RAID5: check_reshape() shouldn't call mddev_suspend
[deliverable/linux.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
46d5b785 57#include <linux/flex_array.h>
a9add5d9
N
58#include <trace/events/block.h>
59
43b2e5d8 60#include "md.h"
bff61975 61#include "raid5.h"
54071b38 62#include "raid0.h"
ef740c37 63#include "bitmap.h"
72626685 64
851c30c9
SL
65#define cpu_to_group(cpu) cpu_to_node(cpu)
66#define ANY_GROUP NUMA_NO_NODE
67
8e0e99ba
N
68static bool devices_handle_discard_safely = false;
69module_param(devices_handle_discard_safely, bool, 0644);
70MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 72static struct workqueue_struct *raid5_wq;
1da177e4
LT
73/*
74 * Stripe cache
75 */
76
77#define NR_STRIPES 256
78#define STRIPE_SIZE PAGE_SIZE
79#define STRIPE_SHIFT (PAGE_SHIFT - 9)
80#define STRIPE_SECTORS (STRIPE_SIZE>>9)
81#define IO_THRESHOLD 1
8b3e6cdc 82#define BYPASS_THRESHOLD 1
fccddba0 83#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4 84#define HASH_MASK (NR_HASH - 1)
bfc90cb0 85#define MAX_STRIPE_BATCH 8
1da177e4 86
d1688a6d 87static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
88{
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91}
1da177e4 92
566c09c5
SL
93static inline int stripe_hash_locks_hash(sector_t sect)
94{
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96}
97
98static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99{
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102}
103
104static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105{
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108}
109
110static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111{
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118}
119
120static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121{
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127}
128
1da177e4
LT
129/* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
db298e19 135 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
136 * of the current stripe+device
137 */
db298e19
N
138static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139{
aa8b57aa 140 int sectors = bio_sectors(bio);
4f024f37 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
db298e19
N
142 return bio->bi_next;
143 else
144 return NULL;
145}
1da177e4 146
960e739d 147/*
5b99c2ff
JA
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d 150 */
e7836bd6 151static inline int raid5_bi_processed_stripes(struct bio *bio)
960e739d 152{
e7836bd6
SL
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
960e739d
JA
155}
156
e7836bd6 157static inline int raid5_dec_bi_active_stripes(struct bio *bio)
960e739d 158{
e7836bd6
SL
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
960e739d
JA
161}
162
e7836bd6 163static inline void raid5_inc_bi_active_stripes(struct bio *bio)
960e739d 164{
e7836bd6
SL
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
960e739d
JA
167}
168
e7836bd6
SL
169static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
960e739d 171{
e7836bd6
SL
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
960e739d 174
e7836bd6
SL
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
960e739d
JA
179}
180
e7836bd6 181static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
960e739d 182{
e7836bd6
SL
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
960e739d
JA
185}
186
d0dabf7e
N
187/* Find first data disk in a raid6 stripe */
188static inline int raid6_d0(struct stripe_head *sh)
189{
67cc2b81
N
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
d0dabf7e
N
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198}
16a53ecc
N
199static inline int raid6_next_disk(int disk, int raid_disks)
200{
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203}
a4456856 204
d0dabf7e
N
205/* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
67cc2b81
N
210static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
d0dabf7e 212{
6629542e 213 int slot = *count;
67cc2b81 214
e4424fee 215 if (sh->ddf_layout)
6629542e 216 (*count)++;
d0dabf7e 217 if (idx == sh->pd_idx)
67cc2b81 218 return syndrome_disks;
d0dabf7e 219 if (idx == sh->qd_idx)
67cc2b81 220 return syndrome_disks + 1;
e4424fee 221 if (!sh->ddf_layout)
6629542e 222 (*count)++;
d0dabf7e
N
223 return slot;
224}
225
34a6f80e 226static void return_io(struct bio_list *return_bi)
a4456856 227{
34a6f80e
N
228 struct bio *bi;
229 while ((bi = bio_list_pop(return_bi)) != NULL) {
4f024f37 230 bi->bi_iter.bi_size = 0;
0a82a8d1
LT
231 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232 bi, 0);
4246a0b6 233 bio_endio(bi);
a4456856
DW
234 }
235}
236
d1688a6d 237static void print_raid5_conf (struct r5conf *conf);
1da177e4 238
600aa109
DW
239static int stripe_operations_active(struct stripe_head *sh)
240{
241 return sh->check_state || sh->reconstruct_state ||
242 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244}
245
851c30c9
SL
246static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247{
248 struct r5conf *conf = sh->raid_conf;
249 struct r5worker_group *group;
bfc90cb0 250 int thread_cnt;
851c30c9
SL
251 int i, cpu = sh->cpu;
