RAID5: batch adjacent full stripe write
[deliverable/linux.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
46d5b785 57#include <linux/flex_array.h>
a9add5d9
N
58#include <trace/events/block.h>
59
43b2e5d8 60#include "md.h"
bff61975 61#include "raid5.h"
54071b38 62#include "raid0.h"
ef740c37 63#include "bitmap.h"
72626685 64
851c30c9
SL
65#define cpu_to_group(cpu) cpu_to_node(cpu)
66#define ANY_GROUP NUMA_NO_NODE
67
8e0e99ba
N
68static bool devices_handle_discard_safely = false;
69module_param(devices_handle_discard_safely, bool, 0644);
70MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 72static struct workqueue_struct *raid5_wq;
1da177e4
LT
73/*
74 * Stripe cache
75 */
76
77#define NR_STRIPES 256
78#define STRIPE_SIZE PAGE_SIZE
79#define STRIPE_SHIFT (PAGE_SHIFT - 9)
80#define STRIPE_SECTORS (STRIPE_SIZE>>9)
81#define IO_THRESHOLD 1
8b3e6cdc 82#define BYPASS_THRESHOLD 1
fccddba0 83#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4 84#define HASH_MASK (NR_HASH - 1)
bfc90cb0 85#define MAX_STRIPE_BATCH 8
1da177e4 86
d1688a6d 87static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
88{
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91}
1da177e4 92
566c09c5
SL
93static inline int stripe_hash_locks_hash(sector_t sect)
94{
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96}
97
98static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99{
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102}
103
104static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105{
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108}
109
110static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111{
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118}
119
120static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121{
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127}
128
1da177e4
LT
129/* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
db298e19 135 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
136 * of the current stripe+device
137 */
db298e19
N
138static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139{
aa8b57aa 140 int sectors = bio_sectors(bio);
4f024f37 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
db298e19
N
142 return bio->bi_next;
143 else
144 return NULL;
145}
1da177e4 146
960e739d 147/*
5b99c2ff
JA
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d 150 */
e7836bd6 151static inline int raid5_bi_processed_stripes(struct bio *bio)
960e739d 152{
e7836bd6
SL
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
960e739d
JA
155}
156
e7836bd6 157static inline int raid5_dec_bi_active_stripes(struct bio *bio)
960e739d 158{
e7836bd6
SL
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
960e739d
JA
161}
162
e7836bd6 163static inline void raid5_inc_bi_active_stripes(struct bio *bio)
960e739d 164{
e7836bd6
SL
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
960e739d
JA
167}
168
e7836bd6
SL
169static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
960e739d 171{
e7836bd6
SL
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
960e739d 174
e7836bd6
SL
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
960e739d
JA
179}
180
e7836bd6 181static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
960e739d 182{
e7836bd6
SL
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
960e739d
JA
185}
186
d0dabf7e
N
187/* Find first data disk in a raid6 stripe */
188static inline int raid6_d0(struct stripe_head *sh)
189{
67cc2b81
N
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
d0dabf7e
N
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198}
16a53ecc
N
199static inline int raid6_next_disk(int disk, int raid_disks)
200{
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203}
a4456856 204
d0dabf7e
N
205/* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
67cc2b81
N
210static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
d0dabf7e 212{
6629542e 213 int slot = *count;
67cc2b81 214
e4424fee 215 if (sh->ddf_layout)
6629542e 216 (*count)++;
d0dabf7e 217 if (idx == sh->pd_idx)
67cc2b81 218 return syndrome_disks;
d0dabf7e 219 if (idx == sh->qd_idx)
67cc2b81 220 return syndrome_disks + 1;
e4424fee 221 if (!sh->ddf_layout)
6629542e 222 (*count)++;
d0dabf7e
N
223 return slot;
224}
225
a4456856
DW
226static void return_io(struct bio *return_bi)
227{
228 struct bio *bi = return_bi;
229 while (bi) {
a4456856
DW
230
231 return_bi = bi->bi_next;
232 bi->bi_next = NULL;
4f024f37 233 bi->bi_iter.bi_size = 0;
0a82a8d1
LT
234 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235 bi, 0);
0e13fe23 236 bio_endio(bi, 0);
a4456856
DW
237 bi = return_bi;
238 }
239}
240
d1688a6d 241static void print_raid5_conf (struct r5conf *conf);
1da177e4 242
600aa109
DW
243static int stripe_operations_active(struct stripe_head *sh)
244{
245 return sh->check_state || sh->reconstruct_state ||
246 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248}
249
851c30c9
SL
250static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251{
252 struct r5conf *conf = sh->raid_conf;
253 struct r5worker_group *group;
bfc90cb0 254 int thread_cnt;
851c30c9
SL
255 int i, cpu = sh->cpu;
256
257 if (!cpu_online(cpu)) {
258 cpu = cpumask_any(cpu_online_mask);
259 sh->cpu = cpu;
260 }
261
262 if (list_empty(&sh->lru)) {
263 struct r5worker_group *group;
264 group = conf->worker_groups + cpu_to_group(cpu);
265 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
266 group->stripes_cnt++;
267 sh->group = group;
851c30c9
SL
268 }
269
270 if (conf->worker_cnt_per_group == 0) {
271 md_wakeup_thread(conf->mddev->thread);
272 return;
273 }
274
275 group = conf->worker_groups + cpu_to_group(sh->cpu);
276
bfc90cb0
SL
277 group->workers[0].working = true;
278 /* at least one worker should run to avoid race */
279 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282 /* wakeup more workers */
283 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284 if (group->workers[i].working == false) {
285 group->workers[i].working = true;
286 queue_work_on(sh->cpu, raid5_wq,
287 &group->workers[i].work);
288 thread_cnt--;
289 }
290 }
851c30c9
SL
291}
292
566c09c5
SL
293static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294 struct list_head *temp_inactive_list)
1da177e4 295{
4eb788df
SL
296 BUG_ON(!list_empty(&sh->lru));
297 BUG_ON(atomic_read(&conf->active_stripes)==0);
298 if (test_bit(STRIPE_HANDLE, &sh->state)) {
299 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 300 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 301 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 302 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
303 sh->bm_seq - conf->seq_write > 0)
304 list_add_tail(&sh->lru, &conf->bitmap_list);
305 else {
306 clear_bit(STRIPE_DELAYED, &sh->state);
307 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9
SL
308 if (conf->worker_cnt_per_group == 0) {
309 list_add_tail(&sh->lru, &conf->handle_list);
310 } else {
311 raid5_wakeup_stripe_thread(sh);
312 return;
313 }
4eb788df
SL
314 }
315 md_wakeup_thread(conf->mddev->thread);
316 } else {
317 BUG_ON(stripe_operations_active(sh));
318 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319 if (atomic_dec_return(&conf->preread_active_stripes)
320 < IO_THRESHOLD)
321 md_wakeup_thread(conf->mddev->thread);
322 atomic_dec(&conf->active_stripes);
566c09c5
SL
323 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324 list_add_tail(&sh->lru, temp_inactive_list);
1da177e4
LT
325 }
326}
d0dabf7e 327
566c09c5
SL
328static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329 struct list_head *temp_inactive_list)
4eb788df
SL
330{
331 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
332 do_release_stripe(conf, sh, temp_inactive_list);
333}
334
335/*
336 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337 *
338 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339 * given time. Adding stripes only takes device lock, while deleting stripes
340 * only takes hash lock.
341 */
342static void release_inactive_stripe_list(struct r5conf *conf,
343 struct list_head *temp_inactive_list,
344 int hash)
345{
346 int size;
347 bool do_wakeup = false;
348 unsigned long flags;
349
350 if (hash == NR_STRIPE_HASH_LOCKS) {
351 size = NR_STRIPE_HASH_LOCKS;
352 hash = NR_STRIPE_HASH_LOCKS - 1;
353 } else
354 size = 1;
355 while (size) {
356 struct list_head *list = &temp_inactive_list[size - 1];
357
358 /*
359 * We don't hold any lock here yet, get_active_stripe() might
360 * remove stripes from the list
361 */
362 if (!list_empty_careful(list)) {
363 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
364 if (list_empty(conf->inactive_list + hash) &&
365 !list_empty(list))
366 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5
SL
367 list_splice_tail_init(list, conf->inactive_list + hash);
368 do_wakeup = true;
369 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370 }
371 size--;
372 hash--;
373 }
374
375 if (do_wakeup) {
376 wake_up(&conf->wait_for_stripe);
377 if (conf->retry_read_aligned)
378 md_wakeup_thread(conf->mddev->thread);
379 }
4eb788df
SL
380}
381
773ca82f 382/* should hold conf->device_lock already */
566c09c5
SL
383static int release_stripe_list(struct r5conf *conf,
384 struct list_head *temp_inactive_list)
773ca82f
SL
385{
386 struct stripe_head *sh;
387 int count = 0;
388 struct llist_node *head;
389
390 head = llist_del_all(&conf->released_stripes);
d265d9dc 391 head = llist_reverse_order(head);
773ca82f 392 while (head) {
566c09c5
SL
393 int hash;
394
773ca82f
SL
395 sh = llist_entry(head, struct stripe_head, release_list);
396 head = llist_next(head);
397 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398 smp_mb();
399 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
400 /*
401 * Don't worry the bit is set here, because if the bit is set
402 * again, the count is always > 1. This is true for
403 * STRIPE_ON_UNPLUG_LIST bit too.
404 */
566c09c5
SL
405 hash = sh->hash_lock_index;
406 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
407 count++;
408 }
409
410 return count;
411}
412
1da177e4
LT
413static void release_stripe(struct stripe_head *sh)
414{
d1688a6d 415 struct r5conf *conf = sh->raid_conf;
1da177e4 416 unsigned long flags;
566c09c5
SL
417 struct list_head list;
418 int hash;
773ca82f 419 bool wakeup;
16a53ecc 420
cf170f3f
ES
421 /* Avoid release_list until the last reference.
422 */
423 if (atomic_add_unless(&sh->count, -1, 1))
424 return;
425
ad4068de 426 if (unlikely(!conf->mddev->thread) ||
427 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
428 goto slow_path;
429 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430 if (wakeup)
431 md_wakeup_thread(conf->mddev->thread);
432 return;
433slow_path:
4eb788df 434 local_irq_save(flags);
773ca82f 435 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 436 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
437 INIT_LIST_HEAD(&list);
438 hash = sh->hash_lock_index;
439 do_release_stripe(conf, sh, &list);
4eb788df 440 spin_unlock(&conf->device_lock);
566c09c5 441 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
442 }
443 local_irq_restore(flags);
1da177e4
LT
444}
445
fccddba0 446static inline void remove_hash(struct stripe_head *sh)
1da177e4 447{
45b4233c
DW
448 pr_debug("remove_hash(), stripe %llu\n",
449 (unsigned long long)sh->sector);
1da177e4 450
fccddba0 451 hlist_del_init(&sh->hash);
1da177e4
LT
452}
453
d1688a6d 454static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 455{
fccddba0 456 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 457
45b4233c
DW
458 pr_debug("insert_hash(), stripe %llu\n",
459 (unsigned long long)sh->sector);
1da177e4 460
fccddba0 461 hlist_add_head(&sh->hash, hp);
1da177e4
LT
462}
463
1da177e4 464/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 465static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
466{
467 struct stripe_head *sh = NULL;
468 struct list_head *first;
469
566c09c5 470 if (list_empty(conf->inactive_list + hash))
1da177e4 471 goto out;
566c09c5 472 first = (conf->inactive_list + hash)->next;
1da177e4
LT
473 sh = list_entry(first, struct stripe_head, lru);
474 list_del_init(first);
475 remove_hash(sh);
476 atomic_inc(&conf->active_stripes);
566c09c5 477 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
478 if (list_empty(conf->inactive_list + hash))
479 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
480out:
481 return sh;
482}
483
e4e11e38 484static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
485{
486 struct page *p;
487 int i;
e4e11e38 488 int num = sh->raid_conf->pool_size;
1da177e4 489
e4e11e38 490 for (i = 0; i < num ; i++) {
d592a996 491 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
492 p = sh->dev[i].page;
493 if (!p)
494 continue;
495 sh->dev[i].page = NULL;
2d1f3b5d 496 put_page(p);
1da177e4
LT
497 }
498}
499
e4e11e38 500static int grow_buffers(struct stripe_head *sh)
1da177e4
LT
501{
502 int i;
e4e11e38 503 int num = sh->raid_conf->pool_size;
1da177e4 504
e4e11e38 505 for (i = 0; i < num; i++) {
1da177e4
LT
506 struct page *page;
507
508 if (!(page = alloc_page(GFP_KERNEL))) {
509 return 1;
510 }
511 sh->dev[i].page = page;
d592a996 512 sh->dev[i].orig_page = page;
1da177e4
LT
513 }
514 return 0;
515}
516
784052ec 517static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 518static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 519 struct stripe_head *sh);
1da177e4 520
b5663ba4 521static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 522{
d1688a6d 523 struct r5conf *conf = sh->raid_conf;
566c09c5 524 int i, seq;
1da177e4 525
78bafebd
ES
526 BUG_ON(atomic_read(&sh->count) != 0);
527 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 528 BUG_ON(stripe_operations_active(sh));
59fc630b 529 BUG_ON(sh->batch_head);
d84e0f10 530
45b4233c 531 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 532 (unsigned long long)sector);
566c09c5
SL
533retry:
534 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 535 sh->generation = conf->generation - previous;
b5663ba4 536 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 537 sh->sector = sector;
911d4ee8 538 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
539 sh->state = 0;
540
7ecaa1e6 541 for (i = sh->disks; i--; ) {
1da177e4
LT
542 struct r5dev *dev = &sh->dev[i];
543
d84e0f10 544 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 545 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 546 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 547 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 548 dev->read, dev->towrite, dev->written,
1da177e4 549 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 550 WARN_ON(1);
1da177e4
LT
551 }
552 dev->flags = 0;
784052ec 553 raid5_build_block(sh, i, previous);
1da177e4 554 }
566c09c5
SL
555 if (read_seqcount_retry(&conf->gen_lock, seq))
556 goto retry;
7a87f434 557 sh->overwrite_disks = 0;
1da177e4 558 insert_hash(conf, sh);
851c30c9 559 sh->cpu = smp_processor_id();
da41ba65 560 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
561}
562
d1688a6d 563static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 564 short generation)
1da177e4
LT
565{
566 struct stripe_head *sh;
567
45b4233c 568 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 569 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 570 if (sh->sector == sector && sh->generation == generation)
1da177e4 571 return sh;
45b4233c 572 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
573 return NULL;
574}
575
674806d6
N
576/*
577 * Need to check if array has failed when deciding whether to:
578 * - start an array
579 * - remove non-faulty devices
580 * - add a spare
581 * - allow a reshape
582 * This determination is simple when no reshape is happening.
583 * However if there is a reshape, we need to carefully check
584 * both the before and after sections.
585 * This is because some failed devices may only affect one
586 * of the two sections, and some non-in_sync devices may
587 * be insync in the section most affected by failed devices.
588 */
908f4fbd 589static int calc_degraded(struct r5conf *conf)
674806d6 590{
908f4fbd 591 int degraded, degraded2;
674806d6 592 int i;
674806d6
N
593
594 rcu_read_lock();
595 degraded = 0;
596 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 597 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
598 if (rdev && test_bit(Faulty, &rdev->flags))
599 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
600 if (!rdev || test_bit(Faulty, &rdev->flags))
601 degraded++;
602 else if (test_bit(In_sync, &rdev->flags))
603 ;
604 else
605 /* not in-sync or faulty.
606 * If the reshape increases the number of devices,
607 * this is being recovered by the reshape, so
608 * this 'previous' section is not in_sync.
609 * If the number of devices is being reduced however,
610 * the device can only be part of the array if
611 * we are reverting a reshape, so this section will
612 * be in-sync.
613 */
614 if (conf->raid_disks >= conf->previous_raid_disks)
615 degraded++;
616 }
617 rcu_read_unlock();
908f4fbd
N
618 if (conf->raid_disks == conf->previous_raid_disks)
619 return degraded;
674806d6 620 rcu_read_lock();
908f4fbd 621 degraded2 = 0;
674806d6 622 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 623 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
624 if (rdev && test_bit(Faulty, &rdev->flags))
625 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 626 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 627 degraded2++;
674806d6
N
628 else if (test_bit(In_sync, &rdev->flags))
629 ;
630 else
631 /* not in-sync or faulty.
632 * If reshape increases the number of devices, this
633 * section has already been recovered, else it
634 * almost certainly hasn't.
635 */
636 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 637 degraded2++;
674806d6
N
638 }
639 rcu_read_unlock();
908f4fbd
N
640 if (degraded2 > degraded)
641 return degraded2;
642 return degraded;
643}
644
645static int has_failed(struct r5conf *conf)
646{
647 int degraded;
648
649 if (conf->mddev->reshape_position == MaxSector)
650 return conf->mddev->degraded > conf->max_degraded;
651
652 degraded = calc_degraded(conf);
674806d6
N
653 if (degraded > conf->max_degraded)
654 return 1;
655 return 0;
656}
657
b5663ba4 658static struct stripe_head *
d1688a6d 659get_active_stripe(struct r5conf *conf, sector_t sector,
a8c906ca 660 int previous, int noblock, int noquiesce)
1da177e4
LT
661{
662 struct stripe_head *sh;
566c09c5 663 int hash = stripe_hash_locks_hash(sector);
1da177e4 664
45b4233c 665 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 666
566c09c5 667 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
668
669 do {
72626685 670 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 671 conf->quiesce == 0 || noquiesce,
566c09c5 672 *(conf->hash_locks + hash));
86b42c71 673 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
674 if (!sh) {
675 if (!conf->inactive_blocked)
566c09c5 676 sh = get_free_stripe(conf, hash);
1da177e4
LT
677 if (noblock && sh == NULL)
678 break;
679 if (!sh) {
680 conf->inactive_blocked = 1;
566c09c5
SL
681 wait_event_lock_irq(
682 conf->wait_for_stripe,
683 !list_empty(conf->inactive_list + hash) &&
684 (atomic_read(&conf->active_stripes)
685 < (conf->max_nr_stripes * 3 / 4)
686 || !conf->inactive_blocked),
687 *(conf->hash_locks + hash));
1da177e4 688 conf->inactive_blocked = 0;
7da9d450 689 } else {
b5663ba4 690 init_stripe(sh, sector, previous);
7da9d450
N
691 atomic_inc(&sh->count);
692 }
e240c183 693 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 694 spin_lock(&conf->device_lock);
e240c183 695 if (!atomic_read(&sh->count)) {
1da177e4
LT
696 if (!test_bit(STRIPE_HANDLE, &sh->state))
697 atomic_inc(&conf->active_stripes);
5af9bef7
N
698 BUG_ON(list_empty(&sh->lru) &&
699 !test_bit(STRIPE_EXPANDING, &sh->state));
16a53ecc 700 list_del_init(&sh->lru);
bfc90cb0
SL
701 if (sh->group) {
702 sh->group->stripes_cnt--;
703 sh->group = NULL;
704 }
1da177e4 705 }
7da9d450 706 atomic_inc(&sh->count);
6d183de4 707 spin_unlock(&conf->device_lock);
1da177e4
LT
708 }
709 } while (sh == NULL);
710
566c09c5 711 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
712 return sh;
713}
714
7a87f434 715static bool is_full_stripe_write(struct stripe_head *sh)
716{
717 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
718 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
719}
720
59fc630b 721static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
722{
723 local_irq_disable();
724 if (sh1 > sh2) {
725 spin_lock(&sh2->stripe_lock);
726 spin_lock_nested(&sh1->stripe_lock, 1);
727 } else {
728 spin_lock(&sh1->stripe_lock);
729 spin_lock_nested(&sh2->stripe_lock, 1);
730 }
731}
732
733static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
734{
735 spin_unlock(&sh1->stripe_lock);
736 spin_unlock(&sh2->stripe_lock);
737 local_irq_enable();
738}
739
740/* Only freshly new full stripe normal write stripe can be added to a batch list */
741static bool stripe_can_batch(struct stripe_head *sh)
742{
743 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
744 is_full_stripe_write(sh);
745}
746
747/* we only do back search */
748static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
749{
750 struct stripe_head *head;
751 sector_t head_sector, tmp_sec;
752 int hash;
753 int dd_idx;
754
755 if (!stripe_can_batch(sh))
756 return;
757 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
758 tmp_sec = sh->sector;
759 if (!sector_div(tmp_sec, conf->chunk_sectors))
760 return;
761 head_sector = sh->sector - STRIPE_SECTORS;
762
763 hash = stripe_hash_locks_hash(head_sector);
764 spin_lock_irq(conf->hash_locks + hash);
765 head = __find_stripe(conf, head_sector, conf->generation);
766 if (head && !atomic_inc_not_zero(&head->count)) {
767 spin_lock(&conf->device_lock);
768 if (!atomic_read(&head->count)) {
769 if (!test_bit(STRIPE_HANDLE, &head->state))
770 atomic_inc(&conf->active_stripes);
771 BUG_ON(list_empty(&head->lru) &&
772 !test_bit(STRIPE_EXPANDING, &head->state));
773 list_del_init(&head->lru);
774 if (head->group) {
775 head->group->stripes_cnt--;
776 head->group = NULL;
777 }
778 }
779 atomic_inc(&head->count);
780 spin_unlock(&conf->device_lock);
781 }
782 spin_unlock_irq(conf->hash_locks + hash);
783
784 if (!head)
785 return;
786 if (!stripe_can_batch(head))
787 goto out;
788
789 lock_two_stripes(head, sh);
790 /* clear_batch_ready clear the flag */
791 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
792 goto unlock_out;
793
794 if (sh->batch_head)
795 goto unlock_out;
796
797 dd_idx = 0;
798 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
799 dd_idx++;
800 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
801 goto unlock_out;
802
803 if (head->batch_head) {
804 spin_lock(&head->batch_head->batch_lock);
805 /* This batch list is already running */
806 if (!stripe_can_batch(head)) {
807 spin_unlock(&head->batch_head->batch_lock);
808 goto unlock_out;
809 }
810
811 /*
812 * at this point, head's BATCH_READY could be cleared, but we
813 * can still add the stripe to batch list
814 */
815 list_add(&sh->batch_list, &head->batch_list);
816 spin_unlock(&head->batch_head->batch_lock);
817
818 sh->batch_head = head->batch_head;
819 } else {
820 head->batch_head = head;
821 sh->batch_head = head->batch_head;
822 spin_lock(&head->batch_lock);
823 list_add_tail(&sh->batch_list, &head->batch_list);
824 spin_unlock(&head->batch_lock);
825 }
826
827 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
828 if (atomic_dec_return(&conf->preread_active_stripes)
829 < IO_THRESHOLD)
830 md_wakeup_thread(conf->mddev->thread);
831
832 atomic_inc(&sh->count);
833unlock_out:
834 unlock_two_stripes(head, sh);
835out:
836 release_stripe(head);
837}
838
05616be5
N
839/* Determine if 'data_offset' or 'new_data_offset' should be used
840 * in this stripe_head.
841 */
842static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
843{
844 sector_t progress = conf->reshape_progress;
845 /* Need a memory barrier to make sure we see the value
846 * of conf->generation, or ->data_offset that was set before
847 * reshape_progress was updated.
848 */
849 smp_rmb();
850 if (progress == MaxSector)
851 return 0;
852 if (sh->generation == conf->generation - 1)
853 return 0;
854 /* We are in a reshape, and this is a new-generation stripe,
855 * so use new_data_offset.
856 */
857 return 1;
858}
859
6712ecf8
N
860static void
861raid5_end_read_request(struct bio *bi, int error);
862static void
863raid5_end_write_request(struct bio *bi, int error);
91c00924 864
c4e5ac0a 865static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 866{
d1688a6d 867 struct r5conf *conf = sh->raid_conf;
91c00924 868 int i, disks = sh->disks;
59fc630b 869 struct stripe_head *head_sh = sh;
91c00924
DW
870
871 might_sleep();
872
873 for (i = disks; i--; ) {
874 int rw;
9a3e1101 875 int replace_only = 0;
977df362
N
876 struct bio *bi, *rbi;
877 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 878
879 sh = head_sh;
e9c7469b
TH
880 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
881 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
882 rw = WRITE_FUA;
883 else
884 rw = WRITE;
9e444768 885 if (test_bit(R5_Discard, &sh->dev[i].flags))
620125f2 886 rw |= REQ_DISCARD;
e9c7469b 887 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924 888 rw = READ;
9a3e1101
N
889 else if (test_and_clear_bit(R5_WantReplace,
890 &sh->dev[i].flags)) {
891 rw = WRITE;
892 replace_only = 1;
893 } else
91c00924 894 continue;
bc0934f0
SL
895 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
896 rw |= REQ_SYNC;
91c00924 897
59fc630b 898again:
91c00924 899 bi = &sh->dev[i].req;
977df362 900 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 901
91c00924 902 rcu_read_lock();
9a3e1101 903 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
904 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
905 rdev = rcu_dereference(conf->disks[i].rdev);
906 if (!rdev) {
907 rdev = rrdev;
908 rrdev = NULL;
909 }
9a3e1101
N
910 if (rw & WRITE) {
911 if (replace_only)
912 rdev = NULL;
dd054fce
N
913 if (rdev == rrdev)
914 /* We raced and saw duplicates */
915 rrdev = NULL;
9a3e1101 916 } else {
59fc630b 917 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
918 rdev = rrdev;
919 rrdev = NULL;
920 }
977df362 921
91c00924
DW
922 if (rdev && test_bit(Faulty, &rdev->flags))
923 rdev = NULL;
924 if (rdev)
925 atomic_inc(&rdev->nr_pending);
977df362
N
926 if (rrdev && test_bit(Faulty, &rrdev->flags))
927 rrdev = NULL;
928 if (rrdev)
929 atomic_inc(&rrdev->nr_pending);
91c00924
DW
930 rcu_read_unlock();
931
73e92e51 932 /* We have already checked bad blocks for reads. Now
977df362
N
933 * need to check for writes. We never accept write errors
934 * on the replacement, so we don't to check rrdev.
73e92e51
N
935 */
936 while ((rw & WRITE) && rdev &&
937 test_bit(WriteErrorSeen, &rdev->flags)) {
938 sector_t first_bad;
939 int bad_sectors;
940 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
941 &first_bad, &bad_sectors);
942 if (!bad)
943 break;
944
945 if (bad < 0) {
946 set_bit(BlockedBadBlocks, &rdev->flags);
947 if (!conf->mddev->external &&
948 conf->mddev->flags) {
949 /* It is very unlikely, but we might
950 * still need to write out the
951 * bad block log - better give it
952 * a chance*/
953 md_check_recovery(conf->mddev);
954 }
1850753d 955 /*
956 * Because md_wait_for_blocked_rdev
957 * will dec nr_pending, we must
958 * increment it first.
