md/raid5: add missing spin_lock_init.
[deliverable/linux.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
3ea7daa5 27#include <linux/kthread.h>
43b2e5d8 28#include "md.h"
ef740c37 29#include "raid10.h"
dab8b292 30#include "raid0.h"
ef740c37 31#include "bitmap.h"
1da177e4
LT
32
33/*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
c93983bf 40 * far_offset (stored in bit 16 of layout )
1da177e4
LT
41 *
42 * The data to be stored is divided into chunks using chunksize.
43 * Each device is divided into far_copies sections.
44 * In each section, chunks are laid out in a style similar to raid0, but
45 * near_copies copies of each chunk is stored (each on a different drive).
46 * The starting device for each section is offset near_copies from the starting
47 * device of the previous section.
c93983bf 48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
1da177e4
LT
49 * drive.
50 * near_copies and far_copies must be at least one, and their product is at most
51 * raid_disks.
c93983bf
N
52 *
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of be very far apart
55 * on disk, there are adjacent stripes.
1da177e4
LT
56 */
57
58/*
59 * Number of guaranteed r10bios in case of extreme VM load:
60 */
61#define NR_RAID10_BIOS 256
62
473e87ce
JB
63/* when we get a read error on a read-only array, we redirect to another
64 * device without failing the first device, or trying to over-write to
65 * correct the read error. To keep track of bad blocks on a per-bio
66 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
67 */
68#define IO_BLOCKED ((struct bio *)1)
69/* When we successfully write to a known bad-block, we need to remove the
70 * bad-block marking which must be done from process context. So we record
71 * the success by setting devs[n].bio to IO_MADE_GOOD
72 */
73#define IO_MADE_GOOD ((struct bio *)2)
74
75#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
76
77/* When there are this many requests queued to be written by
34db0cd6
N
78 * the raid10 thread, we become 'congested' to provide back-pressure
79 * for writeback.
80 */
81static int max_queued_requests = 1024;
82
e879a879
N
83static void allow_barrier(struct r10conf *conf);
84static void lower_barrier(struct r10conf *conf);
fae8cc5e 85static int enough(struct r10conf *conf, int ignore);
3ea7daa5
N
86static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
87 int *skipped);
88static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
89static void end_reshape_write(struct bio *bio, int error);
90static void end_reshape(struct r10conf *conf);
0a27ec96 91
dd0fc66f 92static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 93{
e879a879 94 struct r10conf *conf = data;
9f2c9d12 95 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4 96
69335ef3
N
97 /* allocate a r10bio with room for raid_disks entries in the
98 * bios array */
7eaceacc 99 return kzalloc(size, gfp_flags);
1da177e4
LT
100}
101
102static void r10bio_pool_free(void *r10_bio, void *data)
103{
104 kfree(r10_bio);
105}
106
0310fa21 107/* Maximum size of each resync request */
1da177e4 108#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 109#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
110/* amount of memory to reserve for resync requests */
111#define RESYNC_WINDOW (1024*1024)
112/* maximum number of concurrent requests, memory permitting */
113#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
114
115/*
116 * When performing a resync, we need to read and compare, so
117 * we need as many pages are there are copies.
118 * When performing a recovery, we need 2 bios, one for read,
119 * one for write (we recover only one drive per r10buf)
120 *
121 */
dd0fc66f 122static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 123{
e879a879 124 struct r10conf *conf = data;
1da177e4 125 struct page *page;
9f2c9d12 126 struct r10bio *r10_bio;
1da177e4
LT
127 struct bio *bio;
128 int i, j;
129 int nalloc;
130
131 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 132 if (!r10_bio)
1da177e4 133 return NULL;
1da177e4 134
3ea7daa5
N
135 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
136 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
1da177e4
LT
137 nalloc = conf->copies; /* resync */
138 else
139 nalloc = 2; /* recovery */
140
141 /*
142 * Allocate bios.
143 */
144 for (j = nalloc ; j-- ; ) {
6746557f 145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
146 if (!bio)
147 goto out_free_bio;
148 r10_bio->devs[j].bio = bio;
69335ef3
N
149 if (!conf->have_replacement)
150 continue;
151 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
152 if (!bio)
153 goto out_free_bio;
154 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
155 }
156 /*
157 * Allocate RESYNC_PAGES data pages and attach them
158 * where needed.
159 */
160 for (j = 0 ; j < nalloc; j++) {
69335ef3 161 struct bio *rbio = r10_bio->devs[j].repl_bio;
1da177e4
LT
162 bio = r10_bio->devs[j].bio;
163 for (i = 0; i < RESYNC_PAGES; i++) {
3ea7daa5
N
164 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
165 &conf->mddev->recovery)) {
166 /* we can share bv_page's during recovery
167 * and reshape */
c65060ad
NK
168 struct bio *rbio = r10_bio->devs[0].bio;
169 page = rbio->bi_io_vec[i].bv_page;
170 get_page(page);
171 } else
172 page = alloc_page(gfp_flags);
1da177e4
LT
173 if (unlikely(!page))
174 goto out_free_pages;
175
176 bio->bi_io_vec[i].bv_page = page;
69335ef3
N
177 if (rbio)
178 rbio->bi_io_vec[i].bv_page = page;
1da177e4
LT
179 }
180 }
181
182 return r10_bio;
183
184out_free_pages:
185 for ( ; i > 0 ; i--)
1345b1d8 186 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
187 while (j--)
188 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 189 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
5fdd2cf8 190 j = 0;
1da177e4 191out_free_bio:
5fdd2cf8 192 for ( ; j < nalloc; j++) {
193 if (r10_bio->devs[j].bio)
194 bio_put(r10_bio->devs[j].bio);
69335ef3
N
195 if (r10_bio->devs[j].repl_bio)
196 bio_put(r10_bio->devs[j].repl_bio);
197 }
1da177e4
LT
198 r10bio_pool_free(r10_bio, conf);
199 return NULL;
200}
201
202static void r10buf_pool_free(void *__r10_bio, void *data)
203{
204 int i;
e879a879 205 struct r10conf *conf = data;
9f2c9d12 206 struct r10bio *r10bio = __r10_bio;
1da177e4
LT
207 int j;
208
209 for (j=0; j < conf->copies; j++) {
210 struct bio *bio = r10bio->devs[j].bio;
211 if (bio) {
212 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 213 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
214 bio->bi_io_vec[i].bv_page = NULL;
215 }
216 bio_put(bio);
217 }
69335ef3
N
218 bio = r10bio->devs[j].repl_bio;
219 if (bio)
220 bio_put(bio);
1da177e4
LT
221 }
222 r10bio_pool_free(r10bio, conf);
223}
224
e879a879 225static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
226{
227 int i;
228
229 for (i = 0; i < conf->copies; i++) {
230 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 231 if (!BIO_SPECIAL(*bio))
1da177e4
LT
232 bio_put(*bio);
233 *bio = NULL;
69335ef3
N
234 bio = &r10_bio->devs[i].repl_bio;
235 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
236 bio_put(*bio);
237 *bio = NULL;
1da177e4
LT
238 }
239}
240
9f2c9d12 241static void free_r10bio(struct r10bio *r10_bio)
1da177e4 242{
e879a879 243 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 244
1da177e4
LT
245 put_all_bios(conf, r10_bio);
246 mempool_free(r10_bio, conf->r10bio_pool);
247}
248
9f2c9d12 249static void put_buf(struct r10bio *r10_bio)
1da177e4 250{
e879a879 251 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
252
253 mempool_free(r10_bio, conf->r10buf_pool);
254
0a27ec96 255 lower_barrier(conf);
1da177e4
LT
256}
257
9f2c9d12 258static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
259{
260 unsigned long flags;
fd01b88c 261 struct mddev *mddev = r10_bio->mddev;
e879a879 262 struct r10conf *conf = mddev->private;
1da177e4
LT
263
264 spin_lock_irqsave(&conf->device_lock, flags);
265 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 266 conf->nr_queued ++;
1da177e4
LT
267 spin_unlock_irqrestore(&conf->device_lock, flags);
268
388667be
AJ
269 /* wake up frozen array... */
270 wake_up(&conf->wait_barrier);
271
1da177e4
LT
272 md_wakeup_thread(mddev->thread);
273}
274
275/*
276 * raid_end_bio_io() is called when we have finished servicing a mirrored
277 * operation and are ready to return a success/failure code to the buffer
278 * cache layer.
279 */
9f2c9d12 280static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
281{
282 struct bio *bio = r10_bio->master_bio;
856e08e2 283 int done;
e879a879 284 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 285
856e08e2
N
286 if (bio->bi_phys_segments) {
287 unsigned long flags;
288 spin_lock_irqsave(&conf->device_lock, flags);
289 bio->bi_phys_segments--;
290 done = (bio->bi_phys_segments == 0);
291 spin_unlock_irqrestore(&conf->device_lock, flags);
292 } else
293 done = 1;
294 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
295 clear_bit(BIO_UPTODATE, &bio->bi_flags);
296 if (done) {
297 bio_endio(bio, 0);
298 /*
299 * Wake up any possible resync thread that waits for the device
300 * to go idle.
301 */
302 allow_barrier(conf);
303 }
1da177e4
LT
304 free_r10bio(r10_bio);
305}
306
307/*
308 * Update disk head position estimator based on IRQ completion info.
309 */
9f2c9d12 310static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 311{
e879a879 312 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
313
314 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
315 r10_bio->devs[slot].addr + (r10_bio->sectors);
316}
317
778ca018
NK
318/*
319 * Find the disk number which triggered given bio
320 */
e879a879 321static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 322 struct bio *bio, int *slotp, int *replp)
778ca018
NK
323{
324 int slot;
69335ef3 325 int repl = 0;
778ca018 326
69335ef3 327 for (slot = 0; slot < conf->copies; slot++) {
778ca018
NK
328 if (r10_bio->devs[slot].bio == bio)
329 break;
69335ef3
N
330 if (r10_bio->devs[slot].repl_bio == bio) {
331 repl = 1;
332 break;
333 }
334 }
778ca018
NK
335
336 BUG_ON(slot == conf->copies);
337 update_head_pos(slot, r10_bio);
338
749c55e9
N
339 if (slotp)
340 *slotp = slot;
69335ef3
N
341 if (replp)
342 *replp = repl;
778ca018
NK
343 return r10_bio->devs[slot].devnum;
344}
345
6712ecf8 346static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
347{
348 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 349 struct r10bio *r10_bio = bio->bi_private;
1da177e4 350 int slot, dev;
abbf098e 351 struct md_rdev *rdev;
e879a879 352 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 353
1da177e4
LT
354
355 slot = r10_bio->read_slot;
356 dev = r10_bio->devs[slot].devnum;
abbf098e 357 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
358 /*
359 * this branch is our 'one mirror IO has finished' event handler:
360 */
4443ae10
N
361 update_head_pos(slot, r10_bio);
362
363 if (uptodate) {
1da177e4
LT
364 /*
365 * Set R10BIO_Uptodate in our master bio, so that
366 * we will return a good error code to the higher
367 * levels even if IO on some other mirrored buffer fails.
368 *
369 * The 'master' represents the composite IO operation to
370 * user-side. So if something waits for IO, then it will
371 * wait for the 'master' bio.
372 */
373 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
374 } else {
375 /* If all other devices that store this block have
376 * failed, we want to return the error upwards rather
377 * than fail the last device. Here we redefine
378 * "uptodate" to mean "Don't want to retry"
379 */
380 unsigned long flags;
381 spin_lock_irqsave(&conf->device_lock, flags);
382 if (!enough(conf, rdev->raid_disk))
383 uptodate = 1;
384 spin_unlock_irqrestore(&conf->device_lock, flags);
385 }
386 if (uptodate) {
1da177e4 387 raid_end_bio_io(r10_bio);
abbf098e 388 rdev_dec_pending(rdev, conf->mddev);
4443ae10 389 } else {
1da177e4 390 /*
7c4e06ff 391 * oops, read error - keep the refcount on the rdev
1da177e4
LT
392 */
393 char b[BDEVNAME_SIZE];
8bda470e
CD
394 printk_ratelimited(KERN_ERR
395 "md/raid10:%s: %s: rescheduling sector %llu\n",
396 mdname(conf->mddev),
abbf098e 397 bdevname(rdev->bdev, b),
8bda470e 398 (unsigned long long)r10_bio->sector);
856e08e2 399 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
400 reschedule_retry(r10_bio);
401 }
1da177e4
LT
402}
403
9f2c9d12 404static void close_write(struct r10bio *r10_bio)
bd870a16
N
405{
406 /* clear the bitmap if all writes complete successfully */
407 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
408 r10_bio->sectors,
409 !test_bit(R10BIO_Degraded, &r10_bio->state),
410 0);
411 md_write_end(r10_bio->mddev);
412}
413
9f2c9d12 414static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
415{
416 if (atomic_dec_and_test(&r10_bio->remaining)) {
417 if (test_bit(R10BIO_WriteError, &r10_bio->state))
418 reschedule_retry(r10_bio);
419 else {
420 close_write(r10_bio);
421 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
422 reschedule_retry(r10_bio);
423 else
424 raid_end_bio_io(r10_bio);
425 }
426 }
427}
428
6712ecf8 429static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
430{
431 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 432 struct r10bio *r10_bio = bio->bi_private;
778ca018 433 int dev;
749c55e9 434 int dec_rdev = 1;
e879a879 435 struct r10conf *conf = r10_bio->mddev->private;
475b0321 436 int slot, repl;
4ca40c2c 437 struct md_rdev *rdev = NULL;
1da177e4 438
475b0321 439 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 440
475b0321
N
441 if (repl)
442 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
443 if (!rdev) {
444 smp_rmb();
445 repl = 0;
475b0321 446 rdev = conf->mirrors[dev].rdev;
4ca40c2c 447 }
1da177e4
LT
448 /*
449 * this branch is our 'one mirror IO has finished' event handler:
450 */
6cce3b23 451 if (!uptodate) {
475b0321
N
452 if (repl)
453 /* Never record new bad blocks to replacement,
454 * just fail it.
455 */
456 md_error(rdev->mddev, rdev);
457 else {
458 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
459 if (!test_and_set_bit(WantReplacement, &rdev->flags))
460 set_bit(MD_RECOVERY_NEEDED,
461 &rdev->mddev->recovery);
475b0321
N
462 set_bit(R10BIO_WriteError, &r10_bio->state);
463 dec_rdev = 0;
464 }
749c55e9 465 } else {
1da177e4
LT
466 /*
467 * Set R10BIO_Uptodate in our master bio, so that
468 * we will return a good error code for to the higher
469 * levels even if IO on some other mirrored buffer fails.
470 *
471 * The 'master' represents the composite IO operation to
472 * user-side. So if something waits for IO, then it will
473 * wait for the 'master' bio.
474 */
749c55e9
N
475 sector_t first_bad;
476 int bad_sectors;
477
1da177e4
LT
478 set_bit(R10BIO_Uptodate, &r10_bio->state);
479
749c55e9 480 /* Maybe we can clear some bad blocks. */
475b0321 481 if (is_badblock(rdev,
749c55e9
N
482 r10_bio->devs[slot].addr,
483 r10_bio->sectors,
484 &first_bad, &bad_sectors)) {
485 bio_put(bio);
475b0321
N
486 if (repl)
487 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
488 else
489 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
490 dec_rdev = 0;
491 set_bit(R10BIO_MadeGood, &r10_bio->state);
492 }
493 }
494
1da177e4
LT
495 /*
496 *
497 * Let's see if all mirrored write operations have finished
498 * already.
499 */
19d5f834 500 one_write_done(r10_bio);
749c55e9
N
501 if (dec_rdev)
502 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
1da177e4
LT
503}
504
1da177e4
LT
505/*
506 * RAID10 layout manager
25985edc 507 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
508 * parameters: near_copies and far_copies.
509 * near_copies * far_copies must be <= raid_disks.
510 * Normally one of these will be 1.
511 * If both are 1, we get raid0.
512 * If near_copies == raid_disks, we get raid1.
513 *
25985edc 514 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
515 * first chunk, followed by near_copies copies of the next chunk and
516 * so on.
517 * If far_copies > 1, then after 1/far_copies of the array has been assigned
518 * as described above, we start again with a device offset of near_copies.
519 * So we effectively have another copy of the whole array further down all
520 * the drives, but with blocks on different drives.
521 * With this layout, and block is never stored twice on the one device.
522 *
523 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 524 * on each device that it is on.
1da177e4
LT
525 *
526 * raid10_find_virt does the reverse mapping, from a device and a
527 * sector offset to a virtual address
528 */
529
f8c9e74f 530static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
531{
532 int n,f;
533 sector_t sector;
534 sector_t chunk;
535 sector_t stripe;
536 int dev;
1da177e4
LT
537 int slot = 0;
538
539 /* now calculate first sector/dev */
5cf00fcd
N
540 chunk = r10bio->sector >> geo->chunk_shift;
541 sector = r10bio->sector & geo->chunk_mask;
1da177e4 542
5cf00fcd 543 chunk *= geo->near_copies;
1da177e4 544 stripe = chunk;
5cf00fcd
N
545 dev = sector_div(stripe, geo->raid_disks);
546 if (geo->far_offset)
547 stripe *= geo->far_copies;
1da177e4 548
5cf00fcd 549 sector += stripe << geo->chunk_shift;
1da177e4
LT
550
551 /* and calculate all the others */
5cf00fcd 552 for (n = 0; n < geo->near_copies; n++) {
1da177e4
LT
553 int d = dev;
554 sector_t s = sector;
555 r10bio->devs[slot].addr = sector;
556 r10bio->devs[slot].devnum = d;
557 slot++;
558
5cf00fcd
N
559 for (f = 1; f < geo->far_copies; f++) {
560 d += geo->near_copies;
561 if (d >= geo->raid_disks)
562 d -= geo->raid_disks;
563 s += geo->stride;
1da177e4
LT
564 r10bio->devs[slot].devnum = d;
565 r10bio->devs[slot].addr = s;
566 slot++;
567 }
568 dev++;
5cf00fcd 569 if (dev >= geo->raid_disks) {
1da177e4 570 dev = 0;
5cf00fcd 571 sector += (geo->chunk_mask + 1);
1da177e4
LT
572 }
573 }
f8c9e74f
N
574}
575
576static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
577{
578 struct geom *geo = &conf->geo;
579
580 if (conf->reshape_progress != MaxSector &&
581 ((r10bio->sector >= conf->reshape_progress) !=
582 conf->mddev->reshape_backwards)) {
583 set_bit(R10BIO_Previous, &r10bio->state);
584 geo = &conf->prev;
585 } else
586 clear_bit(R10BIO_Previous, &r10bio->state);
587
588 __raid10_find_phys(geo, r10bio);
1da177e4
LT
589}
590
e879a879 591static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
592{
593 sector_t offset, chunk, vchunk;
f8c9e74f
N
594 /* Never use conf->prev as this is only called during resync
595 * or recovery, so reshape isn't happening
596 */
5cf00fcd 597 struct geom *geo = &conf->geo;
1da177e4 598
5cf00fcd
N
599 offset = sector & geo->chunk_mask;
600 if (geo->far_offset) {
c93983bf 601 int fc;
5cf00fcd
N
602 chunk = sector >> geo->chunk_shift;
603 fc = sector_div(chunk, geo->far_copies);
604 dev -= fc * geo->near_copies;
c93983bf 605 if (dev < 0)
5cf00fcd 606 dev += geo->raid_disks;
c93983bf 607 } else {
5cf00fcd
N
608 while (sector >= geo->stride) {
609 sector -= geo->stride;
610 if (dev < geo->near_copies)
611 dev += geo->raid_disks - geo->near_copies;
c93983bf 612 else
5cf00fcd 613 dev -= geo->near_copies;
c93983bf 614 }
5cf00fcd 615 chunk = sector >> geo->chunk_shift;
c93983bf 616 }
5cf00fcd
N
617 vchunk = chunk * geo->raid_disks + dev;
618 sector_div(vchunk, geo->near_copies);
619 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
620}
621
622/**
623 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
624 * @q: request queue
cc371e66 625 * @bvm: properties of new bio
1da177e4
LT
626 * @biovec: the request that could be merged to it.
627 *
628 * Return amount of bytes we can accept at this offset
050b6615
N
629 * This requires checking for end-of-chunk if near_copies != raid_disks,
630 * and for subordinate merge_bvec_fns if merge_check_needed.
