md: use new plugging interface for RAID IO.
[deliverable/linux.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
bff61975 24#include <linux/seq_file.h>
43b2e5d8 25#include "md.h"
ef740c37 26#include "raid10.h"
dab8b292 27#include "raid0.h"
ef740c37 28#include "bitmap.h"
1da177e4
LT
29
30/*
31 * RAID10 provides a combination of RAID0 and RAID1 functionality.
32 * The layout of data is defined by
33 * chunk_size
34 * raid_disks
35 * near_copies (stored in low byte of layout)
36 * far_copies (stored in second byte of layout)
c93983bf 37 * far_offset (stored in bit 16 of layout )
1da177e4
LT
38 *
39 * The data to be stored is divided into chunks using chunksize.
40 * Each device is divided into far_copies sections.
41 * In each section, chunks are laid out in a style similar to raid0, but
42 * near_copies copies of each chunk is stored (each on a different drive).
43 * The starting device for each section is offset near_copies from the starting
44 * device of the previous section.
c93983bf 45 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
1da177e4
LT
46 * drive.
47 * near_copies and far_copies must be at least one, and their product is at most
48 * raid_disks.
c93983bf
N
49 *
50 * If far_offset is true, then the far_copies are handled a bit differently.
51 * The copies are still in different stripes, but instead of be very far apart
52 * on disk, there are adjacent stripes.
1da177e4
LT
53 */
54
55/*
56 * Number of guaranteed r10bios in case of extreme VM load:
57 */
58#define NR_RAID10_BIOS 256
59
0a27ec96
N
60static void allow_barrier(conf_t *conf);
61static void lower_barrier(conf_t *conf);
62
dd0fc66f 63static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
64{
65 conf_t *conf = data;
1da177e4
LT
66 int size = offsetof(struct r10bio_s, devs[conf->copies]);
67
68 /* allocate a r10bio with room for raid_disks entries in the bios array */
7eaceacc 69 return kzalloc(size, gfp_flags);
1da177e4
LT
70}
71
72static void r10bio_pool_free(void *r10_bio, void *data)
73{
74 kfree(r10_bio);
75}
76
0310fa21 77/* Maximum size of each resync request */
1da177e4 78#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 79#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
80/* amount of memory to reserve for resync requests */
81#define RESYNC_WINDOW (1024*1024)
82/* maximum number of concurrent requests, memory permitting */
83#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
84
85/*
86 * When performing a resync, we need to read and compare, so
87 * we need as many pages are there are copies.
88 * When performing a recovery, we need 2 bios, one for read,
89 * one for write (we recover only one drive per r10buf)
90 *
91 */
dd0fc66f 92static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
93{
94 conf_t *conf = data;
95 struct page *page;
96 r10bio_t *r10_bio;
97 struct bio *bio;
98 int i, j;
99 int nalloc;
100
101 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 102 if (!r10_bio)
1da177e4 103 return NULL;
1da177e4
LT
104
105 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
106 nalloc = conf->copies; /* resync */
107 else
108 nalloc = 2; /* recovery */
109
110 /*
111 * Allocate bios.
112 */
113 for (j = nalloc ; j-- ; ) {
6746557f 114 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
115 if (!bio)
116 goto out_free_bio;
117 r10_bio->devs[j].bio = bio;
118 }
119 /*
120 * Allocate RESYNC_PAGES data pages and attach them
121 * where needed.
122 */
123 for (j = 0 ; j < nalloc; j++) {
124 bio = r10_bio->devs[j].bio;
125 for (i = 0; i < RESYNC_PAGES; i++) {
126 page = alloc_page(gfp_flags);
127 if (unlikely(!page))
128 goto out_free_pages;
129
130 bio->bi_io_vec[i].bv_page = page;
131 }
132 }
133
134 return r10_bio;
135
136out_free_pages:
137 for ( ; i > 0 ; i--)
1345b1d8 138 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
139 while (j--)
140 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 141 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
1da177e4
LT
142 j = -1;
143out_free_bio:
144 while ( ++j < nalloc )
145 bio_put(r10_bio->devs[j].bio);
146 r10bio_pool_free(r10_bio, conf);
147 return NULL;
148}
149
150static void r10buf_pool_free(void *__r10_bio, void *data)
151{
152 int i;
153 conf_t *conf = data;
154 r10bio_t *r10bio = __r10_bio;
155 int j;
156
157 for (j=0; j < conf->copies; j++) {
158 struct bio *bio = r10bio->devs[j].bio;
159 if (bio) {
160 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 161 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
162 bio->bi_io_vec[i].bv_page = NULL;
163 }
164 bio_put(bio);
165 }
166 }
167 r10bio_pool_free(r10bio, conf);
168}
169
170static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
171{
172 int i;
173
174 for (i = 0; i < conf->copies; i++) {
175 struct bio **bio = & r10_bio->devs[i].bio;
0eb3ff12 176 if (*bio && *bio != IO_BLOCKED)
1da177e4
LT
177 bio_put(*bio);
178 *bio = NULL;
179 }
180}
181
858119e1 182static void free_r10bio(r10bio_t *r10_bio)
1da177e4 183{
070ec55d 184 conf_t *conf = r10_bio->mddev->private;
1da177e4
LT
185
186 /*
187 * Wake up any possible resync thread that waits for the device
188 * to go idle.
189 */
0a27ec96 190 allow_barrier(conf);
1da177e4
LT
191
192 put_all_bios(conf, r10_bio);
193 mempool_free(r10_bio, conf->r10bio_pool);
194}
195
858119e1 196static void put_buf(r10bio_t *r10_bio)
1da177e4 197{
070ec55d 198 conf_t *conf = r10_bio->mddev->private;
1da177e4
LT
199
200 mempool_free(r10_bio, conf->r10buf_pool);
201
0a27ec96 202 lower_barrier(conf);
1da177e4
LT
203}
204
205static void reschedule_retry(r10bio_t *r10_bio)
206{
207 unsigned long flags;
208 mddev_t *mddev = r10_bio->mddev;
070ec55d 209 conf_t *conf = mddev->private;
1da177e4
LT
210
211 spin_lock_irqsave(&conf->device_lock, flags);
212 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 213 conf->nr_queued ++;
1da177e4
LT
214 spin_unlock_irqrestore(&conf->device_lock, flags);
215
388667be
AJ
216 /* wake up frozen array... */
217 wake_up(&conf->wait_barrier);
218
1da177e4
LT
219 md_wakeup_thread(mddev->thread);
220}
221
222/*
223 * raid_end_bio_io() is called when we have finished servicing a mirrored
224 * operation and are ready to return a success/failure code to the buffer
225 * cache layer.
226 */
227static void raid_end_bio_io(r10bio_t *r10_bio)
228{
229 struct bio *bio = r10_bio->master_bio;
230
6712ecf8 231 bio_endio(bio,
1da177e4
LT
232 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
233 free_r10bio(r10_bio);
234}
235
236/*
237 * Update disk head position estimator based on IRQ completion info.
238 */
239static inline void update_head_pos(int slot, r10bio_t *r10_bio)
240{
070ec55d 241 conf_t *conf = r10_bio->mddev->private;
1da177e4
LT
242
243 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
244 r10_bio->devs[slot].addr + (r10_bio->sectors);
245}
246
6712ecf8 247static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
248{
249 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 250 r10bio_t *r10_bio = bio->bi_private;
1da177e4 251 int slot, dev;
070ec55d 252 conf_t *conf = r10_bio->mddev->private;
1da177e4 253
1da177e4
LT
254
255 slot = r10_bio->read_slot;
256 dev = r10_bio->devs[slot].devnum;
257 /*
258 * this branch is our 'one mirror IO has finished' event handler:
259 */
4443ae10
N
260 update_head_pos(slot, r10_bio);
261
262 if (uptodate) {
1da177e4
LT
263 /*
264 * Set R10BIO_Uptodate in our master bio, so that
265 * we will return a good error code to the higher
266 * levels even if IO on some other mirrored buffer fails.
267 *
268 * The 'master' represents the composite IO operation to
269 * user-side. So if something waits for IO, then it will
270 * wait for the 'master' bio.
271 */
272 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 273 raid_end_bio_io(r10_bio);
4443ae10 274 } else {
1da177e4
LT
275 /*
276 * oops, read error:
277 */
278 char b[BDEVNAME_SIZE];
279 if (printk_ratelimit())
128595ed
N
280 printk(KERN_ERR "md/raid10:%s: %s: rescheduling sector %llu\n",
281 mdname(conf->mddev),
1da177e4
LT
282 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
283 reschedule_retry(r10_bio);
284 }
285
286 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
1da177e4
LT
287}
288
6712ecf8 289static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
290{
291 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 292 r10bio_t *r10_bio = bio->bi_private;
1da177e4 293 int slot, dev;
070ec55d 294 conf_t *conf = r10_bio->mddev->private;
1da177e4 295
1da177e4
LT
296 for (slot = 0; slot < conf->copies; slot++)
297 if (r10_bio->devs[slot].bio == bio)
298 break;
299 dev = r10_bio->devs[slot].devnum;
300
301 /*
302 * this branch is our 'one mirror IO has finished' event handler:
303 */
6cce3b23 304 if (!uptodate) {
1da177e4 305 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
6cce3b23
N
306 /* an I/O failed, we can't clear the bitmap */
307 set_bit(R10BIO_Degraded, &r10_bio->state);
308 } else
1da177e4
LT
309 /*
310 * Set R10BIO_Uptodate in our master bio, so that
311 * we will return a good error code for to the higher
312 * levels even if IO on some other mirrored buffer fails.
313 *
314 * The 'master' represents the composite IO operation to
315 * user-side. So if something waits for IO, then it will
316 * wait for the 'master' bio.
317 */
318 set_bit(R10BIO_Uptodate, &r10_bio->state);
319
320 update_head_pos(slot, r10_bio);
321
322 /*
323 *
324 * Let's see if all mirrored write operations have finished
325 * already.
326 */
327 if (atomic_dec_and_test(&r10_bio->remaining)) {
6cce3b23
N
328 /* clear the bitmap if all writes complete successfully */
329 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
330 r10_bio->sectors,
331 !test_bit(R10BIO_Degraded, &r10_bio->state),
332 0);
1da177e4
LT
333 md_write_end(r10_bio->mddev);
334 raid_end_bio_io(r10_bio);
335 }
336
337 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
1da177e4
LT
338}
339
340
341/*
342 * RAID10 layout manager
25985edc 343 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
344 * parameters: near_copies and far_copies.
345 * near_copies * far_copies must be <= raid_disks.
346 * Normally one of these will be 1.
347 * If both are 1, we get raid0.
348 * If near_copies == raid_disks, we get raid1.
349 *
25985edc 350 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
351 * first chunk, followed by near_copies copies of the next chunk and
352 * so on.
353 * If far_copies > 1, then after 1/far_copies of the array has been assigned
354 * as described above, we start again with a device offset of near_copies.
355 * So we effectively have another copy of the whole array further down all
356 * the drives, but with blocks on different drives.
357 * With this layout, and block is never stored twice on the one device.
358 *
359 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 360 * on each device that it is on.
