raid5-cache: refactor bio allocation
[deliverable/linux.git] / drivers / md / raid5-cache.c
CommitLineData
f6bed0ef
SL
1/*
2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 */
14#include <linux/kernel.h>
15#include <linux/wait.h>
16#include <linux/blkdev.h>
17#include <linux/slab.h>
18#include <linux/raid/md_p.h>
5cb2fbd6 19#include <linux/crc32c.h>
f6bed0ef
SL
20#include <linux/random.h>
21#include "md.h"
22#include "raid5.h"
23
24/*
25 * metadata/data stored in disk with 4k size unit (a block) regardless
26 * underneath hardware sector size. only works with PAGE_SIZE == 4096
27 */
28#define BLOCK_SECTORS (8)
29
0576b1c6
SL
30/*
31 * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
32 * recovery scans a very long log
33 */
34#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
35#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
36
f6bed0ef
SL
37struct r5l_log {
38 struct md_rdev *rdev;
39
40 u32 uuid_checksum;
41
42 sector_t device_size; /* log device size, round to
43 * BLOCK_SECTORS */
0576b1c6
SL
44 sector_t max_free_space; /* reclaim run if free space is at
45 * this size */
f6bed0ef
SL
46
47 sector_t last_checkpoint; /* log tail. where recovery scan
48 * starts from */
49 u64 last_cp_seq; /* log tail sequence */
50
51 sector_t log_start; /* log head. where new data appends */
52 u64 seq; /* log head sequence */
53
17036461
CH
54 sector_t next_checkpoint;
55 u64 next_cp_seq;
56
f6bed0ef
SL
57 struct mutex io_mutex;
58 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
59
60 spinlock_t io_list_lock;
61 struct list_head running_ios; /* io_units which are still running,
62 * and have not yet been completely
63 * written to the log */
64 struct list_head io_end_ios; /* io_units which have been completely
65 * written to the log but not yet written
66 * to the RAID */
a8c34f91
SL
67 struct list_head flushing_ios; /* io_units which are waiting for log
68 * cache flush */
04732f74 69 struct list_head finished_ios; /* io_units which settle down in log disk */
a8c34f91 70 struct bio flush_bio;
f6bed0ef
SL
71
72 struct kmem_cache *io_kc;
73
0576b1c6
SL
74 struct md_thread *reclaim_thread;
75 unsigned long reclaim_target; /* number of space that need to be
76 * reclaimed. if it's 0, reclaim spaces
77 * used by io_units which are in
78 * IO_UNIT_STRIPE_END state (eg, reclaim
79 * dones't wait for specific io_unit
80 * switching to IO_UNIT_STRIPE_END
81 * state) */
0fd22b45 82 wait_queue_head_t iounit_wait;
0576b1c6 83
f6bed0ef
SL
84 struct list_head no_space_stripes; /* pending stripes, log has no space */
85 spinlock_t no_space_stripes_lock;
56fef7c6
CH
86
87 bool need_cache_flush;
f6bed0ef
SL
88};
89
90/*
91 * an IO range starts from a meta data block and end at the next meta data
92 * block. The io unit's the meta data block tracks data/parity followed it. io
93 * unit is written to log disk with normal write, as we always flush log disk
94 * first and then start move data to raid disks, there is no requirement to
95 * write io unit with FLUSH/FUA
96 */
97struct r5l_io_unit {
98 struct r5l_log *log;
99
100 struct page *meta_page; /* store meta block */
101 int meta_offset; /* current offset in meta_page */
102
103 struct bio_list bios;
104 atomic_t pending_io; /* pending bios not written to log yet */
105 struct bio *current_bio;/* current_bio accepting new data */
106
107 atomic_t pending_stripe;/* how many stripes not flushed to raid */
108 u64 seq; /* seq number of the metablock */
109 sector_t log_start; /* where the io_unit starts */
110 sector_t log_end; /* where the io_unit ends */
111 struct list_head log_sibling; /* log->running_ios */
112 struct list_head stripe_list; /* stripes added to the io_unit */
113
114 int state;
f6bed0ef
SL
115};
116
117/* r5l_io_unit state */
118enum r5l_io_unit_state {
119 IO_UNIT_RUNNING = 0, /* accepting new IO */
120 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
121 * don't accepting new bio */
122 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
a8c34f91 123 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
f6bed0ef
SL
124};
125
126static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
127{
128 start += inc;
129 if (start >= log->device_size)
130 start = start - log->device_size;
131 return start;
132}
133
134static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
135 sector_t end)
136{
137 if (end >= start)
138 return end - start;
139 else
140 return end + log->device_size - start;
141}
142
143static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
144{
145 sector_t used_size;
146
147 used_size = r5l_ring_distance(log, log->last_checkpoint,
148 log->log_start);
149
150 return log->device_size > used_size + size;
151}
152
153static struct r5l_io_unit *r5l_alloc_io_unit(struct r5l_log *log)
154{
155 struct r5l_io_unit *io;
156 /* We can't handle memory allocate failure so far */
157 gfp_t gfp = GFP_NOIO | __GFP_NOFAIL;
