md: make 'name' arg to md_register_thread non-optional.
[deliverable/linux.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
43b2e5d8 56#include "md.h"
bff61975 57#include "raid5.h"
54071b38 58#include "raid0.h"
ef740c37 59#include "bitmap.h"
72626685 60
1da177e4
LT
61/*
62 * Stripe cache
63 */
64
65#define NR_STRIPES 256
66#define STRIPE_SIZE PAGE_SIZE
67#define STRIPE_SHIFT (PAGE_SHIFT - 9)
68#define STRIPE_SECTORS (STRIPE_SIZE>>9)
69#define IO_THRESHOLD 1
8b3e6cdc 70#define BYPASS_THRESHOLD 1
fccddba0 71#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
72#define HASH_MASK (NR_HASH - 1)
73
d1688a6d 74static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
75{
76 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77 return &conf->stripe_hashtbl[hash];
78}
1da177e4
LT
79
80/* bio's attached to a stripe+device for I/O are linked together in bi_sector
81 * order without overlap. There may be several bio's per stripe+device, and
82 * a bio could span several devices.
83 * When walking this list for a particular stripe+device, we must never proceed
84 * beyond a bio that extends past this device, as the next bio might no longer
85 * be valid.
db298e19 86 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
87 * of the current stripe+device
88 */
db298e19
N
89static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90{
91 int sectors = bio->bi_size >> 9;
92 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93 return bio->bi_next;
94 else
95 return NULL;
96}
1da177e4 97
960e739d 98/*
5b99c2ff
JA
99 * We maintain a biased count of active stripes in the bottom 16 bits of
100 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d
JA
101 */
102static inline int raid5_bi_phys_segments(struct bio *bio)
103{
5b99c2ff 104 return bio->bi_phys_segments & 0xffff;
960e739d
JA
105}
106
107static inline int raid5_bi_hw_segments(struct bio *bio)
108{
5b99c2ff 109 return (bio->bi_phys_segments >> 16) & 0xffff;
960e739d
JA
110}
111
112static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113{
114 --bio->bi_phys_segments;
115 return raid5_bi_phys_segments(bio);
116}
117
118static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119{
120 unsigned short val = raid5_bi_hw_segments(bio);
121
122 --val;
5b99c2ff 123 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
960e739d
JA
124 return val;
125}
126
127static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128{
9b2dc8b6 129 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
960e739d
JA
130}
131
d0dabf7e
N
132/* Find first data disk in a raid6 stripe */
133static inline int raid6_d0(struct stripe_head *sh)
134{
67cc2b81
N
135 if (sh->ddf_layout)
136 /* ddf always start from first device */
137 return 0;
138 /* md starts just after Q block */
d0dabf7e
N
139 if (sh->qd_idx == sh->disks - 1)
140 return 0;
141 else
142 return sh->qd_idx + 1;
143}
16a53ecc
N
144static inline int raid6_next_disk(int disk, int raid_disks)
145{
146 disk++;
147 return (disk < raid_disks) ? disk : 0;
148}
a4456856 149
d0dabf7e
N
150/* When walking through the disks in a raid5, starting at raid6_d0,
151 * We need to map each disk to a 'slot', where the data disks are slot
152 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153 * is raid_disks-1. This help does that mapping.
154 */
67cc2b81
N
155static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156 int *count, int syndrome_disks)
d0dabf7e 157{
6629542e 158 int slot = *count;
67cc2b81 159
e4424fee 160 if (sh->ddf_layout)
6629542e 161 (*count)++;
d0dabf7e 162 if (idx == sh->pd_idx)
67cc2b81 163 return syndrome_disks;
d0dabf7e 164 if (idx == sh->qd_idx)
67cc2b81 165 return syndrome_disks + 1;
e4424fee 166 if (!sh->ddf_layout)
6629542e 167 (*count)++;
d0dabf7e
N
168 return slot;
169}
170
a4456856
DW
171static void return_io(struct bio *return_bi)
172{
173 struct bio *bi = return_bi;
174 while (bi) {
a4456856
DW
175
176 return_bi = bi->bi_next;
177 bi->bi_next = NULL;
178 bi->bi_size = 0;
0e13fe23 179 bio_endio(bi, 0);
a4456856
DW
180 bi = return_bi;
181 }
182}
183
d1688a6d 184static void print_raid5_conf (struct r5conf *conf);
1da177e4 185
600aa109
DW
186static int stripe_operations_active(struct stripe_head *sh)
187{
188 return sh->check_state || sh->reconstruct_state ||
189 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
191}
192
d1688a6d 193static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
1da177e4
LT
194{
195 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
196 BUG_ON(!list_empty(&sh->lru));
197 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 198 if (test_bit(STRIPE_HANDLE, &sh->state)) {
482c0834 199 if (test_bit(STRIPE_DELAYED, &sh->state))
1da177e4 200 list_add_tail(&sh->lru, &conf->delayed_list);
482c0834
N
201 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
202 sh->bm_seq - conf->seq_write > 0)
72626685 203 list_add_tail(&sh->lru, &conf->bitmap_list);
482c0834 204 else {
72626685 205 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 206 list_add_tail(&sh->lru, &conf->handle_list);
72626685 207 }
1da177e4
LT
208 md_wakeup_thread(conf->mddev->thread);
209 } else {
600aa109 210 BUG_ON(stripe_operations_active(sh));
41fe75f6 211 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
212 if (atomic_dec_return(&conf->preread_active_stripes)
213 < IO_THRESHOLD)
1da177e4 214 md_wakeup_thread(conf->mddev->thread);
1da177e4 215 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
216 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
217 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 218 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
219 if (conf->retry_read_aligned)
220 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 221 }
1da177e4
LT
222 }
223 }
224}
d0dabf7e 225
1da177e4
LT
226static void release_stripe(struct stripe_head *sh)
227{
d1688a6d 228 struct r5conf *conf = sh->raid_conf;
1da177e4 229 unsigned long flags;
16a53ecc 230
1da177e4
LT
231 spin_lock_irqsave(&conf->device_lock, flags);
232 __release_stripe(conf, sh);
233 spin_unlock_irqrestore(&conf->device_lock, flags);
234}
235
fccddba0 236static inline void remove_hash(struct stripe_head *sh)
1da177e4 237{
45b4233c
DW
238 pr_debug("remove_hash(), stripe %llu\n",
239 (unsigned long long)sh->sector);
1da177e4 240
fccddba0 241 hlist_del_init(&sh->hash);
1da177e4
LT
242}
243
d1688a6d 244static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 245{
fccddba0 246 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 247
45b4233c
DW
248 pr_debug("insert_hash(), stripe %llu\n",
249 (unsigned long long)sh->sector);
1da177e4 250
fccddba0 251 hlist_add_head(&sh->hash, hp);
1da177e4
LT
252}
253
254
255/* find an idle stripe, make sure it is unhashed, and return it. */
d1688a6d 256static struct stripe_head *get_free_stripe(struct r5conf *conf)
1da177e4
LT
257{
258 struct stripe_head *sh = NULL;
259 struct list_head *first;
260
1da177e4
LT
261 if (list_empty(&conf->inactive_list))
262 goto out;
263 first = conf->inactive_list.next;
264 sh = list_entry(first, struct stripe_head, lru);
265 list_del_init(first);
266 remove_hash(sh);
267 atomic_inc(&conf->active_stripes);
268out:
269 return sh;
270}
271
e4e11e38 272static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
273{
274 struct page *p;
275 int i;
e4e11e38 276 int num = sh->raid_conf->pool_size;
1da177e4 277
e4e11e38 278 for (i = 0; i < num ; i++) {
1da177e4
LT
279 p = sh->dev[i].page;
280 if (!p)
281 continue;
282 sh->dev[i].page = NULL;
2d1f3b5d 283 put_page(p);
1da177e4
LT
284 }
285}
286
e4e11e38 287static int grow_buffers(struct stripe_head *sh)
1da177e4
LT
288{
289 int i;
e4e11e38 290 int num = sh->raid_conf->pool_size;
1da177e4 291
e4e11e38 292 for (i = 0; i < num; i++) {
1da177e4
LT
293 struct page *page;
294
295 if (!(page = alloc_page(GFP_KERNEL))) {
296 return 1;
297 }
298 sh->dev[i].page = page;
299 }
300 return 0;
301}
302
784052ec 303static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 304static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 305 struct stripe_head *sh);
1da177e4 306
b5663ba4 307static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 308{
d1688a6d 309 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 310 int i;
1da177e4 311
78bafebd
ES
312 BUG_ON(atomic_read(&sh->count) != 0);
313 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 314 BUG_ON(stripe_operations_active(sh));
d84e0f10 315
45b4233c 316 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
317 (unsigned long long)sh->sector);
318
319 remove_hash(sh);
16a53ecc 320
86b42c71 321 sh->generation = conf->generation - previous;
b5663ba4 322 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 323 sh->sector = sector;
911d4ee8 324 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
325 sh->state = 0;
326
7ecaa1e6
N
327
328 for (i = sh->disks; i--; ) {
1da177e4
LT
329 struct r5dev *dev = &sh->dev[i];
330
d84e0f10 331 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 332 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 333 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 334 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 335 dev->read, dev->towrite, dev->written,
1da177e4 336 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 337 WARN_ON(1);
1da177e4
LT
338 }
339 dev->flags = 0;
784052ec 340 raid5_build_block(sh, i, previous);
1da177e4
LT
341 }
342 insert_hash(conf, sh);
343}
344
d1688a6d 345static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 346 short generation)
1da177e4
LT
347{
348 struct stripe_head *sh;
fccddba0 349 struct hlist_node *hn;
1da177e4 350
45b4233c 351 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 352 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
86b42c71 353 if (sh->sector == sector && sh->generation == generation)
1da177e4 354 return sh;
45b4233c 355 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
356 return NULL;
357}
358
674806d6
N
359/*
360 * Need to check if array has failed when deciding whether to:
361 * - start an array
362 * - remove non-faulty devices
363 * - add a spare
364 * - allow a reshape
365 * This determination is simple when no reshape is happening.
366 * However if there is a reshape, we need to carefully check
367 * both the before and after sections.
368 * This is because some failed devices may only affect one
369 * of the two sections, and some non-in_sync devices may
370 * be insync in the section most affected by failed devices.
371 */
908f4fbd 372static int calc_degraded(struct r5conf *conf)
674806d6 373{
908f4fbd 374 int degraded, degraded2;
674806d6 375 int i;
674806d6
N
376
377 rcu_read_lock();
378 degraded = 0;
379 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 380 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
674806d6
N
381 if (!rdev || test_bit(Faulty, &rdev->flags))
382 degraded++;
383 else if (test_bit(In_sync, &rdev->flags))
384 ;
385 else
386 /* not in-sync or faulty.
387 * If the reshape increases the number of devices,
388 * this is being recovered by the reshape, so
389 * this 'previous' section is not in_sync.
390 * If the number of devices is being reduced however,
391 * the device can only be part of the array if
392 * we are reverting a reshape, so this section will
393 * be in-sync.
394 */
395 if (conf->raid_disks >= conf->previous_raid_disks)
396 degraded++;
397 }
398 rcu_read_unlock();
908f4fbd
N
399 if (conf->raid_disks == conf->previous_raid_disks)
400 return degraded;
674806d6 401 rcu_read_lock();
908f4fbd 402 degraded2 = 0;
674806d6 403 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 404 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
674806d6 405 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 406 degraded2++;
674806d6
N
407 else if (test_bit(In_sync, &rdev->flags))
408 ;
409 else
410 /* not in-sync or faulty.
411 * If reshape increases the number of devices, this
412 * section has already been recovered, else it
413 * almost certainly hasn't.
414 */
415 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 416 degraded2++;
674806d6
N
417 }
418 rcu_read_unlock();
908f4fbd
N
419 if (degraded2 > degraded)
420 return degraded2;
421 return degraded;
422}
423
424static int has_failed(struct r5conf *conf)
425{
426 int degraded;
427
428 if (conf->mddev->reshape_position == MaxSector)
429 return conf->mddev->degraded > conf->max_degraded;
430
431 degraded = calc_degraded(conf);
674806d6
N
432 if (degraded > conf->max_degraded)
433 return 1;
434 return 0;
435}
436
b5663ba4 437static struct stripe_head *
d1688a6d 438get_active_stripe(struct r5conf *conf, sector_t sector,
a8c906ca 439 int previous, int noblock, int noquiesce)
1da177e4
LT
440{
441 struct stripe_head *sh;
442
45b4233c 443 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
444
445 spin_lock_irq(&conf->device_lock);
446
447 do {
72626685 448 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 449 conf->quiesce == 0 || noquiesce,
72626685 450 conf->device_lock, /* nothing */);
86b42c71 451 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
452 if (!sh) {
453 if (!conf->inactive_blocked)
454 sh = get_free_stripe(conf);
455 if (noblock && sh == NULL)
456 break;
457 if (!sh) {
458 conf->inactive_blocked = 1;
459 wait_event_lock_irq(conf->wait_for_stripe,
460 !list_empty(&conf->inactive_list) &&
5036805b
N
461 (atomic_read(&conf->active_stripes)
462 < (conf->max_nr_stripes *3/4)
1da177e4
LT
463 || !conf->inactive_blocked),
464 conf->device_lock,
7c13edc8 465 );
1da177e4
LT
466 conf->inactive_blocked = 0;
467 } else
b5663ba4 468 init_stripe(sh, sector, previous);
1da177e4
LT
469 } else {
470 if (atomic_read(&sh->count)) {
ab69ae12
N
471 BUG_ON(!list_empty(&sh->lru)
472 && !test_bit(STRIPE_EXPANDING, &sh->state));
1da177e4
LT
473 } else {
474 if (!test_bit(STRIPE_HANDLE, &sh->state))
475 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
476 if (list_empty(&sh->lru) &&
477 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
478 BUG();
479 list_del_init(&sh->lru);
1da177e4
LT
480 }
481 }
482 } while (sh == NULL);
483
484 if (sh)
485 atomic_inc(&sh->count);
486
487 spin_unlock_irq(&conf->device_lock);
488 return sh;
489}
490
05616be5
N
491/* Determine if 'data_offset' or 'new_data_offset' should be used
492 * in this stripe_head.
493 */
494static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
495{
496 sector_t progress = conf->reshape_progress;
497 /* Need a memory barrier to make sure we see the value
498 * of conf->generation, or ->data_offset that was set before
499 * reshape_progress was updated.
500 */
501 smp_rmb();
502 if (progress == MaxSector)
503 return 0;
504 if (sh->generation == conf->generation - 1)
505 return 0;
506 /* We are in a reshape, and this is a new-generation stripe,
507 * so use new_data_offset.
508 */
509 return 1;
510}
511
6712ecf8
N
512static void
513raid5_end_read_request(struct bio *bi, int error);
514static void
515raid5_end_write_request(struct bio *bi, int error);
91c00924 516
c4e5ac0a 517static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 518{
d1688a6d 519 struct r5conf *conf = sh->raid_conf;
91c00924
DW
520 int i, disks = sh->disks;
521
522 might_sleep();
523
524 for (i = disks; i--; ) {
525 int rw;
9a3e1101 526 int replace_only = 0;
977df362
N
527 struct bio *bi, *rbi;
528 struct md_rdev *rdev, *rrdev = NULL;
e9c7469b
TH
529 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
530 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
531 rw = WRITE_FUA;
532 else
533 rw = WRITE;
534 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924 535 rw = READ;
9a3e1101
N
536 else if (test_and_clear_bit(R5_WantReplace,
537 &sh->dev[i].flags)) {
538 rw = WRITE;
539 replace_only = 1;
540 } else
91c00924 541 continue;
bc0934f0
SL
542 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
543 rw |= REQ_SYNC;
91c00924
DW
544
545 bi = &sh->dev[i].req;
977df362 546 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924
DW
547
548 bi->bi_rw = rw;
977df362
N
549 rbi->bi_rw = rw;
550 if (rw & WRITE) {
91c00924 551 bi->bi_end_io = raid5_end_write_request;
977df362
N
552 rbi->bi_end_io = raid5_end_write_request;
553 } else
91c00924
DW
554 bi->bi_end_io = raid5_end_read_request;
555
556 rcu_read_lock();
9a3e1101 557 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
558 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
559 rdev = rcu_dereference(conf->disks[i].rdev);
560 if (!rdev) {
561 rdev = rrdev;
562 rrdev = NULL;
563 }
9a3e1101
N
564 if (rw & WRITE) {
565 if (replace_only)
566 rdev = NULL;
dd054fce
N
567 if (rdev == rrdev)
568 /* We raced and saw duplicates */
569 rrdev = NULL;
9a3e1101 570 } else {
dd054fce 571 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
9a3e1101
N
572 rdev = rrdev;
573 rrdev = NULL;
574 }
977df362 575
91c00924
DW
576 if (rdev && test_bit(Faulty, &rdev->flags))
577 rdev = NULL;
578 if (rdev)
579 atomic_inc(&rdev->nr_pending);
977df362
N
580 if (rrdev && test_bit(Faulty, &rrdev->flags))
581 rrdev = NULL;
582 if (rrdev)
583 atomic_inc(&rrdev->nr_pending);
91c00924
DW
584 rcu_read_unlock();
585
73e92e51 586 /* We have already checked bad blocks for reads. Now
977df362
N
587 * need to check for writes. We never accept write errors
588 * on the replacement, so we don't to check rrdev.
73e92e51
N
589 */
590 while ((rw & WRITE) && rdev &&
591 test_bit(WriteErrorSeen, &rdev->flags)) {
592 sector_t first_bad;
593 int bad_sectors;
594 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
595 &first_bad, &bad_sectors);
596 if (!bad)
597 break;
598
599 if (bad < 0) {
600 set_bit(BlockedBadBlocks, &rdev->flags);
601 if (!conf->mddev->external &&
602 conf->mddev->flags) {
603 /* It is very unlikely, but we might
604 * still need to write out the
605 * bad block log - better give it
606 * a chance*/
607 md_check_recovery(conf->mddev);
608 }
1850753d 609 /*
610 * Because md_wait_for_blocked_rdev
611 * will dec nr_pending, we must
612 * increment it first.
613 */
614 atomic_inc(&rdev->nr_pending);
73e92e51
N
615 md_wait_for_blocked_rdev(rdev, conf->mddev);
616 } else {
617 /* Acknowledged bad block - skip the write */
618 rdev_dec_pending(rdev, conf->mddev);
619 rdev = NULL;
620 }
621 }
622
91c00924 623 if (rdev) {
9a3e1101
N
624 if (s->syncing || s->expanding || s->expanded
625 || s->replacing)
91c00924
DW
626 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
627
2b7497f0
DW
628 set_bit(STRIPE_IO_STARTED, &sh->state);
629
91c00924
DW
630 bi->bi_bdev = rdev->bdev;
631 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 632 __func__, (unsigned long long)sh->sector,
91c00924
DW
633 bi->bi_rw, i);
634 atomic_inc(&sh->count);
05616be5
N
635 if (use_new_offset(conf, sh))
636 bi->bi_sector = (sh->sector
637 + rdev->new_data_offset);
638 else
639 bi->bi_sector = (sh->sector
640 + rdev->data_offset);
91c00924 641 bi->bi_flags = 1 << BIO_UPTODATE;
91c00924 642 bi->bi_idx = 0;
91c00924
DW
643 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
644 bi->bi_io_vec[0].bv_offset = 0;
645 bi->bi_size = STRIPE_SIZE;
646 bi->bi_next = NULL;
977df362
N
647 if (rrdev)
648 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
91c00924 649 generic_make_request(bi);
977df362
N
650 }
651 if (rrdev) {
9a3e1101
N
652 if (s->syncing || s->expanding || s->expanded
653 || s->replacing)
977df362
N
654 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
655
656 set_bit(STRIPE_IO_STARTED, &sh->state);
657
658 rbi->bi_bdev = rrdev->bdev;
659 pr_debug("%s: for %llu schedule op %ld on "
660 "replacement disc %d\n",
661 __func__, (unsigned long long)sh->sector,
662 rbi->bi_rw, i);
663 atomic_inc(&sh->count);
05616be5
N
664 if (use_new_offset(conf, sh))
665 rbi->bi_sector = (sh->sector
666 + rrdev->new_data_offset);
667 else
668 rbi->bi_sector = (sh->sector
669 + rrdev->data_offset);
977df362
N
670 rbi->bi_flags = 1 << BIO_UPTODATE;
671 rbi->bi_idx = 0;
672 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
673 rbi->bi_io_vec[0].bv_offset = 0;
674 rbi->bi_size = STRIPE_SIZE;
675 rbi->bi_next = NULL;
676 generic_make_request(rbi);
677 }
678 if (!rdev && !rrdev) {
b062962e 679 if (rw & WRITE)
91c00924
DW
680 set_bit(STRIPE_DEGRADED, &sh->state);
681 pr_debug("skip op %ld on disc %d for sector %llu\n",
682 bi->bi_rw, i, (unsigned long long)sh->sector);
683 clear_bit(R5_LOCKED, &sh->dev[i].flags);
684 set_bit(STRIPE_HANDLE, &sh->state);
685 }
686 }
687}
688
689static struct dma_async_tx_descriptor *
690async_copy_data(int frombio, struct bio *bio, struct page *page,
691 sector_t sector, struct dma_async_tx_descriptor *tx)
692{
693 struct bio_vec *bvl;
694 struct page *bio_page;
695 int i;
696 int page_offset;
a08abd8c 697 struct async_submit_ctl submit;
0403e382 698 enum async_tx_flags flags = 0;
91c00924
DW
699
700 if (bio->bi_sector >= sector)
701 page_offset = (signed)(bio->bi_sector - sector) * 512;
702 else
703 page_offset = (signed)(sector - bio->bi_sector) * -512;
a08abd8c 704
0403e382
DW
705 if (frombio)
706 flags |= ASYNC_TX_FENCE;
707 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
708
91c00924 709 bio_for_each_segment(bvl, bio, i) {
fcde9075 710 int len = bvl->bv_len;
91c00924
DW
711 int clen;
712 int b_offset = 0;
713
714 if (page_offset < 0) {
715 b_offset = -page_offset;
716 page_offset += b_offset;
717 len -= b_offset;
718 }
719
720 if (len > 0 && page_offset + len > STRIPE_SIZE)
721 clen = STRIPE_SIZE - page_offset;
722 else
723 clen = len;
724
725 if (clen > 0) {
fcde9075
NK
726 b_offset += bvl->bv_offset;
727 bio_page = bvl->bv_page;
91c00924
DW
728 if (frombio)
729 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 730 b_offset, clen, &submit);
91c00924
DW
731 else
732 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 733 page_offset, clen, &submit);
91c00924 734 }
a08abd8c
DW
735 /* chain the operations */
736 submit.depend_tx = tx;
737
91c00924
DW
738 if (clen < len) /* hit end of page */
739 break;
740 page_offset += len;
741 }
742
743 return tx;
744}
745
746static void ops_complete_biofill(void *stripe_head_ref)
747{
748 struct stripe_head *sh = stripe_head_ref;
749 struct bio *return_bi = NULL;
d1688a6d 750 struct r5conf *conf = sh->raid_conf;
e4d84909 751 int i;
91c00924 752
e46b272b 753 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
754 (unsigned long long)sh->sector);
755
756 /* clear completed biofills */
83de75cc 757 spin_lock_irq(&conf->device_lock);
91c00924
DW
758 for (i = sh->disks; i--; ) {
759 struct r5dev *dev = &sh->dev[i];
91c00924
DW
760
761 /* acknowledge completion of a biofill operation */
e4d84909
DW
762 /* and check if we need to reply to a read request,
763 * new R5_Wantfill requests are held off until
83de75cc 764 * !STRIPE_BIOFILL_RUN
e4d84909
DW
765 */
766 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 767 struct bio *rbi, *rbi2;
91c00924 768
91c00924
DW
769 BUG_ON(!dev->read);
770 rbi = dev->read;
771 dev->read = NULL;
772 while (rbi && rbi->bi_sector <
773 dev->sector + STRIPE_SECTORS) {
774 rbi2 = r5_next_bio(rbi, dev->sector);
960e739d 775 if (!raid5_dec_bi_phys_segments(rbi)) {
91c00924
DW
776 rbi->bi_next = return_bi;
777 return_bi = rbi;
778 }
91c00924
DW
779 rbi = rbi2;
780 }
781 }
782 }
83de75cc
DW
783 spin_unlock_irq(&conf->device_lock);
784 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
785
786 return_io(return_bi);
787
e4d84909 788 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
789 release_stripe(sh);
790}
791
792static void ops_run_biofill(struct stripe_head *sh)
793{
794 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 795 struct r5conf *conf = sh->raid_conf;
a08abd8c 796 struct async_submit_ctl submit;
91c00924
DW
797 int i;
798
e46b272b 799 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
800 (unsigned long long)sh->sector);
801
802 for (i = sh->disks; i--; ) {
803 struct r5dev *dev = &sh->dev[i];
804 if (test_bit(R5_Wantfill, &dev->flags)) {
805 struct bio *rbi;
806 spin_lock_irq(&conf->device_lock);
807 dev->read = rbi = dev->toread;
808 dev->toread = NULL;
809 spin_unlock_irq(&conf->device_lock);
810 while (rbi && rbi->bi_sector <
811 dev->sector + STRIPE_SECTORS) {
812 tx = async_copy_data(0, rbi, dev->page,
813 dev->sector, tx);
814 rbi = r5_next_bio(rbi, dev->sector);
815 }
816 }
817 }
818
819 atomic_inc(&sh->count);
a08abd8c
DW
820 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
821 async_trigger_callback(&submit);
91c00924
DW
822}
823
4e7d2c0a 824static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 825{
4e7d2c0a 826 struct r5dev *tgt;
91c00924 827
4e7d2c0a
DW
828 if (target < 0)
829 return;
91c00924 830
4e7d2c0a 831 tgt = &sh->dev[target];
91c00924
DW
832 set_bit(R5_UPTODATE, &tgt->flags);
833 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
834 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
835}
836
ac6b53b6 837static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
838{
839 struct stripe_head *sh = stripe_head_ref;
91c00924 840
e46b272b 841 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
842 (unsigned long long)sh->sector);
843
ac6b53b6 844 /* mark the computed target(s) as uptodate */
4e7d2c0a 845 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 846 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 847
ecc65c9b
DW
848 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
849 if (sh->check_state == check_state_compute_run)
850 sh->check_state = check_state_compute_result;
91c00924
DW
851 set_bit(STRIPE_HANDLE, &sh->state);
852 release_stripe(sh);
853}
854
d6f38f31
DW
855/* return a pointer to the address conversion region of the scribble buffer */
856static addr_conv_t *to_addr_conv(struct stripe_head *sh,
857 struct raid5_percpu *percpu)
858{
859 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
860}
861
862static struct dma_async_tx_descriptor *
863ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 864{
91c00924 865 int disks = sh->disks;
d6f38f31 866 struct page **xor_srcs = percpu->scribble;
91c00924
DW
867 int target = sh->ops.target;
868 struct r5dev *tgt = &sh->dev[target];
869 struct page *xor_dest = tgt->page;
870 int count = 0;
871 struct dma_async_tx_descriptor *tx;
a08abd8c 872 struct async_submit_ctl submit;
91c00924
DW
873 int i;
874
875 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 876 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
877 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
878
879 for (i = disks; i--; )
880 if (i != target)
881 xor_srcs[count++] = sh->dev[i].page;
882
883 atomic_inc(&sh->count);
884
0403e382 885 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
ac6b53b6 886 ops_complete_compute, sh, to_addr_conv(sh, percpu));
91c00924 887 if (unlikely(count == 1))
a08abd8c 888 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 889 else
a08abd8c 890 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 891
91c00924
DW
892 return tx;
893}
894
ac6b53b6
DW
895/* set_syndrome_sources - populate source buffers for gen_syndrome
896 * @srcs - (struct page *) array of size sh->disks
897 * @sh - stripe_head to parse
898 *
899 * Populates srcs in proper layout order for the stripe and returns the
900 * 'count' of sources to be used in a call to async_gen_syndrome. The P
901 * destination buffer is recorded in srcs[count] and the Q destination
902 * is recorded in srcs[count+1]].