959 */
960 atomic_inc(&rdev->nr_pending);
73e92e51
N
961 md_wait_for_blocked_rdev(rdev, conf->mddev);
962 } else {
963 /* Acknowledged bad block - skip the write */
964 rdev_dec_pending(rdev, conf->mddev);
965 rdev = NULL;
966 }
967 }
968
91c00924 969 if (rdev) {
9a3e1101
N
970 if (s->syncing || s->expanding || s->expanded
971 || s->replacing)
91c00924
DW
972 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
973
2b7497f0
DW
974 set_bit(STRIPE_IO_STARTED, &sh->state);
975
2f6db2a7 976 bio_reset(bi);
91c00924 977 bi->bi_bdev = rdev->bdev;
2f6db2a7
KO
978 bi->bi_rw = rw;
979 bi->bi_end_io = (rw & WRITE)
980 ? raid5_end_write_request
981 : raid5_end_read_request;
982 bi->bi_private = sh;
983
91c00924 984 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 985 __func__, (unsigned long long)sh->sector,
91c00924
DW
986 bi->bi_rw, i);
987 atomic_inc(&sh->count);
59fc630b 988 if (sh != head_sh)
989 atomic_inc(&head_sh->count);
05616be5 990 if (use_new_offset(conf, sh))
4f024f37 991 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
992 + rdev->new_data_offset);
993 else
4f024f37 994 bi->bi_iter.bi_sector = (sh->sector
05616be5 995 + rdev->data_offset);
59fc630b 996 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
e59aa23f 997 bi->bi_rw |= REQ_NOMERGE;
3f9e7c14 998
d592a996
SL
999 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1000 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1001 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1002 bi->bi_vcnt = 1;
91c00924
DW
1003 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1004 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1005 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1006 /*
1007 * If this is discard request, set bi_vcnt 0. We don't
1008 * want to confuse SCSI because SCSI will replace payload
1009 */
1010 if (rw & REQ_DISCARD)
1011 bi->bi_vcnt = 0;
977df362
N
1012 if (rrdev)
1013 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1014
1015 if (conf->mddev->gendisk)
1016 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1017 bi, disk_devt(conf->mddev->gendisk),
1018 sh->dev[i].sector);
91c00924 1019 generic_make_request(bi);
977df362
N
1020 }
1021 if (rrdev) {
9a3e1101
N
1022 if (s->syncing || s->expanding || s->expanded
1023 || s->replacing)
977df362
N
1024 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1025
1026 set_bit(STRIPE_IO_STARTED, &sh->state);
1027
2f6db2a7 1028 bio_reset(rbi);
977df362 1029 rbi->bi_bdev = rrdev->bdev;
2f6db2a7
KO
1030 rbi->bi_rw = rw;
1031 BUG_ON(!(rw & WRITE));
1032 rbi->bi_end_io = raid5_end_write_request;
1033 rbi->bi_private = sh;
1034
977df362
N
1035 pr_debug("%s: for %llu schedule op %ld on "
1036 "replacement disc %d\n",
1037 __func__, (unsigned long long)sh->sector,
1038 rbi->bi_rw, i);
1039 atomic_inc(&sh->count);
59fc630b 1040 if (sh != head_sh)
1041 atomic_inc(&head_sh->count);
05616be5 1042 if (use_new_offset(conf, sh))
4f024f37 1043 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1044 + rrdev->new_data_offset);
1045 else
4f024f37 1046 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1047 + rrdev->data_offset);
d592a996
SL
1048 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1049 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1050 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1051 rbi->bi_vcnt = 1;
977df362
N
1052 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1053 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1054 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1055 /*
1056 * If this is discard request, set bi_vcnt 0. We don't
1057 * want to confuse SCSI because SCSI will replace payload
1058 */
1059 if (rw & REQ_DISCARD)
1060 rbi->bi_vcnt = 0;
e3620a3a
JB
1061 if (conf->mddev->gendisk)
1062 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1063 rbi, disk_devt(conf->mddev->gendisk),
1064 sh->dev[i].sector);
977df362
N
1065 generic_make_request(rbi);
1066 }
1067 if (!rdev && !rrdev) {
b062962e 1068 if (rw & WRITE)
91c00924
DW
1069 set_bit(STRIPE_DEGRADED, &sh->state);
1070 pr_debug("skip op %ld on disc %d for sector %llu\n",
1071 bi->bi_rw, i, (unsigned long long)sh->sector);
1072 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1073 set_bit(STRIPE_HANDLE, &sh->state);
1074 }
59fc630b 1075
1076 if (!head_sh->batch_head)
1077 continue;
1078 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1079 batch_list);
1080 if (sh != head_sh)
1081 goto again;
91c00924
DW
1082 }
1083}
1084
1085static struct dma_async_tx_descriptor *
d592a996
SL
1086async_copy_data(int frombio, struct bio *bio, struct page **page,
1087 sector_t sector, struct dma_async_tx_descriptor *tx,
1088 struct stripe_head *sh)
91c00924 1089{
7988613b
KO
1090 struct bio_vec bvl;
1091 struct bvec_iter iter;
91c00924 1092 struct page *bio_page;
91c00924 1093 int page_offset;
a08abd8c 1094 struct async_submit_ctl submit;
0403e382 1095 enum async_tx_flags flags = 0;
91c00924 1096
4f024f37
KO
1097 if (bio->bi_iter.bi_sector >= sector)
1098 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1099 else
4f024f37 1100 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1101
0403e382
DW
1102 if (frombio)
1103 flags |= ASYNC_TX_FENCE;
1104 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1105
7988613b
KO
1106 bio_for_each_segment(bvl, bio, iter) {
1107 int len = bvl.bv_len;
91c00924
DW
1108 int clen;
1109 int b_offset = 0;
1110
1111 if (page_offset < 0) {
1112 b_offset = -page_offset;
1113 page_offset += b_offset;
1114 len -= b_offset;
1115 }
1116
1117 if (len > 0 && page_offset + len > STRIPE_SIZE)
1118 clen = STRIPE_SIZE - page_offset;
1119 else
1120 clen = len;
1121
1122 if (clen > 0) {
7988613b
KO
1123 b_offset += bvl.bv_offset;
1124 bio_page = bvl.bv_page;
d592a996
SL
1125 if (frombio) {
1126 if (sh->raid_conf->skip_copy &&
1127 b_offset == 0 && page_offset == 0 &&
1128 clen == STRIPE_SIZE)
1129 *page = bio_page;
1130 else
1131 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1132 b_offset, clen, &submit);
d592a996
SL
1133 } else
1134 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1135 page_offset, clen, &submit);
91c00924 1136 }
a08abd8c
DW
1137 /* chain the operations */
1138 submit.depend_tx = tx;
1139
91c00924
DW
1140 if (clen < len) /* hit end of page */
1141 break;
1142 page_offset += len;
1143 }
1144
1145 return tx;
1146}
1147
1148static void ops_complete_biofill(void *stripe_head_ref)
1149{
1150 struct stripe_head *sh = stripe_head_ref;
1151 struct bio *return_bi = NULL;
e4d84909 1152 int i;
91c00924 1153
e46b272b 1154 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1155 (unsigned long long)sh->sector);
1156
1157 /* clear completed biofills */
1158 for (i = sh->disks; i--; ) {
1159 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1160
1161 /* acknowledge completion of a biofill operation */
e4d84909
DW
1162 /* and check if we need to reply to a read request,
1163 * new R5_Wantfill requests are held off until
83de75cc 1164 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1165 */
1166 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1167 struct bio *rbi, *rbi2;
91c00924 1168
91c00924
DW
1169 BUG_ON(!dev->read);
1170 rbi = dev->read;
1171 dev->read = NULL;
4f024f37 1172 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1173 dev->sector + STRIPE_SECTORS) {
1174 rbi2 = r5_next_bio(rbi, dev->sector);
e7836bd6 1175 if (!raid5_dec_bi_active_stripes(rbi)) {
91c00924
DW
1176 rbi->bi_next = return_bi;
1177 return_bi = rbi;
1178 }
91c00924
DW
1179 rbi = rbi2;
1180 }
1181 }
1182 }
83de75cc 1183 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
1184
1185 return_io(return_bi);
1186
e4d84909 1187 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
1188 release_stripe(sh);
1189}
1190
1191static void ops_run_biofill(struct stripe_head *sh)
1192{
1193 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1194 struct async_submit_ctl submit;
91c00924
DW
1195 int i;
1196
59fc630b 1197 BUG_ON(sh->batch_head);
e46b272b 1198 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1199 (unsigned long long)sh->sector);
1200
1201 for (i = sh->disks; i--; ) {
1202 struct r5dev *dev = &sh->dev[i];
1203 if (test_bit(R5_Wantfill, &dev->flags)) {
1204 struct bio *rbi;
b17459c0 1205 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1206 dev->read = rbi = dev->toread;
1207 dev->toread = NULL;
b17459c0 1208 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1209 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1210 dev->sector + STRIPE_SECTORS) {
d592a996
SL
1211 tx = async_copy_data(0, rbi, &dev->page,
1212 dev->sector, tx, sh);
91c00924
DW
1213 rbi = r5_next_bio(rbi, dev->sector);
1214 }
1215 }
1216 }
1217
1218 atomic_inc(&sh->count);
a08abd8c
DW
1219 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1220 async_trigger_callback(&submit);
91c00924
DW
1221}
1222
4e7d2c0a 1223static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1224{
4e7d2c0a 1225 struct r5dev *tgt;
91c00924 1226
4e7d2c0a
DW
1227 if (target < 0)
1228 return;
91c00924 1229
4e7d2c0a 1230 tgt = &sh->dev[target];
91c00924
DW
1231 set_bit(R5_UPTODATE, &tgt->flags);
1232 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1233 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1234}
1235
ac6b53b6 1236static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1237{
1238 struct stripe_head *sh = stripe_head_ref;
91c00924 1239
e46b272b 1240 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1241 (unsigned long long)sh->sector);
1242
ac6b53b6 1243 /* mark the computed target(s) as uptodate */
4e7d2c0a 1244 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1245 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1246
ecc65c9b
DW
1247 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1248 if (sh->check_state == check_state_compute_run)
1249 sh->check_state = check_state_compute_result;
91c00924
DW
1250 set_bit(STRIPE_HANDLE, &sh->state);
1251 release_stripe(sh);
1252}
1253
d6f38f31
DW
1254/* return a pointer to the address conversion region of the scribble buffer */
1255static addr_conv_t *to_addr_conv(struct stripe_head *sh,
46d5b785 1256 struct raid5_percpu *percpu, int i)
d6f38f31 1257{
46d5b785 1258 void *addr;
1259
1260 addr = flex_array_get(percpu->scribble, i);
1261 return addr + sizeof(struct page *) * (sh->disks + 2);
1262}
1263
1264/* return a pointer to the address conversion region of the scribble buffer */
1265static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1266{
1267 void *addr;
1268
1269 addr = flex_array_get(percpu->scribble, i);
1270 return addr;
d6f38f31
DW
1271}
1272
1273static struct dma_async_tx_descriptor *
1274ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1275{
91c00924 1276 int disks = sh->disks;
46d5b785 1277 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1278 int target = sh->ops.target;
1279 struct r5dev *tgt = &sh->dev[target];
1280 struct page *xor_dest = tgt->page;
1281 int count = 0;
1282 struct dma_async_tx_descriptor *tx;
a08abd8c 1283 struct async_submit_ctl submit;
91c00924
DW
1284 int i;
1285
59fc630b 1286 BUG_ON(sh->batch_head);
1287
91c00924 1288 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1289 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1290 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1291
1292 for (i = disks; i--; )
1293 if (i != target)
1294 xor_srcs[count++] = sh->dev[i].page;
1295
1296 atomic_inc(&sh->count);
1297
0403e382 1298 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1299 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1300 if (unlikely(count == 1))
a08abd8c 1301 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1302 else
a08abd8c 1303 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1304
91c00924
DW
1305 return tx;
1306}
1307
ac6b53b6
DW
1308/* set_syndrome_sources - populate source buffers for gen_syndrome
1309 * @srcs - (struct page *) array of size sh->disks
1310 * @sh - stripe_head to parse
1311 *
1312 * Populates srcs in proper layout order for the stripe and returns the
1313 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1314 * destination buffer is recorded in srcs[count] and the Q destination
1315 * is recorded in srcs[count+1]].
1316 */
1317static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1318{
1319 int disks = sh->disks;
1320 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1321 int d0_idx = raid6_d0(sh);
1322 int count;
1323 int i;
1324
1325 for (i = 0; i < disks; i++)
5dd33c9a 1326 srcs[i] = NULL;
ac6b53b6
DW
1327
1328 count = 0;
1329 i = d0_idx;
1330 do {
1331 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1332
1333 srcs[slot] = sh->dev[i].page;
1334 i = raid6_next_disk(i, disks);
1335 } while (i != d0_idx);
ac6b53b6 1336
e4424fee 1337 return syndrome_disks;
ac6b53b6
DW
1338}
1339
1340static struct dma_async_tx_descriptor *
1341ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1342{
1343 int disks = sh->disks;
46d5b785 1344 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1345 int target;
1346 int qd_idx = sh->qd_idx;
1347 struct dma_async_tx_descriptor *tx;
1348 struct async_submit_ctl submit;
1349 struct r5dev *tgt;
1350 struct page *dest;
1351 int i;
1352 int count;
1353
59fc630b 1354 BUG_ON(sh->batch_head);
ac6b53b6
DW
1355 if (sh->ops.target < 0)
1356 target = sh->ops.target2;
1357 else if (sh->ops.target2 < 0)
1358 target = sh->ops.target;
91c00924 1359 else
ac6b53b6
DW
1360 /* we should only have one valid target */
1361 BUG();
1362 BUG_ON(target < 0);
1363 pr_debug("%s: stripe %llu block: %d\n",
1364 __func__, (unsigned long long)sh->sector, target);
1365
1366 tgt = &sh->dev[target];
1367 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1368 dest = tgt->page;
1369
1370 atomic_inc(&sh->count);
1371
1372 if (target == qd_idx) {
1373 count = set_syndrome_sources(blocks, sh);
1374 blocks[count] = NULL; /* regenerating p is not necessary */
1375 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1376 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1377 ops_complete_compute, sh,
46d5b785 1378 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1379 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1380 } else {
1381 /* Compute any data- or p-drive using XOR */
1382 count = 0;
1383 for (i = disks; i-- ; ) {
1384 if (i == target || i == qd_idx)
1385 continue;
1386 blocks[count++] = sh->dev[i].page;
1387 }
1388
0403e382
DW
1389 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1390 NULL, ops_complete_compute, sh,
46d5b785 1391 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1392 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1393 }
91c00924 1394
91c00924
DW
1395 return tx;
1396}
1397
ac6b53b6
DW
1398static struct dma_async_tx_descriptor *
1399ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1400{
1401 int i, count, disks = sh->disks;
1402 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1403 int d0_idx = raid6_d0(sh);
1404 int faila = -1, failb = -1;
1405 int target = sh->ops.target;
1406 int target2 = sh->ops.target2;
1407 struct r5dev *tgt = &sh->dev[target];
1408 struct r5dev *tgt2 = &sh->dev[target2];
1409 struct dma_async_tx_descriptor *tx;
46d5b785 1410 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1411 struct async_submit_ctl submit;
1412
59fc630b 1413 BUG_ON(sh->batch_head);
ac6b53b6
DW
1414 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1415 __func__, (unsigned long long)sh->sector, target, target2);
1416 BUG_ON(target < 0 || target2 < 0);
1417 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1418 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1419
6c910a78 1420 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1421 * slot number conversion for 'faila' and 'failb'
1422 */
1423 for (i = 0; i < disks ; i++)
5dd33c9a 1424 blocks[i] = NULL;
ac6b53b6
DW
1425 count = 0;
1426 i = d0_idx;
1427 do {
1428 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1429
1430 blocks[slot] = sh->dev[i].page;
1431
1432 if (i == target)
1433 faila = slot;
1434 if (i == target2)
1435 failb = slot;
1436 i = raid6_next_disk(i, disks);
1437 } while (i != d0_idx);
ac6b53b6
DW
1438
1439 BUG_ON(faila == failb);
1440 if (failb < faila)
1441 swap(faila, failb);
1442 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1443 __func__, (unsigned long long)sh->sector, faila, failb);
1444
1445 atomic_inc(&sh->count);
1446
1447 if (failb == syndrome_disks+1) {
1448 /* Q disk is one of the missing disks */
1449 if (faila == syndrome_disks) {
1450 /* Missing P+Q, just recompute */
0403e382
DW
1451 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1452 ops_complete_compute, sh,
46d5b785 1453 to_addr_conv(sh, percpu, 0));
e4424fee 1454 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1455 STRIPE_SIZE, &submit);
1456 } else {
1457 struct page *dest;
1458 int data_target;
1459 int qd_idx = sh->qd_idx;
1460
1461 /* Missing D+Q: recompute D from P, then recompute Q */
1462 if (target == qd_idx)
1463 data_target = target2;
1464 else
1465 data_target = target;
1466
1467 count = 0;
1468 for (i = disks; i-- ; ) {
1469 if (i == data_target || i == qd_idx)
1470 continue;
1471 blocks[count++] = sh->dev[i].page;
1472 }
1473 dest = sh->dev[data_target].page;
0403e382
DW
1474 init_async_submit(&submit,
1475 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1476 NULL, NULL, NULL,
46d5b785 1477 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1478 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1479 &submit);
1480
1481 count = set_syndrome_sources(blocks, sh);
0403e382
DW
1482 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1483 ops_complete_compute, sh,
46d5b785 1484 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1485 return async_gen_syndrome(blocks, 0, count+2,
1486 STRIPE_SIZE, &submit);
1487 }
ac6b53b6 1488 } else {
6c910a78
DW
1489 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1490 ops_complete_compute, sh,
46d5b785 1491 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1492 if (failb == syndrome_disks) {
1493 /* We're missing D+P. */
1494 return async_raid6_datap_recov(syndrome_disks+2,
1495 STRIPE_SIZE, faila,
1496 blocks, &submit);
1497 } else {
1498 /* We're missing D+D. */
1499 return async_raid6_2data_recov(syndrome_disks+2,
1500 STRIPE_SIZE, faila, failb,
1501 blocks, &submit);
1502 }
ac6b53b6
DW
1503 }
1504}
1505
91c00924
DW
1506static void ops_complete_prexor(void *stripe_head_ref)
1507{
1508 struct stripe_head *sh = stripe_head_ref;
1509
e46b272b 1510 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1511 (unsigned long long)sh->sector);
91c00924
DW
1512}
1513
1514static struct dma_async_tx_descriptor *
d6f38f31
DW
1515ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1516 struct dma_async_tx_descriptor *tx)
91c00924 1517{
91c00924 1518 int disks = sh->disks;
46d5b785 1519 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1520 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1521 struct async_submit_ctl submit;
91c00924
DW
1522
1523 /* existing parity data subtracted */
1524 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1525
59fc630b 1526 BUG_ON(sh->batch_head);
e46b272b 1527 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1528 (unsigned long long)sh->sector);
1529
1530 for (i = disks; i--; ) {
1531 struct r5dev *dev = &sh->dev[i];
1532 /* Only process blocks that are known to be uptodate */
d8ee0728 1533 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1534 xor_srcs[count++] = dev->page;
1535 }
1536
0403e382 1537 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1538 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1539 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1540
1541 return tx;
1542}
1543
1544static struct dma_async_tx_descriptor *
d8ee0728 1545ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1546{
1547 int disks = sh->disks;
d8ee0728 1548 int i;
59fc630b 1549 struct stripe_head *head_sh = sh;
91c00924 1550
e46b272b 1551 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1552 (unsigned long long)sh->sector);
1553
1554 for (i = disks; i--; ) {
59fc630b 1555 struct r5dev *dev;
91c00924 1556 struct bio *chosen;
91c00924 1557
59fc630b 1558 sh = head_sh;
1559 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1560 struct bio *wbi;
1561
59fc630b 1562again:
1563 dev = &sh->dev[i];
b17459c0 1564 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1565 chosen = dev->towrite;
1566 dev->towrite = NULL;
7a87f434 1567 sh->overwrite_disks = 0;
91c00924
DW
1568 BUG_ON(dev->written);
1569 wbi = dev->written = chosen;
b17459c0 1570 spin_unlock_irq(&sh->stripe_lock);
d592a996 1571 WARN_ON(dev->page != dev->orig_page);
91c00924 1572
4f024f37 1573 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1574 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1575 if (wbi->bi_rw & REQ_FUA)
1576 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1577 if (wbi->bi_rw & REQ_SYNC)
1578 set_bit(R5_SyncIO, &dev->flags);
9e444768 1579 if (wbi->bi_rw & REQ_DISCARD)
620125f2 1580 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1581 else {
1582 tx = async_copy_data(1, wbi, &dev->page,
1583 dev->sector, tx, sh);
1584 if (dev->page != dev->orig_page) {
1585 set_bit(R5_SkipCopy, &dev->flags);
1586 clear_bit(R5_UPTODATE, &dev->flags);
1587 clear_bit(R5_OVERWRITE, &dev->flags);
1588 }
1589 }
91c00924
DW
1590 wbi = r5_next_bio(wbi, dev->sector);
1591 }
59fc630b 1592
1593 if (head_sh->batch_head) {
1594 sh = list_first_entry(&sh->batch_list,
1595 struct stripe_head,
1596 batch_list);
1597 if (sh == head_sh)
1598 continue;
1599 goto again;
1600 }
91c00924
DW
1601 }
1602 }
1603
1604 return tx;
1605}
1606
ac6b53b6 1607static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1608{
1609 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1610 int disks = sh->disks;
1611 int pd_idx = sh->pd_idx;
1612 int qd_idx = sh->qd_idx;
1613 int i;
9e444768 1614 bool fua = false, sync = false, discard = false;
91c00924 1615
e46b272b 1616 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1617 (unsigned long long)sh->sector);
1618
bc0934f0 1619 for (i = disks; i--; ) {
e9c7469b 1620 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1621 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1622 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1623 }
e9c7469b 1624
91c00924
DW
1625 for (i = disks; i--; ) {
1626 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1627
e9c7469b 1628 if (dev->written || i == pd_idx || i == qd_idx) {
d592a996 1629 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
9e444768 1630 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1631 if (fua)
1632 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1633 if (sync)
1634 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1635 }
91c00924
DW
1636 }
1637
d8ee0728
DW
1638 if (sh->reconstruct_state == reconstruct_state_drain_run)
1639 sh->reconstruct_state = reconstruct_state_drain_result;
1640 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1641 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1642 else {
1643 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1644 sh->reconstruct_state = reconstruct_state_result;
1645 }
91c00924
DW
1646
1647 set_bit(STRIPE_HANDLE, &sh->state);
1648 release_stripe(sh);
1649}
1650
1651static void
ac6b53b6
DW
1652ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1653 struct dma_async_tx_descriptor *tx)
91c00924 1654{
91c00924 1655 int disks = sh->disks;
59fc630b 1656 struct page **xor_srcs;
a08abd8c 1657 struct async_submit_ctl submit;
59fc630b 1658 int count, pd_idx = sh->pd_idx, i;
91c00924 1659 struct page *xor_dest;
d8ee0728 1660 int prexor = 0;
91c00924 1661 unsigned long flags;
59fc630b 1662 int j = 0;
1663 struct stripe_head *head_sh = sh;
1664 int last_stripe;
91c00924 1665
e46b272b 1666 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1667 (unsigned long long)sh->sector);
1668
620125f2
SL
1669 for (i = 0; i < sh->disks; i++) {
1670 if (pd_idx == i)
1671 continue;
1672 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1673 break;
1674 }
1675 if (i >= sh->disks) {
1676 atomic_inc(&sh->count);
620125f2
SL
1677 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1678 ops_complete_reconstruct(sh);
1679 return;
1680 }
59fc630b 1681again:
1682 count = 0;
1683 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1684 /* check if prexor is active which means only process blocks
1685 * that are part of a read-modify-write (written)
1686 */
59fc630b 1687 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1688 prexor = 1;
91c00924
DW
1689 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1690 for (i = disks; i--; ) {
1691 struct r5dev *dev = &sh->dev[i];
59fc630b 1692 if (head_sh->dev[i].written)
91c00924
DW
1693 xor_srcs[count++] = dev->page;
1694 }
1695 } else {
1696 xor_dest = sh->dev[pd_idx].page;
1697 for (i = disks; i--; ) {
1698 struct r5dev *dev = &sh->dev[i];
1699 if (i != pd_idx)
1700 xor_srcs[count++] = dev->page;
1701 }
1702 }
1703
91c00924
DW
1704 /* 1/ if we prexor'd then the dest is reused as a source
1705 * 2/ if we did not prexor then we are redoing the parity
1706 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1707 * for the synchronous xor case
1708 */
59fc630b 1709 last_stripe = !head_sh->batch_head ||
1710 list_first_entry(&sh->batch_list,
1711 struct stripe_head, batch_list) == head_sh;
1712 if (last_stripe) {
1713 flags = ASYNC_TX_ACK |
1714 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1715
1716 atomic_inc(&head_sh->count);
1717 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1718 to_addr_conv(sh, percpu, j));
1719 } else {
1720 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1721 init_async_submit(&submit, flags, tx, NULL, NULL,
1722 to_addr_conv(sh, percpu, j));
1723 }
91c00924 1724
a08abd8c
DW
1725 if (unlikely(count == 1))
1726 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1727 else
1728 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1729 if (!last_stripe) {
1730 j++;
1731 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1732 batch_list);
1733 goto again;
1734 }
91c00924
DW
1735}
1736
ac6b53b6
DW
1737static void
1738ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1739 struct dma_async_tx_descriptor *tx)
1740{
1741 struct async_submit_ctl submit;
59fc630b 1742 struct page **blocks;
1743 int count, i, j = 0;
1744 struct stripe_head *head_sh = sh;
1745 int last_stripe;
ac6b53b6
DW
1746
1747 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1748
620125f2
SL
1749 for (i = 0; i < sh->disks; i++) {
1750 if (sh->pd_idx == i || sh->qd_idx == i)
1751 continue;
1752 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1753 break;
1754 }
1755 if (i >= sh->disks) {
1756 atomic_inc(&sh->count);
620125f2
SL
1757 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1758 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1759 ops_complete_reconstruct(sh);
1760 return;
1761 }
1762
59fc630b 1763again:
1764 blocks = to_addr_page(percpu, j);
ac6b53b6 1765 count = set_syndrome_sources(blocks, sh);
59fc630b 1766 last_stripe = !head_sh->batch_head ||
1767 list_first_entry(&sh->batch_list,
1768 struct stripe_head, batch_list) == head_sh;
1769
1770 if (last_stripe) {
1771 atomic_inc(&head_sh->count);
1772 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1773 head_sh, to_addr_conv(sh, percpu, j));
1774 } else
1775 init_async_submit(&submit, 0, tx, NULL, NULL,
1776 to_addr_conv(sh, percpu, j));
ac6b53b6 1777 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1778 if (!last_stripe) {
1779 j++;
1780 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1781 batch_list);
1782 goto again;
1783 }
91c00924
DW
1784}
1785
1786static void ops_complete_check(void *stripe_head_ref)
1787{
1788 struct stripe_head *sh = stripe_head_ref;
91c00924 1789
e46b272b 1790 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1791 (unsigned long long)sh->sector);
1792
ecc65c9b 1793 sh->check_state = check_state_check_result;
91c00924
DW
1794 set_bit(STRIPE_HANDLE, &sh->state);
1795 release_stripe(sh);
1796}
1797
ac6b53b6 1798static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1799{
91c00924 1800 int disks = sh->disks;
ac6b53b6
DW
1801 int pd_idx = sh->pd_idx;
1802 int qd_idx = sh->qd_idx;
1803 struct page *xor_dest;
46d5b785 1804 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1805 struct dma_async_tx_descriptor *tx;
a08abd8c 1806 struct async_submit_ctl submit;
ac6b53b6
DW
1807 int count;
1808 int i;
91c00924 1809
e46b272b 1810 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1811 (unsigned long long)sh->sector);
1812
59fc630b 1813 BUG_ON(sh->batch_head);
ac6b53b6
DW
1814 count = 0;
1815 xor_dest = sh->dev[pd_idx].page;
1816 xor_srcs[count++] = xor_dest;
91c00924 1817 for (i = disks; i--; ) {
ac6b53b6
DW
1818 if (i == pd_idx || i == qd_idx)
1819 continue;
1820 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1821 }
1822
d6f38f31 1823 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 1824 to_addr_conv(sh, percpu, 0));
099f53cb 1825 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1826 &sh->ops.zero_sum_result, &submit);
91c00924 1827
91c00924 1828 atomic_inc(&sh->count);
a08abd8c
DW
1829 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1830 tx = async_trigger_callback(&submit);
91c00924
DW
1831}
1832
ac6b53b6
DW
1833static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1834{
46d5b785 1835 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
1836 struct async_submit_ctl submit;
1837 int count;
1838
1839 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1840 (unsigned long long)sh->sector, checkp);
1841
59fc630b 1842 BUG_ON(sh->batch_head);
ac6b53b6
DW
1843 count = set_syndrome_sources(srcs, sh);
1844 if (!checkp)
1845 srcs[count] = NULL;
91c00924 1846
91c00924 1847 atomic_inc(&sh->count);
ac6b53b6 1848 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 1849 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1850 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1851 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1852}
1853
51acbcec 1854static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1855{
1856 int overlap_clear = 0, i, disks = sh->disks;
1857 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1858 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1859 int level = conf->level;
d6f38f31
DW
1860 struct raid5_percpu *percpu;
1861 unsigned long cpu;
91c00924 1862
d6f38f31
DW
1863 cpu = get_cpu();
1864 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1865 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1866 ops_run_biofill(sh);
1867 overlap_clear++;
1868 }
1869
7b3a871e 1870 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1871 if (level < 6)
1872 tx = ops_run_compute5(sh, percpu);
1873 else {
1874 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1875 tx = ops_run_compute6_1(sh, percpu);
1876 else
1877 tx = ops_run_compute6_2(sh, percpu);
1878 }
1879 /* terminate the chain if reconstruct is not set to be run */
1880 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1881 async_tx_ack(tx);
1882 }
91c00924 1883
600aa109 1884 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 1885 tx = ops_run_prexor(sh, percpu, tx);
91c00924 1886
600aa109 1887 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1888 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1889 overlap_clear++;
1890 }
1891
ac6b53b6
DW
1892 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1893 if (level < 6)
1894 ops_run_reconstruct5(sh, percpu, tx);
1895 else
1896 ops_run_reconstruct6(sh, percpu, tx);
1897 }
91c00924 1898
ac6b53b6
DW
1899 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1900 if (sh->check_state == check_state_run)
1901 ops_run_check_p(sh, percpu);
1902 else if (sh->check_state == check_state_run_q)
1903 ops_run_check_pq(sh, percpu, 0);
1904 else if (sh->check_state == check_state_run_pq)
1905 ops_run_check_pq(sh, percpu, 1);
1906 else
1907 BUG();
1908 }
91c00924 1909
59fc630b 1910 if (overlap_clear && !sh->batch_head)
91c00924
DW
1911 for (i = disks; i--; ) {
1912 struct r5dev *dev = &sh->dev[i];
1913 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1914 wake_up(&sh->raid_conf->wait_for_overlap);
1915 }
d6f38f31 1916 put_cpu();
91c00924
DW
1917}
1918
566c09c5 1919static int grow_one_stripe(struct r5conf *conf, int hash)
1da177e4
LT
1920{
1921 struct stripe_head *sh;
6ce32846 1922 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
3f294f4f
N
1923 if (!sh)
1924 return 0;
6ce32846 1925
3f294f4f 1926 sh->raid_conf = conf;
3f294f4f 1927
b17459c0
SL
1928 spin_lock_init(&sh->stripe_lock);
1929
e4e11e38
N
1930 if (grow_buffers(sh)) {
1931 shrink_buffers(sh);
3f294f4f
N
1932 kmem_cache_free(conf->slab_cache, sh);
1933 return 0;
1934 }
566c09c5 1935 sh->hash_lock_index = hash;
3f294f4f
N
1936 /* we just created an active stripe so... */
1937 atomic_set(&sh->count, 1);
1938 atomic_inc(&conf->active_stripes);
1939 INIT_LIST_HEAD(&sh->lru);
59fc630b 1940
1941 spin_lock_init(&sh->batch_lock);
1942 INIT_LIST_HEAD(&sh->batch_list);
1943 sh->batch_head = NULL;
3f294f4f
N
1944 release_stripe(sh);
1945 return 1;
1946}
1947
d1688a6d 1948static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 1949{
e18b890b 1950 struct kmem_cache *sc;
5e5e3e78 1951 int devs = max(conf->raid_disks, conf->previous_raid_disks);
566c09c5 1952 int hash;
1da177e4 1953
f4be6b43
N
1954 if (conf->mddev->gendisk)
1955 sprintf(conf->cache_name[0],
1956 "raid%d-%s", conf->level, mdname(conf->mddev));
1957 else
1958 sprintf(conf->cache_name[0],
1959 "raid%d-%p", conf->level, conf->mddev);
1960 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1961
ad01c9e3
N
1962 conf->active_name = 0;
1963 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 1964 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 1965 0, 0, NULL);
1da177e4
LT
1966 if (!sc)
1967 return 1;
1968 conf->slab_cache = sc;
ad01c9e3 1969 conf->pool_size = devs;
566c09c5
SL
1970 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1971 while (num--) {
1972 if (!grow_one_stripe(conf, hash))
1da177e4 1973 return 1;
566c09c5
SL
1974 conf->max_nr_stripes++;
1975 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1976 }
1da177e4
LT
1977 return 0;
1978}
29269553 1979
d6f38f31
DW
1980/**
1981 * scribble_len - return the required size of the scribble region
1982 * @num - total number of disks in the array
1983 *
1984 * The size must be enough to contain:
1985 * 1/ a struct page pointer for each device in the array +2
1986 * 2/ room to convert each entry in (1) to its corresponding dma
1987 * (dma_map_page()) or page (page_address()) address.
1988 *
1989 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1990 * calculate over all devices (not just the data blocks), using zeros in place
1991 * of the P and Q blocks.
1992 */
46d5b785 1993static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
d6f38f31 1994{
46d5b785 1995 struct flex_array *ret;
d6f38f31
DW
1996 size_t len;
1997
1998 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
46d5b785 1999 ret = flex_array_alloc(len, cnt, flags);
2000 if (!ret)
2001 return NULL;
2002 /* always prealloc all elements, so no locking is required */
2003 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2004 flex_array_free(ret);
2005 return NULL;
2006 }
2007 return ret;
d6f38f31
DW
2008}
2009
d1688a6d 2010static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2011{
2012 /* Make all the stripes able to hold 'newsize' devices.
2013 * New slots in each stripe get 'page' set to a new page.
2014 *
2015 * This happens in stages:
2016 * 1/ create a new kmem_cache and allocate the required number of
2017 * stripe_heads.
83f0d77a 2018 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2019 * to the new stripe_heads. This will have the side effect of
2020 * freezing the array as once all stripe_heads have been collected,
2021 * no IO will be possible. Old stripe heads are freed once their
2022 * pages have been transferred over, and the old kmem_cache is
2023 * freed when all stripes are done.
2024 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2025 * we simple return a failre status - no need to clean anything up.
2026 * 4/ allocate new pages for the new slots in the new stripe_heads.
2027 * If this fails, we don't bother trying the shrink the
2028 * stripe_heads down again, we just leave them as they are.
2029 * As each stripe_head is processed the new one is released into
2030 * active service.
2031 *
2032 * Once step2 is started, we cannot afford to wait for a write,
2033 * so we use GFP_NOIO allocations.
2034 */
2035 struct stripe_head *osh, *nsh;
2036 LIST_HEAD(newstripes);
2037 struct disk_info *ndisks;
d6f38f31 2038 unsigned long cpu;
b5470dc5 2039 int err;
e18b890b 2040 struct kmem_cache *sc;
ad01c9e3 2041 int i;
566c09c5 2042 int hash, cnt;
ad01c9e3
N
2043
2044 if (newsize <= conf->pool_size)
2045 return 0; /* never bother to shrink */
2046
b5470dc5
DW
2047 err = md_allow_write(conf->mddev);
2048 if (err)
2049 return err;
2a2275d6 2050
ad01c9e3
N
2051 /* Step 1 */
2052 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2053 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2054 0, 0, NULL);
ad01c9e3
N
2055 if (!sc)
2056 return -ENOMEM;
2057
2058 for (i = conf->max_nr_stripes; i; i--) {
6ce32846 2059 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
ad01c9e3
N
2060 if (!nsh)
2061 break;
2062
ad01c9e3 2063 nsh->raid_conf = conf;
cb13ff69 2064 spin_lock_init(&nsh->stripe_lock);
ad01c9e3
N
2065
2066 list_add(&nsh->lru, &newstripes);
2067 }
2068 if (i) {
2069 /* didn't get enough, give up */
2070 while (!list_empty(&newstripes)) {
2071 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2072 list_del(&nsh->lru);
2073 kmem_cache_free(sc, nsh);
2074 }
2075 kmem_cache_destroy(sc);
2076 return -ENOMEM;
2077 }
2078 /* Step 2 - Must use GFP_NOIO now.
2079 * OK, we have enough stripes, start collecting inactive
2080 * stripes and copying them over
2081 */
566c09c5
SL
2082 hash = 0;
2083 cnt = 0;
ad01c9e3 2084 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5
SL
2085 lock_device_hash_lock(conf, hash);
2086 wait_event_cmd(conf->wait_for_stripe,
2087 !list_empty(conf->inactive_list + hash),
2088 unlock_device_hash_lock(conf, hash),
2089 lock_device_hash_lock(conf, hash));
2090 osh = get_free_stripe(conf, hash);
2091 unlock_device_hash_lock(conf, hash);
ad01c9e3 2092 atomic_set(&nsh->count, 1);
d592a996 2093 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2094 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2095 nsh->dev[i].orig_page = osh->dev[i].page;
2096 }
ad01c9e3
N
2097 for( ; i<newsize; i++)
2098 nsh->dev[i].page = NULL;
566c09c5 2099 nsh->hash_lock_index = hash;
ad01c9e3 2100 kmem_cache_free(conf->slab_cache, osh);
566c09c5
SL
2101 cnt++;
2102 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2103 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2104 hash++;
2105 cnt = 0;
2106 }
ad01c9e3
N
2107 }
2108 kmem_cache_destroy(conf->slab_cache);
2109
2110 /* Step 3.