158
159 io = kmem_cache_zalloc(log->io_kc, gfp);
160 io->log = log;
161 io->meta_page = alloc_page(gfp | __GFP_ZERO);
162
163 bio_list_init(&io->bios);
164 INIT_LIST_HEAD(&io->log_sibling);
165 INIT_LIST_HEAD(&io->stripe_list);
166 io->state = IO_UNIT_RUNNING;
f6bed0ef
SL
167 return io;
168}
169
170static void r5l_free_io_unit(struct r5l_log *log, struct r5l_io_unit *io)
171{
172 __free_page(io->meta_page);
173 kmem_cache_free(log->io_kc, io);
174}
175
176static void r5l_move_io_unit_list(struct list_head *from, struct list_head *to,
177 enum r5l_io_unit_state state)
178{
179 struct r5l_io_unit *io;
180
181 while (!list_empty(from)) {
182 io = list_first_entry(from, struct r5l_io_unit, log_sibling);
183 /* don't change list order */
184 if (io->state >= state)
185 list_move_tail(&io->log_sibling, to);
186 else
187 break;
188 }
189}
190
f6bed0ef
SL
191static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
192 enum r5l_io_unit_state state)
193{
f6bed0ef
SL
194 if (WARN_ON(io->state >= state))
195 return;
196 io->state = state;
f6bed0ef
SL
197}
198
d8858f43
CH
199static void r5l_io_run_stripes(struct r5l_io_unit *io)
200{
201 struct stripe_head *sh, *next;
202
203 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
204 list_del_init(&sh->log_list);
205 set_bit(STRIPE_HANDLE, &sh->state);
206 raid5_release_stripe(sh);
207 }
208}
209
f6bed0ef 210/* XXX: totally ignores I/O errors */
56fef7c6
CH
211static void r5l_log_run_stripes(struct r5l_log *log)
212{
213 struct r5l_io_unit *io, *next;
214
215 assert_spin_locked(&log->io_list_lock);
216
217 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
218 /* don't change list order */
219 if (io->state < IO_UNIT_IO_END)
220 break;
221
222 list_move_tail(&io->log_sibling, &log->finished_ios);
223 r5l_io_run_stripes(io);
224 }
225}
226
f6bed0ef
SL
227static void r5l_log_endio(struct bio *bio)
228{
229 struct r5l_io_unit *io = bio->bi_private;
230 struct r5l_log *log = io->log;
509ffec7 231 unsigned long flags;
f6bed0ef
SL
232
233 bio_put(bio);
234
235 if (!atomic_dec_and_test(&io->pending_io))
236 return;
237
509ffec7
CH
238 spin_lock_irqsave(&log->io_list_lock, flags);
239 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
56fef7c6
CH
240 if (log->need_cache_flush)
241 r5l_move_io_unit_list(&log->running_ios, &log->io_end_ios,
242 IO_UNIT_IO_END);
243 else
244 r5l_log_run_stripes(log);
509ffec7
CH
245 spin_unlock_irqrestore(&log->io_list_lock, flags);
246
56fef7c6
CH
247 if (log->need_cache_flush)
248 md_wakeup_thread(log->rdev->mddev->thread);
f6bed0ef
SL
249}
250
251static void r5l_submit_current_io(struct r5l_log *log)
252{
253 struct r5l_io_unit *io = log->current_io;
254 struct r5l_meta_block *block;
255 struct bio *bio;
509ffec7 256 unsigned long flags;
f6bed0ef
SL
257 u32 crc;
258
259 if (!io)
260 return;
261
262 block = page_address(io->meta_page);
263 block->meta_size = cpu_to_le32(io->meta_offset);
5cb2fbd6 264 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
f6bed0ef
SL
265 block->checksum = cpu_to_le32(crc);
266
267 log->current_io = NULL;
509ffec7
CH
268 spin_lock_irqsave(&log->io_list_lock, flags);
269 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
270 spin_unlock_irqrestore(&log->io_list_lock, flags);
f6bed0ef
SL
271
272 while ((bio = bio_list_pop(&io->bios))) {
273 /* all IO must start from rdev->data_offset */
274 bio->bi_iter.bi_sector += log->rdev->data_offset;
275 submit_bio(WRITE, bio);
276 }
277}
278
b349feb3
CH
279static struct bio *r5l_bio_alloc(struct r5l_log *log, struct r5l_io_unit *io)
280{
281 struct bio *bio = bio_kmalloc(GFP_NOIO | __GFP_NOFAIL, BIO_MAX_PAGES);
282
283 bio->bi_rw = WRITE;
284 bio->bi_bdev = log->rdev->bdev;
285 bio->bi_iter.bi_sector = log->log_start;
286 bio->bi_end_io = r5l_log_endio;
287 bio->bi_private = io;
288
289 bio_list_add(&io->bios, bio);
290 atomic_inc(&io->pending_io);
291 return bio;
292}
293
f6bed0ef
SL
294static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
295{
296 struct r5l_io_unit *io;
297 struct r5l_meta_block *block;
f6bed0ef
SL
298
299 io = r5l_alloc_io_unit(log);
300
301 block = page_address(io->meta_page);
302 block->magic = cpu_to_le32(R5LOG_MAGIC);
303 block->version = R5LOG_VERSION;
304 block->seq = cpu_to_le64(log->seq);
305 block->position = cpu_to_le64(log->log_start);
306
307 io->log_start = log->log_start;
308 io->meta_offset = sizeof(struct r5l_meta_block);
309 io->seq = log->seq;
310
b349feb3
CH
311 io->current_bio = r5l_bio_alloc(log, io);
312 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
f6bed0ef
SL
313
314 log->seq++;
315 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
316 io->log_end = log->log_start;
317 /* current bio hit disk end */
318 if (log->log_start == 0)
319 io->current_bio = NULL;
320
321 spin_lock_irq(&log->io_list_lock);
322 list_add_tail(&io->log_sibling, &log->running_ios);