1da177e4
LT
361 *
362 * raid10_find_virt does the reverse mapping, from a device and a
363 * sector offset to a virtual address
364 */
365
366static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
367{
368 int n,f;
369 sector_t sector;
370 sector_t chunk;
371 sector_t stripe;
372 int dev;
373
374 int slot = 0;
375
376 /* now calculate first sector/dev */
377 chunk = r10bio->sector >> conf->chunk_shift;
378 sector = r10bio->sector & conf->chunk_mask;
379
380 chunk *= conf->near_copies;
381 stripe = chunk;
382 dev = sector_div(stripe, conf->raid_disks);
c93983bf
N
383 if (conf->far_offset)
384 stripe *= conf->far_copies;
1da177e4
LT
385
386 sector += stripe << conf->chunk_shift;
387
388 /* and calculate all the others */
389 for (n=0; n < conf->near_copies; n++) {
390 int d = dev;
391 sector_t s = sector;
392 r10bio->devs[slot].addr = sector;
393 r10bio->devs[slot].devnum = d;
394 slot++;
395
396 for (f = 1; f < conf->far_copies; f++) {
397 d += conf->near_copies;
398 if (d >= conf->raid_disks)
399 d -= conf->raid_disks;
400 s += conf->stride;
401 r10bio->devs[slot].devnum = d;
402 r10bio->devs[slot].addr = s;
403 slot++;
404 }
405 dev++;
406 if (dev >= conf->raid_disks) {
407 dev = 0;
408 sector += (conf->chunk_mask + 1);
409 }
410 }
411 BUG_ON(slot != conf->copies);
412}
413
414static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
415{
416 sector_t offset, chunk, vchunk;
417
1da177e4 418 offset = sector & conf->chunk_mask;
c93983bf
N
419 if (conf->far_offset) {
420 int fc;
421 chunk = sector >> conf->chunk_shift;
422 fc = sector_div(chunk, conf->far_copies);
423 dev -= fc * conf->near_copies;
424 if (dev < 0)
425 dev += conf->raid_disks;
426 } else {
64a742bc 427 while (sector >= conf->stride) {
c93983bf
N
428 sector -= conf->stride;
429 if (dev < conf->near_copies)
430 dev += conf->raid_disks - conf->near_copies;
431 else
432 dev -= conf->near_copies;
433 }
434 chunk = sector >> conf->chunk_shift;
435 }
1da177e4
LT
436 vchunk = chunk * conf->raid_disks + dev;
437 sector_div(vchunk, conf->near_copies);
438 return (vchunk << conf->chunk_shift) + offset;
439}
440
441/**
442 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
443 * @q: request queue
cc371e66 444 * @bvm: properties of new bio
1da177e4
LT
445 * @biovec: the request that could be merged to it.
446 *
447 * Return amount of bytes we can accept at this offset
448 * If near_copies == raid_disk, there are no striping issues,
449 * but in that case, the function isn't called at all.
450 */
cc371e66
AK
451static int raid10_mergeable_bvec(struct request_queue *q,
452 struct bvec_merge_data *bvm,
453 struct bio_vec *biovec)
1da177e4
LT
454{
455 mddev_t *mddev = q->queuedata;
cc371e66 456 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4 457 int max;
9d8f0363 458 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 459 unsigned int bio_sectors = bvm->bi_size >> 9;
1da177e4
LT
460
461 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
462 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
cc371e66
AK
463 if (max <= biovec->bv_len && bio_sectors == 0)
464 return biovec->bv_len;
1da177e4
LT
465 else
466 return max;
467}
468
469/*
470 * This routine returns the disk from which the requested read should
471 * be done. There is a per-array 'next expected sequential IO' sector
472 * number - if this matches on the next IO then we use the last disk.
473 * There is also a per-disk 'last know head position' sector that is
474 * maintained from IRQ contexts, both the normal and the resync IO
475 * completion handlers update this position correctly. If there is no
476 * perfect sequential match then we pick the disk whose head is closest.
477 *
478 * If there are 2 mirrors in the same 2 devices, performance degrades
479 * because position is mirror, not device based.
480 *
481 * The rdev for the device selected will have nr_pending incremented.
482 */
483
484/*
485 * FIXME: possibly should rethink readbalancing and do it differently
486 * depending on near_copies / far_copies geometry.
487 */
488static int read_balance(conf_t *conf, r10bio_t *r10_bio)
489{
af3a2cd6 490 const sector_t this_sector = r10_bio->sector;
1da177e4
LT
491 int disk, slot, nslot;
492 const int sectors = r10_bio->sectors;
493 sector_t new_distance, current_distance;
d6065f7b 494 mdk_rdev_t *rdev;
1da177e4
LT
495
496 raid10_find_phys(conf, r10_bio);
497 rcu_read_lock();
498 /*
499 * Check if we can balance. We can balance on the whole
6cce3b23
N
500 * device if no resync is going on (recovery is ok), or below
501 * the resync window. We take the first readable disk when
502 * above the resync window.
1da177e4
LT
503 */
504 if (conf->mddev->recovery_cp < MaxSector
505 && (this_sector + sectors >= conf->next_resync)) {
506 /* make sure that disk is operational */
507 slot = 0;
508 disk = r10_bio->devs[slot].devnum;
509
d6065f7b 510 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
0eb3ff12 511 r10_bio->devs[slot].bio == IO_BLOCKED ||
b2d444d7 512 !test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
513 slot++;
514 if (slot == conf->copies) {
515 slot = 0;
516 disk = -1;
517 break;
518 }
519 disk = r10_bio->devs[slot].devnum;
520 }
521 goto rb_out;
522 }
523
524
525 /* make sure the disk is operational */
526 slot = 0;
527 disk = r10_bio->devs[slot].devnum;
d6065f7b 528 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
0eb3ff12 529 r10_bio->devs[slot].bio == IO_BLOCKED ||
b2d444d7 530 !test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
531 slot ++;
532 if (slot == conf->copies) {
533 disk = -1;
534 goto rb_out;
535 }
536 disk = r10_bio->devs[slot].devnum;
537 }
538
539
3ec67ac1
N
540 current_distance = abs(r10_bio->devs[slot].addr -
541 conf->mirrors[disk].head_position);
1da177e4 542
8ed3a195
KS
543 /* Find the disk whose head is closest,
544 * or - for far > 1 - find the closest to partition beginning */
1da177e4
LT
545
546 for (nslot = slot; nslot < conf->copies; nslot++) {
547 int ndisk = r10_bio->devs[nslot].devnum;
548
549
d6065f7b 550 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
0eb3ff12 551 r10_bio->devs[nslot].bio == IO_BLOCKED ||
b2d444d7 552 !test_bit(In_sync, &rdev->flags))
1da177e4
LT
553 continue;
554
22dfdf52
N
555 /* This optimisation is debatable, and completely destroys
556 * sequential read speed for 'far copies' arrays. So only
557 * keep it for 'near' arrays, and review those later.
558 */
559 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
1da177e4
LT
560 disk = ndisk;
561 slot = nslot;
562 break;
563 }
8ed3a195
KS
564
565 /* for far > 1 always use the lowest address */
566 if (conf->far_copies > 1)
567 new_distance = r10_bio->devs[nslot].addr;
568 else
569 new_distance = abs(r10_bio->devs[nslot].addr -
570 conf->mirrors[ndisk].head_position);
1da177e4
LT
571 if (new_distance < current_distance) {
572 current_distance = new_distance;
573 disk = ndisk;
574 slot = nslot;
575 }
576 }
577
578rb_out:
579 r10_bio->read_slot = slot;
580/* conf->next_seq_sect = this_sector + sectors;*/
581
d6065f7b 582 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
1da177e4 583 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
29fc7e3e
N
584 else
585 disk = -1;
1da177e4
LT
586 rcu_read_unlock();
587
588 return disk;
589}
590
0d129228
N
591static int raid10_congested(void *data, int bits)
592{
593 mddev_t *mddev = data;
070ec55d 594 conf_t *conf = mddev->private;
0d129228
N
595 int i, ret = 0;
596
3fa841d7
N
597 if (mddev_congested(mddev, bits))
598 return 1;
0d129228 599 rcu_read_lock();
84707f38 600 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
0d129228
N
601 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
602 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 603 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
604
605 ret |= bdi_congested(&q->backing_dev_info, bits);
606 }
607 }
608 rcu_read_unlock();
609 return ret;
610}
611
7eaceacc 612static void flush_pending_writes(conf_t *conf)
a35e63ef
N
613{
614 /* Any writes that have been queued but are awaiting
615 * bitmap updates get flushed here.
a35e63ef 616 */
a35e63ef
N
617 spin_lock_irq(&conf->device_lock);
618
619 if (conf->pending_bio_list.head) {
620 struct bio *bio;
621 bio = bio_list_get(&conf->pending_bio_list);
a35e63ef
N
622 spin_unlock_irq(&conf->device_lock);
623 /* flush any pending bitmap writes to disk
624 * before proceeding w/ I/O */
625 bitmap_unplug(conf->mddev->bitmap);
626
627 while (bio) { /* submit pending writes */
628 struct bio *next = bio->bi_next;
629 bio->bi_next = NULL;
630 generic_make_request(bio);
631 bio = next;
632 }
a35e63ef
N
633 } else
634 spin_unlock_irq(&conf->device_lock);
a35e63ef 635}
7eaceacc
JA
636
637static void md_kick_device(mddev_t *mddev)
638{
639 blk_flush_plug(current);
640 md_wakeup_thread(mddev->thread);
641}
642
0a27ec96
N
643/* Barriers....
644 * Sometimes we need to suspend IO while we do something else,
645 * either some resync/recovery, or reconfigure the array.
646 * To do this we raise a 'barrier'.
647 * The 'barrier' is a counter that can be raised multiple times
648 * to count how many activities are happening which preclude
649 * normal IO.
650 * We can only raise the barrier if there is no pending IO.
651 * i.e. if nr_pending == 0.
652 * We choose only to raise the barrier if no-one is waiting for the
653 * barrier to go down. This means that as soon as an IO request
654 * is ready, no other operations which require a barrier will start
655 * until the IO request has had a chance.
656 *
657 * So: regular IO calls 'wait_barrier'. When that returns there
658 * is no backgroup IO happening, It must arrange to call
659 * allow_barrier when it has finished its IO.
660 * backgroup IO calls must call raise_barrier. Once that returns
661 * there is no normal IO happeing. It must arrange to call
662 * lower_barrier when the particular background IO completes.