903 */
904static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
905{
906 int disks = sh->disks;
907 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
908 int d0_idx = raid6_d0(sh);
909 int count;
910 int i;
911
912 for (i = 0; i < disks; i++)
5dd33c9a 913 srcs[i] = NULL;
ac6b53b6
DW
914
915 count = 0;
916 i = d0_idx;
917 do {
918 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
919
920 srcs[slot] = sh->dev[i].page;
921 i = raid6_next_disk(i, disks);
922 } while (i != d0_idx);
ac6b53b6 923
e4424fee 924 return syndrome_disks;
ac6b53b6
DW
925}
926
927static struct dma_async_tx_descriptor *
928ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
929{
930 int disks = sh->disks;
931 struct page **blocks = percpu->scribble;
932 int target;
933 int qd_idx = sh->qd_idx;
934 struct dma_async_tx_descriptor *tx;
935 struct async_submit_ctl submit;
936 struct r5dev *tgt;
937 struct page *dest;
938 int i;
939 int count;
940
941 if (sh->ops.target < 0)
942 target = sh->ops.target2;
943 else if (sh->ops.target2 < 0)
944 target = sh->ops.target;
91c00924 945 else
ac6b53b6
DW
946 /* we should only have one valid target */
947 BUG();
948 BUG_ON(target < 0);
949 pr_debug("%s: stripe %llu block: %d\n",
950 __func__, (unsigned long long)sh->sector, target);
951
952 tgt = &sh->dev[target];
953 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
954 dest = tgt->page;
955
956 atomic_inc(&sh->count);
957
958 if (target == qd_idx) {
959 count = set_syndrome_sources(blocks, sh);
960 blocks[count] = NULL; /* regenerating p is not necessary */
961 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
962 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
963 ops_complete_compute, sh,
ac6b53b6
DW
964 to_addr_conv(sh, percpu));
965 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
966 } else {
967 /* Compute any data- or p-drive using XOR */
968 count = 0;
969 for (i = disks; i-- ; ) {
970 if (i == target || i == qd_idx)
971 continue;
972 blocks[count++] = sh->dev[i].page;
973 }
974
0403e382
DW
975 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
976 NULL, ops_complete_compute, sh,
ac6b53b6
DW
977 to_addr_conv(sh, percpu));
978 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
979 }
91c00924 980
91c00924
DW
981 return tx;
982}
983
ac6b53b6
DW
984static struct dma_async_tx_descriptor *
985ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
986{
987 int i, count, disks = sh->disks;
988 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
989 int d0_idx = raid6_d0(sh);
990 int faila = -1, failb = -1;
991 int target = sh->ops.target;
992 int target2 = sh->ops.target2;
993 struct r5dev *tgt = &sh->dev[target];
994 struct r5dev *tgt2 = &sh->dev[target2];
995 struct dma_async_tx_descriptor *tx;
996 struct page **blocks = percpu->scribble;
997 struct async_submit_ctl submit;
998
999 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1000 __func__, (unsigned long long)sh->sector, target, target2);
1001 BUG_ON(target < 0 || target2 < 0);
1002 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1003 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1004
6c910a78 1005 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1006 * slot number conversion for 'faila' and 'failb'
1007 */
1008 for (i = 0; i < disks ; i++)
5dd33c9a 1009 blocks[i] = NULL;
ac6b53b6
DW
1010 count = 0;
1011 i = d0_idx;
1012 do {
1013 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1014
1015 blocks[slot] = sh->dev[i].page;
1016
1017 if (i == target)
1018 faila = slot;
1019 if (i == target2)
1020 failb = slot;
1021 i = raid6_next_disk(i, disks);
1022 } while (i != d0_idx);
ac6b53b6
DW
1023
1024 BUG_ON(faila == failb);
1025 if (failb < faila)
1026 swap(faila, failb);
1027 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1028 __func__, (unsigned long long)sh->sector, faila, failb);
1029
1030 atomic_inc(&sh->count);
1031
1032 if (failb == syndrome_disks+1) {
1033 /* Q disk is one of the missing disks */
1034 if (faila == syndrome_disks) {
1035 /* Missing P+Q, just recompute */
0403e382
DW
1036 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1037 ops_complete_compute, sh,
1038 to_addr_conv(sh, percpu));
e4424fee 1039 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1040 STRIPE_SIZE, &submit);
1041 } else {
1042 struct page *dest;
1043 int data_target;
1044 int qd_idx = sh->qd_idx;
1045
1046 /* Missing D+Q: recompute D from P, then recompute Q */
1047 if (target == qd_idx)
1048 data_target = target2;
1049 else
1050 data_target = target;
1051
1052 count = 0;
1053 for (i = disks; i-- ; ) {
1054 if (i == data_target || i == qd_idx)
1055 continue;
1056 blocks[count++] = sh->dev[i].page;
1057 }
1058 dest = sh->dev[data_target].page;
0403e382
DW
1059 init_async_submit(&submit,
1060 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1061 NULL, NULL, NULL,
1062 to_addr_conv(sh, percpu));
ac6b53b6
DW
1063 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1064 &submit);
1065
1066 count = set_syndrome_sources(blocks, sh);
0403e382
DW
1067 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1068 ops_complete_compute, sh,
1069 to_addr_conv(sh, percpu));
ac6b53b6
DW
1070 return async_gen_syndrome(blocks, 0, count+2,
1071 STRIPE_SIZE, &submit);
1072 }
ac6b53b6 1073 } else {
6c910a78
DW
1074 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1075 ops_complete_compute, sh,
1076 to_addr_conv(sh, percpu));
1077 if (failb == syndrome_disks) {
1078 /* We're missing D+P. */
1079 return async_raid6_datap_recov(syndrome_disks+2,
1080 STRIPE_SIZE, faila,
1081 blocks, &submit);
1082 } else {
1083 /* We're missing D+D. */
1084 return async_raid6_2data_recov(syndrome_disks+2,
1085 STRIPE_SIZE, faila, failb,
1086 blocks, &submit);
1087 }
ac6b53b6
DW
1088 }
1089}
1090
1091
91c00924
DW
1092static void ops_complete_prexor(void *stripe_head_ref)
1093{
1094 struct stripe_head *sh = stripe_head_ref;
1095
e46b272b 1096 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1097 (unsigned long long)sh->sector);
91c00924
DW
1098}
1099
1100static struct dma_async_tx_descriptor *
d6f38f31
DW
1101ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1102 struct dma_async_tx_descriptor *tx)
91c00924 1103{
91c00924 1104 int disks = sh->disks;
d6f38f31 1105 struct page **xor_srcs = percpu->scribble;
91c00924 1106 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1107 struct async_submit_ctl submit;
91c00924
DW
1108
1109 /* existing parity data subtracted */
1110 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1111
e46b272b 1112 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1113 (unsigned long long)sh->sector);
1114
1115 for (i = disks; i--; ) {
1116 struct r5dev *dev = &sh->dev[i];
1117 /* Only process blocks that are known to be uptodate */
d8ee0728 1118 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1119 xor_srcs[count++] = dev->page;
1120 }
1121
0403e382 1122 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
d6f38f31 1123 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
a08abd8c 1124 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1125
1126 return tx;
1127}
1128
1129static struct dma_async_tx_descriptor *
d8ee0728 1130ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1131{
1132 int disks = sh->disks;
d8ee0728 1133 int i;
91c00924 1134
e46b272b 1135 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1136 (unsigned long long)sh->sector);
1137
1138 for (i = disks; i--; ) {
1139 struct r5dev *dev = &sh->dev[i];
1140 struct bio *chosen;
91c00924 1141
d8ee0728 1142 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
1143 struct bio *wbi;
1144
cbe47ec5 1145 spin_lock_irq(&sh->raid_conf->device_lock);
91c00924
DW
1146 chosen = dev->towrite;
1147 dev->towrite = NULL;
1148 BUG_ON(dev->written);
1149 wbi = dev->written = chosen;
cbe47ec5 1150 spin_unlock_irq(&sh->raid_conf->device_lock);
91c00924
DW
1151
1152 while (wbi && wbi->bi_sector <
1153 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1154 if (wbi->bi_rw & REQ_FUA)
1155 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1156 if (wbi->bi_rw & REQ_SYNC)
1157 set_bit(R5_SyncIO, &dev->flags);
91c00924
DW
1158 tx = async_copy_data(1, wbi, dev->page,
1159 dev->sector, tx);
1160 wbi = r5_next_bio(wbi, dev->sector);
1161 }
1162 }
1163 }
1164
1165 return tx;
1166}
1167
ac6b53b6 1168static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1169{
1170 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1171 int disks = sh->disks;
1172 int pd_idx = sh->pd_idx;
1173 int qd_idx = sh->qd_idx;
1174 int i;
bc0934f0 1175 bool fua = false, sync = false;
91c00924 1176
e46b272b 1177 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1178 (unsigned long long)sh->sector);
1179
bc0934f0 1180 for (i = disks; i--; ) {
e9c7469b 1181 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0
SL
1182 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1183 }
e9c7469b 1184
91c00924
DW
1185 for (i = disks; i--; ) {
1186 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1187
e9c7469b 1188 if (dev->written || i == pd_idx || i == qd_idx) {
91c00924 1189 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1190 if (fua)
1191 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1192 if (sync)
1193 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1194 }
91c00924
DW
1195 }
1196
d8ee0728
DW
1197 if (sh->reconstruct_state == reconstruct_state_drain_run)
1198 sh->reconstruct_state = reconstruct_state_drain_result;
1199 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1200 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1201 else {
1202 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1203 sh->reconstruct_state = reconstruct_state_result;
1204 }
91c00924
DW
1205
1206 set_bit(STRIPE_HANDLE, &sh->state);
1207 release_stripe(sh);
1208}
1209
1210static void
ac6b53b6
DW
1211ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1212 struct dma_async_tx_descriptor *tx)
91c00924 1213{
91c00924 1214 int disks = sh->disks;
d6f38f31 1215 struct page **xor_srcs = percpu->scribble;
a08abd8c 1216 struct async_submit_ctl submit;
91c00924
DW
1217 int count = 0, pd_idx = sh->pd_idx, i;
1218 struct page *xor_dest;
d8ee0728 1219 int prexor = 0;
91c00924 1220 unsigned long flags;
91c00924 1221
e46b272b 1222 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1223 (unsigned long long)sh->sector);
1224
1225 /* check if prexor is active which means only process blocks
1226 * that are part of a read-modify-write (written)
1227 */
d8ee0728
DW
1228 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1229 prexor = 1;
91c00924
DW
1230 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1231 for (i = disks; i--; ) {
1232 struct r5dev *dev = &sh->dev[i];
1233 if (dev->written)
1234 xor_srcs[count++] = dev->page;
1235 }
1236 } else {
1237 xor_dest = sh->dev[pd_idx].page;
1238 for (i = disks; i--; ) {
1239 struct r5dev *dev = &sh->dev[i];
1240 if (i != pd_idx)
1241 xor_srcs[count++] = dev->page;
1242 }
1243 }
1244
91c00924
DW
1245 /* 1/ if we prexor'd then the dest is reused as a source
1246 * 2/ if we did not prexor then we are redoing the parity
1247 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1248 * for the synchronous xor case
1249 */
88ba2aa5 1250 flags = ASYNC_TX_ACK |
91c00924
DW
1251 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1252
1253 atomic_inc(&sh->count);
1254
ac6b53b6 1255 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
d6f38f31 1256 to_addr_conv(sh, percpu));
a08abd8c
DW
1257 if (unlikely(count == 1))
1258 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1259 else
1260 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1261}
1262
ac6b53b6
DW
1263static void
1264ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1265 struct dma_async_tx_descriptor *tx)
1266{
1267 struct async_submit_ctl submit;
1268 struct page **blocks = percpu->scribble;
1269 int count;
1270
1271 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1272
1273 count = set_syndrome_sources(blocks, sh);
1274
1275 atomic_inc(&sh->count);
1276
1277 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1278 sh, to_addr_conv(sh, percpu));
1279 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
91c00924
DW
1280}
1281
1282static void ops_complete_check(void *stripe_head_ref)
1283{
1284 struct stripe_head *sh = stripe_head_ref;
91c00924 1285
e46b272b 1286 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1287 (unsigned long long)sh->sector);
1288
ecc65c9b 1289 sh->check_state = check_state_check_result;
91c00924
DW
1290 set_bit(STRIPE_HANDLE, &sh->state);
1291 release_stripe(sh);
1292}
1293
ac6b53b6 1294static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1295{
91c00924 1296 int disks = sh->disks;
ac6b53b6
DW
1297 int pd_idx = sh->pd_idx;
1298 int qd_idx = sh->qd_idx;
1299 struct page *xor_dest;
d6f38f31 1300 struct page **xor_srcs = percpu->scribble;
91c00924 1301 struct dma_async_tx_descriptor *tx;
a08abd8c 1302 struct async_submit_ctl submit;
ac6b53b6
DW
1303 int count;
1304 int i;
91c00924 1305
e46b272b 1306 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1307 (unsigned long long)sh->sector);
1308
ac6b53b6
DW
1309 count = 0;
1310 xor_dest = sh->dev[pd_idx].page;
1311 xor_srcs[count++] = xor_dest;
91c00924 1312 for (i = disks; i--; ) {
ac6b53b6
DW
1313 if (i == pd_idx || i == qd_idx)
1314 continue;
1315 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1316 }
1317
d6f38f31
DW
1318 init_async_submit(&submit, 0, NULL, NULL, NULL,
1319 to_addr_conv(sh, percpu));
099f53cb 1320 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1321 &sh->ops.zero_sum_result, &submit);
91c00924 1322
91c00924 1323 atomic_inc(&sh->count);
a08abd8c
DW
1324 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1325 tx = async_trigger_callback(&submit);
91c00924
DW
1326}
1327
ac6b53b6
DW
1328static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1329{
1330 struct page **srcs = percpu->scribble;
1331 struct async_submit_ctl submit;
1332 int count;
1333
1334 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1335 (unsigned long long)sh->sector, checkp);
1336
1337 count = set_syndrome_sources(srcs, sh);
1338 if (!checkp)
1339 srcs[count] = NULL;
91c00924 1340
91c00924 1341 atomic_inc(&sh->count);
ac6b53b6
DW
1342 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1343 sh, to_addr_conv(sh, percpu));
1344 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1345 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1346}
1347
417b8d4a 1348static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1349{
1350 int overlap_clear = 0, i, disks = sh->disks;
1351 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1352 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1353 int level = conf->level;
d6f38f31
DW
1354 struct raid5_percpu *percpu;
1355 unsigned long cpu;
91c00924 1356
d6f38f31
DW
1357 cpu = get_cpu();
1358 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1359 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1360 ops_run_biofill(sh);
1361 overlap_clear++;
1362 }
1363
7b3a871e 1364 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1365 if (level < 6)
1366 tx = ops_run_compute5(sh, percpu);
1367 else {
1368 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1369 tx = ops_run_compute6_1(sh, percpu);
1370 else
1371 tx = ops_run_compute6_2(sh, percpu);
1372 }
1373 /* terminate the chain if reconstruct is not set to be run */
1374 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1375 async_tx_ack(tx);
1376 }
91c00924 1377
600aa109 1378 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 1379 tx = ops_run_prexor(sh, percpu, tx);
91c00924 1380
600aa109 1381 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1382 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1383 overlap_clear++;
1384 }
1385
ac6b53b6
DW
1386 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1387 if (level < 6)
1388 ops_run_reconstruct5(sh, percpu, tx);
1389 else
1390 ops_run_reconstruct6(sh, percpu, tx);
1391 }
91c00924 1392
ac6b53b6
DW
1393 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1394 if (sh->check_state == check_state_run)
1395 ops_run_check_p(sh, percpu);
1396 else if (sh->check_state == check_state_run_q)
1397 ops_run_check_pq(sh, percpu, 0);
1398 else if (sh->check_state == check_state_run_pq)
1399 ops_run_check_pq(sh, percpu, 1);
1400 else
1401 BUG();
1402 }
91c00924 1403
91c00924
DW
1404 if (overlap_clear)
1405 for (i = disks; i--; ) {
1406 struct r5dev *dev = &sh->dev[i];
1407 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1408 wake_up(&sh->raid_conf->wait_for_overlap);
1409 }
d6f38f31 1410 put_cpu();
91c00924
DW
1411}
1412
417b8d4a
DW
1413#ifdef CONFIG_MULTICORE_RAID456
1414static void async_run_ops(void *param, async_cookie_t cookie)
1415{
1416 struct stripe_head *sh = param;
1417 unsigned long ops_request = sh->ops.request;
1418
1419 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1420 wake_up(&sh->ops.wait_for_ops);
1421
1422 __raid_run_ops(sh, ops_request);
1423 release_stripe(sh);
1424}
1425
1426static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1427{
1428 /* since handle_stripe can be called outside of raid5d context
1429 * we need to ensure sh->ops.request is de-staged before another
1430 * request arrives
1431 */
1432 wait_event(sh->ops.wait_for_ops,
1433 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1434 sh->ops.request = ops_request;
1435
1436 atomic_inc(&sh->count);
1437 async_schedule(async_run_ops, sh);
1438}
1439#else
1440#define raid_run_ops __raid_run_ops
1441#endif
1442
d1688a6d 1443static int grow_one_stripe(struct r5conf *conf)
1da177e4
LT
1444{
1445 struct stripe_head *sh;
6ce32846 1446 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
3f294f4f
N
1447 if (!sh)
1448 return 0;
6ce32846 1449
3f294f4f 1450 sh->raid_conf = conf;
417b8d4a
DW
1451 #ifdef CONFIG_MULTICORE_RAID456
1452 init_waitqueue_head(&sh->ops.wait_for_ops);
1453 #endif
3f294f4f 1454
e4e11e38
N
1455 if (grow_buffers(sh)) {
1456 shrink_buffers(sh);
3f294f4f
N
1457 kmem_cache_free(conf->slab_cache, sh);
1458 return 0;
1459 }
1460 /* we just created an active stripe so... */
1461 atomic_set(&sh->count, 1);
1462 atomic_inc(&conf->active_stripes);
1463 INIT_LIST_HEAD(&sh->lru);
1464 release_stripe(sh);
1465 return 1;
1466}
1467
d1688a6d 1468static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 1469{
e18b890b 1470 struct kmem_cache *sc;
5e5e3e78 1471 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 1472
f4be6b43
N
1473 if (conf->mddev->gendisk)
1474 sprintf(conf->cache_name[0],
1475 "raid%d-%s", conf->level, mdname(conf->mddev));
1476 else
1477 sprintf(conf->cache_name[0],
1478 "raid%d-%p", conf->level, conf->mddev);
1479 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1480
ad01c9e3
N
1481 conf->active_name = 0;
1482 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 1483 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 1484 0, 0, NULL);
1da177e4
LT
1485 if (!sc)
1486 return 1;
1487 conf->slab_cache = sc;
ad01c9e3 1488 conf->pool_size = devs;
16a53ecc 1489 while (num--)
3f294f4f 1490 if (!grow_one_stripe(conf))
1da177e4 1491 return 1;
1da177e4
LT
1492 return 0;
1493}
29269553 1494
d6f38f31
DW
1495/**
1496 * scribble_len - return the required size of the scribble region
1497 * @num - total number of disks in the array
1498 *
1499 * The size must be enough to contain:
1500 * 1/ a struct page pointer for each device in the array +2
1501 * 2/ room to convert each entry in (1) to its corresponding dma
1502 * (dma_map_page()) or page (page_address()) address.
1503 *
1504 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1505 * calculate over all devices (not just the data blocks), using zeros in place
1506 * of the P and Q blocks.
1507 */
1508static size_t scribble_len(int num)
1509{
1510 size_t len;
1511
1512 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1513
1514 return len;
1515}
1516
d1688a6d 1517static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
1518{
1519 /* Make all the stripes able to hold 'newsize' devices.
1520 * New slots in each stripe get 'page' set to a new page.
1521 *
1522 * This happens in stages:
1523 * 1/ create a new kmem_cache and allocate the required number of
1524 * stripe_heads.
1525 * 2/ gather all the old stripe_heads and tranfer the pages across
1526 * to the new stripe_heads. This will have the side effect of
1527 * freezing the array as once all stripe_heads have been collected,
1528 * no IO will be possible. Old stripe heads are freed once their
1529 * pages have been transferred over, and the old kmem_cache is
1530 * freed when all stripes are done.
1531 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1532 * we simple return a failre status - no need to clean anything up.
1533 * 4/ allocate new pages for the new slots in the new stripe_heads.
1534 * If this fails, we don't bother trying the shrink the
1535 * stripe_heads down again, we just leave them as they are.
1536 * As each stripe_head is processed the new one is released into
1537 * active service.
1538 *
1539 * Once step2 is started, we cannot afford to wait for a write,
1540 * so we use GFP_NOIO allocations.
1541 */
1542 struct stripe_head *osh, *nsh;
1543 LIST_HEAD(newstripes);
1544 struct disk_info *ndisks;
d6f38f31 1545 unsigned long cpu;
b5470dc5 1546 int err;
e18b890b 1547 struct kmem_cache *sc;
ad01c9e3
N
1548 int i;
1549
1550 if (newsize <= conf->pool_size)
1551 return 0; /* never bother to shrink */
1552
b5470dc5
DW
1553 err = md_allow_write(conf->mddev);
1554 if (err)
1555 return err;
2a2275d6 1556
ad01c9e3
N
1557 /* Step 1 */
1558 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1559 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1560 0, 0, NULL);
ad01c9e3
N
1561 if (!sc)
1562 return -ENOMEM;
1563
1564 for (i = conf->max_nr_stripes; i; i--) {
6ce32846 1565 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
ad01c9e3
N
1566 if (!nsh)
1567 break;
1568
ad01c9e3 1569 nsh->raid_conf = conf;
417b8d4a
DW
1570 #ifdef CONFIG_MULTICORE_RAID456
1571 init_waitqueue_head(&nsh->ops.wait_for_ops);
1572 #endif
ad01c9e3
N
1573
1574 list_add(&nsh->lru, &newstripes);
1575 }
1576 if (i) {
1577 /* didn't get enough, give up */
1578 while (!list_empty(&newstripes)) {
1579 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1580 list_del(&nsh->lru);
1581 kmem_cache_free(sc, nsh);
1582 }
1583 kmem_cache_destroy(sc);
1584 return -ENOMEM;
1585 }
1586 /* Step 2 - Must use GFP_NOIO now.
1587 * OK, we have enough stripes, start collecting inactive
1588 * stripes and copying them over
1589 */
1590 list_for_each_entry(nsh, &newstripes, lru) {
1591 spin_lock_irq(&conf->device_lock);
1592 wait_event_lock_irq(conf->wait_for_stripe,
1593 !list_empty(&conf->inactive_list),
1594 conf->device_lock,
482c0834 1595 );
ad01c9e3
N
1596 osh = get_free_stripe(conf);
1597 spin_unlock_irq(&conf->device_lock);
1598 atomic_set(&nsh->count, 1);
1599 for(i=0; i<conf->pool_size; i++)
1600 nsh->dev[i].page = osh->dev[i].page;
1601 for( ; i<newsize; i++)
1602 nsh->dev[i].page = NULL;
1603 kmem_cache_free(conf->slab_cache, osh);
1604 }
1605 kmem_cache_destroy(conf->slab_cache);
1606
1607 /* Step 3.
1608 * At this point, we are holding all the stripes so the array
1609 * is completely stalled, so now is a good time to resize
d6f38f31 1610 * conf->disks and the scribble region
ad01c9e3
N
1611 */
1612 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1613 if (ndisks) {
1614 for (i=0; i<conf->raid_disks; i++)
1615 ndisks[i] = conf->disks[i];
1616 kfree(conf->disks);
1617 conf->disks = ndisks;
1618 } else
1619 err = -ENOMEM;
1620
d6f38f31
DW
1621 get_online_cpus();
1622 conf->scribble_len = scribble_len(newsize);
1623 for_each_present_cpu(cpu) {
1624 struct raid5_percpu *percpu;
1625 void *scribble;
1626
1627 percpu = per_cpu_ptr(conf->percpu, cpu);
1628 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1629
1630 if (scribble) {
1631 kfree(percpu->scribble);
1632 percpu->scribble = scribble;
1633 } else {
1634 err = -ENOMEM;
1635 break;
1636 }
1637 }
1638 put_online_cpus();
1639
ad01c9e3
N
1640 /* Step 4, return new stripes to service */
1641 while(!list_empty(&newstripes)) {
1642 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1643 list_del_init(&nsh->lru);
d6f38f31 1644
ad01c9e3
N
1645 for (i=conf->raid_disks; i < newsize; i++)
1646 if (nsh->dev[i].page == NULL) {
1647 struct page *p = alloc_page(GFP_NOIO);
1648 nsh->dev[i].page = p;
1649 if (!p)
1650 err = -ENOMEM;
1651 }
1652 release_stripe(nsh);
1653 }
1654 /* critical section pass, GFP_NOIO no longer needed */
1655
1656 conf->slab_cache = sc;
1657 conf->active_name = 1-conf->active_name;
1658 conf->pool_size = newsize;
1659 return err;
1660}
1da177e4 1661
d1688a6d 1662static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
1663{
1664 struct stripe_head *sh;
1665
3f294f4f
N
1666 spin_lock_irq(&conf->device_lock);
1667 sh = get_free_stripe(conf);
1668 spin_unlock_irq(&conf->device_lock);
1669 if (!sh)
1670 return 0;
78bafebd 1671 BUG_ON(atomic_read(&sh->count));
e4e11e38 1672 shrink_buffers(sh);
3f294f4f
N
1673 kmem_cache_free(conf->slab_cache, sh);
1674 atomic_dec(&conf->active_stripes);
1675 return 1;
1676}
1677
d1688a6d 1678static void shrink_stripes(struct r5conf *conf)
3f294f4f
N
1679{
1680 while (drop_one_stripe(conf))
1681 ;
1682
29fc7e3e
N
1683 if (conf->slab_cache)
1684 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1685 conf->slab_cache = NULL;
1686}
1687
6712ecf8 1688static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1689{
99c0fb5f 1690 struct stripe_head *sh = bi->bi_private;
d1688a6d 1691 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 1692 int disks = sh->disks, i;
1da177e4 1693 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432 1694 char b[BDEVNAME_SIZE];
dd054fce 1695 struct md_rdev *rdev = NULL;
05616be5 1696 sector_t s;
1da177e4
LT
1697
1698 for (i=0 ; i<disks; i++)
1699 if (bi == &sh->dev[i].req)
1700 break;
1701
45b4233c
DW
1702 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1703 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1704 uptodate);
1705 if (i == disks) {
1706 BUG();
6712ecf8 1707 return;
1da177e4 1708 }
14a75d3e 1709 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
1710 /* If replacement finished while this request was outstanding,
1711 * 'replacement' might be NULL already.
