md/raid0: improve error message when converting RAID4-with-spares to RAID0
[deliverable/linux.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
3ea7daa5 27#include <linux/kthread.h>
43b2e5d8 28#include "md.h"
ef740c37 29#include "raid10.h"
dab8b292 30#include "raid0.h"
ef740c37 31#include "bitmap.h"
1da177e4
LT
32
33/*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
c93983bf 40 * far_offset (stored in bit 16 of layout )
475901af 41 * use_far_sets (stored in bit 17 of layout )
1da177e4 42 *
475901af
JB
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
c93983bf
N
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
475901af
JB
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
55 *
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * on a device):
64 * A B C D A B C D E
65 * ... ...
66 * D A B C E A B C D
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
1da177e4
LT
71 */
72
73/*
74 * Number of guaranteed r10bios in case of extreme VM load:
75 */
76#define NR_RAID10_BIOS 256
77
473e87ce
JB
78/* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82 */
83#define IO_BLOCKED ((struct bio *)1)
84/* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
87 */
88#define IO_MADE_GOOD ((struct bio *)2)
89
90#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92/* When there are this many requests queued to be written by
34db0cd6
N
93 * the raid10 thread, we become 'congested' to provide back-pressure
94 * for writeback.
95 */
96static int max_queued_requests = 1024;
97
e879a879
N
98static void allow_barrier(struct r10conf *conf);
99static void lower_barrier(struct r10conf *conf);
fae8cc5e 100static int enough(struct r10conf *conf, int ignore);
3ea7daa5
N
101static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 int *skipped);
103static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104static void end_reshape_write(struct bio *bio, int error);
105static void end_reshape(struct r10conf *conf);
0a27ec96 106
dd0fc66f 107static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 108{
e879a879 109 struct r10conf *conf = data;
9f2c9d12 110 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4 111
69335ef3
N
112 /* allocate a r10bio with room for raid_disks entries in the
113 * bios array */
7eaceacc 114 return kzalloc(size, gfp_flags);
1da177e4
LT
115}
116
117static void r10bio_pool_free(void *r10_bio, void *data)
118{
119 kfree(r10_bio);
120}
121
0310fa21 122/* Maximum size of each resync request */
1da177e4 123#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 124#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
125/* amount of memory to reserve for resync requests */
126#define RESYNC_WINDOW (1024*1024)
127/* maximum number of concurrent requests, memory permitting */
128#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
129
130/*
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
135 *
136 */
dd0fc66f 137static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 138{
e879a879 139 struct r10conf *conf = data;
1da177e4 140 struct page *page;
9f2c9d12 141 struct r10bio *r10_bio;
1da177e4
LT
142 struct bio *bio;
143 int i, j;
144 int nalloc;
145
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 147 if (!r10_bio)
1da177e4 148 return NULL;
1da177e4 149
3ea7daa5
N
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
1da177e4
LT
152 nalloc = conf->copies; /* resync */
153 else
154 nalloc = 2; /* recovery */
155
156 /*
157 * Allocate bios.
158 */
159 for (j = nalloc ; j-- ; ) {
6746557f 160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
161 if (!bio)
162 goto out_free_bio;
163 r10_bio->devs[j].bio = bio;
69335ef3
N
164 if (!conf->have_replacement)
165 continue;
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 if (!bio)
168 goto out_free_bio;
169 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
170 }
171 /*
172 * Allocate RESYNC_PAGES data pages and attach them
173 * where needed.
174 */
175 for (j = 0 ; j < nalloc; j++) {
69335ef3 176 struct bio *rbio = r10_bio->devs[j].repl_bio;
1da177e4
LT
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
3ea7daa5
N
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
182 * and reshape */
c65060ad
NK
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
185 get_page(page);
186 } else
187 page = alloc_page(gfp_flags);
1da177e4
LT
188 if (unlikely(!page))
189 goto out_free_pages;
190
191 bio->bi_io_vec[i].bv_page = page;
69335ef3
N
192 if (rbio)
193 rbio->bi_io_vec[i].bv_page = page;
1da177e4
LT
194 }
195 }
196
197 return r10_bio;
198
199out_free_pages:
200 for ( ; i > 0 ; i--)
1345b1d8 201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
202 while (j--)
203 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
5fdd2cf8 205 j = 0;
1da177e4 206out_free_bio:
5fdd2cf8 207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
69335ef3
N
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
212 }
1da177e4
LT
213 r10bio_pool_free(r10_bio, conf);
214 return NULL;
215}
216
217static void r10buf_pool_free(void *__r10_bio, void *data)
218{
219 int i;
e879a879 220 struct r10conf *conf = data;
9f2c9d12 221 struct r10bio *r10bio = __r10_bio;
1da177e4
LT
222 int j;
223
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
226 if (bio) {
227 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 228 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
229 bio->bi_io_vec[i].bv_page = NULL;
230 }
231 bio_put(bio);
232 }
69335ef3
N
233 bio = r10bio->devs[j].repl_bio;
234 if (bio)
235 bio_put(bio);
1da177e4
LT
236 }
237 r10bio_pool_free(r10bio, conf);
238}
239
e879a879 240static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
241{
242 int i;
243
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 246 if (!BIO_SPECIAL(*bio))
1da177e4
LT
247 bio_put(*bio);
248 *bio = NULL;
69335ef3
N
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 bio_put(*bio);
252 *bio = NULL;
1da177e4
LT
253 }
254}
255
9f2c9d12 256static void free_r10bio(struct r10bio *r10_bio)
1da177e4 257{
e879a879 258 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 259
1da177e4
LT
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
262}
263
9f2c9d12 264static void put_buf(struct r10bio *r10_bio)
1da177e4 265{
e879a879 266 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
267
268 mempool_free(r10_bio, conf->r10buf_pool);
269
0a27ec96 270 lower_barrier(conf);
1da177e4
LT
271}
272
9f2c9d12 273static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
274{
275 unsigned long flags;
fd01b88c 276 struct mddev *mddev = r10_bio->mddev;
e879a879 277 struct r10conf *conf = mddev->private;
1da177e4
LT
278
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 281 conf->nr_queued ++;
1da177e4
LT
282 spin_unlock_irqrestore(&conf->device_lock, flags);
283
388667be
AJ
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
286
1da177e4
LT
287 md_wakeup_thread(mddev->thread);
288}
289
290/*
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
293 * cache layer.
294 */
9f2c9d12 295static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
296{
297 struct bio *bio = r10_bio->master_bio;
856e08e2 298 int done;
e879a879 299 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 300
856e08e2
N
301 if (bio->bi_phys_segments) {
302 unsigned long flags;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
307 } else
308 done = 1;
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 if (done) {
312 bio_endio(bio, 0);
313 /*
314 * Wake up any possible resync thread that waits for the device
315 * to go idle.
316 */
317 allow_barrier(conf);
318 }
1da177e4
LT
319 free_r10bio(r10_bio);
320}
321
322/*
323 * Update disk head position estimator based on IRQ completion info.
324 */
9f2c9d12 325static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 326{
e879a879 327 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
328
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
331}
332
778ca018
NK
333/*
334 * Find the disk number which triggered given bio
335 */
e879a879 336static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 337 struct bio *bio, int *slotp, int *replp)
778ca018
NK
338{
339 int slot;
69335ef3 340 int repl = 0;
778ca018 341
69335ef3 342 for (slot = 0; slot < conf->copies; slot++) {
778ca018
NK
343 if (r10_bio->devs[slot].bio == bio)
344 break;
69335ef3
N
345 if (r10_bio->devs[slot].repl_bio == bio) {
346 repl = 1;
347 break;
348 }
349 }
778ca018
NK
350
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
353
749c55e9
N
354 if (slotp)
355 *slotp = slot;
69335ef3
N
356 if (replp)
357 *replp = repl;
778ca018
NK
358 return r10_bio->devs[slot].devnum;
359}
360
6712ecf8 361static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
362{
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 364 struct r10bio *r10_bio = bio->bi_private;
1da177e4 365 int slot, dev;
abbf098e 366 struct md_rdev *rdev;
e879a879 367 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 368
1da177e4
LT
369
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
abbf098e 372 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
373 /*
374 * this branch is our 'one mirror IO has finished' event handler:
375 */
4443ae10
N
376 update_head_pos(slot, r10_bio);
377
378 if (uptodate) {
1da177e4
LT
379 /*
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
383 *
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
387 */
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
394 */
395 unsigned long flags;
396 spin_lock_irqsave(&conf->device_lock, flags);
397 if (!enough(conf, rdev->raid_disk))
398 uptodate = 1;
399 spin_unlock_irqrestore(&conf->device_lock, flags);
400 }
401 if (uptodate) {
1da177e4 402 raid_end_bio_io(r10_bio);
abbf098e 403 rdev_dec_pending(rdev, conf->mddev);
4443ae10 404 } else {
1da177e4 405 /*
7c4e06ff 406 * oops, read error - keep the refcount on the rdev
1da177e4
LT
407 */
408 char b[BDEVNAME_SIZE];
8bda470e
CD
409 printk_ratelimited(KERN_ERR
410 "md/raid10:%s: %s: rescheduling sector %llu\n",
411 mdname(conf->mddev),
abbf098e 412 bdevname(rdev->bdev, b),
8bda470e 413 (unsigned long long)r10_bio->sector);
856e08e2 414 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
415 reschedule_retry(r10_bio);
416 }
1da177e4
LT
417}
418
9f2c9d12 419static void close_write(struct r10bio *r10_bio)
bd870a16
N
420{
421 /* clear the bitmap if all writes complete successfully */
422 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
423 r10_bio->sectors,
424 !test_bit(R10BIO_Degraded, &r10_bio->state),
425 0);
426 md_write_end(r10_bio->mddev);
427}
428
9f2c9d12 429static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
430{
431 if (atomic_dec_and_test(&r10_bio->remaining)) {
432 if (test_bit(R10BIO_WriteError, &r10_bio->state))
433 reschedule_retry(r10_bio);
434 else {
435 close_write(r10_bio);
436 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
437 reschedule_retry(r10_bio);
438 else
439 raid_end_bio_io(r10_bio);
440 }
441 }
442}
443
6712ecf8 444static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
445{
446 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 447 struct r10bio *r10_bio = bio->bi_private;
778ca018 448 int dev;
749c55e9 449 int dec_rdev = 1;
e879a879 450 struct r10conf *conf = r10_bio->mddev->private;
475b0321 451 int slot, repl;
4ca40c2c 452 struct md_rdev *rdev = NULL;
1da177e4 453
475b0321 454 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 455
475b0321
N
456 if (repl)
457 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
458 if (!rdev) {
459 smp_rmb();
460 repl = 0;
475b0321 461 rdev = conf->mirrors[dev].rdev;
4ca40c2c 462 }
1da177e4
LT
463 /*
464 * this branch is our 'one mirror IO has finished' event handler:
465 */
6cce3b23 466 if (!uptodate) {
475b0321
N
467 if (repl)
468 /* Never record new bad blocks to replacement,
469 * just fail it.
470 */
471 md_error(rdev->mddev, rdev);
472 else {
473 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
474 if (!test_and_set_bit(WantReplacement, &rdev->flags))
475 set_bit(MD_RECOVERY_NEEDED,
476 &rdev->mddev->recovery);
475b0321
N
477 set_bit(R10BIO_WriteError, &r10_bio->state);
478 dec_rdev = 0;
479 }
749c55e9 480 } else {
1da177e4
LT
481 /*
482 * Set R10BIO_Uptodate in our master bio, so that
483 * we will return a good error code for to the higher
484 * levels even if IO on some other mirrored buffer fails.
485 *
486 * The 'master' represents the composite IO operation to
487 * user-side. So if something waits for IO, then it will
488 * wait for the 'master' bio.
489 */
749c55e9
N
490 sector_t first_bad;
491 int bad_sectors;
492
1da177e4
LT
493 set_bit(R10BIO_Uptodate, &r10_bio->state);
494
749c55e9 495 /* Maybe we can clear some bad blocks. */
475b0321 496 if (is_badblock(rdev,
749c55e9
N
497 r10_bio->devs[slot].addr,
498 r10_bio->sectors,
499 &first_bad, &bad_sectors)) {
500 bio_put(bio);
475b0321
N
501 if (repl)
502 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
503 else
504 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
505 dec_rdev = 0;
506 set_bit(R10BIO_MadeGood, &r10_bio->state);
507 }
508 }
509
1da177e4
LT
510 /*
511 *
512 * Let's see if all mirrored write operations have finished
513 * already.
514 */
19d5f834 515 one_write_done(r10_bio);
749c55e9 516 if (dec_rdev)
884162df 517 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
518}
519
1da177e4
LT
520/*
521 * RAID10 layout manager
25985edc 522 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
523 * parameters: near_copies and far_copies.
524 * near_copies * far_copies must be <= raid_disks.
525 * Normally one of these will be 1.
526 * If both are 1, we get raid0.
527 * If near_copies == raid_disks, we get raid1.
528 *
25985edc 529 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
530 * first chunk, followed by near_copies copies of the next chunk and
531 * so on.
532 * If far_copies > 1, then after 1/far_copies of the array has been assigned
533 * as described above, we start again with a device offset of near_copies.
534 * So we effectively have another copy of the whole array further down all
535 * the drives, but with blocks on different drives.
536 * With this layout, and block is never stored twice on the one device.
537 *
538 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 539 * on each device that it is on.
1da177e4
LT
540 *
541 * raid10_find_virt does the reverse mapping, from a device and a
542 * sector offset to a virtual address
543 */
544
f8c9e74f 545static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
546{
547 int n,f;
548 sector_t sector;
549 sector_t chunk;
550 sector_t stripe;
551 int dev;
1da177e4 552 int slot = 0;
9a3152ab
JB
553 int last_far_set_start, last_far_set_size;
554
555 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
556 last_far_set_start *= geo->far_set_size;
557
558 last_far_set_size = geo->far_set_size;
559 last_far_set_size += (geo->raid_disks % geo->far_set_size);
1da177e4
LT
560
561 /* now calculate first sector/dev */
5cf00fcd
N
562 chunk = r10bio->sector >> geo->chunk_shift;
563 sector = r10bio->sector & geo->chunk_mask;
1da177e4 564
5cf00fcd 565 chunk *= geo->near_copies;
1da177e4 566 stripe = chunk;
5cf00fcd
N
567 dev = sector_div(stripe, geo->raid_disks);
568 if (geo->far_offset)
569 stripe *= geo->far_copies;
1da177e4 570
5cf00fcd 571 sector += stripe << geo->chunk_shift;
1da177e4
LT
572
573 /* and calculate all the others */
5cf00fcd 574 for (n = 0; n < geo->near_copies; n++) {
1da177e4 575 int d = dev;
475901af 576 int set;
1da177e4 577 sector_t s = sector;
1da177e4 578 r10bio->devs[slot].devnum = d;
4c0ca26b 579 r10bio->devs[slot].addr = s;
1da177e4
LT
580 slot++;
581
5cf00fcd 582 for (f = 1; f < geo->far_copies; f++) {
475901af 583 set = d / geo->far_set_size;
5cf00fcd 584 d += geo->near_copies;
475901af 585
9a3152ab
JB
586 if ((geo->raid_disks % geo->far_set_size) &&
587 (d > last_far_set_start)) {
588 d -= last_far_set_start;
589 d %= last_far_set_size;
590 d += last_far_set_start;
591 } else {
592 d %= geo->far_set_size;
593 d += geo->far_set_size * set;
594 }
5cf00fcd 595 s += geo->stride;
1da177e4
LT
596 r10bio->devs[slot].devnum = d;
597 r10bio->devs[slot].addr = s;
598 slot++;
599 }
600 dev++;
5cf00fcd 601 if (dev >= geo->raid_disks) {
1da177e4 602 dev = 0;
5cf00fcd 603 sector += (geo->chunk_mask + 1);
1da177e4
LT
604 }
605 }
f8c9e74f
N
606}
607
608static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
609{
610 struct geom *geo = &conf->geo;
611
612 if (conf->reshape_progress != MaxSector &&
613 ((r10bio->sector >= conf->reshape_progress) !=
614 conf->mddev->reshape_backwards)) {
615 set_bit(R10BIO_Previous, &r10bio->state);
616 geo = &conf->prev;
617 } else
618 clear_bit(R10BIO_Previous, &r10bio->state);
619
620 __raid10_find_phys(geo, r10bio);
1da177e4
LT
621}
622
e879a879 623static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
624{
625 sector_t offset, chunk, vchunk;
f8c9e74f
N
626 /* Never use conf->prev as this is only called during resync
627 * or recovery, so reshape isn't happening
628 */
5cf00fcd 629 struct geom *geo = &conf->geo;
475901af
JB
630 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
631 int far_set_size = geo->far_set_size;
9a3152ab
JB
632 int last_far_set_start;
633
634 if (geo->raid_disks % geo->far_set_size) {
635 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
636 last_far_set_start *= geo->far_set_size;
637
638 if (dev >= last_far_set_start) {
639 far_set_size = geo->far_set_size;
640 far_set_size += (geo->raid_disks % geo->far_set_size);
641 far_set_start = last_far_set_start;
642 }
643 }
1da177e4 644
5cf00fcd
N
645 offset = sector & geo->chunk_mask;
646 if (geo->far_offset) {
c93983bf 647 int fc;
5cf00fcd
N
648 chunk = sector >> geo->chunk_shift;
649 fc = sector_div(chunk, geo->far_copies);
650 dev -= fc * geo->near_copies;
475901af
JB
651 if (dev < far_set_start)
652 dev += far_set_size;
c93983bf 653 } else {
5cf00fcd
N
654 while (sector >= geo->stride) {
655 sector -= geo->stride;
475901af
JB
656 if (dev < (geo->near_copies + far_set_start))
657 dev += far_set_size - geo->near_copies;
c93983bf 658 else
5cf00fcd 659 dev -= geo->near_copies;
c93983bf 660 }
5cf00fcd 661 chunk = sector >> geo->chunk_shift;
c93983bf 662 }
5cf00fcd
N
663 vchunk = chunk * geo->raid_disks + dev;
664 sector_div(vchunk, geo->near_copies);
665 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
666}
667
668/**
669 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
670 * @q: request queue
cc371e66 671 * @bvm: properties of new bio
1da177e4
LT
672 * @biovec: the request that could be merged to it.
673 *
674 * Return amount of bytes we can accept at this offset
050b6615
N
675 * This requires checking for end-of-chunk if near_copies != raid_disks,
676 * and for subordinate merge_bvec_fns if merge_check_needed.
1da177e4 677 */
cc371e66
AK
678static int raid10_mergeable_bvec(struct request_queue *q,
679 struct bvec_merge_data *bvm,
680 struct bio_vec *biovec)
1da177e4 681{
fd01b88c 682 struct mddev *mddev = q->queuedata;
050b6615 683 struct r10conf *conf = mddev->private;
cc371e66 684 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4 685 int max;
3ea7daa5 686 unsigned int chunk_sectors;
cc371e66 687 unsigned int bio_sectors = bvm->bi_size >> 9;
5cf00fcd 688 struct geom *geo = &conf->geo;
1da177e4 689
3ea7daa5 690 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
f8c9e74f
N
691 if (conf->reshape_progress != MaxSector &&
692 ((sector >= conf->reshape_progress) !=
693 conf->mddev->reshape_backwards))
694 geo = &conf->prev;
695
5cf00fcd 696 if (geo->near_copies < geo->raid_disks) {
050b6615
N
697 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
698 + bio_sectors)) << 9;
699 if (max < 0)
700 /* bio_add cannot handle a negative return */
701 max = 0;
702 if (max <= biovec->bv_len && bio_sectors == 0)
703 return biovec->bv_len;
704 } else
705 max = biovec->bv_len;
706
707 if (mddev->merge_check_needed) {
e0ee7785
N
708 struct {
709 struct r10bio r10_bio;
710 struct r10dev devs[conf->copies];
711 } on_stack;
712 struct r10bio *r10_bio = &on_stack.r10_bio;
050b6615 713 int s;
f8c9e74f
N
714 if (conf->reshape_progress != MaxSector) {
715 /* Cannot give any guidance during reshape */
716 if (max <= biovec->bv_len && bio_sectors == 0)
717 return biovec->bv_len;
718 return 0;
719 }
e0ee7785
N
720 r10_bio->sector = sector;
721 raid10_find_phys(conf, r10_bio);
050b6615
N
722 rcu_read_lock();
723 for (s = 0; s < conf->copies; s++) {
e0ee7785 724 int disk = r10_bio->devs[s].devnum;
050b6615
N
725 struct md_rdev *rdev = rcu_dereference(
726 conf->mirrors[disk].rdev);
727 if (rdev && !test_bit(Faulty, &rdev->flags)) {
728 struct request_queue *q =
729 bdev_get_queue(rdev->bdev);
730 if (q->merge_bvec_fn) {
e0ee7785 731 bvm->bi_sector = r10_bio->devs[s].addr
050b6615
N
732 + rdev->data_offset;
733 bvm->bi_bdev = rdev->bdev;
734 max = min(max, q->merge_bvec_fn(
735 q, bvm, biovec));
736 }
737 }
738 rdev = rcu_dereference(conf->mirrors[disk].replacement);
739 if (rdev && !test_bit(Faulty, &rdev->flags)) {
740 struct request_queue *q =
741 bdev_get_queue(rdev->bdev);
742 if (q->merge_bvec_fn) {
e0ee7785 743 bvm->bi_sector = r10_bio->devs[s].addr
050b6615
N
744 + rdev->data_offset;
745 bvm->bi_bdev = rdev->bdev;
746 max = min(max, q->merge_bvec_fn(
747 q, bvm, biovec));
748 }
749 }
750 }
751 rcu_read_unlock();
752 }
753 return max;
1da177e4
LT
754}
755
756/*
757 * This routine returns the disk from which the requested read should
758 * be done. There is a per-array 'next expected sequential IO' sector
759 * number - if this matches on the next IO then we use the last disk.