252
253 if (!cpu_online(cpu)) {
254 cpu = cpumask_any(cpu_online_mask);
255 sh->cpu = cpu;
256 }
257
258 if (list_empty(&sh->lru)) {
259 struct r5worker_group *group;
260 group = conf->worker_groups + cpu_to_group(cpu);
261 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
262 group->stripes_cnt++;
263 sh->group = group;
851c30c9
SL
264 }
265
266 if (conf->worker_cnt_per_group == 0) {
267 md_wakeup_thread(conf->mddev->thread);
268 return;
269 }
270
271 group = conf->worker_groups + cpu_to_group(sh->cpu);
272
bfc90cb0
SL
273 group->workers[0].working = true;
274 /* at least one worker should run to avoid race */
275 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278 /* wakeup more workers */
279 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280 if (group->workers[i].working == false) {
281 group->workers[i].working = true;
282 queue_work_on(sh->cpu, raid5_wq,
283 &group->workers[i].work);
284 thread_cnt--;
285 }
286 }
851c30c9
SL
287}
288
566c09c5
SL
289static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290 struct list_head *temp_inactive_list)
1da177e4 291{
4eb788df
SL
292 BUG_ON(!list_empty(&sh->lru));
293 BUG_ON(atomic_read(&conf->active_stripes)==0);
294 if (test_bit(STRIPE_HANDLE, &sh->state)) {
295 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 296 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 297 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 298 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
299 sh->bm_seq - conf->seq_write > 0)
300 list_add_tail(&sh->lru, &conf->bitmap_list);
301 else {
302 clear_bit(STRIPE_DELAYED, &sh->state);
303 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9
SL
304 if (conf->worker_cnt_per_group == 0) {
305 list_add_tail(&sh->lru, &conf->handle_list);
306 } else {
307 raid5_wakeup_stripe_thread(sh);
308 return;
309 }
4eb788df
SL
310 }
311 md_wakeup_thread(conf->mddev->thread);
312 } else {
313 BUG_ON(stripe_operations_active(sh));
314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315 if (atomic_dec_return(&conf->preread_active_stripes)
316 < IO_THRESHOLD)
317 md_wakeup_thread(conf->mddev->thread);
318 atomic_dec(&conf->active_stripes);
566c09c5
SL
319 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320 list_add_tail(&sh->lru, temp_inactive_list);
1da177e4
LT
321 }
322}
d0dabf7e 323
566c09c5
SL
324static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325 struct list_head *temp_inactive_list)
4eb788df
SL
326{
327 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
328 do_release_stripe(conf, sh, temp_inactive_list);
329}
330
331/*
332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333 *
334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335 * given time. Adding stripes only takes device lock, while deleting stripes
336 * only takes hash lock.
337 */
338static void release_inactive_stripe_list(struct r5conf *conf,
339 struct list_head *temp_inactive_list,
340 int hash)
341{
342 int size;
e9e4c377
YL
343 unsigned long do_wakeup = 0;
344 int i = 0;
566c09c5
SL
345 unsigned long flags;
346
347 if (hash == NR_STRIPE_HASH_LOCKS) {
348 size = NR_STRIPE_HASH_LOCKS;
349 hash = NR_STRIPE_HASH_LOCKS - 1;
350 } else
351 size = 1;
352 while (size) {
353 struct list_head *list = &temp_inactive_list[size - 1];
354
355 /*
6d036f7d 356 * We don't hold any lock here yet, raid5_get_active_stripe() might
566c09c5
SL
357 * remove stripes from the list
358 */
359 if (!list_empty_careful(list)) {
360 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
361 if (list_empty(conf->inactive_list + hash) &&
362 !list_empty(list))
363 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5 364 list_splice_tail_init(list, conf->inactive_list + hash);
e9e4c377 365 do_wakeup |= 1 << hash;
566c09c5
SL
366 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
367 }
368 size--;
369 hash--;
370 }
371
e9e4c377
YL
372 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
373 if (do_wakeup & (1 << i))
374 wake_up(&conf->wait_for_stripe[i]);
375 }
376
566c09c5 377 if (do_wakeup) {
b1b46486
YL
378 if (atomic_read(&conf->active_stripes) == 0)
379 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
380 if (conf->retry_read_aligned)
381 md_wakeup_thread(conf->mddev->thread);
382 }
4eb788df
SL
383}
384
773ca82f 385/* should hold conf->device_lock already */
566c09c5
SL
386static int release_stripe_list(struct r5conf *conf,
387 struct list_head *temp_inactive_list)
773ca82f
SL
388{
389 struct stripe_head *sh;
390 int count = 0;
391 struct llist_node *head;
392
393 head = llist_del_all(&conf->released_stripes);
d265d9dc 394 head = llist_reverse_order(head);
773ca82f 395 while (head) {
566c09c5
SL
396 int hash;
397
773ca82f
SL
398 sh = llist_entry(head, struct stripe_head, release_list);
399 head = llist_next(head);
400 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
401 smp_mb();
402 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
403 /*
404 * Don't worry the bit is set here, because if the bit is set
405 * again, the count is always > 1. This is true for
406 * STRIPE_ON_UNPLUG_LIST bit too.
