152}
2153
2154/*
2155 * Now for the recovery code.
2156 * Recovery happens across physical sectors.
2157 * We recover all non-is_sync drives by finding the virtual address of
2158 * each, and then choose a working drive that also has that virt address.
2159 * There is a separate r10_bio for each non-in_sync drive.
2160 * Only the first two slots are in use. The first for reading,
2161 * The second for writing.
2162 *
2163 */
9f2c9d12 2164static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
2165{
2166 /* We got a read error during recovery.
2167 * We repeat the read in smaller page-sized sections.
2168 * If a read succeeds, write it to the new device or record
2169 * a bad block if we cannot.
2170 * If a read fails, record a bad block on both old and
2171 * new devices.
2172 */
fd01b88c 2173 struct mddev *mddev = r10_bio->mddev;
e879a879 2174 struct r10conf *conf = mddev->private;
5e570289
N
2175 struct bio *bio = r10_bio->devs[0].bio;
2176 sector_t sect = 0;
2177 int sectors = r10_bio->sectors;
2178 int idx = 0;
2179 int dr = r10_bio->devs[0].devnum;
2180 int dw = r10_bio->devs[1].devnum;
2181
2182 while (sectors) {
2183 int s = sectors;
3cb03002 2184 struct md_rdev *rdev;
5e570289
N
2185 sector_t addr;
2186 int ok;
2187
2188 if (s > (PAGE_SIZE>>9))
2189 s = PAGE_SIZE >> 9;
2190
2191 rdev = conf->mirrors[dr].rdev;
2192 addr = r10_bio->devs[0].addr + sect,
2193 ok = sync_page_io(rdev,
2194 addr,
2195 s << 9,
2196 bio->bi_io_vec[idx].bv_page,
2197 READ, false);
2198 if (ok) {
2199 rdev = conf->mirrors[dw].rdev;
2200 addr = r10_bio->devs[1].addr + sect;
2201 ok = sync_page_io(rdev,
2202 addr,
2203 s << 9,
2204 bio->bi_io_vec[idx].bv_page,
2205 WRITE, false);
b7044d41 2206 if (!ok) {
5e570289 2207 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2208 if (!test_and_set_bit(WantReplacement,
2209 &rdev->flags))
2210 set_bit(MD_RECOVERY_NEEDED,
2211 &rdev->mddev->recovery);
2212 }
5e570289
N
2213 }
2214 if (!ok) {
2215 /* We don't worry if we cannot set a bad block -
2216 * it really is bad so there is no loss in not
2217 * recording it yet
2218 */
2219 rdev_set_badblocks(rdev, addr, s, 0);
2220
2221 if (rdev != conf->mirrors[dw].rdev) {
2222 /* need bad block on destination too */
3cb03002 2223 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2224 addr = r10_bio->devs[1].addr + sect;
2225 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2226 if (!ok) {
2227 /* just abort the recovery */
2228 printk(KERN_NOTICE
2229 "md/raid10:%s: recovery aborted"
2230 " due to read error\n",
2231 mdname(mddev));
2232
2233 conf->mirrors[dw].recovery_disabled
2234 = mddev->recovery_disabled;
2235 set_bit(MD_RECOVERY_INTR,
2236 &mddev->recovery);
2237 break;
2238 }
2239 }
2240 }
2241
2242 sectors -= s;
2243 sect += s;
2244 idx++;
2245 }
2246}
1da177e4 2247
9f2c9d12 2248static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2249{
e879a879 2250 struct r10conf *conf = mddev->private;
c65060ad 2251 int d;
24afd80d 2252 struct bio *wbio, *wbio2;
1da177e4 2253
5e570289
N
2254 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2255 fix_recovery_read_error(r10_bio);
2256 end_sync_request(r10_bio);
2257 return;
2258 }
2259
c65060ad
NK
2260 /*
2261 * share the pages with the first bio
1da177e4
LT
2262 * and submit the write request
2263 */
1da177e4 2264 d = r10_bio->devs[1].devnum;
24afd80d
N
2265 wbio = r10_bio->devs[1].bio;
2266 wbio2 = r10_bio->devs[1].repl_bio;
2267 if (wbio->bi_end_io) {
2268 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
aa8b57aa 2269 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
24afd80d
N
2270 generic_make_request(wbio);
2271 }
2272 if (wbio2 && wbio2->bi_end_io) {
2273 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2274 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2275 bio_sectors(wbio2));
24afd80d
N
2276 generic_make_request(wbio2);
2277 }
1da177e4
LT
2278}
2279
2280
1e50915f
RB
2281/*
2282 * Used by fix_read_error() to decay the per rdev read_errors.
2283 * We halve the read error count for every hour that has elapsed
2284 * since the last recorded read error.
2285 *
2286 */
fd01b88c 2287static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f
RB
2288{
2289 struct timespec cur_time_mon;
2290 unsigned long hours_since_last;
2291 unsigned int read_errors = atomic_read(&rdev->read_errors);
2292
2293 ktime_get_ts(&cur_time_mon);
2294
2295 if (rdev->last_read_error.tv_sec == 0 &&
2296 rdev->last_read_error.tv_nsec == 0) {
2297 /* first time we've seen a read error */
2298 rdev->last_read_error = cur_time_mon;
2299 return;
2300 }
2301
2302 hours_since_last = (cur_time_mon.tv_sec -
2303 rdev->last_read_error.tv_sec) / 3600;
2304
2305 rdev->last_read_error = cur_time_mon;
2306
2307 /*
2308 * if hours_since_last is > the number of bits in read_errors
2309 * just set read errors to 0. We do this to avoid
2310 * overflowing the shift of read_errors by hours_since_last.
2311 */
2312 if (hours_since_last >= 8 * sizeof(read_errors))
2313 atomic_set(&rdev->read_errors, 0);
2314 else
2315 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2316}
2317
3cb03002 2318static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
2319 int sectors, struct page *page, int rw)
2320{
2321 sector_t first_bad;
2322 int bad_sectors;
2323
2324 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2325 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2326 return -1;
2327 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2328 /* success */
2329 return 1;
b7044d41 2330 if (rw == WRITE) {
58c54fcc 2331 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2332 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2333 set_bit(MD_RECOVERY_NEEDED,
2334 &rdev->mddev->recovery);
2335 }
58c54fcc
N
2336 /* need to record an error - either for the block or the device */
2337 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2338 md_error(rdev->mddev, rdev);
2339 return 0;
2340}
2341
1da177e4
LT
2342/*
2343 * This is a kernel thread which:
2344 *
2345 * 1. Retries failed read operations on working mirrors.
2346 * 2. Updates the raid superblock when problems encounter.
6814d536 2347 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2348 */
2349
e879a879 2350static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2351{
2352 int sect = 0; /* Offset from r10_bio->sector */
2353 int sectors = r10_bio->sectors;
3cb03002 2354 struct md_rdev*rdev;
1e50915f 2355 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 2356 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 2357
7c4e06ff
N
2358 /* still own a reference to this rdev, so it cannot
2359 * have been cleared recently.
2360 */
2361 rdev = conf->mirrors[d].rdev;
1e50915f 2362
7c4e06ff
N
2363 if (test_bit(Faulty, &rdev->flags))
2364 /* drive has already been failed, just ignore any
2365 more fix_read_error() attempts */
2366 return;
1e50915f 2367
7c4e06ff
N
2368 check_decay_read_errors(mddev, rdev);
2369 atomic_inc(&rdev->read_errors);
2370 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2371 char b[BDEVNAME_SIZE];
2372 bdevname(rdev->bdev, b);
1e50915f 2373
7c4e06ff
N
2374 printk(KERN_NOTICE
2375 "md/raid10:%s: %s: Raid device exceeded "
2376 "read_error threshold [cur %d:max %d]\n",
2377 mdname(mddev), b,
2378 atomic_read(&rdev->read_errors), max_read_errors);
2379 printk(KERN_NOTICE
2380 "md/raid10:%s: %s: Failing raid device\n",
2381 mdname(mddev), b);
2382 md_error(mddev, conf->mirrors[d].rdev);
fae8cc5e 2383 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
7c4e06ff 2384 return;
1e50915f 2385 }
1e50915f 2386
6814d536
N
2387 while(sectors) {
2388 int s = sectors;
2389 int sl = r10_bio->read_slot;
2390 int success = 0;
2391 int start;
2392
2393 if (s > (PAGE_SIZE>>9))
2394 s = PAGE_SIZE >> 9;
2395
2396 rcu_read_lock();
2397 do {
8dbed5ce
N
2398 sector_t first_bad;
2399 int bad_sectors;
2400
0544a21d 2401 d = r10_bio->devs[sl].devnum;
6814d536
N
2402 rdev = rcu_dereference(conf->mirrors[d].rdev);
2403 if (rdev &&
050b6615 2404 !test_bit(Unmerged, &rdev->flags) &&
8dbed5ce
N
2405 test_bit(In_sync, &rdev->flags) &&
2406 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2407 &first_bad, &bad_sectors) == 0) {
6814d536
N
2408 atomic_inc(&rdev->nr_pending);
2409 rcu_read_unlock();
2b193363 2410 success = sync_page_io(rdev,
6814d536 2411 r10_bio->devs[sl].addr +
ccebd4c4 2412 sect,
6814d536 2413 s<<9,
ccebd4c4 2414 conf->tmppage, READ, false);
6814d536
N
2415 rdev_dec_pending(rdev, mddev);
2416 rcu_read_lock();
2417 if (success)
2418 break;
2419 }
2420 sl++;
2421 if (sl == conf->copies)
2422 sl = 0;
2423 } while (!success && sl != r10_bio->read_slot);
2424 rcu_read_unlock();
2425
2426 if (!success) {
58c54fcc
N
2427 /* Cannot read from anywhere, just mark the block
2428 * as bad on the first device to discourage future
2429 * reads.