760 * There is also a per-disk 'last know head position' sector that is
761 * maintained from IRQ contexts, both the normal and the resync IO
762 * completion handlers update this position correctly. If there is no
763 * perfect sequential match then we pick the disk whose head is closest.
764 *
765 * If there are 2 mirrors in the same 2 devices, performance degrades
766 * because position is mirror, not device based.
767 *
768 * The rdev for the device selected will have nr_pending incremented.
769 */
770
771/*
772 * FIXME: possibly should rethink readbalancing and do it differently
773 * depending on near_copies / far_copies geometry.
774 */
96c3fd1f
N
775static struct md_rdev *read_balance(struct r10conf *conf,
776 struct r10bio *r10_bio,
777 int *max_sectors)
1da177e4 778{
af3a2cd6 779 const sector_t this_sector = r10_bio->sector;
56d99121 780 int disk, slot;
856e08e2
N
781 int sectors = r10_bio->sectors;
782 int best_good_sectors;
56d99121 783 sector_t new_distance, best_dist;
3bbae04b 784 struct md_rdev *best_rdev, *rdev = NULL;
56d99121
N
785 int do_balance;
786 int best_slot;
5cf00fcd 787 struct geom *geo = &conf->geo;
1da177e4
LT
788
789 raid10_find_phys(conf, r10_bio);
790 rcu_read_lock();
56d99121 791retry:
856e08e2 792 sectors = r10_bio->sectors;
56d99121 793 best_slot = -1;
abbf098e 794 best_rdev = NULL;
56d99121 795 best_dist = MaxSector;
856e08e2 796 best_good_sectors = 0;
56d99121 797 do_balance = 1;
1da177e4
LT
798 /*
799 * Check if we can balance. We can balance on the whole
6cce3b23
N
800 * device if no resync is going on (recovery is ok), or below
801 * the resync window. We take the first readable disk when
802 * above the resync window.
1da177e4
LT
803 */
804 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
805 && (this_sector + sectors >= conf->next_resync))
806 do_balance = 0;
1da177e4 807
56d99121 808 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
809 sector_t first_bad;
810 int bad_sectors;
811 sector_t dev_sector;
812
56d99121
N
813 if (r10_bio->devs[slot].bio == IO_BLOCKED)
814 continue;
1da177e4 815 disk = r10_bio->devs[slot].devnum;
abbf098e
N
816 rdev = rcu_dereference(conf->mirrors[disk].replacement);
817 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
050b6615 818 test_bit(Unmerged, &rdev->flags) ||
abbf098e
N
819 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
820 rdev = rcu_dereference(conf->mirrors[disk].rdev);
050b6615
N
821 if (rdev == NULL ||
822 test_bit(Faulty, &rdev->flags) ||
823 test_bit(Unmerged, &rdev->flags))
abbf098e
N
824 continue;
825 if (!test_bit(In_sync, &rdev->flags) &&
826 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
827 continue;
828
856e08e2
N
829 dev_sector = r10_bio->devs[slot].addr;
830 if (is_badblock(rdev, dev_sector, sectors,
831 &first_bad, &bad_sectors)) {
832 if (best_dist < MaxSector)
833 /* Already have a better slot */
834 continue;
835 if (first_bad <= dev_sector) {
836 /* Cannot read here. If this is the
837 * 'primary' device, then we must not read
838 * beyond 'bad_sectors' from another device.
839 */
840 bad_sectors -= (dev_sector - first_bad);
841 if (!do_balance && sectors > bad_sectors)
842 sectors = bad_sectors;
843 if (best_good_sectors > sectors)
844 best_good_sectors = sectors;
845 } else {
846 sector_t good_sectors =
847 first_bad - dev_sector;
848 if (good_sectors > best_good_sectors) {
849 best_good_sectors = good_sectors;
850 best_slot = slot;
abbf098e 851 best_rdev = rdev;
856e08e2
N
852 }
853 if (!do_balance)
854 /* Must read from here */
855 break;
856 }
857 continue;
858 } else
859 best_good_sectors = sectors;
860
56d99121
N
861 if (!do_balance)
862 break;
1da177e4 863
22dfdf52
N
864 /* This optimisation is debatable, and completely destroys
865 * sequential read speed for 'far copies' arrays. So only
866 * keep it for 'near' arrays, and review those later.
867 */
5cf00fcd 868 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
1da177e4 869 break;
8ed3a195
KS
870
871 /* for far > 1 always use the lowest address */
5cf00fcd 872 if (geo->far_copies > 1)
56d99121 873 new_distance = r10_bio->devs[slot].addr;
8ed3a195 874 else
56d99121
N
875 new_distance = abs(r10_bio->devs[slot].addr -
876 conf->mirrors[disk].head_position);
877 if (new_distance < best_dist) {
878 best_dist = new_distance;
879 best_slot = slot;
abbf098e 880 best_rdev = rdev;
1da177e4
LT
881 }
882 }
abbf098e 883 if (slot >= conf->copies) {
56d99121 884 slot = best_slot;
abbf098e
N
885 rdev = best_rdev;
886 }
1da177e4 887
56d99121 888 if (slot >= 0) {
56d99121
N
889 atomic_inc(&rdev->nr_pending);
890 if (test_bit(Faulty, &rdev->flags)) {
891 /* Cannot risk returning a device that failed
892 * before we inc'ed nr_pending
893 */
894 rdev_dec_pending(rdev, conf->mddev);
895 goto retry;
896 }
897 r10_bio->read_slot = slot;
898 } else
96c3fd1f 899 rdev = NULL;
1da177e4 900 rcu_read_unlock();
856e08e2 901 *max_sectors = best_good_sectors;
1da177e4 902
96c3fd1f 903 return rdev;
1da177e4
LT
904}
905
cc4d1efd 906int md_raid10_congested(struct mddev *mddev, int bits)
0d129228 907{
e879a879 908 struct r10conf *conf = mddev->private;
0d129228
N
909 int i, ret = 0;
910
34db0cd6
N
911 if ((bits & (1 << BDI_async_congested)) &&
912 conf->pending_count >= max_queued_requests)
913 return 1;
914
0d129228 915 rcu_read_lock();
f8c9e74f
N
916 for (i = 0;
917 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
918 && ret == 0;
919 i++) {
3cb03002 920 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 921 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 922 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
923
924 ret |= bdi_congested(&q->backing_dev_info, bits);
925 }
926 }
927 rcu_read_unlock();
928 return ret;
929}
cc4d1efd
JB
930EXPORT_SYMBOL_GPL(md_raid10_congested);
931
932static int raid10_congested(void *data, int bits)
933{
934 struct mddev *mddev = data;
935
936 return mddev_congested(mddev, bits) ||
937 md_raid10_congested(mddev, bits);
938}
0d129228 939
e879a879 940static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
941{
942 /* Any writes that have been queued but are awaiting
943 * bitmap updates get flushed here.
a35e63ef 944 */
a35e63ef
N
945 spin_lock_irq(&conf->device_lock);
946
947 if (conf->pending_bio_list.head) {
948 struct bio *bio;
949 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 950 conf->pending_count = 0;
a35e63ef
N
951 spin_unlock_irq(&conf->device_lock);
952 /* flush any pending bitmap writes to disk
953 * before proceeding w/ I/O */
954 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 955 wake_up(&conf->wait_barrier);
a35e63ef
N
956
957 while (bio) { /* submit pending writes */
958 struct bio *next = bio->bi_next;
959 bio->bi_next = NULL;
532a2a3f
SL
960 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
961 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
962 /* Just ignore it */
963 bio_endio(bio, 0);
964 else
965 generic_make_request(bio);
a35e63ef
N
966 bio = next;
967 }
a35e63ef
N
968 } else
969 spin_unlock_irq(&conf->device_lock);
a35e63ef 970}
7eaceacc 971
0a27ec96
N
972/* Barriers....
973 * Sometimes we need to suspend IO while we do something else,
974 * either some resync/recovery, or reconfigure the array.
975 * To do this we raise a 'barrier'.
976 * The 'barrier' is a counter that can be raised multiple times
977 * to count how many activities are happening which preclude
978 * normal IO.
979 * We can only raise the barrier if there is no pending IO.
980 * i.e. if nr_pending == 0.
981 * We choose only to raise the barrier if no-one is waiting for the
982 * barrier to go down. This means that as soon as an IO request
983 * is ready, no other operations which require a barrier will start
984 * until the IO request has had a chance.
985 *
986 * So: regular IO calls 'wait_barrier'. When that returns there
987 * is no backgroup IO happening, It must arrange to call
988 * allow_barrier when it has finished its IO.
989 * backgroup IO calls must call raise_barrier. Once that returns
990 * there is no normal IO happeing. It must arrange to call
991 * lower_barrier when the particular background IO completes.
1da177e4 992 */
1da177e4 993
e879a879 994static void raise_barrier(struct r10conf *conf, int force)
1da177e4 995{
6cce3b23 996 BUG_ON(force && !conf->barrier);
1da177e4 997 spin_lock_irq(&conf->resync_lock);
0a27ec96 998
6cce3b23
N
999 /* Wait until no block IO is waiting (unless 'force') */
1000 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
eed8c02e 1001 conf->resync_lock);
0a27ec96
N
1002
1003 /* block any new IO from starting */
1004 conf->barrier++;
1005
c3b328ac 1006 /* Now wait for all pending IO to complete */
0a27ec96
N
1007 wait_event_lock_irq(conf->wait_barrier,
1008 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
eed8c02e 1009 conf->resync_lock);
0a27ec96
N
1010
1011 spin_unlock_irq(&conf->resync_lock);
1012}
1013
e879a879 1014static void lower_barrier(struct r10conf *conf)
0a27ec96
N
1015{
1016 unsigned long flags;
1017 spin_lock_irqsave(&conf->resync_lock, flags);
1018 conf->barrier--;
1019 spin_unlock_irqrestore(&conf->resync_lock, flags);
1020 wake_up(&conf->wait_barrier);
1021}
1022
e879a879 1023static void wait_barrier(struct r10conf *conf)
0a27ec96
N
1024{
1025 spin_lock_irq(&conf->resync_lock);
1026 if (conf->barrier) {
1027 conf->nr_waiting++;
d6b42dcb
N
1028 /* Wait for the barrier to drop.
1029 * However if there are already pending
1030 * requests (preventing the barrier from
1031 * rising completely), and the
1032 * pre-process bio queue isn't empty,
1033 * then don't wait, as we need to empty
1034 * that queue to get the nr_pending
1035 * count down.
1036 */
1037 wait_event_lock_irq(conf->wait_barrier,
1038 !conf->barrier ||
1039 (conf->nr_pending &&
1040 current->bio_list &&
1041 !bio_list_empty(current->bio_list)),
eed8c02e 1042 conf->resync_lock);
0a27ec96 1043 conf->nr_waiting--;
1da177e4 1044 }
0a27ec96 1045 conf->nr_pending++;
1da177e4
LT
1046 spin_unlock_irq(&conf->resync_lock);
1047}
1048
e879a879 1049static void allow_barrier(struct r10conf *conf)
0a27ec96
N
1050{
1051 unsigned long flags;
1052 spin_lock_irqsave(&conf->resync_lock, flags);
1053 conf->nr_pending--;
1054 spin_unlock_irqrestore(&conf->resync_lock, flags);
1055 wake_up(&conf->wait_barrier);
1056}
1057
e879a879 1058static void freeze_array(struct r10conf *conf)
4443ae10
N
1059{
1060 /* stop syncio and normal IO and wait for everything to
f188593e 1061 * go quiet.
4443ae10 1062 * We increment barrier and nr_waiting, and then
1c830532
N
1063 * wait until nr_pending match nr_queued+1
1064 * This is called in the context of one normal IO request
1065 * that has failed. Thus any sync request that might be pending
1066 * will be blocked by nr_pending, and we need to wait for
1067 * pending IO requests to complete or be queued for re-try.
1068 * Thus the number queued (nr_queued) plus this request (1)
1069 * must match the number of pending IOs (nr_pending) before
1070 * we continue.
4443ae10
N
1071 */
1072 spin_lock_irq(&conf->resync_lock);
1073 conf->barrier++;
1074 conf->nr_waiting++;
eed8c02e
LC
1075 wait_event_lock_irq_cmd(conf->wait_barrier,
1076 conf->nr_pending == conf->nr_queued+1,
1077 conf->resync_lock,
1078 flush_pending_writes(conf));
c3b328ac 1079
4443ae10
N
1080 spin_unlock_irq(&conf->resync_lock);
1081}
1082
e879a879 1083static void unfreeze_array(struct r10conf *conf)
4443ae10
N
1084{
1085 /* reverse the effect of the freeze */
1086 spin_lock_irq(&conf->resync_lock);
1087 conf->barrier--;
1088 conf->nr_waiting--;
1089 wake_up(&conf->wait_barrier);
1090 spin_unlock_irq(&conf->resync_lock);
1091}
1092
f8c9e74f
N
1093static sector_t choose_data_offset(struct r10bio *r10_bio,
1094 struct md_rdev *rdev)
1095{
1096 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1097 test_bit(R10BIO_Previous, &r10_bio->state))
1098 return rdev->data_offset;
1099 else
1100 return rdev->new_data_offset;
1101}
1102
57c67df4
N
1103struct raid10_plug_cb {
1104 struct blk_plug_cb cb;
1105 struct bio_list pending;
1106 int pending_cnt;
1107};
1108
1109static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1110{
1111 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1112 cb);
1113 struct mddev *mddev = plug->cb.data;
1114 struct r10conf *conf = mddev->private;
1115 struct bio *bio;
1116
874807a8 1117 if (from_schedule || current->bio_list) {
57c67df4
N
1118 spin_lock_irq(&conf->device_lock);
1119 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1120 conf->pending_count += plug->pending_cnt;
1121 spin_unlock_irq(&conf->device_lock);
1122 md_wakeup_thread(mddev->thread);
1123 kfree(plug);
1124 return;
1125 }
1126
1127 /* we aren't scheduling, so we can do the write-out directly. */
1128 bio = bio_list_get(&plug->pending);
1129 bitmap_unplug(mddev->bitmap);
1130 wake_up(&conf->wait_barrier);
1131
1132 while (bio) { /* submit pending writes */
1133 struct bio *next = bio->bi_next;
1134 bio->bi_next = NULL;
1135 generic_make_request(bio);
1136 bio = next;
1137 }
1138 kfree(plug);
1139}
1140
b4fdcb02 1141static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1142{
e879a879 1143 struct r10conf *conf = mddev->private;
9f2c9d12 1144 struct r10bio *r10_bio;
1da177e4
LT
1145 struct bio *read_bio;
1146 int i;
f8c9e74f 1147 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
5cf00fcd 1148 int chunk_sects = chunk_mask + 1;
a362357b 1149 const int rw = bio_data_dir(bio);
2c7d46ec 1150 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1151 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
532a2a3f
SL
1152 const unsigned long do_discard = (bio->bi_rw
1153 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1154 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
6cce3b23 1155 unsigned long flags;
3cb03002 1156 struct md_rdev *blocked_rdev;
57c67df4
N
1157 struct blk_plug_cb *cb;
1158 struct raid10_plug_cb *plug = NULL;
d4432c23
N
1159 int sectors_handled;
1160 int max_sectors;
3ea7daa5 1161 int sectors;
1da177e4 1162
e9c7469b
TH
1163 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1164 md_flush_request(mddev, bio);
5a7bbad2 1165 return;
e5dcdd80
N
1166 }
1167
1da177e4
LT
1168 /* If this request crosses a chunk boundary, we need to
1169 * split it. This will only happen for 1 PAGE (or less) requests.
1170 */
5cf00fcd
N
1171 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1172 > chunk_sects
f8c9e74f
N
1173 && (conf->geo.near_copies < conf->geo.raid_disks
1174 || conf->prev.near_copies < conf->prev.raid_disks))) {
1da177e4
LT
1175 struct bio_pair *bp;
1176 /* Sanity check -- queue functions should prevent this happening */
532a2a3f 1177 if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) ||
1da177e4
LT
1178 bio->bi_idx != 0)
1179 goto bad_map;
1180 /* This is a one page bio that upper layers
1181 * refuse to split for us, so we need to split it.
1182 */
6feef531 1183 bp = bio_split(bio,
1da177e4 1184 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
51e9ac77
N
1185
1186 /* Each of these 'make_request' calls will call 'wait_barrier'.
1187 * If the first succeeds but the second blocks due to the resync
1188 * thread raising the barrier, we will deadlock because the
1189 * IO to the underlying device will be queued in generic_make_request
1190 * and will never complete, so will never reduce nr_pending.
1191 * So increment nr_waiting here so no new raise_barriers will
1192 * succeed, and so the second wait_barrier cannot block.
1193 */
1194 spin_lock_irq(&conf->resync_lock);
1195 conf->nr_waiting++;
1196 spin_unlock_irq(&conf->resync_lock);
1197
5a7bbad2
CH
1198 make_request(mddev, &bp->bio1);
1199 make_request(mddev, &bp->bio2);
1da177e4 1200
51e9ac77
N
1201 spin_lock_irq(&conf->resync_lock);
1202 conf->nr_waiting--;
1203 wake_up(&conf->wait_barrier);
1204 spin_unlock_irq(&conf->resync_lock);
1205
1da177e4 1206 bio_pair_release(bp);
5a7bbad2 1207 return;
1da177e4 1208 bad_map:
128595ed
N
1209 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1210 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1da177e4
LT
1211 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1212
6712ecf8 1213 bio_io_error(bio);
5a7bbad2 1214 return;
1da177e4
LT
1215 }
1216
3d310eb7 1217 md_write_start(mddev, bio);
06d91a5f 1218
1da177e4
LT
1219 /*
1220 * Register the new request and wait if the reconstruction
1221 * thread has put up a bar for new requests.
1222 * Continue immediately if no resync is active currently.
1223 */
0a27ec96 1224 wait_barrier(conf);
1da177e4 1225
3ea7daa5
N
1226 sectors = bio->bi_size >> 9;
1227 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1228 bio->bi_sector < conf->reshape_progress &&
1229 bio->bi_sector + sectors > conf->reshape_progress) {
1230 /* IO spans the reshape position. Need to wait for
1231 * reshape to pass
1232 */
1233 allow_barrier(conf);
1234 wait_event(conf->wait_barrier,
1235 conf->reshape_progress <= bio->bi_sector ||
1236 conf->reshape_progress >= bio->bi_sector + sectors);
1237 wait_barrier(conf);
1238 }
1239 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1240 bio_data_dir(bio) == WRITE &&
1241 (mddev->reshape_backwards
1242 ? (bio->bi_sector < conf->reshape_safe &&
1243 bio->bi_sector + sectors > conf->reshape_progress)
1244 : (bio->bi_sector + sectors > conf->reshape_safe &&
1245 bio->bi_sector < conf->reshape_progress))) {
1246 /* Need to update reshape_position in metadata */
1247 mddev->reshape_position = conf->reshape_progress;
1248 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1249 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1250 md_wakeup_thread(mddev->thread);
1251 wait_event(mddev->sb_wait,
1252 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1253
1254 conf->reshape_safe = mddev->reshape_position;
1255 }
1256
1da177e4
LT
1257 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1258
1259 r10_bio->master_bio = bio;
3ea7daa5 1260 r10_bio->sectors = sectors;
1da177e4
LT
1261
1262 r10_bio->mddev = mddev;
1263 r10_bio->sector = bio->bi_sector;
6cce3b23 1264 r10_bio->state = 0;
1da177e4 1265
856e08e2
N
1266 /* We might need to issue multiple reads to different
1267 * devices if there are bad blocks around, so we keep
1268 * track of the number of reads in bio->bi_phys_segments.
1269 * If this is 0, there is only one r10_bio and no locking
1270 * will be needed when the request completes. If it is
1271 * non-zero, then it is the number of not-completed requests.