323 spin_unlock_irq(&log->io_list_lock);
324
325 return io;
326}
327
328static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
329{
22581f58
CH
330 if (log->current_io &&
331 log->current_io->meta_offset + payload_size > PAGE_SIZE)
f6bed0ef 332 r5l_submit_current_io(log);
f6bed0ef 333
22581f58
CH
334 if (!log->current_io)
335 log->current_io = r5l_new_meta(log);
f6bed0ef
SL
336 return 0;
337}
338
339static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
340 sector_t location,
341 u32 checksum1, u32 checksum2,
342 bool checksum2_valid)
343{
344 struct r5l_io_unit *io = log->current_io;
345 struct r5l_payload_data_parity *payload;
346
347 payload = page_address(io->meta_page) + io->meta_offset;
348 payload->header.type = cpu_to_le16(type);
349 payload->header.flags = cpu_to_le16(0);
350 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
351 (PAGE_SHIFT - 9));
352 payload->location = cpu_to_le64(location);
353 payload->checksum[0] = cpu_to_le32(checksum1);
354 if (checksum2_valid)
355 payload->checksum[1] = cpu_to_le32(checksum2);
356
357 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
358 sizeof(__le32) * (1 + !!checksum2_valid);
359}
360
361static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
362{
363 struct r5l_io_unit *io = log->current_io;
364
365alloc_bio:
b349feb3
CH
366 if (!io->current_bio)
367 io->current_bio = r5l_bio_alloc(log, io);
368
f6bed0ef
SL
369 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) {
370 io->current_bio = NULL;
371 goto alloc_bio;
372 }
373 log->log_start = r5l_ring_add(log, log->log_start,
374 BLOCK_SECTORS);
375 /* current bio hit disk end */
376 if (log->log_start == 0)
377 io->current_bio = NULL;
378
379 io->log_end = log->log_start;
380}
381
382static void r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
383 int data_pages, int parity_pages)
384{
385 int i;
386 int meta_size;
387 struct r5l_io_unit *io;
388
389 meta_size =
390 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
391 * data_pages) +
392 sizeof(struct r5l_payload_data_parity) +
393 sizeof(__le32) * parity_pages;
394
395 r5l_get_meta(log, meta_size);
396 io = log->current_io;
397
398 for (i = 0; i < sh->disks; i++) {
399 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
400 continue;
401 if (i == sh->pd_idx || i == sh->qd_idx)
402 continue;
403 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
404 raid5_compute_blocknr(sh, i, 0),
405 sh->dev[i].log_checksum, 0, false);
406 r5l_append_payload_page(log, sh->dev[i].page);
407 }
408
409 if (sh->qd_idx >= 0) {
410 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
411 sh->sector, sh->dev[sh->pd_idx].log_checksum,
412 sh->dev[sh->qd_idx].log_checksum, true);
413 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
414 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
415 } else {
416 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
417 sh->sector, sh->dev[sh->pd_idx].log_checksum,
418 0, false);
419 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
420 }
421
422 list_add_tail(&sh->log_list, &io->stripe_list);
423 atomic_inc(&io->pending_stripe);
424 sh->log_io = io;
425}
426
509ffec7 427static void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
f6bed0ef
SL
428/*
429 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
430 * data from log to raid disks), so we shouldn't wait for reclaim here
431 */
432int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
433{
434 int write_disks = 0;
435 int data_pages, parity_pages;
436 int meta_size;
437 int reserve;
438 int i;
439
440 if (!log)
441 return -EAGAIN;
442 /* Don't support stripe batch */
443 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
444 test_bit(STRIPE_SYNCING, &sh->state)) {
445 /* the stripe is written to log, we start writing it to raid */
446 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
447 return -EAGAIN;
448 }
449
450 for (i = 0; i < sh->disks; i++) {
451 void *addr;
452
453 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
454 continue;
455 write_disks++;
456 /* checksum is already calculated in last run */
457 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
458 continue;
459 addr = kmap_atomic(sh->dev[i].page);
5cb2fbd6
SL
460 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
461 addr, PAGE_SIZE);
f6bed0ef
SL
462 kunmap_atomic(addr);
463 }
464 parity_pages = 1 + !!(sh->qd_idx >= 0);
465 data_pages = write_disks - parity_pages;
466
467 meta_size =
468 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
469 * data_pages) +
470 sizeof(struct r5l_payload_data_parity) +
471 sizeof(__le32) * parity_pages;
472 /* Doesn't work with very big raid array */
473 if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE)
474 return -EINVAL;
475
476 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
253f9fd4
SL
477 /*
478 * The stripe must enter state machine again to finish the write, so
479 * don't delay.