2430 */
6814d536 2431 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2432 rdev = conf->mirrors[dn].rdev;
2433
2434 if (!rdev_set_badblocks(
2435 rdev,
2436 r10_bio->devs[r10_bio->read_slot].addr
2437 + sect,
fae8cc5e 2438 s, 0)) {
58c54fcc 2439 md_error(mddev, rdev);
fae8cc5e
N
2440 r10_bio->devs[r10_bio->read_slot].bio
2441 = IO_BLOCKED;
2442 }
6814d536
N
2443 break;
2444 }
2445
2446 start = sl;
2447 /* write it back and re-read */
2448 rcu_read_lock();
2449 while (sl != r10_bio->read_slot) {
67b8dc4b 2450 char b[BDEVNAME_SIZE];
0544a21d 2451
6814d536
N
2452 if (sl==0)
2453 sl = conf->copies;
2454 sl--;
2455 d = r10_bio->devs[sl].devnum;
2456 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2457 if (!rdev ||
050b6615 2458 test_bit(Unmerged, &rdev->flags) ||
1294b9c9
N
2459 !test_bit(In_sync, &rdev->flags))
2460 continue;
2461
2462 atomic_inc(&rdev->nr_pending);
2463 rcu_read_unlock();
58c54fcc
N
2464 if (r10_sync_page_io(rdev,
2465 r10_bio->devs[sl].addr +
2466 sect,
055d3747 2467 s, conf->tmppage, WRITE)
1294b9c9
N
2468 == 0) {
2469 /* Well, this device is dead */
2470 printk(KERN_NOTICE
2471 "md/raid10:%s: read correction "
2472 "write failed"
2473 " (%d sectors at %llu on %s)\n",
2474 mdname(mddev), s,
2475 (unsigned long long)(
f8c9e74f
N
2476 sect +
2477 choose_data_offset(r10_bio,
2478 rdev)),
1294b9c9
N
2479 bdevname(rdev->bdev, b));
2480 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2481 "drive\n",
2482 mdname(mddev),
2483 bdevname(rdev->bdev, b));
6814d536 2484 }
1294b9c9
N
2485 rdev_dec_pending(rdev, mddev);
2486 rcu_read_lock();
6814d536
N
2487 }
2488 sl = start;
2489 while (sl != r10_bio->read_slot) {
1294b9c9 2490 char b[BDEVNAME_SIZE];
0544a21d 2491
6814d536
N
2492 if (sl==0)
2493 sl = conf->copies;
2494 sl--;
2495 d = r10_bio->devs[sl].devnum;
2496 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
2497 if (!rdev ||
2498 !test_bit(In_sync, &rdev->flags))
2499 continue;
6814d536 2500
1294b9c9
N
2501 atomic_inc(&rdev->nr_pending);
2502 rcu_read_unlock();
58c54fcc
N
2503 switch (r10_sync_page_io(rdev,
2504 r10_bio->devs[sl].addr +
2505 sect,
055d3747 2506 s, conf->tmppage,
58c54fcc
N
2507 READ)) {
2508 case 0:
1294b9c9
N
2509 /* Well, this device is dead */
2510 printk(KERN_NOTICE
2511 "md/raid10:%s: unable to read back "
2512 "corrected sectors"
2513 " (%d sectors at %llu on %s)\n",
2514 mdname(mddev), s,
2515 (unsigned long long)(
f8c9e74f
N
2516 sect +
2517 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2518 bdevname(rdev->bdev, b));
2519 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2520 "drive\n",
2521 mdname(mddev),
2522 bdevname(rdev->bdev, b));
58c54fcc
N
2523 break;
2524 case 1:
1294b9c9
N
2525 printk(KERN_INFO
2526 "md/raid10:%s: read error corrected"
2527 " (%d sectors at %llu on %s)\n",
2528 mdname(mddev), s,
2529 (unsigned long long)(
f8c9e74f
N
2530 sect +
2531 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2532 bdevname(rdev->bdev, b));
2533 atomic_add(s, &rdev->corrected_errors);
6814d536 2534 }
1294b9c9
N
2535
2536 rdev_dec_pending(rdev, mddev);
2537 rcu_read_lock();
6814d536
N
2538 }
2539 rcu_read_unlock();
2540
2541 sectors -= s;
2542 sect += s;
2543 }
2544}
2545
9f2c9d12 2546static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2547{
2548 struct bio *bio = r10_bio->master_bio;
fd01b88c 2549 struct mddev *mddev = r10_bio->mddev;
e879a879 2550 struct r10conf *conf = mddev->private;
3cb03002 2551 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2552 /* bio has the data to be written to slot 'i' where
2553 * we just recently had a write error.
2554 * We repeatedly clone the bio and trim down to one block,
2555 * then try the write. Where the write fails we record
2556 * a bad block.
2557 * It is conceivable that the bio doesn't exactly align with
2558 * blocks. We must handle this.
2559 *
2560 * We currently own a reference to the rdev.
2561 */
2562
2563 int block_sectors;
2564 sector_t sector;
2565 int sectors;
2566 int sect_to_write = r10_bio->sectors;
2567 int ok = 1;
2568
2569 if (rdev->badblocks.shift < 0)
2570 return 0;
2571
2572 block_sectors = 1 << rdev->badblocks.shift;
2573 sector = r10_bio->sector;
2574 sectors = ((r10_bio->sector + block_sectors)
2575 & ~(sector_t)(block_sectors - 1))
2576 - sector;
2577
2578 while (sect_to_write) {
2579 struct bio *wbio;
2580 if (sectors > sect_to_write)
2581 sectors = sect_to_write;
2582 /* Write at 'sector' for 'sectors' */
2583 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2584 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2585 wbio->bi_sector = (r10_bio->devs[i].addr+
f8c9e74f 2586 choose_data_offset(r10_bio, rdev) +
bd870a16
N
2587 (sector - r10_bio->sector));
2588 wbio->bi_bdev = rdev->bdev;
2589 if (submit_bio_wait(WRITE, wbio) == 0)
2590 /* Failure! */
2591 ok = rdev_set_badblocks(rdev, sector,
2592 sectors, 0)
2593 && ok;
2594
2595 bio_put(wbio);
2596 sect_to_write -= sectors;
2597 sector += sectors;
2598 sectors = block_sectors;
2599 }
2600 return ok;
2601}
2602
9f2c9d12 2603static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2604{
2605 int slot = r10_bio->read_slot;
560f8e55 2606 struct bio *bio;
e879a879 2607 struct r10conf *conf = mddev->private;
abbf098e 2608 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2609 char b[BDEVNAME_SIZE];
2610 unsigned long do_sync;
856e08e2 2611 int max_sectors;
560f8e55
N
2612
2613 /* we got a read error. Maybe the drive is bad. Maybe just
2614 * the block and we can fix it.
2615 * We freeze all other IO, and try reading the block from
2616 * other devices. When we find one, we re-write
2617 * and check it that fixes the read error.
2618 * This is all done synchronously while the array is
2619 * frozen.
2620 */
fae8cc5e
N
2621 bio = r10_bio->devs[slot].bio;
2622 bdevname(bio->bi_bdev, b);
2623 bio_put(bio);
2624 r10_bio->devs[slot].bio = NULL;
2625
560f8e55 2626 if (mddev->ro == 0) {
e2d59925 2627 freeze_array(conf, 1);
560f8e55
N
2628 fix_read_error(conf, mddev, r10_bio);
2629 unfreeze_array(conf);
fae8cc5e
N
2630 } else
2631 r10_bio->devs[slot].bio = IO_BLOCKED;
2632
abbf098e 2633 rdev_dec_pending(rdev, mddev);
560f8e55 2634
7399c31b 2635read_more:
96c3fd1f
N
2636 rdev = read_balance(conf, r10_bio, &max_sectors);
2637 if (rdev == NULL) {
560f8e55
N
2638 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2639 " read error for block %llu\n",
7399c31b 2640 mdname(mddev), b,
560f8e55
N
2641 (unsigned long long)r10_bio->sector);
2642 raid_end_bio_io(r10_bio);
560f8e55
N
2643 return;
2644 }
2645
2646 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
560f8e55 2647 slot = r10_bio->read_slot;
560f8e55
N
2648 printk_ratelimited(
2649 KERN_ERR
055d3747 2650 "md/raid10:%s: %s: redirecting "
560f8e55
N
2651 "sector %llu to another mirror\n",
2652 mdname(mddev),
2653 bdevname(rdev->bdev, b),
2654 (unsigned long long)r10_bio->sector);
2655 bio = bio_clone_mddev(r10_bio->master_bio,
2656 GFP_NOIO, mddev);
7399c31b
N
2657 md_trim_bio(bio,
2658 r10_bio->sector - bio->bi_sector,
2659 max_sectors);
560f8e55 2660 r10_bio->devs[slot].bio = bio;
abbf098e 2661 r10_bio->devs[slot].rdev = rdev;
560f8e55 2662 bio->bi_sector = r10_bio->devs[slot].addr
f8c9e74f 2663 + choose_data_offset(r10_bio, rdev);
560f8e55
N
2664 bio->bi_bdev = rdev->bdev;
2665 bio->bi_rw = READ | do_sync;
2666 bio->bi_private = r10_bio;
2667 bio->bi_end_io = raid10_end_read_request;
7399c31b
N
2668 if (max_sectors < r10_bio->sectors) {
2669 /* Drat - have to split this up more */
2670 struct bio *mbio = r10_bio->master_bio;
2671 int sectors_handled =
2672 r10_bio->sector + max_sectors
2673 - mbio->bi_sector;
2674 r10_bio->sectors = max_sectors;
2675 spin_lock_irq(&conf->device_lock);
2676 if (mbio->bi_phys_segments == 0)
2677 mbio->bi_phys_segments = 2;
2678 else
2679 mbio->bi_phys_segments++;
2680 spin_unlock_irq(&conf->device_lock);
2681 generic_make_request(bio);
7399c31b
N
2682
2683 r10_bio = mempool_alloc(conf->r10bio_pool,
2684 GFP_NOIO);
2685 r10_bio->master_bio = mbio;
aa8b57aa 2686 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
7399c31b
N
2687 r10_bio->state = 0;
2688 set_bit(R10BIO_ReadError,
2689 &r10_bio->state);
2690 r10_bio->mddev = mddev;
2691 r10_bio->sector = mbio->bi_sector
2692 + sectors_handled;
2693
2694 goto read_more;
2695 } else
2696 generic_make_request(bio);
560f8e55
N
2697}
2698
e879a879 2699static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2700{
2701 /* Some sort of write request has finished and it
2702 * succeeded in writing where we thought there was a
2703 * bad block. So forget the bad block.
1a0b7cd8
N
2704 * Or possibly if failed and we need to record
2705 * a bad block.
749c55e9
N
2706 */
2707 int m;
3cb03002 2708 struct md_rdev *rdev;
749c55e9
N
2709
2710 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2711 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2712 for (m = 0; m < conf->copies; m++) {
2713 int dev = r10_bio->devs[m].devnum;
2714 rdev = conf->mirrors[dev].rdev;
2715 if (r10_bio->devs[m].bio == NULL)
2716 continue;
2717 if (test_bit(BIO_UPTODATE,
749c55e9 2718 &r10_bio->devs[m].bio->bi_flags)) {
749c55e9
N
2719 rdev_clear_badblocks(
2720 rdev,
2721 r10_bio->devs[m].addr,
c6563a8c 2722 r10_bio->sectors, 0);
1a0b7cd8
N
2723 } else {
2724 if (!rdev_set_badblocks(
2725 rdev,
2726 r10_bio->devs[m].addr,
2727 r10_bio->sectors, 0))
2728 md_error(conf->mddev, rdev);
749c55e9 2729 }
9ad1aefc
N
2730 rdev = conf->mirrors[dev].replacement;
2731 if (r10_bio->devs[m].repl_bio == NULL)
2732 continue;
2733 if (test_bit(BIO_UPTODATE,
2734 &r10_bio->devs[m].repl_bio->bi_flags)) {
2735 rdev_clear_badblocks(
2736 rdev,
2737 r10_bio->devs[m].addr,
c6563a8c 2738 r10_bio->sectors, 0);
9ad1aefc
N
2739 } else {
2740 if (!rdev_set_badblocks(
2741 rdev,
2742 r10_bio->devs[m].addr,
2743 r10_bio->sectors, 0))
2744 md_error(conf->mddev, rdev);
2745 }
1a0b7cd8 2746 }
749c55e9
N
2747 put_buf(r10_bio);
2748 } else {
bd870a16
N
2749 for (m = 0; m < conf->copies; m++) {
2750 int dev = r10_bio->devs[m].devnum;
2751 struct bio *bio = r10_bio->devs[m].bio;
2752 rdev = conf->mirrors[dev].rdev;
2753 if (bio == IO_MADE_GOOD) {
749c55e9
N
2754 rdev_clear_badblocks(
2755 rdev,
2756 r10_bio->devs[m].addr,
c6563a8c 2757 r10_bio->sectors, 0);
749c55e9 2758 rdev_dec_pending(rdev, conf->mddev);
bd870a16
N
2759 } else if (bio != NULL &&
2760 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2761 if (!narrow_write_error(r10_bio, m)) {
2762 md_error(conf->mddev, rdev);
2763 set_bit(R10BIO_Degraded,
2764 &r10_bio->state);
2765 }
2766 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2767 }
475b0321
N
2768 bio = r10_bio->devs[m].repl_bio;
2769 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2770 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2771 rdev_clear_badblocks(
2772 rdev,
2773 r10_bio->devs[m].addr,
c6563a8c 2774 r10_bio->sectors, 0);
475b0321
N
2775 rdev_dec_pending(rdev, conf->mddev);
2776 }
bd870a16
N
2777 }
2778 if (test_bit(R10BIO_WriteError,
2779 &r10_bio->state))
2780 close_write(r10_bio);
749c55e9
N
2781 raid_end_bio_io(r10_bio);
2782 }
2783}
2784
4ed8731d 2785static void raid10d(struct md_thread *thread)
1da177e4 2786{
4ed8731d 2787 struct mddev *mddev = thread->mddev;
9f2c9d12 2788 struct r10bio *r10_bio;
1da177e4 2789 unsigned long flags;
e879a879 2790 struct r10conf *conf = mddev->private;
1da177e4 2791 struct list_head *head = &conf->retry_list;
e1dfa0a2 2792 struct blk_plug plug;
1da177e4
LT
2793
2794 md_check_recovery(mddev);
1da177e4 2795
e1dfa0a2 2796 blk_start_plug(&plug);
1da177e4 2797 for (;;) {
6cce3b23 2798
0021b7bc 2799 flush_pending_writes(conf);
6cce3b23 2800
a35e63ef
N
2801 spin_lock_irqsave(&conf->device_lock, flags);
2802 if (list_empty(head)) {
2803 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2804 break;
a35e63ef 2805 }
9f2c9d12 2806 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2807 list_del(head->prev);
4443ae10 2808 conf->nr_queued--;
1da177e4
LT
2809 spin_unlock_irqrestore(&conf->device_lock, flags);
2810
2811 mddev = r10_bio->mddev;
070ec55d 2812 conf = mddev->private;
bd870a16
N
2813 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2814 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 2815 handle_write_completed(conf, r10_bio);
3ea7daa5
N
2816 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2817 reshape_request_write(mddev, r10_bio);
749c55e9 2818 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2819 sync_request_write(mddev, r10_bio);
7eaceacc 2820 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2821 recovery_request_write(mddev, r10_bio);
856e08e2 2822 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2823 handle_read_error(mddev, r10_bio);
856e08e2
N
2824 else {
2825 /* just a partial read to be scheduled from a
2826 * separate context
2827 */
2828 int slot = r10_bio->read_slot;
2829 generic_make_request(r10_bio->devs[slot].bio);
2830 }
560f8e55 2831
1d9d5241 2832 cond_resched();
de393cde
N
2833 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2834 md_check_recovery(mddev);
1da177e4 2835 }
e1dfa0a2 2836 blk_finish_plug(&plug);
1da177e4
LT
2837}
2838
2839
e879a879 2840static int init_resync(struct r10conf *conf)
1da177e4
LT
2841{
2842 int buffs;
69335ef3 2843 int i;
1da177e4
LT
2844
2845 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2846 BUG_ON(conf->r10buf_pool);
69335ef3 2847 conf->have_replacement = 0;
5cf00fcd 2848 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
2849 if (conf->mirrors[i].replacement)
2850 conf->have_replacement = 1;
1da177e4
LT
2851 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2852 if (!conf->r10buf_pool)
2853 return -ENOMEM;
2854 conf->next_resync = 0;
2855 return 0;
2856}
2857
2858/*
2859 * perform a "sync" on one "block"
2860 *
2861 * We need to make sure that no normal I/O request - particularly write
2862 * requests - conflict with active sync requests.