1712 * In that case it moved down to 'rdev'.
1713 * rdev is not removed until all requests are finished.
1714 */
14a75d3e 1715 rdev = conf->disks[i].replacement;
dd054fce 1716 if (!rdev)
14a75d3e 1717 rdev = conf->disks[i].rdev;
1da177e4 1718
05616be5
N
1719 if (use_new_offset(conf, sh))
1720 s = sh->sector + rdev->new_data_offset;
1721 else
1722 s = sh->sector + rdev->data_offset;
1da177e4 1723 if (uptodate) {
1da177e4 1724 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1725 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
1726 /* Note that this cannot happen on a
1727 * replacement device. We just fail those on
1728 * any error
1729 */
8bda470e
CD
1730 printk_ratelimited(
1731 KERN_INFO
1732 "md/raid:%s: read error corrected"
1733 " (%lu sectors at %llu on %s)\n",
1734 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 1735 (unsigned long long)s,
8bda470e 1736 bdevname(rdev->bdev, b));
ddd5115f 1737 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
1738 clear_bit(R5_ReadError, &sh->dev[i].flags);
1739 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1740 }
14a75d3e
N
1741 if (atomic_read(&rdev->read_errors))
1742 atomic_set(&rdev->read_errors, 0);
1da177e4 1743 } else {
14a75d3e 1744 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 1745 int retry = 0;
d6950432 1746
1da177e4 1747 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1748 atomic_inc(&rdev->read_errors);
14a75d3e
N
1749 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1750 printk_ratelimited(
1751 KERN_WARNING
1752 "md/raid:%s: read error on replacement device "
1753 "(sector %llu on %s).\n",
1754 mdname(conf->mddev),
05616be5 1755 (unsigned long long)s,
14a75d3e
N
1756 bdn);
1757 else if (conf->mddev->degraded >= conf->max_degraded)
8bda470e
CD
1758 printk_ratelimited(
1759 KERN_WARNING
1760 "md/raid:%s: read error not correctable "
1761 "(sector %llu on %s).\n",
1762 mdname(conf->mddev),
05616be5 1763 (unsigned long long)s,
8bda470e 1764 bdn);
ba22dcbf 1765 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1766 /* Oh, no!!! */
8bda470e
CD
1767 printk_ratelimited(
1768 KERN_WARNING
1769 "md/raid:%s: read error NOT corrected!! "
1770 "(sector %llu on %s).\n",
1771 mdname(conf->mddev),
05616be5 1772 (unsigned long long)s,
8bda470e 1773 bdn);
d6950432 1774 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1775 > conf->max_nr_stripes)
14f8d26b 1776 printk(KERN_WARNING
0c55e022 1777 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 1778 mdname(conf->mddev), bdn);
ba22dcbf
N
1779 else
1780 retry = 1;
1781 if (retry)
1782 set_bit(R5_ReadError, &sh->dev[i].flags);
1783 else {
4e5314b5
N
1784 clear_bit(R5_ReadError, &sh->dev[i].flags);
1785 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1786 md_error(conf->mddev, rdev);
ba22dcbf 1787 }
1da177e4 1788 }
14a75d3e 1789 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
1790 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1791 set_bit(STRIPE_HANDLE, &sh->state);
1792 release_stripe(sh);
1da177e4
LT
1793}
1794
d710e138 1795static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1796{
99c0fb5f 1797 struct stripe_head *sh = bi->bi_private;
d1688a6d 1798 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 1799 int disks = sh->disks, i;
977df362 1800 struct md_rdev *uninitialized_var(rdev);
1da177e4 1801 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
b84db560
N
1802 sector_t first_bad;
1803 int bad_sectors;
977df362 1804 int replacement = 0;
1da177e4 1805
977df362
N
1806 for (i = 0 ; i < disks; i++) {
1807 if (bi == &sh->dev[i].req) {
1808 rdev = conf->disks[i].rdev;
1da177e4 1809 break;
977df362
N
1810 }
1811 if (bi == &sh->dev[i].rreq) {
1812 rdev = conf->disks[i].replacement;
dd054fce
N
1813 if (rdev)
1814 replacement = 1;
1815 else
1816 /* rdev was removed and 'replacement'
1817 * replaced it. rdev is not removed
1818 * until all requests are finished.
1819 */
1820 rdev = conf->disks[i].rdev;
977df362
N
1821 break;
1822 }
1823 }
45b4233c 1824 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1825 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1826 uptodate);
1827 if (i == disks) {
1828 BUG();
6712ecf8 1829 return;
1da177e4
LT
1830 }
1831
977df362
N
1832 if (replacement) {
1833 if (!uptodate)
1834 md_error(conf->mddev, rdev);
1835 else if (is_badblock(rdev, sh->sector,
1836 STRIPE_SECTORS,
1837 &first_bad, &bad_sectors))
1838 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1839 } else {
1840 if (!uptodate) {
1841 set_bit(WriteErrorSeen, &rdev->flags);
1842 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
1843 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1844 set_bit(MD_RECOVERY_NEEDED,
1845 &rdev->mddev->recovery);
977df362
N
1846 } else if (is_badblock(rdev, sh->sector,
1847 STRIPE_SECTORS,
1848 &first_bad, &bad_sectors))
1849 set_bit(R5_MadeGood, &sh->dev[i].flags);
1850 }
1851 rdev_dec_pending(rdev, conf->mddev);
1da177e4 1852
977df362
N
1853 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1854 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 1855 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1856 release_stripe(sh);
1da177e4
LT
1857}
1858
784052ec 1859static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 1860
784052ec 1861static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1862{
1863 struct r5dev *dev = &sh->dev[i];
1864
1865 bio_init(&dev->req);
1866 dev->req.bi_io_vec = &dev->vec;
1867 dev->req.bi_vcnt++;
1868 dev->req.bi_max_vecs++;
1da177e4 1869 dev->req.bi_private = sh;
995c4275 1870 dev->vec.bv_page = dev->page;
1da177e4 1871
977df362
N
1872 bio_init(&dev->rreq);
1873 dev->rreq.bi_io_vec = &dev->rvec;
1874 dev->rreq.bi_vcnt++;
1875 dev->rreq.bi_max_vecs++;
1876 dev->rreq.bi_private = sh;
1877 dev->rvec.bv_page = dev->page;
1878
1da177e4 1879 dev->flags = 0;
784052ec 1880 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
1881}
1882
fd01b88c 1883static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1884{
1885 char b[BDEVNAME_SIZE];
d1688a6d 1886 struct r5conf *conf = mddev->private;
908f4fbd 1887 unsigned long flags;
0c55e022 1888 pr_debug("raid456: error called\n");
1da177e4 1889
908f4fbd
N
1890 spin_lock_irqsave(&conf->device_lock, flags);
1891 clear_bit(In_sync, &rdev->flags);
1892 mddev->degraded = calc_degraded(conf);
1893 spin_unlock_irqrestore(&conf->device_lock, flags);
1894 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1895
de393cde 1896 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
1897 set_bit(Faulty, &rdev->flags);
1898 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1899 printk(KERN_ALERT
1900 "md/raid:%s: Disk failure on %s, disabling device.\n"
1901 "md/raid:%s: Operation continuing on %d devices.\n",
1902 mdname(mddev),
1903 bdevname(rdev->bdev, b),
1904 mdname(mddev),
1905 conf->raid_disks - mddev->degraded);
16a53ecc 1906}
1da177e4
LT
1907
1908/*
1909 * Input: a 'big' sector number,
1910 * Output: index of the data and parity disk, and the sector # in them.
1911 */
d1688a6d 1912static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
911d4ee8
N
1913 int previous, int *dd_idx,
1914 struct stripe_head *sh)
1da177e4 1915{
6e3b96ed 1916 sector_t stripe, stripe2;
35f2a591 1917 sector_t chunk_number;
1da177e4 1918 unsigned int chunk_offset;
911d4ee8 1919 int pd_idx, qd_idx;
67cc2b81 1920 int ddf_layout = 0;
1da177e4 1921 sector_t new_sector;
e183eaed
N
1922 int algorithm = previous ? conf->prev_algo
1923 : conf->algorithm;
09c9e5fa
AN
1924 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1925 : conf->chunk_sectors;
112bf897
N
1926 int raid_disks = previous ? conf->previous_raid_disks
1927 : conf->raid_disks;
1928 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1929
1930 /* First compute the information on this sector */
1931
1932 /*
1933 * Compute the chunk number and the sector offset inside the chunk
1934 */
1935 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1936 chunk_number = r_sector;
1da177e4
LT
1937
1938 /*
1939 * Compute the stripe number
1940 */
35f2a591
N
1941 stripe = chunk_number;
1942 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 1943 stripe2 = stripe;
1da177e4
LT
1944 /*
1945 * Select the parity disk based on the user selected algorithm.
1946 */
84789554 1947 pd_idx = qd_idx = -1;
16a53ecc
N
1948 switch(conf->level) {
1949 case 4:
911d4ee8 1950 pd_idx = data_disks;
16a53ecc
N
1951 break;
1952 case 5:
e183eaed 1953 switch (algorithm) {
1da177e4 1954 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1955 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1956 if (*dd_idx >= pd_idx)
1da177e4
LT
1957 (*dd_idx)++;
1958 break;
1959 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1960 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1961 if (*dd_idx >= pd_idx)
1da177e4
LT
1962 (*dd_idx)++;
1963 break;
1964 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1965 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1966 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
1967 break;
1968 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1969 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1970 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 1971 break;
99c0fb5f
N
1972 case ALGORITHM_PARITY_0:
1973 pd_idx = 0;
1974 (*dd_idx)++;
1975 break;
1976 case ALGORITHM_PARITY_N:
1977 pd_idx = data_disks;
1978 break;
1da177e4 1979 default:
99c0fb5f 1980 BUG();
16a53ecc
N
1981 }
1982 break;
1983 case 6:
1984
e183eaed 1985 switch (algorithm) {
16a53ecc 1986 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1987 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1988 qd_idx = pd_idx + 1;
1989 if (pd_idx == raid_disks-1) {
99c0fb5f 1990 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1991 qd_idx = 0;
1992 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1993 (*dd_idx) += 2; /* D D P Q D */
1994 break;
1995 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1996 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1997 qd_idx = pd_idx + 1;
1998 if (pd_idx == raid_disks-1) {
99c0fb5f 1999 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2000 qd_idx = 0;
2001 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2002 (*dd_idx) += 2; /* D D P Q D */
2003 break;
2004 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2005 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2006 qd_idx = (pd_idx + 1) % raid_disks;
2007 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2008 break;
2009 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2010 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2011 qd_idx = (pd_idx + 1) % raid_disks;
2012 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2013 break;
99c0fb5f
N
2014
2015 case ALGORITHM_PARITY_0:
2016 pd_idx = 0;
2017 qd_idx = 1;
2018 (*dd_idx) += 2;
2019 break;
2020 case ALGORITHM_PARITY_N:
2021 pd_idx = data_disks;
2022 qd_idx = data_disks + 1;
2023 break;
2024
2025 case ALGORITHM_ROTATING_ZERO_RESTART:
2026 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2027 * of blocks for computing Q is different.
2028 */
6e3b96ed 2029 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2030 qd_idx = pd_idx + 1;
2031 if (pd_idx == raid_disks-1) {
2032 (*dd_idx)++; /* Q D D D P */
2033 qd_idx = 0;
2034 } else if (*dd_idx >= pd_idx)
2035 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2036 ddf_layout = 1;
99c0fb5f
N
2037 break;
2038
2039 case ALGORITHM_ROTATING_N_RESTART:
2040 /* Same a left_asymmetric, by first stripe is
2041 * D D D P Q rather than
2042 * Q D D D P
2043 */
6e3b96ed
N
2044 stripe2 += 1;
2045 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2046 qd_idx = pd_idx + 1;
2047 if (pd_idx == raid_disks-1) {
2048 (*dd_idx)++; /* Q D D D P */
2049 qd_idx = 0;
2050 } else if (*dd_idx >= pd_idx)
2051 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2052 ddf_layout = 1;
99c0fb5f
N
2053 break;
2054
2055 case ALGORITHM_ROTATING_N_CONTINUE:
2056 /* Same as left_symmetric but Q is before P */
6e3b96ed 2057 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2058 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2059 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2060 ddf_layout = 1;
99c0fb5f
N
2061 break;
2062
2063 case ALGORITHM_LEFT_ASYMMETRIC_6:
2064 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2065 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2066 if (*dd_idx >= pd_idx)
2067 (*dd_idx)++;
2068 qd_idx = raid_disks - 1;
2069 break;
2070
2071 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2072 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2073 if (*dd_idx >= pd_idx)
2074 (*dd_idx)++;
2075 qd_idx = raid_disks - 1;
2076 break;
2077
2078 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2079 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2080 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2081 qd_idx = raid_disks - 1;
2082 break;
2083
2084 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2085 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2086 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2087 qd_idx = raid_disks - 1;
2088 break;
2089
2090 case ALGORITHM_PARITY_0_6:
2091 pd_idx = 0;
2092 (*dd_idx)++;
2093 qd_idx = raid_disks - 1;
2094 break;
2095
16a53ecc 2096 default:
99c0fb5f 2097 BUG();
16a53ecc
N
2098 }
2099 break;
1da177e4
LT
2100 }
2101
911d4ee8
N
2102 if (sh) {
2103 sh->pd_idx = pd_idx;
2104 sh->qd_idx = qd_idx;
67cc2b81 2105 sh->ddf_layout = ddf_layout;
911d4ee8 2106 }
1da177e4
LT
2107 /*
2108 * Finally, compute the new sector number
2109 */
2110 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2111 return new_sector;
2112}
2113
2114
784052ec 2115static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2116{
d1688a6d 2117 struct r5conf *conf = sh->raid_conf;
b875e531
N
2118 int raid_disks = sh->disks;
2119 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2120 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2121 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2122 : conf->chunk_sectors;
e183eaed
N
2123 int algorithm = previous ? conf->prev_algo
2124 : conf->algorithm;
1da177e4
LT
2125 sector_t stripe;
2126 int chunk_offset;
35f2a591
N
2127 sector_t chunk_number;
2128 int dummy1, dd_idx = i;
1da177e4 2129 sector_t r_sector;
911d4ee8 2130 struct stripe_head sh2;
1da177e4 2131
16a53ecc 2132
1da177e4
LT
2133 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2134 stripe = new_sector;
1da177e4 2135
16a53ecc
N
2136 if (i == sh->pd_idx)
2137 return 0;
2138 switch(conf->level) {
2139 case 4: break;
2140 case 5:
e183eaed 2141 switch (algorithm) {
1da177e4
LT
2142 case ALGORITHM_LEFT_ASYMMETRIC:
2143 case ALGORITHM_RIGHT_ASYMMETRIC:
2144 if (i > sh->pd_idx)
2145 i--;
2146 break;
2147 case ALGORITHM_LEFT_SYMMETRIC:
2148 case ALGORITHM_RIGHT_SYMMETRIC:
2149 if (i < sh->pd_idx)
2150 i += raid_disks;
2151 i -= (sh->pd_idx + 1);
2152 break;
99c0fb5f
N
2153 case ALGORITHM_PARITY_0:
2154 i -= 1;
2155 break;
2156 case ALGORITHM_PARITY_N:
2157 break;
1da177e4 2158 default:
99c0fb5f 2159 BUG();
16a53ecc
N
2160 }
2161 break;
2162 case 6:
d0dabf7e 2163 if (i == sh->qd_idx)
16a53ecc 2164 return 0; /* It is the Q disk */
e183eaed 2165 switch (algorithm) {
16a53ecc
N
2166 case ALGORITHM_LEFT_ASYMMETRIC:
2167 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2168 case ALGORITHM_ROTATING_ZERO_RESTART:
2169 case ALGORITHM_ROTATING_N_RESTART:
2170 if (sh->pd_idx == raid_disks-1)
2171 i--; /* Q D D D P */
16a53ecc
N
2172 else if (i > sh->pd_idx)
2173 i -= 2; /* D D P Q D */
2174 break;
2175 case ALGORITHM_LEFT_SYMMETRIC:
2176 case ALGORITHM_RIGHT_SYMMETRIC:
2177 if (sh->pd_idx == raid_disks-1)
2178 i--; /* Q D D D P */
2179 else {
2180 /* D D P Q D */
2181 if (i < sh->pd_idx)
2182 i += raid_disks;
2183 i -= (sh->pd_idx + 2);
2184 }
2185 break;
99c0fb5f
N
2186 case ALGORITHM_PARITY_0:
2187 i -= 2;
2188 break;
2189 case ALGORITHM_PARITY_N:
2190 break;
2191 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2192 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2193 if (sh->pd_idx == 0)
2194 i--; /* P D D D Q */
e4424fee
N
2195 else {
2196 /* D D Q P D */
2197 if (i < sh->pd_idx)
2198 i += raid_disks;
2199 i -= (sh->pd_idx + 1);
2200 }
99c0fb5f
N
2201 break;
2202 case ALGORITHM_LEFT_ASYMMETRIC_6:
2203 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2204 if (i > sh->pd_idx)
2205 i--;
2206 break;
2207 case ALGORITHM_LEFT_SYMMETRIC_6:
2208 case ALGORITHM_RIGHT_SYMMETRIC_6:
2209 if (i < sh->pd_idx)
2210 i += data_disks + 1;
2211 i -= (sh->pd_idx + 1);
2212 break;
2213 case ALGORITHM_PARITY_0_6:
2214 i -= 1;
2215 break;
16a53ecc 2216 default:
99c0fb5f 2217 BUG();
16a53ecc
N
2218 }
2219 break;
1da177e4
LT
2220 }
2221
2222 chunk_number = stripe * data_disks + i;
35f2a591 2223 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2224
112bf897 2225 check = raid5_compute_sector(conf, r_sector,
784052ec 2226 previous, &dummy1, &sh2);
911d4ee8
N
2227 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2228 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2229 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2230 mdname(conf->mddev));
1da177e4
LT
2231 return 0;
2232 }
2233 return r_sector;
2234}
2235
2236
600aa109 2237static void
c0f7bddb 2238schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2239 int rcw, int expand)
e33129d8
DW
2240{
2241 int i, pd_idx = sh->pd_idx, disks = sh->disks;
d1688a6d 2242 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2243 int level = conf->level;
e33129d8
DW
2244
2245 if (rcw) {
2246 /* if we are not expanding this is a proper write request, and
2247 * there will be bios with new data to be drained into the
2248 * stripe cache
2249 */
2250 if (!expand) {
600aa109
DW
2251 sh->reconstruct_state = reconstruct_state_drain_run;
2252 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2253 } else
2254 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 2255
ac6b53b6 2256 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2257
2258 for (i = disks; i--; ) {
2259 struct r5dev *dev = &sh->dev[i];
2260
2261 if (dev->towrite) {
2262 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2263 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2264 if (!expand)
2265 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2266 s->locked++;
e33129d8
DW
2267 }
2268 }
c0f7bddb 2269 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2270 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2271 atomic_inc(&conf->pending_full_writes);
e33129d8 2272 } else {
c0f7bddb 2273 BUG_ON(level == 6);
e33129d8
DW
2274 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2275 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2276
d8ee0728 2277 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
600aa109
DW
2278 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2279 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
ac6b53b6 2280 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2281
2282 for (i = disks; i--; ) {
2283 struct r5dev *dev = &sh->dev[i];
2284 if (i == pd_idx)
2285 continue;
2286
e33129d8
DW
2287 if (dev->towrite &&
2288 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2289 test_bit(R5_Wantcompute, &dev->flags))) {
2290 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2291 set_bit(R5_LOCKED, &dev->flags);
2292 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2293 s->locked++;
e33129d8
DW
2294 }
2295 }
2296 }
2297
c0f7bddb 2298 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2299 * are in flight
2300 */
2301 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2302 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2303 s->locked++;
e33129d8 2304
c0f7bddb
YT
2305 if (level == 6) {
2306 int qd_idx = sh->qd_idx;
2307 struct r5dev *dev = &sh->dev[qd_idx];
2308
2309 set_bit(R5_LOCKED, &dev->flags);
2310 clear_bit(R5_UPTODATE, &dev->flags);
2311 s->locked++;
2312 }
2313
600aa109 2314 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2315 __func__, (unsigned long long)sh->sector,
600aa109 2316 s->locked, s->ops_request);
e33129d8 2317}
16a53ecc 2318
1da177e4
LT
2319/*
2320 * Each stripe/dev can have one or more bion attached.
16a53ecc 2321 * toread/towrite point to the first in a chain.
1da177e4
LT
2322 * The bi_next chain must be in order.
2323 */
2324static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2325{
2326 struct bio **bip;
d1688a6d 2327 struct r5conf *conf = sh->raid_conf;
72626685 2328 int firstwrite=0;
1da177e4 2329
cbe47ec5 2330 pr_debug("adding bi b#%llu to stripe s#%llu\n",
1da177e4
LT
2331 (unsigned long long)bi->bi_sector,
2332 (unsigned long long)sh->sector);
2333
2334
1da177e4 2335 spin_lock_irq(&conf->device_lock);
72626685 2336 if (forwrite) {
1da177e4 2337 bip = &sh->dev[dd_idx].towrite;
72626685
N
2338 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2339 firstwrite = 1;
2340 } else
1da177e4
LT
2341 bip = &sh->dev[dd_idx].toread;
2342 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2343 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2344 goto overlap;
2345 bip = & (*bip)->bi_next;
2346 }
2347 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2348 goto overlap;
2349
78bafebd 2350 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2351 if (*bip)
2352 bi->bi_next = *bip;
2353 *bip = bi;
960e739d 2354 bi->bi_phys_segments++;
72626685 2355
1da177e4
LT
2356 if (forwrite) {
2357 /* check if page is covered */
2358 sector_t sector = sh->dev[dd_idx].sector;
2359 for (bi=sh->dev[dd_idx].towrite;
2360 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2361 bi && bi->bi_sector <= sector;
2362 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2363 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2364 sector = bi->bi_sector + (bi->bi_size>>9);
2365 }
2366 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2367 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2368 }
cbe47ec5 2369 spin_unlock_irq(&conf->device_lock);
cbe47ec5
N
2370
2371 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2372 (unsigned long long)(*bip)->bi_sector,
2373 (unsigned long long)sh->sector, dd_idx);
2374
2375 if (conf->mddev->bitmap && firstwrite) {
2376 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2377 STRIPE_SECTORS, 0);
2378 sh->bm_seq = conf->seq_flush+1;
2379 set_bit(STRIPE_BIT_DELAY, &sh->state);
2380 }
1da177e4
LT
2381 return 1;
2382
2383 overlap:
2384 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2385 spin_unlock_irq(&conf->device_lock);
1da177e4
LT
2386 return 0;
2387}
2388
d1688a6d 2389static void end_reshape(struct r5conf *conf);
29269553 2390
d1688a6d 2391static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 2392 struct stripe_head *sh)
ccfcc3c1 2393{
784052ec 2394 int sectors_per_chunk =
09c9e5fa 2395 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 2396 int dd_idx;
2d2063ce 2397 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2398 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2399
112bf897
N
2400 raid5_compute_sector(conf,
2401 stripe * (disks - conf->max_degraded)
b875e531 2402 *sectors_per_chunk + chunk_offset,
112bf897 2403 previous,
911d4ee8 2404 &dd_idx, sh);
ccfcc3c1
N
2405}
2406
a4456856 2407static void
d1688a6d 2408handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
2409 struct stripe_head_state *s, int disks,
2410 struct bio **return_bi)
2411{
2412 int i;
2413 for (i = disks; i--; ) {
2414 struct bio *bi;
2415 int bitmap_end = 0;
2416
2417 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 2418 struct md_rdev *rdev;
a4456856
DW
2419 rcu_read_lock();
2420 rdev = rcu_dereference(conf->disks[i].rdev);
2421 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
2422 atomic_inc(&rdev->nr_pending);
2423 else
2424 rdev = NULL;
a4456856 2425 rcu_read_unlock();
7f0da59b
N
2426 if (rdev) {
2427 if (!rdev_set_badblocks(
2428 rdev,
2429 sh->sector,
2430 STRIPE_SECTORS, 0))
2431 md_error(conf->mddev, rdev);
2432 rdev_dec_pending(rdev, conf->mddev);
2433 }
a4456856
DW
2434 }
2435 spin_lock_irq(&conf->device_lock);
2436 /* fail all writes first */
2437 bi = sh->dev[i].towrite;
2438 sh->dev[i].towrite = NULL;
2439 if (bi) {
2440 s->to_write--;
2441 bitmap_end = 1;
2442 }
2443
2444 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2445 wake_up(&conf->wait_for_overlap);
2446
2447 while (bi && bi->bi_sector <
2448 sh->dev[i].sector + STRIPE_SECTORS) {
2449 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2450 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2451 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2452 md_write_end(conf->mddev);
2453 bi->bi_next = *return_bi;
2454 *return_bi = bi;
2455 }
2456 bi = nextbi;
2457 }
2458 /* and fail all 'written' */
2459 bi = sh->dev[i].written;
2460 sh->dev[i].written = NULL;
2461 if (bi) bitmap_end = 1;
2462 while (bi && bi->bi_sector <
2463 sh->dev[i].sector + STRIPE_SECTORS) {
2464 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2465 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2466 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2467 md_write_end(conf->mddev);
2468 bi->bi_next = *return_bi;
2469 *return_bi = bi;
2470 }
2471 bi = bi2;
2472 }
2473
b5e98d65
DW
2474 /* fail any reads if this device is non-operational and
2475 * the data has not reached the cache yet.