1da177e4 631 */
cc371e66
AK
632static int raid10_mergeable_bvec(struct request_queue *q,
633 struct bvec_merge_data *bvm,
634 struct bio_vec *biovec)
1da177e4 635{
fd01b88c 636 struct mddev *mddev = q->queuedata;
050b6615 637 struct r10conf *conf = mddev->private;
cc371e66 638 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4 639 int max;
3ea7daa5 640 unsigned int chunk_sectors;
cc371e66 641 unsigned int bio_sectors = bvm->bi_size >> 9;
5cf00fcd 642 struct geom *geo = &conf->geo;
1da177e4 643
3ea7daa5 644 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
f8c9e74f
N
645 if (conf->reshape_progress != MaxSector &&
646 ((sector >= conf->reshape_progress) !=
647 conf->mddev->reshape_backwards))
648 geo = &conf->prev;
649
5cf00fcd 650 if (geo->near_copies < geo->raid_disks) {
050b6615
N
651 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
652 + bio_sectors)) << 9;
653 if (max < 0)
654 /* bio_add cannot handle a negative return */
655 max = 0;
656 if (max <= biovec->bv_len && bio_sectors == 0)
657 return biovec->bv_len;
658 } else
659 max = biovec->bv_len;
660
661 if (mddev->merge_check_needed) {
e0ee7785
N
662 struct {
663 struct r10bio r10_bio;
664 struct r10dev devs[conf->copies];
665 } on_stack;
666 struct r10bio *r10_bio = &on_stack.r10_bio;
050b6615 667 int s;
f8c9e74f
N
668 if (conf->reshape_progress != MaxSector) {
669 /* Cannot give any guidance during reshape */
670 if (max <= biovec->bv_len && bio_sectors == 0)
671 return biovec->bv_len;
672 return 0;
673 }
e0ee7785
N
674 r10_bio->sector = sector;
675 raid10_find_phys(conf, r10_bio);
050b6615
N
676 rcu_read_lock();
677 for (s = 0; s < conf->copies; s++) {
e0ee7785 678 int disk = r10_bio->devs[s].devnum;
050b6615
N
679 struct md_rdev *rdev = rcu_dereference(
680 conf->mirrors[disk].rdev);
681 if (rdev && !test_bit(Faulty, &rdev->flags)) {
682 struct request_queue *q =
683 bdev_get_queue(rdev->bdev);
684 if (q->merge_bvec_fn) {
e0ee7785 685 bvm->bi_sector = r10_bio->devs[s].addr
050b6615
N
686 + rdev->data_offset;
687 bvm->bi_bdev = rdev->bdev;
688 max = min(max, q->merge_bvec_fn(
689 q, bvm, biovec));
690 }
691 }
692 rdev = rcu_dereference(conf->mirrors[disk].replacement);
693 if (rdev && !test_bit(Faulty, &rdev->flags)) {
694 struct request_queue *q =
695 bdev_get_queue(rdev->bdev);
696 if (q->merge_bvec_fn) {
e0ee7785 697 bvm->bi_sector = r10_bio->devs[s].addr
050b6615
N
698 + rdev->data_offset;
699 bvm->bi_bdev = rdev->bdev;
700 max = min(max, q->merge_bvec_fn(
701 q, bvm, biovec));
702 }
703 }
704 }
705 rcu_read_unlock();
706 }
707 return max;
1da177e4
LT
708}
709
710/*
711 * This routine returns the disk from which the requested read should
712 * be done. There is a per-array 'next expected sequential IO' sector
713 * number - if this matches on the next IO then we use the last disk.
714 * There is also a per-disk 'last know head position' sector that is
715 * maintained from IRQ contexts, both the normal and the resync IO
716 * completion handlers update this position correctly. If there is no
717 * perfect sequential match then we pick the disk whose head is closest.
718 *
719 * If there are 2 mirrors in the same 2 devices, performance degrades
720 * because position is mirror, not device based.
721 *
722 * The rdev for the device selected will have nr_pending incremented.
723 */
724
725/*
726 * FIXME: possibly should rethink readbalancing and do it differently
727 * depending on near_copies / far_copies geometry.
728 */
96c3fd1f
N
729static struct md_rdev *read_balance(struct r10conf *conf,
730 struct r10bio *r10_bio,
731 int *max_sectors)
1da177e4 732{
af3a2cd6 733 const sector_t this_sector = r10_bio->sector;
56d99121 734 int disk, slot;
856e08e2
N
735 int sectors = r10_bio->sectors;
736 int best_good_sectors;
56d99121 737 sector_t new_distance, best_dist;
3bbae04b 738 struct md_rdev *best_rdev, *rdev = NULL;
56d99121
N
739 int do_balance;
740 int best_slot;
5cf00fcd 741 struct geom *geo = &conf->geo;
1da177e4
LT
742
743 raid10_find_phys(conf, r10_bio);
744 rcu_read_lock();
56d99121 745retry:
856e08e2 746 sectors = r10_bio->sectors;
56d99121 747 best_slot = -1;
abbf098e 748 best_rdev = NULL;
56d99121 749 best_dist = MaxSector;
856e08e2 750 best_good_sectors = 0;
56d99121 751 do_balance = 1;
1da177e4
LT
752 /*
753 * Check if we can balance. We can balance on the whole
6cce3b23
N
754 * device if no resync is going on (recovery is ok), or below
755 * the resync window. We take the first readable disk when
756 * above the resync window.
1da177e4
LT
757 */
758 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
759 && (this_sector + sectors >= conf->next_resync))
760 do_balance = 0;
1da177e4 761
56d99121 762 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
763 sector_t first_bad;
764 int bad_sectors;
765 sector_t dev_sector;
766
56d99121
N
767 if (r10_bio->devs[slot].bio == IO_BLOCKED)
768 continue;
1da177e4 769 disk = r10_bio->devs[slot].devnum;
abbf098e
N
770 rdev = rcu_dereference(conf->mirrors[disk].replacement);
771 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
050b6615 772 test_bit(Unmerged, &rdev->flags) ||
abbf098e
N
773 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
774 rdev = rcu_dereference(conf->mirrors[disk].rdev);
050b6615
N
775 if (rdev == NULL ||
776 test_bit(Faulty, &rdev->flags) ||
777 test_bit(Unmerged, &rdev->flags))
abbf098e
N
778 continue;
779 if (!test_bit(In_sync, &rdev->flags) &&
780 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
781 continue;
782
856e08e2
N
783 dev_sector = r10_bio->devs[slot].addr;
784 if (is_badblock(rdev, dev_sector, sectors,
785 &first_bad, &bad_sectors)) {
786 if (best_dist < MaxSector)
787 /* Already have a better slot */
788 continue;
789 if (first_bad <= dev_sector) {
790 /* Cannot read here. If this is the
791 * 'primary' device, then we must not read
792 * beyond 'bad_sectors' from another device.
793 */
794 bad_sectors -= (dev_sector - first_bad);
795 if (!do_balance && sectors > bad_sectors)
796 sectors = bad_sectors;
797 if (best_good_sectors > sectors)
798 best_good_sectors = sectors;
799 } else {
800 sector_t good_sectors =
801 first_bad - dev_sector;
802 if (good_sectors > best_good_sectors) {
803 best_good_sectors = good_sectors;
804 best_slot = slot;
abbf098e 805 best_rdev = rdev;
856e08e2
N
806 }
807 if (!do_balance)
808 /* Must read from here */
809 break;
810 }
811 continue;
812 } else
813 best_good_sectors = sectors;
814
56d99121
N
815 if (!do_balance)
816 break;
1da177e4 817
22dfdf52
N
818 /* This optimisation is debatable, and completely destroys
819 * sequential read speed for 'far copies' arrays. So only
820 * keep it for 'near' arrays, and review those later.
821 */
5cf00fcd 822 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
1da177e4 823 break;
8ed3a195
KS
824
825 /* for far > 1 always use the lowest address */
5cf00fcd 826 if (geo->far_copies > 1)
56d99121 827 new_distance = r10_bio->devs[slot].addr;
8ed3a195 828 else
56d99121
N
829 new_distance = abs(r10_bio->devs[slot].addr -
830 conf->mirrors[disk].head_position);
831 if (new_distance < best_dist) {
832 best_dist = new_distance;
833 best_slot = slot;
abbf098e 834 best_rdev = rdev;
1da177e4
LT
835 }
836 }
abbf098e 837 if (slot >= conf->copies) {
56d99121 838 slot = best_slot;
abbf098e
N
839 rdev = best_rdev;
840 }
1da177e4 841
56d99121 842 if (slot >= 0) {
56d99121
N
843 atomic_inc(&rdev->nr_pending);
844 if (test_bit(Faulty, &rdev->flags)) {
845 /* Cannot risk returning a device that failed
846 * before we inc'ed nr_pending
847 */
848 rdev_dec_pending(rdev, conf->mddev);
849 goto retry;
850 }
851 r10_bio->read_slot = slot;
852 } else
96c3fd1f 853 rdev = NULL;
1da177e4 854 rcu_read_unlock();
856e08e2 855 *max_sectors = best_good_sectors;
1da177e4 856
96c3fd1f 857 return rdev;
1da177e4
LT
858}
859
cc4d1efd 860int md_raid10_congested(struct mddev *mddev, int bits)
0d129228 861{
e879a879 862 struct r10conf *conf = mddev->private;
0d129228
N
863 int i, ret = 0;
864
34db0cd6
N
865 if ((bits & (1 << BDI_async_congested)) &&
866 conf->pending_count >= max_queued_requests)
867 return 1;
868
0d129228 869 rcu_read_lock();
f8c9e74f
N
870 for (i = 0;
871 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
872 && ret == 0;
873 i++) {
3cb03002 874 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 875 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 876 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
877
878 ret |= bdi_congested(&q->backing_dev_info, bits);
879 }
880 }
881 rcu_read_unlock();
882 return ret;
883}
cc4d1efd
JB
884EXPORT_SYMBOL_GPL(md_raid10_congested);
885
886static int raid10_congested(void *data, int bits)
887{
888 struct mddev *mddev = data;
889
890 return mddev_congested(mddev, bits) ||
891 md_raid10_congested(mddev, bits);
892}
0d129228 893
e879a879 894static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
895{
896 /* Any writes that have been queued but are awaiting
897 * bitmap updates get flushed here.
a35e63ef 898 */
a35e63ef
N
899 spin_lock_irq(&conf->device_lock);
900
901 if (conf->pending_bio_list.head) {
902 struct bio *bio;
903 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 904 conf->pending_count = 0;
a35e63ef
N
905 spin_unlock_irq(&conf->device_lock);
906 /* flush any pending bitmap writes to disk
907 * before proceeding w/ I/O */
908 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 909 wake_up(&conf->wait_barrier);
a35e63ef
N
910
911 while (bio) { /* submit pending writes */
912 struct bio *next = bio->bi_next;
913 bio->bi_next = NULL;
914 generic_make_request(bio);
915 bio = next;
916 }
a35e63ef
N
917 } else
918 spin_unlock_irq(&conf->device_lock);
a35e63ef 919}
7eaceacc 920
0a27ec96
N
921/* Barriers....
922 * Sometimes we need to suspend IO while we do something else,
923 * either some resync/recovery, or reconfigure the array.
924 * To do this we raise a 'barrier'.
925 * The 'barrier' is a counter that can be raised multiple times
926 * to count how many activities are happening which preclude
927 * normal IO.
928 * We can only raise the barrier if there is no pending IO.
929 * i.e. if nr_pending == 0.
930 * We choose only to raise the barrier if no-one is waiting for the
931 * barrier to go down. This means that as soon as an IO request
932 * is ready, no other operations which require a barrier will start
933 * until the IO request has had a chance.
934 *
935 * So: regular IO calls 'wait_barrier'. When that returns there
936 * is no backgroup IO happening, It must arrange to call
937 * allow_barrier when it has finished its IO.
938 * backgroup IO calls must call raise_barrier. Once that returns
939 * there is no normal IO happeing. It must arrange to call
940 * lower_barrier when the particular background IO completes.
1da177e4 941 */
1da177e4 942
e879a879 943static void raise_barrier(struct r10conf *conf, int force)
1da177e4 944{
6cce3b23 945 BUG_ON(force && !conf->barrier);
1da177e4 946 spin_lock_irq(&conf->resync_lock);
0a27ec96 947
6cce3b23
N
948 /* Wait until no block IO is waiting (unless 'force') */
949 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
c3b328ac 950 conf->resync_lock, );
0a27ec96
N
951
952 /* block any new IO from starting */
953 conf->barrier++;
954
c3b328ac 955 /* Now wait for all pending IO to complete */
0a27ec96
N
956 wait_event_lock_irq(conf->wait_barrier,
957 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
c3b328ac 958 conf->resync_lock, );
0a27ec96
N
959
960 spin_unlock_irq(&conf->resync_lock);
961}
962
e879a879 963static void lower_barrier(struct r10conf *conf)
0a27ec96
N
964{
965 unsigned long flags;
966 spin_lock_irqsave(&conf->resync_lock, flags);
967 conf->barrier--;
968 spin_unlock_irqrestore(&conf->resync_lock, flags);
969 wake_up(&conf->wait_barrier);
970}
971
e879a879 972static void wait_barrier(struct r10conf *conf)
0a27ec96
N
973{
974 spin_lock_irq(&conf->resync_lock);
975 if (conf->barrier) {
976 conf->nr_waiting++;
d6b42dcb
N
977 /* Wait for the barrier to drop.
978 * However if there are already pending
979 * requests (preventing the barrier from
980 * rising completely), and the
981 * pre-process bio queue isn't empty,
982 * then don't wait, as we need to empty
983 * that queue to get the nr_pending
984 * count down.
985 */
986 wait_event_lock_irq(conf->wait_barrier,
987 !conf->barrier ||
988 (conf->nr_pending &&
989 current->bio_list &&
990 !bio_list_empty(current->bio_list)),
0a27ec96 991 conf->resync_lock,
d6b42dcb 992 );
0a27ec96 993 conf->nr_waiting--;
1da177e4 994 }
0a27ec96 995 conf->nr_pending++;
1da177e4
LT
996 spin_unlock_irq(&conf->resync_lock);
997}
998
e879a879 999static void allow_barrier(struct r10conf *conf)
0a27ec96
N
1000{
1001 unsigned long flags;
1002 spin_lock_irqsave(&conf->resync_lock, flags);
1003 conf->nr_pending--;
1004 spin_unlock_irqrestore(&conf->resync_lock, flags);
1005 wake_up(&conf->wait_barrier);
1006}
1007
e879a879 1008static void freeze_array(struct r10conf *conf)
4443ae10
N
1009{
1010 /* stop syncio and normal IO and wait for everything to
f188593e 1011 * go quiet.
4443ae10 1012 * We increment barrier and nr_waiting, and then
1c830532
N
1013 * wait until nr_pending match nr_queued+1
1014 * This is called in the context of one normal IO request
1015 * that has failed. Thus any sync request that might be pending
1016 * will be blocked by nr_pending, and we need to wait for
1017 * pending IO requests to complete or be queued for re-try.
1018 * Thus the number queued (nr_queued) plus this request (1)
1019 * must match the number of pending IOs (nr_pending) before
1020 * we continue.
4443ae10
N
1021 */
1022 spin_lock_irq(&conf->resync_lock);
1023 conf->barrier++;
1024 conf->nr_waiting++;
1025 wait_event_lock_irq(conf->wait_barrier,
1c830532 1026 conf->nr_pending == conf->nr_queued+1,
4443ae10 1027 conf->resync_lock,
c3b328ac
N
1028 flush_pending_writes(conf));
1029
4443ae10
N
1030 spin_unlock_irq(&conf->resync_lock);
1031}
1032
e879a879 1033static void unfreeze_array(struct r10conf *conf)
4443ae10
N
1034{
1035 /* reverse the effect of the freeze */
1036 spin_lock_irq(&conf->resync_lock);
1037 conf->barrier--;
1038 conf->nr_waiting--;
1039 wake_up(&conf->wait_barrier);
1040 spin_unlock_irq(&conf->resync_lock);
1041}
1042
f8c9e74f
N
1043static sector_t choose_data_offset(struct r10bio *r10_bio,
1044 struct md_rdev *rdev)
1045{
1046 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1047 test_bit(R10BIO_Previous, &r10_bio->state))
1048 return rdev->data_offset;
1049 else
1050 return rdev->new_data_offset;
1051}
1052
b4fdcb02 1053static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1054{
e879a879 1055 struct r10conf *conf = mddev->private;
9f2c9d12 1056 struct r10bio *r10_bio;
1da177e4
LT
1057 struct bio *read_bio;
1058 int i;
f8c9e74f 1059 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
5cf00fcd 1060 int chunk_sects = chunk_mask + 1;
a362357b 1061 const int rw = bio_data_dir(bio);
2c7d46ec 1062 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1063 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
6cce3b23 1064 unsigned long flags;
3cb03002 1065 struct md_rdev *blocked_rdev;
d4432c23
N
1066 int sectors_handled;
1067 int max_sectors;
3ea7daa5 1068 int sectors;
1da177e4 1069
e9c7469b
TH
1070 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1071 md_flush_request(mddev, bio);
5a7bbad2 1072 return;
e5dcdd80
N
1073 }
1074
1da177e4
LT
1075 /* If this request crosses a chunk boundary, we need to
1076 * split it. This will only happen for 1 PAGE (or less) requests.
1077 */
5cf00fcd
N
1078 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1079 > chunk_sects
f8c9e74f
N
1080 && (conf->geo.near_copies < conf->geo.raid_disks
1081 || conf->prev.near_copies < conf->prev.raid_disks))) {
1da177e4
LT
1082 struct bio_pair *bp;
1083 /* Sanity check -- queue functions should prevent this happening */
1084 if (bio->bi_vcnt != 1 ||
1085 bio->bi_idx != 0)
1086 goto bad_map;
1087 /* This is a one page bio that upper layers
1088 * refuse to split for us, so we need to split it.
1089 */
6feef531 1090 bp = bio_split(bio,
1da177e4 1091 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
51e9ac77
N
1092
1093 /* Each of these 'make_request' calls will call 'wait_barrier'.
1094 * If the first succeeds but the second blocks due to the resync
1095 * thread raising the barrier, we will deadlock because the
1096 * IO to the underlying device will be queued in generic_make_request
1097 * and will never complete, so will never reduce nr_pending.
1098 * So increment nr_waiting here so no new raise_barriers will
1099 * succeed, and so the second wait_barrier cannot block.
1100 */
1101 spin_lock_irq(&conf->resync_lock);
1102 conf->nr_waiting++;
1103 spin_unlock_irq(&conf->resync_lock);
1104
5a7bbad2
CH
1105 make_request(mddev, &bp->bio1);
1106 make_request(mddev, &bp->bio2);
1da177e4 1107
51e9ac77
N
1108 spin_lock_irq(&conf->resync_lock);
1109 conf->nr_waiting--;
1110 wake_up(&conf->wait_barrier);
1111 spin_unlock_irq(&conf->resync_lock);
1112
1da177e4 1113 bio_pair_release(bp);
5a7bbad2 1114 return;
1da177e4 1115 bad_map:
128595ed
N
1116 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1117 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1da177e4
LT
1118 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1119
6712ecf8 1120 bio_io_error(bio);
5a7bbad2 1121 return;
1da177e4
LT
1122 }
1123
3d310eb7 1124 md_write_start(mddev, bio);
06d91a5f 1125
1da177e4
LT
1126 /*
1127 * Register the new request and wait if the reconstruction
1128 * thread has put up a bar for new requests.
1129 * Continue immediately if no resync is active currently.
1130 */
0a27ec96 1131 wait_barrier(conf);
1da177e4 1132
3ea7daa5
N
1133 sectors = bio->bi_size >> 9;
1134 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1135 bio->bi_sector < conf->reshape_progress &&
1136 bio->bi_sector + sectors > conf->reshape_progress) {
1137 /* IO spans the reshape position. Need to wait for
1138 * reshape to pass
1139 */
1140 allow_barrier(conf);
1141 wait_event(conf->wait_barrier,
1142 conf->reshape_progress <= bio->bi_sector ||
1143 conf->reshape_progress >= bio->bi_sector + sectors);
1144 wait_barrier(conf);
1145 }
1146 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1147 bio_data_dir(bio) == WRITE &&
1148 (mddev->reshape_backwards
1149 ? (bio->bi_sector < conf->reshape_safe &&
1150 bio->bi_sector + sectors > conf->reshape_progress)
1151 : (bio->bi_sector + sectors > conf->reshape_safe &&
1152 bio->bi_sector < conf->reshape_progress))) {
1153 /* Need to update reshape_position in metadata */
1154 mddev->reshape_position = conf->reshape_progress;
1155 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1156 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1157 md_wakeup_thread(mddev->thread);
1158 wait_event(mddev->sb_wait,
1159 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1160
1161 conf->reshape_safe = mddev->reshape_position;
1162 }
1163
1da177e4
LT
1164 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1165
1166 r10_bio->master_bio = bio;
3ea7daa5 1167 r10_bio->sectors = sectors;
1da177e4
LT
1168
1169 r10_bio->mddev = mddev;
1170 r10_bio->sector = bio->bi_sector;
6cce3b23 1171 r10_bio->state = 0;
1da177e4 1172
856e08e2
N
1173 /* We might need to issue multiple reads to different
1174 * devices if there are bad blocks around, so we keep
1175 * track of the number of reads in bio->bi_phys_segments.