2111 * At this point, we are holding all the stripes so the array
2112 * is completely stalled, so now is a good time to resize
d6f38f31 2113 * conf->disks and the scribble region
ad01c9e3
N
2114 */
2115 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2116 if (ndisks) {
2117 for (i=0; i<conf->raid_disks; i++)
2118 ndisks[i] = conf->disks[i];
2119 kfree(conf->disks);
2120 conf->disks = ndisks;
2121 } else
2122 err = -ENOMEM;
2123
d6f38f31 2124 get_online_cpus();
d6f38f31
DW
2125 for_each_present_cpu(cpu) {
2126 struct raid5_percpu *percpu;
46d5b785 2127 struct flex_array *scribble;
d6f38f31
DW
2128
2129 percpu = per_cpu_ptr(conf->percpu, cpu);
46d5b785 2130 scribble = scribble_alloc(newsize, conf->chunk_sectors /
2131 STRIPE_SECTORS, GFP_NOIO);
d6f38f31
DW
2132
2133 if (scribble) {
46d5b785 2134 flex_array_free(percpu->scribble);
d6f38f31
DW
2135 percpu->scribble = scribble;
2136 } else {
2137 err = -ENOMEM;
2138 break;
2139 }
2140 }
2141 put_online_cpus();
2142
ad01c9e3
N
2143 /* Step 4, return new stripes to service */
2144 while(!list_empty(&newstripes)) {
2145 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2146 list_del_init(&nsh->lru);
d6f38f31 2147
ad01c9e3
N
2148 for (i=conf->raid_disks; i < newsize; i++)
2149 if (nsh->dev[i].page == NULL) {
2150 struct page *p = alloc_page(GFP_NOIO);
2151 nsh->dev[i].page = p;
d592a996 2152 nsh->dev[i].orig_page = p;
ad01c9e3
N
2153 if (!p)
2154 err = -ENOMEM;
2155 }
2156 release_stripe(nsh);
2157 }
2158 /* critical section pass, GFP_NOIO no longer needed */
2159
2160 conf->slab_cache = sc;
2161 conf->active_name = 1-conf->active_name;
2162 conf->pool_size = newsize;
2163 return err;
2164}
1da177e4 2165
566c09c5 2166static int drop_one_stripe(struct r5conf *conf, int hash)
1da177e4
LT
2167{
2168 struct stripe_head *sh;
2169
566c09c5
SL
2170 spin_lock_irq(conf->hash_locks + hash);
2171 sh = get_free_stripe(conf, hash);
2172 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2173 if (!sh)
2174 return 0;
78bafebd 2175 BUG_ON(atomic_read(&sh->count));
e4e11e38 2176 shrink_buffers(sh);
3f294f4f
N
2177 kmem_cache_free(conf->slab_cache, sh);
2178 atomic_dec(&conf->active_stripes);
2179 return 1;
2180}
2181
d1688a6d 2182static void shrink_stripes(struct r5conf *conf)
3f294f4f 2183{
566c09c5
SL
2184 int hash;
2185 for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
2186 while (drop_one_stripe(conf, hash))
2187 ;
3f294f4f 2188
29fc7e3e
N
2189 if (conf->slab_cache)
2190 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2191 conf->slab_cache = NULL;
2192}
2193
6712ecf8 2194static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 2195{
99c0fb5f 2196 struct stripe_head *sh = bi->bi_private;
d1688a6d 2197 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2198 int disks = sh->disks, i;
1da177e4 2199 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432 2200 char b[BDEVNAME_SIZE];
dd054fce 2201 struct md_rdev *rdev = NULL;
05616be5 2202 sector_t s;
1da177e4
LT
2203
2204 for (i=0 ; i<disks; i++)
2205 if (bi == &sh->dev[i].req)
2206 break;
2207
45b4233c
DW
2208 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2209 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
2210 uptodate);
2211 if (i == disks) {
2212 BUG();
6712ecf8 2213 return;
1da177e4 2214 }
14a75d3e 2215 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2216 /* If replacement finished while this request was outstanding,
2217 * 'replacement' might be NULL already.
2218 * In that case it moved down to 'rdev'.
2219 * rdev is not removed until all requests are finished.
2220 */
14a75d3e 2221 rdev = conf->disks[i].replacement;
dd054fce 2222 if (!rdev)
14a75d3e 2223 rdev = conf->disks[i].rdev;
1da177e4 2224
05616be5
N
2225 if (use_new_offset(conf, sh))
2226 s = sh->sector + rdev->new_data_offset;
2227 else
2228 s = sh->sector + rdev->data_offset;
1da177e4 2229 if (uptodate) {
1da177e4 2230 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2231 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2232 /* Note that this cannot happen on a
2233 * replacement device. We just fail those on
2234 * any error
2235 */
8bda470e
CD
2236 printk_ratelimited(
2237 KERN_INFO
2238 "md/raid:%s: read error corrected"
2239 " (%lu sectors at %llu on %s)\n",
2240 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2241 (unsigned long long)s,
8bda470e 2242 bdevname(rdev->bdev, b));
ddd5115f 2243 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2244 clear_bit(R5_ReadError, &sh->dev[i].flags);
2245 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2246 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2247 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2248
14a75d3e
N
2249 if (atomic_read(&rdev->read_errors))
2250 atomic_set(&rdev->read_errors, 0);
1da177e4 2251 } else {
14a75d3e 2252 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2253 int retry = 0;
2e8ac303 2254 int set_bad = 0;
d6950432 2255
1da177e4 2256 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2257 atomic_inc(&rdev->read_errors);
14a75d3e
N
2258 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2259 printk_ratelimited(
2260 KERN_WARNING
2261 "md/raid:%s: read error on replacement device "
2262 "(sector %llu on %s).\n",
2263 mdname(conf->mddev),
05616be5 2264 (unsigned long long)s,
14a75d3e 2265 bdn);
2e8ac303 2266 else if (conf->mddev->degraded >= conf->max_degraded) {
2267 set_bad = 1;
8bda470e
CD
2268 printk_ratelimited(
2269 KERN_WARNING
2270 "md/raid:%s: read error not correctable "
2271 "(sector %llu on %s).\n",
2272 mdname(conf->mddev),
05616be5 2273 (unsigned long long)s,
8bda470e 2274 bdn);
2e8ac303 2275 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2276 /* Oh, no!!! */
2e8ac303 2277 set_bad = 1;
8bda470e
CD
2278 printk_ratelimited(
2279 KERN_WARNING
2280 "md/raid:%s: read error NOT corrected!! "
2281 "(sector %llu on %s).\n",
2282 mdname(conf->mddev),
05616be5 2283 (unsigned long long)s,
8bda470e 2284 bdn);
2e8ac303 2285 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2286 > conf->max_nr_stripes)
14f8d26b 2287 printk(KERN_WARNING
0c55e022 2288 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2289 mdname(conf->mddev), bdn);
ba22dcbf
N
2290 else
2291 retry = 1;
edfa1f65
BY
2292 if (set_bad && test_bit(In_sync, &rdev->flags)
2293 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2294 retry = 1;
ba22dcbf 2295 if (retry)
3f9e7c14 2296 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2297 set_bit(R5_ReadError, &sh->dev[i].flags);
2298 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2299 } else
2300 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2301 else {
4e5314b5
N
2302 clear_bit(R5_ReadError, &sh->dev[i].flags);
2303 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2304 if (!(set_bad
2305 && test_bit(In_sync, &rdev->flags)
2306 && rdev_set_badblocks(
2307 rdev, sh->sector, STRIPE_SECTORS, 0)))
2308 md_error(conf->mddev, rdev);
ba22dcbf 2309 }
1da177e4 2310 }
14a75d3e 2311 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
2312 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2313 set_bit(STRIPE_HANDLE, &sh->state);
2314 release_stripe(sh);
1da177e4
LT
2315}
2316
d710e138 2317static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 2318{
99c0fb5f 2319 struct stripe_head *sh = bi->bi_private;
d1688a6d 2320 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2321 int disks = sh->disks, i;
977df362 2322 struct md_rdev *uninitialized_var(rdev);
1da177e4 2323 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
b84db560
N
2324 sector_t first_bad;
2325 int bad_sectors;
977df362 2326 int replacement = 0;
1da177e4 2327
977df362
N
2328 for (i = 0 ; i < disks; i++) {
2329 if (bi == &sh->dev[i].req) {
2330 rdev = conf->disks[i].rdev;
1da177e4 2331 break;
977df362
N
2332 }
2333 if (bi == &sh->dev[i].rreq) {
2334 rdev = conf->disks[i].replacement;
dd054fce
N
2335 if (rdev)
2336 replacement = 1;
2337 else
2338 /* rdev was removed and 'replacement'
2339 * replaced it. rdev is not removed
2340 * until all requests are finished.
2341 */
2342 rdev = conf->disks[i].rdev;
977df362
N
2343 break;
2344 }
2345 }
45b4233c 2346 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
2347 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2348 uptodate);
2349 if (i == disks) {
2350 BUG();
6712ecf8 2351 return;
1da177e4
LT
2352 }
2353
977df362
N
2354 if (replacement) {
2355 if (!uptodate)
2356 md_error(conf->mddev, rdev);
2357 else if (is_badblock(rdev, sh->sector,
2358 STRIPE_SECTORS,
2359 &first_bad, &bad_sectors))
2360 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2361 } else {
2362 if (!uptodate) {
9f97e4b1 2363 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2364 set_bit(WriteErrorSeen, &rdev->flags);
2365 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2366 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2367 set_bit(MD_RECOVERY_NEEDED,
2368 &rdev->mddev->recovery);
977df362
N
2369 } else if (is_badblock(rdev, sh->sector,
2370 STRIPE_SECTORS,
c0b32972 2371 &first_bad, &bad_sectors)) {
977df362 2372 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2373 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2374 /* That was a successful write so make
2375 * sure it looks like we already did
2376 * a re-write.
2377 */
2378 set_bit(R5_ReWrite, &sh->dev[i].flags);
2379 }
977df362
N
2380 }
2381 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2382
977df362
N
2383 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2384 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2385 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 2386 release_stripe(sh);
59fc630b 2387
2388 if (sh->batch_head && sh != sh->batch_head)
2389 release_stripe(sh->batch_head);
1da177e4
LT
2390}
2391
784052ec 2392static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
d592a996 2393
784052ec 2394static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2395{
2396 struct r5dev *dev = &sh->dev[i];
2397
2398 bio_init(&dev->req);
2399 dev->req.bi_io_vec = &dev->vec;
d592a996 2400 dev->req.bi_max_vecs = 1;
1da177e4
LT
2401 dev->req.bi_private = sh;
2402
977df362
N
2403 bio_init(&dev->rreq);
2404 dev->rreq.bi_io_vec = &dev->rvec;
d592a996 2405 dev->rreq.bi_max_vecs = 1;
977df362 2406 dev->rreq.bi_private = sh;
977df362 2407
1da177e4 2408 dev->flags = 0;
784052ec 2409 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
2410}
2411
fd01b88c 2412static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2413{
2414 char b[BDEVNAME_SIZE];
d1688a6d 2415 struct r5conf *conf = mddev->private;
908f4fbd 2416 unsigned long flags;
0c55e022 2417 pr_debug("raid456: error called\n");
1da177e4 2418
908f4fbd
N
2419 spin_lock_irqsave(&conf->device_lock, flags);
2420 clear_bit(In_sync, &rdev->flags);
2421 mddev->degraded = calc_degraded(conf);
2422 spin_unlock_irqrestore(&conf->device_lock, flags);
2423 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2424
de393cde 2425 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
2426 set_bit(Faulty, &rdev->flags);
2427 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2428 printk(KERN_ALERT
2429 "md/raid:%s: Disk failure on %s, disabling device.\n"
2430 "md/raid:%s: Operation continuing on %d devices.\n",
2431 mdname(mddev),
2432 bdevname(rdev->bdev, b),
2433 mdname(mddev),
2434 conf->raid_disks - mddev->degraded);
16a53ecc 2435}
1da177e4
LT
2436
2437/*
2438 * Input: a 'big' sector number,
2439 * Output: index of the data and parity disk, and the sector # in them.
2440 */
d1688a6d 2441static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
911d4ee8
N
2442 int previous, int *dd_idx,
2443 struct stripe_head *sh)
1da177e4 2444{
6e3b96ed 2445 sector_t stripe, stripe2;
35f2a591 2446 sector_t chunk_number;
1da177e4 2447 unsigned int chunk_offset;
911d4ee8 2448 int pd_idx, qd_idx;
67cc2b81 2449 int ddf_layout = 0;
1da177e4 2450 sector_t new_sector;
e183eaed
N
2451 int algorithm = previous ? conf->prev_algo
2452 : conf->algorithm;
09c9e5fa
AN
2453 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2454 : conf->chunk_sectors;
112bf897
N
2455 int raid_disks = previous ? conf->previous_raid_disks
2456 : conf->raid_disks;
2457 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2458
2459 /* First compute the information on this sector */
2460
2461 /*
2462 * Compute the chunk number and the sector offset inside the chunk
2463 */
2464 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2465 chunk_number = r_sector;
1da177e4
LT
2466
2467 /*
2468 * Compute the stripe number
2469 */
35f2a591
N
2470 stripe = chunk_number;
2471 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2472 stripe2 = stripe;
1da177e4
LT
2473 /*
2474 * Select the parity disk based on the user selected algorithm.
2475 */
84789554 2476 pd_idx = qd_idx = -1;
16a53ecc
N
2477 switch(conf->level) {
2478 case 4:
911d4ee8 2479 pd_idx = data_disks;
16a53ecc
N
2480 break;
2481 case 5:
e183eaed 2482 switch (algorithm) {
1da177e4 2483 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2484 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2485 if (*dd_idx >= pd_idx)
1da177e4
LT
2486 (*dd_idx)++;
2487 break;
2488 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2489 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2490 if (*dd_idx >= pd_idx)
1da177e4
LT
2491 (*dd_idx)++;
2492 break;
2493 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2494 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2495 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2496 break;
2497 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2498 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2499 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2500 break;
99c0fb5f
N
2501 case ALGORITHM_PARITY_0:
2502 pd_idx = 0;
2503 (*dd_idx)++;
2504 break;
2505 case ALGORITHM_PARITY_N:
2506 pd_idx = data_disks;
2507 break;
1da177e4 2508 default:
99c0fb5f 2509 BUG();
16a53ecc
N
2510 }
2511 break;
2512 case 6:
2513
e183eaed 2514 switch (algorithm) {
16a53ecc 2515 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2516 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2517 qd_idx = pd_idx + 1;
2518 if (pd_idx == raid_disks-1) {
99c0fb5f 2519 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2520 qd_idx = 0;
2521 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2522 (*dd_idx) += 2; /* D D P Q D */
2523 break;
2524 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2525 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2526 qd_idx = pd_idx + 1;
2527 if (pd_idx == raid_disks-1) {
99c0fb5f 2528 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2529 qd_idx = 0;
2530 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2531 (*dd_idx) += 2; /* D D P Q D */
2532 break;
2533 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2534 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2535 qd_idx = (pd_idx + 1) % raid_disks;
2536 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2537 break;
2538 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2539 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2540 qd_idx = (pd_idx + 1) % raid_disks;
2541 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2542 break;
99c0fb5f
N
2543
2544 case ALGORITHM_PARITY_0:
2545 pd_idx = 0;
2546 qd_idx = 1;
2547 (*dd_idx) += 2;
2548 break;
2549 case ALGORITHM_PARITY_N:
2550 pd_idx = data_disks;
2551 qd_idx = data_disks + 1;
2552 break;
2553
2554 case ALGORITHM_ROTATING_ZERO_RESTART:
2555 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2556 * of blocks for computing Q is different.
2557 */
6e3b96ed 2558 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2559 qd_idx = pd_idx + 1;
2560 if (pd_idx == raid_disks-1) {
2561 (*dd_idx)++; /* Q D D D P */
2562 qd_idx = 0;
2563 } else if (*dd_idx >= pd_idx)
2564 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2565 ddf_layout = 1;
99c0fb5f
N
2566 break;
2567
2568 case ALGORITHM_ROTATING_N_RESTART:
2569 /* Same a left_asymmetric, by first stripe is
2570 * D D D P Q rather than
2571 * Q D D D P
2572 */
6e3b96ed
N
2573 stripe2 += 1;
2574 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2575 qd_idx = pd_idx + 1;
2576 if (pd_idx == raid_disks-1) {
2577 (*dd_idx)++; /* Q D D D P */
2578 qd_idx = 0;
2579 } else if (*dd_idx >= pd_idx)
2580 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2581 ddf_layout = 1;
99c0fb5f
N
2582 break;
2583
2584 case ALGORITHM_ROTATING_N_CONTINUE:
2585 /* Same as left_symmetric but Q is before P */
6e3b96ed 2586 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2587 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2588 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2589 ddf_layout = 1;
99c0fb5f
N
2590 break;
2591
2592 case ALGORITHM_LEFT_ASYMMETRIC_6:
2593 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2594 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2595 if (*dd_idx >= pd_idx)
2596 (*dd_idx)++;
2597 qd_idx = raid_disks - 1;
2598 break;
2599
2600 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2601 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2602 if (*dd_idx >= pd_idx)
2603 (*dd_idx)++;
2604 qd_idx = raid_disks - 1;
2605 break;
2606
2607 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2608 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2609 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2610 qd_idx = raid_disks - 1;
2611 break;
2612
2613 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2614 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2615 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2616 qd_idx = raid_disks - 1;
2617 break;
2618
2619 case ALGORITHM_PARITY_0_6:
2620 pd_idx = 0;
2621 (*dd_idx)++;
2622 qd_idx = raid_disks - 1;
2623 break;
2624
16a53ecc 2625 default:
99c0fb5f 2626 BUG();
16a53ecc
N
2627 }
2628 break;
1da177e4
LT
2629 }
2630
911d4ee8
N
2631 if (sh) {
2632 sh->pd_idx = pd_idx;
2633 sh->qd_idx = qd_idx;
67cc2b81 2634 sh->ddf_layout = ddf_layout;
911d4ee8 2635 }
1da177e4
LT
2636 /*
2637 * Finally, compute the new sector number
2638 */
2639 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2640 return new_sector;
2641}
2642
784052ec 2643static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2644{
d1688a6d 2645 struct r5conf *conf = sh->raid_conf;
b875e531
N
2646 int raid_disks = sh->disks;
2647 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2648 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2649 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2650 : conf->chunk_sectors;
e183eaed
N
2651 int algorithm = previous ? conf->prev_algo
2652 : conf->algorithm;
1da177e4
LT
2653 sector_t stripe;
2654 int chunk_offset;
35f2a591
N
2655 sector_t chunk_number;
2656 int dummy1, dd_idx = i;
1da177e4 2657 sector_t r_sector;
911d4ee8 2658 struct stripe_head sh2;
1da177e4
LT
2659
2660 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2661 stripe = new_sector;
1da177e4 2662
16a53ecc
N
2663 if (i == sh->pd_idx)
2664 return 0;
2665 switch(conf->level) {
2666 case 4: break;
2667 case 5:
e183eaed 2668 switch (algorithm) {
1da177e4
LT
2669 case ALGORITHM_LEFT_ASYMMETRIC:
2670 case ALGORITHM_RIGHT_ASYMMETRIC:
2671 if (i > sh->pd_idx)
2672 i--;
2673 break;
2674 case ALGORITHM_LEFT_SYMMETRIC:
2675 case ALGORITHM_RIGHT_SYMMETRIC:
2676 if (i < sh->pd_idx)
2677 i += raid_disks;
2678 i -= (sh->pd_idx + 1);
2679 break;
99c0fb5f
N
2680 case ALGORITHM_PARITY_0:
2681 i -= 1;
2682 break;
2683 case ALGORITHM_PARITY_N:
2684 break;
1da177e4 2685 default:
99c0fb5f 2686 BUG();
16a53ecc
N
2687 }
2688 break;
2689 case 6:
d0dabf7e 2690 if (i == sh->qd_idx)
16a53ecc 2691 return 0; /* It is the Q disk */
e183eaed 2692 switch (algorithm) {
16a53ecc
N
2693 case ALGORITHM_LEFT_ASYMMETRIC:
2694 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2695 case ALGORITHM_ROTATING_ZERO_RESTART:
2696 case ALGORITHM_ROTATING_N_RESTART:
2697 if (sh->pd_idx == raid_disks-1)
2698 i--; /* Q D D D P */
16a53ecc
N
2699 else if (i > sh->pd_idx)
2700 i -= 2; /* D D P Q D */
2701 break;
2702 case ALGORITHM_LEFT_SYMMETRIC:
2703 case ALGORITHM_RIGHT_SYMMETRIC:
2704 if (sh->pd_idx == raid_disks-1)
2705 i--; /* Q D D D P */
2706 else {
2707 /* D D P Q D */
2708 if (i < sh->pd_idx)
2709 i += raid_disks;
2710 i -= (sh->pd_idx + 2);
2711 }
2712 break;
99c0fb5f
N
2713 case ALGORITHM_PARITY_0:
2714 i -= 2;
2715 break;
2716 case ALGORITHM_PARITY_N:
2717 break;
2718 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2719 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2720 if (sh->pd_idx == 0)
2721 i--; /* P D D D Q */
e4424fee
N
2722 else {
2723 /* D D Q P D */
2724 if (i < sh->pd_idx)
2725 i += raid_disks;
2726 i -= (sh->pd_idx + 1);
2727 }
99c0fb5f
N
2728 break;
2729 case ALGORITHM_LEFT_ASYMMETRIC_6:
2730 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2731 if (i > sh->pd_idx)
2732 i--;
2733 break;
2734 case ALGORITHM_LEFT_SYMMETRIC_6:
2735 case ALGORITHM_RIGHT_SYMMETRIC_6:
2736 if (i < sh->pd_idx)
2737 i += data_disks + 1;
2738 i -= (sh->pd_idx + 1);
2739 break;
2740 case ALGORITHM_PARITY_0_6:
2741 i -= 1;
2742 break;
16a53ecc 2743 default:
99c0fb5f 2744 BUG();
16a53ecc
N
2745 }
2746 break;
1da177e4
LT
2747 }
2748
2749 chunk_number = stripe * data_disks + i;
35f2a591 2750 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2751
112bf897 2752 check = raid5_compute_sector(conf, r_sector,
784052ec 2753 previous, &dummy1, &sh2);
911d4ee8
N
2754 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2755 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2756 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2757 mdname(conf->mddev));
1da177e4
LT
2758 return 0;
2759 }
2760 return r_sector;
2761}
2762
600aa109 2763static void
c0f7bddb 2764schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2765 int rcw, int expand)
e33129d8
DW
2766{
2767 int i, pd_idx = sh->pd_idx, disks = sh->disks;
d1688a6d 2768 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2769 int level = conf->level;
e33129d8
DW
2770
2771 if (rcw) {
e33129d8
DW
2772
2773 for (i = disks; i--; ) {
2774 struct r5dev *dev = &sh->dev[i];
2775
2776 if (dev->towrite) {
2777 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2778 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2779 if (!expand)
2780 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2781 s->locked++;
e33129d8
DW
2782 }
2783 }
ce7d363a
N
2784 /* if we are not expanding this is a proper write request, and
2785 * there will be bios with new data to be drained into the
2786 * stripe cache
2787 */
2788 if (!expand) {
2789 if (!s->locked)
2790 /* False alarm, nothing to do */
2791 return;
2792 sh->reconstruct_state = reconstruct_state_drain_run;
2793 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2794 } else
2795 sh->reconstruct_state = reconstruct_state_run;
2796
2797 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2798
c0f7bddb 2799 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2800 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2801 atomic_inc(&conf->pending_full_writes);
e33129d8 2802 } else {
c0f7bddb 2803 BUG_ON(level == 6);
e33129d8
DW
2804 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2805 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2806
e33129d8
DW
2807 for (i = disks; i--; ) {
2808 struct r5dev *dev = &sh->dev[i];
2809 if (i == pd_idx)
2810 continue;
2811
e33129d8
DW
2812 if (dev->towrite &&
2813 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2814 test_bit(R5_Wantcompute, &dev->flags))) {
2815 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2816 set_bit(R5_LOCKED, &dev->flags);
2817 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2818 s->locked++;
e33129d8
DW
2819 }
2820 }
ce7d363a
N
2821 if (!s->locked)
2822 /* False alarm - nothing to do */
2823 return;
2824 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2825 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2826 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2827 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2828 }
2829
c0f7bddb 2830 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2831 * are in flight
2832 */
2833 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2834 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2835 s->locked++;
e33129d8 2836
c0f7bddb
YT
2837 if (level == 6) {
2838 int qd_idx = sh->qd_idx;
2839 struct r5dev *dev = &sh->dev[qd_idx];
2840
2841 set_bit(R5_LOCKED, &dev->flags);
2842 clear_bit(R5_UPTODATE, &dev->flags);
2843 s->locked++;
2844 }
2845
600aa109 2846 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2847 __func__, (unsigned long long)sh->sector,
600aa109 2848 s->locked, s->ops_request);
e33129d8 2849}
16a53ecc 2850
1da177e4
LT
2851/*
2852 * Each stripe/dev can have one or more bion attached.
16a53ecc 2853 * toread/towrite point to the first in a chain.
1da177e4
LT
2854 * The bi_next chain must be in order.
2855 */
da41ba65 2856static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2857 int forwrite, int previous)
1da177e4
LT
2858{
2859 struct bio **bip;
d1688a6d 2860 struct r5conf *conf = sh->raid_conf;
72626685 2861 int firstwrite=0;
1da177e4 2862
cbe47ec5 2863 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 2864 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
2865 (unsigned long long)sh->sector);
2866
b17459c0
SL
2867 /*
2868 * If several bio share a stripe. The bio bi_phys_segments acts as a
2869 * reference count to avoid race. The reference count should already be
2870 * increased before this function is called (for example, in
2871 * make_request()), so other bio sharing this stripe will not free the
2872 * stripe. If a stripe is owned by one stripe, the stripe lock will
2873 * protect it.
2874 */
2875 spin_lock_irq(&sh->stripe_lock);
59fc630b 2876 /* Don't allow new IO added to stripes in batch list */
2877 if (sh->batch_head)
2878 goto overlap;
72626685 2879 if (forwrite) {
1da177e4 2880 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 2881 if (*bip == NULL)
72626685
N
2882 firstwrite = 1;
2883 } else
1da177e4 2884 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
2885 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2886 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
2887 goto overlap;
2888 bip = & (*bip)->bi_next;
2889 }
4f024f37 2890 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
2891 goto overlap;
2892
da41ba65 2893 if (!forwrite || previous)
2894 clear_bit(STRIPE_BATCH_READY, &sh->state);
2895
78bafebd 2896 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2897 if (*bip)
2898 bi->bi_next = *bip;
2899 *bip = bi;
e7836bd6 2900 raid5_inc_bi_active_stripes(bi);
72626685 2901
1da177e4
LT
2902 if (forwrite) {
2903 /* check if page is covered */
2904 sector_t sector = sh->dev[dd_idx].sector;
2905 for (bi=sh->dev[dd_idx].towrite;
2906 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 2907 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 2908 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
2909 if (bio_end_sector(bi) >= sector)
2910 sector = bio_end_sector(bi);
1da177e4
LT
2911 }
2912 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 2913 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
2914 sh->overwrite_disks++;
1da177e4 2915 }
cbe47ec5
N
2916
2917 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 2918 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5 2919 (unsigned long long)sh->sector, dd_idx);
b97390ae 2920 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
2921
2922 if (conf->mddev->bitmap && firstwrite) {
2923 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2924 STRIPE_SECTORS, 0);
2925 sh->bm_seq = conf->seq_flush+1;
2926 set_bit(STRIPE_BIT_DELAY, &sh->state);
2927 }
59fc630b 2928
2929 if (stripe_can_batch(sh))
2930 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
2931 return 1;
2932
2933 overlap:
2934 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 2935 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
2936 return 0;
2937}
2938
d1688a6d 2939static void end_reshape(struct r5conf *conf);
29269553 2940
d1688a6d 2941static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 2942 struct stripe_head *sh)
ccfcc3c1 2943{
784052ec 2944 int sectors_per_chunk =
09c9e5fa 2945 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 2946 int dd_idx;
2d2063ce 2947 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2948 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2949
112bf897
N
2950 raid5_compute_sector(conf,
2951 stripe * (disks - conf->max_degraded)
b875e531 2952 *sectors_per_chunk + chunk_offset,
112bf897 2953 previous,
911d4ee8 2954 &dd_idx, sh);
ccfcc3c1
N
2955}
2956
a4456856 2957static void
d1688a6d 2958handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
2959 struct stripe_head_state *s, int disks,
2960 struct bio **return_bi)
2961{
2962 int i;
59fc630b 2963 BUG_ON(sh->batch_head);
a4456856
DW
2964 for (i = disks; i--; ) {
2965 struct bio *bi;
2966 int bitmap_end = 0;
2967
2968 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 2969 struct md_rdev *rdev;
a4456856
DW
2970 rcu_read_lock();
2971 rdev = rcu_dereference(conf->disks[i].rdev);
2972 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
2973 atomic_inc(&rdev->nr_pending);
2974 else
2975 rdev = NULL;
a4456856 2976 rcu_read_unlock();
7f0da59b
N
2977 if (rdev) {
2978 if (!rdev_set_badblocks(
2979 rdev,
2980 sh->sector,
2981 STRIPE_SECTORS, 0))
2982 md_error(conf->mddev, rdev);
2983 rdev_dec_pending(rdev, conf->mddev);
2984 }
a4456856 2985 }
b17459c0 2986 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
2987 /* fail all writes first */
2988 bi = sh->dev[i].towrite;
2989 sh->dev[i].towrite = NULL;
7a87f434 2990 sh->overwrite_disks = 0;
b17459c0 2991 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 2992 if (bi)
a4456856 2993 bitmap_end = 1;
a4456856
DW
2994
2995 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2996 wake_up(&conf->wait_for_overlap);
2997
4f024f37 2998 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
2999 sh->dev[i].sector + STRIPE_SECTORS) {
3000 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3001 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 3002 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
3003 md_write_end(conf->mddev);
3004 bi->bi_next = *return_bi;
3005 *return_bi = bi;
3006 }
3007 bi = nextbi;
3008 }
7eaf7e8e
SL
3009 if (bitmap_end)
3010 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3011 STRIPE_SECTORS, 0, 0);
3012 bitmap_end = 0;
a4456856
DW
3013 /* and fail all 'written' */
3014 bi = sh->dev[i].written;
3015 sh->dev[i].written = NULL;
d592a996
SL
3016 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3017 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3018 sh->dev[i].page = sh->dev[i].orig_page;
3019 }
3020
a4456856 3021 if (bi) bitmap_end = 1;
4f024f37 3022 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3023 sh->dev[i].sector + STRIPE_SECTORS) {
3024 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3025 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 3026 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
3027 md_write_end(conf->mddev);
3028 bi->bi_next = *return_bi;
3029 *return_bi = bi;
3030 }
3031 bi = bi2;
3032 }
3033
b5e98d65
DW
3034 /* fail any reads if this device is non-operational and
3035 * the data has not reached the cache yet.
3036 */
3037 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3038 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3039 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3040 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3041 bi = sh->dev[i].toread;
3042 sh->dev[i].toread = NULL;
143c4d05 3043 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3044 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3045 wake_up(&conf->wait_for_overlap);
4f024f37 3046 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3047 sh->dev[i].sector + STRIPE_SECTORS) {
3048 struct bio *nextbi =
3049 r5_next_bio(bi, sh->dev[i].sector);
3050 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 3051 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
3052 bi->bi_next = *return_bi;
3053 *return_bi = bi;
3054 }
3055 bi = nextbi;
3056 }
3057 }
a4456856
DW
3058 if (bitmap_end)
3059 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3060 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3061 /* If we were in the middle of a write the parity block might
3062 * still be locked - so just clear all R5_LOCKED flags
3063 */
3064 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856
DW
3065 }
3066
8b3e6cdc
DW
3067 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3068 if (atomic_dec_and_test(&conf->pending_full_writes))
3069 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3070}
3071
7f0da59b 3072static void
d1688a6d 3073handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3074 struct stripe_head_state *s)
3075{
3076 int abort = 0;
3077 int i;
3078
59fc630b 3079 BUG_ON(sh->batch_head);
7f0da59b 3080 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3081 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3082 wake_up(&conf->wait_for_overlap);
7f0da59b 3083 s->syncing = 0;
9a3e1101 3084 s->replacing = 0;
7f0da59b 3085 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3086 * Don't even need to abort as that is handled elsewhere
3087 * if needed, and not always wanted e.g. if there is a known
3088 * bad block here.