2863 *
2864 * This is achieved by tracking pending requests and a 'barrier' concept
2865 * that can be installed to exclude normal IO requests.
2866 *
2867 * Resync and recovery are handled very differently.
2868 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2869 *
2870 * For resync, we iterate over virtual addresses, read all copies,
2871 * and update if there are differences. If only one copy is live,
2872 * skip it.
2873 * For recovery, we iterate over physical addresses, read a good
2874 * value for each non-in_sync drive, and over-write.
2875 *
2876 * So, for recovery we may have several outstanding complex requests for a
2877 * given address, one for each out-of-sync device. We model this by allocating
2878 * a number of r10_bio structures, one for each out-of-sync device.
2879 * As we setup these structures, we collect all bio's together into a list
2880 * which we then process collectively to add pages, and then process again
2881 * to pass to generic_make_request.
2882 *
2883 * The r10_bio structures are linked using a borrowed master_bio pointer.
2884 * This link is counted in ->remaining. When the r10_bio that points to NULL
2885 * has its remaining count decremented to 0, the whole complex operation
2886 * is complete.
2887 *
2888 */
2889
fd01b88c 2890static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
ab9d47e9 2891 int *skipped, int go_faster)
1da177e4 2892{
e879a879 2893 struct r10conf *conf = mddev->private;
9f2c9d12 2894 struct r10bio *r10_bio;
1da177e4
LT
2895 struct bio *biolist = NULL, *bio;
2896 sector_t max_sector, nr_sectors;
1da177e4 2897 int i;
6cce3b23 2898 int max_sync;
57dab0bd 2899 sector_t sync_blocks;
1da177e4
LT
2900 sector_t sectors_skipped = 0;
2901 int chunks_skipped = 0;
5cf00fcd 2902 sector_t chunk_mask = conf->geo.chunk_mask;
1da177e4
LT
2903
2904 if (!conf->r10buf_pool)
2905 if (init_resync(conf))
57afd89f 2906 return 0;
1da177e4 2907
7e83ccbe
MW
2908 /*
2909 * Allow skipping a full rebuild for incremental assembly
2910 * of a clean array, like RAID1 does.
2911 */
2912 if (mddev->bitmap == NULL &&
2913 mddev->recovery_cp == MaxSector &&
2914 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2915 conf->fullsync == 0) {
2916 *skipped = 1;
2917 max_sector = mddev->dev_sectors;
2918 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2919 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2920 max_sector = mddev->resync_max_sectors;
2921 return max_sector - sector_nr;
2922 }
2923
1da177e4 2924 skipped:
58c0fed4 2925 max_sector = mddev->dev_sectors;
3ea7daa5
N
2926 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2927 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1da177e4
LT
2928 max_sector = mddev->resync_max_sectors;
2929 if (sector_nr >= max_sector) {
6cce3b23
N
2930 /* If we aborted, we need to abort the
2931 * sync on the 'current' bitmap chucks (there can
2932 * be several when recovering multiple devices).
2933 * as we may have started syncing it but not finished.
2934 * We can find the current address in
2935 * mddev->curr_resync, but for recovery,
2936 * we need to convert that to several
2937 * virtual addresses.
2938 */
3ea7daa5
N
2939 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2940 end_reshape(conf);
2941 return 0;
2942 }
2943
6cce3b23
N
2944 if (mddev->curr_resync < max_sector) { /* aborted */
2945 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2946 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2947 &sync_blocks, 1);
5cf00fcd 2948 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
2949 sector_t sect =
2950 raid10_find_virt(conf, mddev->curr_resync, i);
2951 bitmap_end_sync(mddev->bitmap, sect,
2952 &sync_blocks, 1);
2953 }
9ad1aefc
N
2954 } else {
2955 /* completed sync */
2956 if ((!mddev->bitmap || conf->fullsync)
2957 && conf->have_replacement
2958 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2959 /* Completed a full sync so the replacements
2960 * are now fully recovered.
2961 */
5cf00fcd 2962 for (i = 0; i < conf->geo.raid_disks; i++)
9ad1aefc
N
2963 if (conf->mirrors[i].replacement)
2964 conf->mirrors[i].replacement
2965 ->recovery_offset
2966 = MaxSector;
2967 }
6cce3b23 2968 conf->fullsync = 0;
9ad1aefc 2969 }
6cce3b23 2970 bitmap_close_sync(mddev->bitmap);
1da177e4 2971 close_sync(conf);
57afd89f 2972 *skipped = 1;
1da177e4
LT
2973 return sectors_skipped;
2974 }
3ea7daa5
N
2975
2976 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2977 return reshape_request(mddev, sector_nr, skipped);
2978
5cf00fcd 2979 if (chunks_skipped >= conf->geo.raid_disks) {
1da177e4
LT
2980 /* if there has been nothing to do on any drive,
2981 * then there is nothing to do at all..
2982 */
57afd89f
N
2983 *skipped = 1;
2984 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
2985 }
2986
c6207277
N
2987 if (max_sector > mddev->resync_max)
2988 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2989
1da177e4
LT
2990 /* make sure whole request will fit in a chunk - if chunks
2991 * are meaningful
2992 */
5cf00fcd
N
2993 if (conf->geo.near_copies < conf->geo.raid_disks &&
2994 max_sector > (sector_nr | chunk_mask))
2995 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4
LT
2996 /*
2997 * If there is non-resync activity waiting for us then
2998 * put in a delay to throttle resync.
2999 */
0a27ec96 3000 if (!go_faster && conf->nr_waiting)
1da177e4 3001 msleep_interruptible(1000);
1da177e4
LT
3002
3003 /* Again, very different code for resync and recovery.
3004 * Both must result in an r10bio with a list of bios that
3005 * have bi_end_io, bi_sector, bi_bdev set,
3006 * and bi_private set to the r10bio.
3007 * For recovery, we may actually create several r10bios
3008 * with 2 bios in each, that correspond to the bios in the main one.
3009 * In this case, the subordinate r10bios link back through a
3010 * borrowed master_bio pointer, and the counter in the master
3011 * includes a ref from each subordinate.
3012 */
3013 /* First, we decide what to do and set ->bi_end_io
3014 * To end_sync_read if we want to read, and
3015 * end_sync_write if we will want to write.
3016 */
3017
6cce3b23 3018 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
3019 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3020 /* recovery... the complicated one */
e875ecea 3021 int j;
1da177e4
LT
3022 r10_bio = NULL;
3023
5cf00fcd 3024 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 3025 int still_degraded;
9f2c9d12 3026 struct r10bio *rb2;
ab9d47e9
N
3027 sector_t sect;
3028 int must_sync;
e875ecea 3029 int any_working;
dc280d98 3030 struct raid10_info *mirror = &conf->mirrors[i];
24afd80d
N
3031
3032 if ((mirror->rdev == NULL ||
3033 test_bit(In_sync, &mirror->rdev->flags))
3034 &&
3035 (mirror->replacement == NULL ||
3036 test_bit(Faulty,
3037 &mirror->replacement->flags)))
ab9d47e9 3038 continue;
1da177e4 3039
ab9d47e9
N
3040 still_degraded = 0;
3041 /* want to reconstruct this device */
3042 rb2 = r10_bio;
3043 sect = raid10_find_virt(conf, sector_nr, i);
fc448a18
N
3044 if (sect >= mddev->resync_max_sectors) {
3045 /* last stripe is not complete - don't
3046 * try to recover this sector.