1176 * If this is 0, there is only one r10_bio and no locking
1177 * will be needed when the request completes. If it is
1178 * non-zero, then it is the number of not-completed requests.
1179 */
1180 bio->bi_phys_segments = 0;
1181 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1182
a362357b 1183 if (rw == READ) {
1da177e4
LT
1184 /*
1185 * read balancing logic:
1186 */
96c3fd1f 1187 struct md_rdev *rdev;
856e08e2
N
1188 int slot;
1189
1190read_again:
96c3fd1f
N
1191 rdev = read_balance(conf, r10_bio, &max_sectors);
1192 if (!rdev) {
1da177e4 1193 raid_end_bio_io(r10_bio);
5a7bbad2 1194 return;
1da177e4 1195 }
96c3fd1f 1196 slot = r10_bio->read_slot;
1da177e4 1197
a167f663 1198 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
856e08e2
N
1199 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1200 max_sectors);
1da177e4
LT
1201
1202 r10_bio->devs[slot].bio = read_bio;
abbf098e 1203 r10_bio->devs[slot].rdev = rdev;
1da177e4
LT
1204
1205 read_bio->bi_sector = r10_bio->devs[slot].addr +
f8c9e74f 1206 choose_data_offset(r10_bio, rdev);
96c3fd1f 1207 read_bio->bi_bdev = rdev->bdev;
1da177e4 1208 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 1209 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1210 read_bio->bi_private = r10_bio;
1211
856e08e2
N
1212 if (max_sectors < r10_bio->sectors) {
1213 /* Could not read all from this device, so we will
1214 * need another r10_bio.
1215 */
856e08e2
N
1216 sectors_handled = (r10_bio->sectors + max_sectors
1217 - bio->bi_sector);
1218 r10_bio->sectors = max_sectors;
1219 spin_lock_irq(&conf->device_lock);
1220 if (bio->bi_phys_segments == 0)
1221 bio->bi_phys_segments = 2;
1222 else
1223 bio->bi_phys_segments++;
1224 spin_unlock(&conf->device_lock);
1225 /* Cannot call generic_make_request directly
1226 * as that will be queued in __generic_make_request
1227 * and subsequent mempool_alloc might block
1228 * waiting for it. so hand bio over to raid10d.
1229 */
1230 reschedule_retry(r10_bio);
1231
1232 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1233
1234 r10_bio->master_bio = bio;
1235 r10_bio->sectors = ((bio->bi_size >> 9)
1236 - sectors_handled);
1237 r10_bio->state = 0;
1238 r10_bio->mddev = mddev;
1239 r10_bio->sector = bio->bi_sector + sectors_handled;
1240 goto read_again;
1241 } else
1242 generic_make_request(read_bio);
5a7bbad2 1243 return;
1da177e4
LT
1244 }
1245
1246 /*
1247 * WRITE:
1248 */
34db0cd6
N
1249 if (conf->pending_count >= max_queued_requests) {
1250 md_wakeup_thread(mddev->thread);
1251 wait_event(conf->wait_barrier,
1252 conf->pending_count < max_queued_requests);
1253 }
6bfe0b49 1254 /* first select target devices under rcu_lock and
1da177e4
LT
1255 * inc refcount on their rdev. Record them by setting
1256 * bios[x] to bio
d4432c23
N
1257 * If there are known/acknowledged bad blocks on any device
1258 * on which we have seen a write error, we want to avoid
1259 * writing to those blocks. This potentially requires several
1260 * writes to write around the bad blocks. Each set of writes
1261 * gets its own r10_bio with a set of bios attached. The number
1262 * of r10_bios is recored in bio->bi_phys_segments just as with
1263 * the read case.
1da177e4 1264 */
c3b328ac 1265
69335ef3 1266 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1267 raid10_find_phys(conf, r10_bio);
d4432c23 1268retry_write:
cb6969e8 1269 blocked_rdev = NULL;
1da177e4 1270 rcu_read_lock();
d4432c23
N
1271 max_sectors = r10_bio->sectors;
1272
1da177e4
LT
1273 for (i = 0; i < conf->copies; i++) {
1274 int d = r10_bio->devs[i].devnum;
3cb03002 1275 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1276 struct md_rdev *rrdev = rcu_dereference(
1277 conf->mirrors[d].replacement);
4ca40c2c
N
1278 if (rdev == rrdev)
1279 rrdev = NULL;
6bfe0b49
DW
1280 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1281 atomic_inc(&rdev->nr_pending);
1282 blocked_rdev = rdev;
1283 break;
1284 }
475b0321
N
1285 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1286 atomic_inc(&rrdev->nr_pending);
1287 blocked_rdev = rrdev;
1288 break;
1289 }
050b6615
N
1290 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1291 || test_bit(Unmerged, &rrdev->flags)))
475b0321
N
1292 rrdev = NULL;
1293
d4432c23 1294 r10_bio->devs[i].bio = NULL;
475b0321 1295 r10_bio->devs[i].repl_bio = NULL;
050b6615
N
1296 if (!rdev || test_bit(Faulty, &rdev->flags) ||
1297 test_bit(Unmerged, &rdev->flags)) {
6cce3b23 1298 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1299 continue;
1300 }
1301 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1302 sector_t first_bad;
1303 sector_t dev_sector = r10_bio->devs[i].addr;
1304 int bad_sectors;
1305 int is_bad;
1306
1307 is_bad = is_badblock(rdev, dev_sector,
1308 max_sectors,
1309 &first_bad, &bad_sectors);
1310 if (is_bad < 0) {
1311 /* Mustn't write here until the bad block
1312 * is acknowledged
1313 */
1314 atomic_inc(&rdev->nr_pending);
1315 set_bit(BlockedBadBlocks, &rdev->flags);
1316 blocked_rdev = rdev;
1317 break;
1318 }
1319 if (is_bad && first_bad <= dev_sector) {
1320 /* Cannot write here at all */
1321 bad_sectors -= (dev_sector - first_bad);
1322 if (bad_sectors < max_sectors)
1323 /* Mustn't write more than bad_sectors
1324 * to other devices yet
1325 */
1326 max_sectors = bad_sectors;
1327 /* We don't set R10BIO_Degraded as that
1328 * only applies if the disk is missing,
1329 * so it might be re-added, and we want to
1330 * know to recover this chunk.
1331 * In this case the device is here, and the
1332 * fact that this chunk is not in-sync is
1333 * recorded in the bad block log.
1334 */
1335 continue;
1336 }
1337 if (is_bad) {
1338 int good_sectors = first_bad - dev_sector;
1339 if (good_sectors < max_sectors)
1340 max_sectors = good_sectors;
1341 }
6cce3b23 1342 }
d4432c23
N
1343 r10_bio->devs[i].bio = bio;
1344 atomic_inc(&rdev->nr_pending);
475b0321
N
1345 if (rrdev) {
1346 r10_bio->devs[i].repl_bio = bio;
1347 atomic_inc(&rrdev->nr_pending);
1348 }
1da177e4
LT
1349 }
1350 rcu_read_unlock();
1351
6bfe0b49
DW
1352 if (unlikely(blocked_rdev)) {
1353 /* Have to wait for this device to get unblocked, then retry */
1354 int j;
1355 int d;
1356
475b0321 1357 for (j = 0; j < i; j++) {
6bfe0b49
DW
1358 if (r10_bio->devs[j].bio) {
1359 d = r10_bio->devs[j].devnum;
1360 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1361 }
475b0321 1362 if (r10_bio->devs[j].repl_bio) {
4ca40c2c 1363 struct md_rdev *rdev;
475b0321 1364 d = r10_bio->devs[j].devnum;
4ca40c2c
N
1365 rdev = conf->mirrors[d].replacement;
1366 if (!rdev) {
1367 /* Race with remove_disk */
1368 smp_mb();
1369 rdev = conf->mirrors[d].rdev;
1370 }
1371 rdev_dec_pending(rdev, mddev);
475b0321
N
1372 }
1373 }
6bfe0b49
DW
1374 allow_barrier(conf);
1375 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1376 wait_barrier(conf);
1377 goto retry_write;
1378 }
1379
d4432c23
N
1380 if (max_sectors < r10_bio->sectors) {
1381 /* We are splitting this into multiple parts, so
1382 * we need to prepare for allocating another r10_bio.
1383 */
1384 r10_bio->sectors = max_sectors;
1385 spin_lock_irq(&conf->device_lock);
1386 if (bio->bi_phys_segments == 0)
1387 bio->bi_phys_segments = 2;
1388 else
1389 bio->bi_phys_segments++;
1390 spin_unlock_irq(&conf->device_lock);
1391 }
1392 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1393
4e78064f 1394 atomic_set(&r10_bio->remaining, 1);
d4432c23 1395 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1396
1da177e4
LT
1397 for (i = 0; i < conf->copies; i++) {
1398 struct bio *mbio;
1399 int d = r10_bio->devs[i].devnum;
1400 if (!r10_bio->devs[i].bio)
1401 continue;
1402
a167f663 1403 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d4432c23
N
1404 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1405 max_sectors);
1da177e4
LT
1406 r10_bio->devs[i].bio = mbio;
1407
d4432c23 1408 mbio->bi_sector = (r10_bio->devs[i].addr+
f8c9e74f
N
1409 choose_data_offset(r10_bio,
1410 conf->mirrors[d].rdev));
1da177e4
LT
1411 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1412 mbio->bi_end_io = raid10_end_write_request;
e9c7469b 1413 mbio->bi_rw = WRITE | do_sync | do_fua;
1da177e4
LT
1414 mbio->bi_private = r10_bio;
1415
1416 atomic_inc(&r10_bio->remaining);
4e78064f
N
1417 spin_lock_irqsave(&conf->device_lock, flags);
1418 bio_list_add(&conf->pending_bio_list, mbio);
34db0cd6 1419 conf->pending_count++;
4e78064f 1420 spin_unlock_irqrestore(&conf->device_lock, flags);
10684112 1421 if (!mddev_check_plugged(mddev))
b357f04a 1422 md_wakeup_thread(mddev->thread);
475b0321
N
1423
1424 if (!r10_bio->devs[i].repl_bio)
1425 continue;
1426
1427 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1428 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1429 max_sectors);
1430 r10_bio->devs[i].repl_bio = mbio;
1431
4ca40c2c
N
1432 /* We are actively writing to the original device
1433 * so it cannot disappear, so the replacement cannot
1434 * become NULL here
1435 */
f8c9e74f
N
1436 mbio->bi_sector = (r10_bio->devs[i].addr +
1437 choose_data_offset(
1438 r10_bio,
1439 conf->mirrors[d].replacement));
475b0321
N
1440 mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1441 mbio->bi_end_io = raid10_end_write_request;
1442 mbio->bi_rw = WRITE | do_sync | do_fua;
1443 mbio->bi_private = r10_bio;
1444
1445 atomic_inc(&r10_bio->remaining);
1446 spin_lock_irqsave(&conf->device_lock, flags);
1447 bio_list_add(&conf->pending_bio_list, mbio);
1448 conf->pending_count++;
1449 spin_unlock_irqrestore(&conf->device_lock, flags);
b357f04a
N
1450 if (!mddev_check_plugged(mddev))
1451 md_wakeup_thread(mddev->thread);
1da177e4
LT
1452 }
1453
079fa166
N
1454 /* Don't remove the bias on 'remaining' (one_write_done) until
1455 * after checking if we need to go around again.
1456 */
a35e63ef 1457
d4432c23 1458 if (sectors_handled < (bio->bi_size >> 9)) {
079fa166 1459 one_write_done(r10_bio);
5e570289 1460 /* We need another r10_bio. It has already been counted
d4432c23
N
1461 * in bio->bi_phys_segments.
1462 */
1463 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1464
1465 r10_bio->master_bio = bio;
1466 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1467
1468 r10_bio->mddev = mddev;
1469 r10_bio->sector = bio->bi_sector + sectors_handled;
1470 r10_bio->state = 0;
1471 goto retry_write;
1472 }
079fa166
N
1473 one_write_done(r10_bio);
1474
1475 /* In case raid10d snuck in to freeze_array */
1476 wake_up(&conf->wait_barrier);
1da177e4
LT
1477}
1478
fd01b88c 1479static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1480{
e879a879 1481 struct r10conf *conf = mddev->private;
1da177e4
LT
1482 int i;
1483
5cf00fcd 1484 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1485 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1486 if (conf->geo.near_copies > 1)
1487 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1488 if (conf->geo.far_copies > 1) {
1489 if (conf->geo.far_offset)
1490 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1491 else
5cf00fcd 1492 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
c93983bf 1493 }
5cf00fcd
N
1494 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1495 conf->geo.raid_disks - mddev->degraded);
1496 for (i = 0; i < conf->geo.raid_disks; i++)
1da177e4
LT
1497 seq_printf(seq, "%s",
1498 conf->mirrors[i].rdev &&
b2d444d7 1499 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1500 seq_printf(seq, "]");
1501}
1502
700c7213
N
1503/* check if there are enough drives for
1504 * every block to appear on atleast one.
1505 * Don't consider the device numbered 'ignore'
1506 * as we might be about to remove it.
1507 */
f8c9e74f 1508static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
700c7213
N
1509{
1510 int first = 0;
1511
1512 do {
1513 int n = conf->copies;
1514 int cnt = 0;
1515 while (n--) {
1516 if (conf->mirrors[first].rdev &&
1517 first != ignore)
1518 cnt++;
f8c9e74f 1519 first = (first+1) % geo->raid_disks;
700c7213
N
1520 }
1521 if (cnt == 0)
1522 return 0;
1523 } while (first != 0);
1524 return 1;
1525}
1526
f8c9e74f
N
1527static int enough(struct r10conf *conf, int ignore)
1528{
1529 return _enough(conf, &conf->geo, ignore) &&
1530 _enough(conf, &conf->prev, ignore);
1531}
1532
fd01b88c 1533static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1534{
1535 char b[BDEVNAME_SIZE];
e879a879 1536 struct r10conf *conf = mddev->private;
1da177e4
LT
1537
1538 /*
1539 * If it is not operational, then we have already marked it as dead
1540 * else if it is the last working disks, ignore the error, let the
1541 * next level up know.
1542 * else mark the drive as failed
1543 */
b2d444d7 1544 if (test_bit(In_sync, &rdev->flags)
700c7213 1545 && !enough(conf, rdev->raid_disk))
1da177e4
LT
1546 /*
1547 * Don't fail the drive, just return an IO error.
1da177e4
LT
1548 */
1549 return;
c04be0aa
N
1550 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1551 unsigned long flags;
1552 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1553 mddev->degraded++;
c04be0aa 1554 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1555 /*
1556 * if recovery is running, make sure it aborts.
1557 */
dfc70645 1558 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1559 }
de393cde 1560 set_bit(Blocked, &rdev->flags);
b2d444d7 1561 set_bit(Faulty, &rdev->flags);
850b2b42 1562 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1563 printk(KERN_ALERT
1564 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1565 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed 1566 mdname(mddev), bdevname(rdev->bdev, b),
5cf00fcd 1567 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
1568}
1569
e879a879 1570static void print_conf(struct r10conf *conf)
1da177e4
LT
1571{
1572 int i;
dc280d98 1573 struct raid10_info *tmp;
1da177e4 1574
128595ed 1575 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1576 if (!conf) {
128595ed 1577 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1578 return;
1579 }
5cf00fcd
N
1580 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1581 conf->geo.raid_disks);
1da177e4 1582
5cf00fcd 1583 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4
LT
1584 char b[BDEVNAME_SIZE];
1585 tmp = conf->mirrors + i;
1586 if (tmp->rdev)
128595ed 1587 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1588 i, !test_bit(In_sync, &tmp->rdev->flags),
1589 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1590 bdevname(tmp->rdev->bdev,b));
1591 }
1592}
1593
e879a879 1594static void close_sync(struct r10conf *conf)
1da177e4 1595{
0a27ec96
N
1596 wait_barrier(conf);
1597 allow_barrier(conf);
1da177e4
LT
1598
1599 mempool_destroy(conf->r10buf_pool);
1600 conf->r10buf_pool = NULL;
1601}
1602
fd01b88c 1603static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1604{
1605 int i;
e879a879 1606 struct r10conf *conf = mddev->private;
dc280d98 1607 struct raid10_info *tmp;
6b965620
N
1608 int count = 0;
1609 unsigned long flags;
1da177e4
LT
1610
1611 /*
1612 * Find all non-in_sync disks within the RAID10 configuration
1613 * and mark them in_sync
1614 */
5cf00fcd 1615 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1616 tmp = conf->mirrors + i;
4ca40c2c
N
1617 if (tmp->replacement
1618 && tmp->replacement->recovery_offset == MaxSector
1619 && !test_bit(Faulty, &tmp->replacement->flags)
1620 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1621 /* Replacement has just become active */
1622 if (!tmp->rdev
1623 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1624 count++;
1625 if (tmp->rdev) {
1626 /* Replaced device not technically faulty,
1627 * but we need to be sure it gets removed
1628 * and never re-added.
1629 */
1630 set_bit(Faulty, &tmp->rdev->flags);
1631 sysfs_notify_dirent_safe(
1632 tmp->rdev->sysfs_state);
1633 }
1634 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1635 } else if (tmp->rdev
1636 && !test_bit(Faulty, &tmp->rdev->flags)
1637 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1638 count++;
e6ffbcb6 1639 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1da177e4
LT
1640 }
1641 }
6b965620
N
1642 spin_lock_irqsave(&conf->device_lock, flags);
1643 mddev->degraded -= count;
1644 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1645
1646 print_conf(conf);
6b965620 1647 return count;
1da177e4
LT
1648}
1649
1650
fd01b88c 1651static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1652{
e879a879 1653 struct r10conf *conf = mddev->private;
199050ea 1654 int err = -EEXIST;
1da177e4 1655 int mirror;
6c2fce2e 1656 int first = 0;
5cf00fcd 1657 int last = conf->geo.raid_disks - 1;
050b6615 1658 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4
LT
1659
1660 if (mddev->recovery_cp < MaxSector)
1661 /* only hot-add to in-sync arrays, as recovery is
1662 * very different from resync
1663 */
199050ea 1664 return -EBUSY;
f8c9e74f 1665 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
199050ea 1666 return -EINVAL;
1da177e4 1667
a53a6c85 1668 if (rdev->raid_disk >= 0)
6c2fce2e 1669 first = last = rdev->raid_disk;
1da177e4 1670
050b6615
N
1671 if (q->merge_bvec_fn) {
1672 set_bit(Unmerged, &rdev->flags);
1673 mddev->merge_check_needed = 1;
1674 }
1675
2c4193df 1676 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1677 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1678 mirror = rdev->saved_raid_disk;
1679 else
6c2fce2e 1680 mirror = first;
2bb77736 1681 for ( ; mirror <= last ; mirror++) {
dc280d98 1682 struct raid10_info *p = &conf->mirrors[mirror];
2bb77736
N
1683 if (p->recovery_disabled == mddev->recovery_disabled)
1684 continue;
b7044d41
N
1685 if (p->rdev) {
1686 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1687 p->replacement != NULL)
1688 continue;
1689 clear_bit(In_sync, &rdev->flags);
1690 set_bit(Replacement, &rdev->flags);
1691 rdev->raid_disk = mirror;
1692 err = 0;
1693 disk_stack_limits(mddev->gendisk, rdev->bdev,
1694 rdev->data_offset << 9);
b7044d41
N
1695 conf->fullsync = 1;
1696 rcu_assign_pointer(p->replacement, rdev);
1697 break;
1698 }
1da177e4 1699
2bb77736
N
1700 disk_stack_limits(mddev->gendisk, rdev->bdev,
1701 rdev->data_offset << 9);
1da177e4 1702
2bb77736 1703 p->head_position = 0;
d890fa2b 1704 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1705 rdev->raid_disk = mirror;
1706 err = 0;
1707 if (rdev->saved_raid_disk != mirror)
1708 conf->fullsync = 1;
1709 rcu_assign_pointer(p->rdev, rdev);
1710 break;
1711 }
050b6615
N
1712 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1713 /* Some requests might not have seen this new
1714 * merge_bvec_fn. We must wait for them to complete
1715 * before merging the device fully.
1716 * First we make sure any code which has tested
1717 * our function has submitted the request, then
1718 * we wait for all outstanding requests to complete.