480 */
481 clear_bit(STRIPE_DELAYED, &sh->state);
f6bed0ef
SL
482 atomic_inc(&sh->count);
483
484 mutex_lock(&log->io_mutex);
485 /* meta + data */
486 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
487 if (r5l_has_free_space(log, reserve))
488 r5l_log_stripe(log, sh, data_pages, parity_pages);
489 else {
490 spin_lock(&log->no_space_stripes_lock);
491 list_add_tail(&sh->log_list, &log->no_space_stripes);
492 spin_unlock(&log->no_space_stripes_lock);
493
494 r5l_wake_reclaim(log, reserve);
495 }
496 mutex_unlock(&log->io_mutex);
497
498 return 0;
499}
500
501void r5l_write_stripe_run(struct r5l_log *log)
502{
503 if (!log)
504 return;
505 mutex_lock(&log->io_mutex);
506 r5l_submit_current_io(log);
507 mutex_unlock(&log->io_mutex);
508}
509
828cbe98
SL
510int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
511{
512 if (!log)
513 return -ENODEV;
514 /*
515 * we flush log disk cache first, then write stripe data to raid disks.
516 * So if bio is finished, the log disk cache is flushed already. The
517 * recovery guarantees we can recovery the bio from log disk, so we
518 * don't need to flush again
519 */
520 if (bio->bi_iter.bi_size == 0) {
521 bio_endio(bio);
522 return 0;
523 }
524 bio->bi_rw &= ~REQ_FLUSH;
525 return -EAGAIN;
526}
527
f6bed0ef
SL
528/* This will run after log space is reclaimed */
529static void r5l_run_no_space_stripes(struct r5l_log *log)
530{
531 struct stripe_head *sh;
532
533 spin_lock(&log->no_space_stripes_lock);
534 while (!list_empty(&log->no_space_stripes)) {
535 sh = list_first_entry(&log->no_space_stripes,
536 struct stripe_head, log_list);
537 list_del_init(&sh->log_list);
538 set_bit(STRIPE_HANDLE, &sh->state);
539 raid5_release_stripe(sh);
540 }
541 spin_unlock(&log->no_space_stripes_lock);
542}
543
17036461
CH
544static sector_t r5l_reclaimable_space(struct r5l_log *log)
545{
546 return r5l_ring_distance(log, log->last_checkpoint,
547 log->next_checkpoint);
548}
549
04732f74 550static bool r5l_complete_finished_ios(struct r5l_log *log)
17036461
CH
551{
552 struct r5l_io_unit *io, *next;
553 bool found = false;
554
555 assert_spin_locked(&log->io_list_lock);
556
04732f74 557 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
17036461
CH
558 /* don't change list order */
559 if (io->state < IO_UNIT_STRIPE_END)
560 break;
561
562 log->next_checkpoint = io->log_start;
563 log->next_cp_seq = io->seq;
564
565 list_del(&io->log_sibling);
566 r5l_free_io_unit(log, io);
567
568 found = true;
569 }
570
571 return found;
572}
573
509ffec7
CH
574static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
575{
576 struct r5l_log *log = io->log;
509ffec7
CH
577 unsigned long flags;
578
579 spin_lock_irqsave(&log->io_list_lock, flags);
580 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
17036461 581
04732f74 582 if (!r5l_complete_finished_ios(log)) {
85f2f9a4
SL
583 spin_unlock_irqrestore(&log->io_list_lock, flags);
584 return;
585 }
509ffec7 586
17036461 587 if (r5l_reclaimable_space(log) > log->max_free_space)
509ffec7
CH
588 r5l_wake_reclaim(log, 0);
589
509ffec7
CH
590 spin_unlock_irqrestore(&log->io_list_lock, flags);
591 wake_up(&log->iounit_wait);
592}
593
0576b1c6
SL
594void r5l_stripe_write_finished(struct stripe_head *sh)
595{
596 struct r5l_io_unit *io;
597
0576b1c6 598 io = sh->log_io;
0576b1c6
SL
599 sh->log_io = NULL;
600
509ffec7
CH
601 if (io && atomic_dec_and_test(&io->pending_stripe))
602 __r5l_stripe_write_finished(io);
0576b1c6
SL
603}
604
a8c34f91
SL
605static void r5l_log_flush_endio(struct bio *bio)
606{
607 struct r5l_log *log = container_of(bio, struct r5l_log,
608 flush_bio);
609 unsigned long flags;
610 struct r5l_io_unit *io;
a8c34f91
SL
611
612 spin_lock_irqsave(&log->io_list_lock, flags);
d8858f43
CH
613 list_for_each_entry(io, &log->flushing_ios, log_sibling)
614 r5l_io_run_stripes(io);
04732f74 615 list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
a8c34f91
SL
616 spin_unlock_irqrestore(&log->io_list_lock, flags);
617}
618
0576b1c6
SL
619/*
620 * Starting dispatch IO to raid.