1da177e4 663 */
1da177e4 664
6cce3b23 665static void raise_barrier(conf_t *conf, int force)
1da177e4 666{
6cce3b23 667 BUG_ON(force && !conf->barrier);
1da177e4 668 spin_lock_irq(&conf->resync_lock);
0a27ec96 669
6cce3b23
N
670 /* Wait until no block IO is waiting (unless 'force') */
671 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
7eaceacc 672 conf->resync_lock, md_kick_device(conf->mddev));
0a27ec96
N
673
674 /* block any new IO from starting */
675 conf->barrier++;
676
677 /* No wait for all pending IO to complete */
678 wait_event_lock_irq(conf->wait_barrier,
679 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
7eaceacc 680 conf->resync_lock, md_kick_device(conf->mddev));
0a27ec96
N
681
682 spin_unlock_irq(&conf->resync_lock);
683}
684
685static void lower_barrier(conf_t *conf)
686{
687 unsigned long flags;
688 spin_lock_irqsave(&conf->resync_lock, flags);
689 conf->barrier--;
690 spin_unlock_irqrestore(&conf->resync_lock, flags);
691 wake_up(&conf->wait_barrier);
692}
693
694static void wait_barrier(conf_t *conf)
695{
696 spin_lock_irq(&conf->resync_lock);
697 if (conf->barrier) {
698 conf->nr_waiting++;
699 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
700 conf->resync_lock,
7eaceacc 701 md_kick_device(conf->mddev));
0a27ec96 702 conf->nr_waiting--;
1da177e4 703 }
0a27ec96 704 conf->nr_pending++;
1da177e4
LT
705 spin_unlock_irq(&conf->resync_lock);
706}
707
0a27ec96
N
708static void allow_barrier(conf_t *conf)
709{
710 unsigned long flags;
711 spin_lock_irqsave(&conf->resync_lock, flags);
712 conf->nr_pending--;
713 spin_unlock_irqrestore(&conf->resync_lock, flags);
714 wake_up(&conf->wait_barrier);
715}
716
4443ae10
N
717static void freeze_array(conf_t *conf)
718{
719 /* stop syncio and normal IO and wait for everything to
f188593e 720 * go quiet.
4443ae10 721 * We increment barrier and nr_waiting, and then
1c830532
N
722 * wait until nr_pending match nr_queued+1
723 * This is called in the context of one normal IO request
724 * that has failed. Thus any sync request that might be pending
725 * will be blocked by nr_pending, and we need to wait for
726 * pending IO requests to complete or be queued for re-try.
727 * Thus the number queued (nr_queued) plus this request (1)
728 * must match the number of pending IOs (nr_pending) before
729 * we continue.
4443ae10
N
730 */
731 spin_lock_irq(&conf->resync_lock);
732 conf->barrier++;
733 conf->nr_waiting++;
734 wait_event_lock_irq(conf->wait_barrier,
1c830532 735 conf->nr_pending == conf->nr_queued+1,
4443ae10 736 conf->resync_lock,
a35e63ef 737 ({ flush_pending_writes(conf);
7eaceacc 738 md_kick_device(conf->mddev); }));
4443ae10
N
739 spin_unlock_irq(&conf->resync_lock);
740}
741
742static void unfreeze_array(conf_t *conf)
743{
744 /* reverse the effect of the freeze */
745 spin_lock_irq(&conf->resync_lock);
746 conf->barrier--;
747 conf->nr_waiting--;
748 wake_up(&conf->wait_barrier);
749 spin_unlock_irq(&conf->resync_lock);
750}
751
21a52c6d 752static int make_request(mddev_t *mddev, struct bio * bio)
1da177e4 753{
070ec55d 754 conf_t *conf = mddev->private;
1da177e4
LT
755 mirror_info_t *mirror;
756 r10bio_t *r10_bio;
757 struct bio *read_bio;
758 int i;
759 int chunk_sects = conf->chunk_mask + 1;
a362357b 760 const int rw = bio_data_dir(bio);
2c7d46ec 761 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 762 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
6cce3b23 763 unsigned long flags;
6bfe0b49 764 mdk_rdev_t *blocked_rdev;
1da177e4 765
e9c7469b
TH
766 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
767 md_flush_request(mddev, bio);
e5dcdd80
N
768 return 0;
769 }
770
1da177e4
LT
771 /* If this request crosses a chunk boundary, we need to
772 * split it. This will only happen for 1 PAGE (or less) requests.
773 */
774 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
775 > chunk_sects &&
776 conf->near_copies < conf->raid_disks)) {
777 struct bio_pair *bp;
778 /* Sanity check -- queue functions should prevent this happening */
779 if (bio->bi_vcnt != 1 ||
780 bio->bi_idx != 0)
781 goto bad_map;
782 /* This is a one page bio that upper layers
783 * refuse to split for us, so we need to split it.
784 */
6feef531 785 bp = bio_split(bio,
1da177e4 786 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
51e9ac77
N
787
788 /* Each of these 'make_request' calls will call 'wait_barrier'.
789 * If the first succeeds but the second blocks due to the resync
790 * thread raising the barrier, we will deadlock because the
791 * IO to the underlying device will be queued in generic_make_request
792 * and will never complete, so will never reduce nr_pending.
793 * So increment nr_waiting here so no new raise_barriers will
794 * succeed, and so the second wait_barrier cannot block.
795 */
796 spin_lock_irq(&conf->resync_lock);
797 conf->nr_waiting++;
798 spin_unlock_irq(&conf->resync_lock);
799
21a52c6d 800 if (make_request(mddev, &bp->bio1))
1da177e4 801 generic_make_request(&bp->bio1);
21a52c6d 802 if (make_request(mddev, &bp->bio2))
1da177e4
LT
803 generic_make_request(&bp->bio2);
804
51e9ac77
N
805 spin_lock_irq(&conf->resync_lock);
806 conf->nr_waiting--;
807 wake_up(&conf->wait_barrier);
808 spin_unlock_irq(&conf->resync_lock);
809
1da177e4
LT
810 bio_pair_release(bp);
811 return 0;
812 bad_map:
128595ed
N
813 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
814 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1da177e4
LT
815 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
816
6712ecf8 817 bio_io_error(bio);
1da177e4
LT
818 return 0;
819 }
820
3d310eb7 821 md_write_start(mddev, bio);
06d91a5f 822
1da177e4
LT
823 /*
824 * Register the new request and wait if the reconstruction
825 * thread has put up a bar for new requests.
826 * Continue immediately if no resync is active currently.
827 */
0a27ec96 828 wait_barrier(conf);
1da177e4 829
1da177e4
LT
830 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
831
832 r10_bio->master_bio = bio;
833 r10_bio->sectors = bio->bi_size >> 9;
834
835 r10_bio->mddev = mddev;
836 r10_bio->sector = bio->bi_sector;
6cce3b23 837 r10_bio->state = 0;
1da177e4 838
a362357b 839 if (rw == READ) {
1da177e4
LT
840 /*
841 * read balancing logic:
842 */
843 int disk = read_balance(conf, r10_bio);
844 int slot = r10_bio->read_slot;
845 if (disk < 0) {
846 raid_end_bio_io(r10_bio);
847 return 0;
848 }
849 mirror = conf->mirrors + disk;
850
a167f663 851 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1da177e4
LT
852
853 r10_bio->devs[slot].bio = read_bio;
854
855 read_bio->bi_sector = r10_bio->devs[slot].addr +
856 mirror->rdev->data_offset;
857 read_bio->bi_bdev = mirror->rdev->bdev;
858 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 859 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
860 read_bio->bi_private = r10_bio;
861
862 generic_make_request(read_bio);
863 return 0;
864 }
865
866 /*
867 * WRITE:
868 */
6bfe0b49 869 /* first select target devices under rcu_lock and
1da177e4
LT
870 * inc refcount on their rdev. Record them by setting
871 * bios[x] to bio
872 */
873 raid10_find_phys(conf, r10_bio);
6bfe0b49 874 retry_write:
cb6969e8 875 blocked_rdev = NULL;
1da177e4
LT
876 rcu_read_lock();
877 for (i = 0; i < conf->copies; i++) {
878 int d = r10_bio->devs[i].devnum;
d6065f7b 879 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
6bfe0b49
DW
880 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
881 atomic_inc(&rdev->nr_pending);
882 blocked_rdev = rdev;
883 break;
884 }
885 if (rdev && !test_bit(Faulty, &rdev->flags)) {
d6065f7b 886 atomic_inc(&rdev->nr_pending);
1da177e4 887 r10_bio->devs[i].bio = bio;
6cce3b23 888 } else {
1da177e4 889 r10_bio->devs[i].bio = NULL;
6cce3b23
N
890 set_bit(R10BIO_Degraded, &r10_bio->state);
891 }
1da177e4
LT
892 }
893 rcu_read_unlock();
894
6bfe0b49
DW
895 if (unlikely(blocked_rdev)) {
896 /* Have to wait for this device to get unblocked, then retry */
897 int j;
898 int d;
899
900 for (j = 0; j < i; j++)
901 if (r10_bio->devs[j].bio) {
902 d = r10_bio->devs[j].devnum;
903 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
904 }
905 allow_barrier(conf);
906 md_wait_for_blocked_rdev(blocked_rdev, mddev);
907 wait_barrier(conf);
908 goto retry_write;
909 }
910
4e78064f
N
911 atomic_set(&r10_bio->remaining, 1);
912 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
06d91a5f 913
1da177e4
LT
914 for (i = 0; i < conf->copies; i++) {
915 struct bio *mbio;
916 int d = r10_bio->devs[i].devnum;
917 if (!r10_bio->devs[i].bio)
918 continue;
919
a167f663 920 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1da177e4
LT
921 r10_bio->devs[i].bio = mbio;
922
923 mbio->bi_sector = r10_bio->devs[i].addr+
924 conf->mirrors[d].rdev->data_offset;
925 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
926 mbio->bi_end_io = raid10_end_write_request;
e9c7469b 927 mbio->bi_rw = WRITE | do_sync | do_fua;
1da177e4
LT
928 mbio->bi_private = r10_bio;
929
930 atomic_inc(&r10_bio->remaining);
4e78064f
N
931 spin_lock_irqsave(&conf->device_lock, flags);
932 bio_list_add(&conf->pending_bio_list, mbio);
4e78064f 933 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
934 }
935
4e78064f
N
936 if (atomic_dec_and_test(&r10_bio->remaining)) {
937 /* This matches the end of raid10_end_write_request() */
938 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
939 r10_bio->sectors,
940 !test_bit(R10BIO_Degraded, &r10_bio->state),
941 0);
f6f953aa
AR
942 md_write_end(mddev);
943 raid_end_bio_io(r10_bio);
f6f953aa
AR
944 }
945
a35e63ef
N
946 /* In case raid10d snuck in to freeze_array */
947 wake_up(&conf->wait_barrier);
948
7eaceacc 949 if (do_sync || !mddev->bitmap)
e3881a68
LE
950 md_wakeup_thread(mddev->thread);
951
1da177e4
LT
952 return 0;
953}
954
955static void status(struct seq_file *seq, mddev_t *mddev)
956{
070ec55d 957 conf_t *conf = mddev->private;
1da177e4
LT
958 int i;
959
960 if (conf->near_copies < conf->raid_disks)
9d8f0363 961 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1da177e4
LT
962 if (conf->near_copies > 1)
963 seq_printf(seq, " %d near-copies", conf->near_copies);
c93983bf
N
964 if (conf->far_copies > 1) {
965 if (conf->far_offset)
966 seq_printf(seq, " %d offset-copies", conf->far_copies);
967 else
968 seq_printf(seq, " %d far-copies", conf->far_copies);
969 }
1da177e4 970 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
76186dd8 971 conf->raid_disks - mddev->degraded);
1da177e4
LT
972 for (i = 0; i < conf->raid_disks; i++)
973 seq_printf(seq, "%s",
974 conf->mirrors[i].rdev &&
b2d444d7 975 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
976 seq_printf(seq, "]");
977}
978
979static void error(mddev_t *mddev, mdk_rdev_t *rdev)
980{
981 char b[BDEVNAME_SIZE];
070ec55d 982 conf_t *conf = mddev->private;
1da177e4
LT
983
984 /*
985 * If it is not operational, then we have already marked it as dead
986 * else if it is the last working disks, ignore the error, let the
987 * next level up know.