1272 */
1273 bio->bi_phys_segments = 0;
1274 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1275
a362357b 1276 if (rw == READ) {
1da177e4
LT
1277 /*
1278 * read balancing logic:
1279 */
96c3fd1f 1280 struct md_rdev *rdev;
856e08e2
N
1281 int slot;
1282
1283read_again:
96c3fd1f
N
1284 rdev = read_balance(conf, r10_bio, &max_sectors);
1285 if (!rdev) {
1da177e4 1286 raid_end_bio_io(r10_bio);
5a7bbad2 1287 return;
1da177e4 1288 }
96c3fd1f 1289 slot = r10_bio->read_slot;
1da177e4 1290
a167f663 1291 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
856e08e2
N
1292 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1293 max_sectors);
1da177e4
LT
1294
1295 r10_bio->devs[slot].bio = read_bio;
abbf098e 1296 r10_bio->devs[slot].rdev = rdev;
1da177e4
LT
1297
1298 read_bio->bi_sector = r10_bio->devs[slot].addr +
f8c9e74f 1299 choose_data_offset(r10_bio, rdev);
96c3fd1f 1300 read_bio->bi_bdev = rdev->bdev;
1da177e4 1301 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 1302 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1303 read_bio->bi_private = r10_bio;
1304
856e08e2
N
1305 if (max_sectors < r10_bio->sectors) {
1306 /* Could not read all from this device, so we will
1307 * need another r10_bio.
1308 */
856e08e2
N
1309 sectors_handled = (r10_bio->sectors + max_sectors
1310 - bio->bi_sector);
1311 r10_bio->sectors = max_sectors;
1312 spin_lock_irq(&conf->device_lock);
1313 if (bio->bi_phys_segments == 0)
1314 bio->bi_phys_segments = 2;
1315 else
1316 bio->bi_phys_segments++;
1317 spin_unlock(&conf->device_lock);
1318 /* Cannot call generic_make_request directly
1319 * as that will be queued in __generic_make_request
1320 * and subsequent mempool_alloc might block
1321 * waiting for it. so hand bio over to raid10d.
1322 */
1323 reschedule_retry(r10_bio);
1324
1325 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1326
1327 r10_bio->master_bio = bio;
1328 r10_bio->sectors = ((bio->bi_size >> 9)
1329 - sectors_handled);
1330 r10_bio->state = 0;
1331 r10_bio->mddev = mddev;
1332 r10_bio->sector = bio->bi_sector + sectors_handled;
1333 goto read_again;
1334 } else
1335 generic_make_request(read_bio);
5a7bbad2 1336 return;
1da177e4
LT
1337 }
1338
1339 /*
1340 * WRITE:
1341 */
34db0cd6
N
1342 if (conf->pending_count >= max_queued_requests) {
1343 md_wakeup_thread(mddev->thread);
1344 wait_event(conf->wait_barrier,
1345 conf->pending_count < max_queued_requests);
1346 }
6bfe0b49 1347 /* first select target devices under rcu_lock and
1da177e4
LT
1348 * inc refcount on their rdev. Record them by setting
1349 * bios[x] to bio
d4432c23
N
1350 * If there are known/acknowledged bad blocks on any device
1351 * on which we have seen a write error, we want to avoid
1352 * writing to those blocks. This potentially requires several
1353 * writes to write around the bad blocks. Each set of writes
1354 * gets its own r10_bio with a set of bios attached. The number
1355 * of r10_bios is recored in bio->bi_phys_segments just as with
1356 * the read case.
1da177e4 1357 */
c3b328ac 1358
69335ef3 1359 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1360 raid10_find_phys(conf, r10_bio);
d4432c23 1361retry_write:
cb6969e8 1362 blocked_rdev = NULL;
1da177e4 1363 rcu_read_lock();
d4432c23
N
1364 max_sectors = r10_bio->sectors;
1365
1da177e4
LT
1366 for (i = 0; i < conf->copies; i++) {
1367 int d = r10_bio->devs[i].devnum;
3cb03002 1368 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1369 struct md_rdev *rrdev = rcu_dereference(
1370 conf->mirrors[d].replacement);
4ca40c2c
N
1371 if (rdev == rrdev)
1372 rrdev = NULL;
6bfe0b49
DW
1373 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1374 atomic_inc(&rdev->nr_pending);
1375 blocked_rdev = rdev;
1376 break;
1377 }
475b0321
N
1378 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1379 atomic_inc(&rrdev->nr_pending);
1380 blocked_rdev = rrdev;
1381 break;
1382 }
e7c0c3fa
N
1383 if (rdev && (test_bit(Faulty, &rdev->flags)
1384 || test_bit(Unmerged, &rdev->flags)))
1385 rdev = NULL;
050b6615
N
1386 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1387 || test_bit(Unmerged, &rrdev->flags)))
475b0321
N
1388 rrdev = NULL;
1389
d4432c23 1390 r10_bio->devs[i].bio = NULL;
475b0321 1391 r10_bio->devs[i].repl_bio = NULL;
e7c0c3fa
N
1392
1393 if (!rdev && !rrdev) {
6cce3b23 1394 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1395 continue;
1396 }
e7c0c3fa 1397 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
d4432c23
N
1398 sector_t first_bad;
1399 sector_t dev_sector = r10_bio->devs[i].addr;
1400 int bad_sectors;
1401 int is_bad;
1402
1403 is_bad = is_badblock(rdev, dev_sector,
1404 max_sectors,
1405 &first_bad, &bad_sectors);
1406 if (is_bad < 0) {
1407 /* Mustn't write here until the bad block
1408 * is acknowledged
1409 */
1410 atomic_inc(&rdev->nr_pending);
1411 set_bit(BlockedBadBlocks, &rdev->flags);
1412 blocked_rdev = rdev;
1413 break;
1414 }
1415 if (is_bad && first_bad <= dev_sector) {
1416 /* Cannot write here at all */
1417 bad_sectors -= (dev_sector - first_bad);
1418 if (bad_sectors < max_sectors)
1419 /* Mustn't write more than bad_sectors
1420 * to other devices yet
1421 */
1422 max_sectors = bad_sectors;
1423 /* We don't set R10BIO_Degraded as that
1424 * only applies if the disk is missing,
1425 * so it might be re-added, and we want to
1426 * know to recover this chunk.
1427 * In this case the device is here, and the
1428 * fact that this chunk is not in-sync is
1429 * recorded in the bad block log.
1430 */
1431 continue;
1432 }
1433 if (is_bad) {
1434 int good_sectors = first_bad - dev_sector;
1435 if (good_sectors < max_sectors)
1436 max_sectors = good_sectors;
1437 }
6cce3b23 1438 }
e7c0c3fa
N
1439 if (rdev) {
1440 r10_bio->devs[i].bio = bio;
1441 atomic_inc(&rdev->nr_pending);
1442 }
475b0321
N
1443 if (rrdev) {
1444 r10_bio->devs[i].repl_bio = bio;
1445 atomic_inc(&rrdev->nr_pending);
1446 }
1da177e4
LT
1447 }
1448 rcu_read_unlock();
1449
6bfe0b49
DW
1450 if (unlikely(blocked_rdev)) {
1451 /* Have to wait for this device to get unblocked, then retry */
1452 int j;
1453 int d;
1454
475b0321 1455 for (j = 0; j < i; j++) {
6bfe0b49
DW
1456 if (r10_bio->devs[j].bio) {
1457 d = r10_bio->devs[j].devnum;
1458 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1459 }
475b0321 1460 if (r10_bio->devs[j].repl_bio) {
4ca40c2c 1461 struct md_rdev *rdev;
475b0321 1462 d = r10_bio->devs[j].devnum;
4ca40c2c
N
1463 rdev = conf->mirrors[d].replacement;
1464 if (!rdev) {
1465 /* Race with remove_disk */
1466 smp_mb();
1467 rdev = conf->mirrors[d].rdev;
1468 }
1469 rdev_dec_pending(rdev, mddev);
475b0321
N
1470 }
1471 }
6bfe0b49
DW
1472 allow_barrier(conf);
1473 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1474 wait_barrier(conf);
1475 goto retry_write;
1476 }
1477
d4432c23
N
1478 if (max_sectors < r10_bio->sectors) {
1479 /* We are splitting this into multiple parts, so
1480 * we need to prepare for allocating another r10_bio.
1481 */
1482 r10_bio->sectors = max_sectors;
1483 spin_lock_irq(&conf->device_lock);
1484 if (bio->bi_phys_segments == 0)
1485 bio->bi_phys_segments = 2;
1486 else
1487 bio->bi_phys_segments++;
1488 spin_unlock_irq(&conf->device_lock);
1489 }
1490 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1491
4e78064f 1492 atomic_set(&r10_bio->remaining, 1);
d4432c23 1493 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1494
1da177e4
LT
1495 for (i = 0; i < conf->copies; i++) {
1496 struct bio *mbio;
1497 int d = r10_bio->devs[i].devnum;
e7c0c3fa
N
1498 if (r10_bio->devs[i].bio) {
1499 struct md_rdev *rdev = conf->mirrors[d].rdev;
1500 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1501 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1502 max_sectors);
1503 r10_bio->devs[i].bio = mbio;
1504
1505 mbio->bi_sector = (r10_bio->devs[i].addr+
1506 choose_data_offset(r10_bio,
1507 rdev));
1508 mbio->bi_bdev = rdev->bdev;
1509 mbio->bi_end_io = raid10_end_write_request;
c8dc9c65
JL
1510 mbio->bi_rw =
1511 WRITE | do_sync | do_fua | do_discard | do_same;
e7c0c3fa
N
1512 mbio->bi_private = r10_bio;
1513
1514 atomic_inc(&r10_bio->remaining);
1515
1516 cb = blk_check_plugged(raid10_unplug, mddev,
1517 sizeof(*plug));
1518 if (cb)
1519 plug = container_of(cb, struct raid10_plug_cb,
1520 cb);
1521 else
1522 plug = NULL;
1523 spin_lock_irqsave(&conf->device_lock, flags);
1524 if (plug) {
1525 bio_list_add(&plug->pending, mbio);
1526 plug->pending_cnt++;
1527 } else {
1528 bio_list_add(&conf->pending_bio_list, mbio);
1529 conf->pending_count++;
1530 }
1531 spin_unlock_irqrestore(&conf->device_lock, flags);
1532 if (!plug)
1533 md_wakeup_thread(mddev->thread);
1534 }
57c67df4 1535
e7c0c3fa
N
1536 if (r10_bio->devs[i].repl_bio) {
1537 struct md_rdev *rdev = conf->mirrors[d].replacement;
1538 if (rdev == NULL) {
1539 /* Replacement just got moved to main 'rdev' */
1540 smp_mb();
1541 rdev = conf->mirrors[d].rdev;
1542 }
1543 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1544 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1545 max_sectors);
1546 r10_bio->devs[i].repl_bio = mbio;
1547
1548 mbio->bi_sector = (r10_bio->devs[i].addr +
1549 choose_data_offset(
1550 r10_bio, rdev));
1551 mbio->bi_bdev = rdev->bdev;
1552 mbio->bi_end_io = raid10_end_write_request;
c8dc9c65
JL
1553 mbio->bi_rw =
1554 WRITE | do_sync | do_fua | do_discard | do_same;
e7c0c3fa
N
1555 mbio->bi_private = r10_bio;
1556
1557 atomic_inc(&r10_bio->remaining);
1558 spin_lock_irqsave(&conf->device_lock, flags);
57c67df4
N
1559 bio_list_add(&conf->pending_bio_list, mbio);
1560 conf->pending_count++;
e7c0c3fa
N
1561 spin_unlock_irqrestore(&conf->device_lock, flags);
1562 if (!mddev_check_plugged(mddev))
1563 md_wakeup_thread(mddev->thread);
57c67df4 1564 }
1da177e4
LT
1565 }
1566
079fa166
N
1567 /* Don't remove the bias on 'remaining' (one_write_done) until
1568 * after checking if we need to go around again.
1569 */
a35e63ef 1570
d4432c23 1571 if (sectors_handled < (bio->bi_size >> 9)) {
079fa166 1572 one_write_done(r10_bio);
5e570289 1573 /* We need another r10_bio. It has already been counted
d4432c23
N
1574 * in bio->bi_phys_segments.
1575 */
1576 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1577
1578 r10_bio->master_bio = bio;
1579 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1580
1581 r10_bio->mddev = mddev;
1582 r10_bio->sector = bio->bi_sector + sectors_handled;
1583 r10_bio->state = 0;
1584 goto retry_write;
1585 }
079fa166
N
1586 one_write_done(r10_bio);
1587
1588 /* In case raid10d snuck in to freeze_array */
1589 wake_up(&conf->wait_barrier);
1da177e4
LT
1590}
1591
fd01b88c 1592static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1593{
e879a879 1594 struct r10conf *conf = mddev->private;
1da177e4
LT
1595 int i;
1596
5cf00fcd 1597 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1598 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1599 if (conf->geo.near_copies > 1)
1600 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1601 if (conf->geo.far_copies > 1) {
1602 if (conf->geo.far_offset)
1603 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1604 else
5cf00fcd 1605 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
c93983bf 1606 }
5cf00fcd
N
1607 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1608 conf->geo.raid_disks - mddev->degraded);
1609 for (i = 0; i < conf->geo.raid_disks; i++)
1da177e4
LT
1610 seq_printf(seq, "%s",
1611 conf->mirrors[i].rdev &&
b2d444d7 1612 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1613 seq_printf(seq, "]");
1614}
1615
700c7213
N
1616/* check if there are enough drives for
1617 * every block to appear on atleast one.
1618 * Don't consider the device numbered 'ignore'
1619 * as we might be about to remove it.
1620 */
f8c9e74f 1621static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
700c7213
N
1622{
1623 int first = 0;
1624
1625 do {
1626 int n = conf->copies;
1627 int cnt = 0;
80b48124 1628 int this = first;
700c7213 1629 while (n--) {
80b48124
N
1630 if (conf->mirrors[this].rdev &&
1631 this != ignore)
700c7213 1632 cnt++;
80b48124 1633 this = (this+1) % geo->raid_disks;
700c7213
N
1634 }
1635 if (cnt == 0)
1636 return 0;
80b48124 1637 first = (first + geo->near_copies) % geo->raid_disks;
700c7213
N
1638 } while (first != 0);
1639 return 1;
1640}
1641
f8c9e74f
N
1642static int enough(struct r10conf *conf, int ignore)
1643{
1644 return _enough(conf, &conf->geo, ignore) &&
1645 _enough(conf, &conf->prev, ignore);
1646}
1647
fd01b88c 1648static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1649{
1650 char b[BDEVNAME_SIZE];
e879a879 1651 struct r10conf *conf = mddev->private;
1da177e4
LT
1652
1653 /*
1654 * If it is not operational, then we have already marked it as dead
1655 * else if it is the last working disks, ignore the error, let the
1656 * next level up know.
1657 * else mark the drive as failed
1658 */
b2d444d7 1659 if (test_bit(In_sync, &rdev->flags)
700c7213 1660 && !enough(conf, rdev->raid_disk))
1da177e4
LT
1661 /*
1662 * Don't fail the drive, just return an IO error.
1da177e4
LT
1663 */
1664 return;
c04be0aa
N
1665 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1666 unsigned long flags;
1667 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1668 mddev->degraded++;
c04be0aa 1669 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1670 /*
1671 * if recovery is running, make sure it aborts.
1672 */
dfc70645 1673 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1674 }
de393cde 1675 set_bit(Blocked, &rdev->flags);
b2d444d7 1676 set_bit(Faulty, &rdev->flags);
850b2b42 1677 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1678 printk(KERN_ALERT
1679 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1680 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed 1681 mdname(mddev), bdevname(rdev->bdev, b),
5cf00fcd 1682 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
1683}
1684
e879a879 1685static void print_conf(struct r10conf *conf)
1da177e4
LT
1686{
1687 int i;
dc280d98 1688 struct raid10_info *tmp;
1da177e4 1689
128595ed 1690 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1691 if (!conf) {
128595ed 1692 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1693 return;
1694 }
5cf00fcd
N
1695 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1696 conf->geo.raid_disks);
1da177e4 1697
5cf00fcd 1698 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4
LT
1699 char b[BDEVNAME_SIZE];
1700 tmp = conf->mirrors + i;
1701 if (tmp->rdev)
128595ed 1702 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1703 i, !test_bit(In_sync, &tmp->rdev->flags),
1704 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1705 bdevname(tmp->rdev->bdev,b));
1706 }
1707}
1708
e879a879 1709static void close_sync(struct r10conf *conf)
1da177e4 1710{
0a27ec96
N
1711 wait_barrier(conf);
1712 allow_barrier(conf);
1da177e4
LT
1713
1714 mempool_destroy(conf->r10buf_pool);
1715 conf->r10buf_pool = NULL;
1716}
1717
fd01b88c 1718static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1719{
1720 int i;
e879a879 1721 struct r10conf *conf = mddev->private;
dc280d98 1722 struct raid10_info *tmp;
6b965620
N
1723 int count = 0;
1724 unsigned long flags;
1da177e4
LT
1725
1726 /*
1727 * Find all non-in_sync disks within the RAID10 configuration
1728 * and mark them in_sync
1729 */
5cf00fcd 1730 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1731 tmp = conf->mirrors + i;
4ca40c2c
N
1732 if (tmp->replacement
1733 && tmp->replacement->recovery_offset == MaxSector
1734 && !test_bit(Faulty, &tmp->replacement->flags)
1735 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1736 /* Replacement has just become active */
1737 if (!tmp->rdev
1738 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1739 count++;
1740 if (tmp->rdev) {
1741 /* Replaced device not technically faulty,
1742 * but we need to be sure it gets removed
1743 * and never re-added.
1744 */
1745 set_bit(Faulty, &tmp->rdev->flags);
1746 sysfs_notify_dirent_safe(
1747 tmp->rdev->sysfs_state);
1748 }
1749 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1750 } else if (tmp->rdev
1751 && !test_bit(Faulty, &tmp->rdev->flags)
1752 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1753 count++;
2863b9eb 1754 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
1755 }
1756 }
6b965620
N
1757 spin_lock_irqsave(&conf->device_lock, flags);
1758 mddev->degraded -= count;
1759 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1760
1761 print_conf(conf);
6b965620 1762 return count;
1da177e4
LT
1763}
1764
1765
fd01b88c 1766static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1767{
e879a879 1768 struct r10conf *conf = mddev->private;
199050ea 1769 int err = -EEXIST;
1da177e4 1770 int mirror;
6c2fce2e 1771 int first = 0;
5cf00fcd 1772 int last = conf->geo.raid_disks - 1;
050b6615 1773 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4
LT
1774
1775 if (mddev->recovery_cp < MaxSector)
1776 /* only hot-add to in-sync arrays, as recovery is
1777 * very different from resync
1778 */
199050ea 1779 return -EBUSY;
f8c9e74f 1780 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
199050ea 1781 return -EINVAL;
1da177e4 1782
a53a6c85 1783 if (rdev->raid_disk >= 0)
6c2fce2e 1784 first = last = rdev->raid_disk;
1da177e4 1785
050b6615
N
1786 if (q->merge_bvec_fn) {
1787 set_bit(Unmerged, &rdev->flags);
1788 mddev->merge_check_needed = 1;
1789 }
1790
2c4193df 1791 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1792 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1793 mirror = rdev->saved_raid_disk;
1794 else
6c2fce2e 1795 mirror = first;
2bb77736 1796 for ( ; mirror <= last ; mirror++) {
dc280d98 1797 struct raid10_info *p = &conf->mirrors[mirror];
2bb77736
N
1798 if (p->recovery_disabled == mddev->recovery_disabled)
1799 continue;
b7044d41
N
1800 if (p->rdev) {
1801 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1802 p->replacement != NULL)
1803 continue;
1804 clear_bit(In_sync, &rdev->flags);
1805 set_bit(Replacement, &rdev->flags);
1806 rdev->raid_disk = mirror;
1807 err = 0;
1808 disk_stack_limits(mddev->gendisk, rdev->bdev,
1809 rdev->data_offset << 9);
b7044d41
N
1810 conf->fullsync = 1;
1811 rcu_assign_pointer(p->replacement, rdev);
1812 break;
1813 }
1da177e4 1814
2bb77736
N
1815 disk_stack_limits(mddev->gendisk, rdev->bdev,
1816 rdev->data_offset << 9);
1da177e4 1817
2bb77736 1818 p->head_position = 0;
d890fa2b 1819 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1820 rdev->raid_disk = mirror;
1821 err = 0;
1822 if (rdev->saved_raid_disk != mirror)
1823 conf->fullsync = 1;
1824 rcu_assign_pointer(p->rdev, rdev);
1825 break;
1826 }
050b6615
N
1827 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1828 /* Some requests might not have seen this new
1829 * merge_bvec_fn. We must wait for them to complete
1830 * before merging the device fully.
1831 * First we make sure any code which has tested
1832 * our function has submitted the request, then
1833 * we wait for all outstanding requests to complete.