1719 */
1720 synchronize_sched();
1721 raise_barrier(conf, 0);
1722 lower_barrier(conf);
1723 clear_bit(Unmerged, &rdev->flags);
1724 }
ac5e7113 1725 md_integrity_add_rdev(rdev, mddev);
1da177e4 1726 print_conf(conf);
199050ea 1727 return err;
1da177e4
LT
1728}
1729
b8321b68 1730static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1731{
e879a879 1732 struct r10conf *conf = mddev->private;
1da177e4 1733 int err = 0;
b8321b68 1734 int number = rdev->raid_disk;
c8ab903e 1735 struct md_rdev **rdevp;
dc280d98 1736 struct raid10_info *p = conf->mirrors + number;
1da177e4
LT
1737
1738 print_conf(conf);
c8ab903e
N
1739 if (rdev == p->rdev)
1740 rdevp = &p->rdev;
1741 else if (rdev == p->replacement)
1742 rdevp = &p->replacement;
1743 else
1744 return 0;
1745
1746 if (test_bit(In_sync, &rdev->flags) ||
1747 atomic_read(&rdev->nr_pending)) {
1748 err = -EBUSY;
1749 goto abort;
1750 }
1751 /* Only remove faulty devices if recovery
1752 * is not possible.
1753 */
1754 if (!test_bit(Faulty, &rdev->flags) &&
1755 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 1756 (!p->replacement || p->replacement == rdev) &&
63aced61 1757 number < conf->geo.raid_disks &&
c8ab903e
N
1758 enough(conf, -1)) {
1759 err = -EBUSY;
1760 goto abort;
1da177e4 1761 }
c8ab903e
N
1762 *rdevp = NULL;
1763 synchronize_rcu();
1764 if (atomic_read(&rdev->nr_pending)) {
1765 /* lost the race, try later */
1766 err = -EBUSY;
1767 *rdevp = rdev;
1768 goto abort;
4ca40c2c
N
1769 } else if (p->replacement) {
1770 /* We must have just cleared 'rdev' */
1771 p->rdev = p->replacement;
1772 clear_bit(Replacement, &p->replacement->flags);
1773 smp_mb(); /* Make sure other CPUs may see both as identical
1774 * but will never see neither -- if they are careful.
1775 */
1776 p->replacement = NULL;
1777 clear_bit(WantReplacement, &rdev->flags);
1778 } else
1779 /* We might have just remove the Replacement as faulty
1780 * Clear the flag just in case
1781 */
1782 clear_bit(WantReplacement, &rdev->flags);
1783
c8ab903e
N
1784 err = md_integrity_register(mddev);
1785
1da177e4
LT
1786abort:
1787
1788 print_conf(conf);
1789 return err;
1790}
1791
1792
6712ecf8 1793static void end_sync_read(struct bio *bio, int error)
1da177e4 1794{
9f2c9d12 1795 struct r10bio *r10_bio = bio->bi_private;
e879a879 1796 struct r10conf *conf = r10_bio->mddev->private;
778ca018 1797 int d;
1da177e4 1798
3ea7daa5
N
1799 if (bio == r10_bio->master_bio) {
1800 /* this is a reshape read */
1801 d = r10_bio->read_slot; /* really the read dev */
1802 } else
1803 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
0eb3ff12
N
1804
1805 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1806 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1807 else
1808 /* The write handler will notice the lack of
1809 * R10BIO_Uptodate and record any errors etc
1810 */
4dbcdc75
N
1811 atomic_add(r10_bio->sectors,
1812 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1813
1814 /* for reconstruct, we always reschedule after a read.
1815 * for resync, only after all reads
1816 */
73d5c38a 1817 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1818 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1819 atomic_dec_and_test(&r10_bio->remaining)) {
1820 /* we have read all the blocks,
1821 * do the comparison in process context in raid10d
1822 */
1823 reschedule_retry(r10_bio);
1824 }
1da177e4
LT
1825}
1826
9f2c9d12 1827static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1828{
fd01b88c 1829 struct mddev *mddev = r10_bio->mddev;
dfc70645 1830
1da177e4
LT
1831 while (atomic_dec_and_test(&r10_bio->remaining)) {
1832 if (r10_bio->master_bio == NULL) {
1833 /* the primary of several recovery bios */
73d5c38a 1834 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1835 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1836 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1837 reschedule_retry(r10_bio);
1838 else
1839 put_buf(r10_bio);
73d5c38a 1840 md_done_sync(mddev, s, 1);
1da177e4
LT
1841 break;
1842 } else {
9f2c9d12 1843 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1844 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1845 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1846 reschedule_retry(r10_bio);
1847 else
1848 put_buf(r10_bio);
1da177e4
LT
1849 r10_bio = r10_bio2;
1850 }
1851 }
1da177e4
LT
1852}
1853
5e570289
N
1854static void end_sync_write(struct bio *bio, int error)
1855{
1856 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1857 struct r10bio *r10_bio = bio->bi_private;
fd01b88c 1858 struct mddev *mddev = r10_bio->mddev;
e879a879 1859 struct r10conf *conf = mddev->private;
5e570289
N
1860 int d;
1861 sector_t first_bad;
1862 int bad_sectors;
1863 int slot;
9ad1aefc 1864 int repl;
4ca40c2c 1865 struct md_rdev *rdev = NULL;
5e570289 1866
9ad1aefc
N
1867 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1868 if (repl)
1869 rdev = conf->mirrors[d].replacement;
547414d1 1870 else
9ad1aefc 1871 rdev = conf->mirrors[d].rdev;
5e570289
N
1872
1873 if (!uptodate) {
9ad1aefc
N
1874 if (repl)
1875 md_error(mddev, rdev);
1876 else {
1877 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
1878 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1879 set_bit(MD_RECOVERY_NEEDED,
1880 &rdev->mddev->recovery);
9ad1aefc
N
1881 set_bit(R10BIO_WriteError, &r10_bio->state);
1882 }
1883 } else if (is_badblock(rdev,
5e570289
N
1884 r10_bio->devs[slot].addr,
1885 r10_bio->sectors,
1886 &first_bad, &bad_sectors))
1887 set_bit(R10BIO_MadeGood, &r10_bio->state);
1888
9ad1aefc 1889 rdev_dec_pending(rdev, mddev);
5e570289
N
1890
1891 end_sync_request(r10_bio);
1892}
1893
1da177e4
LT
1894/*
1895 * Note: sync and recover and handled very differently for raid10
1896 * This code is for resync.
1897 * For resync, we read through virtual addresses and read all blocks.
1898 * If there is any error, we schedule a write. The lowest numbered
1899 * drive is authoritative.
1900 * However requests come for physical address, so we need to map.
1901 * For every physical address there are raid_disks/copies virtual addresses,
1902 * which is always are least one, but is not necessarly an integer.
1903 * This means that a physical address can span multiple chunks, so we may
1904 * have to submit multiple io requests for a single sync request.
1905 */
1906/*
1907 * We check if all blocks are in-sync and only write to blocks that
1908 * aren't in sync
1909 */
9f2c9d12 1910static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 1911{
e879a879 1912 struct r10conf *conf = mddev->private;
1da177e4
LT
1913 int i, first;
1914 struct bio *tbio, *fbio;
f4380a91 1915 int vcnt;
1da177e4
LT
1916
1917 atomic_set(&r10_bio->remaining, 1);
1918
1919 /* find the first device with a block */
1920 for (i=0; i<conf->copies; i++)
1921 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1922 break;
1923
1924 if (i == conf->copies)
1925 goto done;
1926
1927 first = i;
1928 fbio = r10_bio->devs[i].bio;
1929
f4380a91 1930 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 1931 /* now find blocks with errors */
0eb3ff12
N
1932 for (i=0 ; i < conf->copies ; i++) {
1933 int j, d;
1da177e4 1934
1da177e4 1935 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
1936
1937 if (tbio->bi_end_io != end_sync_read)
1938 continue;
1939 if (i == first)
1da177e4 1940 continue;
0eb3ff12
N
1941 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1942 /* We know that the bi_io_vec layout is the same for
1943 * both 'first' and 'i', so we just compare them.
1944 * All vec entries are PAGE_SIZE;
1945 */
1946 for (j = 0; j < vcnt; j++)
1947 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1948 page_address(tbio->bi_io_vec[j].bv_page),
5020ad7d 1949 fbio->bi_io_vec[j].bv_len))
0eb3ff12
N
1950 break;
1951 if (j == vcnt)
1952 continue;
1953 mddev->resync_mismatches += r10_bio->sectors;
f84ee364
N
1954 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1955 /* Don't fix anything. */
1956 continue;
0eb3ff12 1957 }
f84ee364
N
1958 /* Ok, we need to write this bio, either to correct an
1959 * inconsistency or to correct an unreadable block.
1da177e4
LT
1960 * First we need to fixup bv_offset, bv_len and
1961 * bi_vecs, as the read request might have corrupted these
1962 */
1963 tbio->bi_vcnt = vcnt;
1964 tbio->bi_size = r10_bio->sectors << 9;
1965 tbio->bi_idx = 0;
1966 tbio->bi_phys_segments = 0;
1da177e4
LT
1967 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1968 tbio->bi_flags |= 1 << BIO_UPTODATE;
1969 tbio->bi_next = NULL;
1970 tbio->bi_rw = WRITE;
1971 tbio->bi_private = r10_bio;
1972 tbio->bi_sector = r10_bio->devs[i].addr;
1973
1974 for (j=0; j < vcnt ; j++) {
1975 tbio->bi_io_vec[j].bv_offset = 0;
1976 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1977
1978 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1979 page_address(fbio->bi_io_vec[j].bv_page),
1980 PAGE_SIZE);
1981 }
1982 tbio->bi_end_io = end_sync_write;
1983
1984 d = r10_bio->devs[i].devnum;
1985 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1986 atomic_inc(&r10_bio->remaining);
1987 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1988
1989 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1990 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1991 generic_make_request(tbio);
1992 }
1993
9ad1aefc
N
1994 /* Now write out to any replacement devices
1995 * that are active
1996 */
1997 for (i = 0; i < conf->copies; i++) {
1998 int j, d;
9ad1aefc
N
1999
2000 tbio = r10_bio->devs[i].repl_bio;
2001 if (!tbio || !tbio->bi_end_io)
2002 continue;
2003 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2004 && r10_bio->devs[i].bio != fbio)
2005 for (j = 0; j < vcnt; j++)
2006 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2007 page_address(fbio->bi_io_vec[j].bv_page),
2008 PAGE_SIZE);
2009 d = r10_bio->devs[i].devnum;
2010 atomic_inc(&r10_bio->remaining);
2011 md_sync_acct(conf->mirrors[d].replacement->bdev,
2012 tbio->bi_size >> 9);
2013 generic_make_request(tbio);
2014 }
2015
1da177e4
LT
2016done:
2017 if (atomic_dec_and_test(&r10_bio->remaining)) {
2018 md_done_sync(mddev, r10_bio->sectors, 1);
2019 put_buf(r10_bio);
2020 }
2021}
2022
2023/*
2024 * Now for the recovery code.
2025 * Recovery happens across physical sectors.
2026 * We recover all non-is_sync drives by finding the virtual address of
2027 * each, and then choose a working drive that also has that virt address.
2028 * There is a separate r10_bio for each non-in_sync drive.
2029 * Only the first two slots are in use. The first for reading,
2030 * The second for writing.
2031 *
2032 */
9f2c9d12 2033static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
2034{
2035 /* We got a read error during recovery.
2036 * We repeat the read in smaller page-sized sections.
2037 * If a read succeeds, write it to the new device or record
2038 * a bad block if we cannot.
2039 * If a read fails, record a bad block on both old and
2040 * new devices.
2041 */
fd01b88c 2042 struct mddev *mddev = r10_bio->mddev;
e879a879 2043 struct r10conf *conf = mddev->private;
5e570289
N
2044 struct bio *bio = r10_bio->devs[0].bio;
2045 sector_t sect = 0;
2046 int sectors = r10_bio->sectors;
2047 int idx = 0;
2048 int dr = r10_bio->devs[0].devnum;
2049 int dw = r10_bio->devs[1].devnum;
2050
2051 while (sectors) {
2052 int s = sectors;
3cb03002 2053 struct md_rdev *rdev;
5e570289
N
2054 sector_t addr;
2055 int ok;
2056
2057 if (s > (PAGE_SIZE>>9))
2058 s = PAGE_SIZE >> 9;
2059
2060 rdev = conf->mirrors[dr].rdev;
2061 addr = r10_bio->devs[0].addr + sect,
2062 ok = sync_page_io(rdev,
2063 addr,
2064 s << 9,
2065 bio->bi_io_vec[idx].bv_page,
2066 READ, false);
2067 if (ok) {
2068 rdev = conf->mirrors[dw].rdev;
2069 addr = r10_bio->devs[1].addr + sect;
2070 ok = sync_page_io(rdev,
2071 addr,
2072 s << 9,
2073 bio->bi_io_vec[idx].bv_page,
2074 WRITE, false);
b7044d41 2075 if (!ok) {
5e570289 2076 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2077 if (!test_and_set_bit(WantReplacement,
2078 &rdev->flags))
2079 set_bit(MD_RECOVERY_NEEDED,
2080 &rdev->mddev->recovery);
2081 }
5e570289
N
2082 }
2083 if (!ok) {
2084 /* We don't worry if we cannot set a bad block -
2085 * it really is bad so there is no loss in not
2086 * recording it yet
2087 */
2088 rdev_set_badblocks(rdev, addr, s, 0);
2089
2090 if (rdev != conf->mirrors[dw].rdev) {
2091 /* need bad block on destination too */
3cb03002 2092 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2093 addr = r10_bio->devs[1].addr + sect;
2094 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2095 if (!ok) {
2096 /* just abort the recovery */
2097 printk(KERN_NOTICE
2098 "md/raid10:%s: recovery aborted"
2099 " due to read error\n",
2100 mdname(mddev));
2101
2102 conf->mirrors[dw].recovery_disabled
2103 = mddev->recovery_disabled;
2104 set_bit(MD_RECOVERY_INTR,
2105 &mddev->recovery);
2106 break;
2107 }
2108 }
2109 }
2110
2111 sectors -= s;
2112 sect += s;
2113 idx++;
2114 }
2115}
1da177e4 2116
9f2c9d12 2117static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2118{
e879a879 2119 struct r10conf *conf = mddev->private;
c65060ad 2120 int d;
24afd80d 2121 struct bio *wbio, *wbio2;
1da177e4 2122
5e570289
N
2123 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2124 fix_recovery_read_error(r10_bio);
2125 end_sync_request(r10_bio);
2126 return;
2127 }
2128
c65060ad
NK
2129 /*
2130 * share the pages with the first bio
1da177e4
LT
2131 * and submit the write request
2132 */
1da177e4 2133 d = r10_bio->devs[1].devnum;
24afd80d
N
2134 wbio = r10_bio->devs[1].bio;
2135 wbio2 = r10_bio->devs[1].repl_bio;
2136 if (wbio->bi_end_io) {
2137 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2138 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2139 generic_make_request(wbio);
2140 }
2141 if (wbio2 && wbio2->bi_end_io) {
2142 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2143 md_sync_acct(conf->mirrors[d].replacement->bdev,
2144 wbio2->bi_size >> 9);
2145 generic_make_request(wbio2);
2146 }
1da177e4
LT
2147}
2148
2149
1e50915f
RB
2150/*
2151 * Used by fix_read_error() to decay the per rdev read_errors.
2152 * We halve the read error count for every hour that has elapsed
2153 * since the last recorded read error.
2154 *
2155 */
fd01b88c 2156static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f
RB
2157{
2158 struct timespec cur_time_mon;
2159 unsigned long hours_since_last;
2160 unsigned int read_errors = atomic_read(&rdev->read_errors);
2161
2162 ktime_get_ts(&cur_time_mon);
2163
2164 if (rdev->last_read_error.tv_sec == 0 &&
2165 rdev->last_read_error.tv_nsec == 0) {
2166 /* first time we've seen a read error */
2167 rdev->last_read_error = cur_time_mon;
2168 return;
2169 }
2170
2171 hours_since_last = (cur_time_mon.tv_sec -
2172 rdev->last_read_error.tv_sec) / 3600;
2173
2174 rdev->last_read_error = cur_time_mon;
2175
2176 /*
2177 * if hours_since_last is > the number of bits in read_errors
2178 * just set read errors to 0. We do this to avoid
2179 * overflowing the shift of read_errors by hours_since_last.
2180 */
2181 if (hours_since_last >= 8 * sizeof(read_errors))
2182 atomic_set(&rdev->read_errors, 0);
2183 else
2184 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2185}
2186
3cb03002 2187static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
2188 int sectors, struct page *page, int rw)
2189{
2190 sector_t first_bad;
2191 int bad_sectors;
2192
2193 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2194 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2195 return -1;
2196 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2197 /* success */
2198 return 1;
b7044d41 2199 if (rw == WRITE) {
58c54fcc 2200 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2201 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2202 set_bit(MD_RECOVERY_NEEDED,
2203 &rdev->mddev->recovery);
2204 }
58c54fcc
N
2205 /* need to record an error - either for the block or the device */
2206 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2207 md_error(rdev->mddev, rdev);
2208 return 0;
2209}
2210
1da177e4
LT
2211/*
2212 * This is a kernel thread which:
2213 *
2214 * 1. Retries failed read operations on working mirrors.
2215 * 2. Updates the raid superblock when problems encounter.
6814d536 2216 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2217 */
2218
e879a879 2219static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2220{
2221 int sect = 0; /* Offset from r10_bio->sector */
2222 int sectors = r10_bio->sectors;
3cb03002 2223 struct md_rdev*rdev;
1e50915f 2224 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 2225 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 2226
7c4e06ff
N
2227 /* still own a reference to this rdev, so it cannot
2228 * have been cleared recently.
2229 */
2230 rdev = conf->mirrors[d].rdev;
1e50915f 2231
7c4e06ff
N
2232 if (test_bit(Faulty, &rdev->flags))
2233 /* drive has already been failed, just ignore any
2234 more fix_read_error() attempts */
2235 return;
1e50915f 2236
7c4e06ff
N
2237 check_decay_read_errors(mddev, rdev);
2238 atomic_inc(&rdev->read_errors);
2239 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2240 char b[BDEVNAME_SIZE];
2241 bdevname(rdev->bdev, b);
1e50915f 2242
7c4e06ff
N
2243 printk(KERN_NOTICE
2244 "md/raid10:%s: %s: Raid device exceeded "
2245 "read_error threshold [cur %d:max %d]\n",
2246 mdname(mddev), b,
2247 atomic_read(&rdev->read_errors), max_read_errors);
2248 printk(KERN_NOTICE
2249 "md/raid10:%s: %s: Failing raid device\n",
2250 mdname(mddev), b);
2251 md_error(mddev, conf->mirrors[d].rdev);
fae8cc5e 2252 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
7c4e06ff 2253 return;
1e50915f 2254 }
1e50915f 2255
6814d536
N
2256 while(sectors) {
2257 int s = sectors;
2258 int sl = r10_bio->read_slot;
2259 int success = 0;
2260 int start;
2261
2262 if (s > (PAGE_SIZE>>9))
2263 s = PAGE_SIZE >> 9;
2264
2265 rcu_read_lock();
2266 do {
8dbed5ce
N
2267 sector_t first_bad;
2268 int bad_sectors;
2269
0544a21d 2270 d = r10_bio->devs[sl].devnum;
6814d536
N
2271 rdev = rcu_dereference(conf->mirrors[d].rdev);
2272 if (rdev &&
050b6615 2273 !test_bit(Unmerged, &rdev->flags) &&
8dbed5ce
N
2274 test_bit(In_sync, &rdev->flags) &&
2275 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2276 &first_bad, &bad_sectors) == 0) {
6814d536
N
2277 atomic_inc(&rdev->nr_pending);
2278 rcu_read_unlock();
2b193363 2279 success = sync_page_io(rdev,
6814d536 2280 r10_bio->devs[sl].addr +
ccebd4c4 2281 sect,
6814d536 2282 s<<9,
ccebd4c4 2283 conf->tmppage, READ, false);
6814d536
N
2284 rdev_dec_pending(rdev, mddev);
2285 rcu_read_lock();
2286 if (success)
2287 break;
2288 }
2289 sl++;
2290 if (sl == conf->copies)
2291 sl = 0;
2292 } while (!success && sl != r10_bio->read_slot);
2293 rcu_read_unlock();
2294
2295 if (!success) {
58c54fcc
N
2296 /* Cannot read from anywhere, just mark the block
2297 * as bad on the first device to discourage future
2298 * reads.