3047 */
3048 continue;
3049 }
24afd80d
N
3050 /* Unless we are doing a full sync, or a replacement
3051 * we only need to recover the block if it is set in
3052 * the bitmap
ab9d47e9
N
3053 */
3054 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3055 &sync_blocks, 1);
3056 if (sync_blocks < max_sync)
3057 max_sync = sync_blocks;
3058 if (!must_sync &&
24afd80d 3059 mirror->replacement == NULL &&
ab9d47e9
N
3060 !conf->fullsync) {
3061 /* yep, skip the sync_blocks here, but don't assume
3062 * that there will never be anything to do here
3063 */
3064 chunks_skipped = -1;
3065 continue;
3066 }
6cce3b23 3067
ab9d47e9
N
3068 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3069 raise_barrier(conf, rb2 != NULL);
3070 atomic_set(&r10_bio->remaining, 0);
18055569 3071
ab9d47e9
N
3072 r10_bio->master_bio = (struct bio*)rb2;
3073 if (rb2)
3074 atomic_inc(&rb2->remaining);
3075 r10_bio->mddev = mddev;
3076 set_bit(R10BIO_IsRecover, &r10_bio->state);
3077 r10_bio->sector = sect;
1da177e4 3078
ab9d47e9
N
3079 raid10_find_phys(conf, r10_bio);
3080
3081 /* Need to check if the array will still be
3082 * degraded
3083 */
5cf00fcd 3084 for (j = 0; j < conf->geo.raid_disks; j++)
ab9d47e9
N
3085 if (conf->mirrors[j].rdev == NULL ||
3086 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3087 still_degraded = 1;
87fc767b 3088 break;
1da177e4 3089 }
ab9d47e9
N
3090
3091 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3092 &sync_blocks, still_degraded);
3093
e875ecea 3094 any_working = 0;
ab9d47e9 3095 for (j=0; j<conf->copies;j++) {
e875ecea 3096 int k;
ab9d47e9 3097 int d = r10_bio->devs[j].devnum;
5e570289 3098 sector_t from_addr, to_addr;
3cb03002 3099 struct md_rdev *rdev;
40c356ce
N
3100 sector_t sector, first_bad;
3101 int bad_sectors;
ab9d47e9
N
3102 if (!conf->mirrors[d].rdev ||
3103 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3104 continue;
3105 /* This is where we read from */
e875ecea 3106 any_working = 1;
40c356ce
N
3107 rdev = conf->mirrors[d].rdev;
3108 sector = r10_bio->devs[j].addr;
3109
3110 if (is_badblock(rdev, sector, max_sync,
3111 &first_bad, &bad_sectors)) {
3112 if (first_bad > sector)
3113 max_sync = first_bad - sector;
3114 else {
3115 bad_sectors -= (sector
3116 - first_bad);
3117 if (max_sync > bad_sectors)
3118 max_sync = bad_sectors;
3119 continue;
3120 }
3121 }
ab9d47e9 3122 bio = r10_bio->devs[0].bio;
8be185f2 3123 bio_reset(bio);
ab9d47e9
N
3124 bio->bi_next = biolist;
3125 biolist = bio;
3126 bio->bi_private = r10_bio;
3127 bio->bi_end_io = end_sync_read;
3128 bio->bi_rw = READ;
5e570289 3129 from_addr = r10_bio->devs[j].addr;
24afd80d
N
3130 bio->bi_sector = from_addr + rdev->data_offset;
3131 bio->bi_bdev = rdev->bdev;
3132 atomic_inc(&rdev->nr_pending);
3133 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
3134
3135 for (k=0; k<conf->copies; k++)
3136 if (r10_bio->devs[k].devnum == i)
3137 break;
3138 BUG_ON(k == conf->copies);
5e570289 3139 to_addr = r10_bio->devs[k].addr;
ab9d47e9 3140 r10_bio->devs[0].devnum = d;
5e570289 3141 r10_bio->devs[0].addr = from_addr;
ab9d47e9 3142 r10_bio->devs[1].devnum = i;
5e570289 3143 r10_bio->devs[1].addr = to_addr;
ab9d47e9 3144
24afd80d
N
3145 rdev = mirror->rdev;
3146 if (!test_bit(In_sync, &rdev->flags)) {
3147 bio = r10_bio->devs[1].bio;
8be185f2 3148 bio_reset(bio);
24afd80d
N
3149 bio->bi_next = biolist;
3150 biolist = bio;
3151 bio->bi_private = r10_bio;
3152 bio->bi_end_io = end_sync_write;
3153 bio->bi_rw = WRITE;
3154 bio->bi_sector = to_addr
3155 + rdev->data_offset;
3156 bio->bi_bdev = rdev->bdev;
3157 atomic_inc(&r10_bio->remaining);
3158 } else
3159 r10_bio->devs[1].bio->bi_end_io = NULL;
3160
3161 /* and maybe write to replacement */
3162 bio = r10_bio->devs[1].repl_bio;
3163 if (bio)
3164 bio->bi_end_io = NULL;
3165 rdev = mirror->replacement;
3166 /* Note: if rdev != NULL, then bio
3167 * cannot be NULL as r10buf_pool_alloc will
3168 * have allocated it.
3169 * So the second test here is pointless.
3170 * But it keeps semantic-checkers happy, and
3171 * this comment keeps human reviewers
3172 * happy.
3173 */
3174 if (rdev == NULL || bio == NULL ||
3175 test_bit(Faulty, &rdev->flags))
3176 break;
8be185f2 3177 bio_reset(bio);
24afd80d
N
3178 bio->bi_next = biolist;
3179 biolist = bio;
3180 bio->bi_private = r10_bio;
3181 bio->bi_end_io = end_sync_write;
3182 bio->bi_rw = WRITE;
3183 bio->bi_sector = to_addr + rdev->data_offset;
3184 bio->bi_bdev = rdev->bdev;
3185 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
3186 break;
3187 }
3188 if (j == conf->copies) {
e875ecea
N
3189 /* Cannot recover, so abort the recovery or
3190 * record a bad block */
ab9d47e9
N
3191 put_buf(r10_bio);
3192 if (rb2)
3193 atomic_dec(&rb2->remaining);
3194 r10_bio = rb2;
e875ecea
N
3195 if (any_working) {
3196 /* problem is that there are bad blocks
3197 * on other device(s)
3198 */
3199 int k;
3200 for (k = 0; k < conf->copies; k++)
3201 if (r10_bio->devs[k].devnum == i)
3202 break;
24afd80d
N
3203 if (!test_bit(In_sync,
3204 &mirror->rdev->flags)
3205 && !rdev_set_badblocks(
3206 mirror->rdev,
3207 r10_bio->devs[k].addr,
3208 max_sync, 0))
3209 any_working = 0;
3210 if (mirror->replacement &&
3211 !rdev_set_badblocks(
3212 mirror->replacement,
e875ecea
N
3213 r10_bio->devs[k].addr,
3214 max_sync, 0))
3215 any_working = 0;
3216 }
3217 if (!any_working) {
3218 if (!test_and_set_bit(MD_RECOVERY_INTR,
3219 &mddev->recovery))
3220 printk(KERN_INFO "md/raid10:%s: insufficient "
3221 "working devices for recovery.\n",
3222 mdname(mddev));
24afd80d 3223 mirror->recovery_disabled
e875ecea
N
3224 = mddev->recovery_disabled;
3225 }
ab9d47e9 3226 break;
1da177e4 3227 }
ab9d47e9 3228 }
1da177e4
LT
3229 if (biolist == NULL) {
3230 while (r10_bio) {
9f2c9d12
N
3231 struct r10bio *rb2 = r10_bio;
3232 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3233 rb2->master_bio = NULL;
3234 put_buf(rb2);
3235 }
3236 goto giveup;
3237 }
3238 } else {
3239 /* resync. Schedule a read for every block at this virt offset */
3240 int count = 0;
6cce3b23 3241
78200d45
N
3242 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3243
6cce3b23
N
3244 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3245 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3246 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3247 &mddev->recovery)) {
6cce3b23
N
3248 /* We can skip this block */
3249 *skipped = 1;
3250 return sync_blocks + sectors_skipped;
3251 }
3252 if (sync_blocks < max_sync)
3253 max_sync = sync_blocks;
1da177e4
LT
3254 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3255
1da177e4
LT
3256 r10_bio->mddev = mddev;
3257 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3258 raise_barrier(conf, 0);
3259 conf->next_resync = sector_nr;
1da177e4
LT
3260
3261 r10_bio->master_bio = NULL;
3262 r10_bio->sector = sector_nr;
3263 set_bit(R10BIO_IsSync, &r10_bio->state);
3264 raid10_find_phys(conf, r10_bio);
5cf00fcd 3265 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3266
5cf00fcd 3267 for (i = 0; i < conf->copies; i++) {
1da177e4 3268 int d = r10_bio->devs[i].devnum;
40c356ce
N
3269 sector_t first_bad, sector;
3270 int bad_sectors;
3271
9ad1aefc
N
3272 if (r10_bio->devs[i].repl_bio)
3273 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3274
1da177e4 3275 bio = r10_bio->devs[i].bio;
8be185f2 3276 bio_reset(bio);
af03b8e4 3277 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 3278 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 3279 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4 3280 continue;
40c356ce
N
3281 sector = r10_bio->devs[i].addr;
3282 if (is_badblock(conf->mirrors[d].rdev,
3283 sector, max_sync,
3284 &first_bad, &bad_sectors)) {
3285 if (first_bad > sector)
3286 max_sync = first_bad - sector;
3287 else {
3288 bad_sectors -= (sector - first_bad);
3289 if (max_sync > bad_sectors)
91502f09 3290 max_sync = bad_sectors;
40c356ce
N
3291 continue;
3292 }
3293 }
1da177e4
LT
3294 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3295 atomic_inc(&r10_bio->remaining);
3296 bio->bi_next = biolist;
3297 biolist = bio;
3298 bio->bi_private = r10_bio;
3299 bio->bi_end_io = end_sync_read;
802ba064 3300 bio->bi_rw = READ;
40c356ce 3301 bio->bi_sector = sector +
1da177e4
LT
3302 conf->mirrors[d].rdev->data_offset;
3303 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3304 count++;
9ad1aefc
N
3305
3306 if (conf->mirrors[d].replacement == NULL ||
3307 test_bit(Faulty,
3308 &conf->mirrors[d].replacement->flags))
3309 continue;
3310
3311 /* Need to set up for writing to the replacement */
3312 bio = r10_bio->devs[i].repl_bio;
8be185f2 3313 bio_reset(bio);
9ad1aefc
N
3314 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3315
3316 sector = r10_bio->devs[i].addr;
3317 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3318 bio->bi_next = biolist;
3319 biolist = bio;
3320 bio->bi_private = r10_bio;
3321 bio->bi_end_io = end_sync_write;
3322 bio->bi_rw = WRITE;
3323 bio->bi_sector = sector +
3324 conf->mirrors[d].replacement->data_offset;
3325 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3326 count++;
1da177e4
LT
3327 }
3328
3329 if (count < 2) {
3330 for (i=0; i<conf->copies; i++) {
3331 int d = r10_bio->devs[i].devnum;
3332 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3333 rdev_dec_pending(conf->mirrors[d].rdev,
3334 mddev);
9ad1aefc
N
3335 if (r10_bio->devs[i].repl_bio &&
3336 r10_bio->devs[i].repl_bio->bi_end_io)
3337 rdev_dec_pending(
3338 conf->mirrors[d].replacement,
3339 mddev);
1da177e4
LT
3340 }
3341 put_buf(r10_bio);
3342 biolist = NULL;
3343 goto giveup;
3344 }
3345 }
3346
1da177e4 3347 nr_sectors = 0;
6cce3b23
N
3348 if (sector_nr + max_sync < max_sector)
3349 max_sector = sector_nr + max_sync;
1da177e4
LT
3350 do {
3351 struct page *page;
3352 int len = PAGE_SIZE;
1da177e4
LT
3353 if (sector_nr + (len>>9) > max_sector)
3354 len = (max_sector - sector_nr) << 9;
3355 if (len == 0)
3356 break;
3357 for (bio= biolist ; bio ; bio=bio->bi_next) {
ab9d47e9 3358 struct bio *bio2;
1da177e4 3359 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
ab9d47e9
N
3360 if (bio_add_page(bio, page, len, 0))
3361 continue;
3362
3363 /* stop here */
3364 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3365 for (bio2 = biolist;
3366 bio2 && bio2 != bio;
3367 bio2 = bio2->bi_next) {
3368 /* remove last page from this bio */
3369 bio2->bi_vcnt--;
3370 bio2->bi_size -= len;
3371 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1da177e4 3372 }
ab9d47e9 3373 goto bio_full;
1da177e4
LT
3374 }
3375 nr_sectors += len>>9;
3376 sector_nr += len>>9;
3377 } while (biolist->bi_vcnt < RESYNC_PAGES);
3378 bio_full:
3379 r10_bio->sectors = nr_sectors;
3380
3381 while (biolist) {
3382 bio = biolist;
3383 biolist = biolist->bi_next;
3384
3385 bio->bi_next = NULL;
3386 r10_bio = bio->bi_private;
3387 r10_bio->sectors = nr_sectors;
3388
3389 if (bio->bi_end_io == end_sync_read) {
3390 md_sync_acct(bio->bi_bdev, nr_sectors);
3391 generic_make_request(bio);
3392 }
3393 }
3394
57afd89f
N
3395 if (sectors_skipped)
3396 /* pretend they weren't skipped, it makes
3397 * no important difference in this case
3398 */
3399 md_done_sync(mddev, sectors_skipped, 1);
3400
1da177e4
LT
3401 return sectors_skipped + nr_sectors;
3402 giveup:
3403 /* There is nowhere to write, so all non-sync
e875ecea
N
3404 * drives must be failed or in resync, all drives
3405 * have a bad block, so try the next chunk...