621 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
622 * broken meta in the middle of a log causes recovery can't find meta at the
623 * head of log. If operations require meta at the head persistent in log, we
624 * must make sure meta before it persistent in log too. A case is:
625 *
626 * stripe data/parity is in log, we start write stripe to raid disks. stripe
627 * data/parity must be persistent in log before we do the write to raid disks.
628 *
629 * The solution is we restrictly maintain io_unit list order. In this case, we
630 * only write stripes of an io_unit to raid disks till the io_unit is the first
631 * one whose data/parity is in log.
632 */
633void r5l_flush_stripe_to_raid(struct r5l_log *log)
634{
a8c34f91 635 bool do_flush;
56fef7c6
CH
636
637 if (!log || !log->need_cache_flush)
0576b1c6 638 return;
0576b1c6
SL
639
640 spin_lock_irq(&log->io_list_lock);
a8c34f91
SL
641 /* flush bio is running */
642 if (!list_empty(&log->flushing_ios)) {
643 spin_unlock_irq(&log->io_list_lock);
644 return;
0576b1c6 645 }
a8c34f91
SL
646 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
647 do_flush = !list_empty(&log->flushing_ios);
0576b1c6 648 spin_unlock_irq(&log->io_list_lock);
a8c34f91
SL
649
650 if (!do_flush)
651 return;
652 bio_reset(&log->flush_bio);
653 log->flush_bio.bi_bdev = log->rdev->bdev;
654 log->flush_bio.bi_end_io = r5l_log_flush_endio;
655 submit_bio(WRITE_FLUSH, &log->flush_bio);
0576b1c6
SL
656}
657
0576b1c6
SL
658static void r5l_write_super(struct r5l_log *log, sector_t cp);
659static void r5l_do_reclaim(struct r5l_log *log)
660{
0576b1c6 661 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
17036461
CH
662 sector_t reclaimable;
663 sector_t next_checkpoint;
664 u64 next_cp_seq;
0576b1c6
SL
665
666 spin_lock_irq(&log->io_list_lock);
667 /*
668 * move proper io_unit to reclaim list. We should not change the order.