2476 */
2477 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2478 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2479 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
2480 bi = sh->dev[i].toread;
2481 sh->dev[i].toread = NULL;
2482 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2483 wake_up(&conf->wait_for_overlap);
2484 if (bi) s->to_read--;
2485 while (bi && bi->bi_sector <
2486 sh->dev[i].sector + STRIPE_SECTORS) {
2487 struct bio *nextbi =
2488 r5_next_bio(bi, sh->dev[i].sector);
2489 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2490 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2491 bi->bi_next = *return_bi;
2492 *return_bi = bi;
2493 }
2494 bi = nextbi;
2495 }
2496 }
2497 spin_unlock_irq(&conf->device_lock);
2498 if (bitmap_end)
2499 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2500 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
2501 /* If we were in the middle of a write the parity block might
2502 * still be locked - so just clear all R5_LOCKED flags
2503 */
2504 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856
DW
2505 }
2506
8b3e6cdc
DW
2507 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2508 if (atomic_dec_and_test(&conf->pending_full_writes))
2509 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2510}
2511
7f0da59b 2512static void
d1688a6d 2513handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
2514 struct stripe_head_state *s)
2515{
2516 int abort = 0;
2517 int i;
2518
7f0da59b
N
2519 clear_bit(STRIPE_SYNCING, &sh->state);
2520 s->syncing = 0;
9a3e1101 2521 s->replacing = 0;
7f0da59b 2522 /* There is nothing more to do for sync/check/repair.
18b9837e
N
2523 * Don't even need to abort as that is handled elsewhere
2524 * if needed, and not always wanted e.g. if there is a known
2525 * bad block here.
9a3e1101 2526 * For recover/replace we need to record a bad block on all
7f0da59b
N
2527 * non-sync devices, or abort the recovery
2528 */
18b9837e
N
2529 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2530 /* During recovery devices cannot be removed, so
2531 * locking and refcounting of rdevs is not needed
2532 */
2533 for (i = 0; i < conf->raid_disks; i++) {
2534 struct md_rdev *rdev = conf->disks[i].rdev;
2535 if (rdev
2536 && !test_bit(Faulty, &rdev->flags)
2537 && !test_bit(In_sync, &rdev->flags)
2538 && !rdev_set_badblocks(rdev, sh->sector,
2539 STRIPE_SECTORS, 0))
2540 abort = 1;
2541 rdev = conf->disks[i].replacement;
2542 if (rdev
2543 && !test_bit(Faulty, &rdev->flags)
2544 && !test_bit(In_sync, &rdev->flags)
2545 && !rdev_set_badblocks(rdev, sh->sector,
2546 STRIPE_SECTORS, 0))
2547 abort = 1;
2548 }
2549 if (abort)
2550 conf->recovery_disabled =
2551 conf->mddev->recovery_disabled;
7f0da59b 2552 }
18b9837e 2553 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
2554}
2555
9a3e1101
N
2556static int want_replace(struct stripe_head *sh, int disk_idx)
2557{
2558 struct md_rdev *rdev;
2559 int rv = 0;
2560 /* Doing recovery so rcu locking not required */
2561 rdev = sh->raid_conf->disks[disk_idx].replacement;
2562 if (rdev
2563 && !test_bit(Faulty, &rdev->flags)
2564 && !test_bit(In_sync, &rdev->flags)
2565 && (rdev->recovery_offset <= sh->sector
2566 || rdev->mddev->recovery_cp <= sh->sector))
2567 rv = 1;
2568
2569 return rv;
2570}
2571
93b3dbce 2572/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
2573 * to be read or computed to satisfy a request.
2574 *
2575 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 2576 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 2577 */
93b3dbce
N
2578static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2579 int disk_idx, int disks)
a4456856 2580{
5599becc 2581 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
2582 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2583 &sh->dev[s->failed_num[1]] };
5599becc 2584
93b3dbce 2585 /* is the data in this block needed, and can we get it? */
5599becc
YT
2586 if (!test_bit(R5_LOCKED, &dev->flags) &&
2587 !test_bit(R5_UPTODATE, &dev->flags) &&
2588 (dev->toread ||
2589 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2590 s->syncing || s->expanding ||
9a3e1101 2591 (s->replacing && want_replace(sh, disk_idx)) ||
5d35e09c
N
2592 (s->failed >= 1 && fdev[0]->toread) ||
2593 (s->failed >= 2 && fdev[1]->toread) ||
93b3dbce
N
2594 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2595 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2596 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
5599becc
YT
2597 /* we would like to get this block, possibly by computing it,
2598 * otherwise read it if the backing disk is insync
2599 */
2600 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2601 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2602 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
2603 (s->failed && (disk_idx == s->failed_num[0] ||
2604 disk_idx == s->failed_num[1]))) {
5599becc
YT
2605 /* have disk failed, and we're requested to fetch it;
2606 * do compute it
a4456856 2607 */
5599becc
YT
2608 pr_debug("Computing stripe %llu block %d\n",
2609 (unsigned long long)sh->sector, disk_idx);
2610 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2611 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2612 set_bit(R5_Wantcompute, &dev->flags);
2613 sh->ops.target = disk_idx;
2614 sh->ops.target2 = -1; /* no 2nd target */
2615 s->req_compute = 1;
93b3dbce
N
2616 /* Careful: from this point on 'uptodate' is in the eye
2617 * of raid_run_ops which services 'compute' operations
2618 * before writes. R5_Wantcompute flags a block that will
2619 * be R5_UPTODATE by the time it is needed for a
2620 * subsequent operation.
2621 */
5599becc
YT
2622 s->uptodate++;
2623 return 1;
2624 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2625 /* Computing 2-failure is *very* expensive; only
2626 * do it if failed >= 2
2627 */
2628 int other;
2629 for (other = disks; other--; ) {
2630 if (other == disk_idx)
2631 continue;
2632 if (!test_bit(R5_UPTODATE,
2633 &sh->dev[other].flags))
2634 break;
a4456856 2635 }
5599becc
YT
2636 BUG_ON(other < 0);
2637 pr_debug("Computing stripe %llu blocks %d,%d\n",
2638 (unsigned long long)sh->sector,
2639 disk_idx, other);
2640 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2641 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2642 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2643 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2644 sh->ops.target = disk_idx;
2645 sh->ops.target2 = other;
2646 s->uptodate += 2;
2647 s->req_compute = 1;
2648 return 1;
2649 } else if (test_bit(R5_Insync, &dev->flags)) {
2650 set_bit(R5_LOCKED, &dev->flags);
2651 set_bit(R5_Wantread, &dev->flags);
2652 s->locked++;
2653 pr_debug("Reading block %d (sync=%d)\n",
2654 disk_idx, s->syncing);
a4456856
DW
2655 }
2656 }
5599becc
YT
2657
2658 return 0;
2659}
2660
2661/**
93b3dbce 2662 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 2663 */
93b3dbce
N
2664static void handle_stripe_fill(struct stripe_head *sh,
2665 struct stripe_head_state *s,
2666 int disks)
5599becc
YT
2667{
2668 int i;
2669
2670 /* look for blocks to read/compute, skip this if a compute
2671 * is already in flight, or if the stripe contents are in the
2672 * midst of changing due to a write
2673 */
2674 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2675 !sh->reconstruct_state)
2676 for (i = disks; i--; )
93b3dbce 2677 if (fetch_block(sh, s, i, disks))
5599becc 2678 break;
a4456856
DW
2679 set_bit(STRIPE_HANDLE, &sh->state);
2680}
2681
2682
1fe797e6 2683/* handle_stripe_clean_event
a4456856
DW
2684 * any written block on an uptodate or failed drive can be returned.
2685 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2686 * never LOCKED, so we don't need to test 'failed' directly.
2687 */
d1688a6d 2688static void handle_stripe_clean_event(struct r5conf *conf,
a4456856
DW
2689 struct stripe_head *sh, int disks, struct bio **return_bi)
2690{
2691 int i;
2692 struct r5dev *dev;
2693
2694 for (i = disks; i--; )
2695 if (sh->dev[i].written) {
2696 dev = &sh->dev[i];
2697 if (!test_bit(R5_LOCKED, &dev->flags) &&
2698 test_bit(R5_UPTODATE, &dev->flags)) {
2699 /* We can return any write requests */
2700 struct bio *wbi, *wbi2;
2701 int bitmap_end = 0;
45b4233c 2702 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2703 spin_lock_irq(&conf->device_lock);
2704 wbi = dev->written;
2705 dev->written = NULL;
2706 while (wbi && wbi->bi_sector <
2707 dev->sector + STRIPE_SECTORS) {
2708 wbi2 = r5_next_bio(wbi, dev->sector);
960e739d 2709 if (!raid5_dec_bi_phys_segments(wbi)) {
a4456856
DW
2710 md_write_end(conf->mddev);
2711 wbi->bi_next = *return_bi;
2712 *return_bi = wbi;
2713 }
2714 wbi = wbi2;
2715 }
2716 if (dev->towrite == NULL)
2717 bitmap_end = 1;
2718 spin_unlock_irq(&conf->device_lock);
2719 if (bitmap_end)
2720 bitmap_endwrite(conf->mddev->bitmap,
2721 sh->sector,
2722 STRIPE_SECTORS,
2723 !test_bit(STRIPE_DEGRADED, &sh->state),
2724 0);
2725 }
2726 }
8b3e6cdc
DW
2727
2728 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2729 if (atomic_dec_and_test(&conf->pending_full_writes))
2730 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2731}
2732
d1688a6d 2733static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
2734 struct stripe_head *sh,
2735 struct stripe_head_state *s,
2736 int disks)
a4456856
DW
2737{
2738 int rmw = 0, rcw = 0, i;
c8ac1803
N
2739 if (conf->max_degraded == 2) {
2740 /* RAID6 requires 'rcw' in current implementation
2741 * Calculate the real rcw later - for now fake it
2742 * look like rcw is cheaper
2743 */
2744 rcw = 1; rmw = 2;
2745 } else for (i = disks; i--; ) {
a4456856
DW
2746 /* would I have to read this buffer for read_modify_write */
2747 struct r5dev *dev = &sh->dev[i];
2748 if ((dev->towrite || i == sh->pd_idx) &&
2749 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2750 !(test_bit(R5_UPTODATE, &dev->flags) ||
2751 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2752 if (test_bit(R5_Insync, &dev->flags))
2753 rmw++;
2754 else
2755 rmw += 2*disks; /* cannot read it */
2756 }
2757 /* Would I have to read this buffer for reconstruct_write */
2758 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2759 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2760 !(test_bit(R5_UPTODATE, &dev->flags) ||
2761 test_bit(R5_Wantcompute, &dev->flags))) {
2762 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2763 else
2764 rcw += 2*disks;
2765 }
2766 }
45b4233c 2767 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2768 (unsigned long long)sh->sector, rmw, rcw);
2769 set_bit(STRIPE_HANDLE, &sh->state);
2770 if (rmw < rcw && rmw > 0)
2771 /* prefer read-modify-write, but need to get some data */
2772 for (i = disks; i--; ) {
2773 struct r5dev *dev = &sh->dev[i];
2774 if ((dev->towrite || i == sh->pd_idx) &&
2775 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2776 !(test_bit(R5_UPTODATE, &dev->flags) ||
2777 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2778 test_bit(R5_Insync, &dev->flags)) {
2779 if (
2780 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2781 pr_debug("Read_old block "
a4456856
DW
2782 "%d for r-m-w\n", i);
2783 set_bit(R5_LOCKED, &dev->flags);
2784 set_bit(R5_Wantread, &dev->flags);
2785 s->locked++;
2786 } else {
2787 set_bit(STRIPE_DELAYED, &sh->state);
2788 set_bit(STRIPE_HANDLE, &sh->state);
2789 }
2790 }
2791 }
c8ac1803 2792 if (rcw <= rmw && rcw > 0) {
a4456856 2793 /* want reconstruct write, but need to get some data */
c8ac1803 2794 rcw = 0;
a4456856
DW
2795 for (i = disks; i--; ) {
2796 struct r5dev *dev = &sh->dev[i];
2797 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 2798 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 2799 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 2800 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
2801 test_bit(R5_Wantcompute, &dev->flags))) {
2802 rcw++;
2803 if (!test_bit(R5_Insync, &dev->flags))
2804 continue; /* it's a failed drive */
a4456856
DW
2805 if (
2806 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2807 pr_debug("Read_old block "
a4456856
DW
2808 "%d for Reconstruct\n", i);
2809 set_bit(R5_LOCKED, &dev->flags);
2810 set_bit(R5_Wantread, &dev->flags);
2811 s->locked++;
2812 } else {
2813 set_bit(STRIPE_DELAYED, &sh->state);
2814 set_bit(STRIPE_HANDLE, &sh->state);
2815 }
2816 }
2817 }
c8ac1803 2818 }
a4456856
DW
2819 /* now if nothing is locked, and if we have enough data,
2820 * we can start a write request
2821 */
f38e1219
DW
2822 /* since handle_stripe can be called at any time we need to handle the
2823 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
2824 * subsequent call wants to start a write request. raid_run_ops only
2825 * handles the case where compute block and reconstruct are requested
f38e1219
DW
2826 * simultaneously. If this is not the case then new writes need to be
2827 * held off until the compute completes.
2828 */
976ea8d4
DW
2829 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2830 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2831 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 2832 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
2833}
2834
d1688a6d 2835static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
2836 struct stripe_head_state *s, int disks)
2837{
ecc65c9b 2838 struct r5dev *dev = NULL;
bd2ab670 2839
a4456856 2840 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2841
ecc65c9b
DW
2842 switch (sh->check_state) {
2843 case check_state_idle:
2844 /* start a new check operation if there are no failures */
bd2ab670 2845 if (s->failed == 0) {
bd2ab670 2846 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2847 sh->check_state = check_state_run;
2848 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2849 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2850 s->uptodate--;
ecc65c9b 2851 break;
bd2ab670 2852 }
f2b3b44d 2853 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
2854 /* fall through */
2855 case check_state_compute_result:
2856 sh->check_state = check_state_idle;
2857 if (!dev)
2858 dev = &sh->dev[sh->pd_idx];
2859
2860 /* check that a write has not made the stripe insync */
2861 if (test_bit(STRIPE_INSYNC, &sh->state))
2862 break;
c8894419 2863
a4456856 2864 /* either failed parity check, or recovery is happening */
a4456856
DW
2865 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2866 BUG_ON(s->uptodate != disks);
2867
2868 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2869 s->locked++;
a4456856 2870 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2871
a4456856 2872 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2873 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2874 break;
2875 case check_state_run:
2876 break; /* we will be called again upon completion */
2877 case check_state_check_result:
2878 sh->check_state = check_state_idle;
2879
2880 /* if a failure occurred during the check operation, leave
2881 * STRIPE_INSYNC not set and let the stripe be handled again
2882 */
2883 if (s->failed)
2884 break;
2885
2886 /* handle a successful check operation, if parity is correct
2887 * we are done. Otherwise update the mismatch count and repair
2888 * parity if !MD_RECOVERY_CHECK
2889 */
ad283ea4 2890 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
2891 /* parity is correct (on disc,
2892 * not in buffer any more)
2893 */
2894 set_bit(STRIPE_INSYNC, &sh->state);
2895 else {
2896 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2897 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2898 /* don't try to repair!! */
2899 set_bit(STRIPE_INSYNC, &sh->state);
2900 else {
2901 sh->check_state = check_state_compute_run;
976ea8d4 2902 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2903 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2904 set_bit(R5_Wantcompute,
2905 &sh->dev[sh->pd_idx].flags);
2906 sh->ops.target = sh->pd_idx;
ac6b53b6 2907 sh->ops.target2 = -1;
ecc65c9b
DW
2908 s->uptodate++;
2909 }
2910 }
2911 break;
2912 case check_state_compute_run:
2913 break;
2914 default:
2915 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2916 __func__, sh->check_state,
2917 (unsigned long long) sh->sector);
2918 BUG();
a4456856
DW
2919 }
2920}
2921
2922
d1688a6d 2923static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 2924 struct stripe_head_state *s,
f2b3b44d 2925 int disks)
a4456856 2926{
a4456856 2927 int pd_idx = sh->pd_idx;
34e04e87 2928 int qd_idx = sh->qd_idx;
d82dfee0 2929 struct r5dev *dev;
a4456856
DW
2930
2931 set_bit(STRIPE_HANDLE, &sh->state);
2932
2933 BUG_ON(s->failed > 2);
d82dfee0 2934
a4456856
DW
2935 /* Want to check and possibly repair P and Q.
2936 * However there could be one 'failed' device, in which
2937 * case we can only check one of them, possibly using the
2938 * other to generate missing data
2939 */
2940
d82dfee0
DW
2941 switch (sh->check_state) {
2942 case check_state_idle:
2943 /* start a new check operation if there are < 2 failures */
f2b3b44d 2944 if (s->failed == s->q_failed) {
d82dfee0 2945 /* The only possible failed device holds Q, so it
a4456856
DW
2946 * makes sense to check P (If anything else were failed,
2947 * we would have used P to recreate it).
2948 */
d82dfee0 2949 sh->check_state = check_state_run;
a4456856 2950 }
f2b3b44d 2951 if (!s->q_failed && s->failed < 2) {
d82dfee0 2952 /* Q is not failed, and we didn't use it to generate
a4456856
DW
2953 * anything, so it makes sense to check it
2954 */
d82dfee0
DW
2955 if (sh->check_state == check_state_run)
2956 sh->check_state = check_state_run_pq;
2957 else
2958 sh->check_state = check_state_run_q;
a4456856 2959 }
a4456856 2960
d82dfee0
DW
2961 /* discard potentially stale zero_sum_result */
2962 sh->ops.zero_sum_result = 0;
a4456856 2963
d82dfee0
DW
2964 if (sh->check_state == check_state_run) {
2965 /* async_xor_zero_sum destroys the contents of P */
2966 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2967 s->uptodate--;
a4456856 2968 }
d82dfee0
DW
2969 if (sh->check_state >= check_state_run &&
2970 sh->check_state <= check_state_run_pq) {
2971 /* async_syndrome_zero_sum preserves P and Q, so
2972 * no need to mark them !uptodate here
2973 */
2974 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2975 break;
a4456856
DW
2976 }
2977
d82dfee0
DW
2978 /* we have 2-disk failure */
2979 BUG_ON(s->failed != 2);
2980 /* fall through */
2981 case check_state_compute_result:
2982 sh->check_state = check_state_idle;
a4456856 2983
d82dfee0
DW
2984 /* check that a write has not made the stripe insync */
2985 if (test_bit(STRIPE_INSYNC, &sh->state))
2986 break;
a4456856
DW
2987
2988 /* now write out any block on a failed drive,
d82dfee0 2989 * or P or Q if they were recomputed
a4456856 2990 */
d82dfee0 2991 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 2992 if (s->failed == 2) {
f2b3b44d 2993 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
2994 s->locked++;
2995 set_bit(R5_LOCKED, &dev->flags);
2996 set_bit(R5_Wantwrite, &dev->flags);
2997 }
2998 if (s->failed >= 1) {
f2b3b44d 2999 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
3000 s->locked++;
3001 set_bit(R5_LOCKED, &dev->flags);
3002 set_bit(R5_Wantwrite, &dev->flags);
3003 }
d82dfee0 3004 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
3005 dev = &sh->dev[pd_idx];
3006 s->locked++;
3007 set_bit(R5_LOCKED, &dev->flags);
3008 set_bit(R5_Wantwrite, &dev->flags);
3009 }
d82dfee0 3010 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
3011 dev = &sh->dev[qd_idx];
3012 s->locked++;
3013 set_bit(R5_LOCKED, &dev->flags);
3014 set_bit(R5_Wantwrite, &dev->flags);
3015 }
3016 clear_bit(STRIPE_DEGRADED, &sh->state);
3017
3018 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
3019 break;
3020 case check_state_run:
3021 case check_state_run_q:
3022 case check_state_run_pq:
3023 break; /* we will be called again upon completion */
3024 case check_state_check_result:
3025 sh->check_state = check_state_idle;
3026
3027 /* handle a successful check operation, if parity is correct
3028 * we are done. Otherwise update the mismatch count and repair
3029 * parity if !MD_RECOVERY_CHECK
3030 */
3031 if (sh->ops.zero_sum_result == 0) {
3032 /* both parities are correct */
3033 if (!s->failed)
3034 set_bit(STRIPE_INSYNC, &sh->state);
3035 else {
3036 /* in contrast to the raid5 case we can validate
3037 * parity, but still have a failure to write
3038 * back
3039 */
3040 sh->check_state = check_state_compute_result;
3041 /* Returning at this point means that we may go
3042 * off and bring p and/or q uptodate again so
3043 * we make sure to check zero_sum_result again
3044 * to verify if p or q need writeback
3045 */
3046 }
3047 } else {
3048 conf->mddev->resync_mismatches += STRIPE_SECTORS;
3049 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3050 /* don't try to repair!! */
3051 set_bit(STRIPE_INSYNC, &sh->state);
3052 else {
3053 int *target = &sh->ops.target;
3054
3055 sh->ops.target = -1;
3056 sh->ops.target2 = -1;
3057 sh->check_state = check_state_compute_run;
3058 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3059 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3060 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3061 set_bit(R5_Wantcompute,
3062 &sh->dev[pd_idx].flags);
3063 *target = pd_idx;
3064 target = &sh->ops.target2;
3065 s->uptodate++;
3066 }
3067 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3068 set_bit(R5_Wantcompute,
3069 &sh->dev[qd_idx].flags);
3070 *target = qd_idx;
3071 s->uptodate++;
3072 }
3073 }
3074 }
3075 break;
3076 case check_state_compute_run:
3077 break;
3078 default:
3079 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3080 __func__, sh->check_state,
3081 (unsigned long long) sh->sector);
3082 BUG();
a4456856
DW
3083 }
3084}
3085
d1688a6d 3086static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3087{
3088 int i;
3089
3090 /* We have read all the blocks in this stripe and now we need to
3091 * copy some of them into a target stripe for expand.
3092 */
f0a50d37 3093 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
3094 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3095 for (i = 0; i < sh->disks; i++)
34e04e87 3096 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3097 int dd_idx, j;
a4456856 3098 struct stripe_head *sh2;
a08abd8c 3099 struct async_submit_ctl submit;
a4456856 3100
784052ec 3101 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
3102 sector_t s = raid5_compute_sector(conf, bn, 0,
3103 &dd_idx, NULL);
a8c906ca 3104 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3105 if (sh2 == NULL)
3106 /* so far only the early blocks of this stripe
3107 * have been requested. When later blocks
3108 * get requested, we will try again
3109 */
3110 continue;
3111 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3112 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3113 /* must have already done this block */
3114 release_stripe(sh2);
3115 continue;
3116 }
f0a50d37
DW
3117
3118 /* place all the copies on one channel */
a08abd8c 3119 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3120 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3121 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3122 &submit);
f0a50d37 3123
a4456856
DW
3124 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3125 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3126 for (j = 0; j < conf->raid_disks; j++)
3127 if (j != sh2->pd_idx &&
86c374ba 3128 j != sh2->qd_idx &&
a4456856
DW
3129 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3130 break;
3131 if (j == conf->raid_disks) {
3132 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3133 set_bit(STRIPE_HANDLE, &sh2->state);
3134 }
3135 release_stripe(sh2);
f0a50d37 3136
a4456856 3137 }
a2e08551
N
3138 /* done submitting copies, wait for them to complete */
3139 if (tx) {
3140 async_tx_ack(tx);
3141 dma_wait_for_async_tx(tx);
3142 }
a4456856 3143}
1da177e4
LT
3144
3145/*
3146 * handle_stripe - do things to a stripe.
3147 *
9a3e1101
N
3148 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3149 * state of various bits to see what needs to be done.
1da177e4 3150 * Possible results:
9a3e1101
N
3151 * return some read requests which now have data
3152 * return some write requests which are safely on storage
1da177e4
LT
3153 * schedule a read on some buffers
3154 * schedule a write of some buffers
3155 * return confirmation of parity correctness
3156 *
1da177e4 3157 */
a4456856 3158
acfe726b 3159static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 3160{
d1688a6d 3161 struct r5conf *conf = sh->raid_conf;
f416885e 3162 int disks = sh->disks;
474af965
N
3163 struct r5dev *dev;
3164 int i;
9a3e1101 3165 int do_recovery = 0;
1da177e4 3166
acfe726b
N
3167 memset(s, 0, sizeof(*s));
3168
acfe726b
N
3169 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3170 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3171 s->failed_num[0] = -1;
3172 s->failed_num[1] = -1;
1da177e4 3173
acfe726b 3174 /* Now to look around and see what can be done */
1da177e4 3175 rcu_read_lock();
c4c1663b 3176 spin_lock_irq(&conf->device_lock);
16a53ecc 3177 for (i=disks; i--; ) {
3cb03002 3178 struct md_rdev *rdev;
31c176ec
N
3179 sector_t first_bad;
3180 int bad_sectors;
3181 int is_bad = 0;
acfe726b 3182
16a53ecc 3183 dev = &sh->dev[i];
1da177e4 3184
45b4233c 3185 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
3186 i, dev->flags,
3187 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
3188 /* maybe we can reply to a read
3189 *
3190 * new wantfill requests are only permitted while
3191 * ops_complete_biofill is guaranteed to be inactive
3192 */
3193 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3194 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3195 set_bit(R5_Wantfill, &dev->flags);
1da177e4 3196
16a53ecc 3197 /* now count some things */
cc94015a
N
3198 if (test_bit(R5_LOCKED, &dev->flags))
3199 s->locked++;
3200 if (test_bit(R5_UPTODATE, &dev->flags))
3201 s->uptodate++;
2d6e4ecc 3202 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
3203 s->compute++;
3204 BUG_ON(s->compute > 2);
2d6e4ecc 3205 }
1da177e4 3206
acfe726b 3207 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 3208 s->to_fill++;
acfe726b 3209 else if (dev->toread)
cc94015a 3210 s->to_read++;
16a53ecc 3211 if (dev->towrite) {
cc94015a 3212 s->to_write++;
16a53ecc 3213 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 3214 s->non_overwrite++;
16a53ecc 3215 }
a4456856 3216 if (dev->written)
cc94015a 3217 s->written++;
14a75d3e
N
3218 /* Prefer to use the replacement for reads, but only
3219 * if it is recovered enough and has no bad blocks.
3220 */
3221 rdev = rcu_dereference(conf->disks[i].replacement);
3222 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3223 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3224 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3225 &first_bad, &bad_sectors))
3226 set_bit(R5_ReadRepl, &dev->flags);
3227 else {
9a3e1101
N
3228 if (rdev)
3229 set_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
3230 rdev = rcu_dereference(conf->disks[i].rdev);
3231 clear_bit(R5_ReadRepl, &dev->flags);
3232 }
9283d8c5
N
3233 if (rdev && test_bit(Faulty, &rdev->flags))
3234 rdev = NULL;
31c176ec
N
3235 if (rdev) {
3236 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3237 &first_bad, &bad_sectors);
3238 if (s->blocked_rdev == NULL
3239 && (test_bit(Blocked, &rdev->flags)
3240 || is_bad < 0)) {
3241 if (is_bad < 0)
3242 set_bit(BlockedBadBlocks,
3243 &rdev->flags);
3244 s->blocked_rdev = rdev;
3245 atomic_inc(&rdev->nr_pending);
3246 }
6bfe0b49 3247 }
415e72d0
N
3248 clear_bit(R5_Insync, &dev->flags);
3249 if (!rdev)
3250 /* Not in-sync */;
31c176ec
N
3251 else if (is_bad) {
3252 /* also not in-sync */
18b9837e
N
3253 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3254 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
3255 /* treat as in-sync, but with a read error
3256 * which we can now try to correct
3257 */
3258 set_bit(R5_Insync, &dev->flags);
3259 set_bit(R5_ReadError, &dev->flags);
3260 }
3261 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 3262 set_bit(R5_Insync, &dev->flags);
30d7a483 3263 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 3264 /* in sync if before recovery_offset */
30d7a483
N
3265 set_bit(R5_Insync, &dev->flags);
3266 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3267 test_bit(R5_Expanded, &dev->flags))
3268 /* If we've reshaped into here, we assume it is Insync.