1da177e4 3406 */
09b4068a
N
3407 if (sector_nr + max_sync < max_sector)
3408 max_sector = sector_nr + max_sync;
3409
3410 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3411 chunks_skipped ++;
3412 sector_nr = max_sector;
1da177e4 3413 goto skipped;
1da177e4
LT
3414}
3415
80c3a6ce 3416static sector_t
fd01b88c 3417raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3418{
3419 sector_t size;
e879a879 3420 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3421
3422 if (!raid_disks)
3ea7daa5
N
3423 raid_disks = min(conf->geo.raid_disks,
3424 conf->prev.raid_disks);
80c3a6ce 3425 if (!sectors)
dab8b292 3426 sectors = conf->dev_sectors;
80c3a6ce 3427
5cf00fcd
N
3428 size = sectors >> conf->geo.chunk_shift;
3429 sector_div(size, conf->geo.far_copies);
80c3a6ce 3430 size = size * raid_disks;
5cf00fcd 3431 sector_div(size, conf->geo.near_copies);
80c3a6ce 3432
5cf00fcd 3433 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3434}
3435
6508fdbf
N
3436static void calc_sectors(struct r10conf *conf, sector_t size)
3437{
3438 /* Calculate the number of sectors-per-device that will
3439 * actually be used, and set conf->dev_sectors and
3440 * conf->stride
3441 */
3442
5cf00fcd
N
3443 size = size >> conf->geo.chunk_shift;
3444 sector_div(size, conf->geo.far_copies);
3445 size = size * conf->geo.raid_disks;
3446 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3447 /* 'size' is now the number of chunks in the array */
3448 /* calculate "used chunks per device" */
3449 size = size * conf->copies;
3450
3451 /* We need to round up when dividing by raid_disks to
3452 * get the stride size.
3453 */
5cf00fcd 3454 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3455
5cf00fcd 3456 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3457
5cf00fcd
N
3458 if (conf->geo.far_offset)
3459 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3460 else {
5cf00fcd
N
3461 sector_div(size, conf->geo.far_copies);
3462 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3463 }
3464}
dab8b292 3465
deb200d0
N
3466enum geo_type {geo_new, geo_old, geo_start};
3467static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3468{
3469 int nc, fc, fo;
3470 int layout, chunk, disks;
3471 switch (new) {
3472 case geo_old:
3473 layout = mddev->layout;
3474 chunk = mddev->chunk_sectors;
3475 disks = mddev->raid_disks - mddev->delta_disks;
3476 break;
3477 case geo_new:
3478 layout = mddev->new_layout;
3479 chunk = mddev->new_chunk_sectors;
3480 disks = mddev->raid_disks;
3481 break;
3482 default: /* avoid 'may be unused' warnings */
3483 case geo_start: /* new when starting reshape - raid_disks not
3484 * updated yet. */
3485 layout = mddev->new_layout;
3486 chunk = mddev->new_chunk_sectors;
3487 disks = mddev->raid_disks + mddev->delta_disks;
3488 break;
3489 }
475901af 3490 if (layout >> 18)
deb200d0
N
3491 return -1;
3492 if (chunk < (PAGE_SIZE >> 9) ||
3493 !is_power_of_2(chunk))
3494 return -2;
3495 nc = layout & 255;
3496 fc = (layout >> 8) & 255;
3497 fo = layout & (1<<16);
3498 geo->raid_disks = disks;
3499 geo->near_copies = nc;
3500 geo->far_copies = fc;
3501 geo->far_offset = fo;
475901af 3502 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
deb200d0
N
3503 geo->chunk_mask = chunk - 1;
3504 geo->chunk_shift = ffz(~chunk);
3505 return nc*fc;
3506}
3507
e879a879 3508static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3509{
e879a879 3510 struct r10conf *conf = NULL;
dab8b292 3511 int err = -EINVAL;
deb200d0
N
3512 struct geom geo;
3513 int copies;
3514
3515 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 3516
deb200d0 3517 if (copies == -2) {
128595ed
N
3518 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3519 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3520 mdname(mddev), PAGE_SIZE);
dab8b292 3521 goto out;
1da177e4 3522 }
2604b703 3523
deb200d0 3524 if (copies < 2 || copies > mddev->raid_disks) {
128595ed 3525 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 3526 mdname(mddev), mddev->new_layout);
1da177e4
LT
3527 goto out;
3528 }
dab8b292
TM
3529
3530 err = -ENOMEM;
e879a879 3531 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3532 if (!conf)
1da177e4 3533 goto out;
dab8b292 3534
3ea7daa5 3535 /* FIXME calc properly */
dc280d98 3536 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3ea7daa5 3537 max(0,mddev->delta_disks)),
dab8b292
TM
3538 GFP_KERNEL);
3539 if (!conf->mirrors)
3540 goto out;
4443ae10
N
3541
3542 conf->tmppage = alloc_page(GFP_KERNEL);
3543 if (!conf->tmppage)
dab8b292
TM
3544 goto out;
3545
deb200d0
N
3546 conf->geo = geo;
3547 conf->copies = copies;
dab8b292
TM
3548 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3549 r10bio_pool_free, conf);
3550 if (!conf->r10bio_pool)
3551 goto out;
3552
6508fdbf 3553 calc_sectors(conf, mddev->dev_sectors);
3ea7daa5
N
3554 if (mddev->reshape_position == MaxSector) {
3555 conf->prev = conf->geo;
3556 conf->reshape_progress = MaxSector;
3557 } else {
3558 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3559 err = -EINVAL;
3560 goto out;
3561 }
3562 conf->reshape_progress = mddev->reshape_position;
3563 if (conf->prev.far_offset)
3564 conf->prev.stride = 1 << conf->prev.chunk_shift;
3565 else
3566 /* far_copies must be 1 */
3567 conf->prev.stride = conf->dev_sectors;
3568 }
e7e72bf6 3569 spin_lock_init(&conf->device_lock);
dab8b292
TM
3570 INIT_LIST_HEAD(&conf->retry_list);
3571
3572 spin_lock_init(&conf->resync_lock);
3573 init_waitqueue_head(&conf->wait_barrier);
3574
0232605d 3575 conf->thread = md_register_thread(raid10d, mddev, "raid10");
dab8b292
TM
3576 if (!conf->thread)
3577 goto out;
3578
dab8b292
TM
3579 conf->mddev = mddev;
3580 return conf;
3581
3582 out:
3ea7daa5
N
3583 if (err == -ENOMEM)
3584 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3585 mdname(mddev));
dab8b292
TM
3586 if (conf) {
3587 if (conf->r10bio_pool)
3588 mempool_destroy(conf->r10bio_pool);
3589 kfree(conf->mirrors);
3590 safe_put_page(conf->tmppage);
3591 kfree(conf);
3592 }
3593 return ERR_PTR(err);
3594}
3595
fd01b88c 3596static int run(struct mddev *mddev)
dab8b292 3597{
e879a879 3598 struct r10conf *conf;
dab8b292 3599 int i, disk_idx, chunk_size;
dc280d98 3600 struct raid10_info *disk;
3cb03002 3601 struct md_rdev *rdev;
dab8b292 3602 sector_t size;
3ea7daa5
N
3603 sector_t min_offset_diff = 0;
3604 int first = 1;
532a2a3f 3605 bool discard_supported = false;
dab8b292
TM
3606
3607 if (mddev->private == NULL) {
3608 conf = setup_conf(mddev);
3609 if (IS_ERR(conf))
3610 return PTR_ERR(conf);
3611 mddev->private = conf;
3612 }
3613 conf = mddev->private;
3614 if (!conf)
3615 goto out;
3616
dab8b292
TM
3617 mddev->thread = conf->thread;
3618 conf->thread = NULL;
3619
8f6c2e4b 3620 chunk_size = mddev->chunk_sectors << 9;
cc4d1efd 3621 if (mddev->queue) {
532a2a3f
SL
3622 blk_queue_max_discard_sectors(mddev->queue,
3623 mddev->chunk_sectors);
5026d7a9 3624 blk_queue_max_write_same_sectors(mddev->queue, 0);
cc4d1efd
JB
3625 blk_queue_io_min(mddev->queue, chunk_size);
3626 if (conf->geo.raid_disks % conf->geo.near_copies)
3627 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3628 else
3629 blk_queue_io_opt(mddev->queue, chunk_size *
3630 (conf->geo.raid_disks / conf->geo.near_copies));
3631 }
8f6c2e4b 3632
dafb20fa 3633 rdev_for_each(rdev, mddev) {
3ea7daa5 3634 long long diff;
aba336bd 3635 struct request_queue *q;
34b343cf 3636
1da177e4 3637 disk_idx = rdev->raid_disk;
f8c9e74f
N
3638 if (disk_idx < 0)
3639 continue;
3640 if (disk_idx >= conf->geo.raid_disks &&
3641 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
3642 continue;
3643 disk = conf->mirrors + disk_idx;
3644
56a2559b
N
3645 if (test_bit(Replacement, &rdev->flags)) {
3646 if (disk->replacement)
3647 goto out_free_conf;
3648 disk->replacement = rdev;
3649 } else {
3650 if (disk->rdev)
3651 goto out_free_conf;
3652 disk->rdev = rdev;
3653 }
aba336bd
N
3654 q = bdev_get_queue(rdev->bdev);
3655 if (q->merge_bvec_fn)
3656 mddev->merge_check_needed = 1;
3ea7daa5
N
3657 diff = (rdev->new_data_offset - rdev->data_offset);
3658 if (!mddev->reshape_backwards)
3659 diff = -diff;
3660 if (diff < 0)
3661 diff = 0;
3662 if (first || diff < min_offset_diff)
3663 min_offset_diff = diff;
56a2559b 3664
cc4d1efd
JB
3665 if (mddev->gendisk)
3666 disk_stack_limits(mddev->gendisk, rdev->bdev,
3667 rdev->data_offset << 9);
1da177e4
LT
3668
3669 disk->head_position = 0;
532a2a3f
SL
3670
3671 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3672 discard_supported = true;
1da177e4 3673 }
3ea7daa5 3674
ed30be07
JB
3675 if (mddev->queue) {
3676 if (discard_supported)
3677 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3678 mddev->queue);
3679 else
3680 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3681 mddev->queue);
3682 }
6d508242 3683 /* need to check that every block has at least one working mirror */
700c7213 3684 if (!enough(conf, -1)) {
128595ed 3685 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 3686 mdname(mddev));
1da177e4
LT
3687 goto out_free_conf;
3688 }
3689
3ea7daa5
N
3690 if (conf->reshape_progress != MaxSector) {
3691 /* must ensure that shape change is supported */
3692 if (conf->geo.far_copies != 1 &&
3693 conf->geo.far_offset == 0)
3694 goto out_free_conf;
3695 if (conf->prev.far_copies != 1 &&
3696 conf->geo.far_offset == 0)
3697 goto out_free_conf;
3698 }
3699
1da177e4 3700 mddev->degraded = 0;
f8c9e74f
N
3701 for (i = 0;
3702 i < conf->geo.raid_disks
3703 || i < conf->prev.raid_disks;
3704 i++) {
1da177e4
LT
3705
3706 disk = conf->mirrors + i;
3707
56a2559b
N
3708 if (!disk->rdev && disk->replacement) {
3709 /* The replacement is all we have - use it */
3710 disk->rdev = disk->replacement;
3711 disk->replacement = NULL;
3712 clear_bit(Replacement, &disk->rdev->flags);
3713 }
3714
5fd6c1dc 3715 if (!disk->rdev ||
2e333e89 3716 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
3717 disk->head_position = 0;
3718 mddev->degraded++;
8c2e870a
NB
3719 if (disk->rdev)
3720 conf->fullsync = 1;
1da177e4 3721 }
d890fa2b 3722 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
3723 }
3724
8c6ac868 3725 if (mddev->recovery_cp != MaxSector)
128595ed 3726 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
3727 " -- starting background reconstruction\n",
3728 mdname(mddev));
1da177e4 3729 printk(KERN_INFO
128595ed 3730 "md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
3731 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3732 conf->geo.raid_disks);
1da177e4
LT
3733 /*
3734 * Ok, everything is just fine now
3735 */
dab8b292
TM
3736 mddev->dev_sectors = conf->dev_sectors;
3737 size = raid10_size(mddev, 0, 0);
3738 md_set_array_sectors(mddev, size);
3739 mddev->resync_max_sectors = size;
1da177e4 3740
cc4d1efd 3741 if (mddev->queue) {
5cf00fcd 3742 int stripe = conf->geo.raid_disks *
9d8f0363 3743 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
cc4d1efd
JB
3744 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3745 mddev->queue->backing_dev_info.congested_data = mddev;
3746
3747 /* Calculate max read-ahead size.