1834 */
1835 synchronize_sched();
1836 raise_barrier(conf, 0);
1837 lower_barrier(conf);
1838 clear_bit(Unmerged, &rdev->flags);
1839 }
ac5e7113 1840 md_integrity_add_rdev(rdev, mddev);
ed30be07 1841 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
532a2a3f
SL
1842 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1843
1da177e4 1844 print_conf(conf);
199050ea 1845 return err;
1da177e4
LT
1846}
1847
b8321b68 1848static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1849{
e879a879 1850 struct r10conf *conf = mddev->private;
1da177e4 1851 int err = 0;
b8321b68 1852 int number = rdev->raid_disk;
c8ab903e 1853 struct md_rdev **rdevp;
dc280d98 1854 struct raid10_info *p = conf->mirrors + number;
1da177e4
LT
1855
1856 print_conf(conf);
c8ab903e
N
1857 if (rdev == p->rdev)
1858 rdevp = &p->rdev;
1859 else if (rdev == p->replacement)
1860 rdevp = &p->replacement;
1861 else
1862 return 0;
1863
1864 if (test_bit(In_sync, &rdev->flags) ||
1865 atomic_read(&rdev->nr_pending)) {
1866 err = -EBUSY;
1867 goto abort;
1868 }
1869 /* Only remove faulty devices if recovery
1870 * is not possible.
1871 */
1872 if (!test_bit(Faulty, &rdev->flags) &&
1873 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 1874 (!p->replacement || p->replacement == rdev) &&
63aced61 1875 number < conf->geo.raid_disks &&
c8ab903e
N
1876 enough(conf, -1)) {
1877 err = -EBUSY;
1878 goto abort;
1da177e4 1879 }
c8ab903e
N
1880 *rdevp = NULL;
1881 synchronize_rcu();
1882 if (atomic_read(&rdev->nr_pending)) {
1883 /* lost the race, try later */
1884 err = -EBUSY;
1885 *rdevp = rdev;
1886 goto abort;
4ca40c2c
N
1887 } else if (p->replacement) {
1888 /* We must have just cleared 'rdev' */
1889 p->rdev = p->replacement;
1890 clear_bit(Replacement, &p->replacement->flags);
1891 smp_mb(); /* Make sure other CPUs may see both as identical
1892 * but will never see neither -- if they are careful.
1893 */
1894 p->replacement = NULL;
1895 clear_bit(WantReplacement, &rdev->flags);
1896 } else
1897 /* We might have just remove the Replacement as faulty
1898 * Clear the flag just in case
1899 */
1900 clear_bit(WantReplacement, &rdev->flags);
1901
c8ab903e
N
1902 err = md_integrity_register(mddev);
1903
1da177e4
LT
1904abort:
1905
1906 print_conf(conf);
1907 return err;
1908}
1909
1910
6712ecf8 1911static void end_sync_read(struct bio *bio, int error)
1da177e4 1912{
9f2c9d12 1913 struct r10bio *r10_bio = bio->bi_private;
e879a879 1914 struct r10conf *conf = r10_bio->mddev->private;
778ca018 1915 int d;
1da177e4 1916
3ea7daa5
N
1917 if (bio == r10_bio->master_bio) {
1918 /* this is a reshape read */
1919 d = r10_bio->read_slot; /* really the read dev */
1920 } else
1921 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
0eb3ff12
N
1922
1923 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1924 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1925 else
1926 /* The write handler will notice the lack of
1927 * R10BIO_Uptodate and record any errors etc
1928 */
4dbcdc75
N
1929 atomic_add(r10_bio->sectors,
1930 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1931
1932 /* for reconstruct, we always reschedule after a read.
1933 * for resync, only after all reads
1934 */
73d5c38a 1935 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1936 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1937 atomic_dec_and_test(&r10_bio->remaining)) {
1938 /* we have read all the blocks,
1939 * do the comparison in process context in raid10d
1940 */
1941 reschedule_retry(r10_bio);
1942 }
1da177e4
LT
1943}
1944
9f2c9d12 1945static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1946{
fd01b88c 1947 struct mddev *mddev = r10_bio->mddev;
dfc70645 1948
1da177e4
LT
1949 while (atomic_dec_and_test(&r10_bio->remaining)) {
1950 if (r10_bio->master_bio == NULL) {
1951 /* the primary of several recovery bios */
73d5c38a 1952 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1953 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1954 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1955 reschedule_retry(r10_bio);
1956 else
1957 put_buf(r10_bio);
73d5c38a 1958 md_done_sync(mddev, s, 1);
1da177e4
LT
1959 break;
1960 } else {
9f2c9d12 1961 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1962 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1963 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1964 reschedule_retry(r10_bio);
1965 else
1966 put_buf(r10_bio);
1da177e4
LT
1967 r10_bio = r10_bio2;
1968 }
1969 }
1da177e4
LT
1970}
1971
5e570289
N
1972static void end_sync_write(struct bio *bio, int error)
1973{
1974 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1975 struct r10bio *r10_bio = bio->bi_private;
fd01b88c 1976 struct mddev *mddev = r10_bio->mddev;
e879a879 1977 struct r10conf *conf = mddev->private;
5e570289
N
1978 int d;
1979 sector_t first_bad;
1980 int bad_sectors;
1981 int slot;
9ad1aefc 1982 int repl;
4ca40c2c 1983 struct md_rdev *rdev = NULL;
5e570289 1984
9ad1aefc
N
1985 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1986 if (repl)
1987 rdev = conf->mirrors[d].replacement;
547414d1 1988 else
9ad1aefc 1989 rdev = conf->mirrors[d].rdev;
5e570289
N
1990
1991 if (!uptodate) {
9ad1aefc
N
1992 if (repl)
1993 md_error(mddev, rdev);
1994 else {
1995 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
1996 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1997 set_bit(MD_RECOVERY_NEEDED,
1998 &rdev->mddev->recovery);
9ad1aefc
N
1999 set_bit(R10BIO_WriteError, &r10_bio->state);
2000 }
2001 } else if (is_badblock(rdev,
5e570289
N
2002 r10_bio->devs[slot].addr,
2003 r10_bio->sectors,
2004 &first_bad, &bad_sectors))
2005 set_bit(R10BIO_MadeGood, &r10_bio->state);
2006
9ad1aefc 2007 rdev_dec_pending(rdev, mddev);
5e570289
N
2008
2009 end_sync_request(r10_bio);
2010}
2011
1da177e4
LT
2012/*
2013 * Note: sync and recover and handled very differently for raid10
2014 * This code is for resync.
2015 * For resync, we read through virtual addresses and read all blocks.
2016 * If there is any error, we schedule a write. The lowest numbered
2017 * drive is authoritative.
2018 * However requests come for physical address, so we need to map.
2019 * For every physical address there are raid_disks/copies virtual addresses,
2020 * which is always are least one, but is not necessarly an integer.
2021 * This means that a physical address can span multiple chunks, so we may
2022 * have to submit multiple io requests for a single sync request.
2023 */
2024/*
2025 * We check if all blocks are in-sync and only write to blocks that
2026 * aren't in sync
2027 */
9f2c9d12 2028static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2029{
e879a879 2030 struct r10conf *conf = mddev->private;
1da177e4
LT
2031 int i, first;
2032 struct bio *tbio, *fbio;
f4380a91 2033 int vcnt;
1da177e4
LT
2034
2035 atomic_set(&r10_bio->remaining, 1);
2036
2037 /* find the first device with a block */
2038 for (i=0; i<conf->copies; i++)
2039 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2040 break;
2041
2042 if (i == conf->copies)
2043 goto done;
2044
2045 first = i;
2046 fbio = r10_bio->devs[i].bio;
2047
f4380a91 2048 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 2049 /* now find blocks with errors */
0eb3ff12
N
2050 for (i=0 ; i < conf->copies ; i++) {
2051 int j, d;
1da177e4 2052
1da177e4 2053 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
2054
2055 if (tbio->bi_end_io != end_sync_read)
2056 continue;
2057 if (i == first)
1da177e4 2058 continue;
0eb3ff12
N
2059 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2060 /* We know that the bi_io_vec layout is the same for
2061 * both 'first' and 'i', so we just compare them.
2062 * All vec entries are PAGE_SIZE;
2063 */
2064 for (j = 0; j < vcnt; j++)
2065 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2066 page_address(tbio->bi_io_vec[j].bv_page),
5020ad7d 2067 fbio->bi_io_vec[j].bv_len))
0eb3ff12
N
2068 break;
2069 if (j == vcnt)
2070 continue;
7f7583d4 2071 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
f84ee364
N
2072 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2073 /* Don't fix anything. */
2074 continue;
0eb3ff12 2075 }
f84ee364
N
2076 /* Ok, we need to write this bio, either to correct an
2077 * inconsistency or to correct an unreadable block.
1da177e4
LT
2078 * First we need to fixup bv_offset, bv_len and
2079 * bi_vecs, as the read request might have corrupted these
2080 */
2081 tbio->bi_vcnt = vcnt;
2082 tbio->bi_size = r10_bio->sectors << 9;
2083 tbio->bi_idx = 0;
2084 tbio->bi_phys_segments = 0;
1da177e4
LT
2085 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
2086 tbio->bi_flags |= 1 << BIO_UPTODATE;
2087 tbio->bi_next = NULL;
2088 tbio->bi_rw = WRITE;
2089 tbio->bi_private = r10_bio;
2090 tbio->bi_sector = r10_bio->devs[i].addr;
2091
2092 for (j=0; j < vcnt ; j++) {
2093 tbio->bi_io_vec[j].bv_offset = 0;
2094 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2095
2096 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2097 page_address(fbio->bi_io_vec[j].bv_page),
2098 PAGE_SIZE);
2099 }
2100 tbio->bi_end_io = end_sync_write;
2101
2102 d = r10_bio->devs[i].devnum;
2103 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2104 atomic_inc(&r10_bio->remaining);
2105 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
2106
2107 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2108 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2109 generic_make_request(tbio);
2110 }
2111
9ad1aefc
N
2112 /* Now write out to any replacement devices
2113 * that are active
2114 */
2115 for (i = 0; i < conf->copies; i++) {
2116 int j, d;
9ad1aefc
N
2117
2118 tbio = r10_bio->devs[i].repl_bio;
2119 if (!tbio || !tbio->bi_end_io)
2120 continue;
2121 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2122 && r10_bio->devs[i].bio != fbio)
2123 for (j = 0; j < vcnt; j++)
2124 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2125 page_address(fbio->bi_io_vec[j].bv_page),
2126 PAGE_SIZE);
2127 d = r10_bio->devs[i].devnum;
2128 atomic_inc(&r10_bio->remaining);
2129 md_sync_acct(conf->mirrors[d].replacement->bdev,
2130 tbio->bi_size >> 9);
2131 generic_make_request(tbio);
2132 }
2133
1da177e4
LT
2134done:
2135 if (atomic_dec_and_test(&r10_bio->remaining)) {
2136 md_done_sync(mddev, r10_bio->sectors, 1);
2137 put_buf(r10_bio);
2138 }
2139}
2140
2141/*
2142 * Now for the recovery code.
2143 * Recovery happens across physical sectors.
2144 * We recover all non-is_sync drives by finding the virtual address of
2145 * each, and then choose a working drive that also has that virt address.
2146 * There is a separate r10_bio for each non-in_sync drive.
2147 * Only the first two slots are in use. The first for reading,
2148 * The second for writing.
2149 *
2150 */
9f2c9d12 2151static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
2152{
2153 /* We got a read error during recovery.
2154 * We repeat the read in smaller page-sized sections.
2155 * If a read succeeds, write it to the new device or record
2156 * a bad block if we cannot.
2157 * If a read fails, record a bad block on both old and
2158 * new devices.
2159 */
fd01b88c 2160 struct mddev *mddev = r10_bio->mddev;
e879a879 2161 struct r10conf *conf = mddev->private;
5e570289
N
2162 struct bio *bio = r10_bio->devs[0].bio;
2163 sector_t sect = 0;
2164 int sectors = r10_bio->sectors;
2165 int idx = 0;
2166 int dr = r10_bio->devs[0].devnum;
2167 int dw = r10_bio->devs[1].devnum;
2168
2169 while (sectors) {
2170 int s = sectors;
3cb03002 2171 struct md_rdev *rdev;
5e570289
N
2172 sector_t addr;
2173 int ok;
2174
2175 if (s > (PAGE_SIZE>>9))
2176 s = PAGE_SIZE >> 9;
2177
2178 rdev = conf->mirrors[dr].rdev;
2179 addr = r10_bio->devs[0].addr + sect,
2180 ok = sync_page_io(rdev,
2181 addr,
2182 s << 9,
2183 bio->bi_io_vec[idx].bv_page,
2184 READ, false);
2185 if (ok) {
2186 rdev = conf->mirrors[dw].rdev;
2187 addr = r10_bio->devs[1].addr + sect;
2188 ok = sync_page_io(rdev,
2189 addr,
2190 s << 9,
2191 bio->bi_io_vec[idx].bv_page,
2192 WRITE, false);
b7044d41 2193 if (!ok) {
5e570289 2194 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2195 if (!test_and_set_bit(WantReplacement,
2196 &rdev->flags))
2197 set_bit(MD_RECOVERY_NEEDED,
2198 &rdev->mddev->recovery);
2199 }
5e570289
N
2200 }
2201 if (!ok) {
2202 /* We don't worry if we cannot set a bad block -
2203 * it really is bad so there is no loss in not
2204 * recording it yet
2205 */
2206 rdev_set_badblocks(rdev, addr, s, 0);
2207
2208 if (rdev != conf->mirrors[dw].rdev) {
2209 /* need bad block on destination too */
3cb03002 2210 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2211 addr = r10_bio->devs[1].addr + sect;
2212 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2213 if (!ok) {
2214 /* just abort the recovery */
2215 printk(KERN_NOTICE
2216 "md/raid10:%s: recovery aborted"
2217 " due to read error\n",
2218 mdname(mddev));
2219
2220 conf->mirrors[dw].recovery_disabled
2221 = mddev->recovery_disabled;
2222 set_bit(MD_RECOVERY_INTR,
2223 &mddev->recovery);
2224 break;
2225 }
2226 }
2227 }
2228
2229 sectors -= s;
2230 sect += s;
2231 idx++;
2232 }
2233}
1da177e4 2234
9f2c9d12 2235static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2236{
e879a879 2237 struct r10conf *conf = mddev->private;
c65060ad 2238 int d;
24afd80d 2239 struct bio *wbio, *wbio2;
1da177e4 2240
5e570289
N
2241 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2242 fix_recovery_read_error(r10_bio);
2243 end_sync_request(r10_bio);
2244 return;
2245 }
2246
c65060ad
NK
2247 /*
2248 * share the pages with the first bio
1da177e4
LT
2249 * and submit the write request
2250 */
1da177e4 2251 d = r10_bio->devs[1].devnum;
24afd80d
N
2252 wbio = r10_bio->devs[1].bio;
2253 wbio2 = r10_bio->devs[1].repl_bio;
2254 if (wbio->bi_end_io) {
2255 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2256 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2257 generic_make_request(wbio);
2258 }
2259 if (wbio2 && wbio2->bi_end_io) {
2260 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2261 md_sync_acct(conf->mirrors[d].replacement->bdev,
2262 wbio2->bi_size >> 9);
2263 generic_make_request(wbio2);
2264 }
1da177e4
LT
2265}
2266
2267
1e50915f
RB
2268/*
2269 * Used by fix_read_error() to decay the per rdev read_errors.
2270 * We halve the read error count for every hour that has elapsed
2271 * since the last recorded read error.
2272 *
2273 */
fd01b88c 2274static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f
RB
2275{
2276 struct timespec cur_time_mon;
2277 unsigned long hours_since_last;
2278 unsigned int read_errors = atomic_read(&rdev->read_errors);
2279
2280 ktime_get_ts(&cur_time_mon);
2281
2282 if (rdev->last_read_error.tv_sec == 0 &&
2283 rdev->last_read_error.tv_nsec == 0) {
2284 /* first time we've seen a read error */
2285 rdev->last_read_error = cur_time_mon;
2286 return;
2287 }
2288
2289 hours_since_last = (cur_time_mon.tv_sec -
2290 rdev->last_read_error.tv_sec) / 3600;
2291
2292 rdev->last_read_error = cur_time_mon;
2293
2294 /*
2295 * if hours_since_last is > the number of bits in read_errors
2296 * just set read errors to 0. We do this to avoid
2297 * overflowing the shift of read_errors by hours_since_last.
2298 */
2299 if (hours_since_last >= 8 * sizeof(read_errors))
2300 atomic_set(&rdev->read_errors, 0);
2301 else
2302 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2303}
2304
3cb03002 2305static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
2306 int sectors, struct page *page, int rw)
2307{
2308 sector_t first_bad;
2309 int bad_sectors;
2310
2311 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2312 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2313 return -1;
2314 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2315 /* success */
2316 return 1;
b7044d41 2317 if (rw == WRITE) {
58c54fcc 2318 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2319 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2320 set_bit(MD_RECOVERY_NEEDED,
2321 &rdev->mddev->recovery);
2322 }
58c54fcc
N
2323 /* need to record an error - either for the block or the device */
2324 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2325 md_error(rdev->mddev, rdev);
2326 return 0;
2327}
2328
1da177e4
LT
2329/*
2330 * This is a kernel thread which:
2331 *
2332 * 1. Retries failed read operations on working mirrors.
2333 * 2. Updates the raid superblock when problems encounter.
6814d536 2334 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2335 */
2336
e879a879 2337static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2338{
2339 int sect = 0; /* Offset from r10_bio->sector */
2340 int sectors = r10_bio->sectors;
3cb03002 2341 struct md_rdev*rdev;
1e50915f 2342 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 2343 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 2344
7c4e06ff
N
2345 /* still own a reference to this rdev, so it cannot
2346 * have been cleared recently.
2347 */
2348 rdev = conf->mirrors[d].rdev;
1e50915f 2349
7c4e06ff
N
2350 if (test_bit(Faulty, &rdev->flags))
2351 /* drive has already been failed, just ignore any
2352 more fix_read_error() attempts */
2353 return;
1e50915f 2354
7c4e06ff
N
2355 check_decay_read_errors(mddev, rdev);
2356 atomic_inc(&rdev->read_errors);
2357 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2358 char b[BDEVNAME_SIZE];
2359 bdevname(rdev->bdev, b);
1e50915f 2360
7c4e06ff
N
2361 printk(KERN_NOTICE
2362 "md/raid10:%s: %s: Raid device exceeded "
2363 "read_error threshold [cur %d:max %d]\n",
2364 mdname(mddev), b,
2365 atomic_read(&rdev->read_errors), max_read_errors);
2366 printk(KERN_NOTICE
2367 "md/raid10:%s: %s: Failing raid device\n",
2368 mdname(mddev), b);
2369 md_error(mddev, conf->mirrors[d].rdev);
fae8cc5e 2370 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
7c4e06ff 2371 return;
1e50915f 2372 }
1e50915f 2373
6814d536
N
2374 while(sectors) {
2375 int s = sectors;
2376 int sl = r10_bio->read_slot;
2377 int success = 0;
2378 int start;
2379
2380 if (s > (PAGE_SIZE>>9))
2381 s = PAGE_SIZE >> 9;
2382
2383 rcu_read_lock();
2384 do {
8dbed5ce
N
2385 sector_t first_bad;
2386 int bad_sectors;
2387
0544a21d 2388 d = r10_bio->devs[sl].devnum;
6814d536
N
2389 rdev = rcu_dereference(conf->mirrors[d].rdev);
2390 if (rdev &&
050b6615 2391 !test_bit(Unmerged, &rdev->flags) &&
8dbed5ce
N
2392 test_bit(In_sync, &rdev->flags) &&
2393 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2394 &first_bad, &bad_sectors) == 0) {
6814d536
N
2395 atomic_inc(&rdev->nr_pending);
2396 rcu_read_unlock();
2b193363 2397 success = sync_page_io(rdev,
6814d536 2398 r10_bio->devs[sl].addr +
ccebd4c4 2399 sect,
6814d536 2400 s<<9,
ccebd4c4 2401 conf->tmppage, READ, false);
6814d536
N
2402 rdev_dec_pending(rdev, mddev);
2403 rcu_read_lock();
2404 if (success)
2405 break;
2406 }
2407 sl++;
2408 if (sl == conf->copies)
2409 sl = 0;
2410 } while (!success && sl != r10_bio->read_slot);
2411 rcu_read_unlock();
2412
2413 if (!success) {
58c54fcc
N
2414 /* Cannot read from anywhere, just mark the block
2415 * as bad on the first device to discourage future
2416 * reads.