3269 * We will shortly update recovery_offset to make
3270 * it official.
3271 */
3272 set_bit(R5_Insync, &dev->flags);
3273
5d8c71f9 3274 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
3275 /* This flag does not apply to '.replacement'
3276 * only to .rdev, so make sure to check that*/
3277 struct md_rdev *rdev2 = rcu_dereference(
3278 conf->disks[i].rdev);
3279 if (rdev2 == rdev)
3280 clear_bit(R5_Insync, &dev->flags);
3281 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 3282 s->handle_bad_blocks = 1;
14a75d3e 3283 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
3284 } else
3285 clear_bit(R5_WriteError, &dev->flags);
3286 }
5d8c71f9 3287 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
3288 /* This flag does not apply to '.replacement'
3289 * only to .rdev, so make sure to check that*/
3290 struct md_rdev *rdev2 = rcu_dereference(
3291 conf->disks[i].rdev);
3292 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 3293 s->handle_bad_blocks = 1;
14a75d3e 3294 atomic_inc(&rdev2->nr_pending);
b84db560
N
3295 } else
3296 clear_bit(R5_MadeGood, &dev->flags);
3297 }
977df362
N
3298 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3299 struct md_rdev *rdev2 = rcu_dereference(
3300 conf->disks[i].replacement);
3301 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3302 s->handle_bad_blocks = 1;
3303 atomic_inc(&rdev2->nr_pending);
3304 } else
3305 clear_bit(R5_MadeGoodRepl, &dev->flags);
3306 }
415e72d0 3307 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
3308 /* The ReadError flag will just be confusing now */
3309 clear_bit(R5_ReadError, &dev->flags);
3310 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3311 }
415e72d0
N
3312 if (test_bit(R5_ReadError, &dev->flags))
3313 clear_bit(R5_Insync, &dev->flags);
3314 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
3315 if (s->failed < 2)
3316 s->failed_num[s->failed] = i;
3317 s->failed++;
9a3e1101
N
3318 if (rdev && !test_bit(Faulty, &rdev->flags))
3319 do_recovery = 1;
415e72d0 3320 }
1da177e4 3321 }
c4c1663b 3322 spin_unlock_irq(&conf->device_lock);
9a3e1101
N
3323 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3324 /* If there is a failed device being replaced,
3325 * we must be recovering.
3326 * else if we are after recovery_cp, we must be syncing
c6d2e084 3327 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
3328 * else we can only be replacing
3329 * sync and recovery both need to read all devices, and so
3330 * use the same flag.
3331 */
3332 if (do_recovery ||
c6d2e084 3333 sh->sector >= conf->mddev->recovery_cp ||
3334 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
3335 s->syncing = 1;
3336 else
3337 s->replacing = 1;
3338 }
1da177e4 3339 rcu_read_unlock();
cc94015a
N
3340}
3341
3342static void handle_stripe(struct stripe_head *sh)
3343{
3344 struct stripe_head_state s;
d1688a6d 3345 struct r5conf *conf = sh->raid_conf;
3687c061 3346 int i;
84789554
N
3347 int prexor;
3348 int disks = sh->disks;
474af965 3349 struct r5dev *pdev, *qdev;
cc94015a
N
3350
3351 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 3352 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
3353 /* already being handled, ensure it gets handled
3354 * again when current action finishes */
3355 set_bit(STRIPE_HANDLE, &sh->state);
3356 return;
3357 }
3358
3359 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3360 set_bit(STRIPE_SYNCING, &sh->state);
3361 clear_bit(STRIPE_INSYNC, &sh->state);
3362 }
3363 clear_bit(STRIPE_DELAYED, &sh->state);
3364
3365 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3366 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3367 (unsigned long long)sh->sector, sh->state,
3368 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3369 sh->check_state, sh->reconstruct_state);
3687c061 3370
acfe726b 3371 analyse_stripe(sh, &s);
c5a31000 3372
bc2607f3
N
3373 if (s.handle_bad_blocks) {
3374 set_bit(STRIPE_HANDLE, &sh->state);
3375 goto finish;
3376 }
3377
474af965
N
3378 if (unlikely(s.blocked_rdev)) {
3379 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 3380 s.replacing || s.to_write || s.written) {
474af965
N
3381 set_bit(STRIPE_HANDLE, &sh->state);
3382 goto finish;
3383 }
3384 /* There is nothing for the blocked_rdev to block */
3385 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3386 s.blocked_rdev = NULL;
3387 }
3388
3389 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3390 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3391 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3392 }
3393
3394 pr_debug("locked=%d uptodate=%d to_read=%d"
3395 " to_write=%d failed=%d failed_num=%d,%d\n",
3396 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3397 s.failed_num[0], s.failed_num[1]);
3398 /* check if the array has lost more than max_degraded devices and,
3399 * if so, some requests might need to be failed.
3400 */
9a3f530f
N
3401 if (s.failed > conf->max_degraded) {
3402 sh->check_state = 0;
3403 sh->reconstruct_state = 0;
3404 if (s.to_read+s.to_write+s.written)
3405 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 3406 if (s.syncing + s.replacing)
9a3f530f
N
3407 handle_failed_sync(conf, sh, &s);
3408 }
474af965
N
3409
3410 /*
3411 * might be able to return some write requests if the parity blocks
3412 * are safe, or on a failed drive
3413 */
3414 pdev = &sh->dev[sh->pd_idx];
3415 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3416 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3417 qdev = &sh->dev[sh->qd_idx];
3418 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3419 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3420 || conf->level < 6;
3421
3422 if (s.written &&
3423 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3424 && !test_bit(R5_LOCKED, &pdev->flags)
3425 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3426 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3427 && !test_bit(R5_LOCKED, &qdev->flags)
3428 && test_bit(R5_UPTODATE, &qdev->flags)))))
3429 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3430
3431 /* Now we might consider reading some blocks, either to check/generate
3432 * parity, or to satisfy requests
3433 * or to load a block that is being partially written.
3434 */
3435 if (s.to_read || s.non_overwrite
3436 || (conf->level == 6 && s.to_write && s.failed)
9a3e1101
N
3437 || (s.syncing && (s.uptodate + s.compute < disks))
3438 || s.replacing
3439 || s.expanding)
474af965
N
3440 handle_stripe_fill(sh, &s, disks);
3441
84789554
N
3442 /* Now we check to see if any write operations have recently
3443 * completed
3444 */
3445 prexor = 0;
3446 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3447 prexor = 1;
3448 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3449 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3450 sh->reconstruct_state = reconstruct_state_idle;
3451
3452 /* All the 'written' buffers and the parity block are ready to
3453 * be written back to disk
3454 */
3455 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3456 BUG_ON(sh->qd_idx >= 0 &&
3457 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3458 for (i = disks; i--; ) {
3459 struct r5dev *dev = &sh->dev[i];
3460 if (test_bit(R5_LOCKED, &dev->flags) &&
3461 (i == sh->pd_idx || i == sh->qd_idx ||
3462 dev->written)) {
3463 pr_debug("Writing block %d\n", i);
3464 set_bit(R5_Wantwrite, &dev->flags);
3465 if (prexor)
3466 continue;
3467 if (!test_bit(R5_Insync, &dev->flags) ||
3468 ((i == sh->pd_idx || i == sh->qd_idx) &&
3469 s.failed == 0))
3470 set_bit(STRIPE_INSYNC, &sh->state);
3471 }
3472 }
3473 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3474 s.dec_preread_active = 1;
3475 }
3476
3477 /* Now to consider new write requests and what else, if anything
3478 * should be read. We do not handle new writes when:
3479 * 1/ A 'write' operation (copy+xor) is already in flight.
3480 * 2/ A 'check' operation is in flight, as it may clobber the parity
3481 * block.
3482 */
3483 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3484 handle_stripe_dirtying(conf, sh, &s, disks);
3485
3486 /* maybe we need to check and possibly fix the parity for this stripe
3487 * Any reads will already have been scheduled, so we just see if enough
3488 * data is available. The parity check is held off while parity
3489 * dependent operations are in flight.
3490 */
3491 if (sh->check_state ||
3492 (s.syncing && s.locked == 0 &&
3493 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3494 !test_bit(STRIPE_INSYNC, &sh->state))) {
3495 if (conf->level == 6)
3496 handle_parity_checks6(conf, sh, &s, disks);
3497 else
3498 handle_parity_checks5(conf, sh, &s, disks);
3499 }
c5a31000 3500
9a3e1101
N
3501 if (s.replacing && s.locked == 0
3502 && !test_bit(STRIPE_INSYNC, &sh->state)) {
3503 /* Write out to replacement devices where possible */
3504 for (i = 0; i < conf->raid_disks; i++)
3505 if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3506 test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3507 set_bit(R5_WantReplace, &sh->dev[i].flags);
3508 set_bit(R5_LOCKED, &sh->dev[i].flags);
3509 s.locked++;
3510 }
3511 set_bit(STRIPE_INSYNC, &sh->state);
3512 }
3513 if ((s.syncing || s.replacing) && s.locked == 0 &&
3514 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
3515 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3516 clear_bit(STRIPE_SYNCING, &sh->state);
3517 }
3518
3519 /* If the failed drives are just a ReadError, then we might need
3520 * to progress the repair/check process
3521 */
3522 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3523 for (i = 0; i < s.failed; i++) {
3524 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3525 if (test_bit(R5_ReadError, &dev->flags)
3526 && !test_bit(R5_LOCKED, &dev->flags)
3527 && test_bit(R5_UPTODATE, &dev->flags)
3528 ) {
3529 if (!test_bit(R5_ReWrite, &dev->flags)) {
3530 set_bit(R5_Wantwrite, &dev->flags);
3531 set_bit(R5_ReWrite, &dev->flags);
3532 set_bit(R5_LOCKED, &dev->flags);
3533 s.locked++;
3534 } else {
3535 /* let's read it back */
3536 set_bit(R5_Wantread, &dev->flags);
3537 set_bit(R5_LOCKED, &dev->flags);
3538 s.locked++;
3539 }
3540 }
3541 }
3542
3543
3687c061
N
3544 /* Finish reconstruct operations initiated by the expansion process */
3545 if (sh->reconstruct_state == reconstruct_state_result) {
3546 struct stripe_head *sh_src
3547 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3548 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3549 /* sh cannot be written until sh_src has been read.
3550 * so arrange for sh to be delayed a little
3551 */
3552 set_bit(STRIPE_DELAYED, &sh->state);
3553 set_bit(STRIPE_HANDLE, &sh->state);
3554 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3555 &sh_src->state))
3556 atomic_inc(&conf->preread_active_stripes);
3557 release_stripe(sh_src);
3558 goto finish;
3559 }
3560 if (sh_src)
3561 release_stripe(sh_src);
3562
3563 sh->reconstruct_state = reconstruct_state_idle;
3564 clear_bit(STRIPE_EXPANDING, &sh->state);
3565 for (i = conf->raid_disks; i--; ) {
3566 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3567 set_bit(R5_LOCKED, &sh->dev[i].flags);
3568 s.locked++;
3569 }
3570 }
f416885e 3571
3687c061
N
3572 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3573 !sh->reconstruct_state) {
3574 /* Need to write out all blocks after computing parity */
3575 sh->disks = conf->raid_disks;
3576 stripe_set_idx(sh->sector, conf, 0, sh);
3577 schedule_reconstruction(sh, &s, 1, 1);
3578 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3579 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3580 atomic_dec(&conf->reshape_stripes);
3581 wake_up(&conf->wait_for_overlap);
3582 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3583 }
3584
3585 if (s.expanding && s.locked == 0 &&
3586 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3587 handle_stripe_expansion(conf, sh);
16a53ecc 3588
3687c061 3589finish:
6bfe0b49 3590 /* wait for this device to become unblocked */
5f066c63
N
3591 if (unlikely(s.blocked_rdev)) {
3592 if (conf->mddev->external)
3593 md_wait_for_blocked_rdev(s.blocked_rdev,
3594 conf->mddev);
3595 else
3596 /* Internal metadata will immediately
3597 * be written by raid5d, so we don't
3598 * need to wait here.
3599 */
3600 rdev_dec_pending(s.blocked_rdev,
3601 conf->mddev);
3602 }
6bfe0b49 3603
bc2607f3
N
3604 if (s.handle_bad_blocks)
3605 for (i = disks; i--; ) {
3cb03002 3606 struct md_rdev *rdev;
bc2607f3
N
3607 struct r5dev *dev = &sh->dev[i];
3608 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3609 /* We own a safe reference to the rdev */
3610 rdev = conf->disks[i].rdev;
3611 if (!rdev_set_badblocks(rdev, sh->sector,
3612 STRIPE_SECTORS, 0))
3613 md_error(conf->mddev, rdev);
3614 rdev_dec_pending(rdev, conf->mddev);
3615 }
b84db560
N
3616 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3617 rdev = conf->disks[i].rdev;
3618 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 3619 STRIPE_SECTORS, 0);
b84db560
N
3620 rdev_dec_pending(rdev, conf->mddev);
3621 }
977df362
N
3622 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3623 rdev = conf->disks[i].replacement;
dd054fce
N
3624 if (!rdev)
3625 /* rdev have been moved down */
3626 rdev = conf->disks[i].rdev;
977df362 3627 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 3628 STRIPE_SECTORS, 0);
977df362
N
3629 rdev_dec_pending(rdev, conf->mddev);
3630 }
bc2607f3
N
3631 }
3632
6c0069c0
YT
3633 if (s.ops_request)
3634 raid_run_ops(sh, s.ops_request);
3635
f0e43bcd 3636 ops_run_io(sh, &s);
16a53ecc 3637
c5709ef6 3638 if (s.dec_preread_active) {
729a1866 3639 /* We delay this until after ops_run_io so that if make_request
e9c7469b 3640 * is waiting on a flush, it won't continue until the writes
729a1866
N
3641 * have actually been submitted.
3642 */
3643 atomic_dec(&conf->preread_active_stripes);
3644 if (atomic_read(&conf->preread_active_stripes) <
3645 IO_THRESHOLD)
3646 md_wakeup_thread(conf->mddev->thread);
3647 }
3648
c5709ef6 3649 return_io(s.return_bi);
16a53ecc 3650
257a4b42 3651 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
3652}
3653
d1688a6d 3654static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
3655{
3656 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3657 while (!list_empty(&conf->delayed_list)) {
3658 struct list_head *l = conf->delayed_list.next;
3659 struct stripe_head *sh;
3660 sh = list_entry(l, struct stripe_head, lru);
3661 list_del_init(l);
3662 clear_bit(STRIPE_DELAYED, &sh->state);
3663 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3664 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3665 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3666 }
482c0834 3667 }
16a53ecc
N
3668}
3669
d1688a6d 3670static void activate_bit_delay(struct r5conf *conf)
16a53ecc
N
3671{
3672 /* device_lock is held */
3673 struct list_head head;
3674 list_add(&head, &conf->bitmap_list);
3675 list_del_init(&conf->bitmap_list);
3676 while (!list_empty(&head)) {
3677 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3678 list_del_init(&sh->lru);
3679 atomic_inc(&sh->count);
3680 __release_stripe(conf, sh);
3681 }
3682}
3683
fd01b88c 3684int md_raid5_congested(struct mddev *mddev, int bits)
f022b2fd 3685{
d1688a6d 3686 struct r5conf *conf = mddev->private;
f022b2fd
N
3687
3688 /* No difference between reads and writes. Just check
3689 * how busy the stripe_cache is
3690 */
3fa841d7 3691
f022b2fd
N
3692 if (conf->inactive_blocked)
3693 return 1;
3694 if (conf->quiesce)
3695 return 1;
3696 if (list_empty_careful(&conf->inactive_list))
3697 return 1;
3698
3699 return 0;
3700}
11d8a6e3
N
3701EXPORT_SYMBOL_GPL(md_raid5_congested);
3702
3703static int raid5_congested(void *data, int bits)
3704{
fd01b88c 3705 struct mddev *mddev = data;
11d8a6e3
N
3706
3707 return mddev_congested(mddev, bits) ||
3708 md_raid5_congested(mddev, bits);
3709}
f022b2fd 3710
23032a0e
RBJ
3711/* We want read requests to align with chunks where possible,
3712 * but write requests don't need to.
3713 */
cc371e66
AK
3714static int raid5_mergeable_bvec(struct request_queue *q,
3715 struct bvec_merge_data *bvm,
3716 struct bio_vec *biovec)
23032a0e 3717{
fd01b88c 3718 struct mddev *mddev = q->queuedata;
cc371e66 3719 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 3720 int max;
9d8f0363 3721 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 3722 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3723
cc371e66 3724 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3725 return biovec->bv_len; /* always allow writes to be mergeable */
3726
664e7c41
AN
3727 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3728 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
3729 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3730 if (max < 0) max = 0;
3731 if (max <= biovec->bv_len && bio_sectors == 0)
3732 return biovec->bv_len;
3733 else
3734 return max;
3735}
3736
f679623f 3737
fd01b88c 3738static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f
RBJ
3739{
3740 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 3741 unsigned int chunk_sectors = mddev->chunk_sectors;
f679623f
RBJ
3742 unsigned int bio_sectors = bio->bi_size >> 9;
3743
664e7c41
AN
3744 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3745 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
3746 return chunk_sectors >=
3747 ((sector & (chunk_sectors - 1)) + bio_sectors);
3748}
3749
46031f9a
RBJ
3750/*
3751 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3752 * later sampled by raid5d.
3753 */
d1688a6d 3754static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
3755{
3756 unsigned long flags;
3757
3758 spin_lock_irqsave(&conf->device_lock, flags);
3759
3760 bi->bi_next = conf->retry_read_aligned_list;
3761 conf->retry_read_aligned_list = bi;
3762
3763 spin_unlock_irqrestore(&conf->device_lock, flags);
3764 md_wakeup_thread(conf->mddev->thread);
3765}
3766
3767
d1688a6d 3768static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
3769{
3770 struct bio *bi;
3771
3772 bi = conf->retry_read_aligned;
3773 if (bi) {
3774 conf->retry_read_aligned = NULL;
3775 return bi;
3776 }
3777 bi = conf->retry_read_aligned_list;
3778 if(bi) {
387bb173 3779 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3780 bi->bi_next = NULL;
960e739d
JA
3781 /*
3782 * this sets the active strip count to 1 and the processed
3783 * strip count to zero (upper 8 bits)
3784 */
46031f9a 3785 bi->bi_phys_segments = 1; /* biased count of active stripes */
46031f9a
RBJ
3786 }
3787
3788 return bi;
3789}
3790
3791
f679623f
RBJ
3792/*
3793 * The "raid5_align_endio" should check if the read succeeded and if it
3794 * did, call bio_endio on the original bio (having bio_put the new bio
3795 * first).
3796 * If the read failed..
3797 */
6712ecf8 3798static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3799{
3800 struct bio* raid_bi = bi->bi_private;
fd01b88c 3801 struct mddev *mddev;
d1688a6d 3802 struct r5conf *conf;
46031f9a 3803 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3cb03002 3804 struct md_rdev *rdev;
46031f9a 3805
f679623f 3806 bio_put(bi);
46031f9a 3807
46031f9a
RBJ
3808 rdev = (void*)raid_bi->bi_next;
3809 raid_bi->bi_next = NULL;
2b7f2228
N
3810 mddev = rdev->mddev;
3811 conf = mddev->private;
46031f9a
RBJ
3812
3813 rdev_dec_pending(rdev, conf->mddev);
3814
3815 if (!error && uptodate) {
6712ecf8 3816 bio_endio(raid_bi, 0);
46031f9a
RBJ
3817 if (atomic_dec_and_test(&conf->active_aligned_reads))
3818 wake_up(&conf->wait_for_stripe);
6712ecf8 3819 return;
46031f9a
RBJ
3820 }
3821
3822
45b4233c 3823 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3824
3825 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3826}
3827
387bb173
NB
3828static int bio_fits_rdev(struct bio *bi)
3829{
165125e1 3830 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 3831
ae03bf63 3832 if ((bi->bi_size>>9) > queue_max_sectors(q))
387bb173
NB
3833 return 0;
3834 blk_recount_segments(q, bi);
8a78362c 3835 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
3836 return 0;
3837
3838 if (q->merge_bvec_fn)
3839 /* it's too hard to apply the merge_bvec_fn at this stage,
3840 * just just give up
3841 */
3842 return 0;
3843
3844 return 1;
3845}
3846
3847
fd01b88c 3848static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
f679623f 3849{
d1688a6d 3850 struct r5conf *conf = mddev->private;
8553fe7e 3851 int dd_idx;
f679623f 3852 struct bio* align_bi;
3cb03002 3853 struct md_rdev *rdev;
671488cc 3854 sector_t end_sector;
f679623f
RBJ
3855
3856 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3857 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3858 return 0;
3859 }
3860 /*
a167f663 3861 * use bio_clone_mddev to make a copy of the bio
f679623f 3862 */
a167f663 3863 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
3864 if (!align_bi)
3865 return 0;
3866 /*
3867 * set bi_end_io to a new function, and set bi_private to the
3868 * original bio.
3869 */
3870 align_bi->bi_end_io = raid5_align_endio;
3871 align_bi->bi_private = raid_bio;
3872 /*
3873 * compute position
3874 */
112bf897
N
3875 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3876 0,
911d4ee8 3877 &dd_idx, NULL);
f679623f 3878
671488cc 3879 end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
f679623f 3880 rcu_read_lock();
671488cc
N
3881 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3882 if (!rdev || test_bit(Faulty, &rdev->flags) ||
3883 rdev->recovery_offset < end_sector) {
3884 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3885 if (rdev &&
3886 (test_bit(Faulty, &rdev->flags) ||
3887 !(test_bit(In_sync, &rdev->flags) ||
3888 rdev->recovery_offset >= end_sector)))
3889 rdev = NULL;
3890 }
3891 if (rdev) {
31c176ec
N
3892 sector_t first_bad;
3893 int bad_sectors;
3894
f679623f
RBJ
3895 atomic_inc(&rdev->nr_pending);
3896 rcu_read_unlock();
46031f9a
RBJ
3897 raid_bio->bi_next = (void*)rdev;
3898 align_bi->bi_bdev = rdev->bdev;
3899 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
46031f9a 3900
31c176ec
N
3901 if (!bio_fits_rdev(align_bi) ||
3902 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3903 &first_bad, &bad_sectors)) {
3904 /* too big in some way, or has a known bad block */
387bb173
NB
3905 bio_put(align_bi);
3906 rdev_dec_pending(rdev, mddev);
3907 return 0;
3908 }
3909
6c0544e2 3910 /* No reshape active, so we can trust rdev->data_offset */
3911 align_bi->bi_sector += rdev->data_offset;
3912
46031f9a
RBJ
3913 spin_lock_irq(&conf->device_lock);
3914 wait_event_lock_irq(conf->wait_for_stripe,
3915 conf->quiesce == 0,
3916 conf->device_lock, /* nothing */);
3917 atomic_inc(&conf->active_aligned_reads);
3918 spin_unlock_irq(&conf->device_lock);
3919
f679623f
RBJ
3920 generic_make_request(align_bi);
3921 return 1;
3922 } else {
3923 rcu_read_unlock();
46031f9a 3924 bio_put(align_bi);
f679623f
RBJ
3925 return 0;
3926 }
3927}
3928
8b3e6cdc
DW
3929/* __get_priority_stripe - get the next stripe to process
3930 *
3931 * Full stripe writes are allowed to pass preread active stripes up until
3932 * the bypass_threshold is exceeded. In general the bypass_count
3933 * increments when the handle_list is handled before the hold_list; however, it
3934 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3935 * stripe with in flight i/o. The bypass_count will be reset when the
3936 * head of the hold_list has changed, i.e. the head was promoted to the
3937 * handle_list.
3938 */
d1688a6d 3939static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
8b3e6cdc
DW
3940{
3941 struct stripe_head *sh;
3942
3943 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3944 __func__,
3945 list_empty(&conf->handle_list) ? "empty" : "busy",
3946 list_empty(&conf->hold_list) ? "empty" : "busy",
3947 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3948
3949 if (!list_empty(&conf->handle_list)) {
3950 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3951
3952 if (list_empty(&conf->hold_list))
3953 conf->bypass_count = 0;
3954 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3955 if (conf->hold_list.next == conf->last_hold)
3956 conf->bypass_count++;
3957 else {
3958 conf->last_hold = conf->hold_list.next;
3959 conf->bypass_count -= conf->bypass_threshold;
3960 if (conf->bypass_count < 0)
3961 conf->bypass_count = 0;
3962 }
3963 }
3964 } else if (!list_empty(&conf->hold_list) &&
3965 ((conf->bypass_threshold &&
3966 conf->bypass_count > conf->bypass_threshold) ||
3967 atomic_read(&conf->pending_full_writes) == 0)) {
3968 sh = list_entry(conf->hold_list.next,
3969 typeof(*sh), lru);
3970 conf->bypass_count -= conf->bypass_threshold;
3971 if (conf->bypass_count < 0)
3972 conf->bypass_count = 0;
3973 } else
3974 return NULL;
3975
3976 list_del_init(&sh->lru);
3977 atomic_inc(&sh->count);
3978 BUG_ON(atomic_read(&sh->count) != 1);
3979 return sh;
3980}
f679623f 3981
b4fdcb02 3982static void make_request(struct mddev *mddev, struct bio * bi)
1da177e4 3983{
d1688a6d 3984 struct r5conf *conf = mddev->private;
911d4ee8 3985 int dd_idx;
1da177e4
LT
3986 sector_t new_sector;
3987 sector_t logical_sector, last_sector;
3988 struct stripe_head *sh;
a362357b 3989 const int rw = bio_data_dir(bi);
49077326 3990 int remaining;
7c13edc8 3991 int plugged;
1da177e4 3992
e9c7469b
TH
3993 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3994 md_flush_request(mddev, bi);
5a7bbad2 3995 return;
e5dcdd80
N
3996 }
3997
3d310eb7 3998 md_write_start(mddev, bi);
06d91a5f 3999
802ba064 4000 if (rw == READ &&
52488615 4001 mddev->reshape_position == MaxSector &&
21a52c6d 4002 chunk_aligned_read(mddev,bi))
5a7bbad2 4003 return;
52488615 4004
1da177e4
LT
4005 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4006 last_sector = bi->bi_sector + (bi->bi_size>>9);
4007 bi->bi_next = NULL;
4008 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 4009
7c13edc8 4010 plugged = mddev_check_plugged(mddev);
1da177e4
LT
4011 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4012 DEFINE_WAIT(w);
b5663ba4 4013 int previous;
b578d55f 4014
7ecaa1e6 4015 retry:
b5663ba4 4016 previous = 0;
b578d55f 4017 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
b0f9ec04 4018 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 4019 /* spinlock is needed as reshape_progress may be
df8e7f76
N
4020 * 64bit on a 32bit platform, and so it might be
4021 * possible to see a half-updated value
aeb878b0 4022 * Of course reshape_progress could change after
df8e7f76
N
4023 * the lock is dropped, so once we get a reference
4024 * to the stripe that we think it is, we will have
4025 * to check again.