3748 * We need to readahead at least twice a whole stripe....
3749 * maybe...
3750 */
5cf00fcd 3751 stripe /= conf->geo.near_copies;
3ea7daa5
N
3752 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3753 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
cc4d1efd 3754 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
1da177e4
LT
3755 }
3756
a91a2785
MP
3757
3758 if (md_integrity_register(mddev))
3759 goto out_free_conf;
3760
3ea7daa5
N
3761 if (conf->reshape_progress != MaxSector) {
3762 unsigned long before_length, after_length;
3763
3764 before_length = ((1 << conf->prev.chunk_shift) *
3765 conf->prev.far_copies);
3766 after_length = ((1 << conf->geo.chunk_shift) *
3767 conf->geo.far_copies);
3768
3769 if (max(before_length, after_length) > min_offset_diff) {
3770 /* This cannot work */
3771 printk("md/raid10: offset difference not enough to continue reshape\n");
3772 goto out_free_conf;
3773 }
3774 conf->offset_diff = min_offset_diff;
3775
3776 conf->reshape_safe = conf->reshape_progress;
3777 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3778 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3779 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3780 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3781 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3782 "reshape");
3783 }
3784
1da177e4
LT
3785 return 0;
3786
3787out_free_conf:
01f96c0a 3788 md_unregister_thread(&mddev->thread);
1da177e4
LT
3789 if (conf->r10bio_pool)
3790 mempool_destroy(conf->r10bio_pool);
1345b1d8 3791 safe_put_page(conf->tmppage);
990a8baf 3792 kfree(conf->mirrors);
1da177e4
LT
3793 kfree(conf);
3794 mddev->private = NULL;
3795out:
3796 return -EIO;
3797}
3798
fd01b88c 3799static int stop(struct mddev *mddev)
1da177e4 3800{
e879a879 3801 struct r10conf *conf = mddev->private;
1da177e4 3802
409c57f3
N
3803 raise_barrier(conf, 0);
3804 lower_barrier(conf);
3805
01f96c0a 3806 md_unregister_thread(&mddev->thread);
cc4d1efd
JB
3807 if (mddev->queue)
3808 /* the unplug fn references 'conf'*/
3809 blk_sync_queue(mddev->queue);
3810
1da177e4
LT
3811 if (conf->r10bio_pool)
3812 mempool_destroy(conf->r10bio_pool);
0fea7ed8 3813 safe_put_page(conf->tmppage);
990a8baf 3814 kfree(conf->mirrors);
1da177e4
LT
3815 kfree(conf);
3816 mddev->private = NULL;
3817 return 0;
3818}
3819
fd01b88c 3820static void raid10_quiesce(struct mddev *mddev, int state)
6cce3b23 3821{
e879a879 3822 struct r10conf *conf = mddev->private;
6cce3b23
N
3823
3824 switch(state) {
3825 case 1:
3826 raise_barrier(conf, 0);
3827 break;
3828 case 0:
3829 lower_barrier(conf);
3830 break;
3831 }
6cce3b23 3832}
1da177e4 3833
006a09a0
N
3834static int raid10_resize(struct mddev *mddev, sector_t sectors)
3835{
3836 /* Resize of 'far' arrays is not supported.
3837 * For 'near' and 'offset' arrays we can set the
3838 * number of sectors used to be an appropriate multiple
3839 * of the chunk size.
3840 * For 'offset', this is far_copies*chunksize.
3841 * For 'near' the multiplier is the LCM of
3842 * near_copies and raid_disks.
3843 * So if far_copies > 1 && !far_offset, fail.
3844 * Else find LCM(raid_disks, near_copy)*far_copies and
3845 * multiply by chunk_size. Then round to this number.
3846 * This is mostly done by raid10_size()
3847 */
3848 struct r10conf *conf = mddev->private;
3849 sector_t oldsize, size;
3850
f8c9e74f
N
3851 if (mddev->reshape_position != MaxSector)
3852 return -EBUSY;
3853
5cf00fcd 3854 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
3855 return -EINVAL;
3856
3857 oldsize = raid10_size(mddev, 0, 0);
3858 size = raid10_size(mddev, sectors, 0);
a4a6125a
N
3859 if (mddev->external_size &&
3860 mddev->array_sectors > size)
006a09a0 3861 return -EINVAL;
a4a6125a
N
3862 if (mddev->bitmap) {
3863 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3864 if (ret)
3865 return ret;
3866 }
3867 md_set_array_sectors(mddev, size);
006a09a0
N
3868 set_capacity(mddev->gendisk, mddev->array_sectors);
3869 revalidate_disk(mddev->gendisk);
3870 if (sectors > mddev->dev_sectors &&
3871 mddev->recovery_cp > oldsize) {
3872 mddev->recovery_cp = oldsize;
3873 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3874 }
6508fdbf
N
3875 calc_sectors(conf, sectors);
3876 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
3877 mddev->resync_max_sectors = size;
3878 return 0;
3879}
3880
fd01b88c 3881static void *raid10_takeover_raid0(struct mddev *mddev)
dab8b292 3882{
3cb03002 3883 struct md_rdev *rdev;
e879a879 3884 struct r10conf *conf;
dab8b292
TM
3885
3886 if (mddev->degraded > 0) {
128595ed
N
3887 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3888 mdname(mddev));
dab8b292
TM
3889 return ERR_PTR(-EINVAL);
3890 }
3891
dab8b292
TM
3892 /* Set new parameters */
3893 mddev->new_level = 10;
3894 /* new layout: far_copies = 1, near_copies = 2 */
3895 mddev->new_layout = (1<<8) + 2;
3896 mddev->new_chunk_sectors = mddev->chunk_sectors;
3897 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
3898 mddev->raid_disks *= 2;
3899 /* make sure it will be not marked as dirty */
3900 mddev->recovery_cp = MaxSector;
3901
3902 conf = setup_conf(mddev);
02214dc5 3903 if (!IS_ERR(conf)) {
dafb20fa 3904 rdev_for_each(rdev, mddev)
e93f68a1
N
3905 if (rdev->raid_disk >= 0)
3906 rdev->new_raid_disk = rdev->raid_disk * 2;
02214dc5
KW
3907 conf->barrier = 1;
3908 }
3909
dab8b292
TM
3910 return conf;
3911}
3912
fd01b88c 3913static void *raid10_takeover(struct mddev *mddev)
dab8b292 3914{
e373ab10 3915 struct r0conf *raid0_conf;
dab8b292
TM
3916
3917 /* raid10 can take over:
3918 * raid0 - providing it has only two drives
3919 */
3920 if (mddev->level == 0) {
3921 /* for raid0 takeover only one zone is supported */
e373ab10
N
3922 raid0_conf = mddev->private;
3923 if (raid0_conf->nr_strip_zones > 1) {
128595ed
N
3924 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3925 " with more than one zone.\n",
3926 mdname(mddev));
dab8b292
TM
3927 return ERR_PTR(-EINVAL);
3928 }
3929 return raid10_takeover_raid0(mddev);
3930 }
3931 return ERR_PTR(-EINVAL);
3932}
3933
3ea7daa5
N
3934static int raid10_check_reshape(struct mddev *mddev)
3935{
3936 /* Called when there is a request to change
3937 * - layout (to ->new_layout)
3938 * - chunk size (to ->new_chunk_sectors)
3939 * - raid_disks (by delta_disks)
3940 * or when trying to restart a reshape that was ongoing.
3941 *
3942 * We need to validate the request and possibly allocate
3943 * space if that might be an issue later.
3944 *
3945 * Currently we reject any reshape of a 'far' mode array,
3946 * allow chunk size to change if new is generally acceptable,
3947 * allow raid_disks to increase, and allow
3948 * a switch between 'near' mode and 'offset' mode.
3949 */
3950 struct r10conf *conf = mddev->private;
3951 struct geom geo;
3952
3953 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3954 return -EINVAL;
3955
3956 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3957 /* mustn't change number of copies */
3958 return -EINVAL;
3959 if (geo.far_copies > 1 && !geo.far_offset)
3960 /* Cannot switch to 'far' mode */
3961 return -EINVAL;
3962
3963 if (mddev->array_sectors & geo.chunk_mask)
3964 /* not factor of array size */
3965 return -EINVAL;
3966
3ea7daa5
N
3967 if (!enough(conf, -1))
3968 return -EINVAL;
3969
3970 kfree(conf->mirrors_new);
3971 conf->mirrors_new = NULL;
3972 if (mddev->delta_disks > 0) {
3973 /* allocate new 'mirrors' list */
3974 conf->mirrors_new = kzalloc(
dc280d98 3975 sizeof(struct raid10_info)
3ea7daa5
N
3976 *(mddev->raid_disks +
3977 mddev->delta_disks),
3978 GFP_KERNEL);
3979 if (!conf->mirrors_new)
3980 return -ENOMEM;
3981 }
3982 return 0;
3983}
3984
3985/*
3986 * Need to check if array has failed when deciding whether to:
3987 * - start an array
3988 * - remove non-faulty devices
3989 * - add a spare
3990 * - allow a reshape
3991 * This determination is simple when no reshape is happening.
3992 * However if there is a reshape, we need to carefully check
3993 * both the before and after sections.
3994 * This is because some failed devices may only affect one
3995 * of the two sections, and some non-in_sync devices may
3996 * be insync in the section most affected by failed devices.
3997 */
3998static int calc_degraded(struct r10conf *conf)
3999{
4000 int degraded, degraded2;
4001 int i;
4002
4003 rcu_read_lock();
4004 degraded = 0;
4005 /* 'prev' section first */
4006 for (i = 0; i < conf->prev.raid_disks; i++) {
4007 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4008 if (!rdev || test_bit(Faulty, &rdev->flags))
4009 degraded++;
4010 else if (!test_bit(In_sync, &rdev->flags))
4011 /* When we can reduce the number of devices in
4012 * an array, this might not contribute to
4013 * 'degraded'. It does now.
4014 */
4015 degraded++;
4016 }
4017 rcu_read_unlock();
4018 if (conf->geo.raid_disks == conf->prev.raid_disks)
4019 return degraded;
4020 rcu_read_lock();
4021 degraded2 = 0;
4022 for (i = 0; i < conf->geo.raid_disks; i++) {
4023 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4024 if (!rdev || test_bit(Faulty, &rdev->flags))
4025 degraded2++;
4026 else if (!test_bit(In_sync, &rdev->flags)) {
4027 /* If reshape is increasing the number of devices,
4028 * this section has already been recovered, so
4029 * it doesn't contribute to degraded.
4030 * else it does.
4031 */
4032 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4033 degraded2++;
4034 }
4035 }
4036 rcu_read_unlock();
4037 if (degraded2 > degraded)
4038 return degraded2;
4039 return degraded;
4040}
4041
4042static int raid10_start_reshape(struct mddev *mddev)
4043{
4044 /* A 'reshape' has been requested. This commits
4045 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4046 * This also checks if there are enough spares and adds them
4047 * to the array.