2299 */
6814d536 2300 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2301 rdev = conf->mirrors[dn].rdev;
2302
2303 if (!rdev_set_badblocks(
2304 rdev,
2305 r10_bio->devs[r10_bio->read_slot].addr
2306 + sect,
fae8cc5e 2307 s, 0)) {
58c54fcc 2308 md_error(mddev, rdev);
fae8cc5e
N
2309 r10_bio->devs[r10_bio->read_slot].bio
2310 = IO_BLOCKED;
2311 }
6814d536
N
2312 break;
2313 }
2314
2315 start = sl;
2316 /* write it back and re-read */
2317 rcu_read_lock();
2318 while (sl != r10_bio->read_slot) {
67b8dc4b 2319 char b[BDEVNAME_SIZE];
0544a21d 2320
6814d536
N
2321 if (sl==0)
2322 sl = conf->copies;
2323 sl--;
2324 d = r10_bio->devs[sl].devnum;
2325 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2326 if (!rdev ||
050b6615 2327 test_bit(Unmerged, &rdev->flags) ||
1294b9c9
N
2328 !test_bit(In_sync, &rdev->flags))
2329 continue;
2330
2331 atomic_inc(&rdev->nr_pending);
2332 rcu_read_unlock();
58c54fcc
N
2333 if (r10_sync_page_io(rdev,
2334 r10_bio->devs[sl].addr +
2335 sect,
055d3747 2336 s, conf->tmppage, WRITE)
1294b9c9
N
2337 == 0) {
2338 /* Well, this device is dead */
2339 printk(KERN_NOTICE
2340 "md/raid10:%s: read correction "
2341 "write failed"
2342 " (%d sectors at %llu on %s)\n",
2343 mdname(mddev), s,
2344 (unsigned long long)(
f8c9e74f
N
2345 sect +
2346 choose_data_offset(r10_bio,
2347 rdev)),
1294b9c9
N
2348 bdevname(rdev->bdev, b));
2349 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2350 "drive\n",
2351 mdname(mddev),
2352 bdevname(rdev->bdev, b));
6814d536 2353 }
1294b9c9
N
2354 rdev_dec_pending(rdev, mddev);
2355 rcu_read_lock();
6814d536
N
2356 }
2357 sl = start;
2358 while (sl != r10_bio->read_slot) {
1294b9c9 2359 char b[BDEVNAME_SIZE];
0544a21d 2360
6814d536
N
2361 if (sl==0)
2362 sl = conf->copies;
2363 sl--;
2364 d = r10_bio->devs[sl].devnum;
2365 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
2366 if (!rdev ||
2367 !test_bit(In_sync, &rdev->flags))
2368 continue;
6814d536 2369
1294b9c9
N
2370 atomic_inc(&rdev->nr_pending);
2371 rcu_read_unlock();
58c54fcc
N
2372 switch (r10_sync_page_io(rdev,
2373 r10_bio->devs[sl].addr +
2374 sect,
055d3747 2375 s, conf->tmppage,
58c54fcc
N
2376 READ)) {
2377 case 0:
1294b9c9
N
2378 /* Well, this device is dead */
2379 printk(KERN_NOTICE
2380 "md/raid10:%s: unable to read back "
2381 "corrected sectors"
2382 " (%d sectors at %llu on %s)\n",
2383 mdname(mddev), s,
2384 (unsigned long long)(
f8c9e74f
N
2385 sect +
2386 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2387 bdevname(rdev->bdev, b));
2388 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2389 "drive\n",
2390 mdname(mddev),
2391 bdevname(rdev->bdev, b));
58c54fcc
N
2392 break;
2393 case 1:
1294b9c9
N
2394 printk(KERN_INFO
2395 "md/raid10:%s: read error corrected"
2396 " (%d sectors at %llu on %s)\n",
2397 mdname(mddev), s,
2398 (unsigned long long)(
f8c9e74f
N
2399 sect +
2400 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2401 bdevname(rdev->bdev, b));
2402 atomic_add(s, &rdev->corrected_errors);
6814d536 2403 }
1294b9c9
N
2404
2405 rdev_dec_pending(rdev, mddev);
2406 rcu_read_lock();
6814d536
N
2407 }
2408 rcu_read_unlock();
2409
2410 sectors -= s;
2411 sect += s;
2412 }
2413}
2414
bd870a16
N
2415static void bi_complete(struct bio *bio, int error)
2416{
2417 complete((struct completion *)bio->bi_private);
2418}
2419
2420static int submit_bio_wait(int rw, struct bio *bio)
2421{
2422 struct completion event;
2423 rw |= REQ_SYNC;
2424
2425 init_completion(&event);
2426 bio->bi_private = &event;
2427 bio->bi_end_io = bi_complete;
2428 submit_bio(rw, bio);
2429 wait_for_completion(&event);
2430
2431 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2432}
2433
9f2c9d12 2434static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2435{
2436 struct bio *bio = r10_bio->master_bio;
fd01b88c 2437 struct mddev *mddev = r10_bio->mddev;
e879a879 2438 struct r10conf *conf = mddev->private;
3cb03002 2439 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2440 /* bio has the data to be written to slot 'i' where
2441 * we just recently had a write error.
2442 * We repeatedly clone the bio and trim down to one block,
2443 * then try the write. Where the write fails we record
2444 * a bad block.
2445 * It is conceivable that the bio doesn't exactly align with
2446 * blocks. We must handle this.
2447 *
2448 * We currently own a reference to the rdev.
2449 */
2450
2451 int block_sectors;
2452 sector_t sector;
2453 int sectors;
2454 int sect_to_write = r10_bio->sectors;
2455 int ok = 1;
2456
2457 if (rdev->badblocks.shift < 0)
2458 return 0;
2459
2460 block_sectors = 1 << rdev->badblocks.shift;
2461 sector = r10_bio->sector;
2462 sectors = ((r10_bio->sector + block_sectors)
2463 & ~(sector_t)(block_sectors - 1))
2464 - sector;
2465
2466 while (sect_to_write) {
2467 struct bio *wbio;
2468 if (sectors > sect_to_write)
2469 sectors = sect_to_write;
2470 /* Write at 'sector' for 'sectors' */
2471 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2472 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2473 wbio->bi_sector = (r10_bio->devs[i].addr+
f8c9e74f 2474 choose_data_offset(r10_bio, rdev) +
bd870a16
N
2475 (sector - r10_bio->sector));
2476 wbio->bi_bdev = rdev->bdev;
2477 if (submit_bio_wait(WRITE, wbio) == 0)
2478 /* Failure! */
2479 ok = rdev_set_badblocks(rdev, sector,
2480 sectors, 0)
2481 && ok;
2482
2483 bio_put(wbio);
2484 sect_to_write -= sectors;
2485 sector += sectors;
2486 sectors = block_sectors;
2487 }
2488 return ok;
2489}
2490
9f2c9d12 2491static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2492{
2493 int slot = r10_bio->read_slot;
560f8e55 2494 struct bio *bio;
e879a879 2495 struct r10conf *conf = mddev->private;
abbf098e 2496 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2497 char b[BDEVNAME_SIZE];
2498 unsigned long do_sync;
856e08e2 2499 int max_sectors;
560f8e55
N
2500
2501 /* we got a read error. Maybe the drive is bad. Maybe just
2502 * the block and we can fix it.
2503 * We freeze all other IO, and try reading the block from
2504 * other devices. When we find one, we re-write
2505 * and check it that fixes the read error.
2506 * This is all done synchronously while the array is
2507 * frozen.
2508 */
fae8cc5e
N
2509 bio = r10_bio->devs[slot].bio;
2510 bdevname(bio->bi_bdev, b);
2511 bio_put(bio);
2512 r10_bio->devs[slot].bio = NULL;
2513
560f8e55
N
2514 if (mddev->ro == 0) {
2515 freeze_array(conf);
2516 fix_read_error(conf, mddev, r10_bio);
2517 unfreeze_array(conf);
fae8cc5e
N
2518 } else
2519 r10_bio->devs[slot].bio = IO_BLOCKED;
2520
abbf098e 2521 rdev_dec_pending(rdev, mddev);
560f8e55 2522
7399c31b 2523read_more:
96c3fd1f
N
2524 rdev = read_balance(conf, r10_bio, &max_sectors);
2525 if (rdev == NULL) {
560f8e55
N
2526 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2527 " read error for block %llu\n",
7399c31b 2528 mdname(mddev), b,
560f8e55
N
2529 (unsigned long long)r10_bio->sector);
2530 raid_end_bio_io(r10_bio);
560f8e55
N
2531 return;
2532 }
2533
2534 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
560f8e55 2535 slot = r10_bio->read_slot;
560f8e55
N
2536 printk_ratelimited(
2537 KERN_ERR
055d3747 2538 "md/raid10:%s: %s: redirecting "
560f8e55
N
2539 "sector %llu to another mirror\n",
2540 mdname(mddev),
2541 bdevname(rdev->bdev, b),
2542 (unsigned long long)r10_bio->sector);
2543 bio = bio_clone_mddev(r10_bio->master_bio,
2544 GFP_NOIO, mddev);
7399c31b
N
2545 md_trim_bio(bio,
2546 r10_bio->sector - bio->bi_sector,
2547 max_sectors);
560f8e55 2548 r10_bio->devs[slot].bio = bio;
abbf098e 2549 r10_bio->devs[slot].rdev = rdev;
560f8e55 2550 bio->bi_sector = r10_bio->devs[slot].addr
f8c9e74f 2551 + choose_data_offset(r10_bio, rdev);
560f8e55
N
2552 bio->bi_bdev = rdev->bdev;
2553 bio->bi_rw = READ | do_sync;
2554 bio->bi_private = r10_bio;
2555 bio->bi_end_io = raid10_end_read_request;
7399c31b
N
2556 if (max_sectors < r10_bio->sectors) {
2557 /* Drat - have to split this up more */
2558 struct bio *mbio = r10_bio->master_bio;
2559 int sectors_handled =
2560 r10_bio->sector + max_sectors
2561 - mbio->bi_sector;
2562 r10_bio->sectors = max_sectors;
2563 spin_lock_irq(&conf->device_lock);
2564 if (mbio->bi_phys_segments == 0)
2565 mbio->bi_phys_segments = 2;
2566 else
2567 mbio->bi_phys_segments++;
2568 spin_unlock_irq(&conf->device_lock);
2569 generic_make_request(bio);
7399c31b
N
2570
2571 r10_bio = mempool_alloc(conf->r10bio_pool,
2572 GFP_NOIO);
2573 r10_bio->master_bio = mbio;
2574 r10_bio->sectors = (mbio->bi_size >> 9)
2575 - sectors_handled;
2576 r10_bio->state = 0;
2577 set_bit(R10BIO_ReadError,
2578 &r10_bio->state);
2579 r10_bio->mddev = mddev;
2580 r10_bio->sector = mbio->bi_sector
2581 + sectors_handled;
2582
2583 goto read_more;
2584 } else
2585 generic_make_request(bio);
560f8e55
N
2586}
2587
e879a879 2588static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2589{
2590 /* Some sort of write request has finished and it
2591 * succeeded in writing where we thought there was a
2592 * bad block. So forget the bad block.
1a0b7cd8
N
2593 * Or possibly if failed and we need to record
2594 * a bad block.
749c55e9
N
2595 */
2596 int m;
3cb03002 2597 struct md_rdev *rdev;
749c55e9
N
2598
2599 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2600 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2601 for (m = 0; m < conf->copies; m++) {
2602 int dev = r10_bio->devs[m].devnum;
2603 rdev = conf->mirrors[dev].rdev;
2604 if (r10_bio->devs[m].bio == NULL)
2605 continue;
2606 if (test_bit(BIO_UPTODATE,
749c55e9 2607 &r10_bio->devs[m].bio->bi_flags)) {
749c55e9
N
2608 rdev_clear_badblocks(
2609 rdev,
2610 r10_bio->devs[m].addr,
c6563a8c 2611 r10_bio->sectors, 0);
1a0b7cd8
N
2612 } else {
2613 if (!rdev_set_badblocks(
2614 rdev,
2615 r10_bio->devs[m].addr,
2616 r10_bio->sectors, 0))
2617 md_error(conf->mddev, rdev);
749c55e9 2618 }
9ad1aefc
N
2619 rdev = conf->mirrors[dev].replacement;
2620 if (r10_bio->devs[m].repl_bio == NULL)
2621 continue;
2622 if (test_bit(BIO_UPTODATE,
2623 &r10_bio->devs[m].repl_bio->bi_flags)) {
2624 rdev_clear_badblocks(
2625 rdev,
2626 r10_bio->devs[m].addr,
c6563a8c 2627 r10_bio->sectors, 0);
9ad1aefc
N
2628 } else {
2629 if (!rdev_set_badblocks(
2630 rdev,
2631 r10_bio->devs[m].addr,
2632 r10_bio->sectors, 0))
2633 md_error(conf->mddev, rdev);
2634 }
1a0b7cd8 2635 }
749c55e9
N
2636 put_buf(r10_bio);
2637 } else {
bd870a16
N
2638 for (m = 0; m < conf->copies; m++) {
2639 int dev = r10_bio->devs[m].devnum;
2640 struct bio *bio = r10_bio->devs[m].bio;
2641 rdev = conf->mirrors[dev].rdev;
2642 if (bio == IO_MADE_GOOD) {
749c55e9
N
2643 rdev_clear_badblocks(
2644 rdev,
2645 r10_bio->devs[m].addr,
c6563a8c 2646 r10_bio->sectors, 0);
749c55e9 2647 rdev_dec_pending(rdev, conf->mddev);
bd870a16
N
2648 } else if (bio != NULL &&
2649 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2650 if (!narrow_write_error(r10_bio, m)) {
2651 md_error(conf->mddev, rdev);
2652 set_bit(R10BIO_Degraded,
2653 &r10_bio->state);
2654 }
2655 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2656 }
475b0321
N
2657 bio = r10_bio->devs[m].repl_bio;
2658 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2659 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2660 rdev_clear_badblocks(
2661 rdev,
2662 r10_bio->devs[m].addr,
c6563a8c 2663 r10_bio->sectors, 0);
475b0321
N
2664 rdev_dec_pending(rdev, conf->mddev);
2665 }
bd870a16
N
2666 }
2667 if (test_bit(R10BIO_WriteError,
2668 &r10_bio->state))
2669 close_write(r10_bio);
749c55e9
N
2670 raid_end_bio_io(r10_bio);
2671 }
2672}
2673
fd01b88c 2674static void raid10d(struct mddev *mddev)
1da177e4 2675{
9f2c9d12 2676 struct r10bio *r10_bio;
1da177e4 2677 unsigned long flags;
e879a879 2678 struct r10conf *conf = mddev->private;
1da177e4 2679 struct list_head *head = &conf->retry_list;
e1dfa0a2 2680 struct blk_plug plug;
1da177e4
LT
2681
2682 md_check_recovery(mddev);
1da177e4 2683
e1dfa0a2 2684 blk_start_plug(&plug);
1da177e4 2685 for (;;) {
6cce3b23 2686
0021b7bc 2687 flush_pending_writes(conf);
6cce3b23 2688
a35e63ef
N
2689 spin_lock_irqsave(&conf->device_lock, flags);
2690 if (list_empty(head)) {
2691 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2692 break;
a35e63ef 2693 }
9f2c9d12 2694 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2695 list_del(head->prev);
4443ae10 2696 conf->nr_queued--;
1da177e4
LT
2697 spin_unlock_irqrestore(&conf->device_lock, flags);
2698
2699 mddev = r10_bio->mddev;
070ec55d 2700 conf = mddev->private;
bd870a16
N
2701 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2702 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 2703 handle_write_completed(conf, r10_bio);
3ea7daa5
N
2704 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2705 reshape_request_write(mddev, r10_bio);
749c55e9 2706 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2707 sync_request_write(mddev, r10_bio);
7eaceacc 2708 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2709 recovery_request_write(mddev, r10_bio);
856e08e2 2710 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2711 handle_read_error(mddev, r10_bio);
856e08e2
N
2712 else {
2713 /* just a partial read to be scheduled from a
2714 * separate context
2715 */
2716 int slot = r10_bio->read_slot;
2717 generic_make_request(r10_bio->devs[slot].bio);
2718 }
560f8e55 2719
1d9d5241 2720 cond_resched();
de393cde
N
2721 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2722 md_check_recovery(mddev);
1da177e4 2723 }
e1dfa0a2 2724 blk_finish_plug(&plug);
1da177e4
LT
2725}
2726
2727
e879a879 2728static int init_resync(struct r10conf *conf)
1da177e4
LT
2729{
2730 int buffs;
69335ef3 2731 int i;
1da177e4
LT
2732
2733 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2734 BUG_ON(conf->r10buf_pool);
69335ef3 2735 conf->have_replacement = 0;
5cf00fcd 2736 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
2737 if (conf->mirrors[i].replacement)
2738 conf->have_replacement = 1;
1da177e4
LT
2739 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2740 if (!conf->r10buf_pool)
2741 return -ENOMEM;
2742 conf->next_resync = 0;
2743 return 0;
2744}
2745
2746/*
2747 * perform a "sync" on one "block"
2748 *
2749 * We need to make sure that no normal I/O request - particularly write
2750 * requests - conflict with active sync requests.
2751 *
2752 * This is achieved by tracking pending requests and a 'barrier' concept
2753 * that can be installed to exclude normal IO requests.
2754 *
2755 * Resync and recovery are handled very differently.
2756 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2757 *
2758 * For resync, we iterate over virtual addresses, read all copies,
2759 * and update if there are differences. If only one copy is live,
2760 * skip it.
2761 * For recovery, we iterate over physical addresses, read a good
2762 * value for each non-in_sync drive, and over-write.
2763 *
2764 * So, for recovery we may have several outstanding complex requests for a
2765 * given address, one for each out-of-sync device. We model this by allocating
2766 * a number of r10_bio structures, one for each out-of-sync device.
2767 * As we setup these structures, we collect all bio's together into a list
2768 * which we then process collectively to add pages, and then process again
2769 * to pass to generic_make_request.
2770 *
2771 * The r10_bio structures are linked using a borrowed master_bio pointer.
2772 * This link is counted in ->remaining. When the r10_bio that points to NULL
2773 * has its remaining count decremented to 0, the whole complex operation
2774 * is complete.
2775 *
2776 */
2777
fd01b88c 2778static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
ab9d47e9 2779 int *skipped, int go_faster)
1da177e4 2780{
e879a879 2781 struct r10conf *conf = mddev->private;
9f2c9d12 2782 struct r10bio *r10_bio;
1da177e4
LT
2783 struct bio *biolist = NULL, *bio;
2784 sector_t max_sector, nr_sectors;
1da177e4 2785 int i;
6cce3b23 2786 int max_sync;
57dab0bd 2787 sector_t sync_blocks;
1da177e4
LT
2788 sector_t sectors_skipped = 0;
2789 int chunks_skipped = 0;
5cf00fcd 2790 sector_t chunk_mask = conf->geo.chunk_mask;
1da177e4
LT
2791
2792 if (!conf->r10buf_pool)
2793 if (init_resync(conf))
57afd89f 2794 return 0;
1da177e4
LT
2795
2796 skipped:
58c0fed4 2797 max_sector = mddev->dev_sectors;
3ea7daa5
N
2798 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2799 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1da177e4
LT
2800 max_sector = mddev->resync_max_sectors;
2801 if (sector_nr >= max_sector) {
6cce3b23
N
2802 /* If we aborted, we need to abort the
2803 * sync on the 'current' bitmap chucks (there can
2804 * be several when recovering multiple devices).
2805 * as we may have started syncing it but not finished.
2806 * We can find the current address in
2807 * mddev->curr_resync, but for recovery,
2808 * we need to convert that to several
2809 * virtual addresses.
2810 */
3ea7daa5
N
2811 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2812 end_reshape(conf);
2813 return 0;
2814 }
2815
6cce3b23
N
2816 if (mddev->curr_resync < max_sector) { /* aborted */
2817 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2818 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2819 &sync_blocks, 1);
5cf00fcd 2820 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
2821 sector_t sect =
2822 raid10_find_virt(conf, mddev->curr_resync, i);
2823 bitmap_end_sync(mddev->bitmap, sect,
2824 &sync_blocks, 1);
2825 }
9ad1aefc
N
2826 } else {
2827 /* completed sync */
2828 if ((!mddev->bitmap || conf->fullsync)
2829 && conf->have_replacement
2830 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2831 /* Completed a full sync so the replacements
2832 * are now fully recovered.
2833 */
5cf00fcd 2834 for (i = 0; i < conf->geo.raid_disks; i++)
9ad1aefc
N
2835 if (conf->mirrors[i].replacement)
2836 conf->mirrors[i].replacement
2837 ->recovery_offset
2838 = MaxSector;
2839 }
6cce3b23 2840 conf->fullsync = 0;
9ad1aefc 2841 }
6cce3b23 2842 bitmap_close_sync(mddev->bitmap);
1da177e4 2843 close_sync(conf);
57afd89f 2844 *skipped = 1;
1da177e4
LT
2845 return sectors_skipped;
2846 }
3ea7daa5
N
2847
2848 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2849 return reshape_request(mddev, sector_nr, skipped);
2850
5cf00fcd 2851 if (chunks_skipped >= conf->geo.raid_disks) {
1da177e4
LT
2852 /* if there has been nothing to do on any drive,
2853 * then there is nothing to do at all..
2854 */
57afd89f
N
2855 *skipped = 1;
2856 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
2857 }
2858
c6207277
N
2859 if (max_sector > mddev->resync_max)
2860 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2861
1da177e4
LT
2862 /* make sure whole request will fit in a chunk - if chunks
2863 * are meaningful
2864 */
5cf00fcd
N
2865 if (conf->geo.near_copies < conf->geo.raid_disks &&
2866 max_sector > (sector_nr | chunk_mask))
2867 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4
LT
2868 /*
2869 * If there is non-resync activity waiting for us then
2870 * put in a delay to throttle resync.