4026 */
7ecaa1e6 4027 spin_lock_irq(&conf->device_lock);
2c810cdd 4028 if (mddev->reshape_backwards
fef9c61f
N
4029 ? logical_sector < conf->reshape_progress
4030 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
4031 previous = 1;
4032 } else {
2c810cdd 4033 if (mddev->reshape_backwards
fef9c61f
N
4034 ? logical_sector < conf->reshape_safe
4035 : logical_sector >= conf->reshape_safe) {
b578d55f
N
4036 spin_unlock_irq(&conf->device_lock);
4037 schedule();
4038 goto retry;
4039 }
4040 }
7ecaa1e6
N
4041 spin_unlock_irq(&conf->device_lock);
4042 }
16a53ecc 4043
112bf897
N
4044 new_sector = raid5_compute_sector(conf, logical_sector,
4045 previous,
911d4ee8 4046 &dd_idx, NULL);
0c55e022 4047 pr_debug("raid456: make_request, sector %llu logical %llu\n",
1da177e4
LT
4048 (unsigned long long)new_sector,
4049 (unsigned long long)logical_sector);
4050
b5663ba4 4051 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 4052 (bi->bi_rw&RWA_MASK), 0);
1da177e4 4053 if (sh) {
b0f9ec04 4054 if (unlikely(previous)) {
7ecaa1e6 4055 /* expansion might have moved on while waiting for a
df8e7f76
N
4056 * stripe, so we must do the range check again.
4057 * Expansion could still move past after this
4058 * test, but as we are holding a reference to
4059 * 'sh', we know that if that happens,
4060 * STRIPE_EXPANDING will get set and the expansion
4061 * won't proceed until we finish with the stripe.
7ecaa1e6
N
4062 */
4063 int must_retry = 0;
4064 spin_lock_irq(&conf->device_lock);
2c810cdd 4065 if (mddev->reshape_backwards
b0f9ec04
N
4066 ? logical_sector >= conf->reshape_progress
4067 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
4068 /* mismatch, need to try again */
4069 must_retry = 1;
4070 spin_unlock_irq(&conf->device_lock);
4071 if (must_retry) {
4072 release_stripe(sh);
7a3ab908 4073 schedule();
7ecaa1e6
N
4074 goto retry;
4075 }
4076 }
e62e58a5 4077
ffd96e35 4078 if (rw == WRITE &&
a5c308d4 4079 logical_sector >= mddev->suspend_lo &&
e464eafd
N
4080 logical_sector < mddev->suspend_hi) {
4081 release_stripe(sh);
e62e58a5
N
4082 /* As the suspend_* range is controlled by
4083 * userspace, we want an interruptible
4084 * wait.
4085 */
4086 flush_signals(current);
4087 prepare_to_wait(&conf->wait_for_overlap,
4088 &w, TASK_INTERRUPTIBLE);
4089 if (logical_sector >= mddev->suspend_lo &&
4090 logical_sector < mddev->suspend_hi)
4091 schedule();
e464eafd
N
4092 goto retry;
4093 }
7ecaa1e6
N
4094
4095 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
ffd96e35 4096 !add_stripe_bio(sh, bi, dd_idx, rw)) {
7ecaa1e6
N
4097 /* Stripe is busy expanding or
4098 * add failed due to overlap. Flush everything
1da177e4
LT
4099 * and wait a while
4100 */
482c0834 4101 md_wakeup_thread(mddev->thread);
1da177e4
LT
4102 release_stripe(sh);
4103 schedule();
4104 goto retry;
4105 }
4106 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
4107 set_bit(STRIPE_HANDLE, &sh->state);
4108 clear_bit(STRIPE_DELAYED, &sh->state);
e9c7469b 4109 if ((bi->bi_rw & REQ_SYNC) &&
729a1866
N
4110 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4111 atomic_inc(&conf->preread_active_stripes);
1da177e4 4112 release_stripe(sh);
1da177e4
LT
4113 } else {
4114 /* cannot get stripe for read-ahead, just give-up */
4115 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4116 finish_wait(&conf->wait_for_overlap, &w);
4117 break;
4118 }
4119
4120 }
7c13edc8
N
4121 if (!plugged)
4122 md_wakeup_thread(mddev->thread);
4123
1da177e4 4124 spin_lock_irq(&conf->device_lock);
960e739d 4125 remaining = raid5_dec_bi_phys_segments(bi);
f6344757
N
4126 spin_unlock_irq(&conf->device_lock);
4127 if (remaining == 0) {
1da177e4 4128
16a53ecc 4129 if ( rw == WRITE )
1da177e4 4130 md_write_end(mddev);
6712ecf8 4131
0e13fe23 4132 bio_endio(bi, 0);
1da177e4 4133 }
1da177e4
LT
4134}
4135
fd01b88c 4136static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 4137
fd01b88c 4138static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 4139{
52c03291
N
4140 /* reshaping is quite different to recovery/resync so it is
4141 * handled quite separately ... here.
4142 *
4143 * On each call to sync_request, we gather one chunk worth of
4144 * destination stripes and flag them as expanding.
4145 * Then we find all the source stripes and request reads.
4146 * As the reads complete, handle_stripe will copy the data
4147 * into the destination stripe and release that stripe.
4148 */
d1688a6d 4149 struct r5conf *conf = mddev->private;
1da177e4 4150 struct stripe_head *sh;
ccfcc3c1 4151 sector_t first_sector, last_sector;
f416885e
N
4152 int raid_disks = conf->previous_raid_disks;
4153 int data_disks = raid_disks - conf->max_degraded;
4154 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
4155 int i;
4156 int dd_idx;
c8f517c4 4157 sector_t writepos, readpos, safepos;
ec32a2bd 4158 sector_t stripe_addr;
7a661381 4159 int reshape_sectors;
ab69ae12 4160 struct list_head stripes;
52c03291 4161
fef9c61f
N
4162 if (sector_nr == 0) {
4163 /* If restarting in the middle, skip the initial sectors */
2c810cdd 4164 if (mddev->reshape_backwards &&
fef9c61f
N
4165 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4166 sector_nr = raid5_size(mddev, 0, 0)
4167 - conf->reshape_progress;
2c810cdd 4168 } else if (!mddev->reshape_backwards &&
fef9c61f
N
4169 conf->reshape_progress > 0)
4170 sector_nr = conf->reshape_progress;
f416885e 4171 sector_div(sector_nr, new_data_disks);
fef9c61f 4172 if (sector_nr) {
8dee7211
N
4173 mddev->curr_resync_completed = sector_nr;
4174 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
4175 *skipped = 1;
4176 return sector_nr;
4177 }
52c03291
N
4178 }
4179
7a661381
N
4180 /* We need to process a full chunk at a time.
4181 * If old and new chunk sizes differ, we need to process the
4182 * largest of these
4183 */
664e7c41
AN
4184 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4185 reshape_sectors = mddev->new_chunk_sectors;
7a661381 4186 else
9d8f0363 4187 reshape_sectors = mddev->chunk_sectors;
7a661381 4188
b5254dd5
N
4189 /* We update the metadata at least every 10 seconds, or when
4190 * the data about to be copied would over-write the source of
4191 * the data at the front of the range. i.e. one new_stripe
4192 * along from reshape_progress new_maps to after where
4193 * reshape_safe old_maps to
52c03291 4194 */
fef9c61f 4195 writepos = conf->reshape_progress;
f416885e 4196 sector_div(writepos, new_data_disks);
c8f517c4
N
4197 readpos = conf->reshape_progress;
4198 sector_div(readpos, data_disks);
fef9c61f 4199 safepos = conf->reshape_safe;
f416885e 4200 sector_div(safepos, data_disks);
2c810cdd 4201 if (mddev->reshape_backwards) {
ed37d83e 4202 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 4203 readpos += reshape_sectors;
7a661381 4204 safepos += reshape_sectors;
fef9c61f 4205 } else {
7a661381 4206 writepos += reshape_sectors;
ed37d83e
N
4207 readpos -= min_t(sector_t, reshape_sectors, readpos);
4208 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 4209 }
52c03291 4210
b5254dd5
N
4211 /* Having calculated the 'writepos' possibly use it
4212 * to set 'stripe_addr' which is where we will write to.
4213 */
4214 if (mddev->reshape_backwards) {
4215 BUG_ON(conf->reshape_progress == 0);
4216 stripe_addr = writepos;
4217 BUG_ON((mddev->dev_sectors &
4218 ~((sector_t)reshape_sectors - 1))
4219 - reshape_sectors - stripe_addr
4220 != sector_nr);
4221 } else {
4222 BUG_ON(writepos != sector_nr + reshape_sectors);
4223 stripe_addr = sector_nr;
4224 }
4225
c8f517c4
N
4226 /* 'writepos' is the most advanced device address we might write.
4227 * 'readpos' is the least advanced device address we might read.
4228 * 'safepos' is the least address recorded in the metadata as having
4229 * been reshaped.
b5254dd5
N
4230 * If there is a min_offset_diff, these are adjusted either by
4231 * increasing the safepos/readpos if diff is negative, or
4232 * increasing writepos if diff is positive.
4233 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
4234 * ensure safety in the face of a crash - that must be done by userspace
4235 * making a backup of the data. So in that case there is no particular
4236 * rush to update metadata.
4237 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4238 * update the metadata to advance 'safepos' to match 'readpos' so that
4239 * we can be safe in the event of a crash.
4240 * So we insist on updating metadata if safepos is behind writepos and
4241 * readpos is beyond writepos.
4242 * In any case, update the metadata every 10 seconds.
4243 * Maybe that number should be configurable, but I'm not sure it is
4244 * worth it.... maybe it could be a multiple of safemode_delay???
4245 */
b5254dd5
N
4246 if (conf->min_offset_diff < 0) {
4247 safepos += -conf->min_offset_diff;
4248 readpos += -conf->min_offset_diff;
4249 } else
4250 writepos += conf->min_offset_diff;
4251
2c810cdd 4252 if ((mddev->reshape_backwards
c8f517c4
N
4253 ? (safepos > writepos && readpos < writepos)
4254 : (safepos < writepos && readpos > writepos)) ||
4255 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
4256 /* Cannot proceed until we've updated the superblock... */
4257 wait_event(conf->wait_for_overlap,
4258 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 4259 mddev->reshape_position = conf->reshape_progress;
75d3da43 4260 mddev->curr_resync_completed = sector_nr;
c8f517c4 4261 conf->reshape_checkpoint = jiffies;
850b2b42 4262 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 4263 md_wakeup_thread(mddev->thread);
850b2b42 4264 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
4265 kthread_should_stop());
4266 spin_lock_irq(&conf->device_lock);
fef9c61f 4267 conf->reshape_safe = mddev->reshape_position;
52c03291
N
4268 spin_unlock_irq(&conf->device_lock);
4269 wake_up(&conf->wait_for_overlap);
acb180b0 4270 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
4271 }
4272
ab69ae12 4273 INIT_LIST_HEAD(&stripes);
7a661381 4274 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 4275 int j;
a9f326eb 4276 int skipped_disk = 0;
a8c906ca 4277 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
4278 set_bit(STRIPE_EXPANDING, &sh->state);
4279 atomic_inc(&conf->reshape_stripes);
4280 /* If any of this stripe is beyond the end of the old
4281 * array, then we need to zero those blocks
4282 */
4283 for (j=sh->disks; j--;) {
4284 sector_t s;
4285 if (j == sh->pd_idx)
4286 continue;
f416885e 4287 if (conf->level == 6 &&
d0dabf7e 4288 j == sh->qd_idx)
f416885e 4289 continue;
784052ec 4290 s = compute_blocknr(sh, j, 0);
b522adcd 4291 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 4292 skipped_disk = 1;
52c03291
N
4293 continue;
4294 }
4295 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4296 set_bit(R5_Expanded, &sh->dev[j].flags);
4297 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4298 }
a9f326eb 4299 if (!skipped_disk) {
52c03291
N
4300 set_bit(STRIPE_EXPAND_READY, &sh->state);
4301 set_bit(STRIPE_HANDLE, &sh->state);
4302 }
ab69ae12 4303 list_add(&sh->lru, &stripes);
52c03291
N
4304 }
4305 spin_lock_irq(&conf->device_lock);
2c810cdd 4306 if (mddev->reshape_backwards)
7a661381 4307 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 4308 else
7a661381 4309 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
4310 spin_unlock_irq(&conf->device_lock);
4311 /* Ok, those stripe are ready. We can start scheduling
4312 * reads on the source stripes.
4313 * The source stripes are determined by mapping the first and last
4314 * block on the destination stripes.
4315 */
52c03291 4316 first_sector =
ec32a2bd 4317 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 4318 1, &dd_idx, NULL);
52c03291 4319 last_sector =
0e6e0271 4320 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 4321 * new_data_disks - 1),
911d4ee8 4322 1, &dd_idx, NULL);
58c0fed4
AN
4323 if (last_sector >= mddev->dev_sectors)
4324 last_sector = mddev->dev_sectors - 1;
52c03291 4325 while (first_sector <= last_sector) {
a8c906ca 4326 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
4327 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4328 set_bit(STRIPE_HANDLE, &sh->state);
4329 release_stripe(sh);
4330 first_sector += STRIPE_SECTORS;
4331 }
ab69ae12
N
4332 /* Now that the sources are clearly marked, we can release
4333 * the destination stripes
4334 */
4335 while (!list_empty(&stripes)) {
4336 sh = list_entry(stripes.next, struct stripe_head, lru);
4337 list_del_init(&sh->lru);
4338 release_stripe(sh);
4339 }
c6207277
N
4340 /* If this takes us to the resync_max point where we have to pause,
4341 * then we need to write out the superblock.
4342 */
7a661381 4343 sector_nr += reshape_sectors;
c03f6a19
N
4344 if ((sector_nr - mddev->curr_resync_completed) * 2
4345 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
4346 /* Cannot proceed until we've updated the superblock... */
4347 wait_event(conf->wait_for_overlap,
4348 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 4349 mddev->reshape_position = conf->reshape_progress;
75d3da43 4350 mddev->curr_resync_completed = sector_nr;
c8f517c4 4351 conf->reshape_checkpoint = jiffies;
c6207277
N
4352 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4353 md_wakeup_thread(mddev->thread);
4354 wait_event(mddev->sb_wait,
4355 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4356 || kthread_should_stop());
4357 spin_lock_irq(&conf->device_lock);
fef9c61f 4358 conf->reshape_safe = mddev->reshape_position;
c6207277
N
4359 spin_unlock_irq(&conf->device_lock);
4360 wake_up(&conf->wait_for_overlap);
acb180b0 4361 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 4362 }
7a661381 4363 return reshape_sectors;
52c03291
N
4364}
4365
4366/* FIXME go_faster isn't used */
fd01b88c 4367static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
52c03291 4368{
d1688a6d 4369 struct r5conf *conf = mddev->private;
52c03291 4370 struct stripe_head *sh;
58c0fed4 4371 sector_t max_sector = mddev->dev_sectors;
57dab0bd 4372 sector_t sync_blocks;
16a53ecc
N
4373 int still_degraded = 0;
4374 int i;
1da177e4 4375
72626685 4376 if (sector_nr >= max_sector) {
1da177e4 4377 /* just being told to finish up .. nothing much to do */
cea9c228 4378
29269553
N
4379 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4380 end_reshape(conf);
4381 return 0;
4382 }
72626685
N
4383
4384 if (mddev->curr_resync < max_sector) /* aborted */
4385 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4386 &sync_blocks, 1);
16a53ecc 4387 else /* completed sync */
72626685
N
4388 conf->fullsync = 0;
4389 bitmap_close_sync(mddev->bitmap);
4390
1da177e4
LT
4391 return 0;
4392 }
ccfcc3c1 4393
64bd660b
N
4394 /* Allow raid5_quiesce to complete */
4395 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4396
52c03291
N
4397 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4398 return reshape_request(mddev, sector_nr, skipped);
f6705578 4399
c6207277
N
4400 /* No need to check resync_max as we never do more than one
4401 * stripe, and as resync_max will always be on a chunk boundary,
4402 * if the check in md_do_sync didn't fire, there is no chance
4403 * of overstepping resync_max here
4404 */
4405
16a53ecc 4406 /* if there is too many failed drives and we are trying
1da177e4
LT
4407 * to resync, then assert that we are finished, because there is
4408 * nothing we can do.
4409 */
3285edf1 4410 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 4411 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 4412 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 4413 *skipped = 1;
1da177e4
LT
4414 return rv;
4415 }
72626685 4416 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 4417 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
4418 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4419 /* we can skip this block, and probably more */
4420 sync_blocks /= STRIPE_SECTORS;
4421 *skipped = 1;
4422 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4423 }
1da177e4 4424
b47490c9
N
4425 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4426
a8c906ca 4427 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 4428 if (sh == NULL) {
a8c906ca 4429 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 4430 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 4431 * is trying to get access
1da177e4 4432 */
66c006a5 4433 schedule_timeout_uninterruptible(1);
1da177e4 4434 }
16a53ecc
N
4435 /* Need to check if array will still be degraded after recovery/resync
4436 * We don't need to check the 'failed' flag as when that gets set,
4437 * recovery aborts.
4438 */
f001a70c 4439 for (i = 0; i < conf->raid_disks; i++)
16a53ecc
N
4440 if (conf->disks[i].rdev == NULL)
4441 still_degraded = 1;
4442
4443 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4444
83206d66 4445 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
1da177e4 4446
1442577b 4447 handle_stripe(sh);
1da177e4
LT
4448 release_stripe(sh);
4449
4450 return STRIPE_SECTORS;
4451}
4452
d1688a6d 4453static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
4454{
4455 /* We may not be able to submit a whole bio at once as there
4456 * may not be enough stripe_heads available.
4457 * We cannot pre-allocate enough stripe_heads as we may need
4458 * more than exist in the cache (if we allow ever large chunks).
4459 * So we do one stripe head at a time and record in
4460 * ->bi_hw_segments how many have been done.
4461 *
4462 * We *know* that this entire raid_bio is in one chunk, so
4463 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4464 */
4465 struct stripe_head *sh;
911d4ee8 4466 int dd_idx;
46031f9a
RBJ
4467 sector_t sector, logical_sector, last_sector;
4468 int scnt = 0;
4469 int remaining;
4470 int handled = 0;
4471
4472 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 4473 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 4474 0, &dd_idx, NULL);
46031f9a
RBJ
4475 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4476
4477 for (; logical_sector < last_sector;
387bb173
NB
4478 logical_sector += STRIPE_SECTORS,
4479 sector += STRIPE_SECTORS,
4480 scnt++) {
46031f9a 4481
960e739d 4482 if (scnt < raid5_bi_hw_segments(raid_bio))
46031f9a
RBJ
4483 /* already done this stripe */
4484 continue;
4485
a8c906ca 4486 sh = get_active_stripe(conf, sector, 0, 1, 0);
46031f9a
RBJ
4487
4488 if (!sh) {
4489 /* failed to get a stripe - must wait */
960e739d 4490 raid5_set_bi_hw_segments(raid_bio, scnt);
46031f9a
RBJ
4491 conf->retry_read_aligned = raid_bio;
4492 return handled;
4493 }
4494
387bb173
NB
4495 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4496 release_stripe(sh);
960e739d 4497 raid5_set_bi_hw_segments(raid_bio, scnt);
387bb173
NB
4498 conf->retry_read_aligned = raid_bio;
4499 return handled;
4500 }
4501
36d1c647 4502 handle_stripe(sh);
46031f9a
RBJ
4503 release_stripe(sh);
4504 handled++;
4505 }
4506 spin_lock_irq(&conf->device_lock);
960e739d 4507 remaining = raid5_dec_bi_phys_segments(raid_bio);
46031f9a 4508 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
4509 if (remaining == 0)
4510 bio_endio(raid_bio, 0);
46031f9a
RBJ
4511 if (atomic_dec_and_test(&conf->active_aligned_reads))
4512 wake_up(&conf->wait_for_stripe);
4513 return handled;
4514}
4515
46031f9a 4516
1da177e4
LT
4517/*
4518 * This is our raid5 kernel thread.
4519 *
4520 * We scan the hash table for stripes which can be handled now.
4521 * During the scan, completed stripes are saved for us by the interrupt
4522 * handler, so that they will not have to wait for our next wakeup.