988 * else mark the drive as failed
989 */
b2d444d7 990 if (test_bit(In_sync, &rdev->flags)
76186dd8 991 && conf->raid_disks-mddev->degraded == 1)
1da177e4
LT
992 /*
993 * Don't fail the drive, just return an IO error.
994 * The test should really be more sophisticated than
995 * "working_disks == 1", but it isn't critical, and
996 * can wait until we do more sophisticated "is the drive
997 * really dead" tests...
998 */
999 return;
c04be0aa
N
1000 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1001 unsigned long flags;
1002 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1003 mddev->degraded++;
c04be0aa 1004 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1005 /*
1006 * if recovery is running, make sure it aborts.
1007 */
dfc70645 1008 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1009 }
b2d444d7 1010 set_bit(Faulty, &rdev->flags);
850b2b42 1011 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1012 printk(KERN_ALERT
1013 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1014 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed
N
1015 mdname(mddev), bdevname(rdev->bdev, b),
1016 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1017}
1018
1019static void print_conf(conf_t *conf)
1020{
1021 int i;
1022 mirror_info_t *tmp;
1023
128595ed 1024 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1025 if (!conf) {
128595ed 1026 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1027 return;
1028 }
128595ed 1029 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1030 conf->raid_disks);
1031
1032 for (i = 0; i < conf->raid_disks; i++) {
1033 char b[BDEVNAME_SIZE];
1034 tmp = conf->mirrors + i;
1035 if (tmp->rdev)
128595ed 1036 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1037 i, !test_bit(In_sync, &tmp->rdev->flags),
1038 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1039 bdevname(tmp->rdev->bdev,b));
1040 }
1041}
1042
1043static void close_sync(conf_t *conf)
1044{
0a27ec96
N
1045 wait_barrier(conf);
1046 allow_barrier(conf);
1da177e4
LT
1047
1048 mempool_destroy(conf->r10buf_pool);
1049 conf->r10buf_pool = NULL;
1050}
1051
6d508242
N
1052/* check if there are enough drives for
1053 * every block to appear on atleast one
1054 */
1055static int enough(conf_t *conf)
1056{
1057 int first = 0;
1058
1059 do {
1060 int n = conf->copies;
1061 int cnt = 0;
1062 while (n--) {
1063 if (conf->mirrors[first].rdev)
1064 cnt++;
1065 first = (first+1) % conf->raid_disks;
1066 }
1067 if (cnt == 0)
1068 return 0;
1069 } while (first != 0);
1070 return 1;
1071}
1072
1da177e4
LT
1073static int raid10_spare_active(mddev_t *mddev)
1074{
1075 int i;
1076 conf_t *conf = mddev->private;
1077 mirror_info_t *tmp;
6b965620
N
1078 int count = 0;
1079 unsigned long flags;
1da177e4
LT
1080
1081 /*
1082 * Find all non-in_sync disks within the RAID10 configuration
1083 * and mark them in_sync
1084 */
1085 for (i = 0; i < conf->raid_disks; i++) {
1086 tmp = conf->mirrors + i;
1087 if (tmp->rdev
b2d444d7 1088 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 1089 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1090 count++;
e6ffbcb6 1091 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1da177e4
LT
1092 }
1093 }
6b965620
N
1094 spin_lock_irqsave(&conf->device_lock, flags);
1095 mddev->degraded -= count;
1096 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1097
1098 print_conf(conf);
6b965620 1099 return count;
1da177e4
LT
1100}
1101
1102
1103static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1104{
1105 conf_t *conf = mddev->private;
199050ea 1106 int err = -EEXIST;
1da177e4
LT
1107 int mirror;
1108 mirror_info_t *p;
6c2fce2e 1109 int first = 0;
84707f38 1110 int last = conf->raid_disks - 1;
1da177e4
LT
1111
1112 if (mddev->recovery_cp < MaxSector)
1113 /* only hot-add to in-sync arrays, as recovery is
1114 * very different from resync
1115 */
199050ea 1116 return -EBUSY;
6d508242 1117 if (!enough(conf))
199050ea 1118 return -EINVAL;
1da177e4 1119
a53a6c85 1120 if (rdev->raid_disk >= 0)
6c2fce2e 1121 first = last = rdev->raid_disk;
1da177e4 1122
6cce3b23 1123 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 1124 rdev->saved_raid_disk >= first &&
6cce3b23
N
1125 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1126 mirror = rdev->saved_raid_disk;
1127 else
6c2fce2e
NB
1128 mirror = first;
1129 for ( ; mirror <= last ; mirror++)
1da177e4
LT
1130 if ( !(p=conf->mirrors+mirror)->rdev) {
1131
8f6c2e4b
MP
1132 disk_stack_limits(mddev->gendisk, rdev->bdev,
1133 rdev->data_offset << 9);
627a2d3c
N
1134 /* as we don't honour merge_bvec_fn, we must
1135 * never risk violating it, so limit
1136 * ->max_segments to one lying with a single
1137 * page, as a one page request is never in
1138 * violation.
1da177e4 1139 */
627a2d3c
N
1140 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1141 blk_queue_max_segments(mddev->queue, 1);
1142 blk_queue_segment_boundary(mddev->queue,
1143 PAGE_CACHE_SIZE - 1);
1144 }
1da177e4
LT
1145
1146 p->head_position = 0;
1147 rdev->raid_disk = mirror;
199050ea 1148 err = 0;
6cce3b23
N
1149 if (rdev->saved_raid_disk != mirror)
1150 conf->fullsync = 1;
d6065f7b 1151 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1152 break;
1153 }
1154
ac5e7113 1155 md_integrity_add_rdev(rdev, mddev);
1da177e4 1156 print_conf(conf);
199050ea 1157 return err;
1da177e4
LT
1158}
1159
1160static int raid10_remove_disk(mddev_t *mddev, int number)
1161{
1162 conf_t *conf = mddev->private;
1163 int err = 0;
1164 mdk_rdev_t *rdev;
1165 mirror_info_t *p = conf->mirrors+ number;
1166
1167 print_conf(conf);
1168 rdev = p->rdev;
1169 if (rdev) {
b2d444d7 1170 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1171 atomic_read(&rdev->nr_pending)) {
1172 err = -EBUSY;
1173 goto abort;
1174 }
dfc70645
N
1175 /* Only remove faulty devices in recovery
1176 * is not possible.
1177 */
1178 if (!test_bit(Faulty, &rdev->flags) &&
1179 enough(conf)) {
1180 err = -EBUSY;
1181 goto abort;
1182 }
1da177e4 1183 p->rdev = NULL;
fbd568a3 1184 synchronize_rcu();
1da177e4
LT
1185 if (atomic_read(&rdev->nr_pending)) {
1186 /* lost the race, try later */
1187 err = -EBUSY;
1188 p->rdev = rdev;
ac5e7113 1189 goto abort;
1da177e4 1190 }
a91a2785 1191 err = md_integrity_register(mddev);
1da177e4
LT
1192 }
1193abort:
1194
1195 print_conf(conf);
1196 return err;
1197}
1198
1199
6712ecf8 1200static void end_sync_read(struct bio *bio, int error)
1da177e4 1201{
7b92813c 1202 r10bio_t *r10_bio = bio->bi_private;
070ec55d 1203 conf_t *conf = r10_bio->mddev->private;
1da177e4
LT
1204 int i,d;
1205
1da177e4
LT
1206 for (i=0; i<conf->copies; i++)
1207 if (r10_bio->devs[i].bio == bio)
1208 break;
b6385483 1209 BUG_ON(i == conf->copies);
1da177e4
LT
1210 update_head_pos(i, r10_bio);
1211 d = r10_bio->devs[i].devnum;
0eb3ff12
N
1212
1213 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1214 set_bit(R10BIO_Uptodate, &r10_bio->state);
4dbcdc75
N
1215 else {
1216 atomic_add(r10_bio->sectors,
1217 &conf->mirrors[d].rdev->corrected_errors);
1218 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1219 md_error(r10_bio->mddev,
1220 conf->mirrors[d].rdev);
1221 }
1da177e4
LT
1222
1223 /* for reconstruct, we always reschedule after a read.
1224 * for resync, only after all reads
1225 */
73d5c38a 1226 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1227 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1228 atomic_dec_and_test(&r10_bio->remaining)) {
1229 /* we have read all the blocks,
1230 * do the comparison in process context in raid10d
1231 */
1232 reschedule_retry(r10_bio);
1233 }
1da177e4
LT
1234}
1235
6712ecf8 1236static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1237{
1238 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 1239 r10bio_t *r10_bio = bio->bi_private;
1da177e4 1240 mddev_t *mddev = r10_bio->mddev;
070ec55d 1241 conf_t *conf = mddev->private;
1da177e4
LT
1242 int i,d;
1243
1da177e4
LT
1244 for (i = 0; i < conf->copies; i++)
1245 if (r10_bio->devs[i].bio == bio)
1246 break;
1247 d = r10_bio->devs[i].devnum;
1248
1249 if (!uptodate)
1250 md_error(mddev, conf->mirrors[d].rdev);
dfc70645 1251
1da177e4
LT
1252 update_head_pos(i, r10_bio);
1253
73d5c38a 1254 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1da177e4
LT
1255 while (atomic_dec_and_test(&r10_bio->remaining)) {
1256 if (r10_bio->master_bio == NULL) {
1257 /* the primary of several recovery bios */
73d5c38a 1258 sector_t s = r10_bio->sectors;
1da177e4 1259 put_buf(r10_bio);
73d5c38a 1260 md_done_sync(mddev, s, 1);
1da177e4
LT
1261 break;
1262 } else {
1263 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1264 put_buf(r10_bio);
1265 r10_bio = r10_bio2;
1266 }
1267 }
1da177e4
LT
1268}
1269
1270/*
1271 * Note: sync and recover and handled very differently for raid10
1272 * This code is for resync.
1273 * For resync, we read through virtual addresses and read all blocks.
1274 * If there is any error, we schedule a write. The lowest numbered
1275 * drive is authoritative.
1276 * However requests come for physical address, so we need to map.
1277 * For every physical address there are raid_disks/copies virtual addresses,
1278 * which is always are least one, but is not necessarly an integer.
1279 * This means that a physical address can span multiple chunks, so we may
1280 * have to submit multiple io requests for a single sync request.
1281 */
1282/*
1283 * We check if all blocks are in-sync and only write to blocks that
1284 * aren't in sync
1285 */
1286static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1287{
070ec55d 1288 conf_t *conf = mddev->private;
1da177e4
LT
1289 int i, first;
1290 struct bio *tbio, *fbio;
1291
1292 atomic_set(&r10_bio->remaining, 1);
1293
1294 /* find the first device with a block */
1295 for (i=0; i<conf->copies; i++)
1296 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1297 break;
1298
1299 if (i == conf->copies)
1300 goto done;
1301
1302 first = i;
1303 fbio = r10_bio->devs[i].bio;
1304
1305 /* now find blocks with errors */
0eb3ff12
N
1306 for (i=0 ; i < conf->copies ; i++) {
1307 int j, d;
1308 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1da177e4 1309
1da177e4 1310 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
1311
1312 if (tbio->bi_end_io != end_sync_read)
1313 continue;
1314 if (i == first)
1da177e4 1315 continue;
0eb3ff12
N
1316 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1317 /* We know that the bi_io_vec layout is the same for
1318 * both 'first' and 'i', so we just compare them.