2417 */
6814d536 2418 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2419 rdev = conf->mirrors[dn].rdev;
2420
2421 if (!rdev_set_badblocks(
2422 rdev,
2423 r10_bio->devs[r10_bio->read_slot].addr
2424 + sect,
fae8cc5e 2425 s, 0)) {
58c54fcc 2426 md_error(mddev, rdev);
fae8cc5e
N
2427 r10_bio->devs[r10_bio->read_slot].bio
2428 = IO_BLOCKED;
2429 }
6814d536
N
2430 break;
2431 }
2432
2433 start = sl;
2434 /* write it back and re-read */
2435 rcu_read_lock();
2436 while (sl != r10_bio->read_slot) {
67b8dc4b 2437 char b[BDEVNAME_SIZE];
0544a21d 2438
6814d536
N
2439 if (sl==0)
2440 sl = conf->copies;
2441 sl--;
2442 d = r10_bio->devs[sl].devnum;
2443 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2444 if (!rdev ||
050b6615 2445 test_bit(Unmerged, &rdev->flags) ||
1294b9c9
N
2446 !test_bit(In_sync, &rdev->flags))
2447 continue;
2448
2449 atomic_inc(&rdev->nr_pending);
2450 rcu_read_unlock();
58c54fcc
N
2451 if (r10_sync_page_io(rdev,
2452 r10_bio->devs[sl].addr +
2453 sect,
055d3747 2454 s, conf->tmppage, WRITE)
1294b9c9
N
2455 == 0) {
2456 /* Well, this device is dead */
2457 printk(KERN_NOTICE
2458 "md/raid10:%s: read correction "
2459 "write failed"
2460 " (%d sectors at %llu on %s)\n",
2461 mdname(mddev), s,
2462 (unsigned long long)(
f8c9e74f
N
2463 sect +
2464 choose_data_offset(r10_bio,
2465 rdev)),
1294b9c9
N
2466 bdevname(rdev->bdev, b));
2467 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2468 "drive\n",
2469 mdname(mddev),
2470 bdevname(rdev->bdev, b));
6814d536 2471 }
1294b9c9
N
2472 rdev_dec_pending(rdev, mddev);
2473 rcu_read_lock();
6814d536
N
2474 }
2475 sl = start;
2476 while (sl != r10_bio->read_slot) {
1294b9c9 2477 char b[BDEVNAME_SIZE];
0544a21d 2478
6814d536
N
2479 if (sl==0)
2480 sl = conf->copies;
2481 sl--;
2482 d = r10_bio->devs[sl].devnum;
2483 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
2484 if (!rdev ||
2485 !test_bit(In_sync, &rdev->flags))
2486 continue;
6814d536 2487
1294b9c9
N
2488 atomic_inc(&rdev->nr_pending);
2489 rcu_read_unlock();
58c54fcc
N
2490 switch (r10_sync_page_io(rdev,
2491 r10_bio->devs[sl].addr +
2492 sect,
055d3747 2493 s, conf->tmppage,
58c54fcc
N
2494 READ)) {
2495 case 0:
1294b9c9
N
2496 /* Well, this device is dead */
2497 printk(KERN_NOTICE
2498 "md/raid10:%s: unable to read back "
2499 "corrected sectors"
2500 " (%d sectors at %llu on %s)\n",
2501 mdname(mddev), s,
2502 (unsigned long long)(
f8c9e74f
N
2503 sect +
2504 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2505 bdevname(rdev->bdev, b));
2506 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2507 "drive\n",
2508 mdname(mddev),
2509 bdevname(rdev->bdev, b));
58c54fcc
N
2510 break;
2511 case 1:
1294b9c9
N
2512 printk(KERN_INFO
2513 "md/raid10:%s: read error corrected"
2514 " (%d sectors at %llu on %s)\n",
2515 mdname(mddev), s,
2516 (unsigned long long)(
f8c9e74f
N
2517 sect +
2518 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2519 bdevname(rdev->bdev, b));
2520 atomic_add(s, &rdev->corrected_errors);
6814d536 2521 }
1294b9c9
N
2522
2523 rdev_dec_pending(rdev, mddev);
2524 rcu_read_lock();
6814d536
N
2525 }
2526 rcu_read_unlock();
2527
2528 sectors -= s;
2529 sect += s;
2530 }
2531}
2532
bd870a16
N
2533static void bi_complete(struct bio *bio, int error)
2534{
2535 complete((struct completion *)bio->bi_private);
2536}
2537
2538static int submit_bio_wait(int rw, struct bio *bio)
2539{
2540 struct completion event;
2541 rw |= REQ_SYNC;
2542
2543 init_completion(&event);
2544 bio->bi_private = &event;
2545 bio->bi_end_io = bi_complete;
2546 submit_bio(rw, bio);
2547 wait_for_completion(&event);
2548
2549 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2550}
2551
9f2c9d12 2552static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2553{
2554 struct bio *bio = r10_bio->master_bio;
fd01b88c 2555 struct mddev *mddev = r10_bio->mddev;
e879a879 2556 struct r10conf *conf = mddev->private;
3cb03002 2557 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2558 /* bio has the data to be written to slot 'i' where
2559 * we just recently had a write error.
2560 * We repeatedly clone the bio and trim down to one block,
2561 * then try the write. Where the write fails we record
2562 * a bad block.
2563 * It is conceivable that the bio doesn't exactly align with
2564 * blocks. We must handle this.
2565 *
2566 * We currently own a reference to the rdev.
2567 */
2568
2569 int block_sectors;
2570 sector_t sector;
2571 int sectors;
2572 int sect_to_write = r10_bio->sectors;
2573 int ok = 1;
2574
2575 if (rdev->badblocks.shift < 0)
2576 return 0;
2577
2578 block_sectors = 1 << rdev->badblocks.shift;
2579 sector = r10_bio->sector;
2580 sectors = ((r10_bio->sector + block_sectors)
2581 & ~(sector_t)(block_sectors - 1))
2582 - sector;
2583
2584 while (sect_to_write) {
2585 struct bio *wbio;
2586 if (sectors > sect_to_write)
2587 sectors = sect_to_write;
2588 /* Write at 'sector' for 'sectors' */
2589 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2590 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2591 wbio->bi_sector = (r10_bio->devs[i].addr+
f8c9e74f 2592 choose_data_offset(r10_bio, rdev) +
bd870a16
N
2593 (sector - r10_bio->sector));
2594 wbio->bi_bdev = rdev->bdev;
2595 if (submit_bio_wait(WRITE, wbio) == 0)
2596 /* Failure! */
2597 ok = rdev_set_badblocks(rdev, sector,
2598 sectors, 0)
2599 && ok;
2600
2601 bio_put(wbio);
2602 sect_to_write -= sectors;
2603 sector += sectors;
2604 sectors = block_sectors;
2605 }
2606 return ok;
2607}
2608
9f2c9d12 2609static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2610{
2611 int slot = r10_bio->read_slot;
560f8e55 2612 struct bio *bio;
e879a879 2613 struct r10conf *conf = mddev->private;
abbf098e 2614 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2615 char b[BDEVNAME_SIZE];
2616 unsigned long do_sync;
856e08e2 2617 int max_sectors;
560f8e55
N
2618
2619 /* we got a read error. Maybe the drive is bad. Maybe just
2620 * the block and we can fix it.
2621 * We freeze all other IO, and try reading the block from
2622 * other devices. When we find one, we re-write
2623 * and check it that fixes the read error.
2624 * This is all done synchronously while the array is
2625 * frozen.
2626 */
fae8cc5e
N
2627 bio = r10_bio->devs[slot].bio;
2628 bdevname(bio->bi_bdev, b);
2629 bio_put(bio);
2630 r10_bio->devs[slot].bio = NULL;
2631
560f8e55
N
2632 if (mddev->ro == 0) {
2633 freeze_array(conf);
2634 fix_read_error(conf, mddev, r10_bio);
2635 unfreeze_array(conf);
fae8cc5e
N
2636 } else
2637 r10_bio->devs[slot].bio = IO_BLOCKED;
2638
abbf098e 2639 rdev_dec_pending(rdev, mddev);
560f8e55 2640
7399c31b 2641read_more:
96c3fd1f
N
2642 rdev = read_balance(conf, r10_bio, &max_sectors);
2643 if (rdev == NULL) {
560f8e55
N
2644 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2645 " read error for block %llu\n",
7399c31b 2646 mdname(mddev), b,
560f8e55
N
2647 (unsigned long long)r10_bio->sector);
2648 raid_end_bio_io(r10_bio);
560f8e55
N
2649 return;
2650 }
2651
2652 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
560f8e55 2653 slot = r10_bio->read_slot;
560f8e55
N
2654 printk_ratelimited(
2655 KERN_ERR
055d3747 2656 "md/raid10:%s: %s: redirecting "
560f8e55
N
2657 "sector %llu to another mirror\n",
2658 mdname(mddev),
2659 bdevname(rdev->bdev, b),
2660 (unsigned long long)r10_bio->sector);
2661 bio = bio_clone_mddev(r10_bio->master_bio,
2662 GFP_NOIO, mddev);
7399c31b
N
2663 md_trim_bio(bio,
2664 r10_bio->sector - bio->bi_sector,
2665 max_sectors);
560f8e55 2666 r10_bio->devs[slot].bio = bio;
abbf098e 2667 r10_bio->devs[slot].rdev = rdev;
560f8e55 2668 bio->bi_sector = r10_bio->devs[slot].addr
f8c9e74f 2669 + choose_data_offset(r10_bio, rdev);
560f8e55
N
2670 bio->bi_bdev = rdev->bdev;
2671 bio->bi_rw = READ | do_sync;
2672 bio->bi_private = r10_bio;
2673 bio->bi_end_io = raid10_end_read_request;
7399c31b
N
2674 if (max_sectors < r10_bio->sectors) {
2675 /* Drat - have to split this up more */
2676 struct bio *mbio = r10_bio->master_bio;
2677 int sectors_handled =
2678 r10_bio->sector + max_sectors
2679 - mbio->bi_sector;
2680 r10_bio->sectors = max_sectors;
2681 spin_lock_irq(&conf->device_lock);
2682 if (mbio->bi_phys_segments == 0)
2683 mbio->bi_phys_segments = 2;
2684 else
2685 mbio->bi_phys_segments++;
2686 spin_unlock_irq(&conf->device_lock);
2687 generic_make_request(bio);
7399c31b
N
2688
2689 r10_bio = mempool_alloc(conf->r10bio_pool,
2690 GFP_NOIO);
2691 r10_bio->master_bio = mbio;
2692 r10_bio->sectors = (mbio->bi_size >> 9)
2693 - sectors_handled;
2694 r10_bio->state = 0;
2695 set_bit(R10BIO_ReadError,
2696 &r10_bio->state);
2697 r10_bio->mddev = mddev;
2698 r10_bio->sector = mbio->bi_sector
2699 + sectors_handled;
2700
2701 goto read_more;
2702 } else
2703 generic_make_request(bio);
560f8e55
N
2704}
2705
e879a879 2706static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2707{
2708 /* Some sort of write request has finished and it
2709 * succeeded in writing where we thought there was a
2710 * bad block. So forget the bad block.
1a0b7cd8
N
2711 * Or possibly if failed and we need to record
2712 * a bad block.
749c55e9
N
2713 */
2714 int m;
3cb03002 2715 struct md_rdev *rdev;
749c55e9
N
2716
2717 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2718 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2719 for (m = 0; m < conf->copies; m++) {
2720 int dev = r10_bio->devs[m].devnum;
2721 rdev = conf->mirrors[dev].rdev;
2722 if (r10_bio->devs[m].bio == NULL)
2723 continue;
2724 if (test_bit(BIO_UPTODATE,
749c55e9 2725 &r10_bio->devs[m].bio->bi_flags)) {
749c55e9
N
2726 rdev_clear_badblocks(
2727 rdev,
2728 r10_bio->devs[m].addr,
c6563a8c 2729 r10_bio->sectors, 0);
1a0b7cd8
N
2730 } else {
2731 if (!rdev_set_badblocks(
2732 rdev,
2733 r10_bio->devs[m].addr,
2734 r10_bio->sectors, 0))
2735 md_error(conf->mddev, rdev);
749c55e9 2736 }
9ad1aefc
N
2737 rdev = conf->mirrors[dev].replacement;
2738 if (r10_bio->devs[m].repl_bio == NULL)
2739 continue;
2740 if (test_bit(BIO_UPTODATE,
2741 &r10_bio->devs[m].repl_bio->bi_flags)) {
2742 rdev_clear_badblocks(
2743 rdev,
2744 r10_bio->devs[m].addr,
c6563a8c 2745 r10_bio->sectors, 0);
9ad1aefc
N
2746 } else {
2747 if (!rdev_set_badblocks(
2748 rdev,
2749 r10_bio->devs[m].addr,
2750 r10_bio->sectors, 0))
2751 md_error(conf->mddev, rdev);
2752 }
1a0b7cd8 2753 }
749c55e9
N
2754 put_buf(r10_bio);
2755 } else {
bd870a16
N
2756 for (m = 0; m < conf->copies; m++) {
2757 int dev = r10_bio->devs[m].devnum;
2758 struct bio *bio = r10_bio->devs[m].bio;
2759 rdev = conf->mirrors[dev].rdev;
2760 if (bio == IO_MADE_GOOD) {
749c55e9
N
2761 rdev_clear_badblocks(
2762 rdev,
2763 r10_bio->devs[m].addr,
c6563a8c 2764 r10_bio->sectors, 0);
749c55e9 2765 rdev_dec_pending(rdev, conf->mddev);
bd870a16
N
2766 } else if (bio != NULL &&
2767 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2768 if (!narrow_write_error(r10_bio, m)) {
2769 md_error(conf->mddev, rdev);
2770 set_bit(R10BIO_Degraded,
2771 &r10_bio->state);
2772 }
2773 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2774 }
475b0321
N
2775 bio = r10_bio->devs[m].repl_bio;
2776 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2777 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2778 rdev_clear_badblocks(
2779 rdev,
2780 r10_bio->devs[m].addr,
c6563a8c 2781 r10_bio->sectors, 0);
475b0321
N
2782 rdev_dec_pending(rdev, conf->mddev);
2783 }
bd870a16
N
2784 }
2785 if (test_bit(R10BIO_WriteError,
2786 &r10_bio->state))
2787 close_write(r10_bio);
749c55e9
N
2788 raid_end_bio_io(r10_bio);
2789 }
2790}
2791
4ed8731d 2792static void raid10d(struct md_thread *thread)
1da177e4 2793{
4ed8731d 2794 struct mddev *mddev = thread->mddev;
9f2c9d12 2795 struct r10bio *r10_bio;
1da177e4 2796 unsigned long flags;
e879a879 2797 struct r10conf *conf = mddev->private;
1da177e4 2798 struct list_head *head = &conf->retry_list;
e1dfa0a2 2799 struct blk_plug plug;
1da177e4
LT
2800
2801 md_check_recovery(mddev);
1da177e4 2802
e1dfa0a2 2803 blk_start_plug(&plug);
1da177e4 2804 for (;;) {
6cce3b23 2805
0021b7bc 2806 flush_pending_writes(conf);
6cce3b23 2807
a35e63ef
N
2808 spin_lock_irqsave(&conf->device_lock, flags);
2809 if (list_empty(head)) {
2810 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2811 break;
a35e63ef 2812 }
9f2c9d12 2813 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2814 list_del(head->prev);
4443ae10 2815 conf->nr_queued--;
1da177e4
LT
2816 spin_unlock_irqrestore(&conf->device_lock, flags);
2817
2818 mddev = r10_bio->mddev;
070ec55d 2819 conf = mddev->private;
bd870a16
N
2820 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2821 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 2822 handle_write_completed(conf, r10_bio);
3ea7daa5
N
2823 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2824 reshape_request_write(mddev, r10_bio);
749c55e9 2825 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2826 sync_request_write(mddev, r10_bio);
7eaceacc 2827 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2828 recovery_request_write(mddev, r10_bio);
856e08e2 2829 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2830 handle_read_error(mddev, r10_bio);
856e08e2
N
2831 else {
2832 /* just a partial read to be scheduled from a
2833 * separate context
2834 */
2835 int slot = r10_bio->read_slot;
2836 generic_make_request(r10_bio->devs[slot].bio);
2837 }
560f8e55 2838
1d9d5241 2839 cond_resched();
de393cde
N
2840 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2841 md_check_recovery(mddev);
1da177e4 2842 }
e1dfa0a2 2843 blk_finish_plug(&plug);
1da177e4
LT
2844}
2845
2846
e879a879 2847static int init_resync(struct r10conf *conf)
1da177e4
LT
2848{
2849 int buffs;
69335ef3 2850 int i;
1da177e4
LT
2851
2852 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2853 BUG_ON(conf->r10buf_pool);
69335ef3 2854 conf->have_replacement = 0;
5cf00fcd 2855 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
2856 if (conf->mirrors[i].replacement)
2857 conf->have_replacement = 1;
1da177e4
LT
2858 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2859 if (!conf->r10buf_pool)
2860 return -ENOMEM;
2861 conf->next_resync = 0;
2862 return 0;
2863}
2864
2865/*
2866 * perform a "sync" on one "block"
2867 *
2868 * We need to make sure that no normal I/O request - particularly write
2869 * requests - conflict with active sync requests.
2870 *
2871 * This is achieved by tracking pending requests and a 'barrier' concept
2872 * that can be installed to exclude normal IO requests.
2873 *
2874 * Resync and recovery are handled very differently.
2875 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2876 *
2877 * For resync, we iterate over virtual addresses, read all copies,
2878 * and update if there are differences. If only one copy is live,
2879 * skip it.
2880 * For recovery, we iterate over physical addresses, read a good
2881 * value for each non-in_sync drive, and over-write.
2882 *
2883 * So, for recovery we may have several outstanding complex requests for a
2884 * given address, one for each out-of-sync device. We model this by allocating
2885 * a number of r10_bio structures, one for each out-of-sync device.
2886 * As we setup these structures, we collect all bio's together into a list
2887 * which we then process collectively to add pages, and then process again
2888 * to pass to generic_make_request.
2889 *
2890 * The r10_bio structures are linked using a borrowed master_bio pointer.
2891 * This link is counted in ->remaining. When the r10_bio that points to NULL
2892 * has its remaining count decremented to 0, the whole complex operation
2893 * is complete.
2894 *
2895 */
2896
fd01b88c 2897static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
ab9d47e9 2898 int *skipped, int go_faster)
1da177e4 2899{
e879a879 2900 struct r10conf *conf = mddev->private;
9f2c9d12 2901 struct r10bio *r10_bio;
1da177e4
LT
2902 struct bio *biolist = NULL, *bio;
2903 sector_t max_sector, nr_sectors;
1da177e4 2904 int i;
6cce3b23 2905 int max_sync;
57dab0bd 2906 sector_t sync_blocks;
1da177e4
LT
2907 sector_t sectors_skipped = 0;
2908 int chunks_skipped = 0;
5cf00fcd 2909 sector_t chunk_mask = conf->geo.chunk_mask;
1da177e4
LT
2910
2911 if (!conf->r10buf_pool)
2912 if (init_resync(conf))
57afd89f 2913 return 0;
1da177e4
LT
2914
2915 skipped:
58c0fed4 2916 max_sector = mddev->dev_sectors;
3ea7daa5
N
2917 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2918 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1da177e4
LT
2919 max_sector = mddev->resync_max_sectors;
2920 if (sector_nr >= max_sector) {
6cce3b23
N
2921 /* If we aborted, we need to abort the
2922 * sync on the 'current' bitmap chucks (there can
2923 * be several when recovering multiple devices).
2924 * as we may have started syncing it but not finished.
2925 * We can find the current address in
2926 * mddev->curr_resync, but for recovery,
2927 * we need to convert that to several
2928 * virtual addresses.
2929 */
3ea7daa5
N
2930 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2931 end_reshape(conf);
2932 return 0;
2933 }
2934
6cce3b23
N
2935 if (mddev->curr_resync < max_sector) { /* aborted */
2936 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2937 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2938 &sync_blocks, 1);
5cf00fcd 2939 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
2940 sector_t sect =
2941 raid10_find_virt(conf, mddev->curr_resync, i);
2942 bitmap_end_sync(mddev->bitmap, sect,
2943 &sync_blocks, 1);
2944 }
9ad1aefc
N
2945 } else {
2946 /* completed sync */
2947 if ((!mddev->bitmap || conf->fullsync)
2948 && conf->have_replacement
2949 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2950 /* Completed a full sync so the replacements
2951 * are now fully recovered.
2952 */
5cf00fcd 2953 for (i = 0; i < conf->geo.raid_disks; i++)
9ad1aefc
N
2954 if (conf->mirrors[i].replacement)
2955 conf->mirrors[i].replacement
2956 ->recovery_offset
2957 = MaxSector;
2958 }
6cce3b23 2959 conf->fullsync = 0;
9ad1aefc 2960 }
6cce3b23 2961 bitmap_close_sync(mddev->bitmap);
1da177e4 2962 close_sync(conf);
57afd89f 2963 *skipped = 1;
1da177e4
LT
2964 return sectors_skipped;
2965 }
3ea7daa5
N
2966
2967 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2968 return reshape_request(mddev, sector_nr, skipped);
2969
5cf00fcd 2970 if (chunks_skipped >= conf->geo.raid_disks) {
1da177e4
LT
2971 /* if there has been nothing to do on any drive,
2972 * then there is nothing to do at all..
2973 */
57afd89f
N
2974 *skipped = 1;
2975 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
2976 }
2977
c6207277
N
2978 if (max_sector > mddev->resync_max)
2979 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2980
1da177e4
LT
2981 /* make sure whole request will fit in a chunk - if chunks
2982 * are meaningful
2983 */
5cf00fcd
N
2984 if (conf->geo.near_copies < conf->geo.raid_disks &&
2985 max_sector > (sector_nr | chunk_mask))
2986 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4
LT
2987 /*
2988 * If there is non-resync activity waiting for us then
2989 * put in a delay to throttle resync.