669 * reclaimable/unreclaimable io_unit can be mixed in the list, we
670 * shouldn't reuse space of an unreclaimable io_unit
671 */
672 while (1) {
17036461
CH
673 reclaimable = r5l_reclaimable_space(log);
674 if (reclaimable >= reclaim_target ||
0576b1c6
SL
675 (list_empty(&log->running_ios) &&
676 list_empty(&log->io_end_ios) &&
a8c34f91 677 list_empty(&log->flushing_ios) &&
04732f74 678 list_empty(&log->finished_ios)))
0576b1c6
SL
679 break;
680
17036461
CH
681 md_wakeup_thread(log->rdev->mddev->thread);
682 wait_event_lock_irq(log->iounit_wait,
683 r5l_reclaimable_space(log) > reclaimable,
684 log->io_list_lock);
0576b1c6 685 }
17036461
CH
686
687 next_checkpoint = log->next_checkpoint;
688 next_cp_seq = log->next_cp_seq;
0576b1c6
SL
689 spin_unlock_irq(&log->io_list_lock);
690
17036461
CH
691 BUG_ON(reclaimable < 0);
692 if (reclaimable == 0)
0576b1c6
SL
693 return;
694
0576b1c6
SL
695 /*
696 * write_super will flush cache of each raid disk. We must write super
697 * here, because the log area might be reused soon and we don't want to
698 * confuse recovery
699 */
17036461 700 r5l_write_super(log, next_checkpoint);
0576b1c6
SL
701
702 mutex_lock(&log->io_mutex);
17036461
CH
703 log->last_checkpoint = next_checkpoint;
704 log->last_cp_seq = next_cp_seq;
0576b1c6 705 mutex_unlock(&log->io_mutex);
0576b1c6 706
17036461 707 r5l_run_no_space_stripes(log);
0576b1c6
SL
708}
709
710static void r5l_reclaim_thread(struct md_thread *thread)
711{
712 struct mddev *mddev = thread->mddev;
713 struct r5conf *conf = mddev->private;
714 struct r5l_log *log = conf->log;
715
716 if (!log)
717 return;
718 r5l_do_reclaim(log);
719}
720
f6bed0ef
SL
721static void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
722{
0576b1c6
SL
723 unsigned long target;
724 unsigned long new = (unsigned long)space; /* overflow in theory */
725
726 do {
727 target = log->reclaim_target;
728 if (new < target)
729 return;
730 } while (cmpxchg(&log->reclaim_target, target, new) != target);
731 md_wakeup_thread(log->reclaim_thread);
f6bed0ef
SL
732}
733
e6c033f7
SL
734void r5l_quiesce(struct r5l_log *log, int state)
735{
736 if (!log || state == 2)
737 return;
738 if (state == 0) {
739 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
740 log->rdev->mddev, "reclaim");
741 } else if (state == 1) {
742 /*
743 * at this point all stripes are finished, so io_unit is at
744 * least in STRIPE_END state
745 */
746 r5l_wake_reclaim(log, -1L);
747 md_unregister_thread(&log->reclaim_thread);
748 r5l_do_reclaim(log);
749 }
750}
751
355810d1
SL
752struct r5l_recovery_ctx {
753 struct page *meta_page; /* current meta */
754 sector_t meta_total_blocks; /* total size of current meta and data */
755 sector_t pos; /* recovery position */
756 u64 seq; /* recovery position seq */
757};
758
759static int r5l_read_meta_block(struct r5l_log *log,
760 struct r5l_recovery_ctx *ctx)
761{
762 struct page *page = ctx->meta_page;
763 struct r5l_meta_block *mb;
764 u32 crc, stored_crc;
765
766 if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, READ, false))
767 return -EIO;
768
769 mb = page_address(page);
770 stored_crc = le32_to_cpu(mb->checksum);
771 mb->checksum = 0;
772
773 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
774 le64_to_cpu(mb->seq) != ctx->seq ||
775 mb->version != R5LOG_VERSION ||
776 le64_to_cpu(mb->position) != ctx->pos)
777 return -EINVAL;
778
5cb2fbd6 779 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
355810d1
SL
780 if (stored_crc != crc)
781 return -EINVAL;
782
783 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
784 return -EINVAL;
785
786 ctx->meta_total_blocks = BLOCK_SECTORS;
787
788 return 0;
789}
790
791static int r5l_recovery_flush_one_stripe(struct r5l_log *log,
792 struct r5l_recovery_ctx *ctx,
793 sector_t stripe_sect,
794 int *offset, sector_t *log_offset)
795{
796 struct r5conf *conf = log->rdev->mddev->private;
797 struct stripe_head *sh;
798 struct r5l_payload_data_parity *payload;
799 int disk_index;
800
801 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0);
802 while (1) {
803 payload = page_address(ctx->meta_page) + *offset;
804
805 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
806 raid5_compute_sector(conf,
807 le64_to_cpu(payload->location), 0,
808 &disk_index, sh);
809
810 sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
811 sh->dev[disk_index].page, READ, false);
812 sh->dev[disk_index].log_checksum =
813 le32_to_cpu(payload->checksum[0]);
814 set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
815 ctx->meta_total_blocks += BLOCK_SECTORS;
816 } else {
817 disk_index = sh->pd_idx;
818 sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
819 sh->dev[disk_index].page, READ, false);
820 sh->dev[disk_index].log_checksum =