1319 * All vec entries are PAGE_SIZE;
1320 */
1321 for (j = 0; j < vcnt; j++)
1322 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1323 page_address(tbio->bi_io_vec[j].bv_page),
1324 PAGE_SIZE))
1325 break;
1326 if (j == vcnt)
1327 continue;
1328 mddev->resync_mismatches += r10_bio->sectors;
1329 }
18f08819
N
1330 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1331 /* Don't fix anything. */
1332 continue;
1da177e4
LT
1333 /* Ok, we need to write this bio
1334 * First we need to fixup bv_offset, bv_len and
1335 * bi_vecs, as the read request might have corrupted these
1336 */
1337 tbio->bi_vcnt = vcnt;
1338 tbio->bi_size = r10_bio->sectors << 9;
1339 tbio->bi_idx = 0;
1340 tbio->bi_phys_segments = 0;
1da177e4
LT
1341 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1342 tbio->bi_flags |= 1 << BIO_UPTODATE;
1343 tbio->bi_next = NULL;
1344 tbio->bi_rw = WRITE;
1345 tbio->bi_private = r10_bio;
1346 tbio->bi_sector = r10_bio->devs[i].addr;
1347
1348 for (j=0; j < vcnt ; j++) {
1349 tbio->bi_io_vec[j].bv_offset = 0;
1350 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1351
1352 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1353 page_address(fbio->bi_io_vec[j].bv_page),
1354 PAGE_SIZE);
1355 }
1356 tbio->bi_end_io = end_sync_write;
1357
1358 d = r10_bio->devs[i].devnum;
1359 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1360 atomic_inc(&r10_bio->remaining);
1361 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1362
1363 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1364 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1365 generic_make_request(tbio);
1366 }
1367
1368done:
1369 if (atomic_dec_and_test(&r10_bio->remaining)) {
1370 md_done_sync(mddev, r10_bio->sectors, 1);
1371 put_buf(r10_bio);
1372 }
1373}
1374
1375/*
1376 * Now for the recovery code.
1377 * Recovery happens across physical sectors.
1378 * We recover all non-is_sync drives by finding the virtual address of
1379 * each, and then choose a working drive that also has that virt address.
1380 * There is a separate r10_bio for each non-in_sync drive.
1381 * Only the first two slots are in use. The first for reading,
1382 * The second for writing.
1383 *
1384 */
1385
1386static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1387{
070ec55d 1388 conf_t *conf = mddev->private;
1da177e4
LT
1389 int i, d;
1390 struct bio *bio, *wbio;
1391
1392
1393 /* move the pages across to the second bio
1394 * and submit the write request
1395 */
1396 bio = r10_bio->devs[0].bio;
1397 wbio = r10_bio->devs[1].bio;
1398 for (i=0; i < wbio->bi_vcnt; i++) {
1399 struct page *p = bio->bi_io_vec[i].bv_page;
1400 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1401 wbio->bi_io_vec[i].bv_page = p;
1402 }
1403 d = r10_bio->devs[1].devnum;
1404
1405 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1406 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
0eb3ff12
N
1407 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1408 generic_make_request(wbio);
1409 else
6712ecf8 1410 bio_endio(wbio, -EIO);
1da177e4
LT
1411}
1412
1413
1e50915f
RB
1414/*
1415 * Used by fix_read_error() to decay the per rdev read_errors.
1416 * We halve the read error count for every hour that has elapsed
1417 * since the last recorded read error.
1418 *
1419 */
1420static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1421{
1422 struct timespec cur_time_mon;
1423 unsigned long hours_since_last;
1424 unsigned int read_errors = atomic_read(&rdev->read_errors);
1425
1426 ktime_get_ts(&cur_time_mon);
1427
1428 if (rdev->last_read_error.tv_sec == 0 &&
1429 rdev->last_read_error.tv_nsec == 0) {
1430 /* first time we've seen a read error */
1431 rdev->last_read_error = cur_time_mon;
1432 return;
1433 }
1434
1435 hours_since_last = (cur_time_mon.tv_sec -
1436 rdev->last_read_error.tv_sec) / 3600;
1437
1438 rdev->last_read_error = cur_time_mon;
1439
1440 /*
1441 * if hours_since_last is > the number of bits in read_errors
1442 * just set read errors to 0. We do this to avoid
1443 * overflowing the shift of read_errors by hours_since_last.
1444 */
1445 if (hours_since_last >= 8 * sizeof(read_errors))
1446 atomic_set(&rdev->read_errors, 0);
1447 else
1448 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1449}
1450
1da177e4
LT
1451/*
1452 * This is a kernel thread which:
1453 *
1454 * 1. Retries failed read operations on working mirrors.
1455 * 2. Updates the raid superblock when problems encounter.
6814d536 1456 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1457 */
1458
6814d536
N
1459static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1460{
1461 int sect = 0; /* Offset from r10_bio->sector */
1462 int sectors = r10_bio->sectors;
1463 mdk_rdev_t*rdev;
1e50915f 1464 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 1465 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f
RB
1466
1467 rcu_read_lock();
0544a21d
PP
1468 rdev = rcu_dereference(conf->mirrors[d].rdev);
1469 if (rdev) { /* If rdev is not NULL */
1e50915f
RB
1470 char b[BDEVNAME_SIZE];
1471 int cur_read_error_count = 0;
1472
1e50915f
RB
1473 bdevname(rdev->bdev, b);
1474
1475 if (test_bit(Faulty, &rdev->flags)) {
1476 rcu_read_unlock();
1477 /* drive has already been failed, just ignore any
1478 more fix_read_error() attempts */
1479 return;
1480 }
1481
1482 check_decay_read_errors(mddev, rdev);
1483 atomic_inc(&rdev->read_errors);
1484 cur_read_error_count = atomic_read(&rdev->read_errors);
1485 if (cur_read_error_count > max_read_errors) {
1486 rcu_read_unlock();
1487 printk(KERN_NOTICE
128595ed 1488 "md/raid10:%s: %s: Raid device exceeded "
1e50915f
RB
1489 "read_error threshold "
1490 "[cur %d:max %d]\n",
128595ed 1491 mdname(mddev),
1e50915f
RB
1492 b, cur_read_error_count, max_read_errors);
1493 printk(KERN_NOTICE
128595ed
N
1494 "md/raid10:%s: %s: Failing raid "
1495 "device\n", mdname(mddev), b);
1e50915f
RB
1496 md_error(mddev, conf->mirrors[d].rdev);
1497 return;
1498 }
1499 }
1500 rcu_read_unlock();
1501
6814d536
N
1502 while(sectors) {
1503 int s = sectors;
1504 int sl = r10_bio->read_slot;
1505 int success = 0;
1506 int start;
1507
1508 if (s > (PAGE_SIZE>>9))
1509 s = PAGE_SIZE >> 9;
1510
1511 rcu_read_lock();
1512 do {
0544a21d 1513 d = r10_bio->devs[sl].devnum;
6814d536
N
1514 rdev = rcu_dereference(conf->mirrors[d].rdev);
1515 if (rdev &&
1516 test_bit(In_sync, &rdev->flags)) {
1517 atomic_inc(&rdev->nr_pending);
1518 rcu_read_unlock();
2b193363 1519 success = sync_page_io(rdev,
6814d536 1520 r10_bio->devs[sl].addr +
ccebd4c4 1521 sect,
6814d536 1522 s<<9,
ccebd4c4 1523 conf->tmppage, READ, false);
6814d536
N
1524 rdev_dec_pending(rdev, mddev);
1525 rcu_read_lock();
1526 if (success)
1527 break;
1528 }
1529 sl++;
1530 if (sl == conf->copies)
1531 sl = 0;
1532 } while (!success && sl != r10_bio->read_slot);
1533 rcu_read_unlock();
1534
1535 if (!success) {
1536 /* Cannot read from anywhere -- bye bye array */
1537 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1538 md_error(mddev, conf->mirrors[dn].rdev);
1539 break;
1540 }
1541
1542 start = sl;
1543 /* write it back and re-read */
1544 rcu_read_lock();
1545 while (sl != r10_bio->read_slot) {
67b8dc4b 1546 char b[BDEVNAME_SIZE];
0544a21d 1547
6814d536
N
1548 if (sl==0)
1549 sl = conf->copies;
1550 sl--;
1551 d = r10_bio->devs[sl].devnum;
1552 rdev = rcu_dereference(conf->mirrors[d].rdev);
1553 if (rdev &&
1554 test_bit(In_sync, &rdev->flags)) {
1555 atomic_inc(&rdev->nr_pending);
1556 rcu_read_unlock();
1557 atomic_add(s, &rdev->corrected_errors);
2b193363 1558 if (sync_page_io(rdev,
6814d536 1559 r10_bio->devs[sl].addr +
ccebd4c4
JB
1560 sect,
1561 s<<9, conf->tmppage, WRITE, false)
67b8dc4b 1562 == 0) {
6814d536 1563 /* Well, this device is dead */
67b8dc4b 1564 printk(KERN_NOTICE
128595ed 1565 "md/raid10:%s: read correction "
67b8dc4b
RB
1566 "write failed"
1567 " (%d sectors at %llu on %s)\n",
1568 mdname(mddev), s,
1569 (unsigned long long)(sect+
1570 rdev->data_offset),
1571 bdevname(rdev->bdev, b));
128595ed 1572 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
67b8dc4b 1573 "drive\n",
128595ed 1574 mdname(mddev),
67b8dc4b 1575 bdevname(rdev->bdev, b));
6814d536 1576 md_error(mddev, rdev);
67b8dc4b 1577 }
6814d536
N
1578 rdev_dec_pending(rdev, mddev);
1579 rcu_read_lock();
1580 }
1581 }
1582 sl = start;
1583 while (sl != r10_bio->read_slot) {
0544a21d 1584
6814d536
N
1585 if (sl==0)
1586 sl = conf->copies;
1587 sl--;
1588 d = r10_bio->devs[sl].devnum;
1589 rdev = rcu_dereference(conf->mirrors[d].rdev);
1590 if (rdev &&
1591 test_bit(In_sync, &rdev->flags)) {
1592 char b[BDEVNAME_SIZE];
1593 atomic_inc(&rdev->nr_pending);
1594 rcu_read_unlock();
2b193363 1595 if (sync_page_io(rdev,
6814d536 1596 r10_bio->devs[sl].addr +
ccebd4c4 1597 sect,
67b8dc4b 1598 s<<9, conf->tmppage,
ccebd4c4 1599 READ, false) == 0) {
6814d536 1600 /* Well, this device is dead */
67b8dc4b 1601 printk(KERN_NOTICE
128595ed 1602 "md/raid10:%s: unable to read back "
67b8dc4b
RB
1603 "corrected sectors"
1604 " (%d sectors at %llu on %s)\n",
1605 mdname(mddev), s,
1606 (unsigned long long)(sect+
1607 rdev->data_offset),
1608 bdevname(rdev->bdev, b));
128595ed
N
1609 printk(KERN_NOTICE "md/raid10:%s: %s: failing drive\n",
1610 mdname(mddev),
67b8dc4b
RB
1611 bdevname(rdev->bdev, b));
1612
6814d536 1613 md_error(mddev, rdev);
67b8dc4b 1614 } else {
6814d536 1615 printk(KERN_INFO
128595ed 1616 "md/raid10:%s: read error corrected"
6814d536
N
1617 " (%d sectors at %llu on %s)\n",
1618 mdname(mddev), s,
969b755a
RD
1619 (unsigned long long)(sect+
1620 rdev->data_offset),
6814d536 1621 bdevname(rdev->bdev, b));
67b8dc4b 1622 }
6814d536
N
1623
1624 rdev_dec_pending(rdev, mddev);
1625 rcu_read_lock();
1626 }
1627 }
1628 rcu_read_unlock();
1629
1630 sectors -= s;
1631 sect += s;
1632 }
1633}
1634
1da177e4
LT
1635static void raid10d(mddev_t *mddev)
1636{
1637 r10bio_t *r10_bio;
1638 struct bio *bio;
1639 unsigned long flags;
070ec55d 1640 conf_t *conf = mddev->private;
1da177e4 1641 struct list_head *head = &conf->retry_list;
1da177e4 1642 mdk_rdev_t *rdev;
e1dfa0a2 1643 struct blk_plug plug;
1da177e4
LT
1644
1645 md_check_recovery(mddev);
1da177e4 1646
e1dfa0a2 1647 blk_start_plug(&plug);
1da177e4
LT
1648 for (;;) {
1649 char b[BDEVNAME_SIZE];
6cce3b23 1650
7eaceacc 1651 flush_pending_writes(conf);
6cce3b23 1652
a35e63ef
N
1653 spin_lock_irqsave(&conf->device_lock, flags);
1654 if (list_empty(head)) {
1655 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1656 break;
a35e63ef 1657 }
1da177e4
LT
1658 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1659 list_del(head->prev);
4443ae10 1660 conf->nr_queued--;
1da177e4
LT
1661 spin_unlock_irqrestore(&conf->device_lock, flags);
1662
1663 mddev = r10_bio->mddev;
070ec55d 1664 conf = mddev->private;
7eaceacc 1665 if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 1666 sync_request_write(mddev, r10_bio);
7eaceacc 1667 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 1668 recovery_request_write(mddev, r10_bio);
7eaceacc 1669 else {
1da177e4 1670 int mirror;
4443ae10
N
1671 /* we got a read error. Maybe the drive is bad. Maybe just
1672 * the block and we can fix it.