9a3e1101 3089 * For recover/replace we need to record a bad block on all
7f0da59b
N
3090 * non-sync devices, or abort the recovery
3091 */
18b9837e
N
3092 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3093 /* During recovery devices cannot be removed, so
3094 * locking and refcounting of rdevs is not needed
3095 */
3096 for (i = 0; i < conf->raid_disks; i++) {
3097 struct md_rdev *rdev = conf->disks[i].rdev;
3098 if (rdev
3099 && !test_bit(Faulty, &rdev->flags)
3100 && !test_bit(In_sync, &rdev->flags)
3101 && !rdev_set_badblocks(rdev, sh->sector,
3102 STRIPE_SECTORS, 0))
3103 abort = 1;
3104 rdev = conf->disks[i].replacement;
3105 if (rdev
3106 && !test_bit(Faulty, &rdev->flags)
3107 && !test_bit(In_sync, &rdev->flags)
3108 && !rdev_set_badblocks(rdev, sh->sector,
3109 STRIPE_SECTORS, 0))
3110 abort = 1;
3111 }
3112 if (abort)
3113 conf->recovery_disabled =
3114 conf->mddev->recovery_disabled;
7f0da59b 3115 }
18b9837e 3116 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3117}
3118
9a3e1101
N
3119static int want_replace(struct stripe_head *sh, int disk_idx)
3120{
3121 struct md_rdev *rdev;
3122 int rv = 0;
3123 /* Doing recovery so rcu locking not required */
3124 rdev = sh->raid_conf->disks[disk_idx].replacement;
3125 if (rdev
3126 && !test_bit(Faulty, &rdev->flags)
3127 && !test_bit(In_sync, &rdev->flags)
3128 && (rdev->recovery_offset <= sh->sector
3129 || rdev->mddev->recovery_cp <= sh->sector))
3130 rv = 1;
3131
3132 return rv;
3133}
3134
93b3dbce 3135/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
3136 * to be read or computed to satisfy a request.
3137 *
3138 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 3139 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 3140 */
2c58f06e
N
3141
3142static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3143 int disk_idx, int disks)
a4456856 3144{
5599becc 3145 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3146 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3147 &sh->dev[s->failed_num[1]] };
ea664c82 3148 int i;
5599becc 3149
a79cfe12
N
3150
3151 if (test_bit(R5_LOCKED, &dev->flags) ||
3152 test_bit(R5_UPTODATE, &dev->flags))
3153 /* No point reading this as we already have it or have
3154 * decided to get it.
3155 */
3156 return 0;
3157
3158 if (dev->toread ||
3159 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3160 /* We need this block to directly satisfy a request */
3161 return 1;
3162
3163 if (s->syncing || s->expanding ||
3164 (s->replacing && want_replace(sh, disk_idx)))
3165 /* When syncing, or expanding we read everything.
3166 * When replacing, we need the replaced block.
3167 */
3168 return 1;
3169
3170 if ((s->failed >= 1 && fdev[0]->toread) ||
3171 (s->failed >= 2 && fdev[1]->toread))
3172 /* If we want to read from a failed device, then
3173 * we need to actually read every other device.
3174 */
3175 return 1;
3176
a9d56950
N
3177 /* Sometimes neither read-modify-write nor reconstruct-write
3178 * cycles can work. In those cases we read every block we
3179 * can. Then the parity-update is certain to have enough to
3180 * work with.
3181 * This can only be a problem when we need to write something,
3182 * and some device has failed. If either of those tests
3183 * fail we need look no further.
3184 */
3185 if (!s->failed || !s->to_write)
3186 return 0;
3187
3188 if (test_bit(R5_Insync, &dev->flags) &&
3189 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3190 /* Pre-reads at not permitted until after short delay
3191 * to gather multiple requests. However if this
3192 * device is no Insync, the block could only be be computed
3193 * and there is no need to delay that.
3194 */
3195 return 0;
ea664c82
N
3196
3197 for (i = 0; i < s->failed; i++) {
3198 if (fdev[i]->towrite &&
3199 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3200 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3201 /* If we have a partial write to a failed
3202 * device, then we will need to reconstruct
3203 * the content of that device, so all other
3204 * devices must be read.
3205 */
3206 return 1;
3207 }
3208
3209 /* If we are forced to do a reconstruct-write, either because
3210 * the current RAID6 implementation only supports that, or
3211 * or because parity cannot be trusted and we are currently
3212 * recovering it, there is extra need to be careful.
3213 * If one of the devices that we would need to read, because
3214 * it is not being overwritten (and maybe not written at all)
3215 * is missing/faulty, then we need to read everything we can.
3216 */
3217 if (sh->raid_conf->level != 6 &&
3218 sh->sector < sh->raid_conf->mddev->recovery_cp)
3219 /* reconstruct-write isn't being forced */
3220 return 0;
3221 for (i = 0; i < s->failed; i++) {
3222 if (!test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3223 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3224 return 1;
3225 }
3226
2c58f06e
N
3227 return 0;
3228}
3229
3230static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3231 int disk_idx, int disks)
3232{
3233 struct r5dev *dev = &sh->dev[disk_idx];
3234
3235 /* is the data in this block needed, and can we get it? */
3236 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3237 /* we would like to get this block, possibly by computing it,
3238 * otherwise read it if the backing disk is insync
3239 */
3240 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3241 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3242 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
3243 (s->failed && (disk_idx == s->failed_num[0] ||
3244 disk_idx == s->failed_num[1]))) {
5599becc
YT
3245 /* have disk failed, and we're requested to fetch it;
3246 * do compute it
a4456856 3247 */
5599becc
YT
3248 pr_debug("Computing stripe %llu block %d\n",
3249 (unsigned long long)sh->sector, disk_idx);
3250 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3251 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3252 set_bit(R5_Wantcompute, &dev->flags);
3253 sh->ops.target = disk_idx;
3254 sh->ops.target2 = -1; /* no 2nd target */
3255 s->req_compute = 1;
93b3dbce
N
3256 /* Careful: from this point on 'uptodate' is in the eye
3257 * of raid_run_ops which services 'compute' operations
3258 * before writes. R5_Wantcompute flags a block that will
3259 * be R5_UPTODATE by the time it is needed for a
3260 * subsequent operation.
3261 */
5599becc
YT
3262 s->uptodate++;
3263 return 1;
3264 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3265 /* Computing 2-failure is *very* expensive; only
3266 * do it if failed >= 2
3267 */
3268 int other;
3269 for (other = disks; other--; ) {
3270 if (other == disk_idx)
3271 continue;
3272 if (!test_bit(R5_UPTODATE,
3273 &sh->dev[other].flags))
3274 break;
a4456856 3275 }
5599becc
YT
3276 BUG_ON(other < 0);
3277 pr_debug("Computing stripe %llu blocks %d,%d\n",
3278 (unsigned long long)sh->sector,
3279 disk_idx, other);
3280 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3281 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3282 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3283 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3284 sh->ops.target = disk_idx;
3285 sh->ops.target2 = other;
3286 s->uptodate += 2;
3287 s->req_compute = 1;
3288 return 1;
3289 } else if (test_bit(R5_Insync, &dev->flags)) {
3290 set_bit(R5_LOCKED, &dev->flags);
3291 set_bit(R5_Wantread, &dev->flags);
3292 s->locked++;
3293 pr_debug("Reading block %d (sync=%d)\n",
3294 disk_idx, s->syncing);
a4456856
DW
3295 }
3296 }
5599becc
YT
3297
3298 return 0;
3299}
3300
3301/**
93b3dbce 3302 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3303 */
93b3dbce
N
3304static void handle_stripe_fill(struct stripe_head *sh,
3305 struct stripe_head_state *s,
3306 int disks)
5599becc
YT
3307{
3308 int i;
3309
59fc630b 3310 BUG_ON(sh->batch_head);
5599becc
YT
3311 /* look for blocks to read/compute, skip this if a compute
3312 * is already in flight, or if the stripe contents are in the
3313 * midst of changing due to a write
3314 */
3315 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3316 !sh->reconstruct_state)
3317 for (i = disks; i--; )
93b3dbce 3318 if (fetch_block(sh, s, i, disks))
5599becc 3319 break;
a4456856
DW
3320 set_bit(STRIPE_HANDLE, &sh->state);
3321}
3322
1fe797e6 3323/* handle_stripe_clean_event
a4456856
DW
3324 * any written block on an uptodate or failed drive can be returned.
3325 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3326 * never LOCKED, so we don't need to test 'failed' directly.
3327 */
d1688a6d 3328static void handle_stripe_clean_event(struct r5conf *conf,
a4456856
DW
3329 struct stripe_head *sh, int disks, struct bio **return_bi)
3330{
3331 int i;
3332 struct r5dev *dev;
f8dfcffd 3333 int discard_pending = 0;
59fc630b 3334 struct stripe_head *head_sh = sh;
3335 bool do_endio = false;
3336 int wakeup_nr = 0;
a4456856
DW
3337
3338 for (i = disks; i--; )
3339 if (sh->dev[i].written) {
3340 dev = &sh->dev[i];
3341 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3342 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3343 test_bit(R5_Discard, &dev->flags) ||
3344 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3345 /* We can return any write requests */
3346 struct bio *wbi, *wbi2;
45b4233c 3347 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3348 if (test_and_clear_bit(R5_Discard, &dev->flags))
3349 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3350 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3351 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3352 }
59fc630b 3353 do_endio = true;
3354
3355returnbi:
3356 dev->page = dev->orig_page;
a4456856
DW
3357 wbi = dev->written;
3358 dev->written = NULL;
4f024f37 3359 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3360 dev->sector + STRIPE_SECTORS) {
3361 wbi2 = r5_next_bio(wbi, dev->sector);
e7836bd6 3362 if (!raid5_dec_bi_active_stripes(wbi)) {
a4456856
DW
3363 md_write_end(conf->mddev);
3364 wbi->bi_next = *return_bi;
3365 *return_bi = wbi;
3366 }
3367 wbi = wbi2;
3368 }
7eaf7e8e
SL
3369 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3370 STRIPE_SECTORS,
a4456856 3371 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3372 0);
59fc630b 3373 if (head_sh->batch_head) {
3374 sh = list_first_entry(&sh->batch_list,
3375 struct stripe_head,
3376 batch_list);
3377 if (sh != head_sh) {
3378 dev = &sh->dev[i];
3379 goto returnbi;
3380 }
3381 }
3382 sh = head_sh;
3383 dev = &sh->dev[i];
f8dfcffd
N
3384 } else if (test_bit(R5_Discard, &dev->flags))
3385 discard_pending = 1;
d592a996
SL
3386 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3387 WARN_ON(dev->page != dev->orig_page);
f8dfcffd
N
3388 }
3389 if (!discard_pending &&
3390 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3391 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3392 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3393 if (sh->qd_idx >= 0) {
3394 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3395 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3396 }
3397 /* now that discard is done we can proceed with any sync */
3398 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3399 /*
3400 * SCSI discard will change some bio fields and the stripe has
3401 * no updated data, so remove it from hash list and the stripe
3402 * will be reinitialized
3403 */
3404 spin_lock_irq(&conf->device_lock);
59fc630b 3405unhash:
d47648fc 3406 remove_hash(sh);
59fc630b 3407 if (head_sh->batch_head) {
3408 sh = list_first_entry(&sh->batch_list,
3409 struct stripe_head, batch_list);
3410 if (sh != head_sh)
3411 goto unhash;
3412 }
d47648fc 3413 spin_unlock_irq(&conf->device_lock);
59fc630b 3414 sh = head_sh;
3415
f8dfcffd
N
3416 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3417 set_bit(STRIPE_HANDLE, &sh->state);
3418
3419 }
8b3e6cdc
DW
3420
3421 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3422 if (atomic_dec_and_test(&conf->pending_full_writes))
3423 md_wakeup_thread(conf->mddev->thread);
59fc630b 3424
3425 if (!head_sh->batch_head || !do_endio)
3426 return;
3427 for (i = 0; i < head_sh->disks; i++) {
3428 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
3429 wakeup_nr++;
3430 }
3431 while (!list_empty(&head_sh->batch_list)) {
3432 int i;
3433 sh = list_first_entry(&head_sh->batch_list,
3434 struct stripe_head, batch_list);
3435 list_del_init(&sh->batch_list);
3436
3437 sh->state = head_sh->state & (~((1 << STRIPE_ACTIVE) |
3438 (1 << STRIPE_PREREAD_ACTIVE)));
3439 sh->check_state = head_sh->check_state;
3440 sh->reconstruct_state = head_sh->reconstruct_state;
3441 for (i = 0; i < sh->disks; i++) {
3442 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3443 wakeup_nr++;
3444 sh->dev[i].flags = head_sh->dev[i].flags;
3445 }
3446
3447 spin_lock_irq(&sh->stripe_lock);
3448 sh->batch_head = NULL;
3449 spin_unlock_irq(&sh->stripe_lock);
3450 release_stripe(sh);
3451 }
3452
3453 spin_lock_irq(&head_sh->stripe_lock);
3454 head_sh->batch_head = NULL;
3455 spin_unlock_irq(&head_sh->stripe_lock);
3456 wake_up_nr(&conf->wait_for_overlap, wakeup_nr);
a4456856
DW
3457}
3458
d1688a6d 3459static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
3460 struct stripe_head *sh,
3461 struct stripe_head_state *s,
3462 int disks)
a4456856
DW
3463{
3464 int rmw = 0, rcw = 0, i;
a7854487
AL
3465 sector_t recovery_cp = conf->mddev->recovery_cp;
3466
3467 /* RAID6 requires 'rcw' in current implementation.
3468 * Otherwise, check whether resync is now happening or should start.
3469 * If yes, then the array is dirty (after unclean shutdown or
3470 * initial creation), so parity in some stripes might be inconsistent.
3471 * In this case, we need to always do reconstruct-write, to ensure
3472 * that in case of drive failure or read-error correction, we
3473 * generate correct data from the parity.
3474 */
3475 if (conf->max_degraded == 2 ||
26ac1073
N
3476 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3477 s->failed == 0)) {
a7854487 3478 /* Calculate the real rcw later - for now make it
c8ac1803
N
3479 * look like rcw is cheaper
3480 */
3481 rcw = 1; rmw = 2;
a7854487
AL
3482 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3483 conf->max_degraded, (unsigned long long)recovery_cp,
3484 (unsigned long long)sh->sector);
c8ac1803 3485 } else for (i = disks; i--; ) {
a4456856
DW
3486 /* would I have to read this buffer for read_modify_write */
3487 struct r5dev *dev = &sh->dev[i];
3488 if ((dev->towrite || i == sh->pd_idx) &&
3489 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3490 !(test_bit(R5_UPTODATE, &dev->flags) ||
3491 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3492 if (test_bit(R5_Insync, &dev->flags))
3493 rmw++;
3494 else
3495 rmw += 2*disks; /* cannot read it */
3496 }
3497 /* Would I have to read this buffer for reconstruct_write */
3498 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3499 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3500 !(test_bit(R5_UPTODATE, &dev->flags) ||
3501 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3502 if (test_bit(R5_Insync, &dev->flags))
3503 rcw++;
a4456856
DW
3504 else
3505 rcw += 2*disks;
3506 }
3507 }
45b4233c 3508 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
3509 (unsigned long long)sh->sector, rmw, rcw);
3510 set_bit(STRIPE_HANDLE, &sh->state);
a9add5d9 3511 if (rmw < rcw && rmw > 0) {
a4456856 3512 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3513 if (conf->mddev->queue)
3514 blk_add_trace_msg(conf->mddev->queue,
3515 "raid5 rmw %llu %d",
3516 (unsigned long long)sh->sector, rmw);
a4456856
DW
3517 for (i = disks; i--; ) {
3518 struct r5dev *dev = &sh->dev[i];
3519 if ((dev->towrite || i == sh->pd_idx) &&
3520 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3521 !(test_bit(R5_UPTODATE, &dev->flags) ||
3522 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3523 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3524 if (test_bit(STRIPE_PREREAD_ACTIVE,
3525 &sh->state)) {
3526 pr_debug("Read_old block %d for r-m-w\n",
3527 i);
a4456856
DW
3528 set_bit(R5_LOCKED, &dev->flags);
3529 set_bit(R5_Wantread, &dev->flags);
3530 s->locked++;
3531 } else {
3532 set_bit(STRIPE_DELAYED, &sh->state);
3533 set_bit(STRIPE_HANDLE, &sh->state);
3534 }
3535 }
3536 }
a9add5d9 3537 }
c8ac1803 3538 if (rcw <= rmw && rcw > 0) {
a4456856 3539 /* want reconstruct write, but need to get some data */
a9add5d9 3540 int qread =0;
c8ac1803 3541 rcw = 0;
a4456856
DW
3542 for (i = disks; i--; ) {
3543 struct r5dev *dev = &sh->dev[i];
3544 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3545 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3546 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3547 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3548 test_bit(R5_Wantcompute, &dev->flags))) {
3549 rcw++;
67f45548
N
3550 if (test_bit(R5_Insync, &dev->flags) &&
3551 test_bit(STRIPE_PREREAD_ACTIVE,
3552 &sh->state)) {
45b4233c 3553 pr_debug("Read_old block "
a4456856
DW
3554 "%d for Reconstruct\n", i);
3555 set_bit(R5_LOCKED, &dev->flags);
3556 set_bit(R5_Wantread, &dev->flags);
3557 s->locked++;
a9add5d9 3558 qread++;
a4456856
DW
3559 } else {
3560 set_bit(STRIPE_DELAYED, &sh->state);
3561 set_bit(STRIPE_HANDLE, &sh->state);
3562 }
3563 }
3564 }
e3620a3a 3565 if (rcw && conf->mddev->queue)
a9add5d9
N
3566 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3567 (unsigned long long)sh->sector,
3568 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3569 }
b1b02fe9
N
3570
3571 if (rcw > disks && rmw > disks &&
3572 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3573 set_bit(STRIPE_DELAYED, &sh->state);
3574
a4456856
DW
3575 /* now if nothing is locked, and if we have enough data,
3576 * we can start a write request
3577 */
f38e1219
DW
3578 /* since handle_stripe can be called at any time we need to handle the
3579 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
3580 * subsequent call wants to start a write request. raid_run_ops only
3581 * handles the case where compute block and reconstruct are requested
f38e1219
DW
3582 * simultaneously. If this is not the case then new writes need to be
3583 * held off until the compute completes.
3584 */
976ea8d4
DW
3585 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3586 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3587 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 3588 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
3589}
3590
d1688a6d 3591static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3592 struct stripe_head_state *s, int disks)
3593{
ecc65c9b 3594 struct r5dev *dev = NULL;
bd2ab670 3595
59fc630b 3596 BUG_ON(sh->batch_head);
a4456856 3597 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 3598
ecc65c9b
DW
3599 switch (sh->check_state) {
3600 case check_state_idle:
3601 /* start a new check operation if there are no failures */
bd2ab670 3602 if (s->failed == 0) {
bd2ab670 3603 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
3604 sh->check_state = check_state_run;
3605 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 3606 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 3607 s->uptodate--;
ecc65c9b 3608 break;
bd2ab670 3609 }
f2b3b44d 3610 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
3611 /* fall through */
3612 case check_state_compute_result:
3613 sh->check_state = check_state_idle;
3614 if (!dev)
3615 dev = &sh->dev[sh->pd_idx];
3616
3617 /* check that a write has not made the stripe insync */
3618 if (test_bit(STRIPE_INSYNC, &sh->state))
3619 break;
c8894419 3620
a4456856 3621 /* either failed parity check, or recovery is happening */
a4456856
DW
3622 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3623 BUG_ON(s->uptodate != disks);
3624
3625 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 3626 s->locked++;
a4456856 3627 set_bit(R5_Wantwrite, &dev->flags);
830ea016 3628
a4456856 3629 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 3630 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
3631 break;
3632 case check_state_run:
3633 break; /* we will be called again upon completion */
3634 case check_state_check_result:
3635 sh->check_state = check_state_idle;
3636
3637 /* if a failure occurred during the check operation, leave
3638 * STRIPE_INSYNC not set and let the stripe be handled again
3639 */
3640 if (s->failed)
3641 break;
3642
3643 /* handle a successful check operation, if parity is correct
3644 * we are done. Otherwise update the mismatch count and repair
3645 * parity if !MD_RECOVERY_CHECK
3646 */
ad283ea4 3647 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
3648 /* parity is correct (on disc,
3649 * not in buffer any more)
3650 */
3651 set_bit(STRIPE_INSYNC, &sh->state);
3652 else {
7f7583d4 3653 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
3654 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3655 /* don't try to repair!! */
3656 set_bit(STRIPE_INSYNC, &sh->state);
3657 else {
3658 sh->check_state = check_state_compute_run;
976ea8d4 3659 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
3660 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3661 set_bit(R5_Wantcompute,
3662 &sh->dev[sh->pd_idx].flags);
3663 sh->ops.target = sh->pd_idx;
ac6b53b6 3664 sh->ops.target2 = -1;
ecc65c9b
DW
3665 s->uptodate++;
3666 }
3667 }
3668 break;
3669 case check_state_compute_run:
3670 break;
3671 default:
3672 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3673 __func__, sh->check_state,
3674 (unsigned long long) sh->sector);
3675 BUG();
a4456856
DW
3676 }
3677}
3678
d1688a6d 3679static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 3680 struct stripe_head_state *s,
f2b3b44d 3681 int disks)
a4456856 3682{
a4456856 3683 int pd_idx = sh->pd_idx;
34e04e87 3684 int qd_idx = sh->qd_idx;
d82dfee0 3685 struct r5dev *dev;
a4456856 3686
59fc630b 3687 BUG_ON(sh->batch_head);
a4456856
DW
3688 set_bit(STRIPE_HANDLE, &sh->state);
3689
3690 BUG_ON(s->failed > 2);
d82dfee0 3691
a4456856
DW
3692 /* Want to check and possibly repair P and Q.
3693 * However there could be one 'failed' device, in which
3694 * case we can only check one of them, possibly using the
3695 * other to generate missing data
3696 */
3697
d82dfee0
DW
3698 switch (sh->check_state) {
3699 case check_state_idle:
3700 /* start a new check operation if there are < 2 failures */
f2b3b44d 3701 if (s->failed == s->q_failed) {
d82dfee0 3702 /* The only possible failed device holds Q, so it
a4456856
DW
3703 * makes sense to check P (If anything else were failed,
3704 * we would have used P to recreate it).
3705 */
d82dfee0 3706 sh->check_state = check_state_run;
a4456856 3707 }
f2b3b44d 3708 if (!s->q_failed && s->failed < 2) {
d82dfee0 3709 /* Q is not failed, and we didn't use it to generate
a4456856
DW
3710 * anything, so it makes sense to check it
3711 */
d82dfee0
DW
3712 if (sh->check_state == check_state_run)
3713 sh->check_state = check_state_run_pq;
3714 else
3715 sh->check_state = check_state_run_q;
a4456856 3716 }
a4456856 3717
d82dfee0
DW
3718 /* discard potentially stale zero_sum_result */
3719 sh->ops.zero_sum_result = 0;
a4456856 3720
d82dfee0
DW
3721 if (sh->check_state == check_state_run) {
3722 /* async_xor_zero_sum destroys the contents of P */
3723 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3724 s->uptodate--;
a4456856 3725 }
d82dfee0
DW
3726 if (sh->check_state >= check_state_run &&
3727 sh->check_state <= check_state_run_pq) {
3728 /* async_syndrome_zero_sum preserves P and Q, so
3729 * no need to mark them !uptodate here
3730 */
3731 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3732 break;
a4456856
DW
3733 }
3734
d82dfee0
DW
3735 /* we have 2-disk failure */
3736 BUG_ON(s->failed != 2);
3737 /* fall through */
3738 case check_state_compute_result:
3739 sh->check_state = check_state_idle;
a4456856 3740
d82dfee0
DW
3741 /* check that a write has not made the stripe insync */
3742 if (test_bit(STRIPE_INSYNC, &sh->state))
3743 break;
a4456856
DW
3744
3745 /* now write out any block on a failed drive,
d82dfee0 3746 * or P or Q if they were recomputed
a4456856 3747 */
d82dfee0 3748 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 3749 if (s->failed == 2) {
f2b3b44d 3750 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
3751 s->locked++;
3752 set_bit(R5_LOCKED, &dev->flags);
3753 set_bit(R5_Wantwrite, &dev->flags);
3754 }
3755 if (s->failed >= 1) {
f2b3b44d 3756 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
3757 s->locked++;
3758 set_bit(R5_LOCKED, &dev->flags);
3759 set_bit(R5_Wantwrite, &dev->flags);
3760 }
d82dfee0 3761 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
3762 dev = &sh->dev[pd_idx];
3763 s->locked++;
3764 set_bit(R5_LOCKED, &dev->flags);
3765 set_bit(R5_Wantwrite, &dev->flags);
3766 }
d82dfee0 3767 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
3768 dev = &sh->dev[qd_idx];
3769 s->locked++;
3770 set_bit(R5_LOCKED, &dev->flags);
3771 set_bit(R5_Wantwrite, &dev->flags);
3772 }
3773 clear_bit(STRIPE_DEGRADED, &sh->state);
3774
3775 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
3776 break;
3777 case check_state_run:
3778 case check_state_run_q:
3779 case check_state_run_pq:
3780 break; /* we will be called again upon completion */
3781 case check_state_check_result:
3782 sh->check_state = check_state_idle;
3783
3784 /* handle a successful check operation, if parity is correct
3785 * we are done. Otherwise update the mismatch count and repair
3786 * parity if !MD_RECOVERY_CHECK
3787 */
3788 if (sh->ops.zero_sum_result == 0) {
3789 /* both parities are correct */
3790 if (!s->failed)
3791 set_bit(STRIPE_INSYNC, &sh->state);
3792 else {
3793 /* in contrast to the raid5 case we can validate
3794 * parity, but still have a failure to write
3795 * back
3796 */
3797 sh->check_state = check_state_compute_result;
3798 /* Returning at this point means that we may go
3799 * off and bring p and/or q uptodate again so
3800 * we make sure to check zero_sum_result again
3801 * to verify if p or q need writeback
3802 */
3803 }
3804 } else {
7f7583d4 3805 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
3806 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3807 /* don't try to repair!! */
3808 set_bit(STRIPE_INSYNC, &sh->state);
3809 else {
3810 int *target = &sh->ops.target;
3811
3812 sh->ops.target = -1;
3813 sh->ops.target2 = -1;
3814 sh->check_state = check_state_compute_run;
3815 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3816 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3817 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3818 set_bit(R5_Wantcompute,
3819 &sh->dev[pd_idx].flags);
3820 *target = pd_idx;
3821 target = &sh->ops.target2;
3822 s->uptodate++;
3823 }
3824 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3825 set_bit(R5_Wantcompute,
3826 &sh->dev[qd_idx].flags);
3827 *target = qd_idx;
3828 s->uptodate++;
3829 }
3830 }
3831 }
3832 break;
3833 case check_state_compute_run:
3834 break;
3835 default:
3836 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3837 __func__, sh->check_state,
3838 (unsigned long long) sh->sector);
3839 BUG();
a4456856
DW
3840 }
3841}
3842
d1688a6d 3843static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3844{
3845 int i;
3846
3847 /* We have read all the blocks in this stripe and now we need to
3848 * copy some of them into a target stripe for expand.
3849 */
f0a50d37 3850 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 3851 BUG_ON(sh->batch_head);
a4456856
DW
3852 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3853 for (i = 0; i < sh->disks; i++)
34e04e87 3854 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3855 int dd_idx, j;
a4456856 3856 struct stripe_head *sh2;
a08abd8c 3857 struct async_submit_ctl submit;
a4456856 3858
784052ec 3859 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
3860 sector_t s = raid5_compute_sector(conf, bn, 0,
3861 &dd_idx, NULL);
a8c906ca 3862 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3863 if (sh2 == NULL)
3864 /* so far only the early blocks of this stripe
3865 * have been requested. When later blocks
3866 * get requested, we will try again
3867 */
3868 continue;
3869 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3870 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3871 /* must have already done this block */
3872 release_stripe(sh2);
3873 continue;
3874 }
f0a50d37
DW
3875
3876 /* place all the copies on one channel */
a08abd8c 3877 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3878 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3879 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3880 &submit);
f0a50d37 3881
a4456856
DW
3882 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3883 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3884 for (j = 0; j < conf->raid_disks; j++)
3885 if (j != sh2->pd_idx &&
86c374ba 3886 j != sh2->qd_idx &&
a4456856
DW
3887 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3888 break;
3889 if (j == conf->raid_disks) {
3890 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3891 set_bit(STRIPE_HANDLE, &sh2->state);
3892 }
3893 release_stripe(sh2);
f0a50d37 3894
a4456856 3895 }
a2e08551 3896 /* done submitting copies, wait for them to complete */
749586b7 3897 async_tx_quiesce(&tx);
a4456856 3898}
1da177e4
LT
3899
3900/*
3901 * handle_stripe - do things to a stripe.
3902 *
9a3e1101
N
3903 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3904 * state of various bits to see what needs to be done.
1da177e4 3905 * Possible results:
9a3e1101
N
3906 * return some read requests which now have data
3907 * return some write requests which are safely on storage
1da177e4
LT
3908 * schedule a read on some buffers
3909 * schedule a write of some buffers
3910 * return confirmation of parity correctness
3911 *
1da177e4 3912 */
a4456856 3913
acfe726b 3914static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 3915{
d1688a6d 3916 struct r5conf *conf = sh->raid_conf;
f416885e 3917 int disks = sh->disks;
474af965
N
3918 struct r5dev *dev;
3919 int i;
9a3e1101 3920 int do_recovery = 0;
1da177e4 3921
acfe726b
N
3922 memset(s, 0, sizeof(*s));
3923
acfe726b
N
3924 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3925 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3926 s->failed_num[0] = -1;
3927 s->failed_num[1] = -1;
1da177e4 3928
acfe726b 3929 /* Now to look around and see what can be done */
1da177e4 3930 rcu_read_lock();
16a53ecc 3931 for (i=disks; i--; ) {
3cb03002 3932 struct md_rdev *rdev;
31c176ec
N
3933 sector_t first_bad;
3934 int bad_sectors;
3935 int is_bad = 0;
acfe726b 3936
16a53ecc 3937 dev = &sh->dev[i];
1da177e4 3938
45b4233c 3939 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
3940 i, dev->flags,
3941 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
3942 /* maybe we can reply to a read
3943 *
3944 * new wantfill requests are only permitted while
3945 * ops_complete_biofill is guaranteed to be inactive
3946 */
3947 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3948 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3949 set_bit(R5_Wantfill, &dev->flags);
1da177e4 3950
16a53ecc 3951 /* now count some things */
cc94015a
N
3952 if (test_bit(R5_LOCKED, &dev->flags))
3953 s->locked++;
3954 if (test_bit(R5_UPTODATE, &dev->flags))
3955 s->uptodate++;
2d6e4ecc 3956 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
3957 s->compute++;
3958 BUG_ON(s->compute > 2);
2d6e4ecc 3959 }
1da177e4 3960
acfe726b 3961 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 3962 s->to_fill++;
acfe726b 3963 else if (dev->toread)
cc94015a 3964 s->to_read++;
16a53ecc 3965 if (dev->towrite) {
cc94015a 3966 s->to_write++;
16a53ecc 3967 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 3968 s->non_overwrite++;
16a53ecc 3969 }
a4456856 3970 if (dev->written)
cc94015a 3971 s->written++;
14a75d3e
N
3972 /* Prefer to use the replacement for reads, but only
3973 * if it is recovered enough and has no bad blocks.