2871 */
0a27ec96 2872 if (!go_faster && conf->nr_waiting)
1da177e4 2873 msleep_interruptible(1000);
1da177e4
LT
2874
2875 /* Again, very different code for resync and recovery.
2876 * Both must result in an r10bio with a list of bios that
2877 * have bi_end_io, bi_sector, bi_bdev set,
2878 * and bi_private set to the r10bio.
2879 * For recovery, we may actually create several r10bios
2880 * with 2 bios in each, that correspond to the bios in the main one.
2881 * In this case, the subordinate r10bios link back through a
2882 * borrowed master_bio pointer, and the counter in the master
2883 * includes a ref from each subordinate.
2884 */
2885 /* First, we decide what to do and set ->bi_end_io
2886 * To end_sync_read if we want to read, and
2887 * end_sync_write if we will want to write.
2888 */
2889
6cce3b23 2890 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
2891 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2892 /* recovery... the complicated one */
e875ecea 2893 int j;
1da177e4
LT
2894 r10_bio = NULL;
2895
5cf00fcd 2896 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 2897 int still_degraded;
9f2c9d12 2898 struct r10bio *rb2;
ab9d47e9
N
2899 sector_t sect;
2900 int must_sync;
e875ecea 2901 int any_working;
dc280d98 2902 struct raid10_info *mirror = &conf->mirrors[i];
24afd80d
N
2903
2904 if ((mirror->rdev == NULL ||
2905 test_bit(In_sync, &mirror->rdev->flags))
2906 &&
2907 (mirror->replacement == NULL ||
2908 test_bit(Faulty,
2909 &mirror->replacement->flags)))
ab9d47e9 2910 continue;
1da177e4 2911
ab9d47e9
N
2912 still_degraded = 0;
2913 /* want to reconstruct this device */
2914 rb2 = r10_bio;
2915 sect = raid10_find_virt(conf, sector_nr, i);
fc448a18
N
2916 if (sect >= mddev->resync_max_sectors) {
2917 /* last stripe is not complete - don't
2918 * try to recover this sector.
2919 */
2920 continue;
2921 }
24afd80d
N
2922 /* Unless we are doing a full sync, or a replacement
2923 * we only need to recover the block if it is set in
2924 * the bitmap
ab9d47e9
N
2925 */
2926 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2927 &sync_blocks, 1);
2928 if (sync_blocks < max_sync)
2929 max_sync = sync_blocks;
2930 if (!must_sync &&
24afd80d 2931 mirror->replacement == NULL &&
ab9d47e9
N
2932 !conf->fullsync) {
2933 /* yep, skip the sync_blocks here, but don't assume
2934 * that there will never be anything to do here
2935 */
2936 chunks_skipped = -1;
2937 continue;
2938 }
6cce3b23 2939
ab9d47e9
N
2940 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2941 raise_barrier(conf, rb2 != NULL);
2942 atomic_set(&r10_bio->remaining, 0);
18055569 2943
ab9d47e9
N
2944 r10_bio->master_bio = (struct bio*)rb2;
2945 if (rb2)
2946 atomic_inc(&rb2->remaining);
2947 r10_bio->mddev = mddev;
2948 set_bit(R10BIO_IsRecover, &r10_bio->state);
2949 r10_bio->sector = sect;
1da177e4 2950
ab9d47e9
N
2951 raid10_find_phys(conf, r10_bio);
2952
2953 /* Need to check if the array will still be
2954 * degraded
2955 */
5cf00fcd 2956 for (j = 0; j < conf->geo.raid_disks; j++)
ab9d47e9
N
2957 if (conf->mirrors[j].rdev == NULL ||
2958 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2959 still_degraded = 1;
87fc767b 2960 break;
1da177e4 2961 }
ab9d47e9
N
2962
2963 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2964 &sync_blocks, still_degraded);
2965
e875ecea 2966 any_working = 0;
ab9d47e9 2967 for (j=0; j<conf->copies;j++) {
e875ecea 2968 int k;
ab9d47e9 2969 int d = r10_bio->devs[j].devnum;
5e570289 2970 sector_t from_addr, to_addr;
3cb03002 2971 struct md_rdev *rdev;
40c356ce
N
2972 sector_t sector, first_bad;
2973 int bad_sectors;
ab9d47e9
N
2974 if (!conf->mirrors[d].rdev ||
2975 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2976 continue;
2977 /* This is where we read from */
e875ecea 2978 any_working = 1;
40c356ce
N
2979 rdev = conf->mirrors[d].rdev;
2980 sector = r10_bio->devs[j].addr;
2981
2982 if (is_badblock(rdev, sector, max_sync,
2983 &first_bad, &bad_sectors)) {
2984 if (first_bad > sector)
2985 max_sync = first_bad - sector;
2986 else {
2987 bad_sectors -= (sector
2988 - first_bad);
2989 if (max_sync > bad_sectors)
2990 max_sync = bad_sectors;
2991 continue;
2992 }
2993 }
ab9d47e9
N
2994 bio = r10_bio->devs[0].bio;
2995 bio->bi_next = biolist;
2996 biolist = bio;
2997 bio->bi_private = r10_bio;
2998 bio->bi_end_io = end_sync_read;
2999 bio->bi_rw = READ;
5e570289 3000 from_addr = r10_bio->devs[j].addr;
24afd80d
N
3001 bio->bi_sector = from_addr + rdev->data_offset;
3002 bio->bi_bdev = rdev->bdev;
3003 atomic_inc(&rdev->nr_pending);
3004 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
3005
3006 for (k=0; k<conf->copies; k++)
3007 if (r10_bio->devs[k].devnum == i)
3008 break;
3009 BUG_ON(k == conf->copies);
5e570289 3010 to_addr = r10_bio->devs[k].addr;
ab9d47e9 3011 r10_bio->devs[0].devnum = d;
5e570289 3012 r10_bio->devs[0].addr = from_addr;
ab9d47e9 3013 r10_bio->devs[1].devnum = i;
5e570289 3014 r10_bio->devs[1].addr = to_addr;
ab9d47e9 3015
24afd80d
N
3016 rdev = mirror->rdev;
3017 if (!test_bit(In_sync, &rdev->flags)) {
3018 bio = r10_bio->devs[1].bio;
3019 bio->bi_next = biolist;
3020 biolist = bio;
3021 bio->bi_private = r10_bio;
3022 bio->bi_end_io = end_sync_write;
3023 bio->bi_rw = WRITE;
3024 bio->bi_sector = to_addr
3025 + rdev->data_offset;
3026 bio->bi_bdev = rdev->bdev;
3027 atomic_inc(&r10_bio->remaining);
3028 } else
3029 r10_bio->devs[1].bio->bi_end_io = NULL;
3030
3031 /* and maybe write to replacement */
3032 bio = r10_bio->devs[1].repl_bio;
3033 if (bio)
3034 bio->bi_end_io = NULL;
3035 rdev = mirror->replacement;
3036 /* Note: if rdev != NULL, then bio
3037 * cannot be NULL as r10buf_pool_alloc will
3038 * have allocated it.
3039 * So the second test here is pointless.
3040 * But it keeps semantic-checkers happy, and
3041 * this comment keeps human reviewers
3042 * happy.
3043 */
3044 if (rdev == NULL || bio == NULL ||
3045 test_bit(Faulty, &rdev->flags))
3046 break;
3047 bio->bi_next = biolist;
3048 biolist = bio;
3049 bio->bi_private = r10_bio;
3050 bio->bi_end_io = end_sync_write;
3051 bio->bi_rw = WRITE;
3052 bio->bi_sector = to_addr + rdev->data_offset;
3053 bio->bi_bdev = rdev->bdev;
3054 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
3055 break;
3056 }
3057 if (j == conf->copies) {
e875ecea
N
3058 /* Cannot recover, so abort the recovery or
3059 * record a bad block */
ab9d47e9
N
3060 put_buf(r10_bio);
3061 if (rb2)
3062 atomic_dec(&rb2->remaining);
3063 r10_bio = rb2;
e875ecea
N
3064 if (any_working) {
3065 /* problem is that there are bad blocks
3066 * on other device(s)
3067 */
3068 int k;
3069 for (k = 0; k < conf->copies; k++)
3070 if (r10_bio->devs[k].devnum == i)
3071 break;
24afd80d
N
3072 if (!test_bit(In_sync,
3073 &mirror->rdev->flags)
3074 && !rdev_set_badblocks(
3075 mirror->rdev,
3076 r10_bio->devs[k].addr,
3077 max_sync, 0))
3078 any_working = 0;
3079 if (mirror->replacement &&
3080 !rdev_set_badblocks(
3081 mirror->replacement,
e875ecea
N
3082 r10_bio->devs[k].addr,
3083 max_sync, 0))
3084 any_working = 0;
3085 }
3086 if (!any_working) {
3087 if (!test_and_set_bit(MD_RECOVERY_INTR,
3088 &mddev->recovery))
3089 printk(KERN_INFO "md/raid10:%s: insufficient "
3090 "working devices for recovery.\n",
3091 mdname(mddev));
24afd80d 3092 mirror->recovery_disabled
e875ecea
N
3093 = mddev->recovery_disabled;
3094 }
ab9d47e9 3095 break;
1da177e4 3096 }
ab9d47e9 3097 }
1da177e4
LT
3098 if (biolist == NULL) {
3099 while (r10_bio) {
9f2c9d12
N
3100 struct r10bio *rb2 = r10_bio;
3101 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3102 rb2->master_bio = NULL;
3103 put_buf(rb2);
3104 }
3105 goto giveup;
3106 }
3107 } else {
3108 /* resync. Schedule a read for every block at this virt offset */
3109 int count = 0;
6cce3b23 3110
78200d45
N
3111 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3112
6cce3b23
N
3113 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3114 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3115 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3116 &mddev->recovery)) {
6cce3b23
N
3117 /* We can skip this block */
3118 *skipped = 1;
3119 return sync_blocks + sectors_skipped;
3120 }
3121 if (sync_blocks < max_sync)
3122 max_sync = sync_blocks;
1da177e4
LT
3123 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3124
1da177e4
LT
3125 r10_bio->mddev = mddev;
3126 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3127 raise_barrier(conf, 0);
3128 conf->next_resync = sector_nr;
1da177e4
LT
3129
3130 r10_bio->master_bio = NULL;
3131 r10_bio->sector = sector_nr;
3132 set_bit(R10BIO_IsSync, &r10_bio->state);
3133 raid10_find_phys(conf, r10_bio);
5cf00fcd 3134 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3135
5cf00fcd 3136 for (i = 0; i < conf->copies; i++) {
1da177e4 3137 int d = r10_bio->devs[i].devnum;
40c356ce
N
3138 sector_t first_bad, sector;
3139 int bad_sectors;
3140
9ad1aefc
N
3141 if (r10_bio->devs[i].repl_bio)
3142 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3143
1da177e4
LT
3144 bio = r10_bio->devs[i].bio;
3145 bio->bi_end_io = NULL;
af03b8e4 3146 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 3147 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 3148 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4 3149 continue;
40c356ce
N
3150 sector = r10_bio->devs[i].addr;
3151 if (is_badblock(conf->mirrors[d].rdev,
3152 sector, max_sync,
3153 &first_bad, &bad_sectors)) {
3154 if (first_bad > sector)
3155 max_sync = first_bad - sector;
3156 else {
3157 bad_sectors -= (sector - first_bad);
3158 if (max_sync > bad_sectors)
3159 max_sync = max_sync;
3160 continue;
3161 }
3162 }
1da177e4
LT
3163 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3164 atomic_inc(&r10_bio->remaining);
3165 bio->bi_next = biolist;
3166 biolist = bio;
3167 bio->bi_private = r10_bio;
3168 bio->bi_end_io = end_sync_read;
802ba064 3169 bio->bi_rw = READ;
40c356ce 3170 bio->bi_sector = sector +
1da177e4
LT
3171 conf->mirrors[d].rdev->data_offset;
3172 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3173 count++;
9ad1aefc
N
3174
3175 if (conf->mirrors[d].replacement == NULL ||
3176 test_bit(Faulty,
3177 &conf->mirrors[d].replacement->flags))
3178 continue;
3179
3180 /* Need to set up for writing to the replacement */
3181 bio = r10_bio->devs[i].repl_bio;
3182 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3183
3184 sector = r10_bio->devs[i].addr;
3185 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3186 bio->bi_next = biolist;
3187 biolist = bio;
3188 bio->bi_private = r10_bio;
3189 bio->bi_end_io = end_sync_write;
3190 bio->bi_rw = WRITE;
3191 bio->bi_sector = sector +
3192 conf->mirrors[d].replacement->data_offset;
3193 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3194 count++;
1da177e4
LT
3195 }
3196
3197 if (count < 2) {
3198 for (i=0; i<conf->copies; i++) {
3199 int d = r10_bio->devs[i].devnum;
3200 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3201 rdev_dec_pending(conf->mirrors[d].rdev,
3202 mddev);
9ad1aefc
N
3203 if (r10_bio->devs[i].repl_bio &&
3204 r10_bio->devs[i].repl_bio->bi_end_io)
3205 rdev_dec_pending(
3206 conf->mirrors[d].replacement,
3207 mddev);
1da177e4
LT
3208 }
3209 put_buf(r10_bio);
3210 biolist = NULL;
3211 goto giveup;
3212 }
3213 }
3214
3215 for (bio = biolist; bio ; bio=bio->bi_next) {
3216
3217 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3218 if (bio->bi_end_io)
3219 bio->bi_flags |= 1 << BIO_UPTODATE;
3220 bio->bi_vcnt = 0;
3221 bio->bi_idx = 0;
3222 bio->bi_phys_segments = 0;
1da177e4
LT
3223 bio->bi_size = 0;
3224 }
3225
3226 nr_sectors = 0;
6cce3b23
N
3227 if (sector_nr + max_sync < max_sector)
3228 max_sector = sector_nr + max_sync;
1da177e4
LT
3229 do {
3230 struct page *page;
3231 int len = PAGE_SIZE;
1da177e4
LT
3232 if (sector_nr + (len>>9) > max_sector)
3233 len = (max_sector - sector_nr) << 9;
3234 if (len == 0)
3235 break;
3236 for (bio= biolist ; bio ; bio=bio->bi_next) {
ab9d47e9 3237 struct bio *bio2;
1da177e4 3238 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
ab9d47e9
N
3239 if (bio_add_page(bio, page, len, 0))
3240 continue;
3241
3242 /* stop here */
3243 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3244 for (bio2 = biolist;
3245 bio2 && bio2 != bio;
3246 bio2 = bio2->bi_next) {
3247 /* remove last page from this bio */
3248 bio2->bi_vcnt--;
3249 bio2->bi_size -= len;
3250 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1da177e4 3251 }
ab9d47e9 3252 goto bio_full;
1da177e4
LT
3253 }
3254 nr_sectors += len>>9;
3255 sector_nr += len>>9;
3256 } while (biolist->bi_vcnt < RESYNC_PAGES);
3257 bio_full:
3258 r10_bio->sectors = nr_sectors;
3259
3260 while (biolist) {
3261 bio = biolist;
3262 biolist = biolist->bi_next;
3263
3264 bio->bi_next = NULL;
3265 r10_bio = bio->bi_private;
3266 r10_bio->sectors = nr_sectors;
3267
3268 if (bio->bi_end_io == end_sync_read) {
3269 md_sync_acct(bio->bi_bdev, nr_sectors);
3270 generic_make_request(bio);
3271 }
3272 }
3273
57afd89f
N
3274 if (sectors_skipped)
3275 /* pretend they weren't skipped, it makes
3276 * no important difference in this case
3277 */
3278 md_done_sync(mddev, sectors_skipped, 1);
3279
1da177e4
LT
3280 return sectors_skipped + nr_sectors;
3281 giveup:
3282 /* There is nowhere to write, so all non-sync
e875ecea
N
3283 * drives must be failed or in resync, all drives
3284 * have a bad block, so try the next chunk...
1da177e4 3285 */
09b4068a
N
3286 if (sector_nr + max_sync < max_sector)
3287 max_sector = sector_nr + max_sync;
3288
3289 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3290 chunks_skipped ++;
3291 sector_nr = max_sector;
1da177e4 3292 goto skipped;
1da177e4
LT
3293}
3294
80c3a6ce 3295static sector_t
fd01b88c 3296raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3297{
3298 sector_t size;
e879a879 3299 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3300
3301 if (!raid_disks)
3ea7daa5
N
3302 raid_disks = min(conf->geo.raid_disks,
3303 conf->prev.raid_disks);
80c3a6ce 3304 if (!sectors)
dab8b292 3305 sectors = conf->dev_sectors;
80c3a6ce 3306
5cf00fcd
N
3307 size = sectors >> conf->geo.chunk_shift;
3308 sector_div(size, conf->geo.far_copies);
80c3a6ce 3309 size = size * raid_disks;
5cf00fcd 3310 sector_div(size, conf->geo.near_copies);
80c3a6ce 3311
5cf00fcd 3312 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3313}
3314
6508fdbf
N
3315static void calc_sectors(struct r10conf *conf, sector_t size)
3316{
3317 /* Calculate the number of sectors-per-device that will
3318 * actually be used, and set conf->dev_sectors and
3319 * conf->stride
3320 */
3321
5cf00fcd
N
3322 size = size >> conf->geo.chunk_shift;
3323 sector_div(size, conf->geo.far_copies);
3324 size = size * conf->geo.raid_disks;
3325 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3326 /* 'size' is now the number of chunks in the array */
3327 /* calculate "used chunks per device" */
3328 size = size * conf->copies;
3329
3330 /* We need to round up when dividing by raid_disks to
3331 * get the stride size.