4048 * We currently require enough spares to make the final
4049 * array non-degraded. We also require that the difference
4050 * between old and new data_offset - on each device - is
4051 * enough that we never risk over-writing.
4052 */
4053
4054 unsigned long before_length, after_length;
4055 sector_t min_offset_diff = 0;
4056 int first = 1;
4057 struct geom new;
4058 struct r10conf *conf = mddev->private;
4059 struct md_rdev *rdev;
4060 int spares = 0;
bb63a701 4061 int ret;
3ea7daa5
N
4062
4063 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4064 return -EBUSY;
4065
4066 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4067 return -EINVAL;
4068
4069 before_length = ((1 << conf->prev.chunk_shift) *
4070 conf->prev.far_copies);
4071 after_length = ((1 << conf->geo.chunk_shift) *
4072 conf->geo.far_copies);
4073
4074 rdev_for_each(rdev, mddev) {
4075 if (!test_bit(In_sync, &rdev->flags)
4076 && !test_bit(Faulty, &rdev->flags))
4077 spares++;
4078 if (rdev->raid_disk >= 0) {
4079 long long diff = (rdev->new_data_offset
4080 - rdev->data_offset);
4081 if (!mddev->reshape_backwards)
4082 diff = -diff;
4083 if (diff < 0)
4084 diff = 0;
4085 if (first || diff < min_offset_diff)
4086 min_offset_diff = diff;
4087 }
4088 }
4089
4090 if (max(before_length, after_length) > min_offset_diff)
4091 return -EINVAL;
4092
4093 if (spares < mddev->delta_disks)
4094 return -EINVAL;
4095
4096 conf->offset_diff = min_offset_diff;
4097 spin_lock_irq(&conf->device_lock);
4098 if (conf->mirrors_new) {
4099 memcpy(conf->mirrors_new, conf->mirrors,
dc280d98 4100 sizeof(struct raid10_info)*conf->prev.raid_disks);
3ea7daa5
N
4101 smp_mb();
4102 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4103 conf->mirrors_old = conf->mirrors;
4104 conf->mirrors = conf->mirrors_new;
4105 conf->mirrors_new = NULL;
4106 }
4107 setup_geo(&conf->geo, mddev, geo_start);
4108 smp_mb();
4109 if (mddev->reshape_backwards) {
4110 sector_t size = raid10_size(mddev, 0, 0);
4111 if (size < mddev->array_sectors) {
4112 spin_unlock_irq(&conf->device_lock);
4113 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4114 mdname(mddev));
4115 return -EINVAL;
4116 }
4117 mddev->resync_max_sectors = size;
4118 conf->reshape_progress = size;
4119 } else
4120 conf->reshape_progress = 0;
4121 spin_unlock_irq(&conf->device_lock);
4122
bb63a701
N
4123 if (mddev->delta_disks && mddev->bitmap) {
4124 ret = bitmap_resize(mddev->bitmap,
4125 raid10_size(mddev, 0,
4126 conf->geo.raid_disks),
4127 0, 0);
4128 if (ret)
4129 goto abort;
4130 }
3ea7daa5
N
4131 if (mddev->delta_disks > 0) {
4132 rdev_for_each(rdev, mddev)
4133 if (rdev->raid_disk < 0 &&
4134 !test_bit(Faulty, &rdev->flags)) {
4135 if (raid10_add_disk(mddev, rdev) == 0) {
4136 if (rdev->raid_disk >=
4137 conf->prev.raid_disks)
4138 set_bit(In_sync, &rdev->flags);
4139 else
4140 rdev->recovery_offset = 0;
4141
4142 if (sysfs_link_rdev(mddev, rdev))
4143 /* Failure here is OK */;
4144 }
4145 } else if (rdev->raid_disk >= conf->prev.raid_disks
4146 && !test_bit(Faulty, &rdev->flags)) {
4147 /* This is a spare that was manually added */
4148 set_bit(In_sync, &rdev->flags);
4149 }
4150 }
4151 /* When a reshape changes the number of devices,
4152 * ->degraded is measured against the larger of the
4153 * pre and post numbers.
4154 */
4155 spin_lock_irq(&conf->device_lock);
4156 mddev->degraded = calc_degraded(conf);
4157 spin_unlock_irq(&conf->device_lock);
4158 mddev->raid_disks = conf->geo.raid_disks;
4159 mddev->reshape_position = conf->reshape_progress;
4160 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4161
4162 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4163 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4164 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4165 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4166
4167 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4168 "reshape");
4169 if (!mddev->sync_thread) {
bb63a701
N
4170 ret = -EAGAIN;
4171 goto abort;
3ea7daa5
N
4172 }
4173 conf->reshape_checkpoint = jiffies;
4174 md_wakeup_thread(mddev->sync_thread);
4175 md_new_event(mddev);
4176 return 0;
bb63a701
N
4177
4178abort:
4179 mddev->recovery = 0;
4180 spin_lock_irq(&conf->device_lock);
4181 conf->geo = conf->prev;
4182 mddev->raid_disks = conf->geo.raid_disks;
4183 rdev_for_each(rdev, mddev)
4184 rdev->new_data_offset = rdev->data_offset;
4185 smp_wmb();
4186 conf->reshape_progress = MaxSector;
4187 mddev->reshape_position = MaxSector;
4188 spin_unlock_irq(&conf->device_lock);
4189 return ret;
3ea7daa5
N
4190}
4191
4192/* Calculate the last device-address that could contain
4193 * any block from the chunk that includes the array-address 's'
4194 * and report the next address.
4195 * i.e. the address returned will be chunk-aligned and after
4196 * any data that is in the chunk containing 's'.
4197 */
4198static sector_t last_dev_address(sector_t s, struct geom *geo)
4199{
4200 s = (s | geo->chunk_mask) + 1;
4201 s >>= geo->chunk_shift;
4202 s *= geo->near_copies;
4203 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4204 s *= geo->far_copies;
4205 s <<= geo->chunk_shift;
4206 return s;
4207}
4208
4209/* Calculate the first device-address that could contain
4210 * any block from the chunk that includes the array-address 's'.
4211 * This too will be the start of a chunk
4212 */
4213static sector_t first_dev_address(sector_t s, struct geom *geo)
4214{
4215 s >>= geo->chunk_shift;
4216 s *= geo->near_copies;
4217 sector_div(s, geo->raid_disks);
4218 s *= geo->far_copies;
4219 s <<= geo->chunk_shift;
4220 return s;
4221}
4222
4223static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4224 int *skipped)
4225{
4226 /* We simply copy at most one chunk (smallest of old and new)
4227 * at a time, possibly less if that exceeds RESYNC_PAGES,
4228 * or we hit a bad block or something.
4229 * This might mean we pause for normal IO in the middle of
4230 * a chunk, but that is not a problem was mddev->reshape_position
4231 * can record any location.
4232 *
4233 * If we will want to write to a location that isn't
4234 * yet recorded as 'safe' (i.e. in metadata on disk) then
4235 * we need to flush all reshape requests and update the metadata.
4236 *
4237 * When reshaping forwards (e.g. to more devices), we interpret
4238 * 'safe' as the earliest block which might not have been copied
4239 * down yet. We divide this by previous stripe size and multiply
4240 * by previous stripe length to get lowest device offset that we
4241 * cannot write to yet.
4242 * We interpret 'sector_nr' as an address that we want to write to.
4243 * From this we use last_device_address() to find where we might
4244 * write to, and first_device_address on the 'safe' position.
4245 * If this 'next' write position is after the 'safe' position,
4246 * we must update the metadata to increase the 'safe' position.
4247 *
4248 * When reshaping backwards, we round in the opposite direction
4249 * and perform the reverse test: next write position must not be
4250 * less than current safe position.
4251 *
4252 * In all this the minimum difference in data offsets
4253 * (conf->offset_diff - always positive) allows a bit of slack,
4254 * so next can be after 'safe', but not by more than offset_disk
4255 *
4256 * We need to prepare all the bios here before we start any IO
4257 * to ensure the size we choose is acceptable to all devices.
4258 * The means one for each copy for write-out and an extra one for
4259 * read-in.
4260 * We store the read-in bio in ->master_bio and the others in
4261 * ->devs[x].bio and ->devs[x].repl_bio.
4262 */
4263 struct r10conf *conf = mddev->private;
4264 struct r10bio *r10_bio;
4265 sector_t next, safe, last;
4266 int max_sectors;
4267 int nr_sectors;
4268 int s;
4269 struct md_rdev *rdev;
4270 int need_flush = 0;
4271 struct bio *blist;
4272 struct bio *bio, *read_bio;
4273 int sectors_done = 0;
4274
4275 if (sector_nr == 0) {
4276 /* If restarting in the middle, skip the initial sectors */
4277 if (mddev->reshape_backwards &&
4278 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4279 sector_nr = (raid10_size(mddev, 0, 0)
4280 - conf->reshape_progress);
4281 } else if (!mddev->reshape_backwards &&
4282 conf->reshape_progress > 0)
4283 sector_nr = conf->reshape_progress;
4284 if (sector_nr) {
4285 mddev->curr_resync_completed = sector_nr;
4286 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4287 *skipped = 1;
4288 return sector_nr;
4289 }
4290 }
4291
4292 /* We don't use sector_nr to track where we are up to
4293 * as that doesn't work well for ->reshape_backwards.
4294 * So just use ->reshape_progress.
4295 */
4296 if (mddev->reshape_backwards) {
4297 /* 'next' is the earliest device address that we might
4298 * write to for this chunk in the new layout
4299 */
4300 next = first_dev_address(conf->reshape_progress - 1,
4301 &conf->geo);
4302
4303 /* 'safe' is the last device address that we might read from
4304 * in the old layout after a restart
4305 */
4306 safe = last_dev_address(conf->reshape_safe - 1,
4307 &conf->prev);
4308
4309 if (next + conf->offset_diff < safe)
4310 need_flush = 1;
4311
4312 last = conf->reshape_progress - 1;
4313 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4314 & conf->prev.chunk_mask);
4315 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4316 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4317 } else {
4318 /* 'next' is after the last device address that we
4319 * might write to for this chunk in the new layout
4320 */
4321 next = last_dev_address(conf->reshape_progress, &conf->geo);
4322
4323 /* 'safe' is the earliest device address that we might
4324 * read from in the old layout after a restart
4325 */
4326 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4327
4328 /* Need to update metadata if 'next' might be beyond 'safe'
4329 * as that would possibly corrupt data
4330 */
4331 if (next > safe + conf->offset_diff)
4332 need_flush = 1;
4333
4334 sector_nr = conf->reshape_progress;
4335 last = sector_nr | (conf->geo.chunk_mask
4336 & conf->prev.chunk_mask);
4337
4338 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4339 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4340 }
4341
4342 if (need_flush ||
4343 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4344 /* Need to update reshape_position in metadata */
4345 wait_barrier(conf);
4346 mddev->reshape_position = conf->reshape_progress;
4347 if (mddev->reshape_backwards)
4348 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4349 - conf->reshape_progress;
4350 else
4351 mddev->curr_resync_completed = conf->reshape_progress;
4352 conf->reshape_checkpoint = jiffies;
4353 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4354 md_wakeup_thread(mddev->thread);
4355 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4356 kthread_should_stop());
4357 conf->reshape_safe = mddev->reshape_position;
4358 allow_barrier(conf);
4359 }
4360
4361read_more:
4362 /* Now schedule reads for blocks from sector_nr to last */
4363 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4364 raise_barrier(conf, sectors_done != 0);
4365 atomic_set(&r10_bio->remaining, 0);
4366 r10_bio->mddev = mddev;
4367 r10_bio->sector = sector_nr;
4368 set_bit(R10BIO_IsReshape, &r10_bio->state);
4369 r10_bio->sectors = last - sector_nr + 1;
4370 rdev = read_balance(conf, r10_bio, &max_sectors);
4371 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4372
4373 if (!rdev) {
4374 /* Cannot read from here, so need to record bad blocks
4375 * on all the target devices.