3974 */
3975 rdev = rcu_dereference(conf->disks[i].replacement);
3976 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3977 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3978 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3979 &first_bad, &bad_sectors))
3980 set_bit(R5_ReadRepl, &dev->flags);
3981 else {
9a3e1101
N
3982 if (rdev)
3983 set_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
3984 rdev = rcu_dereference(conf->disks[i].rdev);
3985 clear_bit(R5_ReadRepl, &dev->flags);
3986 }
9283d8c5
N
3987 if (rdev && test_bit(Faulty, &rdev->flags))
3988 rdev = NULL;
31c176ec
N
3989 if (rdev) {
3990 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3991 &first_bad, &bad_sectors);
3992 if (s->blocked_rdev == NULL
3993 && (test_bit(Blocked, &rdev->flags)
3994 || is_bad < 0)) {
3995 if (is_bad < 0)
3996 set_bit(BlockedBadBlocks,
3997 &rdev->flags);
3998 s->blocked_rdev = rdev;
3999 atomic_inc(&rdev->nr_pending);
4000 }
6bfe0b49 4001 }
415e72d0
N
4002 clear_bit(R5_Insync, &dev->flags);
4003 if (!rdev)
4004 /* Not in-sync */;
31c176ec
N
4005 else if (is_bad) {
4006 /* also not in-sync */
18b9837e
N
4007 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4008 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4009 /* treat as in-sync, but with a read error
4010 * which we can now try to correct
4011 */
4012 set_bit(R5_Insync, &dev->flags);
4013 set_bit(R5_ReadError, &dev->flags);
4014 }
4015 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4016 set_bit(R5_Insync, &dev->flags);
30d7a483 4017 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4018 /* in sync if before recovery_offset */
30d7a483
N
4019 set_bit(R5_Insync, &dev->flags);
4020 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4021 test_bit(R5_Expanded, &dev->flags))
4022 /* If we've reshaped into here, we assume it is Insync.
4023 * We will shortly update recovery_offset to make
4024 * it official.
4025 */
4026 set_bit(R5_Insync, &dev->flags);
4027
1cc03eb9 4028 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4029 /* This flag does not apply to '.replacement'
4030 * only to .rdev, so make sure to check that*/
4031 struct md_rdev *rdev2 = rcu_dereference(
4032 conf->disks[i].rdev);
4033 if (rdev2 == rdev)
4034 clear_bit(R5_Insync, &dev->flags);
4035 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4036 s->handle_bad_blocks = 1;
14a75d3e 4037 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4038 } else
4039 clear_bit(R5_WriteError, &dev->flags);
4040 }
1cc03eb9 4041 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4042 /* This flag does not apply to '.replacement'
4043 * only to .rdev, so make sure to check that*/
4044 struct md_rdev *rdev2 = rcu_dereference(
4045 conf->disks[i].rdev);
4046 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4047 s->handle_bad_blocks = 1;
14a75d3e 4048 atomic_inc(&rdev2->nr_pending);
b84db560
N
4049 } else
4050 clear_bit(R5_MadeGood, &dev->flags);
4051 }
977df362
N
4052 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4053 struct md_rdev *rdev2 = rcu_dereference(
4054 conf->disks[i].replacement);
4055 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4056 s->handle_bad_blocks = 1;
4057 atomic_inc(&rdev2->nr_pending);
4058 } else
4059 clear_bit(R5_MadeGoodRepl, &dev->flags);
4060 }
415e72d0 4061 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4062 /* The ReadError flag will just be confusing now */
4063 clear_bit(R5_ReadError, &dev->flags);
4064 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4065 }
415e72d0
N
4066 if (test_bit(R5_ReadError, &dev->flags))
4067 clear_bit(R5_Insync, &dev->flags);
4068 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4069 if (s->failed < 2)
4070 s->failed_num[s->failed] = i;
4071 s->failed++;
9a3e1101
N
4072 if (rdev && !test_bit(Faulty, &rdev->flags))
4073 do_recovery = 1;
415e72d0 4074 }
1da177e4 4075 }
9a3e1101
N
4076 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4077 /* If there is a failed device being replaced,
4078 * we must be recovering.
4079 * else if we are after recovery_cp, we must be syncing
c6d2e084 4080 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4081 * else we can only be replacing
4082 * sync and recovery both need to read all devices, and so
4083 * use the same flag.
4084 */
4085 if (do_recovery ||
c6d2e084 4086 sh->sector >= conf->mddev->recovery_cp ||
4087 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4088 s->syncing = 1;
4089 else
4090 s->replacing = 1;
4091 }
1da177e4 4092 rcu_read_unlock();
cc94015a
N
4093}
4094
59fc630b 4095static int clear_batch_ready(struct stripe_head *sh)
4096{
4097 struct stripe_head *tmp;
4098 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4099 return 0;
4100 spin_lock(&sh->stripe_lock);
4101 if (!sh->batch_head) {
4102 spin_unlock(&sh->stripe_lock);
4103 return 0;
4104 }
4105
4106 /*
4107 * this stripe could be added to a batch list before we check
4108 * BATCH_READY, skips it
4109 */
4110 if (sh->batch_head != sh) {
4111 spin_unlock(&sh->stripe_lock);
4112 return 1;
4113 }
4114 spin_lock(&sh->batch_lock);
4115 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4116 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4117 spin_unlock(&sh->batch_lock);
4118 spin_unlock(&sh->stripe_lock);
4119
4120 /*
4121 * BATCH_READY is cleared, no new stripes can be added.
4122 * batch_list can be accessed without lock
4123 */
4124 return 0;
4125}
4126
cc94015a
N
4127static void handle_stripe(struct stripe_head *sh)
4128{
4129 struct stripe_head_state s;
d1688a6d 4130 struct r5conf *conf = sh->raid_conf;
3687c061 4131 int i;
84789554
N
4132 int prexor;
4133 int disks = sh->disks;
474af965 4134 struct r5dev *pdev, *qdev;
cc94015a
N
4135
4136 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 4137 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4138 /* already being handled, ensure it gets handled
4139 * again when current action finishes */
4140 set_bit(STRIPE_HANDLE, &sh->state);
4141 return;
4142 }
4143
59fc630b 4144 if (clear_batch_ready(sh) ) {
4145 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4146 return;
4147 }
4148
f8dfcffd
N
4149 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4150 spin_lock(&sh->stripe_lock);
4151 /* Cannot process 'sync' concurrently with 'discard' */
4152 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4153 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4154 set_bit(STRIPE_SYNCING, &sh->state);
4155 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4156 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4157 }
4158 spin_unlock(&sh->stripe_lock);
cc94015a
N
4159 }
4160 clear_bit(STRIPE_DELAYED, &sh->state);
4161
4162 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4163 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4164 (unsigned long long)sh->sector, sh->state,
4165 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4166 sh->check_state, sh->reconstruct_state);
3687c061 4167
acfe726b 4168 analyse_stripe(sh, &s);
c5a31000 4169
bc2607f3
N
4170 if (s.handle_bad_blocks) {
4171 set_bit(STRIPE_HANDLE, &sh->state);
4172 goto finish;
4173 }
4174
474af965
N
4175 if (unlikely(s.blocked_rdev)) {
4176 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4177 s.replacing || s.to_write || s.written) {
474af965
N
4178 set_bit(STRIPE_HANDLE, &sh->state);
4179 goto finish;
4180 }
4181 /* There is nothing for the blocked_rdev to block */
4182 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4183 s.blocked_rdev = NULL;
4184 }
4185
4186 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4187 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4188 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4189 }
4190
4191 pr_debug("locked=%d uptodate=%d to_read=%d"
4192 " to_write=%d failed=%d failed_num=%d,%d\n",
4193 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4194 s.failed_num[0], s.failed_num[1]);
4195 /* check if the array has lost more than max_degraded devices and,
4196 * if so, some requests might need to be failed.
4197 */
9a3f530f
N
4198 if (s.failed > conf->max_degraded) {
4199 sh->check_state = 0;
4200 sh->reconstruct_state = 0;
4201 if (s.to_read+s.to_write+s.written)
4202 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 4203 if (s.syncing + s.replacing)
9a3f530f
N
4204 handle_failed_sync(conf, sh, &s);
4205 }
474af965 4206
84789554
N
4207 /* Now we check to see if any write operations have recently
4208 * completed
4209 */
4210 prexor = 0;
4211 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4212 prexor = 1;
4213 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4214 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4215 sh->reconstruct_state = reconstruct_state_idle;
4216
4217 /* All the 'written' buffers and the parity block are ready to
4218 * be written back to disk
4219 */
9e444768
SL
4220 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4221 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4222 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4223 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4224 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4225 for (i = disks; i--; ) {
4226 struct r5dev *dev = &sh->dev[i];
4227 if (test_bit(R5_LOCKED, &dev->flags) &&
4228 (i == sh->pd_idx || i == sh->qd_idx ||
4229 dev->written)) {
4230 pr_debug("Writing block %d\n", i);
4231 set_bit(R5_Wantwrite, &dev->flags);
4232 if (prexor)
4233 continue;
9c4bdf69
N
4234 if (s.failed > 1)
4235 continue;
84789554
N
4236 if (!test_bit(R5_Insync, &dev->flags) ||
4237 ((i == sh->pd_idx || i == sh->qd_idx) &&
4238 s.failed == 0))
4239 set_bit(STRIPE_INSYNC, &sh->state);
4240 }
4241 }
4242 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4243 s.dec_preread_active = 1;
4244 }
4245
ef5b7c69
N
4246 /*
4247 * might be able to return some write requests if the parity blocks
4248 * are safe, or on a failed drive
4249 */
4250 pdev = &sh->dev[sh->pd_idx];
4251 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4252 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4253 qdev = &sh->dev[sh->qd_idx];
4254 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4255 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4256 || conf->level < 6;
4257
4258 if (s.written &&
4259 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4260 && !test_bit(R5_LOCKED, &pdev->flags)
4261 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4262 test_bit(R5_Discard, &pdev->flags))))) &&
4263 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4264 && !test_bit(R5_LOCKED, &qdev->flags)
4265 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4266 test_bit(R5_Discard, &qdev->flags))))))
4267 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4268
4269 /* Now we might consider reading some blocks, either to check/generate
4270 * parity, or to satisfy requests
4271 * or to load a block that is being partially written.
4272 */
4273 if (s.to_read || s.non_overwrite
4274 || (conf->level == 6 && s.to_write && s.failed)
4275 || (s.syncing && (s.uptodate + s.compute < disks))
4276 || s.replacing
4277 || s.expanding)
4278 handle_stripe_fill(sh, &s, disks);
4279
84789554
N
4280 /* Now to consider new write requests and what else, if anything
4281 * should be read. We do not handle new writes when:
4282 * 1/ A 'write' operation (copy+xor) is already in flight.
4283 * 2/ A 'check' operation is in flight, as it may clobber the parity
4284 * block.
4285 */
4286 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4287 handle_stripe_dirtying(conf, sh, &s, disks);
4288
4289 /* maybe we need to check and possibly fix the parity for this stripe
4290 * Any reads will already have been scheduled, so we just see if enough
4291 * data is available. The parity check is held off while parity
4292 * dependent operations are in flight.
4293 */
4294 if (sh->check_state ||
4295 (s.syncing && s.locked == 0 &&
4296 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4297 !test_bit(STRIPE_INSYNC, &sh->state))) {
4298 if (conf->level == 6)
4299 handle_parity_checks6(conf, sh, &s, disks);
4300 else
4301 handle_parity_checks5(conf, sh, &s, disks);
4302 }
c5a31000 4303
f94c0b66
N
4304 if ((s.replacing || s.syncing) && s.locked == 0
4305 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4306 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4307 /* Write out to replacement devices where possible */
4308 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4309 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4310 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4311 set_bit(R5_WantReplace, &sh->dev[i].flags);
4312 set_bit(R5_LOCKED, &sh->dev[i].flags);
4313 s.locked++;
4314 }
f94c0b66
N
4315 if (s.replacing)
4316 set_bit(STRIPE_INSYNC, &sh->state);
4317 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4318 }
4319 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4320 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4321 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4322 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4323 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4324 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4325 wake_up(&conf->wait_for_overlap);
c5a31000
N
4326 }
4327
4328 /* If the failed drives are just a ReadError, then we might need
4329 * to progress the repair/check process
4330 */
4331 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4332 for (i = 0; i < s.failed; i++) {
4333 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4334 if (test_bit(R5_ReadError, &dev->flags)
4335 && !test_bit(R5_LOCKED, &dev->flags)
4336 && test_bit(R5_UPTODATE, &dev->flags)
4337 ) {
4338 if (!test_bit(R5_ReWrite, &dev->flags)) {
4339 set_bit(R5_Wantwrite, &dev->flags);
4340 set_bit(R5_ReWrite, &dev->flags);
4341 set_bit(R5_LOCKED, &dev->flags);
4342 s.locked++;
4343 } else {
4344 /* let's read it back */
4345 set_bit(R5_Wantread, &dev->flags);
4346 set_bit(R5_LOCKED, &dev->flags);
4347 s.locked++;
4348 }
4349 }
4350 }
4351
3687c061
N
4352 /* Finish reconstruct operations initiated by the expansion process */
4353 if (sh->reconstruct_state == reconstruct_state_result) {
4354 struct stripe_head *sh_src
4355 = get_active_stripe(conf, sh->sector, 1, 1, 1);
4356 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4357 /* sh cannot be written until sh_src has been read.
4358 * so arrange for sh to be delayed a little
4359 */
4360 set_bit(STRIPE_DELAYED, &sh->state);
4361 set_bit(STRIPE_HANDLE, &sh->state);
4362 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4363 &sh_src->state))
4364 atomic_inc(&conf->preread_active_stripes);
4365 release_stripe(sh_src);
4366 goto finish;
4367 }
4368 if (sh_src)
4369 release_stripe(sh_src);
4370
4371 sh->reconstruct_state = reconstruct_state_idle;
4372 clear_bit(STRIPE_EXPANDING, &sh->state);
4373 for (i = conf->raid_disks; i--; ) {
4374 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4375 set_bit(R5_LOCKED, &sh->dev[i].flags);
4376 s.locked++;
4377 }
4378 }
f416885e 4379
3687c061
N
4380 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4381 !sh->reconstruct_state) {
4382 /* Need to write out all blocks after computing parity */
4383 sh->disks = conf->raid_disks;
4384 stripe_set_idx(sh->sector, conf, 0, sh);
4385 schedule_reconstruction(sh, &s, 1, 1);
4386 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4387 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4388 atomic_dec(&conf->reshape_stripes);
4389 wake_up(&conf->wait_for_overlap);
4390 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4391 }
4392
4393 if (s.expanding && s.locked == 0 &&
4394 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4395 handle_stripe_expansion(conf, sh);
16a53ecc 4396
3687c061 4397finish:
6bfe0b49 4398 /* wait for this device to become unblocked */
5f066c63
N
4399 if (unlikely(s.blocked_rdev)) {
4400 if (conf->mddev->external)
4401 md_wait_for_blocked_rdev(s.blocked_rdev,
4402 conf->mddev);
4403 else
4404 /* Internal metadata will immediately
4405 * be written by raid5d, so we don't
4406 * need to wait here.
4407 */
4408 rdev_dec_pending(s.blocked_rdev,
4409 conf->mddev);
4410 }
6bfe0b49 4411
bc2607f3
N
4412 if (s.handle_bad_blocks)
4413 for (i = disks; i--; ) {
3cb03002 4414 struct md_rdev *rdev;
bc2607f3
N
4415 struct r5dev *dev = &sh->dev[i];
4416 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4417 /* We own a safe reference to the rdev */
4418 rdev = conf->disks[i].rdev;
4419 if (!rdev_set_badblocks(rdev, sh->sector,
4420 STRIPE_SECTORS, 0))
4421 md_error(conf->mddev, rdev);
4422 rdev_dec_pending(rdev, conf->mddev);
4423 }
b84db560
N
4424 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4425 rdev = conf->disks[i].rdev;
4426 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4427 STRIPE_SECTORS, 0);
b84db560
N
4428 rdev_dec_pending(rdev, conf->mddev);
4429 }
977df362
N
4430 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4431 rdev = conf->disks[i].replacement;
dd054fce
N
4432 if (!rdev)
4433 /* rdev have been moved down */
4434 rdev = conf->disks[i].rdev;
977df362 4435 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4436 STRIPE_SECTORS, 0);
977df362
N
4437 rdev_dec_pending(rdev, conf->mddev);
4438 }
bc2607f3
N
4439 }
4440
6c0069c0
YT
4441 if (s.ops_request)
4442 raid_run_ops(sh, s.ops_request);
4443
f0e43bcd 4444 ops_run_io(sh, &s);
16a53ecc 4445
c5709ef6 4446 if (s.dec_preread_active) {
729a1866 4447 /* We delay this until after ops_run_io so that if make_request
e9c7469b 4448 * is waiting on a flush, it won't continue until the writes
729a1866
N
4449 * have actually been submitted.
4450 */
4451 atomic_dec(&conf->preread_active_stripes);
4452 if (atomic_read(&conf->preread_active_stripes) <
4453 IO_THRESHOLD)
4454 md_wakeup_thread(conf->mddev->thread);
4455 }
4456
c5709ef6 4457 return_io(s.return_bi);
16a53ecc 4458
257a4b42 4459 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
4460}
4461
d1688a6d 4462static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
4463{
4464 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4465 while (!list_empty(&conf->delayed_list)) {
4466 struct list_head *l = conf->delayed_list.next;
4467 struct stripe_head *sh;
4468 sh = list_entry(l, struct stripe_head, lru);
4469 list_del_init(l);
4470 clear_bit(STRIPE_DELAYED, &sh->state);
4471 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4472 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 4473 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 4474 raid5_wakeup_stripe_thread(sh);
16a53ecc 4475 }
482c0834 4476 }
16a53ecc
N
4477}
4478
566c09c5
SL
4479static void activate_bit_delay(struct r5conf *conf,
4480 struct list_head *temp_inactive_list)
16a53ecc
N
4481{
4482 /* device_lock is held */
4483 struct list_head head;
4484 list_add(&head, &conf->bitmap_list);
4485 list_del_init(&conf->bitmap_list);
4486 while (!list_empty(&head)) {
4487 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 4488 int hash;
16a53ecc
N
4489 list_del_init(&sh->lru);
4490 atomic_inc(&sh->count);
566c09c5
SL
4491 hash = sh->hash_lock_index;
4492 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
4493 }
4494}
4495
5c675f83 4496static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 4497{
d1688a6d 4498 struct r5conf *conf = mddev->private;
f022b2fd
N
4499
4500 /* No difference between reads and writes. Just check
4501 * how busy the stripe_cache is
4502 */
3fa841d7 4503
f022b2fd
N
4504 if (conf->inactive_blocked)
4505 return 1;
4506 if (conf->quiesce)
4507 return 1;
4bda556a 4508 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
4509 return 1;
4510
4511 return 0;
4512}
4513
23032a0e
RBJ
4514/* We want read requests to align with chunks where possible,
4515 * but write requests don't need to.
4516 */
64590f45 4517static int raid5_mergeable_bvec(struct mddev *mddev,
cc371e66
AK
4518 struct bvec_merge_data *bvm,
4519 struct bio_vec *biovec)
23032a0e 4520{
cc371e66 4521 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 4522 int max;
9d8f0363 4523 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 4524 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 4525
cc371e66 4526 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
4527 return biovec->bv_len; /* always allow writes to be mergeable */
4528
664e7c41
AN
4529 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4530 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
4531 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4532 if (max < 0) max = 0;
4533 if (max <= biovec->bv_len && bio_sectors == 0)
4534 return biovec->bv_len;
4535 else
4536 return max;
4537}
4538
fd01b88c 4539static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 4540{
4f024f37 4541 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 4542 unsigned int chunk_sectors = mddev->chunk_sectors;
aa8b57aa 4543 unsigned int bio_sectors = bio_sectors(bio);
f679623f 4544
664e7c41
AN
4545 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4546 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
4547 return chunk_sectors >=
4548 ((sector & (chunk_sectors - 1)) + bio_sectors);
4549}
4550
46031f9a
RBJ
4551/*
4552 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4553 * later sampled by raid5d.
4554 */
d1688a6d 4555static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
4556{
4557 unsigned long flags;
4558
4559 spin_lock_irqsave(&conf->device_lock, flags);
4560
4561 bi->bi_next = conf->retry_read_aligned_list;
4562 conf->retry_read_aligned_list = bi;
4563
4564 spin_unlock_irqrestore(&conf->device_lock, flags);
4565 md_wakeup_thread(conf->mddev->thread);
4566}
4567
d1688a6d 4568static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
4569{
4570 struct bio *bi;
4571
4572 bi = conf->retry_read_aligned;
4573 if (bi) {
4574 conf->retry_read_aligned = NULL;
4575 return bi;
4576 }
4577 bi = conf->retry_read_aligned_list;
4578 if(bi) {
387bb173 4579 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 4580 bi->bi_next = NULL;
960e739d
JA
4581 /*
4582 * this sets the active strip count to 1 and the processed
4583 * strip count to zero (upper 8 bits)
4584 */
e7836bd6 4585 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
46031f9a
RBJ
4586 }
4587
4588 return bi;
4589}
4590
f679623f
RBJ
4591/*
4592 * The "raid5_align_endio" should check if the read succeeded and if it
4593 * did, call bio_endio on the original bio (having bio_put the new bio
4594 * first).
4595 * If the read failed..
4596 */
6712ecf8 4597static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
4598{
4599 struct bio* raid_bi = bi->bi_private;
fd01b88c 4600 struct mddev *mddev;
d1688a6d 4601 struct r5conf *conf;
46031f9a 4602 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3cb03002 4603 struct md_rdev *rdev;
46031f9a 4604
f679623f 4605 bio_put(bi);
46031f9a 4606
46031f9a
RBJ
4607 rdev = (void*)raid_bi->bi_next;
4608 raid_bi->bi_next = NULL;
2b7f2228
N
4609 mddev = rdev->mddev;
4610 conf = mddev->private;
46031f9a
RBJ
4611
4612 rdev_dec_pending(rdev, conf->mddev);
4613
4614 if (!error && uptodate) {
0a82a8d1
LT
4615 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4616 raid_bi, 0);
6712ecf8 4617 bio_endio(raid_bi, 0);
46031f9a
RBJ
4618 if (atomic_dec_and_test(&conf->active_aligned_reads))
4619 wake_up(&conf->wait_for_stripe);
6712ecf8 4620 return;
46031f9a
RBJ
4621 }
4622
45b4233c 4623 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
4624
4625 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
4626}
4627
387bb173
NB
4628static int bio_fits_rdev(struct bio *bi)
4629{
165125e1 4630 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 4631
aa8b57aa 4632 if (bio_sectors(bi) > queue_max_sectors(q))
387bb173
NB
4633 return 0;
4634 blk_recount_segments(q, bi);
8a78362c 4635 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
4636 return 0;
4637
4638 if (q->merge_bvec_fn)
4639 /* it's too hard to apply the merge_bvec_fn at this stage,
4640 * just just give up
4641 */
4642 return 0;
4643
4644 return 1;
4645}
4646
fd01b88c 4647static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
f679623f 4648{
d1688a6d 4649 struct r5conf *conf = mddev->private;
8553fe7e 4650 int dd_idx;
f679623f 4651 struct bio* align_bi;
3cb03002 4652 struct md_rdev *rdev;
671488cc 4653 sector_t end_sector;
f679623f
RBJ
4654
4655 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 4656 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
4657 return 0;
4658 }
4659 /*
a167f663 4660 * use bio_clone_mddev to make a copy of the bio
f679623f 4661 */
a167f663 4662 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
4663 if (!align_bi)
4664 return 0;
4665 /*
4666 * set bi_end_io to a new function, and set bi_private to the
4667 * original bio.
4668 */
4669 align_bi->bi_end_io = raid5_align_endio;
4670 align_bi->bi_private = raid_bio;
4671 /*
4672 * compute position
4673 */
4f024f37
KO
4674 align_bi->bi_iter.bi_sector =
4675 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4676 0, &dd_idx, NULL);
f679623f 4677
f73a1c7d 4678 end_sector = bio_end_sector(align_bi);
f679623f 4679 rcu_read_lock();
671488cc
N
4680 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4681 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4682 rdev->recovery_offset < end_sector) {
4683 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4684 if (rdev &&
4685 (test_bit(Faulty, &rdev->flags) ||
4686 !(test_bit(In_sync, &rdev->flags) ||
4687 rdev->recovery_offset >= end_sector)))
4688 rdev = NULL;
4689 }
4690 if (rdev) {
31c176ec
N
4691 sector_t first_bad;
4692 int bad_sectors;
4693
f679623f
RBJ
4694 atomic_inc(&rdev->nr_pending);
4695 rcu_read_unlock();
46031f9a
RBJ
4696 raid_bio->bi_next = (void*)rdev;
4697 align_bi->bi_bdev = rdev->bdev;
3fd83717 4698 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
46031f9a 4699
31c176ec 4700 if (!bio_fits_rdev(align_bi) ||
4f024f37
KO
4701 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4702 bio_sectors(align_bi),
31c176ec
N
4703 &first_bad, &bad_sectors)) {
4704 /* too big in some way, or has a known bad block */
387bb173
NB
4705 bio_put(align_bi);
4706 rdev_dec_pending(rdev, mddev);
4707 return 0;
4708 }
4709
6c0544e2 4710 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 4711 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 4712
46031f9a
RBJ
4713 spin_lock_irq(&conf->device_lock);
4714 wait_event_lock_irq(conf->wait_for_stripe,
4715 conf->quiesce == 0,
eed8c02e 4716 conf->device_lock);
46031f9a
RBJ
4717 atomic_inc(&conf->active_aligned_reads);
4718 spin_unlock_irq(&conf->device_lock);
4719
e3620a3a
JB
4720 if (mddev->gendisk)
4721 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4722 align_bi, disk_devt(mddev->gendisk),
4f024f37 4723 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
4724 generic_make_request(align_bi);
4725 return 1;
4726 } else {
4727 rcu_read_unlock();
46031f9a 4728 bio_put(align_bi);
f679623f
RBJ
4729 return 0;
4730 }
4731}
4732
8b3e6cdc
DW
4733/* __get_priority_stripe - get the next stripe to process
4734 *
4735 * Full stripe writes are allowed to pass preread active stripes up until
4736 * the bypass_threshold is exceeded. In general the bypass_count
4737 * increments when the handle_list is handled before the hold_list; however, it
4738 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4739 * stripe with in flight i/o. The bypass_count will be reset when the
4740 * head of the hold_list has changed, i.e. the head was promoted to the
4741 * handle_list.
4742 */
851c30c9 4743static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 4744{
851c30c9
SL
4745 struct stripe_head *sh = NULL, *tmp;
4746 struct list_head *handle_list = NULL;
bfc90cb0 4747 struct r5worker_group *wg = NULL;
851c30c9
SL
4748
4749 if (conf->worker_cnt_per_group == 0) {
4750 handle_list = &conf->handle_list;
4751 } else if (group != ANY_GROUP) {
4752 handle_list = &conf->worker_groups[group].handle_list;
bfc90cb0 4753 wg = &conf->worker_groups[group];
851c30c9
SL
4754 } else {
4755 int i;
4756 for (i = 0; i < conf->group_cnt; i++) {
4757 handle_list = &conf->worker_groups[i].handle_list;
bfc90cb0 4758 wg = &conf->worker_groups[i];
851c30c9
SL
4759 if (!list_empty(handle_list))
4760 break;
4761 }
4762 }
8b3e6cdc
DW
4763
4764 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4765 __func__,
851c30c9 4766 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
4767 list_empty(&conf->hold_list) ? "empty" : "busy",
4768 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4769
851c30c9
SL
4770 if (!list_empty(handle_list)) {
4771 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
4772
4773 if (list_empty(&conf->hold_list))
4774 conf->bypass_count = 0;
4775 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4776 if (conf->hold_list.next == conf->last_hold)
4777 conf->bypass_count++;
4778 else {
4779 conf->last_hold = conf->hold_list.next;
4780 conf->bypass_count -= conf->bypass_threshold;
4781 if (conf->bypass_count < 0)
4782 conf->bypass_count = 0;
4783 }
4784 }
4785 } else if (!list_empty(&conf->hold_list) &&
4786 ((conf->bypass_threshold &&
4787 conf->bypass_count > conf->bypass_threshold) ||
4788 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
4789
4790 list_for_each_entry(tmp, &conf->hold_list, lru) {
4791 if (conf->worker_cnt_per_group == 0 ||
4792 group == ANY_GROUP ||
4793 !cpu_online(tmp->cpu) ||
4794 cpu_to_group(tmp->cpu) == group) {
4795 sh = tmp;
4796 break;
4797 }
4798 }
4799
4800 if (sh) {
4801 conf->bypass_count -= conf->bypass_threshold;
4802 if (conf->bypass_count < 0)
4803 conf->bypass_count = 0;
4804 }
bfc90cb0 4805 wg = NULL;
851c30c9
SL
4806 }
4807
4808 if (!sh)
8b3e6cdc
DW
4809 return NULL;
4810
bfc90cb0
SL
4811 if (wg) {
4812 wg->stripes_cnt--;
4813 sh->group = NULL;
4814 }
8b3e6cdc 4815 list_del_init(&sh->lru);
c7a6d35e 4816 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
4817 return sh;
4818}
f679623f 4819
8811b596
SL
4820struct raid5_plug_cb {
4821 struct blk_plug_cb cb;
4822 struct list_head list;
566c09c5 4823 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
4824};
4825
4826static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4827{
4828 struct raid5_plug_cb *cb = container_of(
4829 blk_cb, struct raid5_plug_cb, cb);
4830 struct stripe_head *sh;
4831 struct mddev *mddev = cb->cb.data;
4832 struct r5conf *conf = mddev->private;
a9add5d9 4833 int cnt = 0;
566c09c5 4834 int hash;
8811b596
SL
4835
4836 if (cb->list.next && !list_empty(&cb->list)) {
4837 spin_lock_irq(&conf->device_lock);
4838 while (!list_empty(&cb->list)) {
4839 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4840 list_del_init(&sh->lru);
4841 /*
4842 * avoid race release_stripe_plug() sees
4843 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4844 * is still in our list
4845 */
4e857c58 4846 smp_mb__before_atomic();
8811b596 4847 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
4848 /*
4849 * STRIPE_ON_RELEASE_LIST could be set here. In that
4850 * case, the count is always > 1 here
4851 */
566c09c5
SL
4852 hash = sh->hash_lock_index;
4853 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 4854 cnt++;
8811b596
SL
4855 }
4856 spin_unlock_irq(&conf->device_lock);
4857 }
566c09c5
SL
4858 release_inactive_stripe_list(conf, cb->temp_inactive_list,
4859 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
4860 if (mddev->queue)
4861 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
4862 kfree(cb);
4863}
4864
4865static void release_stripe_plug(struct mddev *mddev,
4866 struct stripe_head *sh)
4867{
4868 struct blk_plug_cb *blk_cb = blk_check_plugged(
4869 raid5_unplug, mddev,
4870 sizeof(struct raid5_plug_cb));
4871 struct raid5_plug_cb *cb;
4872
4873 if (!blk_cb) {
4874 release_stripe(sh);
4875 return;
4876 }
4877
4878 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4879
566c09c5
SL
4880 if (cb->list.next == NULL) {
4881 int i;
8811b596 4882 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
4883 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4884 INIT_LIST_HEAD(cb->temp_inactive_list + i);
4885 }
8811b596
SL
4886
4887 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4888 list_add_tail(&sh->lru, &cb->list);
4889 else
4890 release_stripe(sh);
4891}
4892
620125f2
SL
4893static void make_discard_request(struct mddev *mddev, struct bio *bi)
4894{
4895 struct r5conf *conf = mddev->private;
4896 sector_t logical_sector, last_sector;
4897 struct stripe_head *sh;
4898 int remaining;
4899 int stripe_sectors;
4900
4901 if (mddev->reshape_position != MaxSector)
4902 /* Skip discard while reshape is happening */
4903 return;
4904
4f024f37
KO
4905 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4906 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
4907
4908 bi->bi_next = NULL;
4909 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4910
4911 stripe_sectors = conf->chunk_sectors *
4912 (conf->raid_disks - conf->max_degraded);
4913 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4914 stripe_sectors);
4915 sector_div(last_sector, stripe_sectors);
4916
4917 logical_sector *= conf->chunk_sectors;
4918 last_sector *= conf->chunk_sectors;
4919
4920 for (; logical_sector < last_sector;
4921 logical_sector += STRIPE_SECTORS) {
4922 DEFINE_WAIT(w);
4923 int d;
4924 again:
4925 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4926 prepare_to_wait(&conf->wait_for_overlap, &w,
4927 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
4928 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4929 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4930 release_stripe(sh);
4931 schedule();
4932 goto again;
4933 }
4934 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
4935 spin_lock_irq(&sh->stripe_lock);
4936 for (d = 0; d < conf->raid_disks; d++) {
4937 if (d == sh->pd_idx || d == sh->qd_idx)
4938 continue;
4939 if (sh->dev[d].towrite || sh->dev[d].toread) {
4940 set_bit(R5_Overlap, &sh->dev[d].flags);
4941 spin_unlock_irq(&sh->stripe_lock);
4942 release_stripe(sh);
4943 schedule();
4944 goto again;
4945 }
4946 }
f8dfcffd 4947 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 4948 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 4949 sh->overwrite_disks = 0;
620125f2
SL
4950 for (d = 0; d < conf->raid_disks; d++) {
4951 if (d == sh->pd_idx || d == sh->qd_idx)
4952 continue;
4953 sh->dev[d].towrite = bi;
4954 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4955 raid5_inc_bi_active_stripes(bi);
7a87f434 4956 sh->overwrite_disks++;
620125f2
SL
4957 }
4958 spin_unlock_irq(&sh->stripe_lock);
4959 if (conf->mddev->bitmap) {
4960 for (d = 0;
4961 d < conf->raid_disks - conf->max_degraded;
4962 d++)
4963 bitmap_startwrite(mddev->bitmap,
4964 sh->sector,
4965 STRIPE_SECTORS,
4966 0);
4967 sh->bm_seq = conf->seq_flush + 1;
4968 set_bit(STRIPE_BIT_DELAY, &sh->state);
4969 }
4970
4971 set_bit(STRIPE_HANDLE, &sh->state);
4972 clear_bit(STRIPE_DELAYED, &sh->state);
4973 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4974 atomic_inc(&conf->preread_active_stripes);
4975 release_stripe_plug(mddev, sh);
4976 }
4977
4978 remaining = raid5_dec_bi_active_stripes(bi);
4979 if (remaining == 0) {
4980 md_write_end(mddev);
4981 bio_endio(bi, 0);
4982 }
4983}
4984
b4fdcb02 4985static void make_request(struct mddev *mddev, struct bio * bi)
1da177e4 4986{
d1688a6d 4987 struct r5conf *conf = mddev->private;
911d4ee8 4988 int dd_idx;
1da177e4
LT
4989 sector_t new_sector;
4990 sector_t logical_sector, last_sector;
4991 struct stripe_head *sh;
a362357b 4992 const int rw = bio_data_dir(bi);
49077326 4993 int remaining;
27c0f68f
SL
4994 DEFINE_WAIT(w);
4995 bool do_prepare;
1da177e4 4996
e9c7469b
TH
4997 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4998 md_flush_request(mddev, bi);
5a7bbad2 4999 return;
e5dcdd80
N
5000 }
5001
3d310eb7 5002 md_write_start(mddev, bi);
06d91a5f 5003
802ba064 5004 if (rw == READ &&
52488615 5005 mddev->reshape_position == MaxSector &&
21a52c6d 5006 chunk_aligned_read(mddev,bi))
5a7bbad2 5007 return;
52488615 5008
620125f2
SL
5009 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5010 make_discard_request(mddev, bi);
5011 return;
5012 }
5013
4f024f37 5014 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5015 last_sector = bio_end_sector(bi);
1da177e4
LT
5016 bi->bi_next = NULL;
5017 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 5018
27c0f68f 5019 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5020 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5021 int previous;
c46501b2 5022 int seq;
b578d55f 5023
27c0f68f 5024 do_prepare = false;
7ecaa1e6 5025 retry:
c46501b2 5026 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5027 previous = 0;
27c0f68f
SL
5028 if (do_prepare)
5029 prepare_to_wait(&conf->wait_for_overlap, &w,
5030 TASK_UNINTERRUPTIBLE);
b0f9ec04 5031 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5032 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5033 * 64bit on a 32bit platform, and so it might be
5034 * possible to see a half-updated value
aeb878b0 5035 * Of course reshape_progress could change after
df8e7f76
N
5036 * the lock is dropped, so once we get a reference
5037 * to the stripe that we think it is, we will have
5038 * to check again.