1673 * We freeze all other IO, and try reading the block from
1674 * other devices. When we find one, we re-write
1675 * and check it that fixes the read error.
1676 * This is all done synchronously while the array is
1677 * frozen.
1678 */
6814d536
N
1679 if (mddev->ro == 0) {
1680 freeze_array(conf);
1681 fix_read_error(conf, mddev, r10_bio);
1682 unfreeze_array(conf);
4443ae10
N
1683 }
1684
1da177e4 1685 bio = r10_bio->devs[r10_bio->read_slot].bio;
0eb3ff12
N
1686 r10_bio->devs[r10_bio->read_slot].bio =
1687 mddev->ro ? IO_BLOCKED : NULL;
1da177e4
LT
1688 mirror = read_balance(conf, r10_bio);
1689 if (mirror == -1) {
128595ed 1690 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
1da177e4 1691 " read error for block %llu\n",
128595ed 1692 mdname(mddev),
1da177e4
LT
1693 bdevname(bio->bi_bdev,b),
1694 (unsigned long long)r10_bio->sector);
1695 raid_end_bio_io(r10_bio);
14e71344 1696 bio_put(bio);
1da177e4 1697 } else {
2c7d46ec 1698 const unsigned long do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
14e71344 1699 bio_put(bio);
1da177e4
LT
1700 rdev = conf->mirrors[mirror].rdev;
1701 if (printk_ratelimit())
128595ed 1702 printk(KERN_ERR "md/raid10:%s: %s: redirecting sector %llu to"
1da177e4 1703 " another mirror\n",
128595ed 1704 mdname(mddev),
1da177e4
LT
1705 bdevname(rdev->bdev,b),
1706 (unsigned long long)r10_bio->sector);
a167f663
N
1707 bio = bio_clone_mddev(r10_bio->master_bio,
1708 GFP_NOIO, mddev);
1da177e4
LT
1709 r10_bio->devs[r10_bio->read_slot].bio = bio;
1710 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1711 + rdev->data_offset;
1712 bio->bi_bdev = rdev->bdev;
7b6d91da 1713 bio->bi_rw = READ | do_sync;
1da177e4
LT
1714 bio->bi_private = r10_bio;
1715 bio->bi_end_io = raid10_end_read_request;
1da177e4
LT
1716 generic_make_request(bio);
1717 }
1718 }
1d9d5241 1719 cond_resched();
1da177e4 1720 }
e1dfa0a2 1721 blk_finish_plug(&plug);
1da177e4
LT
1722}
1723
1724
1725static int init_resync(conf_t *conf)
1726{
1727 int buffs;
1728
1729 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 1730 BUG_ON(conf->r10buf_pool);
1da177e4
LT
1731 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1732 if (!conf->r10buf_pool)
1733 return -ENOMEM;
1734 conf->next_resync = 0;
1735 return 0;
1736}
1737
1738/*
1739 * perform a "sync" on one "block"
1740 *
1741 * We need to make sure that no normal I/O request - particularly write
1742 * requests - conflict with active sync requests.
1743 *
1744 * This is achieved by tracking pending requests and a 'barrier' concept
1745 * that can be installed to exclude normal IO requests.
1746 *
1747 * Resync and recovery are handled very differently.
1748 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1749 *
1750 * For resync, we iterate over virtual addresses, read all copies,
1751 * and update if there are differences. If only one copy is live,
1752 * skip it.
1753 * For recovery, we iterate over physical addresses, read a good
1754 * value for each non-in_sync drive, and over-write.
1755 *
1756 * So, for recovery we may have several outstanding complex requests for a
1757 * given address, one for each out-of-sync device. We model this by allocating
1758 * a number of r10_bio structures, one for each out-of-sync device.
1759 * As we setup these structures, we collect all bio's together into a list
1760 * which we then process collectively to add pages, and then process again
1761 * to pass to generic_make_request.
1762 *
1763 * The r10_bio structures are linked using a borrowed master_bio pointer.
1764 * This link is counted in ->remaining. When the r10_bio that points to NULL
1765 * has its remaining count decremented to 0, the whole complex operation
1766 * is complete.
1767 *
1768 */
1769
57afd89f 1770static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 1771{
070ec55d 1772 conf_t *conf = mddev->private;
1da177e4
LT
1773 r10bio_t *r10_bio;
1774 struct bio *biolist = NULL, *bio;
1775 sector_t max_sector, nr_sectors;
1776 int disk;
1777 int i;
6cce3b23 1778 int max_sync;
57dab0bd 1779 sector_t sync_blocks;
1da177e4
LT
1780
1781 sector_t sectors_skipped = 0;
1782 int chunks_skipped = 0;
1783
1784 if (!conf->r10buf_pool)
1785 if (init_resync(conf))
57afd89f 1786 return 0;
1da177e4
LT
1787
1788 skipped:
58c0fed4 1789 max_sector = mddev->dev_sectors;
1da177e4
LT
1790 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1791 max_sector = mddev->resync_max_sectors;
1792 if (sector_nr >= max_sector) {
6cce3b23
N
1793 /* If we aborted, we need to abort the
1794 * sync on the 'current' bitmap chucks (there can
1795 * be several when recovering multiple devices).
1796 * as we may have started syncing it but not finished.
1797 * We can find the current address in
1798 * mddev->curr_resync, but for recovery,
1799 * we need to convert that to several
1800 * virtual addresses.
1801 */
1802 if (mddev->curr_resync < max_sector) { /* aborted */
1803 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1804 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1805 &sync_blocks, 1);
1806 else for (i=0; i<conf->raid_disks; i++) {
1807 sector_t sect =
1808 raid10_find_virt(conf, mddev->curr_resync, i);
1809 bitmap_end_sync(mddev->bitmap, sect,
1810 &sync_blocks, 1);
1811 }
1812 } else /* completed sync */
1813 conf->fullsync = 0;
1814
1815 bitmap_close_sync(mddev->bitmap);
1da177e4 1816 close_sync(conf);
57afd89f 1817 *skipped = 1;
1da177e4
LT
1818 return sectors_skipped;
1819 }
1820 if (chunks_skipped >= conf->raid_disks) {
1821 /* if there has been nothing to do on any drive,
1822 * then there is nothing to do at all..
1823 */
57afd89f
N
1824 *skipped = 1;
1825 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
1826 }
1827
c6207277
N
1828 if (max_sector > mddev->resync_max)
1829 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1830
1da177e4
LT
1831 /* make sure whole request will fit in a chunk - if chunks
1832 * are meaningful
1833 */
1834 if (conf->near_copies < conf->raid_disks &&
1835 max_sector > (sector_nr | conf->chunk_mask))
1836 max_sector = (sector_nr | conf->chunk_mask) + 1;
1837 /*
1838 * If there is non-resync activity waiting for us then
1839 * put in a delay to throttle resync.
1840 */
0a27ec96 1841 if (!go_faster && conf->nr_waiting)
1da177e4 1842 msleep_interruptible(1000);
1da177e4
LT
1843
1844 /* Again, very different code for resync and recovery.
1845 * Both must result in an r10bio with a list of bios that
1846 * have bi_end_io, bi_sector, bi_bdev set,
1847 * and bi_private set to the r10bio.
1848 * For recovery, we may actually create several r10bios
1849 * with 2 bios in each, that correspond to the bios in the main one.
1850 * In this case, the subordinate r10bios link back through a
1851 * borrowed master_bio pointer, and the counter in the master
1852 * includes a ref from each subordinate.
1853 */
1854 /* First, we decide what to do and set ->bi_end_io
1855 * To end_sync_read if we want to read, and
1856 * end_sync_write if we will want to write.