821 le32_to_cpu(payload->checksum[0]);
822 set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
823
824 if (sh->qd_idx >= 0) {
825 disk_index = sh->qd_idx;
826 sync_page_io(log->rdev,
827 r5l_ring_add(log, *log_offset, BLOCK_SECTORS),
828 PAGE_SIZE, sh->dev[disk_index].page,
829 READ, false);
830 sh->dev[disk_index].log_checksum =
831 le32_to_cpu(payload->checksum[1]);
832 set_bit(R5_Wantwrite,
833 &sh->dev[disk_index].flags);
834 }
835 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
836 }
837
838 *log_offset = r5l_ring_add(log, *log_offset,
839 le32_to_cpu(payload->size));
840 *offset += sizeof(struct r5l_payload_data_parity) +
841 sizeof(__le32) *
842 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
843 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
844 break;
845 }
846
847 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
848 void *addr;
849 u32 checksum;
850
851 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
852 continue;
853 addr = kmap_atomic(sh->dev[disk_index].page);
5cb2fbd6 854 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
355810d1
SL
855 kunmap_atomic(addr);
856 if (checksum != sh->dev[disk_index].log_checksum)
857 goto error;
858 }
859
860 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
861 struct md_rdev *rdev, *rrdev;
862
863 if (!test_and_clear_bit(R5_Wantwrite,
864 &sh->dev[disk_index].flags))
865 continue;
866
867 /* in case device is broken */
868 rdev = rcu_dereference(conf->disks[disk_index].rdev);
869 if (rdev)
870 sync_page_io(rdev, stripe_sect, PAGE_SIZE,
871 sh->dev[disk_index].page, WRITE, false);
872 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
873 if (rrdev)
874 sync_page_io(rrdev, stripe_sect, PAGE_SIZE,
875 sh->dev[disk_index].page, WRITE, false);
876 }
877 raid5_release_stripe(sh);
878 return 0;
879
880error:
881 for (disk_index = 0; disk_index < sh->disks; disk_index++)
882 sh->dev[disk_index].flags = 0;
883 raid5_release_stripe(sh);
884 return -EINVAL;
885}
886
887static int r5l_recovery_flush_one_meta(struct r5l_log *log,
888 struct r5l_recovery_ctx *ctx)
889{
890 struct r5conf *conf = log->rdev->mddev->private;
891 struct r5l_payload_data_parity *payload;
892 struct r5l_meta_block *mb;
893 int offset;
894 sector_t log_offset;
895 sector_t stripe_sector;
896
897 mb = page_address(ctx->meta_page);
898 offset = sizeof(struct r5l_meta_block);
899 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
900
901 while (offset < le32_to_cpu(mb->meta_size)) {
902 int dd;
903
904 payload = (void *)mb + offset;
905 stripe_sector = raid5_compute_sector(conf,
906 le64_to_cpu(payload->location), 0, &dd, NULL);
907 if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector,
908 &offset, &log_offset))
909 return -EINVAL;
910 }
911 return 0;
912}
913
914/* copy data/parity from log to raid disks */
915static void r5l_recovery_flush_log(struct r5l_log *log,
916 struct r5l_recovery_ctx *ctx)
917{
918 while (1) {
919 if (r5l_read_meta_block(log, ctx))
920 return;
921 if (r5l_recovery_flush_one_meta(log, ctx))
922 return;
923 ctx->seq++;
924 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
925 }
926}
927
928static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
929 u64 seq)
930{
931 struct page *page;
932 struct r5l_meta_block *mb;
933 u32 crc;
934
935 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
936 if (!page)
937 return -ENOMEM;
938 mb = page_address(page);
939 mb->magic = cpu_to_le32(R5LOG_MAGIC);
940 mb->version = R5LOG_VERSION;
941 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
942 mb->seq = cpu_to_le64(seq);
943 mb->position = cpu_to_le64(pos);
5cb2fbd6 944 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
355810d1
SL
945 mb->checksum = cpu_to_le32(crc);
946
947 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, WRITE_FUA, false)) {
948 __free_page(page);
949 return -EIO;
950 }
951 __free_page(page);
952 return 0;
953}
954
f6bed0ef
SL
955static int r5l_recovery_log(struct r5l_log *log)
956{
355810d1
SL
957 struct r5l_recovery_ctx ctx;
958
959 ctx.pos = log->last_checkpoint;
960 ctx.seq = log->last_cp_seq;
961 ctx.meta_page = alloc_page(GFP_KERNEL);
962 if (!ctx.meta_page)
963 return -ENOMEM;
964
965 r5l_recovery_flush_log(log, &ctx);
966 __free_page(ctx.meta_page);
967
968 /*
969 * we did a recovery. Now ctx.pos points to an invalid meta block. New
970 * log will start here. but we can't let superblock point to last valid
971 * meta block. The log might looks like:
972 * | meta 1| meta 2| meta 3|
973 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
974 * superblock points to meta 1, we write a new valid meta 2n. if crash
975 * happens again, new recovery will start from meta 1. Since meta 2n is
976 * valid now, recovery will think meta 3 is valid, which is wrong.