5039 */
7ecaa1e6 5040 spin_lock_irq(&conf->device_lock);
2c810cdd 5041 if (mddev->reshape_backwards
fef9c61f
N
5042 ? logical_sector < conf->reshape_progress
5043 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5044 previous = 1;
5045 } else {
2c810cdd 5046 if (mddev->reshape_backwards
fef9c61f
N
5047 ? logical_sector < conf->reshape_safe
5048 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5049 spin_unlock_irq(&conf->device_lock);
5050 schedule();
27c0f68f 5051 do_prepare = true;
b578d55f
N
5052 goto retry;
5053 }
5054 }
7ecaa1e6
N
5055 spin_unlock_irq(&conf->device_lock);
5056 }
16a53ecc 5057
112bf897
N
5058 new_sector = raid5_compute_sector(conf, logical_sector,
5059 previous,
911d4ee8 5060 &dd_idx, NULL);
0c55e022 5061 pr_debug("raid456: make_request, sector %llu logical %llu\n",
c46501b2 5062 (unsigned long long)new_sector,
1da177e4
LT
5063 (unsigned long long)logical_sector);
5064
b5663ba4 5065 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 5066 (bi->bi_rw&RWA_MASK), 0);
1da177e4 5067 if (sh) {
b0f9ec04 5068 if (unlikely(previous)) {
7ecaa1e6 5069 /* expansion might have moved on while waiting for a
df8e7f76
N
5070 * stripe, so we must do the range check again.
5071 * Expansion could still move past after this
5072 * test, but as we are holding a reference to
5073 * 'sh', we know that if that happens,
5074 * STRIPE_EXPANDING will get set and the expansion
5075 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5076 */
5077 int must_retry = 0;
5078 spin_lock_irq(&conf->device_lock);
2c810cdd 5079 if (mddev->reshape_backwards
b0f9ec04
N
5080 ? logical_sector >= conf->reshape_progress
5081 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5082 /* mismatch, need to try again */
5083 must_retry = 1;
5084 spin_unlock_irq(&conf->device_lock);
5085 if (must_retry) {
5086 release_stripe(sh);
7a3ab908 5087 schedule();
27c0f68f 5088 do_prepare = true;
7ecaa1e6
N
5089 goto retry;
5090 }
5091 }
c46501b2
N
5092 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5093 /* Might have got the wrong stripe_head
5094 * by accident
5095 */
5096 release_stripe(sh);
5097 goto retry;
5098 }
e62e58a5 5099
ffd96e35 5100 if (rw == WRITE &&
a5c308d4 5101 logical_sector >= mddev->suspend_lo &&
e464eafd
N
5102 logical_sector < mddev->suspend_hi) {
5103 release_stripe(sh);
e62e58a5
N
5104 /* As the suspend_* range is controlled by
5105 * userspace, we want an interruptible
5106 * wait.
5107 */
5108 flush_signals(current);
5109 prepare_to_wait(&conf->wait_for_overlap,
5110 &w, TASK_INTERRUPTIBLE);
5111 if (logical_sector >= mddev->suspend_lo &&
27c0f68f 5112 logical_sector < mddev->suspend_hi) {
e62e58a5 5113 schedule();
27c0f68f
SL
5114 do_prepare = true;
5115 }
e464eafd
N
5116 goto retry;
5117 }
7ecaa1e6
N
5118
5119 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5120 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5121 /* Stripe is busy expanding or
5122 * add failed due to overlap. Flush everything
1da177e4
LT
5123 * and wait a while
5124 */
482c0834 5125 md_wakeup_thread(mddev->thread);
1da177e4
LT
5126 release_stripe(sh);
5127 schedule();
27c0f68f 5128 do_prepare = true;
1da177e4
LT
5129 goto retry;
5130 }
6ed3003c
N
5131 set_bit(STRIPE_HANDLE, &sh->state);
5132 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5133 if ((!sh->batch_head || sh == sh->batch_head) &&
5134 (bi->bi_rw & REQ_SYNC) &&
729a1866
N
5135 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5136 atomic_inc(&conf->preread_active_stripes);
8811b596 5137 release_stripe_plug(mddev, sh);
1da177e4
LT
5138 } else {
5139 /* cannot get stripe for read-ahead, just give-up */
5140 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1da177e4
LT
5141 break;
5142 }
1da177e4 5143 }
27c0f68f 5144 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5145
e7836bd6 5146 remaining = raid5_dec_bi_active_stripes(bi);
f6344757 5147 if (remaining == 0) {
1da177e4 5148
16a53ecc 5149 if ( rw == WRITE )
1da177e4 5150 md_write_end(mddev);
6712ecf8 5151
0a82a8d1
LT
5152 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5153 bi, 0);
0e13fe23 5154 bio_endio(bi, 0);
1da177e4 5155 }
1da177e4
LT
5156}
5157
fd01b88c 5158static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5159
fd01b88c 5160static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5161{
52c03291
N
5162 /* reshaping is quite different to recovery/resync so it is
5163 * handled quite separately ... here.
5164 *
5165 * On each call to sync_request, we gather one chunk worth of
5166 * destination stripes and flag them as expanding.
5167 * Then we find all the source stripes and request reads.
5168 * As the reads complete, handle_stripe will copy the data
5169 * into the destination stripe and release that stripe.
5170 */
d1688a6d 5171 struct r5conf *conf = mddev->private;
1da177e4 5172 struct stripe_head *sh;
ccfcc3c1 5173 sector_t first_sector, last_sector;
f416885e
N
5174 int raid_disks = conf->previous_raid_disks;
5175 int data_disks = raid_disks - conf->max_degraded;
5176 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5177 int i;
5178 int dd_idx;
c8f517c4 5179 sector_t writepos, readpos, safepos;
ec32a2bd 5180 sector_t stripe_addr;
7a661381 5181 int reshape_sectors;
ab69ae12 5182 struct list_head stripes;
52c03291 5183
fef9c61f
N
5184 if (sector_nr == 0) {
5185 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5186 if (mddev->reshape_backwards &&
fef9c61f
N
5187 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5188 sector_nr = raid5_size(mddev, 0, 0)
5189 - conf->reshape_progress;
2c810cdd 5190 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5191 conf->reshape_progress > 0)
5192 sector_nr = conf->reshape_progress;
f416885e 5193 sector_div(sector_nr, new_data_disks);
fef9c61f 5194 if (sector_nr) {
8dee7211
N
5195 mddev->curr_resync_completed = sector_nr;
5196 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
5197 *skipped = 1;
5198 return sector_nr;
5199 }
52c03291
N
5200 }
5201
7a661381
N
5202 /* We need to process a full chunk at a time.
5203 * If old and new chunk sizes differ, we need to process the
5204 * largest of these
5205 */
664e7c41
AN
5206 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5207 reshape_sectors = mddev->new_chunk_sectors;
7a661381 5208 else
9d8f0363 5209 reshape_sectors = mddev->chunk_sectors;
7a661381 5210
b5254dd5
N
5211 /* We update the metadata at least every 10 seconds, or when
5212 * the data about to be copied would over-write the source of
5213 * the data at the front of the range. i.e. one new_stripe
5214 * along from reshape_progress new_maps to after where
5215 * reshape_safe old_maps to
52c03291 5216 */
fef9c61f 5217 writepos = conf->reshape_progress;
f416885e 5218 sector_div(writepos, new_data_disks);
c8f517c4
N
5219 readpos = conf->reshape_progress;
5220 sector_div(readpos, data_disks);
fef9c61f 5221 safepos = conf->reshape_safe;
f416885e 5222 sector_div(safepos, data_disks);
2c810cdd 5223 if (mddev->reshape_backwards) {
ed37d83e 5224 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 5225 readpos += reshape_sectors;
7a661381 5226 safepos += reshape_sectors;
fef9c61f 5227 } else {
7a661381 5228 writepos += reshape_sectors;
ed37d83e
N
5229 readpos -= min_t(sector_t, reshape_sectors, readpos);
5230 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5231 }
52c03291 5232
b5254dd5
N
5233 /* Having calculated the 'writepos' possibly use it
5234 * to set 'stripe_addr' which is where we will write to.
5235 */
5236 if (mddev->reshape_backwards) {
5237 BUG_ON(conf->reshape_progress == 0);
5238 stripe_addr = writepos;
5239 BUG_ON((mddev->dev_sectors &
5240 ~((sector_t)reshape_sectors - 1))
5241 - reshape_sectors - stripe_addr
5242 != sector_nr);
5243 } else {
5244 BUG_ON(writepos != sector_nr + reshape_sectors);
5245 stripe_addr = sector_nr;
5246 }
5247
c8f517c4
N
5248 /* 'writepos' is the most advanced device address we might write.
5249 * 'readpos' is the least advanced device address we might read.
5250 * 'safepos' is the least address recorded in the metadata as having
5251 * been reshaped.
b5254dd5
N
5252 * If there is a min_offset_diff, these are adjusted either by
5253 * increasing the safepos/readpos if diff is negative, or
5254 * increasing writepos if diff is positive.
5255 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5256 * ensure safety in the face of a crash - that must be done by userspace
5257 * making a backup of the data. So in that case there is no particular
5258 * rush to update metadata.
5259 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5260 * update the metadata to advance 'safepos' to match 'readpos' so that
5261 * we can be safe in the event of a crash.
5262 * So we insist on updating metadata if safepos is behind writepos and
5263 * readpos is beyond writepos.
5264 * In any case, update the metadata every 10 seconds.
5265 * Maybe that number should be configurable, but I'm not sure it is
5266 * worth it.... maybe it could be a multiple of safemode_delay???
5267 */
b5254dd5
N
5268 if (conf->min_offset_diff < 0) {
5269 safepos += -conf->min_offset_diff;
5270 readpos += -conf->min_offset_diff;
5271 } else
5272 writepos += conf->min_offset_diff;
5273
2c810cdd 5274 if ((mddev->reshape_backwards
c8f517c4
N
5275 ? (safepos > writepos && readpos < writepos)
5276 : (safepos < writepos && readpos > writepos)) ||
5277 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5278 /* Cannot proceed until we've updated the superblock... */
5279 wait_event(conf->wait_for_overlap,
c91abf5a
N
5280 atomic_read(&conf->reshape_stripes)==0
5281 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5282 if (atomic_read(&conf->reshape_stripes) != 0)
5283 return 0;
fef9c61f 5284 mddev->reshape_position = conf->reshape_progress;
75d3da43 5285 mddev->curr_resync_completed = sector_nr;
c8f517c4 5286 conf->reshape_checkpoint = jiffies;
850b2b42 5287 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 5288 md_wakeup_thread(mddev->thread);
850b2b42 5289 wait_event(mddev->sb_wait, mddev->flags == 0 ||
c91abf5a
N
5290 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5291 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5292 return 0;
52c03291 5293 spin_lock_irq(&conf->device_lock);
fef9c61f 5294 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5295 spin_unlock_irq(&conf->device_lock);
5296 wake_up(&conf->wait_for_overlap);
acb180b0 5297 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
5298 }
5299
ab69ae12 5300 INIT_LIST_HEAD(&stripes);
7a661381 5301 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5302 int j;
a9f326eb 5303 int skipped_disk = 0;
a8c906ca 5304 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5305 set_bit(STRIPE_EXPANDING, &sh->state);
5306 atomic_inc(&conf->reshape_stripes);
5307 /* If any of this stripe is beyond the end of the old
5308 * array, then we need to zero those blocks
5309 */
5310 for (j=sh->disks; j--;) {
5311 sector_t s;
5312 if (j == sh->pd_idx)
5313 continue;
f416885e 5314 if (conf->level == 6 &&
d0dabf7e 5315 j == sh->qd_idx)
f416885e 5316 continue;
784052ec 5317 s = compute_blocknr(sh, j, 0);
b522adcd 5318 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5319 skipped_disk = 1;
52c03291
N
5320 continue;
5321 }
5322 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5323 set_bit(R5_Expanded, &sh->dev[j].flags);
5324 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5325 }
a9f326eb 5326 if (!skipped_disk) {
52c03291
N
5327 set_bit(STRIPE_EXPAND_READY, &sh->state);
5328 set_bit(STRIPE_HANDLE, &sh->state);
5329 }
ab69ae12 5330 list_add(&sh->lru, &stripes);
52c03291
N
5331 }
5332 spin_lock_irq(&conf->device_lock);
2c810cdd 5333 if (mddev->reshape_backwards)
7a661381 5334 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5335 else
7a661381 5336 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5337 spin_unlock_irq(&conf->device_lock);
5338 /* Ok, those stripe are ready. We can start scheduling
5339 * reads on the source stripes.
5340 * The source stripes are determined by mapping the first and last
5341 * block on the destination stripes.
5342 */
52c03291 5343 first_sector =
ec32a2bd 5344 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5345 1, &dd_idx, NULL);
52c03291 5346 last_sector =
0e6e0271 5347 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5348 * new_data_disks - 1),
911d4ee8 5349 1, &dd_idx, NULL);
58c0fed4
AN
5350 if (last_sector >= mddev->dev_sectors)
5351 last_sector = mddev->dev_sectors - 1;
52c03291 5352 while (first_sector <= last_sector) {
a8c906ca 5353 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5354 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5355 set_bit(STRIPE_HANDLE, &sh->state);
5356 release_stripe(sh);
5357 first_sector += STRIPE_SECTORS;
5358 }
ab69ae12
N
5359 /* Now that the sources are clearly marked, we can release
5360 * the destination stripes
5361 */
5362 while (!list_empty(&stripes)) {
5363 sh = list_entry(stripes.next, struct stripe_head, lru);
5364 list_del_init(&sh->lru);
5365 release_stripe(sh);
5366 }
c6207277
N
5367 /* If this takes us to the resync_max point where we have to pause,
5368 * then we need to write out the superblock.
5369 */
7a661381 5370 sector_nr += reshape_sectors;
c03f6a19
N
5371 if ((sector_nr - mddev->curr_resync_completed) * 2
5372 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5373 /* Cannot proceed until we've updated the superblock... */
5374 wait_event(conf->wait_for_overlap,
c91abf5a
N
5375 atomic_read(&conf->reshape_stripes) == 0
5376 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5377 if (atomic_read(&conf->reshape_stripes) != 0)
5378 goto ret;
fef9c61f 5379 mddev->reshape_position = conf->reshape_progress;
75d3da43 5380 mddev->curr_resync_completed = sector_nr;
c8f517c4 5381 conf->reshape_checkpoint = jiffies;
c6207277
N
5382 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5383 md_wakeup_thread(mddev->thread);
5384 wait_event(mddev->sb_wait,
5385 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
c91abf5a
N
5386 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5387 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5388 goto ret;
c6207277 5389 spin_lock_irq(&conf->device_lock);
fef9c61f 5390 conf->reshape_safe = mddev->reshape_position;
c6207277
N
5391 spin_unlock_irq(&conf->device_lock);
5392 wake_up(&conf->wait_for_overlap);
acb180b0 5393 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 5394 }
c91abf5a 5395ret:
7a661381 5396 return reshape_sectors;
52c03291
N
5397}
5398
09314799 5399static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
52c03291 5400{
d1688a6d 5401 struct r5conf *conf = mddev->private;
52c03291 5402 struct stripe_head *sh;
58c0fed4 5403 sector_t max_sector = mddev->dev_sectors;
57dab0bd 5404 sector_t sync_blocks;
16a53ecc
N
5405 int still_degraded = 0;
5406 int i;
1da177e4 5407
72626685 5408 if (sector_nr >= max_sector) {
1da177e4 5409 /* just being told to finish up .. nothing much to do */
cea9c228 5410
29269553
N
5411 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5412 end_reshape(conf);
5413 return 0;
5414 }
72626685
N
5415
5416 if (mddev->curr_resync < max_sector) /* aborted */
5417 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5418 &sync_blocks, 1);
16a53ecc 5419 else /* completed sync */
72626685
N
5420 conf->fullsync = 0;
5421 bitmap_close_sync(mddev->bitmap);
5422
1da177e4
LT
5423 return 0;
5424 }
ccfcc3c1 5425
64bd660b
N
5426 /* Allow raid5_quiesce to complete */
5427 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5428
52c03291
N
5429 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5430 return reshape_request(mddev, sector_nr, skipped);
f6705578 5431
c6207277
N
5432 /* No need to check resync_max as we never do more than one
5433 * stripe, and as resync_max will always be on a chunk boundary,
5434 * if the check in md_do_sync didn't fire, there is no chance
5435 * of overstepping resync_max here
5436 */
5437
16a53ecc 5438 /* if there is too many failed drives and we are trying
1da177e4
LT
5439 * to resync, then assert that we are finished, because there is
5440 * nothing we can do.
5441 */
3285edf1 5442 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 5443 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 5444 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 5445 *skipped = 1;
1da177e4
LT
5446 return rv;
5447 }
6f608040 5448 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5449 !conf->fullsync &&
5450 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5451 sync_blocks >= STRIPE_SECTORS) {
72626685
N
5452 /* we can skip this block, and probably more */
5453 sync_blocks /= STRIPE_SECTORS;
5454 *skipped = 1;
5455 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5456 }
1da177e4 5457
b47490c9
N
5458 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5459
a8c906ca 5460 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 5461 if (sh == NULL) {
a8c906ca 5462 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 5463 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 5464 * is trying to get access
1da177e4 5465 */
66c006a5 5466 schedule_timeout_uninterruptible(1);
1da177e4 5467 }
16a53ecc 5468 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
5469 * Note in case of > 1 drive failures it's possible we're rebuilding
5470 * one drive while leaving another faulty drive in array.
16a53ecc 5471 */
16d9cfab
EM
5472 rcu_read_lock();
5473 for (i = 0; i < conf->raid_disks; i++) {
5474 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5475
5476 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 5477 still_degraded = 1;
16d9cfab
EM
5478 }
5479 rcu_read_unlock();
16a53ecc
N
5480
5481 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5482
83206d66 5483 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 5484 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 5485
1da177e4
LT
5486 release_stripe(sh);
5487
5488 return STRIPE_SECTORS;
5489}
5490
d1688a6d 5491static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
5492{
5493 /* We may not be able to submit a whole bio at once as there
5494 * may not be enough stripe_heads available.
5495 * We cannot pre-allocate enough stripe_heads as we may need
5496 * more than exist in the cache (if we allow ever large chunks).
5497 * So we do one stripe head at a time and record in
5498 * ->bi_hw_segments how many have been done.
5499 *
5500 * We *know* that this entire raid_bio is in one chunk, so
5501 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5502 */
5503 struct stripe_head *sh;
911d4ee8 5504 int dd_idx;
46031f9a
RBJ
5505 sector_t sector, logical_sector, last_sector;
5506 int scnt = 0;
5507 int remaining;
5508 int handled = 0;
5509
4f024f37
KO
5510 logical_sector = raid_bio->bi_iter.bi_sector &
5511 ~((sector_t)STRIPE_SECTORS-1);
112bf897 5512 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 5513 0, &dd_idx, NULL);
f73a1c7d 5514 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
5515
5516 for (; logical_sector < last_sector;
387bb173
NB
5517 logical_sector += STRIPE_SECTORS,
5518 sector += STRIPE_SECTORS,
5519 scnt++) {
46031f9a 5520
e7836bd6 5521 if (scnt < raid5_bi_processed_stripes(raid_bio))
46031f9a
RBJ
5522 /* already done this stripe */
5523 continue;
5524
2844dc32 5525 sh = get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
5526
5527 if (!sh) {
5528 /* failed to get a stripe - must wait */
e7836bd6 5529 raid5_set_bi_processed_stripes(raid_bio, scnt);
46031f9a
RBJ
5530 conf->retry_read_aligned = raid_bio;
5531 return handled;
5532 }
5533
da41ba65 5534 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
387bb173 5535 release_stripe(sh);
e7836bd6 5536 raid5_set_bi_processed_stripes(raid_bio, scnt);
387bb173
NB
5537 conf->retry_read_aligned = raid_bio;
5538 return handled;
5539 }
5540
3f9e7c14 5541 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 5542 handle_stripe(sh);
46031f9a
RBJ
5543 release_stripe(sh);
5544 handled++;
5545 }
e7836bd6 5546 remaining = raid5_dec_bi_active_stripes(raid_bio);
0a82a8d1
LT
5547 if (remaining == 0) {
5548 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5549 raid_bio, 0);
0e13fe23 5550 bio_endio(raid_bio, 0);
0a82a8d1 5551 }
46031f9a
RBJ
5552 if (atomic_dec_and_test(&conf->active_aligned_reads))
5553 wake_up(&conf->wait_for_stripe);
5554 return handled;
5555}
5556
bfc90cb0 5557static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
5558 struct r5worker *worker,
5559 struct list_head *temp_inactive_list)
46a06401
SL
5560{
5561 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
5562 int i, batch_size = 0, hash;
5563 bool release_inactive = false;
46a06401
SL
5564
5565 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 5566 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
5567 batch[batch_size++] = sh;
5568
566c09c5
SL
5569 if (batch_size == 0) {
5570 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5571 if (!list_empty(temp_inactive_list + i))
5572 break;
5573 if (i == NR_STRIPE_HASH_LOCKS)
5574 return batch_size;
5575 release_inactive = true;
5576 }
46a06401
SL
5577 spin_unlock_irq(&conf->device_lock);
5578
566c09c5
SL
5579 release_inactive_stripe_list(conf, temp_inactive_list,
5580 NR_STRIPE_HASH_LOCKS);
5581
5582 if (release_inactive) {
5583 spin_lock_irq(&conf->device_lock);
5584 return 0;
5585 }
5586
46a06401
SL
5587 for (i = 0; i < batch_size; i++)
5588 handle_stripe(batch[i]);
5589
5590 cond_resched();
5591
5592 spin_lock_irq(&conf->device_lock);
566c09c5
SL
5593 for (i = 0; i < batch_size; i++) {
5594 hash = batch[i]->hash_lock_index;
5595 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5596 }
46a06401
SL
5597 return batch_size;
5598}
46031f9a 5599
851c30c9
SL
5600static void raid5_do_work(struct work_struct *work)
5601{
5602 struct r5worker *worker = container_of(work, struct r5worker, work);
5603 struct r5worker_group *group = worker->group;
5604 struct r5conf *conf = group->conf;
5605 int group_id = group - conf->worker_groups;
5606 int handled;
5607 struct blk_plug plug;
5608
5609 pr_debug("+++ raid5worker active\n");
5610
5611 blk_start_plug(&plug);
5612 handled = 0;
5613 spin_lock_irq(&conf->device_lock);
5614 while (1) {
5615 int batch_size, released;
5616
566c09c5 5617 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 5618
566c09c5
SL
5619 batch_size = handle_active_stripes(conf, group_id, worker,
5620 worker->temp_inactive_list);
bfc90cb0 5621 worker->working = false;
851c30c9
SL
5622 if (!batch_size && !released)
5623 break;
5624 handled += batch_size;
5625 }
5626 pr_debug("%d stripes handled\n", handled);
5627
5628 spin_unlock_irq(&conf->device_lock);
5629 blk_finish_plug(&plug);
5630
5631 pr_debug("--- raid5worker inactive\n");
5632}
5633
1da177e4
LT
5634/*
5635 * This is our raid5 kernel thread.
5636 *
5637 * We scan the hash table for stripes which can be handled now.
5638 * During the scan, completed stripes are saved for us by the interrupt
5639 * handler, so that they will not have to wait for our next wakeup.