2990 */
0a27ec96 2991 if (!go_faster && conf->nr_waiting)
1da177e4 2992 msleep_interruptible(1000);
1da177e4
LT
2993
2994 /* Again, very different code for resync and recovery.
2995 * Both must result in an r10bio with a list of bios that
2996 * have bi_end_io, bi_sector, bi_bdev set,
2997 * and bi_private set to the r10bio.
2998 * For recovery, we may actually create several r10bios
2999 * with 2 bios in each, that correspond to the bios in the main one.
3000 * In this case, the subordinate r10bios link back through a
3001 * borrowed master_bio pointer, and the counter in the master
3002 * includes a ref from each subordinate.
3003 */
3004 /* First, we decide what to do and set ->bi_end_io
3005 * To end_sync_read if we want to read, and
3006 * end_sync_write if we will want to write.
3007 */
3008
6cce3b23 3009 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
3010 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3011 /* recovery... the complicated one */
e875ecea 3012 int j;
1da177e4
LT
3013 r10_bio = NULL;
3014
5cf00fcd 3015 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 3016 int still_degraded;
9f2c9d12 3017 struct r10bio *rb2;
ab9d47e9
N
3018 sector_t sect;
3019 int must_sync;
e875ecea 3020 int any_working;
dc280d98 3021 struct raid10_info *mirror = &conf->mirrors[i];
24afd80d
N
3022
3023 if ((mirror->rdev == NULL ||
3024 test_bit(In_sync, &mirror->rdev->flags))
3025 &&
3026 (mirror->replacement == NULL ||
3027 test_bit(Faulty,
3028 &mirror->replacement->flags)))
ab9d47e9 3029 continue;
1da177e4 3030
ab9d47e9
N
3031 still_degraded = 0;
3032 /* want to reconstruct this device */
3033 rb2 = r10_bio;
3034 sect = raid10_find_virt(conf, sector_nr, i);
fc448a18
N
3035 if (sect >= mddev->resync_max_sectors) {
3036 /* last stripe is not complete - don't
3037 * try to recover this sector.
3038 */
3039 continue;
3040 }
24afd80d
N
3041 /* Unless we are doing a full sync, or a replacement
3042 * we only need to recover the block if it is set in
3043 * the bitmap
ab9d47e9
N
3044 */
3045 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3046 &sync_blocks, 1);
3047 if (sync_blocks < max_sync)
3048 max_sync = sync_blocks;
3049 if (!must_sync &&
24afd80d 3050 mirror->replacement == NULL &&
ab9d47e9
N
3051 !conf->fullsync) {
3052 /* yep, skip the sync_blocks here, but don't assume
3053 * that there will never be anything to do here
3054 */
3055 chunks_skipped = -1;
3056 continue;
3057 }
6cce3b23 3058
ab9d47e9
N
3059 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3060 raise_barrier(conf, rb2 != NULL);
3061 atomic_set(&r10_bio->remaining, 0);
18055569 3062
ab9d47e9
N
3063 r10_bio->master_bio = (struct bio*)rb2;
3064 if (rb2)
3065 atomic_inc(&rb2->remaining);
3066 r10_bio->mddev = mddev;
3067 set_bit(R10BIO_IsRecover, &r10_bio->state);
3068 r10_bio->sector = sect;
1da177e4 3069
ab9d47e9
N
3070 raid10_find_phys(conf, r10_bio);
3071
3072 /* Need to check if the array will still be
3073 * degraded
3074 */
5cf00fcd 3075 for (j = 0; j < conf->geo.raid_disks; j++)
ab9d47e9
N
3076 if (conf->mirrors[j].rdev == NULL ||
3077 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3078 still_degraded = 1;
87fc767b 3079 break;
1da177e4 3080 }
ab9d47e9
N
3081
3082 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3083 &sync_blocks, still_degraded);
3084
e875ecea 3085 any_working = 0;
ab9d47e9 3086 for (j=0; j<conf->copies;j++) {
e875ecea 3087 int k;
ab9d47e9 3088 int d = r10_bio->devs[j].devnum;
5e570289 3089 sector_t from_addr, to_addr;
3cb03002 3090 struct md_rdev *rdev;
40c356ce
N
3091 sector_t sector, first_bad;
3092 int bad_sectors;
ab9d47e9
N
3093 if (!conf->mirrors[d].rdev ||
3094 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3095 continue;
3096 /* This is where we read from */
e875ecea 3097 any_working = 1;
40c356ce
N
3098 rdev = conf->mirrors[d].rdev;
3099 sector = r10_bio->devs[j].addr;
3100
3101 if (is_badblock(rdev, sector, max_sync,
3102 &first_bad, &bad_sectors)) {
3103 if (first_bad > sector)
3104 max_sync = first_bad - sector;
3105 else {
3106 bad_sectors -= (sector
3107 - first_bad);
3108 if (max_sync > bad_sectors)
3109 max_sync = bad_sectors;
3110 continue;
3111 }
3112 }
ab9d47e9
N
3113 bio = r10_bio->devs[0].bio;
3114 bio->bi_next = biolist;
3115 biolist = bio;
3116 bio->bi_private = r10_bio;
3117 bio->bi_end_io = end_sync_read;
3118 bio->bi_rw = READ;
5e570289 3119 from_addr = r10_bio->devs[j].addr;
24afd80d
N
3120 bio->bi_sector = from_addr + rdev->data_offset;
3121 bio->bi_bdev = rdev->bdev;
3122 atomic_inc(&rdev->nr_pending);
3123 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
3124
3125 for (k=0; k<conf->copies; k++)
3126 if (r10_bio->devs[k].devnum == i)
3127 break;
3128 BUG_ON(k == conf->copies);
5e570289 3129 to_addr = r10_bio->devs[k].addr;
ab9d47e9 3130 r10_bio->devs[0].devnum = d;
5e570289 3131 r10_bio->devs[0].addr = from_addr;
ab9d47e9 3132 r10_bio->devs[1].devnum = i;
5e570289 3133 r10_bio->devs[1].addr = to_addr;
ab9d47e9 3134
24afd80d
N
3135 rdev = mirror->rdev;
3136 if (!test_bit(In_sync, &rdev->flags)) {
3137 bio = r10_bio->devs[1].bio;
3138 bio->bi_next = biolist;
3139 biolist = bio;
3140 bio->bi_private = r10_bio;
3141 bio->bi_end_io = end_sync_write;
3142 bio->bi_rw = WRITE;
3143 bio->bi_sector = to_addr
3144 + rdev->data_offset;
3145 bio->bi_bdev = rdev->bdev;
3146 atomic_inc(&r10_bio->remaining);
3147 } else
3148 r10_bio->devs[1].bio->bi_end_io = NULL;
3149
3150 /* and maybe write to replacement */
3151 bio = r10_bio->devs[1].repl_bio;
3152 if (bio)
3153 bio->bi_end_io = NULL;
3154 rdev = mirror->replacement;
3155 /* Note: if rdev != NULL, then bio
3156 * cannot be NULL as r10buf_pool_alloc will
3157 * have allocated it.
3158 * So the second test here is pointless.
3159 * But it keeps semantic-checkers happy, and
3160 * this comment keeps human reviewers
3161 * happy.
3162 */
3163 if (rdev == NULL || bio == NULL ||
3164 test_bit(Faulty, &rdev->flags))
3165 break;
3166 bio->bi_next = biolist;
3167 biolist = bio;
3168 bio->bi_private = r10_bio;
3169 bio->bi_end_io = end_sync_write;
3170 bio->bi_rw = WRITE;
3171 bio->bi_sector = to_addr + rdev->data_offset;
3172 bio->bi_bdev = rdev->bdev;
3173 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
3174 break;
3175 }
3176 if (j == conf->copies) {
e875ecea
N
3177 /* Cannot recover, so abort the recovery or
3178 * record a bad block */
ab9d47e9
N
3179 put_buf(r10_bio);
3180 if (rb2)
3181 atomic_dec(&rb2->remaining);
3182 r10_bio = rb2;
e875ecea
N
3183 if (any_working) {
3184 /* problem is that there are bad blocks
3185 * on other device(s)
3186 */
3187 int k;
3188 for (k = 0; k < conf->copies; k++)
3189 if (r10_bio->devs[k].devnum == i)
3190 break;
24afd80d
N
3191 if (!test_bit(In_sync,
3192 &mirror->rdev->flags)
3193 && !rdev_set_badblocks(
3194 mirror->rdev,
3195 r10_bio->devs[k].addr,
3196 max_sync, 0))
3197 any_working = 0;
3198 if (mirror->replacement &&
3199 !rdev_set_badblocks(
3200 mirror->replacement,
e875ecea
N
3201 r10_bio->devs[k].addr,
3202 max_sync, 0))
3203 any_working = 0;
3204 }
3205 if (!any_working) {
3206 if (!test_and_set_bit(MD_RECOVERY_INTR,
3207 &mddev->recovery))
3208 printk(KERN_INFO "md/raid10:%s: insufficient "
3209 "working devices for recovery.\n",
3210 mdname(mddev));
24afd80d 3211 mirror->recovery_disabled
e875ecea
N
3212 = mddev->recovery_disabled;
3213 }
ab9d47e9 3214 break;
1da177e4 3215 }
ab9d47e9 3216 }
1da177e4
LT
3217 if (biolist == NULL) {
3218 while (r10_bio) {
9f2c9d12
N
3219 struct r10bio *rb2 = r10_bio;
3220 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3221 rb2->master_bio = NULL;
3222 put_buf(rb2);
3223 }
3224 goto giveup;
3225 }
3226 } else {
3227 /* resync. Schedule a read for every block at this virt offset */
3228 int count = 0;
6cce3b23 3229
78200d45
N
3230 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3231
6cce3b23
N
3232 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3233 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3234 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3235 &mddev->recovery)) {
6cce3b23
N
3236 /* We can skip this block */
3237 *skipped = 1;
3238 return sync_blocks + sectors_skipped;
3239 }
3240 if (sync_blocks < max_sync)
3241 max_sync = sync_blocks;
1da177e4
LT
3242 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3243
1da177e4
LT
3244 r10_bio->mddev = mddev;
3245 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3246 raise_barrier(conf, 0);
3247 conf->next_resync = sector_nr;
1da177e4
LT
3248
3249 r10_bio->master_bio = NULL;
3250 r10_bio->sector = sector_nr;
3251 set_bit(R10BIO_IsSync, &r10_bio->state);
3252 raid10_find_phys(conf, r10_bio);
5cf00fcd 3253 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3254
5cf00fcd 3255 for (i = 0; i < conf->copies; i++) {
1da177e4 3256 int d = r10_bio->devs[i].devnum;
40c356ce
N
3257 sector_t first_bad, sector;
3258 int bad_sectors;
3259
9ad1aefc
N
3260 if (r10_bio->devs[i].repl_bio)
3261 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3262
1da177e4
LT
3263 bio = r10_bio->devs[i].bio;
3264 bio->bi_end_io = NULL;
af03b8e4 3265 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 3266 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 3267 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4 3268 continue;
40c356ce
N
3269 sector = r10_bio->devs[i].addr;
3270 if (is_badblock(conf->mirrors[d].rdev,
3271 sector, max_sync,
3272 &first_bad, &bad_sectors)) {
3273 if (first_bad > sector)
3274 max_sync = first_bad - sector;
3275 else {
3276 bad_sectors -= (sector - first_bad);
3277 if (max_sync > bad_sectors)
91502f09 3278 max_sync = bad_sectors;
40c356ce
N
3279 continue;
3280 }
3281 }
1da177e4
LT
3282 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3283 atomic_inc(&r10_bio->remaining);
3284 bio->bi_next = biolist;
3285 biolist = bio;
3286 bio->bi_private = r10_bio;
3287 bio->bi_end_io = end_sync_read;
802ba064 3288 bio->bi_rw = READ;
40c356ce 3289 bio->bi_sector = sector +
1da177e4
LT
3290 conf->mirrors[d].rdev->data_offset;
3291 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3292 count++;
9ad1aefc
N
3293
3294 if (conf->mirrors[d].replacement == NULL ||
3295 test_bit(Faulty,
3296 &conf->mirrors[d].replacement->flags))
3297 continue;
3298
3299 /* Need to set up for writing to the replacement */
3300 bio = r10_bio->devs[i].repl_bio;
3301 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3302
3303 sector = r10_bio->devs[i].addr;
3304 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3305 bio->bi_next = biolist;
3306 biolist = bio;
3307 bio->bi_private = r10_bio;
3308 bio->bi_end_io = end_sync_write;
3309 bio->bi_rw = WRITE;
3310 bio->bi_sector = sector +
3311 conf->mirrors[d].replacement->data_offset;
3312 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3313 count++;
1da177e4
LT
3314 }
3315
3316 if (count < 2) {
3317 for (i=0; i<conf->copies; i++) {
3318 int d = r10_bio->devs[i].devnum;
3319 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3320 rdev_dec_pending(conf->mirrors[d].rdev,
3321 mddev);
9ad1aefc
N
3322 if (r10_bio->devs[i].repl_bio &&
3323 r10_bio->devs[i].repl_bio->bi_end_io)
3324 rdev_dec_pending(
3325 conf->mirrors[d].replacement,
3326 mddev);
1da177e4
LT
3327 }
3328 put_buf(r10_bio);
3329 biolist = NULL;
3330 goto giveup;
3331 }
3332 }
3333
3334 for (bio = biolist; bio ; bio=bio->bi_next) {
3335
3336 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3337 if (bio->bi_end_io)
3338 bio->bi_flags |= 1 << BIO_UPTODATE;
3339 bio->bi_vcnt = 0;
3340 bio->bi_idx = 0;
3341 bio->bi_phys_segments = 0;
1da177e4
LT
3342 bio->bi_size = 0;
3343 }
3344
3345 nr_sectors = 0;
6cce3b23
N
3346 if (sector_nr + max_sync < max_sector)
3347 max_sector = sector_nr + max_sync;
1da177e4
LT
3348 do {
3349 struct page *page;
3350 int len = PAGE_SIZE;
1da177e4
LT
3351 if (sector_nr + (len>>9) > max_sector)
3352 len = (max_sector - sector_nr) << 9;
3353 if (len == 0)
3354 break;
3355 for (bio= biolist ; bio ; bio=bio->bi_next) {
ab9d47e9 3356 struct bio *bio2;
1da177e4 3357 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
ab9d47e9
N
3358 if (bio_add_page(bio, page, len, 0))
3359 continue;
3360
3361 /* stop here */
3362 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3363 for (bio2 = biolist;
3364 bio2 && bio2 != bio;
3365 bio2 = bio2->bi_next) {
3366 /* remove last page from this bio */
3367 bio2->bi_vcnt--;
3368 bio2->bi_size -= len;
3369 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1da177e4 3370 }
ab9d47e9 3371 goto bio_full;
1da177e4
LT
3372 }
3373 nr_sectors += len>>9;
3374 sector_nr += len>>9;
3375 } while (biolist->bi_vcnt < RESYNC_PAGES);
3376 bio_full:
3377 r10_bio->sectors = nr_sectors;
3378
3379 while (biolist) {
3380 bio = biolist;
3381 biolist = biolist->bi_next;
3382
3383 bio->bi_next = NULL;
3384 r10_bio = bio->bi_private;
3385 r10_bio->sectors = nr_sectors;
3386
3387 if (bio->bi_end_io == end_sync_read) {
3388 md_sync_acct(bio->bi_bdev, nr_sectors);
3389 generic_make_request(bio);
3390 }
3391 }
3392
57afd89f
N
3393 if (sectors_skipped)
3394 /* pretend they weren't skipped, it makes
3395 * no important difference in this case
3396 */
3397 md_done_sync(mddev, sectors_skipped, 1);
3398
1da177e4
LT
3399 return sectors_skipped + nr_sectors;
3400 giveup:
3401 /* There is nowhere to write, so all non-sync
e875ecea
N
3402 * drives must be failed or in resync, all drives
3403 * have a bad block, so try the next chunk...
1da177e4 3404 */
09b4068a
N
3405 if (sector_nr + max_sync < max_sector)
3406 max_sector = sector_nr + max_sync;
3407
3408 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3409 chunks_skipped ++;
3410 sector_nr = max_sector;
1da177e4 3411 goto skipped;
1da177e4
LT
3412}
3413
80c3a6ce 3414static sector_t
fd01b88c 3415raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3416{
3417 sector_t size;
e879a879 3418 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3419
3420 if (!raid_disks)
3ea7daa5
N
3421 raid_disks = min(conf->geo.raid_disks,
3422 conf->prev.raid_disks);
80c3a6ce 3423 if (!sectors)
dab8b292 3424 sectors = conf->dev_sectors;
80c3a6ce 3425
5cf00fcd
N
3426 size = sectors >> conf->geo.chunk_shift;
3427 sector_div(size, conf->geo.far_copies);
80c3a6ce 3428 size = size * raid_disks;
5cf00fcd 3429 sector_div(size, conf->geo.near_copies);
80c3a6ce 3430
5cf00fcd 3431 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3432}
3433
6508fdbf
N
3434static void calc_sectors(struct r10conf *conf, sector_t size)
3435{
3436 /* Calculate the number of sectors-per-device that will
3437 * actually be used, and set conf->dev_sectors and
3438 * conf->stride
3439 */
3440
5cf00fcd
N
3441 size = size >> conf->geo.chunk_shift;
3442 sector_div(size, conf->geo.far_copies);
3443 size = size * conf->geo.raid_disks;
3444 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3445 /* 'size' is now the number of chunks in the array */
3446 /* calculate "used chunks per device" */
3447 size = size * conf->copies;
3448
3449 /* We need to round up when dividing by raid_disks to
3450 * get the stride size.