977 * The solution is we create a new meta in meta2 with its seq == meta
978 * 1's seq + 10 and let superblock points to meta2. The same recovery will
979 * not think meta 3 is a valid meta, because its seq doesn't match
980 */
981 if (ctx.seq > log->last_cp_seq + 1) {
982 int ret;
983
984 ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10);
985 if (ret)
986 return ret;
987 log->seq = ctx.seq + 11;
988 log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
989 r5l_write_super(log, ctx.pos);
990 } else {
991 log->log_start = ctx.pos;
992 log->seq = ctx.seq;
993 }
f6bed0ef
SL
994 return 0;
995}
996
997static void r5l_write_super(struct r5l_log *log, sector_t cp)
998{
999 struct mddev *mddev = log->rdev->mddev;
1000
1001 log->rdev->journal_tail = cp;
1002 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1003}
1004
1005static int r5l_load_log(struct r5l_log *log)
1006{
1007 struct md_rdev *rdev = log->rdev;
1008 struct page *page;
1009 struct r5l_meta_block *mb;
1010 sector_t cp = log->rdev->journal_tail;
1011 u32 stored_crc, expected_crc;
1012 bool create_super = false;
1013 int ret;
1014
1015 /* Make sure it's valid */
1016 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
1017 cp = 0;
1018 page = alloc_page(GFP_KERNEL);
1019 if (!page)
1020 return -ENOMEM;
1021
1022 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, READ, false)) {
1023 ret = -EIO;
1024 goto ioerr;
1025 }
1026 mb = page_address(page);
1027
1028 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1029 mb->version != R5LOG_VERSION) {
1030 create_super = true;
1031 goto create;
1032 }
1033 stored_crc = le32_to_cpu(mb->checksum);
1034 mb->checksum = 0;
5cb2fbd6 1035 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
f6bed0ef
SL
1036 if (stored_crc != expected_crc) {
1037 create_super = true;
1038 goto create;
1039 }
1040 if (le64_to_cpu(mb->position) != cp) {
1041 create_super = true;
1042 goto create;
1043 }
1044create:
1045 if (create_super) {
1046 log->last_cp_seq = prandom_u32();
1047 cp = 0;
1048 /*
1049 * Make sure super points to correct address. Log might have
1050 * data very soon. If super hasn't correct log tail address,
1051 * recovery can't find the log
1052 */
1053 r5l_write_super(log, cp);
1054 } else
1055 log->last_cp_seq = le64_to_cpu(mb->seq);
1056
1057 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
0576b1c6
SL
1058 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
1059 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
1060 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
f6bed0ef
SL
1061 log->last_checkpoint = cp;
1062
1063 __free_page(page);
1064
1065 return r5l_recovery_log(log);
1066ioerr:
1067 __free_page(page);
1068 return ret;
1069}
1070
1071int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
1072{
1073 struct r5l_log *log;
1074
1075 if (PAGE_SIZE != 4096)
1076 return -EINVAL;
1077 log = kzalloc(sizeof(*log), GFP_KERNEL);
1078 if (!log)
1079 return -ENOMEM;
1080 log->rdev = rdev;
1081
56fef7c6
CH
1082 log->need_cache_flush = (rdev->bdev->bd_disk->queue->flush_flags != 0);
1083
5cb2fbd6
SL
1084 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
1085 sizeof(rdev->mddev->uuid));
f6bed0ef
SL
1086
1087 mutex_init(&log->io_mutex);
1088
1089 spin_lock_init(&log->io_list_lock);
1090 INIT_LIST_HEAD(&log->running_ios);
0576b1c6 1091 INIT_LIST_HEAD(&log->io_end_ios);
a8c34f91 1092 INIT_LIST_HEAD(&log->flushing_ios);
04732f74 1093 INIT_LIST_HEAD(&log->finished_ios);
a8c34f91 1094 bio_init(&log->flush_bio);
f6bed0ef
SL
1095
1096 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
1097 if (!log->io_kc)
1098 goto io_kc;
1099
0576b1c6
SL
1100 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
1101 log->rdev->mddev, "reclaim");
1102 if (!log->reclaim_thread)
1103 goto reclaim_thread;
0fd22b45 1104 init_waitqueue_head(&log->iounit_wait);
0576b1c6 1105
f6bed0ef
SL
1106 INIT_LIST_HEAD(&log->no_space_stripes);
1107 spin_lock_init(&log->no_space_stripes_lock);
1108
1109 if (r5l_load_log(log))
1110 goto error;
1111
1112 conf->log = log;
1113 return 0;
1114error:
0576b1c6
SL
1115 md_unregister_thread(&log->reclaim_thread);
1116reclaim_thread:
f6bed0ef
SL
1117 kmem_cache_destroy(log->io_kc);
1118io_kc:
1119 kfree(log);
1120 return -EINVAL;
1121}
1122
1123void r5l_exit_log(struct r5l_log *log)
1124{
0576b1c6 1125 md_unregister_thread(&log->reclaim_thread);
f6bed0ef
SL
1126 kmem_cache_destroy(log->io_kc);
1127 kfree(log);
1128}
This page took 0.071279 seconds and 5 git commands to generate.