5640 */
4ed8731d 5641static void raid5d(struct md_thread *thread)
1da177e4 5642{
4ed8731d 5643 struct mddev *mddev = thread->mddev;
d1688a6d 5644 struct r5conf *conf = mddev->private;
1da177e4 5645 int handled;
e1dfa0a2 5646 struct blk_plug plug;
1da177e4 5647
45b4233c 5648 pr_debug("+++ raid5d active\n");
1da177e4
LT
5649
5650 md_check_recovery(mddev);
1da177e4 5651
e1dfa0a2 5652 blk_start_plug(&plug);
1da177e4
LT
5653 handled = 0;
5654 spin_lock_irq(&conf->device_lock);
5655 while (1) {
46031f9a 5656 struct bio *bio;
773ca82f
SL
5657 int batch_size, released;
5658
566c09c5 5659 released = release_stripe_list(conf, conf->temp_inactive_list);
1da177e4 5660
0021b7bc 5661 if (
7c13edc8
N
5662 !list_empty(&conf->bitmap_list)) {
5663 /* Now is a good time to flush some bitmap updates */
5664 conf->seq_flush++;
700e432d 5665 spin_unlock_irq(&conf->device_lock);
72626685 5666 bitmap_unplug(mddev->bitmap);
700e432d 5667 spin_lock_irq(&conf->device_lock);
7c13edc8 5668 conf->seq_write = conf->seq_flush;
566c09c5 5669 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 5670 }
0021b7bc 5671 raid5_activate_delayed(conf);
72626685 5672
46031f9a
RBJ
5673 while ((bio = remove_bio_from_retry(conf))) {
5674 int ok;
5675 spin_unlock_irq(&conf->device_lock);
5676 ok = retry_aligned_read(conf, bio);
5677 spin_lock_irq(&conf->device_lock);
5678 if (!ok)
5679 break;
5680 handled++;
5681 }
5682
566c09c5
SL
5683 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5684 conf->temp_inactive_list);
773ca82f 5685 if (!batch_size && !released)
1da177e4 5686 break;
46a06401 5687 handled += batch_size;
1da177e4 5688
46a06401
SL
5689 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5690 spin_unlock_irq(&conf->device_lock);
de393cde 5691 md_check_recovery(mddev);
46a06401
SL
5692 spin_lock_irq(&conf->device_lock);
5693 }
1da177e4 5694 }
45b4233c 5695 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
5696
5697 spin_unlock_irq(&conf->device_lock);
5698
c9f21aaf 5699 async_tx_issue_pending_all();
e1dfa0a2 5700 blk_finish_plug(&plug);
1da177e4 5701
45b4233c 5702 pr_debug("--- raid5d inactive\n");
1da177e4
LT
5703}
5704
3f294f4f 5705static ssize_t
fd01b88c 5706raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 5707{
7b1485ba
N
5708 struct r5conf *conf;
5709 int ret = 0;
5710 spin_lock(&mddev->lock);
5711 conf = mddev->private;
96de1e66 5712 if (conf)
7b1485ba
N
5713 ret = sprintf(page, "%d\n", conf->max_nr_stripes);
5714 spin_unlock(&mddev->lock);
5715 return ret;
3f294f4f
N
5716}
5717
c41d4ac4 5718int
fd01b88c 5719raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 5720{
d1688a6d 5721 struct r5conf *conf = mddev->private;
b5470dc5 5722 int err;
566c09c5 5723 int hash;
b5470dc5 5724
c41d4ac4 5725 if (size <= 16 || size > 32768)
3f294f4f 5726 return -EINVAL;
566c09c5 5727 hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
c41d4ac4 5728 while (size < conf->max_nr_stripes) {
566c09c5 5729 if (drop_one_stripe(conf, hash))
3f294f4f
N
5730 conf->max_nr_stripes--;
5731 else
5732 break;
566c09c5
SL
5733 hash--;
5734 if (hash < 0)
5735 hash = NR_STRIPE_HASH_LOCKS - 1;
3f294f4f 5736 }
b5470dc5
DW
5737 err = md_allow_write(mddev);
5738 if (err)
5739 return err;
566c09c5 5740 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
c41d4ac4 5741 while (size > conf->max_nr_stripes) {
566c09c5 5742 if (grow_one_stripe(conf, hash))
3f294f4f
N
5743 conf->max_nr_stripes++;
5744 else break;
566c09c5 5745 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
3f294f4f 5746 }
c41d4ac4
N
5747 return 0;
5748}
5749EXPORT_SYMBOL(raid5_set_cache_size);
5750
5751static ssize_t
fd01b88c 5752raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 5753{
6791875e 5754 struct r5conf *conf;
c41d4ac4
N
5755 unsigned long new;
5756 int err;
5757
5758 if (len >= PAGE_SIZE)
5759 return -EINVAL;
b29bebd6 5760 if (kstrtoul(page, 10, &new))
c41d4ac4 5761 return -EINVAL;
6791875e 5762 err = mddev_lock(mddev);
c41d4ac4
N
5763 if (err)
5764 return err;
6791875e
N
5765 conf = mddev->private;
5766 if (!conf)
5767 err = -ENODEV;
5768 else
5769 err = raid5_set_cache_size(mddev, new);
5770 mddev_unlock(mddev);
5771
5772 return err ?: len;
3f294f4f 5773}
007583c9 5774
96de1e66
N
5775static struct md_sysfs_entry
5776raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5777 raid5_show_stripe_cache_size,
5778 raid5_store_stripe_cache_size);
3f294f4f 5779
8b3e6cdc 5780static ssize_t
fd01b88c 5781raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 5782{
7b1485ba
N
5783 struct r5conf *conf;
5784 int ret = 0;
5785 spin_lock(&mddev->lock);
5786 conf = mddev->private;
8b3e6cdc 5787 if (conf)
7b1485ba
N
5788 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5789 spin_unlock(&mddev->lock);
5790 return ret;
8b3e6cdc
DW
5791}
5792
5793static ssize_t
fd01b88c 5794raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 5795{
6791875e 5796 struct r5conf *conf;
4ef197d8 5797 unsigned long new;
6791875e
N
5798 int err;
5799
8b3e6cdc
DW
5800 if (len >= PAGE_SIZE)
5801 return -EINVAL;
b29bebd6 5802 if (kstrtoul(page, 10, &new))
8b3e6cdc 5803 return -EINVAL;
6791875e
N
5804
5805 err = mddev_lock(mddev);
5806 if (err)
5807 return err;
5808 conf = mddev->private;
5809 if (!conf)
5810 err = -ENODEV;
5811 else if (new > conf->max_nr_stripes)
5812 err = -EINVAL;
5813 else
5814 conf->bypass_threshold = new;
5815 mddev_unlock(mddev);
5816 return err ?: len;
8b3e6cdc
DW
5817}
5818
5819static struct md_sysfs_entry
5820raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5821 S_IRUGO | S_IWUSR,
5822 raid5_show_preread_threshold,
5823 raid5_store_preread_threshold);
5824
d592a996
SL
5825static ssize_t
5826raid5_show_skip_copy(struct mddev *mddev, char *page)
5827{
7b1485ba
N
5828 struct r5conf *conf;
5829 int ret = 0;
5830 spin_lock(&mddev->lock);
5831 conf = mddev->private;
d592a996 5832 if (conf)
7b1485ba
N
5833 ret = sprintf(page, "%d\n", conf->skip_copy);
5834 spin_unlock(&mddev->lock);
5835 return ret;
d592a996
SL
5836}
5837
5838static ssize_t
5839raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5840{
6791875e 5841 struct r5conf *conf;
d592a996 5842 unsigned long new;
6791875e
N
5843 int err;
5844
d592a996
SL
5845 if (len >= PAGE_SIZE)
5846 return -EINVAL;
d592a996
SL
5847 if (kstrtoul(page, 10, &new))
5848 return -EINVAL;
5849 new = !!new;
6791875e
N
5850
5851 err = mddev_lock(mddev);
5852 if (err)
5853 return err;
5854 conf = mddev->private;
5855 if (!conf)
5856 err = -ENODEV;
5857 else if (new != conf->skip_copy) {
5858 mddev_suspend(mddev);
5859 conf->skip_copy = new;
5860 if (new)
5861 mddev->queue->backing_dev_info.capabilities |=
5862 BDI_CAP_STABLE_WRITES;
5863 else
5864 mddev->queue->backing_dev_info.capabilities &=
5865 ~BDI_CAP_STABLE_WRITES;
5866 mddev_resume(mddev);
5867 }
5868 mddev_unlock(mddev);
5869 return err ?: len;
d592a996
SL
5870}
5871
5872static struct md_sysfs_entry
5873raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
5874 raid5_show_skip_copy,
5875 raid5_store_skip_copy);
5876
3f294f4f 5877static ssize_t
fd01b88c 5878stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 5879{
d1688a6d 5880 struct r5conf *conf = mddev->private;
96de1e66
N
5881 if (conf)
5882 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5883 else
5884 return 0;
3f294f4f
N
5885}
5886
96de1e66
N
5887static struct md_sysfs_entry
5888raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 5889
b721420e
SL
5890static ssize_t
5891raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5892{
7b1485ba
N
5893 struct r5conf *conf;
5894 int ret = 0;
5895 spin_lock(&mddev->lock);
5896 conf = mddev->private;
b721420e 5897 if (conf)
7b1485ba
N
5898 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
5899 spin_unlock(&mddev->lock);
5900 return ret;
b721420e
SL
5901}
5902
60aaf933 5903static int alloc_thread_groups(struct r5conf *conf, int cnt,
5904 int *group_cnt,
5905 int *worker_cnt_per_group,
5906 struct r5worker_group **worker_groups);
b721420e
SL
5907static ssize_t
5908raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5909{
6791875e 5910 struct r5conf *conf;
b721420e
SL
5911 unsigned long new;
5912 int err;
60aaf933 5913 struct r5worker_group *new_groups, *old_groups;
5914 int group_cnt, worker_cnt_per_group;
b721420e
SL
5915
5916 if (len >= PAGE_SIZE)
5917 return -EINVAL;
b721420e
SL
5918 if (kstrtoul(page, 10, &new))
5919 return -EINVAL;
5920
6791875e
N
5921 err = mddev_lock(mddev);
5922 if (err)
5923 return err;
5924 conf = mddev->private;
5925 if (!conf)
5926 err = -ENODEV;
5927 else if (new != conf->worker_cnt_per_group) {
5928 mddev_suspend(mddev);
b721420e 5929
6791875e
N
5930 old_groups = conf->worker_groups;
5931 if (old_groups)
5932 flush_workqueue(raid5_wq);
d206dcfa 5933
6791875e
N
5934 err = alloc_thread_groups(conf, new,
5935 &group_cnt, &worker_cnt_per_group,
5936 &new_groups);
5937 if (!err) {
5938 spin_lock_irq(&conf->device_lock);
5939 conf->group_cnt = group_cnt;
5940 conf->worker_cnt_per_group = worker_cnt_per_group;
5941 conf->worker_groups = new_groups;
5942 spin_unlock_irq(&conf->device_lock);
b721420e 5943
6791875e
N
5944 if (old_groups)
5945 kfree(old_groups[0].workers);
5946 kfree(old_groups);
5947 }
5948 mddev_resume(mddev);
b721420e 5949 }
6791875e 5950 mddev_unlock(mddev);
b721420e 5951
6791875e 5952 return err ?: len;
b721420e
SL
5953}
5954
5955static struct md_sysfs_entry
5956raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5957 raid5_show_group_thread_cnt,
5958 raid5_store_group_thread_cnt);
5959
007583c9 5960static struct attribute *raid5_attrs[] = {
3f294f4f
N
5961 &raid5_stripecache_size.attr,
5962 &raid5_stripecache_active.attr,
8b3e6cdc 5963 &raid5_preread_bypass_threshold.attr,
b721420e 5964 &raid5_group_thread_cnt.attr,
d592a996 5965 &raid5_skip_copy.attr,
3f294f4f
N
5966 NULL,
5967};
007583c9
N
5968static struct attribute_group raid5_attrs_group = {
5969 .name = NULL,
5970 .attrs = raid5_attrs,
3f294f4f
N
5971};
5972
60aaf933 5973static int alloc_thread_groups(struct r5conf *conf, int cnt,
5974 int *group_cnt,
5975 int *worker_cnt_per_group,
5976 struct r5worker_group **worker_groups)
851c30c9 5977{
566c09c5 5978 int i, j, k;
851c30c9
SL
5979 ssize_t size;
5980 struct r5worker *workers;
5981
60aaf933 5982 *worker_cnt_per_group = cnt;
851c30c9 5983 if (cnt == 0) {
60aaf933 5984 *group_cnt = 0;
5985 *worker_groups = NULL;
851c30c9
SL
5986 return 0;
5987 }
60aaf933 5988 *group_cnt = num_possible_nodes();
851c30c9 5989 size = sizeof(struct r5worker) * cnt;
60aaf933 5990 workers = kzalloc(size * *group_cnt, GFP_NOIO);
5991 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5992 *group_cnt, GFP_NOIO);
5993 if (!*worker_groups || !workers) {
851c30c9 5994 kfree(workers);
60aaf933 5995 kfree(*worker_groups);
851c30c9
SL
5996 return -ENOMEM;
5997 }
5998
60aaf933 5999 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6000 struct r5worker_group *group;
6001
0c775d52 6002 group = &(*worker_groups)[i];
851c30c9
SL
6003 INIT_LIST_HEAD(&group->handle_list);
6004 group->conf = conf;
6005 group->workers = workers + i * cnt;
6006
6007 for (j = 0; j < cnt; j++) {
566c09c5
SL
6008 struct r5worker *worker = group->workers + j;
6009 worker->group = group;
6010 INIT_WORK(&worker->work, raid5_do_work);
6011
6012 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6013 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6014 }
6015 }
6016
6017 return 0;
6018}
6019
6020static void free_thread_groups(struct r5conf *conf)
6021{
6022 if (conf->worker_groups)
6023 kfree(conf->worker_groups[0].workers);
6024 kfree(conf->worker_groups);
6025 conf->worker_groups = NULL;
6026}
6027
80c3a6ce 6028static sector_t
fd01b88c 6029raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6030{
d1688a6d 6031 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6032
6033 if (!sectors)
6034 sectors = mddev->dev_sectors;
5e5e3e78 6035 if (!raid_disks)
7ec05478 6036 /* size is defined by the smallest of previous and new size */
5e5e3e78 6037 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6038
9d8f0363 6039 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 6040 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
6041 return sectors * (raid_disks - conf->max_degraded);
6042}
6043
789b5e03
ON
6044static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6045{
6046 safe_put_page(percpu->spare_page);
46d5b785 6047 if (percpu->scribble)
6048 flex_array_free(percpu->scribble);
789b5e03
ON
6049 percpu->spare_page = NULL;
6050 percpu->scribble = NULL;
6051}
6052
6053static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6054{
6055 if (conf->level == 6 && !percpu->spare_page)
6056 percpu->spare_page = alloc_page(GFP_KERNEL);
6057 if (!percpu->scribble)
46d5b785 6058 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6059 conf->previous_raid_disks), conf->chunk_sectors /
6060 STRIPE_SECTORS, GFP_KERNEL);
789b5e03
ON
6061
6062 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6063 free_scratch_buffer(conf, percpu);
6064 return -ENOMEM;
6065 }
6066
6067 return 0;
6068}
6069
d1688a6d 6070static void raid5_free_percpu(struct r5conf *conf)
36d1c647 6071{
36d1c647
DW
6072 unsigned long cpu;
6073
6074 if (!conf->percpu)
6075 return;
6076
36d1c647
DW
6077#ifdef CONFIG_HOTPLUG_CPU
6078 unregister_cpu_notifier(&conf->cpu_notify);
6079#endif
789b5e03
ON
6080
6081 get_online_cpus();
6082 for_each_possible_cpu(cpu)
6083 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6084 put_online_cpus();
6085
6086 free_percpu(conf->percpu);
6087}
6088
d1688a6d 6089static void free_conf(struct r5conf *conf)
95fc17aa 6090{
851c30c9 6091 free_thread_groups(conf);
95fc17aa 6092 shrink_stripes(conf);
36d1c647 6093 raid5_free_percpu(conf);
95fc17aa
DW
6094 kfree(conf->disks);
6095 kfree(conf->stripe_hashtbl);
6096 kfree(conf);
6097}
6098
36d1c647
DW
6099#ifdef CONFIG_HOTPLUG_CPU
6100static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6101 void *hcpu)
6102{
d1688a6d 6103 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
6104 long cpu = (long)hcpu;
6105 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6106
6107 switch (action) {
6108 case CPU_UP_PREPARE:
6109 case CPU_UP_PREPARE_FROZEN:
789b5e03 6110 if (alloc_scratch_buffer(conf, percpu)) {
36d1c647
DW
6111 pr_err("%s: failed memory allocation for cpu%ld\n",
6112 __func__, cpu);
55af6bb5 6113 return notifier_from_errno(-ENOMEM);
36d1c647
DW
6114 }
6115 break;
6116 case CPU_DEAD:
6117 case CPU_DEAD_FROZEN:
789b5e03 6118 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6119 break;
6120 default:
6121 break;
6122 }
6123 return NOTIFY_OK;
6124}
6125#endif
6126
d1688a6d 6127static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
6128{
6129 unsigned long cpu;
789b5e03 6130 int err = 0;
36d1c647 6131
789b5e03
ON
6132 conf->percpu = alloc_percpu(struct raid5_percpu);
6133 if (!conf->percpu)
36d1c647 6134 return -ENOMEM;
789b5e03
ON
6135
6136#ifdef CONFIG_HOTPLUG_CPU
6137 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6138 conf->cpu_notify.priority = 0;
6139 err = register_cpu_notifier(&conf->cpu_notify);
6140 if (err)
6141 return err;
6142#endif
36d1c647
DW
6143
6144 get_online_cpus();
36d1c647 6145 for_each_present_cpu(cpu) {
789b5e03
ON
6146 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6147 if (err) {
6148 pr_err("%s: failed memory allocation for cpu%ld\n",
6149 __func__, cpu);
36d1c647
DW
6150 break;
6151 }
36d1c647 6152 }
36d1c647
DW
6153 put_online_cpus();
6154
6155 return err;
6156}
6157
d1688a6d 6158static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6159{
d1688a6d 6160 struct r5conf *conf;
5e5e3e78 6161 int raid_disk, memory, max_disks;
3cb03002 6162 struct md_rdev *rdev;
1da177e4 6163 struct disk_info *disk;
0232605d 6164 char pers_name[6];
566c09c5 6165 int i;
60aaf933 6166 int group_cnt, worker_cnt_per_group;
6167 struct r5worker_group *new_group;
1da177e4 6168
91adb564
N
6169 if (mddev->new_level != 5
6170 && mddev->new_level != 4
6171 && mddev->new_level != 6) {
0c55e022 6172 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
6173 mdname(mddev), mddev->new_level);
6174 return ERR_PTR(-EIO);
1da177e4 6175 }
91adb564
N
6176 if ((mddev->new_level == 5
6177 && !algorithm_valid_raid5(mddev->new_layout)) ||
6178 (mddev->new_level == 6
6179 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 6180 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
6181 mdname(mddev), mddev->new_layout);
6182 return ERR_PTR(-EIO);
99c0fb5f 6183 }
91adb564 6184 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 6185 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
6186 mdname(mddev), mddev->raid_disks);
6187 return ERR_PTR(-EINVAL);
4bbf3771
N
6188 }
6189
664e7c41
AN
6190 if (!mddev->new_chunk_sectors ||
6191 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6192 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
6193 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6194 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6195 return ERR_PTR(-EINVAL);
f6705578
N
6196 }
6197
d1688a6d 6198 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6199 if (conf == NULL)
1da177e4 6200 goto abort;
851c30c9 6201 /* Don't enable multi-threading by default*/
60aaf933 6202 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6203 &new_group)) {
6204 conf->group_cnt = group_cnt;
6205 conf->worker_cnt_per_group = worker_cnt_per_group;
6206 conf->worker_groups = new_group;
6207 } else
851c30c9 6208 goto abort;
f5efd45a 6209 spin_lock_init(&conf->device_lock);
c46501b2 6210 seqcount_init(&conf->gen_lock);
f5efd45a
DW
6211 init_waitqueue_head(&conf->wait_for_stripe);
6212 init_waitqueue_head(&conf->wait_for_overlap);
6213 INIT_LIST_HEAD(&conf->handle_list);
6214 INIT_LIST_HEAD(&conf->hold_list);
6215 INIT_LIST_HEAD(&conf->delayed_list);
6216 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 6217 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6218 atomic_set(&conf->active_stripes, 0);
6219 atomic_set(&conf->preread_active_stripes, 0);
6220 atomic_set(&conf->active_aligned_reads, 0);
6221 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6222 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6223
6224 conf->raid_disks = mddev->raid_disks;
6225 if (mddev->reshape_position == MaxSector)
6226 conf->previous_raid_disks = mddev->raid_disks;
6227 else
f6705578 6228 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6229 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6230
5e5e3e78 6231 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
6232 GFP_KERNEL);
6233 if (!conf->disks)
6234 goto abort;
9ffae0cf 6235
1da177e4
LT
6236 conf->mddev = mddev;
6237
fccddba0 6238 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6239 goto abort;
1da177e4 6240
566c09c5
SL
6241 /* We init hash_locks[0] separately to that it can be used
6242 * as the reference lock in the spin_lock_nest_lock() call
6243 * in lock_all_device_hash_locks_irq in order to convince
6244 * lockdep that we know what we are doing.
6245 */
6246 spin_lock_init(conf->hash_locks);
6247 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6248 spin_lock_init(conf->hash_locks + i);
6249
6250 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6251 INIT_LIST_HEAD(conf->inactive_list + i);
6252
6253 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6254 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6255
36d1c647 6256 conf->level = mddev->new_level;
46d5b785 6257 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
6258 if (raid5_alloc_percpu(conf) != 0)
6259 goto abort;
6260
0c55e022 6261 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 6262
dafb20fa 6263 rdev_for_each(rdev, mddev) {
1da177e4 6264 raid_disk = rdev->raid_disk;
5e5e3e78 6265 if (raid_disk >= max_disks
1da177e4
LT
6266 || raid_disk < 0)
6267 continue;
6268 disk = conf->disks + raid_disk;
6269
17045f52
N
6270 if (test_bit(Replacement, &rdev->flags)) {
6271 if (disk->replacement)
6272 goto abort;
6273 disk->replacement = rdev;
6274 } else {
6275 if (disk->rdev)
6276 goto abort;
6277 disk->rdev = rdev;
6278 }
1da177e4 6279
b2d444d7 6280 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 6281 char b[BDEVNAME_SIZE];
0c55e022
N
6282 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6283 " disk %d\n",
6284 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 6285 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
6286 /* Cannot rely on bitmap to complete recovery */
6287 conf->fullsync = 1;
1da177e4
LT
6288 }
6289
91adb564 6290 conf->level = mddev->new_level;
16a53ecc
N
6291 if (conf->level == 6)
6292 conf->max_degraded = 2;
6293 else
6294 conf->max_degraded = 1;
91adb564 6295 conf->algorithm = mddev->new_layout;
fef9c61f 6296 conf->reshape_progress = mddev->reshape_position;
e183eaed 6297 if (conf->reshape_progress != MaxSector) {
09c9e5fa 6298 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
6299 conf->prev_algo = mddev->layout;
6300 }
1da177e4 6301
91adb564 6302 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 6303 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 6304 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
566c09c5 6305 if (grow_stripes(conf, NR_STRIPES)) {
91adb564 6306 printk(KERN_ERR
0c55e022
N
6307 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6308 mdname(mddev), memory);
91adb564
N
6309 goto abort;
6310 } else
0c55e022
N
6311 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6312 mdname(mddev), memory);
1da177e4 6313
0232605d
N
6314 sprintf(pers_name, "raid%d", mddev->new_level);
6315 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564
N
6316 if (!conf->thread) {
6317 printk(KERN_ERR
0c55e022 6318 "md/raid:%s: couldn't allocate thread.\n",
91adb564 6319 mdname(mddev));
16a53ecc
N
6320 goto abort;
6321 }
91adb564
N
6322
6323 return conf;
6324
6325 abort:
6326 if (conf) {
95fc17aa 6327 free_conf(conf);
91adb564
N
6328 return ERR_PTR(-EIO);
6329 } else
6330 return ERR_PTR(-ENOMEM);
6331}
6332
c148ffdc
N
6333static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6334{
6335 switch (algo) {
6336 case ALGORITHM_PARITY_0:
6337 if (raid_disk < max_degraded)
6338 return 1;
6339 break;
6340 case ALGORITHM_PARITY_N:
6341 if (raid_disk >= raid_disks - max_degraded)
6342 return 1;
6343 break;
6344 case ALGORITHM_PARITY_0_6:
f72ffdd6 6345 if (raid_disk == 0 ||
c148ffdc
N
6346 raid_disk == raid_disks - 1)
6347 return 1;
6348 break;
6349 case ALGORITHM_LEFT_ASYMMETRIC_6:
6350 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6351 case ALGORITHM_LEFT_SYMMETRIC_6:
6352 case ALGORITHM_RIGHT_SYMMETRIC_6:
6353 if (raid_disk == raid_disks - 1)
6354 return 1;
6355 }
6356 return 0;
6357}
6358
fd01b88c 6359static int run(struct mddev *mddev)
91adb564 6360{
d1688a6d 6361 struct r5conf *conf;
9f7c2220 6362 int working_disks = 0;
c148ffdc 6363 int dirty_parity_disks = 0;
3cb03002 6364 struct md_rdev *rdev;
c148ffdc 6365 sector_t reshape_offset = 0;
17045f52 6366 int i;
b5254dd5
N
6367 long long min_offset_diff = 0;
6368 int first = 1;
91adb564 6369
8c6ac868 6370 if (mddev->recovery_cp != MaxSector)
0c55e022 6371 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
6372 " -- starting background reconstruction\n",
6373 mdname(mddev));
b5254dd5
N
6374
6375 rdev_for_each(rdev, mddev) {
6376 long long diff;
6377 if (rdev->raid_disk < 0)
6378 continue;
6379 diff = (rdev->new_data_offset - rdev->data_offset);
6380 if (first) {
6381 min_offset_diff = diff;
6382 first = 0;
6383 } else if (mddev->reshape_backwards &&
6384 diff < min_offset_diff)
6385 min_offset_diff = diff;
6386 else if (!mddev->reshape_backwards &&
6387 diff > min_offset_diff)
6388 min_offset_diff = diff;
6389 }
6390
91adb564
N
6391 if (mddev->reshape_position != MaxSector) {
6392 /* Check that we can continue the reshape.
b5254dd5
N
6393 * Difficulties arise if the stripe we would write to
6394 * next is at or after the stripe we would read from next.
6395 * For a reshape that changes the number of devices, this
6396 * is only possible for a very short time, and mdadm makes
6397 * sure that time appears to have past before assembling
6398 * the array. So we fail if that time hasn't passed.
6399 * For a reshape that keeps the number of devices the same
6400 * mdadm must be monitoring the reshape can keeping the
6401 * critical areas read-only and backed up. It will start
6402 * the array in read-only mode, so we check for that.
91adb564
N
6403 */
6404 sector_t here_new, here_old;
6405 int old_disks;
18b00334 6406 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 6407
88ce4930 6408 if (mddev->new_level != mddev->level) {
0c55e022 6409 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
6410 "required - aborting.\n",
6411 mdname(mddev));
6412 return -EINVAL;
6413 }
91adb564
N
6414 old_disks = mddev->raid_disks - mddev->delta_disks;
6415 /* reshape_position must be on a new-stripe boundary, and one
6416 * further up in new geometry must map after here in old
6417 * geometry.
6418 */
6419 here_new = mddev->reshape_position;
664e7c41 6420 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 6421 (mddev->raid_disks - max_degraded))) {
0c55e022
N
6422 printk(KERN_ERR "md/raid:%s: reshape_position not "
6423 "on a stripe boundary\n", mdname(mddev));
91adb564
N
6424 return -EINVAL;
6425 }
c148ffdc 6426 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
6427 /* here_new is the stripe we will write to */
6428 here_old = mddev->reshape_position;
9d8f0363 6429 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
6430 (old_disks-max_degraded));
6431 /* here_old is the first stripe that we might need to read
6432 * from */
67ac6011 6433 if (mddev->delta_disks == 0) {
b5254dd5
N
6434 if ((here_new * mddev->new_chunk_sectors !=
6435 here_old * mddev->chunk_sectors)) {
6436 printk(KERN_ERR "md/raid:%s: reshape position is"
6437 " confused - aborting\n", mdname(mddev));
6438 return -EINVAL;
6439 }
67ac6011 6440 /* We cannot be sure it is safe to start an in-place
b5254dd5 6441 * reshape. It is only safe if user-space is monitoring
67ac6011
N
6442 * and taking constant backups.
6443 * mdadm always starts a situation like this in
6444 * readonly mode so it can take control before
6445 * allowing any writes. So just check for that.
6446 */
b5254dd5
N
6447 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6448 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6449 /* not really in-place - so OK */;
6450 else if (mddev->ro == 0) {
6451 printk(KERN_ERR "md/raid:%s: in-place reshape "
6452 "must be started in read-only mode "
6453 "- aborting\n",
0c55e022 6454 mdname(mddev));
67ac6011
N
6455 return -EINVAL;
6456 }
2c810cdd 6457 } else if (mddev->reshape_backwards
b5254dd5 6458 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
67ac6011
N
6459 here_old * mddev->chunk_sectors)
6460 : (here_new * mddev->new_chunk_sectors >=
b5254dd5 6461 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
91adb564 6462 /* Reading from the same stripe as writing to - bad */
0c55e022
N
6463 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6464 "auto-recovery - aborting.\n",
6465 mdname(mddev));
91adb564
N
6466 return -EINVAL;
6467 }
0c55e022
N
6468 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6469 mdname(mddev));
91adb564
N
6470 /* OK, we should be able to continue; */
6471 } else {
6472 BUG_ON(mddev->level != mddev->new_level);
6473 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 6474 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 6475 BUG_ON(mddev->delta_disks != 0);
1da177e4 6476 }
91adb564 6477
245f46c2
N
6478 if (mddev->private == NULL)
6479 conf = setup_conf(mddev);
6480 else
6481 conf = mddev->private;
6482
91adb564
N
6483 if (IS_ERR(conf))
6484 return PTR_ERR(conf);
6485
b5254dd5 6486 conf->min_offset_diff = min_offset_diff;
91adb564
N
6487 mddev->thread = conf->thread;
6488 conf->thread = NULL;
6489 mddev->private = conf;
6490
17045f52
N
6491 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6492 i++) {
6493 rdev = conf->disks[i].rdev;
6494 if (!rdev && conf->disks[i].replacement) {
6495 /* The replacement is all we have yet */
6496 rdev = conf->disks[i].replacement;
6497 conf->disks[i].replacement = NULL;
6498 clear_bit(Replacement, &rdev->flags);
6499 conf->disks[i].rdev = rdev;
6500 }
6501 if (!rdev)
c148ffdc 6502 continue;
17045f52
N
6503 if (conf->disks[i].replacement &&
6504 conf->reshape_progress != MaxSector) {
6505 /* replacements and reshape simply do not mix. */
6506 printk(KERN_ERR "md: cannot handle concurrent "
6507 "replacement and reshape.\n");
6508 goto abort;
6509 }
2f115882 6510 if (test_bit(In_sync, &rdev->flags)) {
91adb564 6511 working_disks++;
2f115882
N
6512 continue;
6513 }
c148ffdc
N
6514 /* This disc is not fully in-sync. However if it
6515 * just stored parity (beyond the recovery_offset),
6516 * when we don't need to be concerned about the
6517 * array being dirty.
6518 * When reshape goes 'backwards', we never have
6519 * partially completed devices, so we only need
6520 * to worry about reshape going forwards.
6521 */
6522 /* Hack because v0.91 doesn't store recovery_offset properly. */
6523 if (mddev->major_version == 0 &&
6524 mddev->minor_version > 90)
6525 rdev->recovery_offset = reshape_offset;
5026d7a9 6526
c148ffdc
N
6527 if (rdev->recovery_offset < reshape_offset) {
6528 /* We need to check old and new layout */
6529 if (!only_parity(rdev->raid_disk,
6530 conf->algorithm,
6531 conf->raid_disks,
6532 conf->max_degraded))
6533 continue;
6534 }
6535 if (!only_parity(rdev->raid_disk,
6536 conf->prev_algo,
6537 conf->previous_raid_disks,
6538 conf->max_degraded))
6539 continue;
6540 dirty_parity_disks++;
6541 }
91adb564 6542
17045f52
N
6543 /*
6544 * 0 for a fully functional array, 1 or 2 for a degraded array.
6545 */
908f4fbd 6546 mddev->degraded = calc_degraded(conf);
91adb564 6547
674806d6 6548 if (has_failed(conf)) {
0c55e022 6549 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 6550 " (%d/%d failed)\n",
02c2de8c 6551 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
6552 goto abort;
6553 }
6554
91adb564 6555 /* device size must be a multiple of chunk size */
9d8f0363 6556 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
6557 mddev->resync_max_sectors = mddev->dev_sectors;
6558
c148ffdc 6559 if (mddev->degraded > dirty_parity_disks &&
1da177e4 6560 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
6561 if (mddev->ok_start_degraded)
6562 printk(KERN_WARNING
0c55e022
N
6563 "md/raid:%s: starting dirty degraded array"
6564 " - data corruption possible.\n",
6ff8d8ec
N
6565 mdname(mddev));
6566 else {
6567 printk(KERN_ERR
0c55e022 6568 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
6569 mdname(mddev));
6570 goto abort;
6571 }
1da177e4
LT
6572 }
6573
1da177e4 6574 if (mddev->degraded == 0)
0c55e022
N
6575 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6576 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
6577 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6578 mddev->new_layout);
1da177e4 6579 else
0c55e022
N
6580 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6581 " out of %d devices, algorithm %d\n",
6582 mdname(mddev), conf->level,
6583 mddev->raid_disks - mddev->degraded,
6584 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
6585
6586 print_raid5_conf(conf);
6587
fef9c61f 6588 if (conf->reshape_progress != MaxSector) {
fef9c61f 6589 conf->reshape_safe = conf->reshape_progress;
f6705578
N
6590 atomic_set(&conf->reshape_stripes, 0);
6591 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6592 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6593 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6594 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6595 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 6596 "reshape");
f6705578
N
6597 }
6598
1da177e4 6599 /* Ok, everything is just fine now */
a64c876f
N
6600 if (mddev->to_remove == &raid5_attrs_group)
6601 mddev->to_remove = NULL;
00bcb4ac
N
6602 else if (mddev->kobj.sd &&
6603 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 6604 printk(KERN_WARNING
4a5add49 6605 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 6606 mdname(mddev));
4a5add49 6607 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 6608
4a5add49 6609 if (mddev->queue) {
9f7c2220 6610 int chunk_size;
620125f2 6611 bool discard_supported = true;
4a5add49
N
6612 /* read-ahead size must cover two whole stripes, which
6613 * is 2 * (datadisks) * chunksize where 'n' is the
6614 * number of raid devices
6615 */
6616 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6617 int stripe = data_disks *
6618 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6619 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6620 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 6621
9f7c2220
N
6622 chunk_size = mddev->chunk_sectors << 9;
6623 blk_queue_io_min(mddev->queue, chunk_size);
6624 blk_queue_io_opt(mddev->queue, chunk_size *
6625 (conf->raid_disks - conf->max_degraded));
c78afc62 6626 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
6627 /*
6628 * We can only discard a whole stripe. It doesn't make sense to
6629 * discard data disk but write parity disk
6630 */
6631 stripe = stripe * PAGE_SIZE;
4ac6875e
N
6632 /* Round up to power of 2, as discard handling
6633 * currently assumes that */
6634 while ((stripe-1) & stripe)
6635 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
6636 mddev->queue->limits.discard_alignment = stripe;
6637 mddev->queue->limits.discard_granularity = stripe;
6638 /*
6639 * unaligned part of discard request will be ignored, so can't
8e0e99ba 6640 * guarantee discard_zeroes_data
620125f2
SL
6641 */
6642 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 6643
5026d7a9
PA
6644 blk_queue_max_write_same_sectors(mddev->queue, 0);
6645
05616be5 6646 rdev_for_each(rdev, mddev) {
9f7c2220
N
6647 disk_stack_limits(mddev->gendisk, rdev->bdev,
6648 rdev->data_offset << 9);
05616be5
N
6649 disk_stack_limits(mddev->gendisk, rdev->bdev,
6650 rdev->new_data_offset << 9);
620125f2
SL
6651 /*
6652 * discard_zeroes_data is required, otherwise data
6653 * could be lost. Consider a scenario: discard a stripe
6654 * (the stripe could be inconsistent if
6655 * discard_zeroes_data is 0); write one disk of the
6656 * stripe (the stripe could be inconsistent again
6657 * depending on which disks are used to calculate
6658 * parity); the disk is broken; The stripe data of this
6659 * disk is lost.
6660 */
6661 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6662 !bdev_get_queue(rdev->bdev)->
6663 limits.discard_zeroes_data)
6664 discard_supported = false;
8e0e99ba
N
6665 /* Unfortunately, discard_zeroes_data is not currently
6666 * a guarantee - just a hint. So we only allow DISCARD
6667 * if the sysadmin has confirmed that only safe devices
6668 * are in use by setting a module parameter.