3451 */
5cf00fcd 3452 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3453
5cf00fcd 3454 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3455
5cf00fcd
N
3456 if (conf->geo.far_offset)
3457 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3458 else {
5cf00fcd
N
3459 sector_div(size, conf->geo.far_copies);
3460 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3461 }
3462}
dab8b292 3463
deb200d0
N
3464enum geo_type {geo_new, geo_old, geo_start};
3465static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3466{
3467 int nc, fc, fo;
3468 int layout, chunk, disks;
3469 switch (new) {
3470 case geo_old:
3471 layout = mddev->layout;
3472 chunk = mddev->chunk_sectors;
3473 disks = mddev->raid_disks - mddev->delta_disks;
3474 break;
3475 case geo_new:
3476 layout = mddev->new_layout;
3477 chunk = mddev->new_chunk_sectors;
3478 disks = mddev->raid_disks;
3479 break;
3480 default: /* avoid 'may be unused' warnings */
3481 case geo_start: /* new when starting reshape - raid_disks not
3482 * updated yet. */
3483 layout = mddev->new_layout;
3484 chunk = mddev->new_chunk_sectors;
3485 disks = mddev->raid_disks + mddev->delta_disks;
3486 break;
3487 }
475901af 3488 if (layout >> 18)
deb200d0
N
3489 return -1;
3490 if (chunk < (PAGE_SIZE >> 9) ||
3491 !is_power_of_2(chunk))
3492 return -2;
3493 nc = layout & 255;
3494 fc = (layout >> 8) & 255;
3495 fo = layout & (1<<16);
3496 geo->raid_disks = disks;
3497 geo->near_copies = nc;
3498 geo->far_copies = fc;
3499 geo->far_offset = fo;
475901af 3500 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
deb200d0
N
3501 geo->chunk_mask = chunk - 1;
3502 geo->chunk_shift = ffz(~chunk);
3503 return nc*fc;
3504}
3505
e879a879 3506static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3507{
e879a879 3508 struct r10conf *conf = NULL;
dab8b292 3509 int err = -EINVAL;
deb200d0
N
3510 struct geom geo;
3511 int copies;
3512
3513 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 3514
deb200d0 3515 if (copies == -2) {
128595ed
N
3516 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3517 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3518 mdname(mddev), PAGE_SIZE);
dab8b292 3519 goto out;
1da177e4 3520 }
2604b703 3521
deb200d0 3522 if (copies < 2 || copies > mddev->raid_disks) {
128595ed 3523 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 3524 mdname(mddev), mddev->new_layout);
1da177e4
LT
3525 goto out;
3526 }
dab8b292
TM
3527
3528 err = -ENOMEM;
e879a879 3529 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3530 if (!conf)
1da177e4 3531 goto out;
dab8b292 3532
3ea7daa5 3533 /* FIXME calc properly */
dc280d98 3534 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3ea7daa5 3535 max(0,mddev->delta_disks)),
dab8b292
TM
3536 GFP_KERNEL);
3537 if (!conf->mirrors)
3538 goto out;
4443ae10
N
3539
3540 conf->tmppage = alloc_page(GFP_KERNEL);
3541 if (!conf->tmppage)
dab8b292
TM
3542 goto out;
3543
deb200d0
N
3544 conf->geo = geo;
3545 conf->copies = copies;
dab8b292
TM
3546 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3547 r10bio_pool_free, conf);
3548 if (!conf->r10bio_pool)
3549 goto out;
3550
6508fdbf 3551 calc_sectors(conf, mddev->dev_sectors);
3ea7daa5
N
3552 if (mddev->reshape_position == MaxSector) {
3553 conf->prev = conf->geo;
3554 conf->reshape_progress = MaxSector;
3555 } else {
3556 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3557 err = -EINVAL;
3558 goto out;
3559 }
3560 conf->reshape_progress = mddev->reshape_position;
3561 if (conf->prev.far_offset)
3562 conf->prev.stride = 1 << conf->prev.chunk_shift;
3563 else
3564 /* far_copies must be 1 */
3565 conf->prev.stride = conf->dev_sectors;
3566 }
e7e72bf6 3567 spin_lock_init(&conf->device_lock);
dab8b292
TM
3568 INIT_LIST_HEAD(&conf->retry_list);
3569
3570 spin_lock_init(&conf->resync_lock);
3571 init_waitqueue_head(&conf->wait_barrier);
3572
0232605d 3573 conf->thread = md_register_thread(raid10d, mddev, "raid10");
dab8b292
TM
3574 if (!conf->thread)
3575 goto out;
3576
dab8b292
TM
3577 conf->mddev = mddev;
3578 return conf;
3579
3580 out:
3ea7daa5
N
3581 if (err == -ENOMEM)
3582 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3583 mdname(mddev));
dab8b292
TM
3584 if (conf) {
3585 if (conf->r10bio_pool)
3586 mempool_destroy(conf->r10bio_pool);
3587 kfree(conf->mirrors);
3588 safe_put_page(conf->tmppage);
3589 kfree(conf);
3590 }
3591 return ERR_PTR(err);
3592}
3593
fd01b88c 3594static int run(struct mddev *mddev)
dab8b292 3595{
e879a879 3596 struct r10conf *conf;
dab8b292 3597 int i, disk_idx, chunk_size;
dc280d98 3598 struct raid10_info *disk;
3cb03002 3599 struct md_rdev *rdev;
dab8b292 3600 sector_t size;
3ea7daa5
N
3601 sector_t min_offset_diff = 0;
3602 int first = 1;
532a2a3f 3603 bool discard_supported = false;
dab8b292
TM
3604
3605 if (mddev->private == NULL) {
3606 conf = setup_conf(mddev);
3607 if (IS_ERR(conf))
3608 return PTR_ERR(conf);
3609 mddev->private = conf;
3610 }
3611 conf = mddev->private;
3612 if (!conf)
3613 goto out;
3614
dab8b292
TM
3615 mddev->thread = conf->thread;
3616 conf->thread = NULL;
3617
8f6c2e4b 3618 chunk_size = mddev->chunk_sectors << 9;
cc4d1efd 3619 if (mddev->queue) {
532a2a3f
SL
3620 blk_queue_max_discard_sectors(mddev->queue,
3621 mddev->chunk_sectors);
c8dc9c65
JL
3622 blk_queue_max_write_same_sectors(mddev->queue,
3623 mddev->chunk_sectors);
cc4d1efd
JB
3624 blk_queue_io_min(mddev->queue, chunk_size);
3625 if (conf->geo.raid_disks % conf->geo.near_copies)
3626 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3627 else
3628 blk_queue_io_opt(mddev->queue, chunk_size *
3629 (conf->geo.raid_disks / conf->geo.near_copies));
3630 }
8f6c2e4b 3631
dafb20fa 3632 rdev_for_each(rdev, mddev) {
3ea7daa5 3633 long long diff;
aba336bd 3634 struct request_queue *q;
34b343cf 3635
1da177e4 3636 disk_idx = rdev->raid_disk;
f8c9e74f
N
3637 if (disk_idx < 0)
3638 continue;
3639 if (disk_idx >= conf->geo.raid_disks &&
3640 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
3641 continue;
3642 disk = conf->mirrors + disk_idx;
3643
56a2559b
N
3644 if (test_bit(Replacement, &rdev->flags)) {
3645 if (disk->replacement)
3646 goto out_free_conf;
3647 disk->replacement = rdev;
3648 } else {
3649 if (disk->rdev)
3650 goto out_free_conf;
3651 disk->rdev = rdev;
3652 }
aba336bd
N
3653 q = bdev_get_queue(rdev->bdev);
3654 if (q->merge_bvec_fn)
3655 mddev->merge_check_needed = 1;
3ea7daa5
N
3656 diff = (rdev->new_data_offset - rdev->data_offset);
3657 if (!mddev->reshape_backwards)
3658 diff = -diff;
3659 if (diff < 0)
3660 diff = 0;
3661 if (first || diff < min_offset_diff)
3662 min_offset_diff = diff;
56a2559b 3663
cc4d1efd
JB
3664 if (mddev->gendisk)
3665 disk_stack_limits(mddev->gendisk, rdev->bdev,
3666 rdev->data_offset << 9);
1da177e4
LT
3667
3668 disk->head_position = 0;
532a2a3f
SL
3669
3670 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3671 discard_supported = true;
1da177e4 3672 }
3ea7daa5 3673
ed30be07
JB
3674 if (mddev->queue) {
3675 if (discard_supported)
3676 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3677 mddev->queue);
3678 else
3679 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3680 mddev->queue);
3681 }
6d508242 3682 /* need to check that every block has at least one working mirror */
700c7213 3683 if (!enough(conf, -1)) {
128595ed 3684 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 3685 mdname(mddev));
1da177e4
LT
3686 goto out_free_conf;
3687 }
3688
3ea7daa5
N
3689 if (conf->reshape_progress != MaxSector) {
3690 /* must ensure that shape change is supported */
3691 if (conf->geo.far_copies != 1 &&
3692 conf->geo.far_offset == 0)
3693 goto out_free_conf;
3694 if (conf->prev.far_copies != 1 &&
3695 conf->geo.far_offset == 0)
3696 goto out_free_conf;
3697 }
3698
1da177e4 3699 mddev->degraded = 0;
f8c9e74f
N
3700 for (i = 0;
3701 i < conf->geo.raid_disks
3702 || i < conf->prev.raid_disks;
3703 i++) {
1da177e4
LT
3704
3705 disk = conf->mirrors + i;
3706
56a2559b
N
3707 if (!disk->rdev && disk->replacement) {
3708 /* The replacement is all we have - use it */
3709 disk->rdev = disk->replacement;
3710 disk->replacement = NULL;
3711 clear_bit(Replacement, &disk->rdev->flags);
3712 }
3713
5fd6c1dc 3714 if (!disk->rdev ||
2e333e89 3715 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
3716 disk->head_position = 0;
3717 mddev->degraded++;
8c2e870a
NB
3718 if (disk->rdev)
3719 conf->fullsync = 1;
1da177e4 3720 }
d890fa2b 3721 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
3722 }
3723
8c6ac868 3724 if (mddev->recovery_cp != MaxSector)
128595ed 3725 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
3726 " -- starting background reconstruction\n",
3727 mdname(mddev));
1da177e4 3728 printk(KERN_INFO
128595ed 3729 "md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
3730 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3731 conf->geo.raid_disks);
1da177e4
LT
3732 /*
3733 * Ok, everything is just fine now
3734 */
dab8b292
TM
3735 mddev->dev_sectors = conf->dev_sectors;
3736 size = raid10_size(mddev, 0, 0);
3737 md_set_array_sectors(mddev, size);
3738 mddev->resync_max_sectors = size;
1da177e4 3739
cc4d1efd 3740 if (mddev->queue) {
5cf00fcd 3741 int stripe = conf->geo.raid_disks *
9d8f0363 3742 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
cc4d1efd
JB
3743 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3744 mddev->queue->backing_dev_info.congested_data = mddev;
3745
3746 /* Calculate max read-ahead size.
3747 * We need to readahead at least twice a whole stripe....
3748 * maybe...
3749 */
5cf00fcd 3750 stripe /= conf->geo.near_copies;
3ea7daa5
N
3751 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3752 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
cc4d1efd 3753 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
1da177e4
LT
3754 }
3755
a91a2785
MP
3756
3757 if (md_integrity_register(mddev))
3758 goto out_free_conf;
3759
3ea7daa5
N
3760 if (conf->reshape_progress != MaxSector) {
3761 unsigned long before_length, after_length;
3762
3763 before_length = ((1 << conf->prev.chunk_shift) *
3764 conf->prev.far_copies);
3765 after_length = ((1 << conf->geo.chunk_shift) *
3766 conf->geo.far_copies);
3767
3768 if (max(before_length, after_length) > min_offset_diff) {
3769 /* This cannot work */
3770 printk("md/raid10: offset difference not enough to continue reshape\n");
3771 goto out_free_conf;
3772 }
3773 conf->offset_diff = min_offset_diff;
3774
3775 conf->reshape_safe = conf->reshape_progress;
3776 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3777 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3778 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3779 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3780 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3781 "reshape");
3782 }
3783
1da177e4
LT
3784 return 0;
3785
3786out_free_conf:
01f96c0a 3787 md_unregister_thread(&mddev->thread);
1da177e4
LT
3788 if (conf->r10bio_pool)
3789 mempool_destroy(conf->r10bio_pool);
1345b1d8 3790 safe_put_page(conf->tmppage);
990a8baf 3791 kfree(conf->mirrors);
1da177e4
LT
3792 kfree(conf);
3793 mddev->private = NULL;
3794out:
3795 return -EIO;
3796}
3797
fd01b88c 3798static int stop(struct mddev *mddev)
1da177e4 3799{
e879a879 3800 struct r10conf *conf = mddev->private;
1da177e4 3801
409c57f3
N
3802 raise_barrier(conf, 0);
3803 lower_barrier(conf);
3804
01f96c0a 3805 md_unregister_thread(&mddev->thread);
cc4d1efd
JB
3806 if (mddev->queue)
3807 /* the unplug fn references 'conf'*/
3808 blk_sync_queue(mddev->queue);
3809
1da177e4
LT
3810 if (conf->r10bio_pool)
3811 mempool_destroy(conf->r10bio_pool);
990a8baf 3812 kfree(conf->mirrors);
1da177e4
LT
3813 kfree(conf);
3814 mddev->private = NULL;
3815 return 0;
3816}
3817
fd01b88c 3818static void raid10_quiesce(struct mddev *mddev, int state)
6cce3b23 3819{
e879a879 3820 struct r10conf *conf = mddev->private;
6cce3b23
N
3821
3822 switch(state) {
3823 case 1:
3824 raise_barrier(conf, 0);
3825 break;
3826 case 0:
3827 lower_barrier(conf);
3828 break;
3829 }
6cce3b23 3830}
1da177e4 3831
006a09a0
N
3832static int raid10_resize(struct mddev *mddev, sector_t sectors)
3833{
3834 /* Resize of 'far' arrays is not supported.
3835 * For 'near' and 'offset' arrays we can set the
3836 * number of sectors used to be an appropriate multiple
3837 * of the chunk size.
3838 * For 'offset', this is far_copies*chunksize.
3839 * For 'near' the multiplier is the LCM of
3840 * near_copies and raid_disks.
3841 * So if far_copies > 1 && !far_offset, fail.
3842 * Else find LCM(raid_disks, near_copy)*far_copies and
3843 * multiply by chunk_size. Then round to this number.
3844 * This is mostly done by raid10_size()
3845 */
3846 struct r10conf *conf = mddev->private;
3847 sector_t oldsize, size;
3848
f8c9e74f
N
3849 if (mddev->reshape_position != MaxSector)
3850 return -EBUSY;
3851
5cf00fcd 3852 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
3853 return -EINVAL;
3854
3855 oldsize = raid10_size(mddev, 0, 0);
3856 size = raid10_size(mddev, sectors, 0);
a4a6125a
N
3857 if (mddev->external_size &&
3858 mddev->array_sectors > size)
006a09a0 3859 return -EINVAL;
a4a6125a
N
3860 if (mddev->bitmap) {
3861 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3862 if (ret)
3863 return ret;
3864 }
3865 md_set_array_sectors(mddev, size);
006a09a0
N
3866 set_capacity(mddev->gendisk, mddev->array_sectors);
3867 revalidate_disk(mddev->gendisk);
3868 if (sectors > mddev->dev_sectors &&
3869 mddev->recovery_cp > oldsize) {
3870 mddev->recovery_cp = oldsize;
3871 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3872 }
6508fdbf
N
3873 calc_sectors(conf, sectors);
3874 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
3875 mddev->resync_max_sectors = size;
3876 return 0;
3877}
3878
fd01b88c 3879static void *raid10_takeover_raid0(struct mddev *mddev)
dab8b292 3880{
3cb03002 3881 struct md_rdev *rdev;
e879a879 3882 struct r10conf *conf;
dab8b292
TM
3883
3884 if (mddev->degraded > 0) {
128595ed
N
3885 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3886 mdname(mddev));
dab8b292
TM
3887 return ERR_PTR(-EINVAL);
3888 }
3889
dab8b292
TM
3890 /* Set new parameters */
3891 mddev->new_level = 10;
3892 /* new layout: far_copies = 1, near_copies = 2 */
3893 mddev->new_layout = (1<<8) + 2;
3894 mddev->new_chunk_sectors = mddev->chunk_sectors;
3895 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
3896 mddev->raid_disks *= 2;
3897 /* make sure it will be not marked as dirty */
3898 mddev->recovery_cp = MaxSector;
3899
3900 conf = setup_conf(mddev);
02214dc5 3901 if (!IS_ERR(conf)) {
dafb20fa 3902 rdev_for_each(rdev, mddev)
e93f68a1
N
3903 if (rdev->raid_disk >= 0)
3904 rdev->new_raid_disk = rdev->raid_disk * 2;
02214dc5
KW
3905 conf->barrier = 1;
3906 }
3907
dab8b292
TM
3908 return conf;
3909}
3910
fd01b88c 3911static void *raid10_takeover(struct mddev *mddev)
dab8b292 3912{
e373ab10 3913 struct r0conf *raid0_conf;
dab8b292
TM
3914
3915 /* raid10 can take over:
3916 * raid0 - providing it has only two drives
3917 */
3918 if (mddev->level == 0) {
3919 /* for raid0 takeover only one zone is supported */
e373ab10
N
3920 raid0_conf = mddev->private;
3921 if (raid0_conf->nr_strip_zones > 1) {
128595ed
N
3922 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3923 " with more than one zone.\n",
3924 mdname(mddev));
dab8b292
TM
3925 return ERR_PTR(-EINVAL);
3926 }
3927 return raid10_takeover_raid0(mddev);
3928 }
3929 return ERR_PTR(-EINVAL);
3930}
3931
3ea7daa5
N
3932static int raid10_check_reshape(struct mddev *mddev)
3933{
3934 /* Called when there is a request to change
3935 * - layout (to ->new_layout)
3936 * - chunk size (to ->new_chunk_sectors)
3937 * - raid_disks (by delta_disks)
3938 * or when trying to restart a reshape that was ongoing.
3939 *
3940 * We need to validate the request and possibly allocate
3941 * space if that might be an issue later.
3942 *
3943 * Currently we reject any reshape of a 'far' mode array,
3944 * allow chunk size to change if new is generally acceptable,
3945 * allow raid_disks to increase, and allow
3946 * a switch between 'near' mode and 'offset' mode.
3947 */
3948 struct r10conf *conf = mddev->private;
3949 struct geom geo;
3950
3951 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3952 return -EINVAL;
3953
3954 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3955 /* mustn't change number of copies */
3956 return -EINVAL;
3957 if (geo.far_copies > 1 && !geo.far_offset)
3958 /* Cannot switch to 'far' mode */
3959 return -EINVAL;
3960
3961 if (mddev->array_sectors & geo.chunk_mask)
3962 /* not factor of array size */
3963 return -EINVAL;
3964
3ea7daa5
N
3965 if (!enough(conf, -1))
3966 return -EINVAL;
3967
3968 kfree(conf->mirrors_new);
3969 conf->mirrors_new = NULL;
3970 if (mddev->delta_disks > 0) {
3971 /* allocate new 'mirrors' list */
3972 conf->mirrors_new = kzalloc(
dc280d98 3973 sizeof(struct raid10_info)
3ea7daa5
N
3974 *(mddev->raid_disks +
3975 mddev->delta_disks),
3976 GFP_KERNEL);
3977 if (!conf->mirrors_new)
3978 return -ENOMEM;
3979 }
3980 return 0;
3981}
3982
3983/*
3984 * Need to check if array has failed when deciding whether to:
3985 * - start an array
3986 * - remove non-faulty devices
3987 * - add a spare
3988 * - allow a reshape
3989 * This determination is simple when no reshape is happening.
3990 * However if there is a reshape, we need to carefully check
3991 * both the before and after sections.
3992 * This is because some failed devices may only affect one
3993 * of the two sections, and some non-in_sync devices may
3994 * be insync in the section most affected by failed devices.
3995 */
3996static int calc_degraded(struct r10conf *conf)
3997{
3998 int degraded, degraded2;
3999 int i;
4000
4001 rcu_read_lock();
4002 degraded = 0;
4003 /* 'prev' section first */
4004 for (i = 0; i < conf->prev.raid_disks; i++) {
4005 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4006 if (!rdev || test_bit(Faulty, &rdev->flags))
4007 degraded++;
4008 else if (!test_bit(In_sync, &rdev->flags))
4009 /* When we can reduce the number of devices in
4010 * an array, this might not contribute to
4011 * 'degraded'. It does now.
4012 */
4013 degraded++;
4014 }
4015 rcu_read_unlock();
4016 if (conf->geo.raid_disks == conf->prev.raid_disks)
4017 return degraded;
4018 rcu_read_lock();
4019 degraded2 = 0;
4020 for (i = 0; i < conf->geo.raid_disks; i++) {
4021 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4022 if (!rdev || test_bit(Faulty, &rdev->flags))
4023 degraded2++;
4024 else if (!test_bit(In_sync, &rdev->flags)) {
4025 /* If reshape is increasing the number of devices,
4026 * this section has already been recovered, so
4027 * it doesn't contribute to degraded.
4028 * else it does.
4029 */
4030 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4031 degraded2++;
4032 }
4033 }
4034 rcu_read_unlock();
4035 if (degraded2 > degraded)
4036 return degraded2;
4037 return degraded;
4038}
4039
4040static int raid10_start_reshape(struct mddev *mddev)
4041{
4042 /* A 'reshape' has been requested. This commits
4043 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4044 * This also checks if there are enough spares and adds them
4045 * to the array.
4046 * We currently require enough spares to make the final
4047 * array non-degraded. We also require that the difference
4048 * between old and new data_offset - on each device - is
4049 * enough that we never risk over-writing.
4050 */
4051
4052 unsigned long before_length, after_length;
4053 sector_t min_offset_diff = 0;
4054 int first = 1;
4055 struct geom new;
4056 struct r10conf *conf = mddev->private;
4057 struct md_rdev *rdev;
4058 int spares = 0;
bb63a701 4059 int ret;
3ea7daa5
N
4060
4061 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4062 return -EBUSY;
4063
4064 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4065 return -EINVAL;
4066
4067 before_length = ((1 << conf->prev.chunk_shift) *
4068 conf->prev.far_copies);
4069 after_length = ((1 << conf->geo.chunk_shift) *
4070 conf->geo.far_copies);
4071
4072 rdev_for_each(rdev, mddev) {
4073 if (!test_bit(In_sync, &rdev->flags)
4074 && !test_bit(Faulty, &rdev->flags))
4075 spares++;
4076 if (rdev->raid_disk >= 0) {
4077 long long diff = (rdev->new_data_offset
4078 - rdev->data_offset);
4079 if (!mddev->reshape_backwards)
4080 diff = -diff;
4081 if (diff < 0)
4082 diff = 0;
4083 if (first || diff < min_offset_diff)
4084 min_offset_diff = diff;
4085 }
4086 }
4087
4088 if (max(before_length, after_length) > min_offset_diff)
4089 return -EINVAL;
4090
4091 if (spares < mddev->delta_disks)
4092 return -EINVAL;
4093
4094 conf->offset_diff = min_offset_diff;
4095 spin_lock_irq(&conf->device_lock);
4096 if (conf->mirrors_new) {
4097 memcpy(conf->mirrors_new, conf->mirrors,
dc280d98 4098 sizeof(struct raid10_info)*conf->prev.raid_disks);
3ea7daa5
N
4099 smp_mb();
4100 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4101 conf->mirrors_old = conf->mirrors;
4102 conf->mirrors = conf->mirrors_new;
4103 conf->mirrors_new = NULL;
4104 }
4105 setup_geo(&conf->geo, mddev, geo_start);
4106 smp_mb();
4107 if (mddev->reshape_backwards) {
4108 sector_t size = raid10_size(mddev, 0, 0);
4109 if (size < mddev->array_sectors) {
4110 spin_unlock_irq(&conf->device_lock);
4111 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4112 mdname(mddev));
4113 return -EINVAL;
4114 }
4115 mddev->resync_max_sectors = size;
4116 conf->reshape_progress = size;
4117 } else
4118 conf->reshape_progress = 0;
4119 spin_unlock_irq(&conf->device_lock);
4120
bb63a701
N
4121 if (mddev->delta_disks && mddev->bitmap) {
4122 ret = bitmap_resize(mddev->bitmap,
4123 raid10_size(mddev, 0,
4124 conf->geo.raid_disks),
4125 0, 0);
4126 if (ret)
4127 goto abort;
4128 }
3ea7daa5
N
4129 if (mddev->delta_disks > 0) {
4130 rdev_for_each(rdev, mddev)
4131 if (rdev->raid_disk < 0 &&
4132 !test_bit(Faulty, &rdev->flags)) {
4133 if (raid10_add_disk(mddev, rdev) == 0) {
4134 if (rdev->raid_disk >=
4135 conf->prev.raid_disks)
4136 set_bit(In_sync, &rdev->flags);
4137 else
4138 rdev->recovery_offset = 0;
4139
4140 if (sysfs_link_rdev(mddev, rdev))
4141 /* Failure here is OK */;
4142 }
4143 } else if (rdev->raid_disk >= conf->prev.raid_disks
4144 && !test_bit(Faulty, &rdev->flags)) {
4145 /* This is a spare that was manually added */
4146 set_bit(In_sync, &rdev->flags);
4147 }
4148 }
4149 /* When a reshape changes the number of devices,
4150 * ->degraded is measured against the larger of the
4151 * pre and post numbers.