3332 */
5cf00fcd 3333 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3334
5cf00fcd 3335 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3336
5cf00fcd
N
3337 if (conf->geo.far_offset)
3338 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3339 else {
5cf00fcd
N
3340 sector_div(size, conf->geo.far_copies);
3341 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3342 }
3343}
dab8b292 3344
deb200d0
N
3345enum geo_type {geo_new, geo_old, geo_start};
3346static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3347{
3348 int nc, fc, fo;
3349 int layout, chunk, disks;
3350 switch (new) {
3351 case geo_old:
3352 layout = mddev->layout;
3353 chunk = mddev->chunk_sectors;
3354 disks = mddev->raid_disks - mddev->delta_disks;
3355 break;
3356 case geo_new:
3357 layout = mddev->new_layout;
3358 chunk = mddev->new_chunk_sectors;
3359 disks = mddev->raid_disks;
3360 break;
3361 default: /* avoid 'may be unused' warnings */
3362 case geo_start: /* new when starting reshape - raid_disks not
3363 * updated yet. */
3364 layout = mddev->new_layout;
3365 chunk = mddev->new_chunk_sectors;
3366 disks = mddev->raid_disks + mddev->delta_disks;
3367 break;
3368 }
3369 if (layout >> 17)
3370 return -1;
3371 if (chunk < (PAGE_SIZE >> 9) ||
3372 !is_power_of_2(chunk))
3373 return -2;
3374 nc = layout & 255;
3375 fc = (layout >> 8) & 255;
3376 fo = layout & (1<<16);
3377 geo->raid_disks = disks;
3378 geo->near_copies = nc;
3379 geo->far_copies = fc;
3380 geo->far_offset = fo;
3381 geo->chunk_mask = chunk - 1;
3382 geo->chunk_shift = ffz(~chunk);
3383 return nc*fc;
3384}
3385
e879a879 3386static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3387{
e879a879 3388 struct r10conf *conf = NULL;
dab8b292 3389 int err = -EINVAL;
deb200d0
N
3390 struct geom geo;
3391 int copies;
3392
3393 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 3394
deb200d0 3395 if (copies == -2) {
128595ed
N
3396 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3397 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3398 mdname(mddev), PAGE_SIZE);
dab8b292 3399 goto out;
1da177e4 3400 }
2604b703 3401
deb200d0 3402 if (copies < 2 || copies > mddev->raid_disks) {
128595ed 3403 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 3404 mdname(mddev), mddev->new_layout);
1da177e4
LT
3405 goto out;
3406 }
dab8b292
TM
3407
3408 err = -ENOMEM;
e879a879 3409 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3410 if (!conf)
1da177e4 3411 goto out;
dab8b292 3412
3ea7daa5 3413 /* FIXME calc properly */
dc280d98 3414 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3ea7daa5 3415 max(0,mddev->delta_disks)),
dab8b292
TM
3416 GFP_KERNEL);
3417 if (!conf->mirrors)
3418 goto out;
4443ae10
N
3419
3420 conf->tmppage = alloc_page(GFP_KERNEL);
3421 if (!conf->tmppage)
dab8b292
TM
3422 goto out;
3423
deb200d0
N
3424 conf->geo = geo;
3425 conf->copies = copies;
dab8b292
TM
3426 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3427 r10bio_pool_free, conf);
3428 if (!conf->r10bio_pool)
3429 goto out;
3430
6508fdbf 3431 calc_sectors(conf, mddev->dev_sectors);
3ea7daa5
N
3432 if (mddev->reshape_position == MaxSector) {
3433 conf->prev = conf->geo;
3434 conf->reshape_progress = MaxSector;
3435 } else {
3436 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3437 err = -EINVAL;
3438 goto out;
3439 }
3440 conf->reshape_progress = mddev->reshape_position;
3441 if (conf->prev.far_offset)
3442 conf->prev.stride = 1 << conf->prev.chunk_shift;
3443 else
3444 /* far_copies must be 1 */
3445 conf->prev.stride = conf->dev_sectors;
3446 }
e7e72bf6 3447 spin_lock_init(&conf->device_lock);
dab8b292
TM
3448 INIT_LIST_HEAD(&conf->retry_list);
3449
3450 spin_lock_init(&conf->resync_lock);
3451 init_waitqueue_head(&conf->wait_barrier);
3452
0232605d 3453 conf->thread = md_register_thread(raid10d, mddev, "raid10");
dab8b292
TM
3454 if (!conf->thread)
3455 goto out;
3456
dab8b292
TM
3457 conf->mddev = mddev;
3458 return conf;
3459
3460 out:
3ea7daa5
N
3461 if (err == -ENOMEM)
3462 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3463 mdname(mddev));
dab8b292
TM
3464 if (conf) {
3465 if (conf->r10bio_pool)
3466 mempool_destroy(conf->r10bio_pool);
3467 kfree(conf->mirrors);
3468 safe_put_page(conf->tmppage);
3469 kfree(conf);
3470 }
3471 return ERR_PTR(err);
3472}
3473
fd01b88c 3474static int run(struct mddev *mddev)
dab8b292 3475{
e879a879 3476 struct r10conf *conf;
dab8b292 3477 int i, disk_idx, chunk_size;
dc280d98 3478 struct raid10_info *disk;
3cb03002 3479 struct md_rdev *rdev;
dab8b292 3480 sector_t size;
3ea7daa5
N
3481 sector_t min_offset_diff = 0;
3482 int first = 1;
dab8b292
TM
3483
3484 if (mddev->private == NULL) {
3485 conf = setup_conf(mddev);
3486 if (IS_ERR(conf))
3487 return PTR_ERR(conf);
3488 mddev->private = conf;
3489 }
3490 conf = mddev->private;
3491 if (!conf)
3492 goto out;
3493
dab8b292
TM
3494 mddev->thread = conf->thread;
3495 conf->thread = NULL;
3496
8f6c2e4b 3497 chunk_size = mddev->chunk_sectors << 9;
cc4d1efd
JB
3498 if (mddev->queue) {
3499 blk_queue_io_min(mddev->queue, chunk_size);
3500 if (conf->geo.raid_disks % conf->geo.near_copies)
3501 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3502 else
3503 blk_queue_io_opt(mddev->queue, chunk_size *
3504 (conf->geo.raid_disks / conf->geo.near_copies));
3505 }
8f6c2e4b 3506
dafb20fa 3507 rdev_for_each(rdev, mddev) {
3ea7daa5 3508 long long diff;
aba336bd 3509 struct request_queue *q;
34b343cf 3510
1da177e4 3511 disk_idx = rdev->raid_disk;
f8c9e74f
N
3512 if (disk_idx < 0)
3513 continue;
3514 if (disk_idx >= conf->geo.raid_disks &&
3515 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
3516 continue;
3517 disk = conf->mirrors + disk_idx;
3518
56a2559b
N
3519 if (test_bit(Replacement, &rdev->flags)) {
3520 if (disk->replacement)
3521 goto out_free_conf;
3522 disk->replacement = rdev;
3523 } else {
3524 if (disk->rdev)
3525 goto out_free_conf;
3526 disk->rdev = rdev;
3527 }
aba336bd
N
3528 q = bdev_get_queue(rdev->bdev);
3529 if (q->merge_bvec_fn)
3530 mddev->merge_check_needed = 1;
3ea7daa5
N
3531 diff = (rdev->new_data_offset - rdev->data_offset);
3532 if (!mddev->reshape_backwards)
3533 diff = -diff;
3534 if (diff < 0)
3535 diff = 0;
3536 if (first || diff < min_offset_diff)
3537 min_offset_diff = diff;
56a2559b 3538
cc4d1efd
JB
3539 if (mddev->gendisk)
3540 disk_stack_limits(mddev->gendisk, rdev->bdev,
3541 rdev->data_offset << 9);
1da177e4
LT
3542
3543 disk->head_position = 0;
1da177e4 3544 }
3ea7daa5 3545
6d508242 3546 /* need to check that every block has at least one working mirror */
700c7213 3547 if (!enough(conf, -1)) {
128595ed 3548 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 3549 mdname(mddev));
1da177e4
LT
3550 goto out_free_conf;
3551 }
3552
3ea7daa5
N
3553 if (conf->reshape_progress != MaxSector) {
3554 /* must ensure that shape change is supported */
3555 if (conf->geo.far_copies != 1 &&
3556 conf->geo.far_offset == 0)
3557 goto out_free_conf;
3558 if (conf->prev.far_copies != 1 &&
3559 conf->geo.far_offset == 0)
3560 goto out_free_conf;
3561 }
3562
1da177e4 3563 mddev->degraded = 0;
f8c9e74f
N
3564 for (i = 0;
3565 i < conf->geo.raid_disks
3566 || i < conf->prev.raid_disks;
3567 i++) {
1da177e4
LT
3568
3569 disk = conf->mirrors + i;
3570
56a2559b
N
3571 if (!disk->rdev && disk->replacement) {
3572 /* The replacement is all we have - use it */
3573 disk->rdev = disk->replacement;
3574 disk->replacement = NULL;
3575 clear_bit(Replacement, &disk->rdev->flags);
3576 }
3577
5fd6c1dc 3578 if (!disk->rdev ||
2e333e89 3579 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
3580 disk->head_position = 0;
3581 mddev->degraded++;
8c2e870a
NB
3582 if (disk->rdev)
3583 conf->fullsync = 1;
1da177e4 3584 }
d890fa2b 3585 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
3586 }
3587
8c6ac868 3588 if (mddev->recovery_cp != MaxSector)
128595ed 3589 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
3590 " -- starting background reconstruction\n",
3591 mdname(mddev));
1da177e4 3592 printk(KERN_INFO
128595ed 3593 "md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
3594 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3595 conf->geo.raid_disks);
1da177e4
LT
3596 /*
3597 * Ok, everything is just fine now
3598 */
dab8b292
TM
3599 mddev->dev_sectors = conf->dev_sectors;
3600 size = raid10_size(mddev, 0, 0);
3601 md_set_array_sectors(mddev, size);
3602 mddev->resync_max_sectors = size;
1da177e4 3603
cc4d1efd 3604 if (mddev->queue) {
5cf00fcd 3605 int stripe = conf->geo.raid_disks *
9d8f0363 3606 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
cc4d1efd
JB
3607 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3608 mddev->queue->backing_dev_info.congested_data = mddev;
3609
3610 /* Calculate max read-ahead size.
3611 * We need to readahead at least twice a whole stripe....
3612 * maybe...
3613 */
5cf00fcd 3614 stripe /= conf->geo.near_copies;
3ea7daa5
N
3615 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3616 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
cc4d1efd 3617 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
1da177e4
LT
3618 }
3619
a91a2785
MP
3620
3621 if (md_integrity_register(mddev))
3622 goto out_free_conf;
3623
3ea7daa5
N
3624 if (conf->reshape_progress != MaxSector) {
3625 unsigned long before_length, after_length;
3626
3627 before_length = ((1 << conf->prev.chunk_shift) *
3628 conf->prev.far_copies);
3629 after_length = ((1 << conf->geo.chunk_shift) *
3630 conf->geo.far_copies);
3631
3632 if (max(before_length, after_length) > min_offset_diff) {
3633 /* This cannot work */
3634 printk("md/raid10: offset difference not enough to continue reshape\n");
3635 goto out_free_conf;
3636 }
3637 conf->offset_diff = min_offset_diff;
3638
3639 conf->reshape_safe = conf->reshape_progress;
3640 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3641 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3642 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3643 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3644 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3645 "reshape");
3646 }
3647
1da177e4
LT
3648 return 0;
3649
3650out_free_conf:
01f96c0a 3651 md_unregister_thread(&mddev->thread);
1da177e4
LT
3652 if (conf->r10bio_pool)
3653 mempool_destroy(conf->r10bio_pool);
1345b1d8 3654 safe_put_page(conf->tmppage);
990a8baf 3655 kfree(conf->mirrors);
1da177e4
LT
3656 kfree(conf);
3657 mddev->private = NULL;
3658out:
3659 return -EIO;
3660}
3661
fd01b88c 3662static int stop(struct mddev *mddev)
1da177e4 3663{
e879a879 3664 struct r10conf *conf = mddev->private;
1da177e4 3665
409c57f3
N
3666 raise_barrier(conf, 0);
3667 lower_barrier(conf);
3668
01f96c0a 3669 md_unregister_thread(&mddev->thread);
cc4d1efd
JB
3670 if (mddev->queue)
3671 /* the unplug fn references 'conf'*/
3672 blk_sync_queue(mddev->queue);
3673
1da177e4
LT
3674 if (conf->r10bio_pool)
3675 mempool_destroy(conf->r10bio_pool);
990a8baf 3676 kfree(conf->mirrors);
1da177e4
LT
3677 kfree(conf);
3678 mddev->private = NULL;
3679 return 0;
3680}
3681
fd01b88c 3682static void raid10_quiesce(struct mddev *mddev, int state)
6cce3b23 3683{
e879a879 3684 struct r10conf *conf = mddev->private;
6cce3b23
N
3685
3686 switch(state) {
3687 case 1:
3688 raise_barrier(conf, 0);
3689 break;
3690 case 0:
3691 lower_barrier(conf);
3692 break;
3693 }
6cce3b23 3694}
1da177e4 3695
006a09a0
N
3696static int raid10_resize(struct mddev *mddev, sector_t sectors)
3697{
3698 /* Resize of 'far' arrays is not supported.
3699 * For 'near' and 'offset' arrays we can set the
3700 * number of sectors used to be an appropriate multiple
3701 * of the chunk size.
3702 * For 'offset', this is far_copies*chunksize.
3703 * For 'near' the multiplier is the LCM of
3704 * near_copies and raid_disks.
3705 * So if far_copies > 1 && !far_offset, fail.
3706 * Else find LCM(raid_disks, near_copy)*far_copies and
3707 * multiply by chunk_size. Then round to this number.
3708 * This is mostly done by raid10_size()
3709 */
3710 struct r10conf *conf = mddev->private;
3711 sector_t oldsize, size;
3712
f8c9e74f
N
3713 if (mddev->reshape_position != MaxSector)
3714 return -EBUSY;
3715
5cf00fcd 3716 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
3717 return -EINVAL;
3718
3719 oldsize = raid10_size(mddev, 0, 0);
3720 size = raid10_size(mddev, sectors, 0);
a4a6125a
N
3721 if (mddev->external_size &&
3722 mddev->array_sectors > size)
006a09a0 3723 return -EINVAL;
a4a6125a
N
3724 if (mddev->bitmap) {
3725 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3726 if (ret)
3727 return ret;
3728 }
3729 md_set_array_sectors(mddev, size);
006a09a0
N
3730 set_capacity(mddev->gendisk, mddev->array_sectors);
3731 revalidate_disk(mddev->gendisk);
3732 if (sectors > mddev->dev_sectors &&
3733 mddev->recovery_cp > oldsize) {
3734 mddev->recovery_cp = oldsize;
3735 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3736 }
6508fdbf
N
3737 calc_sectors(conf, sectors);
3738 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
3739 mddev->resync_max_sectors = size;
3740 return 0;
3741}
3742
fd01b88c 3743static void *raid10_takeover_raid0(struct mddev *mddev)
dab8b292 3744{
3cb03002 3745 struct md_rdev *rdev;
e879a879 3746 struct r10conf *conf;
dab8b292
TM
3747
3748 if (mddev->degraded > 0) {
128595ed
N
3749 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3750 mdname(mddev));
dab8b292
TM
3751 return ERR_PTR(-EINVAL);
3752 }
3753
dab8b292
TM
3754 /* Set new parameters */
3755 mddev->new_level = 10;
3756 /* new layout: far_copies = 1, near_copies = 2 */
3757 mddev->new_layout = (1<<8) + 2;
3758 mddev->new_chunk_sectors = mddev->chunk_sectors;
3759 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
3760 mddev->raid_disks *= 2;
3761 /* make sure it will be not marked as dirty */
3762 mddev->recovery_cp = MaxSector;
3763
3764 conf = setup_conf(mddev);
02214dc5 3765 if (!IS_ERR(conf)) {
dafb20fa 3766 rdev_for_each(rdev, mddev)
e93f68a1
N
3767 if (rdev->raid_disk >= 0)
3768 rdev->new_raid_disk = rdev->raid_disk * 2;
02214dc5
KW
3769 conf->barrier = 1;
3770 }
3771
dab8b292
TM
3772 return conf;
3773}
3774
fd01b88c 3775static void *raid10_takeover(struct mddev *mddev)
dab8b292 3776{
e373ab10 3777 struct r0conf *raid0_conf;
dab8b292
TM
3778
3779 /* raid10 can take over:
3780 * raid0 - providing it has only two drives
3781 */
3782 if (mddev->level == 0) {
3783 /* for raid0 takeover only one zone is supported */
e373ab10
N
3784 raid0_conf = mddev->private;
3785 if (raid0_conf->nr_strip_zones > 1) {
128595ed
N
3786 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3787 " with more than one zone.\n",
3788 mdname(mddev));
dab8b292
TM
3789 return ERR_PTR(-EINVAL);
3790 }
3791 return raid10_takeover_raid0(mddev);
3792 }
3793 return ERR_PTR(-EINVAL);
3794}
3795
3ea7daa5
N
3796static int raid10_check_reshape(struct mddev *mddev)
3797{
3798 /* Called when there is a request to change
3799 * - layout (to ->new_layout)
3800 * - chunk size (to ->new_chunk_sectors)
3801 * - raid_disks (by delta_disks)
3802 * or when trying to restart a reshape that was ongoing.
3803 *
3804 * We need to validate the request and possibly allocate
3805 * space if that might be an issue later.
3806 *
3807 * Currently we reject any reshape of a 'far' mode array,
3808 * allow chunk size to change if new is generally acceptable,
3809 * allow raid_disks to increase, and allow
3810 * a switch between 'near' mode and 'offset' mode.
3811 */
3812 struct r10conf *conf = mddev->private;
3813 struct geom geo;
3814
3815 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3816 return -EINVAL;
3817
3818 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3819 /* mustn't change number of copies */
3820 return -EINVAL;
3821 if (geo.far_copies > 1 && !geo.far_offset)
3822 /* Cannot switch to 'far' mode */
3823 return -EINVAL;
3824
3825 if (mddev->array_sectors & geo.chunk_mask)
3826 /* not factor of array size */
3827 return -EINVAL;
3828
3ea7daa5
N
3829 if (!enough(conf, -1))
3830 return -EINVAL;
3831
3832 kfree(conf->mirrors_new);
3833 conf->mirrors_new = NULL;
3834 if (mddev->delta_disks > 0) {
3835 /* allocate new 'mirrors' list */
3836 conf->mirrors_new = kzalloc(
dc280d98 3837 sizeof(struct raid10_info)
3ea7daa5
N
3838 *(mddev->raid_disks +
3839 mddev->delta_disks),
3840 GFP_KERNEL);
3841 if (!conf->mirrors_new)
3842 return -ENOMEM;
3843 }
3844 return 0;
3845}
3846
3847/*
3848 * Need to check if array has failed when deciding whether to:
3849 * - start an array
3850 * - remove non-faulty devices
3851 * - add a spare
3852 * - allow a reshape
3853 * This determination is simple when no reshape is happening.
3854 * However if there is a reshape, we need to carefully check
3855 * both the before and after sections.
3856 * This is because some failed devices may only affect one
3857 * of the two sections, and some non-in_sync devices may
3858 * be insync in the section most affected by failed devices.
3859 */
3860static int calc_degraded(struct r10conf *conf)
3861{
3862 int degraded, degraded2;
3863 int i;
3864
3865 rcu_read_lock();
3866 degraded = 0;
3867 /* 'prev' section first */
3868 for (i = 0; i < conf->prev.raid_disks; i++) {
3869 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3870 if (!rdev || test_bit(Faulty, &rdev->flags))
3871 degraded++;
3872 else if (!test_bit(In_sync, &rdev->flags))
3873 /* When we can reduce the number of devices in
3874 * an array, this might not contribute to
3875 * 'degraded'. It does now.
3876 */
3877 degraded++;
3878 }
3879 rcu_read_unlock();
3880 if (conf->geo.raid_disks == conf->prev.raid_disks)
3881 return degraded;
3882 rcu_read_lock();
3883 degraded2 = 0;
3884 for (i = 0; i < conf->geo.raid_disks; i++) {
3885 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3886 if (!rdev || test_bit(Faulty, &rdev->flags))
3887 degraded2++;
3888 else if (!test_bit(In_sync, &rdev->flags)) {
3889 /* If reshape is increasing the number of devices,
3890 * this section has already been recovered, so
3891 * it doesn't contribute to degraded.
3892 * else it does.
3893 */
3894 if (conf->geo.raid_disks <= conf->prev.raid_disks)
3895 degraded2++;
3896 }
3897 }
3898 rcu_read_unlock();
3899 if (degraded2 > degraded)
3900 return degraded2;
3901 return degraded;
3902}
3903
3904static int raid10_start_reshape(struct mddev *mddev)
3905{
3906 /* A 'reshape' has been requested. This commits
3907 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3908 * This also checks if there are enough spares and adds them
3909 * to the array.
3910 * We currently require enough spares to make the final
3911 * array non-degraded. We also require that the difference
3912 * between old and new data_offset - on each device - is
3913 * enough that we never risk over-writing.
3914 */
3915
3916 unsigned long before_length, after_length;
3917 sector_t min_offset_diff = 0;
3918 int first = 1;
3919 struct geom new;
3920 struct r10conf *conf = mddev->private;
3921 struct md_rdev *rdev;
3922 int spares = 0;
bb63a701 3923 int ret;
3ea7daa5
N
3924
3925 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3926 return -EBUSY;
3927
3928 if (setup_geo(&new, mddev, geo_start) != conf->copies)
3929 return -EINVAL;
3930
3931 before_length = ((1 << conf->prev.chunk_shift) *
3932 conf->prev.far_copies);
3933 after_length = ((1 << conf->geo.chunk_shift) *
3934 conf->geo.far_copies);
3935
3936 rdev_for_each(rdev, mddev) {
3937 if (!test_bit(In_sync, &rdev->flags)
3938 && !test_bit(Faulty, &rdev->flags))
3939 spares++;
3940 if (rdev->raid_disk >= 0) {
3941 long long diff = (rdev->new_data_offset
3942 - rdev->data_offset);
3943 if (!mddev->reshape_backwards)
3944 diff = -diff;
3945 if (diff < 0)
3946 diff = 0;
3947 if (first || diff < min_offset_diff)
3948 min_offset_diff = diff;
3949 }
3950 }
3951
3952 if (max(before_length, after_length) > min_offset_diff)
3953 return -EINVAL;
3954
3955 if (spares < mddev->delta_disks)
3956 return -EINVAL;
3957
3958 conf->offset_diff = min_offset_diff;
3959 spin_lock_irq(&conf->device_lock);
3960 if (conf->mirrors_new) {
3961 memcpy(conf->mirrors_new, conf->mirrors,
dc280d98 3962 sizeof(struct raid10_info)*conf->prev.raid_disks);
3ea7daa5
N
3963 smp_mb();
3964 kfree(conf->mirrors_old); /* FIXME and elsewhere */
3965 conf->mirrors_old = conf->mirrors;
3966 conf->mirrors = conf->mirrors_new;
3967 conf->mirrors_new = NULL;
3968 }
3969 setup_geo(&conf->geo, mddev, geo_start);
3970 smp_mb();
3971 if (mddev->reshape_backwards) {
3972 sector_t size = raid10_size(mddev, 0, 0);
3973 if (size < mddev->array_sectors) {
3974 spin_unlock_irq(&conf->device_lock);
3975 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
3976 mdname(mddev));
3977 return -EINVAL;
3978 }
3979 mddev->resync_max_sectors = size;
3980 conf->reshape_progress = size;
3981 } else
3982 conf->reshape_progress = 0;
3983 spin_unlock_irq(&conf->device_lock);
3984
bb63a701
N
3985 if (mddev->delta_disks && mddev->bitmap) {
3986 ret = bitmap_resize(mddev->bitmap,
3987 raid10_size(mddev, 0,
3988 conf->geo.raid_disks),
3989 0, 0);
3990 if (ret)
3991 goto abort;
3992 }
3ea7daa5
N
3993 if (mddev->delta_disks > 0) {
3994 rdev_for_each(rdev, mddev)
3995 if (rdev->raid_disk < 0 &&
3996 !test_bit(Faulty, &rdev->flags)) {
3997 if (raid10_add_disk(mddev, rdev) == 0) {
3998 if (rdev->raid_disk >=
3999 conf->prev.raid_disks)
4000 set_bit(In_sync, &rdev->flags);
4001 else
4002 rdev->recovery_offset = 0;
4003
4004 if (sysfs_link_rdev(mddev, rdev))
4005 /* Failure here is OK */;
4006 }
4007 } else if (rdev->raid_disk >= conf->prev.raid_disks
4008 && !test_bit(Faulty, &rdev->flags)) {
4009 /* This is a spare that was manually added */
4010 set_bit(In_sync, &rdev->flags);
4011 }
4012 }
4013 /* When a reshape changes the number of devices,
4014 * ->degraded is measured against the larger of the
4015 * pre and post numbers.