4376 */
4377 // FIXME
4378 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4379 return sectors_done;
4380 }
4381
4382 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4383
4384 read_bio->bi_bdev = rdev->bdev;
4385 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4386 + rdev->data_offset);
4387 read_bio->bi_private = r10_bio;
4388 read_bio->bi_end_io = end_sync_read;
4389 read_bio->bi_rw = READ;
4390 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4391 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4392 read_bio->bi_vcnt = 0;
3ea7daa5
N
4393 read_bio->bi_size = 0;
4394 r10_bio->master_bio = read_bio;
4395 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4396
4397 /* Now find the locations in the new layout */
4398 __raid10_find_phys(&conf->geo, r10_bio);
4399
4400 blist = read_bio;
4401 read_bio->bi_next = NULL;
4402
4403 for (s = 0; s < conf->copies*2; s++) {
4404 struct bio *b;
4405 int d = r10_bio->devs[s/2].devnum;
4406 struct md_rdev *rdev2;
4407 if (s&1) {
4408 rdev2 = conf->mirrors[d].replacement;
4409 b = r10_bio->devs[s/2].repl_bio;
4410 } else {
4411 rdev2 = conf->mirrors[d].rdev;
4412 b = r10_bio->devs[s/2].bio;
4413 }
4414 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4415 continue;
8be185f2
KO
4416
4417 bio_reset(b);
3ea7daa5
N
4418 b->bi_bdev = rdev2->bdev;
4419 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4420 b->bi_private = r10_bio;
4421 b->bi_end_io = end_reshape_write;
4422 b->bi_rw = WRITE;
3ea7daa5 4423 b->bi_next = blist;
3ea7daa5
N
4424 blist = b;
4425 }
4426
4427 /* Now add as many pages as possible to all of these bios. */
4428
4429 nr_sectors = 0;
4430 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4431 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4432 int len = (max_sectors - s) << 9;
4433 if (len > PAGE_SIZE)
4434 len = PAGE_SIZE;
4435 for (bio = blist; bio ; bio = bio->bi_next) {
4436 struct bio *bio2;
4437 if (bio_add_page(bio, page, len, 0))
4438 continue;
4439
4440 /* Didn't fit, must stop */
4441 for (bio2 = blist;
4442 bio2 && bio2 != bio;
4443 bio2 = bio2->bi_next) {
4444 /* Remove last page from this bio */
4445 bio2->bi_vcnt--;
4446 bio2->bi_size -= len;
4447 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4448 }
4449 goto bio_full;
4450 }
4451 sector_nr += len >> 9;
4452 nr_sectors += len >> 9;
4453 }
4454bio_full:
4455 r10_bio->sectors = nr_sectors;
4456
4457 /* Now submit the read */
4458 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4459 atomic_inc(&r10_bio->remaining);
4460 read_bio->bi_next = NULL;
4461 generic_make_request(read_bio);
4462 sector_nr += nr_sectors;
4463 sectors_done += nr_sectors;
4464 if (sector_nr <= last)
4465 goto read_more;
4466
4467 /* Now that we have done the whole section we can
4468 * update reshape_progress
4469 */
4470 if (mddev->reshape_backwards)
4471 conf->reshape_progress -= sectors_done;
4472 else
4473 conf->reshape_progress += sectors_done;
4474
4475 return sectors_done;
4476}
4477
4478static void end_reshape_request(struct r10bio *r10_bio);
4479static int handle_reshape_read_error(struct mddev *mddev,
4480 struct r10bio *r10_bio);
4481static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4482{
4483 /* Reshape read completed. Hopefully we have a block
4484 * to write out.
4485 * If we got a read error then we do sync 1-page reads from
4486 * elsewhere until we find the data - or give up.
4487 */
4488 struct r10conf *conf = mddev->private;
4489 int s;
4490
4491 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4492 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4493 /* Reshape has been aborted */
4494 md_done_sync(mddev, r10_bio->sectors, 0);
4495 return;
4496 }
4497
4498 /* We definitely have the data in the pages, schedule the
4499 * writes.
4500 */
4501 atomic_set(&r10_bio->remaining, 1);
4502 for (s = 0; s < conf->copies*2; s++) {
4503 struct bio *b;
4504 int d = r10_bio->devs[s/2].devnum;
4505 struct md_rdev *rdev;
4506 if (s&1) {
4507 rdev = conf->mirrors[d].replacement;
4508 b = r10_bio->devs[s/2].repl_bio;
4509 } else {
4510 rdev = conf->mirrors[d].rdev;
4511 b = r10_bio->devs[s/2].bio;
4512 }
4513 if (!rdev || test_bit(Faulty, &rdev->flags))
4514 continue;
4515 atomic_inc(&rdev->nr_pending);
4516 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4517 atomic_inc(&r10_bio->remaining);
4518 b->bi_next = NULL;
4519 generic_make_request(b);
4520 }
4521 end_reshape_request(r10_bio);
4522}
4523
4524static void end_reshape(struct r10conf *conf)
4525{
4526 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4527 return;
4528
4529 spin_lock_irq(&conf->device_lock);
4530 conf->prev = conf->geo;
4531 md_finish_reshape(conf->mddev);
4532 smp_wmb();
4533 conf->reshape_progress = MaxSector;
4534 spin_unlock_irq(&conf->device_lock);
4535
4536 /* read-ahead size must cover two whole stripes, which is
4537 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4538 */
4539 if (conf->mddev->queue) {
4540 int stripe = conf->geo.raid_disks *
4541 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4542 stripe /= conf->geo.near_copies;
4543 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4544 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4545 }
4546 conf->fullsync = 0;
4547}
4548
4549
4550static int handle_reshape_read_error(struct mddev *mddev,
4551 struct r10bio *r10_bio)
4552{
4553 /* Use sync reads to get the blocks from somewhere else */
4554 int sectors = r10_bio->sectors;
3ea7daa5 4555 struct r10conf *conf = mddev->private;
e0ee7785
N
4556 struct {
4557 struct r10bio r10_bio;
4558 struct r10dev devs[conf->copies];
4559 } on_stack;
4560 struct r10bio *r10b = &on_stack.r10_bio;
3ea7daa5
N
4561 int slot = 0;
4562 int idx = 0;
4563 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4564
e0ee7785
N
4565 r10b->sector = r10_bio->sector;
4566 __raid10_find_phys(&conf->prev, r10b);
3ea7daa5
N
4567
4568 while (sectors) {
4569 int s = sectors;
4570 int success = 0;
4571 int first_slot = slot;
4572
4573 if (s > (PAGE_SIZE >> 9))
4574 s = PAGE_SIZE >> 9;
4575
4576 while (!success) {
e0ee7785 4577 int d = r10b->devs[slot].devnum;
3ea7daa5
N
4578 struct md_rdev *rdev = conf->mirrors[d].rdev;
4579 sector_t addr;
4580 if (rdev == NULL ||
4581 test_bit(Faulty, &rdev->flags) ||
4582 !test_bit(In_sync, &rdev->flags))
4583 goto failed;
4584
e0ee7785 4585 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
3ea7daa5
N
4586 success = sync_page_io(rdev,
4587 addr,
4588 s << 9,
4589 bvec[idx].bv_page,
4590 READ, false);
4591 if (success)
4592 break;
4593 failed:
4594 slot++;
4595 if (slot >= conf->copies)
4596 slot = 0;
4597 if (slot == first_slot)
4598 break;
4599 }
4600 if (!success) {
4601 /* couldn't read this block, must give up */
4602 set_bit(MD_RECOVERY_INTR,
4603 &mddev->recovery);
4604 return -EIO;
4605 }
4606 sectors -= s;
4607 idx++;
4608 }
4609 return 0;
4610}
4611
4612static void end_reshape_write(struct bio *bio, int error)
4613{
4614 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4615 struct r10bio *r10_bio = bio->bi_private;
4616 struct mddev *mddev = r10_bio->mddev;
4617 struct r10conf *conf = mddev->private;
4618 int d;
4619 int slot;
4620 int repl;
4621 struct md_rdev *rdev = NULL;
4622
4623 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4624 if (repl)
4625 rdev = conf->mirrors[d].replacement;
4626 if (!rdev) {
4627 smp_mb();
4628 rdev = conf->mirrors[d].rdev;
4629 }
4630
4631 if (!uptodate) {
4632 /* FIXME should record badblock */
4633 md_error(mddev, rdev);
4634 }
4635
4636 rdev_dec_pending(rdev, mddev);
4637 end_reshape_request(r10_bio);
4638}
4639
4640static void end_reshape_request(struct r10bio *r10_bio)
4641{
4642 if (!atomic_dec_and_test(&r10_bio->remaining))
4643 return;
4644 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4645 bio_put(r10_bio->master_bio);
4646 put_buf(r10_bio);
4647}
4648
4649static void raid10_finish_reshape(struct mddev *mddev)
4650{
4651 struct r10conf *conf = mddev->private;
4652
4653 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4654 return;
4655
4656 if (mddev->delta_disks > 0) {
4657 sector_t size = raid10_size(mddev, 0, 0);
4658 md_set_array_sectors(mddev, size);
4659 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4660 mddev->recovery_cp = mddev->resync_max_sectors;
4661 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4662 }
4663 mddev->resync_max_sectors = size;
4664 set_capacity(mddev->gendisk, mddev->array_sectors);
4665 revalidate_disk(mddev->gendisk);
63aced61
N
4666 } else {
4667 int d;
4668 for (d = conf->geo.raid_disks ;
4669 d < conf->geo.raid_disks - mddev->delta_disks;
4670 d++) {
4671 struct md_rdev *rdev = conf->mirrors[d].rdev;
4672 if (rdev)
4673 clear_bit(In_sync, &rdev->flags);
4674 rdev = conf->mirrors[d].replacement;
4675 if (rdev)
4676 clear_bit(In_sync, &rdev->flags);
4677 }
3ea7daa5
N
4678 }
4679 mddev->layout = mddev->new_layout;
4680 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4681 mddev->reshape_position = MaxSector;
4682 mddev->delta_disks = 0;
4683 mddev->reshape_backwards = 0;
4684}
4685
84fc4b56 4686static struct md_personality raid10_personality =
1da177e4
LT
4687{
4688 .name = "raid10",
2604b703 4689 .level = 10,
1da177e4
LT
4690 .owner = THIS_MODULE,
4691 .make_request = make_request,
4692 .run = run,
4693 .stop = stop,
4694 .status = status,
4695 .error_handler = error,
4696 .hot_add_disk = raid10_add_disk,
4697 .hot_remove_disk= raid10_remove_disk,
4698 .spare_active = raid10_spare_active,
4699 .sync_request = sync_request,
6cce3b23 4700 .quiesce = raid10_quiesce,
80c3a6ce 4701 .size = raid10_size,
006a09a0 4702 .resize = raid10_resize,
dab8b292 4703 .takeover = raid10_takeover,
3ea7daa5
N
4704 .check_reshape = raid10_check_reshape,
4705 .start_reshape = raid10_start_reshape,
4706 .finish_reshape = raid10_finish_reshape,
1da177e4
LT
4707};
4708
4709static int __init raid_init(void)
4710{
2604b703 4711 return register_md_personality(&raid10_personality);
1da177e4
LT
4712}
4713
4714static void raid_exit(void)
4715{
2604b703 4716 unregister_md_personality(&raid10_personality);
1da177e4
LT
4717}
4718
4719module_init(raid_init);
4720module_exit(raid_exit);
4721MODULE_LICENSE("GPL");
0efb9e61 4722MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 4723MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 4724MODULE_ALIAS("md-raid10");
2604b703 4725MODULE_ALIAS("md-level-10");
34db0cd6
N
4726
4727module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 1.561271 seconds and 5 git commands to generate.