4523 */
fd01b88c 4524static void raid5d(struct mddev *mddev)
1da177e4
LT
4525{
4526 struct stripe_head *sh;
d1688a6d 4527 struct r5conf *conf = mddev->private;
1da177e4 4528 int handled;
e1dfa0a2 4529 struct blk_plug plug;
1da177e4 4530
45b4233c 4531 pr_debug("+++ raid5d active\n");
1da177e4
LT
4532
4533 md_check_recovery(mddev);
1da177e4 4534
e1dfa0a2 4535 blk_start_plug(&plug);
1da177e4
LT
4536 handled = 0;
4537 spin_lock_irq(&conf->device_lock);
4538 while (1) {
46031f9a 4539 struct bio *bio;
1da177e4 4540
7c13edc8
N
4541 if (atomic_read(&mddev->plug_cnt) == 0 &&
4542 !list_empty(&conf->bitmap_list)) {
4543 /* Now is a good time to flush some bitmap updates */
4544 conf->seq_flush++;
700e432d 4545 spin_unlock_irq(&conf->device_lock);
72626685 4546 bitmap_unplug(mddev->bitmap);
700e432d 4547 spin_lock_irq(&conf->device_lock);
7c13edc8 4548 conf->seq_write = conf->seq_flush;
72626685
N
4549 activate_bit_delay(conf);
4550 }
7c13edc8
N
4551 if (atomic_read(&mddev->plug_cnt) == 0)
4552 raid5_activate_delayed(conf);
72626685 4553
46031f9a
RBJ
4554 while ((bio = remove_bio_from_retry(conf))) {
4555 int ok;
4556 spin_unlock_irq(&conf->device_lock);
4557 ok = retry_aligned_read(conf, bio);
4558 spin_lock_irq(&conf->device_lock);
4559 if (!ok)
4560 break;
4561 handled++;
4562 }
4563
8b3e6cdc
DW
4564 sh = __get_priority_stripe(conf);
4565
c9f21aaf 4566 if (!sh)
1da177e4 4567 break;
1da177e4
LT
4568 spin_unlock_irq(&conf->device_lock);
4569
4570 handled++;
417b8d4a
DW
4571 handle_stripe(sh);
4572 release_stripe(sh);
4573 cond_resched();
1da177e4 4574
de393cde
N
4575 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4576 md_check_recovery(mddev);
4577
1da177e4
LT
4578 spin_lock_irq(&conf->device_lock);
4579 }
45b4233c 4580 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4581
4582 spin_unlock_irq(&conf->device_lock);
4583
c9f21aaf 4584 async_tx_issue_pending_all();
e1dfa0a2 4585 blk_finish_plug(&plug);
1da177e4 4586
45b4233c 4587 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4588}
4589
3f294f4f 4590static ssize_t
fd01b88c 4591raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 4592{
d1688a6d 4593 struct r5conf *conf = mddev->private;
96de1e66
N
4594 if (conf)
4595 return sprintf(page, "%d\n", conf->max_nr_stripes);
4596 else
4597 return 0;
3f294f4f
N
4598}
4599
c41d4ac4 4600int
fd01b88c 4601raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 4602{
d1688a6d 4603 struct r5conf *conf = mddev->private;
b5470dc5
DW
4604 int err;
4605
c41d4ac4 4606 if (size <= 16 || size > 32768)
3f294f4f 4607 return -EINVAL;
c41d4ac4 4608 while (size < conf->max_nr_stripes) {
3f294f4f
N
4609 if (drop_one_stripe(conf))
4610 conf->max_nr_stripes--;
4611 else
4612 break;
4613 }
b5470dc5
DW
4614 err = md_allow_write(mddev);
4615 if (err)
4616 return err;
c41d4ac4 4617 while (size > conf->max_nr_stripes) {
3f294f4f
N
4618 if (grow_one_stripe(conf))
4619 conf->max_nr_stripes++;
4620 else break;
4621 }
c41d4ac4
N
4622 return 0;
4623}
4624EXPORT_SYMBOL(raid5_set_cache_size);
4625
4626static ssize_t
fd01b88c 4627raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 4628{
d1688a6d 4629 struct r5conf *conf = mddev->private;
c41d4ac4
N
4630 unsigned long new;
4631 int err;
4632
4633 if (len >= PAGE_SIZE)
4634 return -EINVAL;
4635 if (!conf)
4636 return -ENODEV;
4637
4638 if (strict_strtoul(page, 10, &new))
4639 return -EINVAL;
4640 err = raid5_set_cache_size(mddev, new);
4641 if (err)
4642 return err;
3f294f4f
N
4643 return len;
4644}
007583c9 4645
96de1e66
N
4646static struct md_sysfs_entry
4647raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4648 raid5_show_stripe_cache_size,
4649 raid5_store_stripe_cache_size);
3f294f4f 4650
8b3e6cdc 4651static ssize_t
fd01b88c 4652raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 4653{
d1688a6d 4654 struct r5conf *conf = mddev->private;
8b3e6cdc
DW
4655 if (conf)
4656 return sprintf(page, "%d\n", conf->bypass_threshold);
4657 else
4658 return 0;
4659}
4660
4661static ssize_t
fd01b88c 4662raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 4663{
d1688a6d 4664 struct r5conf *conf = mddev->private;
4ef197d8 4665 unsigned long new;
8b3e6cdc
DW
4666 if (len >= PAGE_SIZE)
4667 return -EINVAL;
4668 if (!conf)
4669 return -ENODEV;
4670
4ef197d8 4671 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4672 return -EINVAL;
4ef197d8 4673 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4674 return -EINVAL;
4675 conf->bypass_threshold = new;
4676 return len;
4677}
4678
4679static struct md_sysfs_entry
4680raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4681 S_IRUGO | S_IWUSR,
4682 raid5_show_preread_threshold,
4683 raid5_store_preread_threshold);
4684
3f294f4f 4685static ssize_t
fd01b88c 4686stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 4687{
d1688a6d 4688 struct r5conf *conf = mddev->private;
96de1e66
N
4689 if (conf)
4690 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4691 else
4692 return 0;
3f294f4f
N
4693}
4694
96de1e66
N
4695static struct md_sysfs_entry
4696raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4697
007583c9 4698static struct attribute *raid5_attrs[] = {
3f294f4f
N
4699 &raid5_stripecache_size.attr,
4700 &raid5_stripecache_active.attr,
8b3e6cdc 4701 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4702 NULL,
4703};
007583c9
N
4704static struct attribute_group raid5_attrs_group = {
4705 .name = NULL,
4706 .attrs = raid5_attrs,
3f294f4f
N
4707};
4708
80c3a6ce 4709static sector_t
fd01b88c 4710raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 4711{
d1688a6d 4712 struct r5conf *conf = mddev->private;
80c3a6ce
DW
4713
4714 if (!sectors)
4715 sectors = mddev->dev_sectors;
5e5e3e78 4716 if (!raid_disks)
7ec05478 4717 /* size is defined by the smallest of previous and new size */
5e5e3e78 4718 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 4719
9d8f0363 4720 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 4721 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
4722 return sectors * (raid_disks - conf->max_degraded);
4723}
4724
d1688a6d 4725static void raid5_free_percpu(struct r5conf *conf)
36d1c647
DW
4726{
4727 struct raid5_percpu *percpu;
4728 unsigned long cpu;
4729
4730 if (!conf->percpu)
4731 return;
4732
4733 get_online_cpus();
4734 for_each_possible_cpu(cpu) {
4735 percpu = per_cpu_ptr(conf->percpu, cpu);
4736 safe_put_page(percpu->spare_page);
d6f38f31 4737 kfree(percpu->scribble);
36d1c647
DW
4738 }
4739#ifdef CONFIG_HOTPLUG_CPU
4740 unregister_cpu_notifier(&conf->cpu_notify);
4741#endif
4742 put_online_cpus();
4743
4744 free_percpu(conf->percpu);
4745}
4746
d1688a6d 4747static void free_conf(struct r5conf *conf)
95fc17aa
DW
4748{
4749 shrink_stripes(conf);
36d1c647 4750 raid5_free_percpu(conf);
95fc17aa
DW
4751 kfree(conf->disks);
4752 kfree(conf->stripe_hashtbl);
4753 kfree(conf);
4754}
4755
36d1c647
DW
4756#ifdef CONFIG_HOTPLUG_CPU
4757static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4758 void *hcpu)
4759{
d1688a6d 4760 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
4761 long cpu = (long)hcpu;
4762 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4763
4764 switch (action) {
4765 case CPU_UP_PREPARE:
4766 case CPU_UP_PREPARE_FROZEN:
d6f38f31 4767 if (conf->level == 6 && !percpu->spare_page)
36d1c647 4768 percpu->spare_page = alloc_page(GFP_KERNEL);
d6f38f31
DW
4769 if (!percpu->scribble)
4770 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4771
4772 if (!percpu->scribble ||
4773 (conf->level == 6 && !percpu->spare_page)) {
4774 safe_put_page(percpu->spare_page);
4775 kfree(percpu->scribble);
36d1c647
DW
4776 pr_err("%s: failed memory allocation for cpu%ld\n",
4777 __func__, cpu);
55af6bb5 4778 return notifier_from_errno(-ENOMEM);
36d1c647
DW
4779 }
4780 break;
4781 case CPU_DEAD:
4782 case CPU_DEAD_FROZEN:
4783 safe_put_page(percpu->spare_page);
d6f38f31 4784 kfree(percpu->scribble);
36d1c647 4785 percpu->spare_page = NULL;
d6f38f31 4786 percpu->scribble = NULL;
36d1c647
DW
4787 break;
4788 default:
4789 break;
4790 }
4791 return NOTIFY_OK;
4792}
4793#endif
4794
d1688a6d 4795static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
4796{
4797 unsigned long cpu;
4798 struct page *spare_page;
a29d8b8e 4799 struct raid5_percpu __percpu *allcpus;
d6f38f31 4800 void *scribble;
36d1c647
DW
4801 int err;
4802
36d1c647
DW
4803 allcpus = alloc_percpu(struct raid5_percpu);
4804 if (!allcpus)
4805 return -ENOMEM;
4806 conf->percpu = allcpus;
4807
4808 get_online_cpus();
4809 err = 0;
4810 for_each_present_cpu(cpu) {
d6f38f31
DW
4811 if (conf->level == 6) {
4812 spare_page = alloc_page(GFP_KERNEL);
4813 if (!spare_page) {
4814 err = -ENOMEM;
4815 break;
4816 }
4817 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4818 }
5e5e3e78 4819 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
d6f38f31 4820 if (!scribble) {
36d1c647
DW
4821 err = -ENOMEM;
4822 break;
4823 }
d6f38f31 4824 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
36d1c647
DW
4825 }
4826#ifdef CONFIG_HOTPLUG_CPU
4827 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4828 conf->cpu_notify.priority = 0;
4829 if (err == 0)
4830 err = register_cpu_notifier(&conf->cpu_notify);
4831#endif
4832 put_online_cpus();
4833
4834 return err;
4835}
4836
d1688a6d 4837static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 4838{
d1688a6d 4839 struct r5conf *conf;
5e5e3e78 4840 int raid_disk, memory, max_disks;
3cb03002 4841 struct md_rdev *rdev;
1da177e4 4842 struct disk_info *disk;
0232605d 4843 char pers_name[6];
1da177e4 4844
91adb564
N
4845 if (mddev->new_level != 5
4846 && mddev->new_level != 4
4847 && mddev->new_level != 6) {
0c55e022 4848 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
4849 mdname(mddev), mddev->new_level);
4850 return ERR_PTR(-EIO);
1da177e4 4851 }
91adb564
N
4852 if ((mddev->new_level == 5
4853 && !algorithm_valid_raid5(mddev->new_layout)) ||
4854 (mddev->new_level == 6
4855 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 4856 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
4857 mdname(mddev), mddev->new_layout);
4858 return ERR_PTR(-EIO);
99c0fb5f 4859 }
91adb564 4860 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 4861 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
4862 mdname(mddev), mddev->raid_disks);
4863 return ERR_PTR(-EINVAL);
4bbf3771
N
4864 }
4865
664e7c41
AN
4866 if (!mddev->new_chunk_sectors ||
4867 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4868 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
4869 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4870 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 4871 return ERR_PTR(-EINVAL);
f6705578
N
4872 }
4873
d1688a6d 4874 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 4875 if (conf == NULL)
1da177e4 4876 goto abort;
f5efd45a
DW
4877 spin_lock_init(&conf->device_lock);
4878 init_waitqueue_head(&conf->wait_for_stripe);
4879 init_waitqueue_head(&conf->wait_for_overlap);
4880 INIT_LIST_HEAD(&conf->handle_list);
4881 INIT_LIST_HEAD(&conf->hold_list);
4882 INIT_LIST_HEAD(&conf->delayed_list);
4883 INIT_LIST_HEAD(&conf->bitmap_list);
4884 INIT_LIST_HEAD(&conf->inactive_list);
4885 atomic_set(&conf->active_stripes, 0);
4886 atomic_set(&conf->preread_active_stripes, 0);
4887 atomic_set(&conf->active_aligned_reads, 0);
4888 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 4889 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
4890
4891 conf->raid_disks = mddev->raid_disks;
4892 if (mddev->reshape_position == MaxSector)
4893 conf->previous_raid_disks = mddev->raid_disks;
4894 else
f6705578 4895 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78
N
4896 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4897 conf->scribble_len = scribble_len(max_disks);
f6705578 4898
5e5e3e78 4899 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
4900 GFP_KERNEL);
4901 if (!conf->disks)
4902 goto abort;
9ffae0cf 4903
1da177e4
LT
4904 conf->mddev = mddev;
4905
fccddba0 4906 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4907 goto abort;
1da177e4 4908
36d1c647
DW
4909 conf->level = mddev->new_level;
4910 if (raid5_alloc_percpu(conf) != 0)
4911 goto abort;
4912
0c55e022 4913 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 4914
dafb20fa 4915 rdev_for_each(rdev, mddev) {
1da177e4 4916 raid_disk = rdev->raid_disk;
5e5e3e78 4917 if (raid_disk >= max_disks
1da177e4
LT
4918 || raid_disk < 0)
4919 continue;
4920 disk = conf->disks + raid_disk;
4921
17045f52
N
4922 if (test_bit(Replacement, &rdev->flags)) {
4923 if (disk->replacement)
4924 goto abort;
4925 disk->replacement = rdev;
4926 } else {
4927 if (disk->rdev)
4928 goto abort;
4929 disk->rdev = rdev;
4930 }
1da177e4 4931
b2d444d7 4932 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 4933 char b[BDEVNAME_SIZE];
0c55e022
N
4934 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4935 " disk %d\n",
4936 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 4937 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
4938 /* Cannot rely on bitmap to complete recovery */
4939 conf->fullsync = 1;
1da177e4
LT
4940 }
4941
09c9e5fa 4942 conf->chunk_sectors = mddev->new_chunk_sectors;
91adb564 4943 conf->level = mddev->new_level;
16a53ecc
N
4944 if (conf->level == 6)
4945 conf->max_degraded = 2;
4946 else
4947 conf->max_degraded = 1;
91adb564 4948 conf->algorithm = mddev->new_layout;
1da177e4 4949 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 4950 conf->reshape_progress = mddev->reshape_position;
e183eaed 4951 if (conf->reshape_progress != MaxSector) {
09c9e5fa 4952 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
4953 conf->prev_algo = mddev->layout;
4954 }
1da177e4 4955
91adb564 4956 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 4957 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
91adb564
N
4958 if (grow_stripes(conf, conf->max_nr_stripes)) {
4959 printk(KERN_ERR
0c55e022
N
4960 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4961 mdname(mddev), memory);
91adb564
N
4962 goto abort;
4963 } else
0c55e022
N
4964 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4965 mdname(mddev), memory);
1da177e4 4966
0232605d
N
4967 sprintf(pers_name, "raid%d", mddev->new_level);
4968 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564
N
4969 if (!conf->thread) {
4970 printk(KERN_ERR
0c55e022 4971 "md/raid:%s: couldn't allocate thread.\n",
91adb564 4972 mdname(mddev));
16a53ecc
N
4973 goto abort;
4974 }
91adb564
N
4975
4976 return conf;
4977
4978 abort:
4979 if (conf) {
95fc17aa 4980 free_conf(conf);
91adb564
N
4981 return ERR_PTR(-EIO);
4982 } else
4983 return ERR_PTR(-ENOMEM);
4984}
4985
c148ffdc
N
4986
4987static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4988{
4989 switch (algo) {
4990 case ALGORITHM_PARITY_0:
4991 if (raid_disk < max_degraded)
4992 return 1;
4993 break;
4994 case ALGORITHM_PARITY_N:
4995 if (raid_disk >= raid_disks - max_degraded)
4996 return 1;
4997 break;
4998 case ALGORITHM_PARITY_0_6:
4999 if (raid_disk == 0 ||
5000 raid_disk == raid_disks - 1)
5001 return 1;
5002 break;
5003 case ALGORITHM_LEFT_ASYMMETRIC_6:
5004 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5005 case ALGORITHM_LEFT_SYMMETRIC_6:
5006 case ALGORITHM_RIGHT_SYMMETRIC_6:
5007 if (raid_disk == raid_disks - 1)
5008 return 1;
5009 }
5010 return 0;
5011}
5012
fd01b88c 5013static int run(struct mddev *mddev)
91adb564 5014{
d1688a6d 5015 struct r5conf *conf;
9f7c2220 5016 int working_disks = 0;
c148ffdc 5017 int dirty_parity_disks = 0;
3cb03002 5018 struct md_rdev *rdev;
c148ffdc 5019 sector_t reshape_offset = 0;
17045f52 5020 int i;
b5254dd5
N
5021 long long min_offset_diff = 0;
5022 int first = 1;
91adb564 5023
8c6ac868 5024 if (mddev->recovery_cp != MaxSector)
0c55e022 5025 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
5026 " -- starting background reconstruction\n",
5027 mdname(mddev));
b5254dd5
N
5028
5029 rdev_for_each(rdev, mddev) {
5030 long long diff;
5031 if (rdev->raid_disk < 0)
5032 continue;
5033 diff = (rdev->new_data_offset - rdev->data_offset);
5034 if (first) {
5035 min_offset_diff = diff;
5036 first = 0;
5037 } else if (mddev->reshape_backwards &&
5038 diff < min_offset_diff)
5039 min_offset_diff = diff;
5040 else if (!mddev->reshape_backwards &&
5041 diff > min_offset_diff)
5042 min_offset_diff = diff;
5043 }
5044
91adb564
N
5045 if (mddev->reshape_position != MaxSector) {
5046 /* Check that we can continue the reshape.
b5254dd5
N
5047 * Difficulties arise if the stripe we would write to
5048 * next is at or after the stripe we would read from next.
5049 * For a reshape that changes the number of devices, this
5050 * is only possible for a very short time, and mdadm makes
5051 * sure that time appears to have past before assembling
5052 * the array. So we fail if that time hasn't passed.
5053 * For a reshape that keeps the number of devices the same
5054 * mdadm must be monitoring the reshape can keeping the
5055 * critical areas read-only and backed up. It will start
5056 * the array in read-only mode, so we check for that.
91adb564
N
5057 */
5058 sector_t here_new, here_old;
5059 int old_disks;
18b00334 5060 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 5061
88ce4930 5062 if (mddev->new_level != mddev->level) {
0c55e022 5063 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
5064 "required - aborting.\n",
5065 mdname(mddev));
5066 return -EINVAL;
5067 }
91adb564
N
5068 old_disks = mddev->raid_disks - mddev->delta_disks;
5069 /* reshape_position must be on a new-stripe boundary, and one
5070 * further up in new geometry must map after here in old
5071 * geometry.
5072 */
5073 here_new = mddev->reshape_position;
664e7c41 5074 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 5075 (mddev->raid_disks - max_degraded))) {
0c55e022
N
5076 printk(KERN_ERR "md/raid:%s: reshape_position not "
5077 "on a stripe boundary\n", mdname(mddev));
91adb564
N
5078 return -EINVAL;
5079 }
c148ffdc 5080 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
5081 /* here_new is the stripe we will write to */
5082 here_old = mddev->reshape_position;
9d8f0363 5083 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
5084 (old_disks-max_degraded));
5085 /* here_old is the first stripe that we might need to read
5086 * from */
67ac6011 5087 if (mddev->delta_disks == 0) {
b5254dd5
N
5088 if ((here_new * mddev->new_chunk_sectors !=
5089 here_old * mddev->chunk_sectors)) {
5090 printk(KERN_ERR "md/raid:%s: reshape position is"
5091 " confused - aborting\n", mdname(mddev));
5092 return -EINVAL;
5093 }
67ac6011 5094 /* We cannot be sure it is safe to start an in-place
b5254dd5 5095 * reshape. It is only safe if user-space is monitoring
67ac6011
N
5096 * and taking constant backups.
5097 * mdadm always starts a situation like this in
5098 * readonly mode so it can take control before
5099 * allowing any writes. So just check for that.
5100 */
b5254dd5
N
5101 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5102 abs(min_offset_diff) >= mddev->new_chunk_sectors)
5103 /* not really in-place - so OK */;
5104 else if (mddev->ro == 0) {
5105 printk(KERN_ERR "md/raid:%s: in-place reshape "
5106 "must be started in read-only mode "
5107 "- aborting\n",
0c55e022 5108 mdname(mddev));
67ac6011
N
5109 return -EINVAL;
5110 }
2c810cdd 5111 } else if (mddev->reshape_backwards
b5254dd5 5112 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
67ac6011
N
5113 here_old * mddev->chunk_sectors)
5114 : (here_new * mddev->new_chunk_sectors >=
b5254dd5 5115 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
91adb564 5116 /* Reading from the same stripe as writing to - bad */
0c55e022
N
5117 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5118 "auto-recovery - aborting.\n",
5119 mdname(mddev));
91adb564
N
5120 return -EINVAL;
5121 }
0c55e022
N
5122 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5123 mdname(mddev));
91adb564
N
5124 /* OK, we should be able to continue; */
5125 } else {
5126 BUG_ON(mddev->level != mddev->new_level);
5127 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 5128 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 5129 BUG_ON(mddev->delta_disks != 0);
1da177e4 5130 }
91adb564 5131
245f46c2
N
5132 if (mddev->private == NULL)
5133 conf = setup_conf(mddev);
5134 else
5135 conf = mddev->private;
5136
91adb564
N
5137 if (IS_ERR(conf))
5138 return PTR_ERR(conf);
5139
b5254dd5 5140 conf->min_offset_diff = min_offset_diff;
91adb564
N
5141 mddev->thread = conf->thread;
5142 conf->thread = NULL;
5143 mddev->private = conf;
5144
17045f52
N
5145 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5146 i++) {
5147 rdev = conf->disks[i].rdev;
5148 if (!rdev && conf->disks[i].replacement) {
5149 /* The replacement is all we have yet */
5150 rdev = conf->disks[i].replacement;
5151 conf->disks[i].replacement = NULL;
5152 clear_bit(Replacement, &rdev->flags);
5153 conf->disks[i].rdev = rdev;
5154 }
5155 if (!rdev)
c148ffdc 5156 continue;
17045f52
N
5157 if (conf->disks[i].replacement &&
5158 conf->reshape_progress != MaxSector) {
5159 /* replacements and reshape simply do not mix. */
5160 printk(KERN_ERR "md: cannot handle concurrent "
5161 "replacement and reshape.\n");
5162 goto abort;
5163 }
2f115882 5164 if (test_bit(In_sync, &rdev->flags)) {
91adb564 5165 working_disks++;
2f115882
N
5166 continue;
5167 }
c148ffdc
N
5168 /* This disc is not fully in-sync. However if it
5169 * just stored parity (beyond the recovery_offset),
5170 * when we don't need to be concerned about the
5171 * array being dirty.
5172 * When reshape goes 'backwards', we never have
5173 * partially completed devices, so we only need
5174 * to worry about reshape going forwards.
5175 */
5176 /* Hack because v0.91 doesn't store recovery_offset properly. */
5177 if (mddev->major_version == 0 &&
5178 mddev->minor_version > 90)
5179 rdev->recovery_offset = reshape_offset;
5180
c148ffdc
N
5181 if (rdev->recovery_offset < reshape_offset) {
5182 /* We need to check old and new layout */
5183 if (!only_parity(rdev->raid_disk,
5184 conf->algorithm,
5185 conf->raid_disks,
5186 conf->max_degraded))
5187 continue;
5188 }
5189 if (!only_parity(rdev->raid_disk,
5190 conf->prev_algo,
5191 conf->previous_raid_disks,
5192 conf->max_degraded))
5193 continue;
5194 dirty_parity_disks++;
5195 }
91adb564 5196
17045f52
N
5197 /*
5198 * 0 for a fully functional array, 1 or 2 for a degraded array.
5199 */
908f4fbd 5200 mddev->degraded = calc_degraded(conf);
91adb564 5201
674806d6 5202 if (has_failed(conf)) {
0c55e022 5203 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 5204 " (%d/%d failed)\n",
02c2de8c 5205 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
5206 goto abort;
5207 }
5208
91adb564 5209 /* device size must be a multiple of chunk size */
9d8f0363 5210 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
5211 mddev->resync_max_sectors = mddev->dev_sectors;
5212
c148ffdc 5213 if (mddev->degraded > dirty_parity_disks &&
1da177e4 5214 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
5215 if (mddev->ok_start_degraded)
5216 printk(KERN_WARNING
0c55e022
N
5217 "md/raid:%s: starting dirty degraded array"
5218 " - data corruption possible.\n",
6ff8d8ec
N
5219 mdname(mddev));
5220 else {
5221 printk(KERN_ERR
0c55e022 5222 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
5223 mdname(mddev));
5224 goto abort;
5225 }
1da177e4
LT
5226 }
5227
1da177e4 5228 if (mddev->degraded == 0)
0c55e022
N
5229 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5230 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
5231 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5232 mddev->new_layout);
1da177e4 5233 else
0c55e022
N
5234 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5235 " out of %d devices, algorithm %d\n",
5236 mdname(mddev), conf->level,
5237 mddev->raid_disks - mddev->degraded,
5238 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
5239
5240 print_raid5_conf(conf);
5241
fef9c61f 5242 if (conf->reshape_progress != MaxSector) {
fef9c61f 5243 conf->reshape_safe = conf->reshape_progress;
f6705578
N
5244 atomic_set(&conf->reshape_stripes, 0);
5245 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5246 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5247 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5248 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5249 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5250 "reshape");
f6705578
N
5251 }
5252
1da177e4
LT
5253
5254 /* Ok, everything is just fine now */
a64c876f
N
5255 if (mddev->to_remove == &raid5_attrs_group)
5256 mddev->to_remove = NULL;
00bcb4ac
N
5257 else if (mddev->kobj.sd &&
5258 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 5259 printk(KERN_WARNING
4a5add49 5260 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 5261 mdname(mddev));
4a5add49 5262 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 5263
4a5add49 5264 if (mddev->queue) {
9f7c2220 5265 int chunk_size;
4a5add49
N
5266 /* read-ahead size must cover two whole stripes, which
5267 * is 2 * (datadisks) * chunksize where 'n' is the
5268 * number of raid devices
5269 */
5270 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5271 int stripe = data_disks *
5272 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5273 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5274 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 5275
4a5add49 5276 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
f022b2fd 5277
11d8a6e3
N
5278 mddev->queue->backing_dev_info.congested_data = mddev;
5279 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
7a5febe9 5280
9f7c2220
N
5281 chunk_size = mddev->chunk_sectors << 9;
5282 blk_queue_io_min(mddev->queue, chunk_size);
5283 blk_queue_io_opt(mddev->queue, chunk_size *
5284 (conf->raid_disks - conf->max_degraded));
8f6c2e4b 5285
05616be5 5286 rdev_for_each(rdev, mddev) {
9f7c2220
N
5287 disk_stack_limits(mddev->gendisk, rdev->bdev,
5288 rdev->data_offset << 9);
05616be5
N
5289 disk_stack_limits(mddev->gendisk, rdev->bdev,
5290 rdev->new_data_offset << 9);
5291 }
9f7c2220 5292 }
23032a0e 5293
1da177e4
LT
5294 return 0;
5295abort:
01f96c0a 5296 md_unregister_thread(&mddev->thread);
e4f869d9
N
5297 print_raid5_conf(conf);
5298 free_conf(conf);
1da177e4 5299 mddev->private = NULL;
0c55e022 5300 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
5301 return -EIO;
5302}
5303
fd01b88c 5304static int stop(struct mddev *mddev)
1da177e4 5305{
d1688a6d 5306 struct r5conf *conf = mddev->private;
1da177e4 5307
01f96c0a 5308 md_unregister_thread(&mddev->thread);
11d8a6e3
N
5309 if (mddev->queue)
5310 mddev->queue->backing_dev_info.congested_fn = NULL;
95fc17aa 5311 free_conf(conf);
a64c876f
N
5312 mddev->private = NULL;
5313 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
5314 return 0;
5315}
5316
fd01b88c 5317static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 5318{
d1688a6d 5319 struct r5conf *conf = mddev->private;
1da177e4
LT
5320 int i;
5321
9d8f0363
AN
5322 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5323 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 5324 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
5325 for (i = 0; i < conf->raid_disks; i++)
5326 seq_printf (seq, "%s",
5327 conf->disks[i].rdev &&
b2d444d7 5328 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 5329 seq_printf (seq, "]");
1da177e4
LT
5330}
5331
d1688a6d 5332static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
5333{
5334 int i;
5335 struct disk_info *tmp;
5336
0c55e022 5337 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
5338 if (!conf) {
5339 printk("(conf==NULL)\n");
5340 return;
5341 }
0c55e022
N
5342 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5343 conf->raid_disks,
5344 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
5345
5346 for (i = 0; i < conf->raid_disks; i++) {
5347 char b[BDEVNAME_SIZE];
5348 tmp = conf->disks + i;
5349 if (tmp->rdev)
0c55e022
N
5350 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5351 i, !test_bit(Faulty, &tmp->rdev->flags),
5352 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
5353 }
5354}
5355
fd01b88c 5356static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
5357{
5358 int i;
d1688a6d 5359 struct r5conf *conf = mddev->private;
1da177e4 5360 struct disk_info *tmp;
6b965620
N
5361 int count = 0;
5362 unsigned long flags;
1da177e4
LT
5363
5364 for (i = 0; i < conf->raid_disks; i++) {
5365 tmp = conf->disks + i;
dd054fce
N
5366 if (tmp->replacement
5367 && tmp->replacement->recovery_offset == MaxSector
5368 && !test_bit(Faulty, &tmp->replacement->flags)
5369 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5370 /* Replacement has just become active. */
5371 if (!tmp->rdev
5372 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5373 count++;
5374 if (tmp->rdev) {
5375 /* Replaced device not technically faulty,
5376 * but we need to be sure it gets removed
5377 * and never re-added.
5378 */
5379 set_bit(Faulty, &tmp->rdev->flags);
5380 sysfs_notify_dirent_safe(
5381 tmp->rdev->sysfs_state);
5382 }
5383 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5384 } else if (tmp->rdev
70fffd0b 5385 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 5386 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 5387 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 5388 count++;
43c73ca4 5389 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
5390 }
5391 }
6b965620 5392 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 5393 mddev->degraded = calc_degraded(conf);
6b965620 5394 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 5395 print_raid5_conf(conf);
6b965620 5396 return count;
1da177e4
LT
5397}
5398
b8321b68 5399static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 5400{
d1688a6d 5401 struct r5conf *conf = mddev->private;
1da177e4 5402 int err = 0;
b8321b68 5403 int number = rdev->raid_disk;
657e3e4d 5404 struct md_rdev **rdevp;
1da177e4
LT
5405 struct disk_info *p = conf->disks + number;
5406
5407 print_raid5_conf(conf);
657e3e4d
N
5408 if (rdev == p->rdev)
5409 rdevp = &p->rdev;
5410 else if (rdev == p->replacement)
5411 rdevp = &p->replacement;
5412 else
5413 return 0;
5414
5415 if (number >= conf->raid_disks &&
5416 conf->reshape_progress == MaxSector)
5417 clear_bit(In_sync, &rdev->flags);
5418
5419 if (test_bit(In_sync, &rdev->flags) ||
5420 atomic_read(&rdev->nr_pending)) {
5421 err = -EBUSY;
5422 goto abort;
5423 }
5424 /* Only remove non-faulty devices if recovery
5425 * isn't possible.