4016 */
4017 spin_lock_irq(&conf->device_lock);
4018 mddev->degraded = calc_degraded(conf);
4019 spin_unlock_irq(&conf->device_lock);
4020 mddev->raid_disks = conf->geo.raid_disks;
4021 mddev->reshape_position = conf->reshape_progress;
4022 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4023
4024 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4025 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4026 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4027 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4028
4029 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4030 "reshape");
4031 if (!mddev->sync_thread) {
bb63a701
N
4032 ret = -EAGAIN;
4033 goto abort;
3ea7daa5
N
4034 }
4035 conf->reshape_checkpoint = jiffies;
4036 md_wakeup_thread(mddev->sync_thread);
4037 md_new_event(mddev);
4038 return 0;
bb63a701
N
4039
4040abort:
4041 mddev->recovery = 0;
4042 spin_lock_irq(&conf->device_lock);
4043 conf->geo = conf->prev;
4044 mddev->raid_disks = conf->geo.raid_disks;
4045 rdev_for_each(rdev, mddev)
4046 rdev->new_data_offset = rdev->data_offset;
4047 smp_wmb();
4048 conf->reshape_progress = MaxSector;
4049 mddev->reshape_position = MaxSector;
4050 spin_unlock_irq(&conf->device_lock);
4051 return ret;
3ea7daa5
N
4052}
4053
4054/* Calculate the last device-address that could contain
4055 * any block from the chunk that includes the array-address 's'
4056 * and report the next address.
4057 * i.e. the address returned will be chunk-aligned and after
4058 * any data that is in the chunk containing 's'.
4059 */
4060static sector_t last_dev_address(sector_t s, struct geom *geo)
4061{
4062 s = (s | geo->chunk_mask) + 1;
4063 s >>= geo->chunk_shift;
4064 s *= geo->near_copies;
4065 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4066 s *= geo->far_copies;
4067 s <<= geo->chunk_shift;
4068 return s;
4069}
4070
4071/* Calculate the first device-address that could contain
4072 * any block from the chunk that includes the array-address 's'.
4073 * This too will be the start of a chunk
4074 */
4075static sector_t first_dev_address(sector_t s, struct geom *geo)
4076{
4077 s >>= geo->chunk_shift;
4078 s *= geo->near_copies;
4079 sector_div(s, geo->raid_disks);
4080 s *= geo->far_copies;
4081 s <<= geo->chunk_shift;
4082 return s;
4083}
4084
4085static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4086 int *skipped)
4087{
4088 /* We simply copy at most one chunk (smallest of old and new)
4089 * at a time, possibly less if that exceeds RESYNC_PAGES,
4090 * or we hit a bad block or something.
4091 * This might mean we pause for normal IO in the middle of
4092 * a chunk, but that is not a problem was mddev->reshape_position
4093 * can record any location.
4094 *
4095 * If we will want to write to a location that isn't
4096 * yet recorded as 'safe' (i.e. in metadata on disk) then
4097 * we need to flush all reshape requests and update the metadata.
4098 *
4099 * When reshaping forwards (e.g. to more devices), we interpret
4100 * 'safe' as the earliest block which might not have been copied
4101 * down yet. We divide this by previous stripe size and multiply
4102 * by previous stripe length to get lowest device offset that we
4103 * cannot write to yet.
4104 * We interpret 'sector_nr' as an address that we want to write to.
4105 * From this we use last_device_address() to find where we might
4106 * write to, and first_device_address on the 'safe' position.
4107 * If this 'next' write position is after the 'safe' position,
4108 * we must update the metadata to increase the 'safe' position.
4109 *
4110 * When reshaping backwards, we round in the opposite direction
4111 * and perform the reverse test: next write position must not be
4112 * less than current safe position.
4113 *
4114 * In all this the minimum difference in data offsets
4115 * (conf->offset_diff - always positive) allows a bit of slack,
4116 * so next can be after 'safe', but not by more than offset_disk
4117 *
4118 * We need to prepare all the bios here before we start any IO
4119 * to ensure the size we choose is acceptable to all devices.
4120 * The means one for each copy for write-out and an extra one for
4121 * read-in.
4122 * We store the read-in bio in ->master_bio and the others in
4123 * ->devs[x].bio and ->devs[x].repl_bio.
4124 */
4125 struct r10conf *conf = mddev->private;
4126 struct r10bio *r10_bio;
4127 sector_t next, safe, last;
4128 int max_sectors;
4129 int nr_sectors;
4130 int s;
4131 struct md_rdev *rdev;
4132 int need_flush = 0;
4133 struct bio *blist;
4134 struct bio *bio, *read_bio;
4135 int sectors_done = 0;
4136
4137 if (sector_nr == 0) {
4138 /* If restarting in the middle, skip the initial sectors */
4139 if (mddev->reshape_backwards &&
4140 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4141 sector_nr = (raid10_size(mddev, 0, 0)
4142 - conf->reshape_progress);
4143 } else if (!mddev->reshape_backwards &&
4144 conf->reshape_progress > 0)
4145 sector_nr = conf->reshape_progress;
4146 if (sector_nr) {
4147 mddev->curr_resync_completed = sector_nr;
4148 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4149 *skipped = 1;
4150 return sector_nr;
4151 }
4152 }
4153
4154 /* We don't use sector_nr to track where we are up to
4155 * as that doesn't work well for ->reshape_backwards.
4156 * So just use ->reshape_progress.
4157 */
4158 if (mddev->reshape_backwards) {
4159 /* 'next' is the earliest device address that we might
4160 * write to for this chunk in the new layout
4161 */
4162 next = first_dev_address(conf->reshape_progress - 1,
4163 &conf->geo);
4164
4165 /* 'safe' is the last device address that we might read from
4166 * in the old layout after a restart
4167 */
4168 safe = last_dev_address(conf->reshape_safe - 1,
4169 &conf->prev);
4170
4171 if (next + conf->offset_diff < safe)
4172 need_flush = 1;
4173
4174 last = conf->reshape_progress - 1;
4175 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4176 & conf->prev.chunk_mask);
4177 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4178 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4179 } else {
4180 /* 'next' is after the last device address that we
4181 * might write to for this chunk in the new layout
4182 */
4183 next = last_dev_address(conf->reshape_progress, &conf->geo);
4184
4185 /* 'safe' is the earliest device address that we might
4186 * read from in the old layout after a restart
4187 */
4188 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4189
4190 /* Need to update metadata if 'next' might be beyond 'safe'
4191 * as that would possibly corrupt data
4192 */
4193 if (next > safe + conf->offset_diff)
4194 need_flush = 1;
4195
4196 sector_nr = conf->reshape_progress;
4197 last = sector_nr | (conf->geo.chunk_mask
4198 & conf->prev.chunk_mask);
4199
4200 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4201 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4202 }
4203
4204 if (need_flush ||
4205 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4206 /* Need to update reshape_position in metadata */
4207 wait_barrier(conf);
4208 mddev->reshape_position = conf->reshape_progress;
4209 if (mddev->reshape_backwards)
4210 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4211 - conf->reshape_progress;
4212 else
4213 mddev->curr_resync_completed = conf->reshape_progress;
4214 conf->reshape_checkpoint = jiffies;
4215 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4216 md_wakeup_thread(mddev->thread);
4217 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4218 kthread_should_stop());
4219 conf->reshape_safe = mddev->reshape_position;
4220 allow_barrier(conf);
4221 }
4222
4223read_more:
4224 /* Now schedule reads for blocks from sector_nr to last */
4225 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4226 raise_barrier(conf, sectors_done != 0);
4227 atomic_set(&r10_bio->remaining, 0);
4228 r10_bio->mddev = mddev;
4229 r10_bio->sector = sector_nr;
4230 set_bit(R10BIO_IsReshape, &r10_bio->state);
4231 r10_bio->sectors = last - sector_nr + 1;
4232 rdev = read_balance(conf, r10_bio, &max_sectors);
4233 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4234
4235 if (!rdev) {
4236 /* Cannot read from here, so need to record bad blocks
4237 * on all the target devices.
4238 */
4239 // FIXME
4240 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4241 return sectors_done;
4242 }
4243
4244 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4245
4246 read_bio->bi_bdev = rdev->bdev;
4247 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4248 + rdev->data_offset);
4249 read_bio->bi_private = r10_bio;
4250 read_bio->bi_end_io = end_sync_read;
4251 read_bio->bi_rw = READ;
4252 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4253 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4254 read_bio->bi_vcnt = 0;
4255 read_bio->bi_idx = 0;
4256 read_bio->bi_size = 0;
4257 r10_bio->master_bio = read_bio;
4258 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4259
4260 /* Now find the locations in the new layout */
4261 __raid10_find_phys(&conf->geo, r10_bio);
4262
4263 blist = read_bio;
4264 read_bio->bi_next = NULL;
4265
4266 for (s = 0; s < conf->copies*2; s++) {
4267 struct bio *b;
4268 int d = r10_bio->devs[s/2].devnum;
4269 struct md_rdev *rdev2;
4270 if (s&1) {
4271 rdev2 = conf->mirrors[d].replacement;
4272 b = r10_bio->devs[s/2].repl_bio;
4273 } else {
4274 rdev2 = conf->mirrors[d].rdev;
4275 b = r10_bio->devs[s/2].bio;
4276 }
4277 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4278 continue;
4279 b->bi_bdev = rdev2->bdev;
4280 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4281 b->bi_private = r10_bio;
4282 b->bi_end_io = end_reshape_write;
4283 b->bi_rw = WRITE;
4284 b->bi_flags &= ~(BIO_POOL_MASK - 1);
4285 b->bi_flags |= 1 << BIO_UPTODATE;
4286 b->bi_next = blist;
4287 b->bi_vcnt = 0;
4288 b->bi_idx = 0;
4289 b->bi_size = 0;
4290 blist = b;
4291 }
4292
4293 /* Now add as many pages as possible to all of these bios. */
4294
4295 nr_sectors = 0;
4296 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4297 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4298 int len = (max_sectors - s) << 9;
4299 if (len > PAGE_SIZE)
4300 len = PAGE_SIZE;
4301 for (bio = blist; bio ; bio = bio->bi_next) {
4302 struct bio *bio2;
4303 if (bio_add_page(bio, page, len, 0))
4304 continue;
4305
4306 /* Didn't fit, must stop */
4307 for (bio2 = blist;
4308 bio2 && bio2 != bio;
4309 bio2 = bio2->bi_next) {
4310 /* Remove last page from this bio */
4311 bio2->bi_vcnt--;
4312 bio2->bi_size -= len;
4313 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4314 }
4315 goto bio_full;
4316 }
4317 sector_nr += len >> 9;
4318 nr_sectors += len >> 9;
4319 }
4320bio_full:
4321 r10_bio->sectors = nr_sectors;
4322
4323 /* Now submit the read */
4324 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4325 atomic_inc(&r10_bio->remaining);
4326 read_bio->bi_next = NULL;
4327 generic_make_request(read_bio);
4328 sector_nr += nr_sectors;
4329 sectors_done += nr_sectors;
4330 if (sector_nr <= last)
4331 goto read_more;
4332
4333 /* Now that we have done the whole section we can
4334 * update reshape_progress
4335 */
4336 if (mddev->reshape_backwards)
4337 conf->reshape_progress -= sectors_done;
4338 else
4339 conf->reshape_progress += sectors_done;
4340
4341 return sectors_done;
4342}
4343
4344static void end_reshape_request(struct r10bio *r10_bio);
4345static int handle_reshape_read_error(struct mddev *mddev,
4346 struct r10bio *r10_bio);
4347static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4348{
4349 /* Reshape read completed. Hopefully we have a block
4350 * to write out.
4351 * If we got a read error then we do sync 1-page reads from
4352 * elsewhere until we find the data - or give up.
4353 */
4354 struct r10conf *conf = mddev->private;
4355 int s;
4356
4357 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4358 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4359 /* Reshape has been aborted */
4360 md_done_sync(mddev, r10_bio->sectors, 0);
4361 return;
4362 }
4363
4364 /* We definitely have the data in the pages, schedule the
4365 * writes.
4366 */
4367 atomic_set(&r10_bio->remaining, 1);
4368 for (s = 0; s < conf->copies*2; s++) {
4369 struct bio *b;
4370 int d = r10_bio->devs[s/2].devnum;
4371 struct md_rdev *rdev;
4372 if (s&1) {
4373 rdev = conf->mirrors[d].replacement;
4374 b = r10_bio->devs[s/2].repl_bio;
4375 } else {
4376 rdev = conf->mirrors[d].rdev;
4377 b = r10_bio->devs[s/2].bio;
4378 }
4379 if (!rdev || test_bit(Faulty, &rdev->flags))
4380 continue;
4381 atomic_inc(&rdev->nr_pending);
4382 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4383 atomic_inc(&r10_bio->remaining);
4384 b->bi_next = NULL;
4385 generic_make_request(b);
4386 }
4387 end_reshape_request(r10_bio);
4388}
4389
4390static void end_reshape(struct r10conf *conf)
4391{
4392 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4393 return;
4394
4395 spin_lock_irq(&conf->device_lock);
4396 conf->prev = conf->geo;
4397 md_finish_reshape(conf->mddev);
4398 smp_wmb();
4399 conf->reshape_progress = MaxSector;
4400 spin_unlock_irq(&conf->device_lock);
4401
4402 /* read-ahead size must cover two whole stripes, which is
4403 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4404 */
4405 if (conf->mddev->queue) {
4406 int stripe = conf->geo.raid_disks *
4407 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4408 stripe /= conf->geo.near_copies;
4409 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4410 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4411 }
4412 conf->fullsync = 0;
4413}
4414
4415
4416static int handle_reshape_read_error(struct mddev *mddev,
4417 struct r10bio *r10_bio)
4418{
4419 /* Use sync reads to get the blocks from somewhere else */
4420 int sectors = r10_bio->sectors;
3ea7daa5 4421 struct r10conf *conf = mddev->private;
e0ee7785
N
4422 struct {
4423 struct r10bio r10_bio;
4424 struct r10dev devs[conf->copies];
4425 } on_stack;
4426 struct r10bio *r10b = &on_stack.r10_bio;
3ea7daa5
N
4427 int slot = 0;
4428 int idx = 0;
4429 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4430
e0ee7785
N
4431 r10b->sector = r10_bio->sector;
4432 __raid10_find_phys(&conf->prev, r10b);
3ea7daa5
N
4433
4434 while (sectors) {
4435 int s = sectors;
4436 int success = 0;
4437 int first_slot = slot;
4438
4439 if (s > (PAGE_SIZE >> 9))
4440 s = PAGE_SIZE >> 9;
4441
4442 while (!success) {
e0ee7785 4443 int d = r10b->devs[slot].devnum;
3ea7daa5
N
4444 struct md_rdev *rdev = conf->mirrors[d].rdev;
4445 sector_t addr;
4446 if (rdev == NULL ||
4447 test_bit(Faulty, &rdev->flags) ||
4448 !test_bit(In_sync, &rdev->flags))
4449 goto failed;
4450
e0ee7785 4451 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
3ea7daa5
N
4452 success = sync_page_io(rdev,
4453 addr,
4454 s << 9,
4455 bvec[idx].bv_page,
4456 READ, false);
4457 if (success)
4458 break;
4459 failed:
4460 slot++;
4461 if (slot >= conf->copies)
4462 slot = 0;
4463 if (slot == first_slot)
4464 break;
4465 }
4466 if (!success) {
4467 /* couldn't read this block, must give up */
4468 set_bit(MD_RECOVERY_INTR,
4469 &mddev->recovery);
4470 return -EIO;
4471 }
4472 sectors -= s;
4473 idx++;
4474 }
4475 return 0;
4476}
4477
4478static void end_reshape_write(struct bio *bio, int error)
4479{
4480 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4481 struct r10bio *r10_bio = bio->bi_private;
4482 struct mddev *mddev = r10_bio->mddev;
4483 struct r10conf *conf = mddev->private;
4484 int d;
4485 int slot;
4486 int repl;
4487 struct md_rdev *rdev = NULL;
4488
4489 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4490 if (repl)
4491 rdev = conf->mirrors[d].replacement;
4492 if (!rdev) {
4493 smp_mb();
4494 rdev = conf->mirrors[d].rdev;
4495 }
4496
4497 if (!uptodate) {
4498 /* FIXME should record badblock */
4499 md_error(mddev, rdev);
4500 }
4501
4502 rdev_dec_pending(rdev, mddev);
4503 end_reshape_request(r10_bio);
4504}
4505
4506static void end_reshape_request(struct r10bio *r10_bio)
4507{
4508 if (!atomic_dec_and_test(&r10_bio->remaining))
4509 return;
4510 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4511 bio_put(r10_bio->master_bio);
4512 put_buf(r10_bio);
4513}
4514
4515static void raid10_finish_reshape(struct mddev *mddev)
4516{
4517 struct r10conf *conf = mddev->private;
4518
4519 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4520 return;
4521
4522 if (mddev->delta_disks > 0) {
4523 sector_t size = raid10_size(mddev, 0, 0);
4524 md_set_array_sectors(mddev, size);
4525 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4526 mddev->recovery_cp = mddev->resync_max_sectors;
4527 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4528 }
4529 mddev->resync_max_sectors = size;
4530 set_capacity(mddev->gendisk, mddev->array_sectors);
4531 revalidate_disk(mddev->gendisk);
63aced61
N
4532 } else {
4533 int d;
4534 for (d = conf->geo.raid_disks ;
4535 d < conf->geo.raid_disks - mddev->delta_disks;
4536 d++) {
4537 struct md_rdev *rdev = conf->mirrors[d].rdev;
4538 if (rdev)
4539 clear_bit(In_sync, &rdev->flags);
4540 rdev = conf->mirrors[d].replacement;
4541 if (rdev)
4542 clear_bit(In_sync, &rdev->flags);
4543 }
3ea7daa5
N
4544 }
4545 mddev->layout = mddev->new_layout;
4546 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4547 mddev->reshape_position = MaxSector;
4548 mddev->delta_disks = 0;
4549 mddev->reshape_backwards = 0;
4550}
4551
84fc4b56 4552static struct md_personality raid10_personality =
1da177e4
LT
4553{
4554 .name = "raid10",
2604b703 4555 .level = 10,
1da177e4
LT
4556 .owner = THIS_MODULE,
4557 .make_request = make_request,
4558 .run = run,
4559 .stop = stop,
4560 .status = status,
4561 .error_handler = error,
4562 .hot_add_disk = raid10_add_disk,
4563 .hot_remove_disk= raid10_remove_disk,
4564 .spare_active = raid10_spare_active,
4565 .sync_request = sync_request,
6cce3b23 4566 .quiesce = raid10_quiesce,
80c3a6ce 4567 .size = raid10_size,
006a09a0 4568 .resize = raid10_resize,
dab8b292 4569 .takeover = raid10_takeover,
3ea7daa5
N
4570 .check_reshape = raid10_check_reshape,
4571 .start_reshape = raid10_start_reshape,
4572 .finish_reshape = raid10_finish_reshape,
1da177e4
LT
4573};
4574
4575static int __init raid_init(void)
4576{
2604b703 4577 return register_md_personality(&raid10_personality);
1da177e4
LT
4578}
4579
4580static void raid_exit(void)
4581{
2604b703 4582 unregister_md_personality(&raid10_personality);
1da177e4
LT
4583}
4584
4585module_init(raid_init);
4586module_exit(raid_exit);
4587MODULE_LICENSE("GPL");
0efb9e61 4588MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 4589MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 4590MODULE_ALIAS("md-raid10");
2604b703 4591MODULE_ALIAS("md-level-10");
34db0cd6
N
4592
4593module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 1.415248 seconds and 5 git commands to generate.