1857 */
1858
6cce3b23 1859 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
1860 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1861 /* recovery... the complicated one */
a9f326eb 1862 int j, k;
1da177e4
LT
1863 r10_bio = NULL;
1864
1865 for (i=0 ; i<conf->raid_disks; i++)
1866 if (conf->mirrors[i].rdev &&
b2d444d7 1867 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
6cce3b23 1868 int still_degraded = 0;
1da177e4
LT
1869 /* want to reconstruct this device */
1870 r10bio_t *rb2 = r10_bio;
6cce3b23
N
1871 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1872 int must_sync;
1873 /* Unless we are doing a full sync, we only need
1874 * to recover the block if it is set in the bitmap
1875 */
1876 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1877 &sync_blocks, 1);
1878 if (sync_blocks < max_sync)
1879 max_sync = sync_blocks;
1880 if (!must_sync &&
1881 !conf->fullsync) {
1882 /* yep, skip the sync_blocks here, but don't assume
1883 * that there will never be anything to do here
1884 */
1885 chunks_skipped = -1;
1886 continue;
1887 }
1da177e4
LT
1888
1889 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
6cce3b23 1890 raise_barrier(conf, rb2 != NULL);
1da177e4
LT
1891 atomic_set(&r10_bio->remaining, 0);
1892
1893 r10_bio->master_bio = (struct bio*)rb2;
1894 if (rb2)
1895 atomic_inc(&rb2->remaining);
1896 r10_bio->mddev = mddev;
1897 set_bit(R10BIO_IsRecover, &r10_bio->state);
6cce3b23
N
1898 r10_bio->sector = sect;
1899
1da177e4 1900 raid10_find_phys(conf, r10_bio);
18055569
N
1901
1902 /* Need to check if the array will still be
6cce3b23
N
1903 * degraded
1904 */
18055569
N
1905 for (j=0; j<conf->raid_disks; j++)
1906 if (conf->mirrors[j].rdev == NULL ||
1907 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
6cce3b23 1908 still_degraded = 1;
a24a8dd8
N
1909 break;
1910 }
18055569 1911
6cce3b23
N
1912 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1913 &sync_blocks, still_degraded);
1914
1da177e4
LT
1915 for (j=0; j<conf->copies;j++) {
1916 int d = r10_bio->devs[j].devnum;
1917 if (conf->mirrors[d].rdev &&
b2d444d7 1918 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1da177e4
LT
1919 /* This is where we read from */
1920 bio = r10_bio->devs[0].bio;
1921 bio->bi_next = biolist;
1922 biolist = bio;
1923 bio->bi_private = r10_bio;
1924 bio->bi_end_io = end_sync_read;
802ba064 1925 bio->bi_rw = READ;
1da177e4
LT
1926 bio->bi_sector = r10_bio->devs[j].addr +
1927 conf->mirrors[d].rdev->data_offset;
1928 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1929 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1930 atomic_inc(&r10_bio->remaining);
1931 /* and we write to 'i' */
1932
1933 for (k=0; k<conf->copies; k++)
1934 if (r10_bio->devs[k].devnum == i)
1935 break;
64a742bc 1936 BUG_ON(k == conf->copies);
1da177e4
LT
1937 bio = r10_bio->devs[1].bio;
1938 bio->bi_next = biolist;
1939 biolist = bio;
1940 bio->bi_private = r10_bio;
1941 bio->bi_end_io = end_sync_write;
802ba064 1942 bio->bi_rw = WRITE;
1da177e4
LT
1943 bio->bi_sector = r10_bio->devs[k].addr +
1944 conf->mirrors[i].rdev->data_offset;
1945 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1946
1947 r10_bio->devs[0].devnum = d;
1948 r10_bio->devs[1].devnum = i;
1949
1950 break;
1951 }
1952 }
1953 if (j == conf->copies) {
87fc767b
N
1954 /* Cannot recover, so abort the recovery */
1955 put_buf(r10_bio);
a07e6ab4
T
1956 if (rb2)
1957 atomic_dec(&rb2->remaining);
87fc767b 1958 r10_bio = rb2;
dfc70645
N
1959 if (!test_and_set_bit(MD_RECOVERY_INTR,
1960 &mddev->recovery))
128595ed
N
1961 printk(KERN_INFO "md/raid10:%s: insufficient "
1962 "working devices for recovery.\n",
87fc767b
N
1963 mdname(mddev));
1964 break;
1da177e4
LT
1965 }
1966 }
1967 if (biolist == NULL) {
1968 while (r10_bio) {
1969 r10bio_t *rb2 = r10_bio;
1970 r10_bio = (r10bio_t*) rb2->master_bio;
1971 rb2->master_bio = NULL;
1972 put_buf(rb2);
1973 }
1974 goto giveup;
1975 }
1976 } else {
1977 /* resync. Schedule a read for every block at this virt offset */
1978 int count = 0;
6cce3b23 1979
78200d45
N
1980 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1981
6cce3b23
N
1982 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1983 &sync_blocks, mddev->degraded) &&
1984 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1985 /* We can skip this block */
1986 *skipped = 1;
1987 return sync_blocks + sectors_skipped;
1988 }
1989 if (sync_blocks < max_sync)
1990 max_sync = sync_blocks;
1da177e4
LT
1991 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1992
1da177e4
LT
1993 r10_bio->mddev = mddev;
1994 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
1995 raise_barrier(conf, 0);
1996 conf->next_resync = sector_nr;
1da177e4
LT
1997
1998 r10_bio->master_bio = NULL;
1999 r10_bio->sector = sector_nr;
2000 set_bit(R10BIO_IsSync, &r10_bio->state);
2001 raid10_find_phys(conf, r10_bio);
2002 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2003
2004 for (i=0; i<conf->copies; i++) {
2005 int d = r10_bio->devs[i].devnum;
2006 bio = r10_bio->devs[i].bio;
2007 bio->bi_end_io = NULL;
af03b8e4 2008 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 2009 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 2010 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4
LT
2011 continue;
2012 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2013 atomic_inc(&r10_bio->remaining);
2014 bio->bi_next = biolist;
2015 biolist = bio;
2016 bio->bi_private = r10_bio;
2017 bio->bi_end_io = end_sync_read;
802ba064 2018 bio->bi_rw = READ;
1da177e4
LT
2019 bio->bi_sector = r10_bio->devs[i].addr +
2020 conf->mirrors[d].rdev->data_offset;
2021 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2022 count++;
2023 }
2024
2025 if (count < 2) {
2026 for (i=0; i<conf->copies; i++) {
2027 int d = r10_bio->devs[i].devnum;
2028 if (r10_bio->devs[i].bio->bi_end_io)
2029 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
2030 }
2031 put_buf(r10_bio);
2032 biolist = NULL;
2033 goto giveup;
2034 }
2035 }
2036
2037 for (bio = biolist; bio ; bio=bio->bi_next) {
2038
2039 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2040 if (bio->bi_end_io)
2041 bio->bi_flags |= 1 << BIO_UPTODATE;
2042 bio->bi_vcnt = 0;
2043 bio->bi_idx = 0;
2044 bio->bi_phys_segments = 0;
1da177e4
LT
2045 bio->bi_size = 0;
2046 }
2047
2048 nr_sectors = 0;
6cce3b23
N
2049 if (sector_nr + max_sync < max_sector)
2050 max_sector = sector_nr + max_sync;
1da177e4
LT
2051 do {
2052 struct page *page;
2053 int len = PAGE_SIZE;
2054 disk = 0;
2055 if (sector_nr + (len>>9) > max_sector)
2056 len = (max_sector - sector_nr) << 9;
2057 if (len == 0)
2058 break;
2059 for (bio= biolist ; bio ; bio=bio->bi_next) {
2060 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2061 if (bio_add_page(bio, page, len, 0) == 0) {
2062 /* stop here */
2063 struct bio *bio2;
2064 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2065 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
2066 /* remove last page from this bio */
2067 bio2->bi_vcnt--;
2068 bio2->bi_size -= len;
2069 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2070 }
2071 goto bio_full;
2072 }
2073 disk = i;
2074 }
2075 nr_sectors += len>>9;
2076 sector_nr += len>>9;
2077 } while (biolist->bi_vcnt < RESYNC_PAGES);
2078 bio_full:
2079 r10_bio->sectors = nr_sectors;
2080
2081 while (biolist) {
2082 bio = biolist;
2083 biolist = biolist->bi_next;
2084
2085 bio->bi_next = NULL;
2086 r10_bio = bio->bi_private;
2087 r10_bio->sectors = nr_sectors;
2088
2089 if (bio->bi_end_io == end_sync_read) {
2090 md_sync_acct(bio->bi_bdev, nr_sectors);
2091 generic_make_request(bio);
2092 }
2093 }
2094
57afd89f
N
2095 if (sectors_skipped)
2096 /* pretend they weren't skipped, it makes
2097 * no important difference in this case
2098 */
2099 md_done_sync(mddev, sectors_skipped, 1);
2100
1da177e4
LT
2101 return sectors_skipped + nr_sectors;
2102 giveup:
2103 /* There is nowhere to write, so all non-sync
2104 * drives must be failed, so try the next chunk...
2105 */
09b4068a
N
2106 if (sector_nr + max_sync < max_sector)
2107 max_sector = sector_nr + max_sync;
2108
2109 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
2110 chunks_skipped ++;
2111 sector_nr = max_sector;
1da177e4 2112 goto skipped;
1da177e4
LT
2113}
2114
80c3a6ce
DW
2115static sector_t
2116raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2117{
2118 sector_t size;
070ec55d 2119 conf_t *conf = mddev->private;
80c3a6ce
DW
2120
2121 if (!raid_disks)
84707f38 2122 raid_disks = conf->raid_disks;
80c3a6ce 2123 if (!sectors)
dab8b292 2124 sectors = conf->dev_sectors;
80c3a6ce
DW
2125
2126 size = sectors >> conf->chunk_shift;
2127 sector_div(size, conf->far_copies);
2128 size = size * raid_disks;
2129 sector_div(size, conf->near_copies);
2130
2131 return size << conf->chunk_shift;
2132}
2133
dab8b292
TM
2134
2135static conf_t *setup_conf(mddev_t *mddev)
1da177e4 2136{
dab8b292 2137 conf_t *conf = NULL;
c93983bf 2138 int nc, fc, fo;
1da177e4 2139 sector_t stride, size;
dab8b292 2140 int err = -EINVAL;
1da177e4 2141
f73ea873
MT
2142 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2143 !is_power_of_2(mddev->new_chunk_sectors)) {
128595ed
N
2144 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2145 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2146 mdname(mddev), PAGE_SIZE);
dab8b292 2147 goto out;
1da177e4 2148 }
2604b703 2149
f73ea873
MT
2150 nc = mddev->new_layout & 255;
2151 fc = (mddev->new_layout >> 8) & 255;
2152 fo = mddev->new_layout & (1<<16);
dab8b292 2153
1da177e4 2154 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
f73ea873 2155 (mddev->new_layout >> 17)) {
128595ed 2156 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 2157 mdname(mddev), mddev->new_layout);
1da177e4
LT
2158 goto out;
2159 }
dab8b292
TM
2160
2161 err = -ENOMEM;
4443ae10 2162 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
dab8b292 2163 if (!conf)
1da177e4 2164 goto out;
dab8b292 2165
4443ae10 2166 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
dab8b292
TM
2167 GFP_KERNEL);
2168 if (!conf->mirrors)
2169 goto out;
4443ae10
N
2170
2171 conf->tmppage = alloc_page(GFP_KERNEL);
2172 if (!conf->tmppage)
dab8b292
TM
2173 goto out;
2174
1da177e4 2175
64a742bc 2176 conf->raid_disks = mddev->raid_disks;
1da177e4
LT
2177 conf->near_copies = nc;
2178 conf->far_copies = fc;
2179 conf->copies = nc*fc;
c93983bf 2180 conf->far_offset = fo;
dab8b292
TM
2181 conf->chunk_mask = mddev->new_chunk_sectors - 1;
2182 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2183
2184 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2185 r10bio_pool_free, conf);
2186 if (!conf->r10bio_pool)
2187 goto out;
2188
58c0fed4 2189 size = mddev->dev_sectors >> conf->chunk_shift;
64a742bc
N
2190 sector_div(size, fc);
2191 size = size * conf->raid_disks;
2192 sector_div(size, nc);
2193 /* 'size' is now the number of chunks in the array */
2194 /* calculate "used chunks per device" in 'stride' */
2195 stride = size * conf->copies;
af03b8e4
N
2196
2197 /* We need to round up when dividing by raid_disks to
2198 * get the stride size.