6669 */
6670 if (!devices_handle_discard_safely) {
6671 if (discard_supported) {
6672 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6673 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6674 }
6675 discard_supported = false;
6676 }
05616be5 6677 }
620125f2
SL
6678
6679 if (discard_supported &&
6680 mddev->queue->limits.max_discard_sectors >= stripe &&
6681 mddev->queue->limits.discard_granularity >= stripe)
6682 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6683 mddev->queue);
6684 else
6685 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6686 mddev->queue);
9f7c2220 6687 }
23032a0e 6688
1da177e4
LT
6689 return 0;
6690abort:
01f96c0a 6691 md_unregister_thread(&mddev->thread);
e4f869d9
N
6692 print_raid5_conf(conf);
6693 free_conf(conf);
1da177e4 6694 mddev->private = NULL;
0c55e022 6695 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
6696 return -EIO;
6697}
6698
afa0f557 6699static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 6700{
afa0f557 6701 struct r5conf *conf = priv;
1da177e4 6702
95fc17aa 6703 free_conf(conf);
a64c876f 6704 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
6705}
6706
fd01b88c 6707static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 6708{
d1688a6d 6709 struct r5conf *conf = mddev->private;
1da177e4
LT
6710 int i;
6711
9d8f0363
AN
6712 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6713 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 6714 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
6715 for (i = 0; i < conf->raid_disks; i++)
6716 seq_printf (seq, "%s",
6717 conf->disks[i].rdev &&
b2d444d7 6718 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 6719 seq_printf (seq, "]");
1da177e4
LT
6720}
6721
d1688a6d 6722static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
6723{
6724 int i;
6725 struct disk_info *tmp;
6726
0c55e022 6727 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
6728 if (!conf) {
6729 printk("(conf==NULL)\n");
6730 return;
6731 }
0c55e022
N
6732 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6733 conf->raid_disks,
6734 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
6735
6736 for (i = 0; i < conf->raid_disks; i++) {
6737 char b[BDEVNAME_SIZE];
6738 tmp = conf->disks + i;
6739 if (tmp->rdev)
0c55e022
N
6740 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6741 i, !test_bit(Faulty, &tmp->rdev->flags),
6742 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
6743 }
6744}
6745
fd01b88c 6746static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
6747{
6748 int i;
d1688a6d 6749 struct r5conf *conf = mddev->private;
1da177e4 6750 struct disk_info *tmp;
6b965620
N
6751 int count = 0;
6752 unsigned long flags;
1da177e4
LT
6753
6754 for (i = 0; i < conf->raid_disks; i++) {
6755 tmp = conf->disks + i;
dd054fce
N
6756 if (tmp->replacement
6757 && tmp->replacement->recovery_offset == MaxSector
6758 && !test_bit(Faulty, &tmp->replacement->flags)
6759 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6760 /* Replacement has just become active. */
6761 if (!tmp->rdev
6762 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6763 count++;
6764 if (tmp->rdev) {
6765 /* Replaced device not technically faulty,
6766 * but we need to be sure it gets removed
6767 * and never re-added.
6768 */
6769 set_bit(Faulty, &tmp->rdev->flags);
6770 sysfs_notify_dirent_safe(
6771 tmp->rdev->sysfs_state);
6772 }
6773 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6774 } else if (tmp->rdev
70fffd0b 6775 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 6776 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 6777 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 6778 count++;
43c73ca4 6779 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
6780 }
6781 }
6b965620 6782 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 6783 mddev->degraded = calc_degraded(conf);
6b965620 6784 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 6785 print_raid5_conf(conf);
6b965620 6786 return count;
1da177e4
LT
6787}
6788
b8321b68 6789static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 6790{
d1688a6d 6791 struct r5conf *conf = mddev->private;
1da177e4 6792 int err = 0;
b8321b68 6793 int number = rdev->raid_disk;
657e3e4d 6794 struct md_rdev **rdevp;
1da177e4
LT
6795 struct disk_info *p = conf->disks + number;
6796
6797 print_raid5_conf(conf);
657e3e4d
N
6798 if (rdev == p->rdev)
6799 rdevp = &p->rdev;
6800 else if (rdev == p->replacement)
6801 rdevp = &p->replacement;
6802 else
6803 return 0;
6804
6805 if (number >= conf->raid_disks &&
6806 conf->reshape_progress == MaxSector)
6807 clear_bit(In_sync, &rdev->flags);
6808
6809 if (test_bit(In_sync, &rdev->flags) ||
6810 atomic_read(&rdev->nr_pending)) {
6811 err = -EBUSY;
6812 goto abort;
6813 }
6814 /* Only remove non-faulty devices if recovery
6815 * isn't possible.
6816 */
6817 if (!test_bit(Faulty, &rdev->flags) &&
6818 mddev->recovery_disabled != conf->recovery_disabled &&
6819 !has_failed(conf) &&
dd054fce 6820 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
6821 number < conf->raid_disks) {
6822 err = -EBUSY;
6823 goto abort;
6824 }
6825 *rdevp = NULL;
6826 synchronize_rcu();
6827 if (atomic_read(&rdev->nr_pending)) {
6828 /* lost the race, try later */
6829 err = -EBUSY;
6830 *rdevp = rdev;
dd054fce
N
6831 } else if (p->replacement) {
6832 /* We must have just cleared 'rdev' */
6833 p->rdev = p->replacement;
6834 clear_bit(Replacement, &p->replacement->flags);
6835 smp_mb(); /* Make sure other CPUs may see both as identical
6836 * but will never see neither - if they are careful
6837 */
6838 p->replacement = NULL;
6839 clear_bit(WantReplacement, &rdev->flags);
6840 } else
6841 /* We might have just removed the Replacement as faulty-
6842 * clear the bit just in case
6843 */
6844 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
6845abort:
6846
6847 print_raid5_conf(conf);
6848 return err;
6849}
6850
fd01b88c 6851static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 6852{
d1688a6d 6853 struct r5conf *conf = mddev->private;
199050ea 6854 int err = -EEXIST;
1da177e4
LT
6855 int disk;
6856 struct disk_info *p;
6c2fce2e
NB
6857 int first = 0;
6858 int last = conf->raid_disks - 1;
1da177e4 6859
7f0da59b
N
6860 if (mddev->recovery_disabled == conf->recovery_disabled)
6861 return -EBUSY;
6862
dc10c643 6863 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 6864 /* no point adding a device */
199050ea 6865 return -EINVAL;
1da177e4 6866
6c2fce2e
NB
6867 if (rdev->raid_disk >= 0)
6868 first = last = rdev->raid_disk;
1da177e4
LT
6869
6870 /*
16a53ecc
N
6871 * find the disk ... but prefer rdev->saved_raid_disk
6872 * if possible.
1da177e4 6873 */
16a53ecc 6874 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 6875 rdev->saved_raid_disk >= first &&
16a53ecc 6876 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
6877 first = rdev->saved_raid_disk;
6878
6879 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
6880 p = conf->disks + disk;
6881 if (p->rdev == NULL) {
b2d444d7 6882 clear_bit(In_sync, &rdev->flags);
1da177e4 6883 rdev->raid_disk = disk;
199050ea 6884 err = 0;
72626685
N
6885 if (rdev->saved_raid_disk != disk)
6886 conf->fullsync = 1;
d6065f7b 6887 rcu_assign_pointer(p->rdev, rdev);
5cfb22a1 6888 goto out;
1da177e4 6889 }
5cfb22a1
N
6890 }
6891 for (disk = first; disk <= last; disk++) {
6892 p = conf->disks + disk;
7bfec5f3
N
6893 if (test_bit(WantReplacement, &p->rdev->flags) &&
6894 p->replacement == NULL) {
6895 clear_bit(In_sync, &rdev->flags);
6896 set_bit(Replacement, &rdev->flags);
6897 rdev->raid_disk = disk;
6898 err = 0;
6899 conf->fullsync = 1;
6900 rcu_assign_pointer(p->replacement, rdev);
6901 break;
6902 }
6903 }
5cfb22a1 6904out:
1da177e4 6905 print_raid5_conf(conf);
199050ea 6906 return err;
1da177e4
LT
6907}
6908
fd01b88c 6909static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
6910{
6911 /* no resync is happening, and there is enough space
6912 * on all devices, so we can resize.
6913 * We need to make sure resync covers any new space.
6914 * If the array is shrinking we should possibly wait until
6915 * any io in the removed space completes, but it hardly seems
6916 * worth it.
6917 */
a4a6125a 6918 sector_t newsize;
9d8f0363 6919 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
a4a6125a
N
6920 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6921 if (mddev->external_size &&
6922 mddev->array_sectors > newsize)
b522adcd 6923 return -EINVAL;
a4a6125a
N
6924 if (mddev->bitmap) {
6925 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6926 if (ret)
6927 return ret;
6928 }
6929 md_set_array_sectors(mddev, newsize);
f233ea5c 6930 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 6931 revalidate_disk(mddev->gendisk);
b098636c
N
6932 if (sectors > mddev->dev_sectors &&
6933 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 6934 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
6935 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6936 }
58c0fed4 6937 mddev->dev_sectors = sectors;
4b5c7ae8 6938 mddev->resync_max_sectors = sectors;
1da177e4
LT
6939 return 0;
6940}
6941
fd01b88c 6942static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
6943{
6944 /* Can only proceed if there are plenty of stripe_heads.
6945 * We need a minimum of one full stripe,, and for sensible progress
6946 * it is best to have about 4 times that.
6947 * If we require 4 times, then the default 256 4K stripe_heads will
6948 * allow for chunk sizes up to 256K, which is probably OK.
6949 * If the chunk size is greater, user-space should request more
6950 * stripe_heads first.
6951 */
d1688a6d 6952 struct r5conf *conf = mddev->private;
01ee22b4
N
6953 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6954 > conf->max_nr_stripes ||
6955 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6956 > conf->max_nr_stripes) {
0c55e022
N
6957 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
6958 mdname(mddev),
01ee22b4
N
6959 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6960 / STRIPE_SIZE)*4);
6961 return 0;
6962 }
6963 return 1;
6964}
6965
fd01b88c 6966static int check_reshape(struct mddev *mddev)
29269553 6967{
d1688a6d 6968 struct r5conf *conf = mddev->private;
29269553 6969
88ce4930
N
6970 if (mddev->delta_disks == 0 &&
6971 mddev->new_layout == mddev->layout &&
664e7c41 6972 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 6973 return 0; /* nothing to do */
674806d6 6974 if (has_failed(conf))
ec32a2bd 6975 return -EINVAL;
fdcfbbb6 6976 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
6977 /* We might be able to shrink, but the devices must
6978 * be made bigger first.
6979 * For raid6, 4 is the minimum size.
6980 * Otherwise 2 is the minimum
6981 */
6982 int min = 2;
6983 if (mddev->level == 6)
6984 min = 4;
6985 if (mddev->raid_disks + mddev->delta_disks < min)
6986 return -EINVAL;
6987 }
29269553 6988
01ee22b4 6989 if (!check_stripe_cache(mddev))
29269553 6990 return -ENOSPC;
29269553 6991
e56108d6
N
6992 return resize_stripes(conf, (conf->previous_raid_disks
6993 + mddev->delta_disks));
63c70c4f
N
6994}
6995
fd01b88c 6996static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 6997{
d1688a6d 6998 struct r5conf *conf = mddev->private;
3cb03002 6999 struct md_rdev *rdev;
63c70c4f 7000 int spares = 0;
c04be0aa 7001 unsigned long flags;
63c70c4f 7002
f416885e 7003 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7004 return -EBUSY;
7005
01ee22b4
N
7006 if (!check_stripe_cache(mddev))
7007 return -ENOSPC;
7008
30b67645
N
7009 if (has_failed(conf))
7010 return -EINVAL;
7011
c6563a8c 7012 rdev_for_each(rdev, mddev) {
469518a3
N
7013 if (!test_bit(In_sync, &rdev->flags)
7014 && !test_bit(Faulty, &rdev->flags))
29269553 7015 spares++;
c6563a8c 7016 }
63c70c4f 7017
f416885e 7018 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7019 /* Not enough devices even to make a degraded array
7020 * of that size
7021 */
7022 return -EINVAL;
7023
ec32a2bd
N
7024 /* Refuse to reduce size of the array. Any reductions in
7025 * array size must be through explicit setting of array_size
7026 * attribute.
7027 */
7028 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7029 < mddev->array_sectors) {
0c55e022 7030 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
7031 "before number of disks\n", mdname(mddev));
7032 return -EINVAL;
7033 }
7034
f6705578 7035 atomic_set(&conf->reshape_stripes, 0);
29269553 7036 spin_lock_irq(&conf->device_lock);
c46501b2 7037 write_seqcount_begin(&conf->gen_lock);
29269553 7038 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7039 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7040 conf->prev_chunk_sectors = conf->chunk_sectors;
7041 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7042 conf->prev_algo = conf->algorithm;
7043 conf->algorithm = mddev->new_layout;
05616be5
N
7044 conf->generation++;
7045 /* Code that selects data_offset needs to see the generation update
7046 * if reshape_progress has been set - so a memory barrier needed.
7047 */
7048 smp_mb();
2c810cdd 7049 if (mddev->reshape_backwards)
fef9c61f
N
7050 conf->reshape_progress = raid5_size(mddev, 0, 0);
7051 else
7052 conf->reshape_progress = 0;
7053 conf->reshape_safe = conf->reshape_progress;
c46501b2 7054 write_seqcount_end(&conf->gen_lock);
29269553
N
7055 spin_unlock_irq(&conf->device_lock);
7056
4d77e3ba
N
7057 /* Now make sure any requests that proceeded on the assumption
7058 * the reshape wasn't running - like Discard or Read - have
7059 * completed.
7060 */
7061 mddev_suspend(mddev);
7062 mddev_resume(mddev);
7063
29269553
N
7064 /* Add some new drives, as many as will fit.
7065 * We know there are enough to make the newly sized array work.
3424bf6a
N
7066 * Don't add devices if we are reducing the number of
7067 * devices in the array. This is because it is not possible
7068 * to correctly record the "partially reconstructed" state of
7069 * such devices during the reshape and confusion could result.
29269553 7070 */
87a8dec9 7071 if (mddev->delta_disks >= 0) {
dafb20fa 7072 rdev_for_each(rdev, mddev)
87a8dec9
N
7073 if (rdev->raid_disk < 0 &&
7074 !test_bit(Faulty, &rdev->flags)) {
7075 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7076 if (rdev->raid_disk
9d4c7d87 7077 >= conf->previous_raid_disks)
87a8dec9 7078 set_bit(In_sync, &rdev->flags);
9d4c7d87 7079 else
87a8dec9 7080 rdev->recovery_offset = 0;
36fad858
NK
7081
7082 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 7083 /* Failure here is OK */;
50da0840 7084 }
87a8dec9
N
7085 } else if (rdev->raid_disk >= conf->previous_raid_disks
7086 && !test_bit(Faulty, &rdev->flags)) {
7087 /* This is a spare that was manually added */
7088 set_bit(In_sync, &rdev->flags);
87a8dec9 7089 }
29269553 7090
87a8dec9
N
7091 /* When a reshape changes the number of devices,
7092 * ->degraded is measured against the larger of the
7093 * pre and post number of devices.
7094 */
ec32a2bd 7095 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7096 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
7097 spin_unlock_irqrestore(&conf->device_lock, flags);
7098 }
63c70c4f 7099 mddev->raid_disks = conf->raid_disks;
e516402c 7100 mddev->reshape_position = conf->reshape_progress;
850b2b42 7101 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 7102
29269553
N
7103 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7104 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7105 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7106 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7107 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7108 "reshape");
29269553
N
7109 if (!mddev->sync_thread) {
7110 mddev->recovery = 0;
7111 spin_lock_irq(&conf->device_lock);
ba8805b9 7112 write_seqcount_begin(&conf->gen_lock);
29269553 7113 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7114 mddev->new_chunk_sectors =
7115 conf->chunk_sectors = conf->prev_chunk_sectors;
7116 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7117 rdev_for_each(rdev, mddev)
7118 rdev->new_data_offset = rdev->data_offset;
7119 smp_wmb();
ba8805b9 7120 conf->generation --;
fef9c61f 7121 conf->reshape_progress = MaxSector;
1e3fa9bd 7122 mddev->reshape_position = MaxSector;
ba8805b9 7123 write_seqcount_end(&conf->gen_lock);
29269553
N
7124 spin_unlock_irq(&conf->device_lock);
7125 return -EAGAIN;
7126 }
c8f517c4 7127 conf->reshape_checkpoint = jiffies;
29269553
N
7128 md_wakeup_thread(mddev->sync_thread);
7129 md_new_event(mddev);
7130 return 0;
7131}
29269553 7132
ec32a2bd
N
7133/* This is called from the reshape thread and should make any
7134 * changes needed in 'conf'
7135 */
d1688a6d 7136static void end_reshape(struct r5conf *conf)
29269553 7137{
29269553 7138
f6705578 7139 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 7140 struct md_rdev *rdev;
f6705578 7141
f6705578 7142 spin_lock_irq(&conf->device_lock);
cea9c228 7143 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
7144 rdev_for_each(rdev, conf->mddev)
7145 rdev->data_offset = rdev->new_data_offset;
7146 smp_wmb();
fef9c61f 7147 conf->reshape_progress = MaxSector;
f6705578 7148 spin_unlock_irq(&conf->device_lock);
b0f9ec04 7149 wake_up(&conf->wait_for_overlap);
16a53ecc
N
7150
7151 /* read-ahead size must cover two whole stripes, which is
7152 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7153 */
4a5add49 7154 if (conf->mddev->queue) {
cea9c228 7155 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 7156 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 7157 / PAGE_SIZE);
16a53ecc
N
7158 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7159 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7160 }
29269553 7161 }
29269553
N
7162}
7163
ec32a2bd
N
7164/* This is called from the raid5d thread with mddev_lock held.
7165 * It makes config changes to the device.
7166 */
fd01b88c 7167static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 7168{
d1688a6d 7169 struct r5conf *conf = mddev->private;
cea9c228
N
7170
7171 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7172
ec32a2bd
N
7173 if (mddev->delta_disks > 0) {
7174 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7175 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7176 revalidate_disk(mddev->gendisk);
ec32a2bd
N
7177 } else {
7178 int d;
908f4fbd
N
7179 spin_lock_irq(&conf->device_lock);
7180 mddev->degraded = calc_degraded(conf);
7181 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
7182 for (d = conf->raid_disks ;
7183 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 7184 d++) {
3cb03002 7185 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
7186 if (rdev)
7187 clear_bit(In_sync, &rdev->flags);
7188 rdev = conf->disks[d].replacement;
7189 if (rdev)
7190 clear_bit(In_sync, &rdev->flags);
1a67dde0 7191 }
cea9c228 7192 }
88ce4930 7193 mddev->layout = conf->algorithm;
09c9e5fa 7194 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
7195 mddev->reshape_position = MaxSector;
7196 mddev->delta_disks = 0;
2c810cdd 7197 mddev->reshape_backwards = 0;
cea9c228
N
7198 }
7199}
7200
fd01b88c 7201static void raid5_quiesce(struct mddev *mddev, int state)
72626685 7202{
d1688a6d 7203 struct r5conf *conf = mddev->private;
72626685
N
7204
7205 switch(state) {
e464eafd
N
7206 case 2: /* resume for a suspend */
7207 wake_up(&conf->wait_for_overlap);
7208 break;
7209
72626685 7210 case 1: /* stop all writes */
566c09c5 7211 lock_all_device_hash_locks_irq(conf);
64bd660b
N
7212 /* '2' tells resync/reshape to pause so that all
7213 * active stripes can drain
7214 */
7215 conf->quiesce = 2;
566c09c5 7216 wait_event_cmd(conf->wait_for_stripe,
46031f9a
RBJ
7217 atomic_read(&conf->active_stripes) == 0 &&
7218 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
7219 unlock_all_device_hash_locks_irq(conf),
7220 lock_all_device_hash_locks_irq(conf));
64bd660b 7221 conf->quiesce = 1;
566c09c5 7222 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
7223 /* allow reshape to continue */
7224 wake_up(&conf->wait_for_overlap);
72626685
N
7225 break;
7226
7227 case 0: /* re-enable writes */
566c09c5 7228 lock_all_device_hash_locks_irq(conf);
72626685
N
7229 conf->quiesce = 0;
7230 wake_up(&conf->wait_for_stripe);
e464eafd 7231 wake_up(&conf->wait_for_overlap);
566c09c5 7232 unlock_all_device_hash_locks_irq(conf);
72626685
N
7233 break;
7234 }
72626685 7235}
b15c2e57 7236
fd01b88c 7237static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 7238{
e373ab10 7239 struct r0conf *raid0_conf = mddev->private;
d76c8420 7240 sector_t sectors;
54071b38 7241
f1b29bca 7242 /* for raid0 takeover only one zone is supported */
e373ab10 7243 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
7244 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7245 mdname(mddev));
f1b29bca
DW
7246 return ERR_PTR(-EINVAL);
7247 }
7248
e373ab10
N
7249 sectors = raid0_conf->strip_zone[0].zone_end;
7250 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 7251 mddev->dev_sectors = sectors;
f1b29bca 7252 mddev->new_level = level;
54071b38
TM
7253 mddev->new_layout = ALGORITHM_PARITY_N;
7254 mddev->new_chunk_sectors = mddev->chunk_sectors;
7255 mddev->raid_disks += 1;
7256 mddev->delta_disks = 1;
7257 /* make sure it will be not marked as dirty */
7258 mddev->recovery_cp = MaxSector;
7259
7260 return setup_conf(mddev);
7261}
7262
fd01b88c 7263static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
7264{
7265 int chunksect;
7266
7267 if (mddev->raid_disks != 2 ||
7268 mddev->degraded > 1)
7269 return ERR_PTR(-EINVAL);
7270
7271 /* Should check if there are write-behind devices? */
7272
7273 chunksect = 64*2; /* 64K by default */
7274
7275 /* The array must be an exact multiple of chunksize */
7276 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7277 chunksect >>= 1;
7278
7279 if ((chunksect<<9) < STRIPE_SIZE)
7280 /* array size does not allow a suitable chunk size */
7281 return ERR_PTR(-EINVAL);
7282
7283 mddev->new_level = 5;
7284 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 7285 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
7286
7287 return setup_conf(mddev);
7288}
7289
fd01b88c 7290static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
7291{
7292 int new_layout;
7293
7294 switch (mddev->layout) {
7295 case ALGORITHM_LEFT_ASYMMETRIC_6:
7296 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7297 break;
7298 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7299 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7300 break;
7301 case ALGORITHM_LEFT_SYMMETRIC_6:
7302 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7303 break;
7304 case ALGORITHM_RIGHT_SYMMETRIC_6:
7305 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7306 break;
7307 case ALGORITHM_PARITY_0_6:
7308 new_layout = ALGORITHM_PARITY_0;
7309 break;
7310 case ALGORITHM_PARITY_N:
7311 new_layout = ALGORITHM_PARITY_N;
7312 break;
7313 default:
7314 return ERR_PTR(-EINVAL);
7315 }
7316 mddev->new_level = 5;
7317 mddev->new_layout = new_layout;
7318 mddev->delta_disks = -1;
7319 mddev->raid_disks -= 1;
7320 return setup_conf(mddev);
7321}
7322
fd01b88c 7323static int raid5_check_reshape(struct mddev *mddev)
b3546035 7324{
88ce4930
N
7325 /* For a 2-drive array, the layout and chunk size can be changed
7326 * immediately as not restriping is needed.
7327 * For larger arrays we record the new value - after validation
7328 * to be used by a reshape pass.
b3546035 7329 */
d1688a6d 7330 struct r5conf *conf = mddev->private;
597a711b 7331 int new_chunk = mddev->new_chunk_sectors;
b3546035 7332
597a711b 7333 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
7334 return -EINVAL;
7335 if (new_chunk > 0) {
0ba459d2 7336 if (!is_power_of_2(new_chunk))
b3546035 7337 return -EINVAL;
597a711b 7338 if (new_chunk < (PAGE_SIZE>>9))
b3546035 7339 return -EINVAL;
597a711b 7340 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
7341 /* not factor of array size */
7342 return -EINVAL;
7343 }
7344
7345 /* They look valid */
7346
88ce4930 7347 if (mddev->raid_disks == 2) {
597a711b
N
7348 /* can make the change immediately */
7349 if (mddev->new_layout >= 0) {
7350 conf->algorithm = mddev->new_layout;
7351 mddev->layout = mddev->new_layout;
88ce4930
N
7352 }
7353 if (new_chunk > 0) {
597a711b
N
7354 conf->chunk_sectors = new_chunk ;
7355 mddev->chunk_sectors = new_chunk;
88ce4930
N
7356 }
7357 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7358 md_wakeup_thread(mddev->thread);
b3546035 7359 }
50ac168a 7360 return check_reshape(mddev);
88ce4930
N
7361}
7362
fd01b88c 7363static int raid6_check_reshape(struct mddev *mddev)
88ce4930 7364{
597a711b 7365 int new_chunk = mddev->new_chunk_sectors;
50ac168a 7366
597a711b 7367 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 7368 return -EINVAL;
b3546035 7369 if (new_chunk > 0) {
0ba459d2 7370 if (!is_power_of_2(new_chunk))
88ce4930 7371 return -EINVAL;
597a711b 7372 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 7373 return -EINVAL;
597a711b 7374 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
7375 /* not factor of array size */
7376 return -EINVAL;
b3546035 7377 }
88ce4930
N
7378
7379 /* They look valid */
50ac168a 7380 return check_reshape(mddev);
b3546035
N
7381}
7382
fd01b88c 7383static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
7384{
7385 /* raid5 can take over:
f1b29bca 7386 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
7387 * raid1 - if there are two drives. We need to know the chunk size
7388 * raid4 - trivial - just use a raid4 layout.
7389 * raid6 - Providing it is a *_6 layout
d562b0c4 7390 */
f1b29bca
DW
7391 if (mddev->level == 0)
7392 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
7393 if (mddev->level == 1)
7394 return raid5_takeover_raid1(mddev);
e9d4758f
N
7395 if (mddev->level == 4) {
7396 mddev->new_layout = ALGORITHM_PARITY_N;
7397 mddev->new_level = 5;
7398 return setup_conf(mddev);
7399 }
fc9739c6
N
7400 if (mddev->level == 6)
7401 return raid5_takeover_raid6(mddev);
d562b0c4
N
7402
7403 return ERR_PTR(-EINVAL);
7404}
7405
fd01b88c 7406static void *raid4_takeover(struct mddev *mddev)
a78d38a1 7407{
f1b29bca
DW
7408 /* raid4 can take over:
7409 * raid0 - if there is only one strip zone
7410 * raid5 - if layout is right
a78d38a1 7411 */
f1b29bca
DW
7412 if (mddev->level == 0)
7413 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
7414 if (mddev->level == 5 &&
7415 mddev->layout == ALGORITHM_PARITY_N) {
7416 mddev->new_layout = 0;
7417 mddev->new_level = 4;
7418 return setup_conf(mddev);
7419 }
7420 return ERR_PTR(-EINVAL);
7421}
d562b0c4 7422
84fc4b56 7423static struct md_personality raid5_personality;
245f46c2 7424
fd01b88c 7425static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
7426{
7427 /* Currently can only take over a raid5. We map the
7428 * personality to an equivalent raid6 personality
7429 * with the Q block at the end.
7430 */
7431 int new_layout;
7432
7433 if (mddev->pers != &raid5_personality)
7434 return ERR_PTR(-EINVAL);
7435 if (mddev->degraded > 1)
7436 return ERR_PTR(-EINVAL);
7437 if (mddev->raid_disks > 253)
7438 return ERR_PTR(-EINVAL);
7439 if (mddev->raid_disks < 3)
7440 return ERR_PTR(-EINVAL);
7441
7442 switch (mddev->layout) {
7443 case ALGORITHM_LEFT_ASYMMETRIC:
7444 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7445 break;
7446 case ALGORITHM_RIGHT_ASYMMETRIC:
7447 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7448 break;
7449 case ALGORITHM_LEFT_SYMMETRIC:
7450 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7451 break;
7452 case ALGORITHM_RIGHT_SYMMETRIC:
7453 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7454 break;
7455 case ALGORITHM_PARITY_0:
7456 new_layout = ALGORITHM_PARITY_0_6;
7457 break;
7458 case ALGORITHM_PARITY_N:
7459 new_layout = ALGORITHM_PARITY_N;
7460 break;
7461 default:
7462 return ERR_PTR(-EINVAL);
7463 }
7464 mddev->new_level = 6;
7465 mddev->new_layout = new_layout;
7466 mddev->delta_disks = 1;
7467 mddev->raid_disks += 1;
7468 return setup_conf(mddev);
7469}
7470
84fc4b56 7471static struct md_personality raid6_personality =
16a53ecc
N
7472{
7473 .name = "raid6",
7474 .level = 6,
7475 .owner = THIS_MODULE,
7476 .make_request = make_request,
7477 .run = run,
afa0f557 7478 .free = raid5_free,
16a53ecc
N
7479 .status = status,
7480 .error_handler = error,
7481 .hot_add_disk = raid5_add_disk,
7482 .hot_remove_disk= raid5_remove_disk,
7483 .spare_active = raid5_spare_active,
7484 .sync_request = sync_request,
7485 .resize = raid5_resize,
80c3a6ce 7486 .size = raid5_size,
50ac168a 7487 .check_reshape = raid6_check_reshape,
f416885e 7488 .start_reshape = raid5_start_reshape,
cea9c228 7489 .finish_reshape = raid5_finish_reshape,
16a53ecc 7490 .quiesce = raid5_quiesce,
245f46c2 7491 .takeover = raid6_takeover,
5c675f83 7492 .congested = raid5_congested,
64590f45 7493 .mergeable_bvec = raid5_mergeable_bvec,
16a53ecc 7494};
84fc4b56 7495static struct md_personality raid5_personality =
1da177e4
LT
7496{
7497 .name = "raid5",
2604b703 7498 .level = 5,
1da177e4
LT
7499 .owner = THIS_MODULE,
7500 .make_request = make_request,
7501 .run = run,
afa0f557 7502 .free = raid5_free,
1da177e4
LT
7503 .status = status,
7504 .error_handler = error,
7505 .hot_add_disk = raid5_add_disk,
7506 .hot_remove_disk= raid5_remove_disk,
7507 .spare_active = raid5_spare_active,
7508 .sync_request = sync_request,
7509 .resize = raid5_resize,
80c3a6ce 7510 .size = raid5_size,
63c70c4f
N
7511 .check_reshape = raid5_check_reshape,
7512 .start_reshape = raid5_start_reshape,
cea9c228 7513 .finish_reshape = raid5_finish_reshape,
72626685 7514 .quiesce = raid5_quiesce,
d562b0c4 7515 .takeover = raid5_takeover,
5c675f83 7516 .congested = raid5_congested,
64590f45 7517 .mergeable_bvec = raid5_mergeable_bvec,
1da177e4
LT
7518};
7519
84fc4b56 7520static struct md_personality raid4_personality =
1da177e4 7521{
2604b703
N
7522 .name = "raid4",
7523 .level = 4,
7524 .owner = THIS_MODULE,
7525 .make_request = make_request,
7526 .run = run,
afa0f557 7527 .free = raid5_free,
2604b703
N
7528 .status = status,
7529 .error_handler = error,
7530 .hot_add_disk = raid5_add_disk,
7531 .hot_remove_disk= raid5_remove_disk,
7532 .spare_active = raid5_spare_active,
7533 .sync_request = sync_request,
7534 .resize = raid5_resize,
80c3a6ce 7535 .size = raid5_size,
3d37890b
N
7536 .check_reshape = raid5_check_reshape,
7537 .start_reshape = raid5_start_reshape,
cea9c228 7538 .finish_reshape = raid5_finish_reshape,
2604b703 7539 .quiesce = raid5_quiesce,
a78d38a1 7540 .takeover = raid4_takeover,
5c675f83 7541 .congested = raid5_congested,
64590f45 7542 .mergeable_bvec = raid5_mergeable_bvec,
2604b703
N
7543};
7544
7545static int __init raid5_init(void)
7546{
851c30c9
SL
7547 raid5_wq = alloc_workqueue("raid5wq",
7548 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7549 if (!raid5_wq)
7550 return -ENOMEM;
16a53ecc 7551 register_md_personality(&raid6_personality);
2604b703
N
7552 register_md_personality(&raid5_personality);
7553 register_md_personality(&raid4_personality);
7554 return 0;
1da177e4
LT
7555}
7556
2604b703 7557static void raid5_exit(void)
1da177e4 7558{
16a53ecc 7559 unregister_md_personality(&raid6_personality);
2604b703
N
7560 unregister_md_personality(&raid5_personality);
7561 unregister_md_personality(&raid4_personality);
851c30c9 7562 destroy_workqueue(raid5_wq);
1da177e4
LT
7563}
7564
7565module_init(raid5_init);
7566module_exit(raid5_exit);
7567MODULE_LICENSE("GPL");
0efb9e61 7568MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 7569MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
7570MODULE_ALIAS("md-raid5");
7571MODULE_ALIAS("md-raid4");
2604b703
N
7572MODULE_ALIAS("md-level-5");
7573MODULE_ALIAS("md-level-4");
16a53ecc
N
7574MODULE_ALIAS("md-personality-8"); /* RAID6 */
7575MODULE_ALIAS("md-raid6");
7576MODULE_ALIAS("md-level-6");
7577
7578/* This used to be two separate modules, they were: */
7579MODULE_ALIAS("raid5");
7580MODULE_ALIAS("raid6");
This page took 1.551891 seconds and 5 git commands to generate.