5426 */
5427 if (!test_bit(Faulty, &rdev->flags) &&
5428 mddev->recovery_disabled != conf->recovery_disabled &&
5429 !has_failed(conf) &&
dd054fce 5430 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
5431 number < conf->raid_disks) {
5432 err = -EBUSY;
5433 goto abort;
5434 }
5435 *rdevp = NULL;
5436 synchronize_rcu();
5437 if (atomic_read(&rdev->nr_pending)) {
5438 /* lost the race, try later */
5439 err = -EBUSY;
5440 *rdevp = rdev;
dd054fce
N
5441 } else if (p->replacement) {
5442 /* We must have just cleared 'rdev' */
5443 p->rdev = p->replacement;
5444 clear_bit(Replacement, &p->replacement->flags);
5445 smp_mb(); /* Make sure other CPUs may see both as identical
5446 * but will never see neither - if they are careful
5447 */
5448 p->replacement = NULL;
5449 clear_bit(WantReplacement, &rdev->flags);
5450 } else
5451 /* We might have just removed the Replacement as faulty-
5452 * clear the bit just in case
5453 */
5454 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
5455abort:
5456
5457 print_raid5_conf(conf);
5458 return err;
5459}
5460
fd01b88c 5461static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 5462{
d1688a6d 5463 struct r5conf *conf = mddev->private;
199050ea 5464 int err = -EEXIST;
1da177e4
LT
5465 int disk;
5466 struct disk_info *p;
6c2fce2e
NB
5467 int first = 0;
5468 int last = conf->raid_disks - 1;
1da177e4 5469
7f0da59b
N
5470 if (mddev->recovery_disabled == conf->recovery_disabled)
5471 return -EBUSY;
5472
dc10c643 5473 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 5474 /* no point adding a device */
199050ea 5475 return -EINVAL;
1da177e4 5476
6c2fce2e
NB
5477 if (rdev->raid_disk >= 0)
5478 first = last = rdev->raid_disk;
1da177e4
LT
5479
5480 /*
16a53ecc
N
5481 * find the disk ... but prefer rdev->saved_raid_disk
5482 * if possible.
1da177e4 5483 */
16a53ecc 5484 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 5485 rdev->saved_raid_disk >= first &&
16a53ecc 5486 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
5487 first = rdev->saved_raid_disk;
5488
5489 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
5490 p = conf->disks + disk;
5491 if (p->rdev == NULL) {
b2d444d7 5492 clear_bit(In_sync, &rdev->flags);
1da177e4 5493 rdev->raid_disk = disk;
199050ea 5494 err = 0;
72626685
N
5495 if (rdev->saved_raid_disk != disk)
5496 conf->fullsync = 1;
d6065f7b 5497 rcu_assign_pointer(p->rdev, rdev);
5cfb22a1 5498 goto out;
1da177e4 5499 }
5cfb22a1
N
5500 }
5501 for (disk = first; disk <= last; disk++) {
5502 p = conf->disks + disk;
7bfec5f3
N
5503 if (test_bit(WantReplacement, &p->rdev->flags) &&
5504 p->replacement == NULL) {
5505 clear_bit(In_sync, &rdev->flags);
5506 set_bit(Replacement, &rdev->flags);
5507 rdev->raid_disk = disk;
5508 err = 0;
5509 conf->fullsync = 1;
5510 rcu_assign_pointer(p->replacement, rdev);
5511 break;
5512 }
5513 }
5cfb22a1 5514out:
1da177e4 5515 print_raid5_conf(conf);
199050ea 5516 return err;
1da177e4
LT
5517}
5518
fd01b88c 5519static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
5520{
5521 /* no resync is happening, and there is enough space
5522 * on all devices, so we can resize.
5523 * We need to make sure resync covers any new space.
5524 * If the array is shrinking we should possibly wait until
5525 * any io in the removed space completes, but it hardly seems
5526 * worth it.
5527 */
a4a6125a 5528 sector_t newsize;
9d8f0363 5529 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
a4a6125a
N
5530 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5531 if (mddev->external_size &&
5532 mddev->array_sectors > newsize)
b522adcd 5533 return -EINVAL;
a4a6125a
N
5534 if (mddev->bitmap) {
5535 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5536 if (ret)
5537 return ret;
5538 }
5539 md_set_array_sectors(mddev, newsize);
f233ea5c 5540 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5541 revalidate_disk(mddev->gendisk);
b098636c
N
5542 if (sectors > mddev->dev_sectors &&
5543 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 5544 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
5545 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5546 }
58c0fed4 5547 mddev->dev_sectors = sectors;
4b5c7ae8 5548 mddev->resync_max_sectors = sectors;
1da177e4
LT
5549 return 0;
5550}
5551
fd01b88c 5552static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
5553{
5554 /* Can only proceed if there are plenty of stripe_heads.
5555 * We need a minimum of one full stripe,, and for sensible progress
5556 * it is best to have about 4 times that.
5557 * If we require 4 times, then the default 256 4K stripe_heads will
5558 * allow for chunk sizes up to 256K, which is probably OK.
5559 * If the chunk size is greater, user-space should request more
5560 * stripe_heads first.
5561 */
d1688a6d 5562 struct r5conf *conf = mddev->private;
01ee22b4
N
5563 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5564 > conf->max_nr_stripes ||
5565 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5566 > conf->max_nr_stripes) {
0c55e022
N
5567 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5568 mdname(mddev),
01ee22b4
N
5569 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5570 / STRIPE_SIZE)*4);
5571 return 0;
5572 }
5573 return 1;
5574}
5575
fd01b88c 5576static int check_reshape(struct mddev *mddev)
29269553 5577{
d1688a6d 5578 struct r5conf *conf = mddev->private;
29269553 5579
88ce4930
N
5580 if (mddev->delta_disks == 0 &&
5581 mddev->new_layout == mddev->layout &&
664e7c41 5582 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 5583 return 0; /* nothing to do */
674806d6 5584 if (has_failed(conf))
ec32a2bd
N
5585 return -EINVAL;
5586 if (mddev->delta_disks < 0) {
5587 /* We might be able to shrink, but the devices must
5588 * be made bigger first.
5589 * For raid6, 4 is the minimum size.
5590 * Otherwise 2 is the minimum
5591 */
5592 int min = 2;
5593 if (mddev->level == 6)
5594 min = 4;
5595 if (mddev->raid_disks + mddev->delta_disks < min)
5596 return -EINVAL;
5597 }
29269553 5598
01ee22b4 5599 if (!check_stripe_cache(mddev))
29269553 5600 return -ENOSPC;
29269553 5601
ec32a2bd 5602 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
63c70c4f
N
5603}
5604
fd01b88c 5605static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 5606{
d1688a6d 5607 struct r5conf *conf = mddev->private;
3cb03002 5608 struct md_rdev *rdev;
63c70c4f 5609 int spares = 0;
c04be0aa 5610 unsigned long flags;
63c70c4f 5611
f416885e 5612 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
5613 return -EBUSY;
5614
01ee22b4
N
5615 if (!check_stripe_cache(mddev))
5616 return -ENOSPC;
5617
30b67645
N
5618 if (has_failed(conf))
5619 return -EINVAL;
5620
c6563a8c 5621 rdev_for_each(rdev, mddev) {
469518a3
N
5622 if (!test_bit(In_sync, &rdev->flags)
5623 && !test_bit(Faulty, &rdev->flags))
29269553 5624 spares++;
c6563a8c 5625 }
63c70c4f 5626
f416885e 5627 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
5628 /* Not enough devices even to make a degraded array
5629 * of that size
5630 */
5631 return -EINVAL;
5632
ec32a2bd
N
5633 /* Refuse to reduce size of the array. Any reductions in
5634 * array size must be through explicit setting of array_size
5635 * attribute.
5636 */
5637 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5638 < mddev->array_sectors) {
0c55e022 5639 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
5640 "before number of disks\n", mdname(mddev));
5641 return -EINVAL;
5642 }
5643
f6705578 5644 atomic_set(&conf->reshape_stripes, 0);
29269553
N
5645 spin_lock_irq(&conf->device_lock);
5646 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 5647 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
5648 conf->prev_chunk_sectors = conf->chunk_sectors;
5649 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
5650 conf->prev_algo = conf->algorithm;
5651 conf->algorithm = mddev->new_layout;
05616be5
N
5652 conf->generation++;
5653 /* Code that selects data_offset needs to see the generation update
5654 * if reshape_progress has been set - so a memory barrier needed.
5655 */
5656 smp_mb();
2c810cdd 5657 if (mddev->reshape_backwards)
fef9c61f
N
5658 conf->reshape_progress = raid5_size(mddev, 0, 0);
5659 else
5660 conf->reshape_progress = 0;
5661 conf->reshape_safe = conf->reshape_progress;
29269553
N
5662 spin_unlock_irq(&conf->device_lock);
5663
5664 /* Add some new drives, as many as will fit.
5665 * We know there are enough to make the newly sized array work.
3424bf6a
N
5666 * Don't add devices if we are reducing the number of
5667 * devices in the array. This is because it is not possible
5668 * to correctly record the "partially reconstructed" state of
5669 * such devices during the reshape and confusion could result.
29269553 5670 */
87a8dec9 5671 if (mddev->delta_disks >= 0) {
dafb20fa 5672 rdev_for_each(rdev, mddev)
87a8dec9
N
5673 if (rdev->raid_disk < 0 &&
5674 !test_bit(Faulty, &rdev->flags)) {
5675 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 5676 if (rdev->raid_disk
9d4c7d87 5677 >= conf->previous_raid_disks)
87a8dec9 5678 set_bit(In_sync, &rdev->flags);
9d4c7d87 5679 else
87a8dec9 5680 rdev->recovery_offset = 0;
36fad858
NK
5681
5682 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 5683 /* Failure here is OK */;
50da0840 5684 }
87a8dec9
N
5685 } else if (rdev->raid_disk >= conf->previous_raid_disks
5686 && !test_bit(Faulty, &rdev->flags)) {
5687 /* This is a spare that was manually added */
5688 set_bit(In_sync, &rdev->flags);
87a8dec9 5689 }
29269553 5690
87a8dec9
N
5691 /* When a reshape changes the number of devices,
5692 * ->degraded is measured against the larger of the
5693 * pre and post number of devices.
5694 */
ec32a2bd 5695 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 5696 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
5697 spin_unlock_irqrestore(&conf->device_lock, flags);
5698 }
63c70c4f 5699 mddev->raid_disks = conf->raid_disks;
e516402c 5700 mddev->reshape_position = conf->reshape_progress;
850b2b42 5701 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 5702
29269553
N
5703 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5704 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5705 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5706 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5707 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5708 "reshape");
29269553
N
5709 if (!mddev->sync_thread) {
5710 mddev->recovery = 0;
5711 spin_lock_irq(&conf->device_lock);
5712 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
05616be5
N
5713 rdev_for_each(rdev, mddev)
5714 rdev->new_data_offset = rdev->data_offset;
5715 smp_wmb();
fef9c61f 5716 conf->reshape_progress = MaxSector;
1e3fa9bd 5717 mddev->reshape_position = MaxSector;
29269553
N
5718 spin_unlock_irq(&conf->device_lock);
5719 return -EAGAIN;
5720 }
c8f517c4 5721 conf->reshape_checkpoint = jiffies;
29269553
N
5722 md_wakeup_thread(mddev->sync_thread);
5723 md_new_event(mddev);
5724 return 0;
5725}
29269553 5726
ec32a2bd
N
5727/* This is called from the reshape thread and should make any
5728 * changes needed in 'conf'
5729 */
d1688a6d 5730static void end_reshape(struct r5conf *conf)
29269553 5731{
29269553 5732
f6705578 5733 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 5734 struct md_rdev *rdev;
f6705578 5735
f6705578 5736 spin_lock_irq(&conf->device_lock);
cea9c228 5737 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
5738 rdev_for_each(rdev, conf->mddev)
5739 rdev->data_offset = rdev->new_data_offset;
5740 smp_wmb();
fef9c61f 5741 conf->reshape_progress = MaxSector;
f6705578 5742 spin_unlock_irq(&conf->device_lock);
b0f9ec04 5743 wake_up(&conf->wait_for_overlap);
16a53ecc
N
5744
5745 /* read-ahead size must cover two whole stripes, which is
5746 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5747 */
4a5add49 5748 if (conf->mddev->queue) {
cea9c228 5749 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 5750 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 5751 / PAGE_SIZE);
16a53ecc
N
5752 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5753 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5754 }
29269553 5755 }
29269553
N
5756}
5757
ec32a2bd
N
5758/* This is called from the raid5d thread with mddev_lock held.
5759 * It makes config changes to the device.
5760 */
fd01b88c 5761static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 5762{
d1688a6d 5763 struct r5conf *conf = mddev->private;
cea9c228
N
5764
5765 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5766
ec32a2bd
N
5767 if (mddev->delta_disks > 0) {
5768 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5769 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5770 revalidate_disk(mddev->gendisk);
ec32a2bd
N
5771 } else {
5772 int d;
908f4fbd
N
5773 spin_lock_irq(&conf->device_lock);
5774 mddev->degraded = calc_degraded(conf);
5775 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
5776 for (d = conf->raid_disks ;
5777 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 5778 d++) {
3cb03002 5779 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
5780 if (rdev)
5781 clear_bit(In_sync, &rdev->flags);
5782 rdev = conf->disks[d].replacement;
5783 if (rdev)
5784 clear_bit(In_sync, &rdev->flags);
1a67dde0 5785 }
cea9c228 5786 }
88ce4930 5787 mddev->layout = conf->algorithm;
09c9e5fa 5788 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
5789 mddev->reshape_position = MaxSector;
5790 mddev->delta_disks = 0;
2c810cdd 5791 mddev->reshape_backwards = 0;
cea9c228
N
5792 }
5793}
5794
fd01b88c 5795static void raid5_quiesce(struct mddev *mddev, int state)
72626685 5796{
d1688a6d 5797 struct r5conf *conf = mddev->private;
72626685
N
5798
5799 switch(state) {
e464eafd
N
5800 case 2: /* resume for a suspend */
5801 wake_up(&conf->wait_for_overlap);
5802 break;
5803
72626685
N
5804 case 1: /* stop all writes */
5805 spin_lock_irq(&conf->device_lock);
64bd660b
N
5806 /* '2' tells resync/reshape to pause so that all
5807 * active stripes can drain
5808 */
5809 conf->quiesce = 2;
72626685 5810 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
5811 atomic_read(&conf->active_stripes) == 0 &&
5812 atomic_read(&conf->active_aligned_reads) == 0,
72626685 5813 conf->device_lock, /* nothing */);
64bd660b 5814 conf->quiesce = 1;
72626685 5815 spin_unlock_irq(&conf->device_lock);
64bd660b
N
5816 /* allow reshape to continue */
5817 wake_up(&conf->wait_for_overlap);
72626685
N
5818 break;
5819
5820 case 0: /* re-enable writes */
5821 spin_lock_irq(&conf->device_lock);
5822 conf->quiesce = 0;
5823 wake_up(&conf->wait_for_stripe);
e464eafd 5824 wake_up(&conf->wait_for_overlap);
72626685
N
5825 spin_unlock_irq(&conf->device_lock);
5826 break;
5827 }
72626685 5828}
b15c2e57 5829
d562b0c4 5830
fd01b88c 5831static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 5832{
e373ab10 5833 struct r0conf *raid0_conf = mddev->private;
d76c8420 5834 sector_t sectors;
54071b38 5835
f1b29bca 5836 /* for raid0 takeover only one zone is supported */
e373ab10 5837 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
5838 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5839 mdname(mddev));
f1b29bca
DW
5840 return ERR_PTR(-EINVAL);
5841 }
5842
e373ab10
N
5843 sectors = raid0_conf->strip_zone[0].zone_end;
5844 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 5845 mddev->dev_sectors = sectors;
f1b29bca 5846 mddev->new_level = level;
54071b38
TM
5847 mddev->new_layout = ALGORITHM_PARITY_N;
5848 mddev->new_chunk_sectors = mddev->chunk_sectors;
5849 mddev->raid_disks += 1;
5850 mddev->delta_disks = 1;
5851 /* make sure it will be not marked as dirty */
5852 mddev->recovery_cp = MaxSector;
5853
5854 return setup_conf(mddev);
5855}
5856
5857
fd01b88c 5858static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
5859{
5860 int chunksect;
5861
5862 if (mddev->raid_disks != 2 ||
5863 mddev->degraded > 1)
5864 return ERR_PTR(-EINVAL);
5865
5866 /* Should check if there are write-behind devices? */
5867
5868 chunksect = 64*2; /* 64K by default */
5869
5870 /* The array must be an exact multiple of chunksize */
5871 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5872 chunksect >>= 1;
5873
5874 if ((chunksect<<9) < STRIPE_SIZE)
5875 /* array size does not allow a suitable chunk size */
5876 return ERR_PTR(-EINVAL);
5877
5878 mddev->new_level = 5;
5879 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 5880 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
5881
5882 return setup_conf(mddev);
5883}
5884
fd01b88c 5885static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
5886{
5887 int new_layout;
5888
5889 switch (mddev->layout) {
5890 case ALGORITHM_LEFT_ASYMMETRIC_6:
5891 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5892 break;
5893 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5894 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5895 break;
5896 case ALGORITHM_LEFT_SYMMETRIC_6:
5897 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5898 break;
5899 case ALGORITHM_RIGHT_SYMMETRIC_6:
5900 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5901 break;
5902 case ALGORITHM_PARITY_0_6:
5903 new_layout = ALGORITHM_PARITY_0;
5904 break;
5905 case ALGORITHM_PARITY_N:
5906 new_layout = ALGORITHM_PARITY_N;
5907 break;
5908 default:
5909 return ERR_PTR(-EINVAL);
5910 }
5911 mddev->new_level = 5;
5912 mddev->new_layout = new_layout;
5913 mddev->delta_disks = -1;
5914 mddev->raid_disks -= 1;
5915 return setup_conf(mddev);
5916}
5917
d562b0c4 5918
fd01b88c 5919static int raid5_check_reshape(struct mddev *mddev)
b3546035 5920{
88ce4930
N
5921 /* For a 2-drive array, the layout and chunk size can be changed
5922 * immediately as not restriping is needed.
5923 * For larger arrays we record the new value - after validation
5924 * to be used by a reshape pass.
b3546035 5925 */
d1688a6d 5926 struct r5conf *conf = mddev->private;
597a711b 5927 int new_chunk = mddev->new_chunk_sectors;
b3546035 5928
597a711b 5929 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
5930 return -EINVAL;
5931 if (new_chunk > 0) {
0ba459d2 5932 if (!is_power_of_2(new_chunk))
b3546035 5933 return -EINVAL;
597a711b 5934 if (new_chunk < (PAGE_SIZE>>9))
b3546035 5935 return -EINVAL;
597a711b 5936 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
5937 /* not factor of array size */
5938 return -EINVAL;
5939 }
5940
5941 /* They look valid */
5942
88ce4930 5943 if (mddev->raid_disks == 2) {
597a711b
N
5944 /* can make the change immediately */
5945 if (mddev->new_layout >= 0) {
5946 conf->algorithm = mddev->new_layout;
5947 mddev->layout = mddev->new_layout;
88ce4930
N
5948 }
5949 if (new_chunk > 0) {
597a711b
N
5950 conf->chunk_sectors = new_chunk ;
5951 mddev->chunk_sectors = new_chunk;
88ce4930
N
5952 }
5953 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5954 md_wakeup_thread(mddev->thread);
b3546035 5955 }
50ac168a 5956 return check_reshape(mddev);
88ce4930
N
5957}
5958
fd01b88c 5959static int raid6_check_reshape(struct mddev *mddev)
88ce4930 5960{
597a711b 5961 int new_chunk = mddev->new_chunk_sectors;
50ac168a 5962
597a711b 5963 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 5964 return -EINVAL;
b3546035 5965 if (new_chunk > 0) {
0ba459d2 5966 if (!is_power_of_2(new_chunk))
88ce4930 5967 return -EINVAL;
597a711b 5968 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 5969 return -EINVAL;
597a711b 5970 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
5971 /* not factor of array size */
5972 return -EINVAL;
b3546035 5973 }
88ce4930
N
5974
5975 /* They look valid */
50ac168a 5976 return check_reshape(mddev);
b3546035
N
5977}
5978
fd01b88c 5979static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
5980{
5981 /* raid5 can take over:
f1b29bca 5982 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
5983 * raid1 - if there are two drives. We need to know the chunk size
5984 * raid4 - trivial - just use a raid4 layout.
5985 * raid6 - Providing it is a *_6 layout
d562b0c4 5986 */
f1b29bca
DW
5987 if (mddev->level == 0)
5988 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
5989 if (mddev->level == 1)
5990 return raid5_takeover_raid1(mddev);
e9d4758f
N
5991 if (mddev->level == 4) {
5992 mddev->new_layout = ALGORITHM_PARITY_N;
5993 mddev->new_level = 5;
5994 return setup_conf(mddev);
5995 }
fc9739c6
N
5996 if (mddev->level == 6)
5997 return raid5_takeover_raid6(mddev);
d562b0c4
N
5998
5999 return ERR_PTR(-EINVAL);
6000}
6001
fd01b88c 6002static void *raid4_takeover(struct mddev *mddev)
a78d38a1 6003{
f1b29bca
DW
6004 /* raid4 can take over:
6005 * raid0 - if there is only one strip zone
6006 * raid5 - if layout is right
a78d38a1 6007 */
f1b29bca
DW
6008 if (mddev->level == 0)
6009 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
6010 if (mddev->level == 5 &&
6011 mddev->layout == ALGORITHM_PARITY_N) {
6012 mddev->new_layout = 0;
6013 mddev->new_level = 4;
6014 return setup_conf(mddev);
6015 }
6016 return ERR_PTR(-EINVAL);
6017}
d562b0c4 6018
84fc4b56 6019static struct md_personality raid5_personality;
245f46c2 6020
fd01b88c 6021static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
6022{
6023 /* Currently can only take over a raid5. We map the
6024 * personality to an equivalent raid6 personality
6025 * with the Q block at the end.
6026 */
6027 int new_layout;
6028
6029 if (mddev->pers != &raid5_personality)
6030 return ERR_PTR(-EINVAL);
6031 if (mddev->degraded > 1)
6032 return ERR_PTR(-EINVAL);
6033 if (mddev->raid_disks > 253)
6034 return ERR_PTR(-EINVAL);
6035 if (mddev->raid_disks < 3)
6036 return ERR_PTR(-EINVAL);
6037
6038 switch (mddev->layout) {
6039 case ALGORITHM_LEFT_ASYMMETRIC:
6040 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6041 break;
6042 case ALGORITHM_RIGHT_ASYMMETRIC:
6043 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6044 break;
6045 case ALGORITHM_LEFT_SYMMETRIC:
6046 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6047 break;
6048 case ALGORITHM_RIGHT_SYMMETRIC:
6049 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6050 break;
6051 case ALGORITHM_PARITY_0:
6052 new_layout = ALGORITHM_PARITY_0_6;
6053 break;
6054 case ALGORITHM_PARITY_N:
6055 new_layout = ALGORITHM_PARITY_N;
6056 break;
6057 default:
6058 return ERR_PTR(-EINVAL);
6059 }
6060 mddev->new_level = 6;
6061 mddev->new_layout = new_layout;
6062 mddev->delta_disks = 1;
6063 mddev->raid_disks += 1;
6064 return setup_conf(mddev);
6065}
6066
6067
84fc4b56 6068static struct md_personality raid6_personality =
16a53ecc
N
6069{
6070 .name = "raid6",
6071 .level = 6,
6072 .owner = THIS_MODULE,
6073 .make_request = make_request,
6074 .run = run,
6075 .stop = stop,
6076 .status = status,
6077 .error_handler = error,
6078 .hot_add_disk = raid5_add_disk,
6079 .hot_remove_disk= raid5_remove_disk,
6080 .spare_active = raid5_spare_active,
6081 .sync_request = sync_request,
6082 .resize = raid5_resize,
80c3a6ce 6083 .size = raid5_size,
50ac168a 6084 .check_reshape = raid6_check_reshape,
f416885e 6085 .start_reshape = raid5_start_reshape,
cea9c228 6086 .finish_reshape = raid5_finish_reshape,
16a53ecc 6087 .quiesce = raid5_quiesce,
245f46c2 6088 .takeover = raid6_takeover,
16a53ecc 6089};
84fc4b56 6090static struct md_personality raid5_personality =
1da177e4
LT
6091{
6092 .name = "raid5",
2604b703 6093 .level = 5,
1da177e4
LT
6094 .owner = THIS_MODULE,
6095 .make_request = make_request,
6096 .run = run,
6097 .stop = stop,
6098 .status = status,
6099 .error_handler = error,
6100 .hot_add_disk = raid5_add_disk,
6101 .hot_remove_disk= raid5_remove_disk,
6102 .spare_active = raid5_spare_active,
6103 .sync_request = sync_request,
6104 .resize = raid5_resize,
80c3a6ce 6105 .size = raid5_size,
63c70c4f
N
6106 .check_reshape = raid5_check_reshape,
6107 .start_reshape = raid5_start_reshape,
cea9c228 6108 .finish_reshape = raid5_finish_reshape,
72626685 6109 .quiesce = raid5_quiesce,
d562b0c4 6110 .takeover = raid5_takeover,
1da177e4
LT
6111};
6112
84fc4b56 6113static struct md_personality raid4_personality =
1da177e4 6114{
2604b703
N
6115 .name = "raid4",
6116 .level = 4,
6117 .owner = THIS_MODULE,
6118 .make_request = make_request,
6119 .run = run,
6120 .stop = stop,
6121 .status = status,
6122 .error_handler = error,
6123 .hot_add_disk = raid5_add_disk,
6124 .hot_remove_disk= raid5_remove_disk,
6125 .spare_active = raid5_spare_active,
6126 .sync_request = sync_request,
6127 .resize = raid5_resize,
80c3a6ce 6128 .size = raid5_size,
3d37890b
N
6129 .check_reshape = raid5_check_reshape,
6130 .start_reshape = raid5_start_reshape,
cea9c228 6131 .finish_reshape = raid5_finish_reshape,
2604b703 6132 .quiesce = raid5_quiesce,
a78d38a1 6133 .takeover = raid4_takeover,
2604b703
N
6134};
6135
6136static int __init raid5_init(void)
6137{
16a53ecc 6138 register_md_personality(&raid6_personality);
2604b703
N
6139 register_md_personality(&raid5_personality);
6140 register_md_personality(&raid4_personality);
6141 return 0;
1da177e4
LT
6142}
6143
2604b703 6144static void raid5_exit(void)
1da177e4 6145{
16a53ecc 6146 unregister_md_personality(&raid6_personality);
2604b703
N
6147 unregister_md_personality(&raid5_personality);
6148 unregister_md_personality(&raid4_personality);
1da177e4
LT
6149}
6150
6151module_init(raid5_init);
6152module_exit(raid5_exit);
6153MODULE_LICENSE("GPL");
0efb9e61 6154MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 6155MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
6156MODULE_ALIAS("md-raid5");
6157MODULE_ALIAS("md-raid4");
2604b703
N
6158MODULE_ALIAS("md-level-5");
6159MODULE_ALIAS("md-level-4");
16a53ecc
N
6160MODULE_ALIAS("md-personality-8"); /* RAID6 */
6161MODULE_ALIAS("md-raid6");
6162MODULE_ALIAS("md-level-6");
6163
6164/* This used to be two separate modules, they were: */
6165MODULE_ALIAS("raid5");
6166MODULE_ALIAS("raid6");
This page took 1.242019 seconds and 5 git commands to generate.