4152 */
4153 spin_lock_irq(&conf->device_lock);
4154 mddev->degraded = calc_degraded(conf);
4155 spin_unlock_irq(&conf->device_lock);
4156 mddev->raid_disks = conf->geo.raid_disks;
4157 mddev->reshape_position = conf->reshape_progress;
4158 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4159
4160 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4161 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4162 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4163 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4164
4165 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4166 "reshape");
4167 if (!mddev->sync_thread) {
bb63a701
N
4168 ret = -EAGAIN;
4169 goto abort;
3ea7daa5
N
4170 }
4171 conf->reshape_checkpoint = jiffies;
4172 md_wakeup_thread(mddev->sync_thread);
4173 md_new_event(mddev);
4174 return 0;
bb63a701
N
4175
4176abort:
4177 mddev->recovery = 0;
4178 spin_lock_irq(&conf->device_lock);
4179 conf->geo = conf->prev;
4180 mddev->raid_disks = conf->geo.raid_disks;
4181 rdev_for_each(rdev, mddev)
4182 rdev->new_data_offset = rdev->data_offset;
4183 smp_wmb();
4184 conf->reshape_progress = MaxSector;
4185 mddev->reshape_position = MaxSector;
4186 spin_unlock_irq(&conf->device_lock);
4187 return ret;
3ea7daa5
N
4188}
4189
4190/* Calculate the last device-address that could contain
4191 * any block from the chunk that includes the array-address 's'
4192 * and report the next address.
4193 * i.e. the address returned will be chunk-aligned and after
4194 * any data that is in the chunk containing 's'.
4195 */
4196static sector_t last_dev_address(sector_t s, struct geom *geo)
4197{
4198 s = (s | geo->chunk_mask) + 1;
4199 s >>= geo->chunk_shift;
4200 s *= geo->near_copies;
4201 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4202 s *= geo->far_copies;
4203 s <<= geo->chunk_shift;
4204 return s;
4205}
4206
4207/* Calculate the first device-address that could contain
4208 * any block from the chunk that includes the array-address 's'.
4209 * This too will be the start of a chunk
4210 */
4211static sector_t first_dev_address(sector_t s, struct geom *geo)
4212{
4213 s >>= geo->chunk_shift;
4214 s *= geo->near_copies;
4215 sector_div(s, geo->raid_disks);
4216 s *= geo->far_copies;
4217 s <<= geo->chunk_shift;
4218 return s;
4219}
4220
4221static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4222 int *skipped)
4223{
4224 /* We simply copy at most one chunk (smallest of old and new)
4225 * at a time, possibly less if that exceeds RESYNC_PAGES,
4226 * or we hit a bad block or something.
4227 * This might mean we pause for normal IO in the middle of
4228 * a chunk, but that is not a problem was mddev->reshape_position
4229 * can record any location.
4230 *
4231 * If we will want to write to a location that isn't
4232 * yet recorded as 'safe' (i.e. in metadata on disk) then
4233 * we need to flush all reshape requests and update the metadata.
4234 *
4235 * When reshaping forwards (e.g. to more devices), we interpret
4236 * 'safe' as the earliest block which might not have been copied
4237 * down yet. We divide this by previous stripe size and multiply
4238 * by previous stripe length to get lowest device offset that we
4239 * cannot write to yet.
4240 * We interpret 'sector_nr' as an address that we want to write to.
4241 * From this we use last_device_address() to find where we might
4242 * write to, and first_device_address on the 'safe' position.
4243 * If this 'next' write position is after the 'safe' position,
4244 * we must update the metadata to increase the 'safe' position.
4245 *
4246 * When reshaping backwards, we round in the opposite direction
4247 * and perform the reverse test: next write position must not be
4248 * less than current safe position.
4249 *
4250 * In all this the minimum difference in data offsets
4251 * (conf->offset_diff - always positive) allows a bit of slack,
4252 * so next can be after 'safe', but not by more than offset_disk
4253 *
4254 * We need to prepare all the bios here before we start any IO
4255 * to ensure the size we choose is acceptable to all devices.
4256 * The means one for each copy for write-out and an extra one for
4257 * read-in.
4258 * We store the read-in bio in ->master_bio and the others in
4259 * ->devs[x].bio and ->devs[x].repl_bio.
4260 */
4261 struct r10conf *conf = mddev->private;
4262 struct r10bio *r10_bio;
4263 sector_t next, safe, last;
4264 int max_sectors;
4265 int nr_sectors;
4266 int s;
4267 struct md_rdev *rdev;
4268 int need_flush = 0;
4269 struct bio *blist;
4270 struct bio *bio, *read_bio;
4271 int sectors_done = 0;
4272
4273 if (sector_nr == 0) {
4274 /* If restarting in the middle, skip the initial sectors */
4275 if (mddev->reshape_backwards &&
4276 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4277 sector_nr = (raid10_size(mddev, 0, 0)
4278 - conf->reshape_progress);
4279 } else if (!mddev->reshape_backwards &&
4280 conf->reshape_progress > 0)
4281 sector_nr = conf->reshape_progress;
4282 if (sector_nr) {
4283 mddev->curr_resync_completed = sector_nr;
4284 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4285 *skipped = 1;
4286 return sector_nr;
4287 }
4288 }
4289
4290 /* We don't use sector_nr to track where we are up to
4291 * as that doesn't work well for ->reshape_backwards.
4292 * So just use ->reshape_progress.
4293 */
4294 if (mddev->reshape_backwards) {
4295 /* 'next' is the earliest device address that we might
4296 * write to for this chunk in the new layout
4297 */
4298 next = first_dev_address(conf->reshape_progress - 1,
4299 &conf->geo);
4300
4301 /* 'safe' is the last device address that we might read from
4302 * in the old layout after a restart
4303 */
4304 safe = last_dev_address(conf->reshape_safe - 1,
4305 &conf->prev);
4306
4307 if (next + conf->offset_diff < safe)
4308 need_flush = 1;
4309
4310 last = conf->reshape_progress - 1;
4311 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4312 & conf->prev.chunk_mask);
4313 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4314 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4315 } else {
4316 /* 'next' is after the last device address that we
4317 * might write to for this chunk in the new layout
4318 */
4319 next = last_dev_address(conf->reshape_progress, &conf->geo);
4320
4321 /* 'safe' is the earliest device address that we might
4322 * read from in the old layout after a restart
4323 */
4324 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4325
4326 /* Need to update metadata if 'next' might be beyond 'safe'
4327 * as that would possibly corrupt data
4328 */
4329 if (next > safe + conf->offset_diff)
4330 need_flush = 1;
4331
4332 sector_nr = conf->reshape_progress;
4333 last = sector_nr | (conf->geo.chunk_mask
4334 & conf->prev.chunk_mask);
4335
4336 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4337 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4338 }
4339
4340 if (need_flush ||
4341 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4342 /* Need to update reshape_position in metadata */
4343 wait_barrier(conf);
4344 mddev->reshape_position = conf->reshape_progress;
4345 if (mddev->reshape_backwards)
4346 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4347 - conf->reshape_progress;
4348 else
4349 mddev->curr_resync_completed = conf->reshape_progress;
4350 conf->reshape_checkpoint = jiffies;
4351 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4352 md_wakeup_thread(mddev->thread);
4353 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4354 kthread_should_stop());
4355 conf->reshape_safe = mddev->reshape_position;
4356 allow_barrier(conf);
4357 }
4358
4359read_more:
4360 /* Now schedule reads for blocks from sector_nr to last */
4361 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4362 raise_barrier(conf, sectors_done != 0);
4363 atomic_set(&r10_bio->remaining, 0);
4364 r10_bio->mddev = mddev;
4365 r10_bio->sector = sector_nr;
4366 set_bit(R10BIO_IsReshape, &r10_bio->state);
4367 r10_bio->sectors = last - sector_nr + 1;
4368 rdev = read_balance(conf, r10_bio, &max_sectors);
4369 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4370
4371 if (!rdev) {
4372 /* Cannot read from here, so need to record bad blocks
4373 * on all the target devices.
4374 */
4375 // FIXME
4376 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4377 return sectors_done;
4378 }
4379
4380 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4381
4382 read_bio->bi_bdev = rdev->bdev;
4383 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4384 + rdev->data_offset);
4385 read_bio->bi_private = r10_bio;
4386 read_bio->bi_end_io = end_sync_read;
4387 read_bio->bi_rw = READ;
4388 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4389 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4390 read_bio->bi_vcnt = 0;
4391 read_bio->bi_idx = 0;
4392 read_bio->bi_size = 0;
4393 r10_bio->master_bio = read_bio;
4394 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4395
4396 /* Now find the locations in the new layout */
4397 __raid10_find_phys(&conf->geo, r10_bio);
4398
4399 blist = read_bio;
4400 read_bio->bi_next = NULL;
4401
4402 for (s = 0; s < conf->copies*2; s++) {
4403 struct bio *b;
4404 int d = r10_bio->devs[s/2].devnum;
4405 struct md_rdev *rdev2;
4406 if (s&1) {
4407 rdev2 = conf->mirrors[d].replacement;
4408 b = r10_bio->devs[s/2].repl_bio;
4409 } else {
4410 rdev2 = conf->mirrors[d].rdev;
4411 b = r10_bio->devs[s/2].bio;
4412 }
4413 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4414 continue;
4415 b->bi_bdev = rdev2->bdev;
4416 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4417 b->bi_private = r10_bio;
4418 b->bi_end_io = end_reshape_write;
4419 b->bi_rw = WRITE;
4420 b->bi_flags &= ~(BIO_POOL_MASK - 1);
4421 b->bi_flags |= 1 << BIO_UPTODATE;
4422 b->bi_next = blist;
4423 b->bi_vcnt = 0;
4424 b->bi_idx = 0;
4425 b->bi_size = 0;
4426 blist = b;
4427 }
4428
4429 /* Now add as many pages as possible to all of these bios. */
4430
4431 nr_sectors = 0;
4432 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4433 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4434 int len = (max_sectors - s) << 9;
4435 if (len > PAGE_SIZE)
4436 len = PAGE_SIZE;
4437 for (bio = blist; bio ; bio = bio->bi_next) {
4438 struct bio *bio2;
4439 if (bio_add_page(bio, page, len, 0))
4440 continue;
4441
4442 /* Didn't fit, must stop */
4443 for (bio2 = blist;
4444 bio2 && bio2 != bio;
4445 bio2 = bio2->bi_next) {
4446 /* Remove last page from this bio */
4447 bio2->bi_vcnt--;
4448 bio2->bi_size -= len;
4449 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4450 }
4451 goto bio_full;
4452 }
4453 sector_nr += len >> 9;
4454 nr_sectors += len >> 9;
4455 }
4456bio_full:
4457 r10_bio->sectors = nr_sectors;
4458
4459 /* Now submit the read */
4460 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4461 atomic_inc(&r10_bio->remaining);
4462 read_bio->bi_next = NULL;
4463 generic_make_request(read_bio);
4464 sector_nr += nr_sectors;
4465 sectors_done += nr_sectors;
4466 if (sector_nr <= last)
4467 goto read_more;
4468
4469 /* Now that we have done the whole section we can
4470 * update reshape_progress
4471 */
4472 if (mddev->reshape_backwards)
4473 conf->reshape_progress -= sectors_done;
4474 else
4475 conf->reshape_progress += sectors_done;
4476
4477 return sectors_done;
4478}
4479
4480static void end_reshape_request(struct r10bio *r10_bio);
4481static int handle_reshape_read_error(struct mddev *mddev,
4482 struct r10bio *r10_bio);
4483static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4484{
4485 /* Reshape read completed. Hopefully we have a block
4486 * to write out.
4487 * If we got a read error then we do sync 1-page reads from
4488 * elsewhere until we find the data - or give up.
4489 */
4490 struct r10conf *conf = mddev->private;
4491 int s;
4492
4493 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4494 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4495 /* Reshape has been aborted */
4496 md_done_sync(mddev, r10_bio->sectors, 0);
4497 return;
4498 }
4499
4500 /* We definitely have the data in the pages, schedule the
4501 * writes.
4502 */
4503 atomic_set(&r10_bio->remaining, 1);
4504 for (s = 0; s < conf->copies*2; s++) {
4505 struct bio *b;
4506 int d = r10_bio->devs[s/2].devnum;
4507 struct md_rdev *rdev;
4508 if (s&1) {
4509 rdev = conf->mirrors[d].replacement;
4510 b = r10_bio->devs[s/2].repl_bio;
4511 } else {
4512 rdev = conf->mirrors[d].rdev;
4513 b = r10_bio->devs[s/2].bio;
4514 }
4515 if (!rdev || test_bit(Faulty, &rdev->flags))
4516 continue;
4517 atomic_inc(&rdev->nr_pending);
4518 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4519 atomic_inc(&r10_bio->remaining);
4520 b->bi_next = NULL;
4521 generic_make_request(b);
4522 }
4523 end_reshape_request(r10_bio);
4524}
4525
4526static void end_reshape(struct r10conf *conf)
4527{
4528 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4529 return;
4530
4531 spin_lock_irq(&conf->device_lock);
4532 conf->prev = conf->geo;
4533 md_finish_reshape(conf->mddev);
4534 smp_wmb();
4535 conf->reshape_progress = MaxSector;
4536 spin_unlock_irq(&conf->device_lock);
4537
4538 /* read-ahead size must cover two whole stripes, which is
4539 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4540 */
4541 if (conf->mddev->queue) {
4542 int stripe = conf->geo.raid_disks *
4543 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4544 stripe /= conf->geo.near_copies;
4545 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4546 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4547 }
4548 conf->fullsync = 0;
4549}
4550
4551
4552static int handle_reshape_read_error(struct mddev *mddev,
4553 struct r10bio *r10_bio)
4554{
4555 /* Use sync reads to get the blocks from somewhere else */
4556 int sectors = r10_bio->sectors;
3ea7daa5 4557 struct r10conf *conf = mddev->private;
e0ee7785
N
4558 struct {
4559 struct r10bio r10_bio;
4560 struct r10dev devs[conf->copies];
4561 } on_stack;
4562 struct r10bio *r10b = &on_stack.r10_bio;
3ea7daa5
N
4563 int slot = 0;
4564 int idx = 0;
4565 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4566
e0ee7785
N
4567 r10b->sector = r10_bio->sector;
4568 __raid10_find_phys(&conf->prev, r10b);
3ea7daa5
N
4569
4570 while (sectors) {
4571 int s = sectors;
4572 int success = 0;
4573 int first_slot = slot;
4574
4575 if (s > (PAGE_SIZE >> 9))
4576 s = PAGE_SIZE >> 9;
4577
4578 while (!success) {
e0ee7785 4579 int d = r10b->devs[slot].devnum;
3ea7daa5
N
4580 struct md_rdev *rdev = conf->mirrors[d].rdev;
4581 sector_t addr;
4582 if (rdev == NULL ||
4583 test_bit(Faulty, &rdev->flags) ||
4584 !test_bit(In_sync, &rdev->flags))
4585 goto failed;
4586
e0ee7785 4587 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
3ea7daa5
N
4588 success = sync_page_io(rdev,
4589 addr,
4590 s << 9,
4591 bvec[idx].bv_page,
4592 READ, false);
4593 if (success)
4594 break;
4595 failed:
4596 slot++;
4597 if (slot >= conf->copies)
4598 slot = 0;
4599 if (slot == first_slot)
4600 break;
4601 }
4602 if (!success) {
4603 /* couldn't read this block, must give up */
4604 set_bit(MD_RECOVERY_INTR,
4605 &mddev->recovery);
4606 return -EIO;
4607 }
4608 sectors -= s;
4609 idx++;
4610 }
4611 return 0;
4612}
4613
4614static void end_reshape_write(struct bio *bio, int error)
4615{
4616 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4617 struct r10bio *r10_bio = bio->bi_private;
4618 struct mddev *mddev = r10_bio->mddev;
4619 struct r10conf *conf = mddev->private;
4620 int d;
4621 int slot;
4622 int repl;
4623 struct md_rdev *rdev = NULL;
4624
4625 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4626 if (repl)
4627 rdev = conf->mirrors[d].replacement;
4628 if (!rdev) {
4629 smp_mb();
4630 rdev = conf->mirrors[d].rdev;
4631 }
4632
4633 if (!uptodate) {
4634 /* FIXME should record badblock */
4635 md_error(mddev, rdev);
4636 }
4637
4638 rdev_dec_pending(rdev, mddev);
4639 end_reshape_request(r10_bio);
4640}
4641
4642static void end_reshape_request(struct r10bio *r10_bio)
4643{
4644 if (!atomic_dec_and_test(&r10_bio->remaining))
4645 return;
4646 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4647 bio_put(r10_bio->master_bio);
4648 put_buf(r10_bio);
4649}
4650
4651static void raid10_finish_reshape(struct mddev *mddev)
4652{
4653 struct r10conf *conf = mddev->private;
4654
4655 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4656 return;
4657
4658 if (mddev->delta_disks > 0) {
4659 sector_t size = raid10_size(mddev, 0, 0);
4660 md_set_array_sectors(mddev, size);
4661 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4662 mddev->recovery_cp = mddev->resync_max_sectors;
4663 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4664 }
4665 mddev->resync_max_sectors = size;
4666 set_capacity(mddev->gendisk, mddev->array_sectors);
4667 revalidate_disk(mddev->gendisk);
63aced61
N
4668 } else {
4669 int d;
4670 for (d = conf->geo.raid_disks ;
4671 d < conf->geo.raid_disks - mddev->delta_disks;
4672 d++) {
4673 struct md_rdev *rdev = conf->mirrors[d].rdev;
4674 if (rdev)
4675 clear_bit(In_sync, &rdev->flags);
4676 rdev = conf->mirrors[d].replacement;
4677 if (rdev)
4678 clear_bit(In_sync, &rdev->flags);
4679 }
3ea7daa5
N
4680 }
4681 mddev->layout = mddev->new_layout;
4682 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4683 mddev->reshape_position = MaxSector;
4684 mddev->delta_disks = 0;
4685 mddev->reshape_backwards = 0;
4686}
4687
84fc4b56 4688static struct md_personality raid10_personality =
1da177e4
LT
4689{
4690 .name = "raid10",
2604b703 4691 .level = 10,
1da177e4
LT
4692 .owner = THIS_MODULE,
4693 .make_request = make_request,
4694 .run = run,
4695 .stop = stop,
4696 .status = status,
4697 .error_handler = error,
4698 .hot_add_disk = raid10_add_disk,
4699 .hot_remove_disk= raid10_remove_disk,
4700 .spare_active = raid10_spare_active,
4701 .sync_request = sync_request,
6cce3b23 4702 .quiesce = raid10_quiesce,
80c3a6ce 4703 .size = raid10_size,
006a09a0 4704 .resize = raid10_resize,
dab8b292 4705 .takeover = raid10_takeover,
3ea7daa5
N
4706 .check_reshape = raid10_check_reshape,
4707 .start_reshape = raid10_start_reshape,
4708 .finish_reshape = raid10_finish_reshape,
1da177e4
LT
4709};
4710
4711static int __init raid_init(void)
4712{
2604b703 4713 return register_md_personality(&raid10_personality);
1da177e4
LT
4714}
4715
4716static void raid_exit(void)
4717{
2604b703 4718 unregister_md_personality(&raid10_personality);
1da177e4
LT
4719}
4720
4721module_init(raid_init);
4722module_exit(raid_exit);
4723MODULE_LICENSE("GPL");
0efb9e61 4724MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 4725MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 4726MODULE_ALIAS("md-raid10");
2604b703 4727MODULE_ALIAS("md-level-10");
34db0cd6
N
4728
4729module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.879814 seconds and 5 git commands to generate.