2199 */
2200 stride += conf->raid_disks - 1;
64a742bc 2201 sector_div(stride, conf->raid_disks);
dab8b292
TM
2202
2203 conf->dev_sectors = stride << conf->chunk_shift;
64a742bc 2204
c93983bf 2205 if (fo)
64a742bc
N
2206 stride = 1;
2207 else
c93983bf 2208 sector_div(stride, fc);
64a742bc
N
2209 conf->stride = stride << conf->chunk_shift;
2210
1da177e4 2211
e7e72bf6 2212 spin_lock_init(&conf->device_lock);
dab8b292
TM
2213 INIT_LIST_HEAD(&conf->retry_list);
2214
2215 spin_lock_init(&conf->resync_lock);
2216 init_waitqueue_head(&conf->wait_barrier);
2217
2218 conf->thread = md_register_thread(raid10d, mddev, NULL);
2219 if (!conf->thread)
2220 goto out;
2221
dab8b292
TM
2222 conf->mddev = mddev;
2223 return conf;
2224
2225 out:
128595ed 2226 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
dab8b292
TM
2227 mdname(mddev));
2228 if (conf) {
2229 if (conf->r10bio_pool)
2230 mempool_destroy(conf->r10bio_pool);
2231 kfree(conf->mirrors);
2232 safe_put_page(conf->tmppage);
2233 kfree(conf);
2234 }
2235 return ERR_PTR(err);
2236}
2237
2238static int run(mddev_t *mddev)
2239{
2240 conf_t *conf;
2241 int i, disk_idx, chunk_size;
2242 mirror_info_t *disk;
2243 mdk_rdev_t *rdev;
2244 sector_t size;
2245
2246 /*
2247 * copy the already verified devices into our private RAID10
2248 * bookkeeping area. [whatever we allocate in run(),
2249 * should be freed in stop()]
2250 */
2251
2252 if (mddev->private == NULL) {
2253 conf = setup_conf(mddev);
2254 if (IS_ERR(conf))
2255 return PTR_ERR(conf);
2256 mddev->private = conf;
2257 }
2258 conf = mddev->private;
2259 if (!conf)
2260 goto out;
2261
dab8b292
TM
2262 mddev->thread = conf->thread;
2263 conf->thread = NULL;
2264
8f6c2e4b
MP
2265 chunk_size = mddev->chunk_sectors << 9;
2266 blk_queue_io_min(mddev->queue, chunk_size);
2267 if (conf->raid_disks % conf->near_copies)
2268 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2269 else
2270 blk_queue_io_opt(mddev->queue, chunk_size *
2271 (conf->raid_disks / conf->near_copies));
2272
159ec1fc 2273 list_for_each_entry(rdev, &mddev->disks, same_set) {
1da177e4 2274 disk_idx = rdev->raid_disk;
84707f38 2275 if (disk_idx >= conf->raid_disks
1da177e4
LT
2276 || disk_idx < 0)
2277 continue;
2278 disk = conf->mirrors + disk_idx;
2279
2280 disk->rdev = rdev;
8f6c2e4b
MP
2281 disk_stack_limits(mddev->gendisk, rdev->bdev,
2282 rdev->data_offset << 9);
1da177e4 2283 /* as we don't honour merge_bvec_fn, we must never risk
627a2d3c
N
2284 * violating it, so limit max_segments to 1 lying
2285 * within a single page.
1da177e4 2286 */
627a2d3c
N
2287 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2288 blk_queue_max_segments(mddev->queue, 1);
2289 blk_queue_segment_boundary(mddev->queue,
2290 PAGE_CACHE_SIZE - 1);
2291 }
1da177e4
LT
2292
2293 disk->head_position = 0;
1da177e4 2294 }
6d508242
N
2295 /* need to check that every block has at least one working mirror */
2296 if (!enough(conf)) {
128595ed 2297 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 2298 mdname(mddev));
1da177e4
LT
2299 goto out_free_conf;
2300 }
2301
2302 mddev->degraded = 0;
2303 for (i = 0; i < conf->raid_disks; i++) {
2304
2305 disk = conf->mirrors + i;
2306
5fd6c1dc 2307 if (!disk->rdev ||
2e333e89 2308 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
2309 disk->head_position = 0;
2310 mddev->degraded++;
8c2e870a
NB
2311 if (disk->rdev)
2312 conf->fullsync = 1;
1da177e4
LT
2313 }
2314 }
2315
8c6ac868 2316 if (mddev->recovery_cp != MaxSector)
128595ed 2317 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
2318 " -- starting background reconstruction\n",
2319 mdname(mddev));
1da177e4 2320 printk(KERN_INFO
128595ed 2321 "md/raid10:%s: active with %d out of %d devices\n",
84707f38
N
2322 mdname(mddev), conf->raid_disks - mddev->degraded,
2323 conf->raid_disks);
1da177e4
LT
2324 /*
2325 * Ok, everything is just fine now
2326 */
dab8b292
TM
2327 mddev->dev_sectors = conf->dev_sectors;
2328 size = raid10_size(mddev, 0, 0);
2329 md_set_array_sectors(mddev, size);
2330 mddev->resync_max_sectors = size;
1da177e4 2331
0d129228
N
2332 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2333 mddev->queue->backing_dev_info.congested_data = mddev;
7a5febe9 2334
1da177e4
LT
2335 /* Calculate max read-ahead size.
2336 * We need to readahead at least twice a whole stripe....
2337 * maybe...
2338 */
2339 {
9d8f0363
AN
2340 int stripe = conf->raid_disks *
2341 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
1da177e4
LT
2342 stripe /= conf->near_copies;
2343 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2344 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2345 }
2346
84707f38 2347 if (conf->near_copies < conf->raid_disks)
1da177e4 2348 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
a91a2785
MP
2349
2350 if (md_integrity_register(mddev))
2351 goto out_free_conf;
2352
1da177e4
LT
2353 return 0;
2354
2355out_free_conf:
589a594b 2356 md_unregister_thread(mddev->thread);
1da177e4
LT
2357 if (conf->r10bio_pool)
2358 mempool_destroy(conf->r10bio_pool);
1345b1d8 2359 safe_put_page(conf->tmppage);
990a8baf 2360 kfree(conf->mirrors);
1da177e4
LT
2361 kfree(conf);
2362 mddev->private = NULL;
2363out:
2364 return -EIO;
2365}
2366
2367static int stop(mddev_t *mddev)
2368{
070ec55d 2369 conf_t *conf = mddev->private;
1da177e4 2370
409c57f3
N
2371 raise_barrier(conf, 0);
2372 lower_barrier(conf);
2373
1da177e4
LT
2374 md_unregister_thread(mddev->thread);
2375 mddev->thread = NULL;
2376 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2377 if (conf->r10bio_pool)
2378 mempool_destroy(conf->r10bio_pool);
990a8baf 2379 kfree(conf->mirrors);
1da177e4
LT
2380 kfree(conf);
2381 mddev->private = NULL;
2382 return 0;
2383}
2384
6cce3b23
N
2385static void raid10_quiesce(mddev_t *mddev, int state)
2386{
070ec55d 2387 conf_t *conf = mddev->private;
6cce3b23
N
2388
2389 switch(state) {
2390 case 1:
2391 raise_barrier(conf, 0);
2392 break;
2393 case 0:
2394 lower_barrier(conf);
2395 break;
2396 }
6cce3b23 2397}
1da177e4 2398
dab8b292
TM
2399static void *raid10_takeover_raid0(mddev_t *mddev)
2400{
2401 mdk_rdev_t *rdev;
2402 conf_t *conf;
2403
2404 if (mddev->degraded > 0) {
128595ed
N
2405 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
2406 mdname(mddev));
dab8b292
TM
2407 return ERR_PTR(-EINVAL);
2408 }
2409
dab8b292
TM
2410 /* Set new parameters */
2411 mddev->new_level = 10;
2412 /* new layout: far_copies = 1, near_copies = 2 */
2413 mddev->new_layout = (1<<8) + 2;
2414 mddev->new_chunk_sectors = mddev->chunk_sectors;
2415 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
2416 mddev->raid_disks *= 2;
2417 /* make sure it will be not marked as dirty */
2418 mddev->recovery_cp = MaxSector;
2419
2420 conf = setup_conf(mddev);
02214dc5 2421 if (!IS_ERR(conf)) {
e93f68a1
N
2422 list_for_each_entry(rdev, &mddev->disks, same_set)
2423 if (rdev->raid_disk >= 0)
2424 rdev->new_raid_disk = rdev->raid_disk * 2;
02214dc5
KW
2425 conf->barrier = 1;
2426 }
2427
dab8b292
TM
2428 return conf;
2429}
2430
2431static void *raid10_takeover(mddev_t *mddev)
2432{
2433 struct raid0_private_data *raid0_priv;
2434
2435 /* raid10 can take over:
2436 * raid0 - providing it has only two drives
2437 */
2438 if (mddev->level == 0) {
2439 /* for raid0 takeover only one zone is supported */
2440 raid0_priv = mddev->private;
2441 if (raid0_priv->nr_strip_zones > 1) {
128595ed
N
2442 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
2443 " with more than one zone.\n",
2444 mdname(mddev));
dab8b292
TM
2445 return ERR_PTR(-EINVAL);
2446 }
2447 return raid10_takeover_raid0(mddev);
2448 }
2449 return ERR_PTR(-EINVAL);
2450}
2451
2604b703 2452static struct mdk_personality raid10_personality =
1da177e4
LT
2453{
2454 .name = "raid10",
2604b703 2455 .level = 10,
1da177e4
LT
2456 .owner = THIS_MODULE,
2457 .make_request = make_request,
2458 .run = run,
2459 .stop = stop,
2460 .status = status,
2461 .error_handler = error,
2462 .hot_add_disk = raid10_add_disk,
2463 .hot_remove_disk= raid10_remove_disk,
2464 .spare_active = raid10_spare_active,
2465 .sync_request = sync_request,
6cce3b23 2466 .quiesce = raid10_quiesce,
80c3a6ce 2467 .size = raid10_size,
dab8b292 2468 .takeover = raid10_takeover,
1da177e4
LT
2469};
2470
2471static int __init raid_init(void)
2472{
2604b703 2473 return register_md_personality(&raid10_personality);
1da177e4
LT
2474}
2475
2476static void raid_exit(void)
2477{
2604b703 2478 unregister_md_personality(&raid10_personality);
1da177e4
LT
2479}
2480
2481module_init(raid_init);
2482module_exit(raid_exit);
2483MODULE_LICENSE("GPL");
0efb9e61 2484MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 2485MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 2486MODULE_ALIAS("md-raid10");
2604b703 2487MODULE_ALIAS("md-level-10");
This page took 0.712493 seconds and 5 git commands to generate.