407 */
566c09c5
SL
408 hash = sh->hash_lock_index;
409 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
410 count++;
411 }
412
413 return count;
414}
415
6d036f7d 416void raid5_release_stripe(struct stripe_head *sh)
1da177e4 417{
d1688a6d 418 struct r5conf *conf = sh->raid_conf;
1da177e4 419 unsigned long flags;
566c09c5
SL
420 struct list_head list;
421 int hash;
773ca82f 422 bool wakeup;
16a53ecc 423
cf170f3f
ES
424 /* Avoid release_list until the last reference.
425 */
426 if (atomic_add_unless(&sh->count, -1, 1))
427 return;
428
ad4068de 429 if (unlikely(!conf->mddev->thread) ||
430 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
431 goto slow_path;
432 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
433 if (wakeup)
434 md_wakeup_thread(conf->mddev->thread);
435 return;
436slow_path:
4eb788df 437 local_irq_save(flags);
773ca82f 438 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 439 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
440 INIT_LIST_HEAD(&list);
441 hash = sh->hash_lock_index;
442 do_release_stripe(conf, sh, &list);
4eb788df 443 spin_unlock(&conf->device_lock);
566c09c5 444 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
445 }
446 local_irq_restore(flags);
1da177e4
LT
447}
448
fccddba0 449static inline void remove_hash(struct stripe_head *sh)
1da177e4 450{
45b4233c
DW
451 pr_debug("remove_hash(), stripe %llu\n",
452 (unsigned long long)sh->sector);
1da177e4 453
fccddba0 454 hlist_del_init(&sh->hash);
1da177e4
LT
455}
456
d1688a6d 457static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 458{
fccddba0 459 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 460
45b4233c
DW
461 pr_debug("insert_hash(), stripe %llu\n",
462 (unsigned long long)sh->sector);
1da177e4 463
fccddba0 464 hlist_add_head(&sh->hash, hp);
1da177e4
LT
465}
466
1da177e4 467/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 468static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
469{
470 struct stripe_head *sh = NULL;
471 struct list_head *first;
472
566c09c5 473 if (list_empty(conf->inactive_list + hash))
1da177e4 474 goto out;
566c09c5 475 first = (conf->inactive_list + hash)->next;
1da177e4
LT
476 sh = list_entry(first, struct stripe_head, lru);
477 list_del_init(first);
478 remove_hash(sh);
479 atomic_inc(&conf->active_stripes);
566c09c5 480 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
481 if (list_empty(conf->inactive_list + hash))
482 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
483out:
484 return sh;
485}
486
e4e11e38 487static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
488{
489 struct page *p;
490 int i;
e4e11e38 491 int num = sh->raid_conf->pool_size;
1da177e4 492
e4e11e38 493 for (i = 0; i < num ; i++) {
d592a996 494 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
495 p = sh->dev[i].page;
496 if (!p)
497 continue;
498 sh->dev[i].page = NULL;
2d1f3b5d 499 put_page(p);
1da177e4
LT
500 }
501}
502
a9683a79 503static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
504{
505 int i;
e4e11e38 506 int num = sh->raid_conf->pool_size;
1da177e4 507
e4e11e38 508 for (i = 0; i < num; i++) {
1da177e4
LT
509 struct page *page;
510
a9683a79 511 if (!(page = alloc_page(gfp))) {
1da177e4
LT
512 return 1;
513 }
514 sh->dev[i].page = page;
d592a996 515 sh->dev[i].orig_page = page;
1da177e4
LT
516 }
517 return 0;
518}
519
784052ec 520static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 521static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 522 struct stripe_head *sh);
1da177e4 523
b5663ba4 524static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 525{
d1688a6d 526 struct r5conf *conf = sh->raid_conf;
566c09c5 527 int i, seq;
1da177e4 528
78bafebd
ES
529 BUG_ON(atomic_read(&sh->count) != 0);
530 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 531 BUG_ON(stripe_operations_active(sh));
59fc630b 532 BUG_ON(sh->batch_head);
d84e0f10 533
45b4233c 534 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 535 (unsigned long long)sector);
566c09c5
SL
536retry:
537 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 538 sh->generation = conf->generation - previous;
b5663ba4 539 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 540 sh->sector = sector;
911d4ee8 541 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
542 sh->state = 0;
543
7ecaa1e6 544 for (i = sh->disks; i--; ) {
1da177e4
LT
545 struct r5dev *dev = &sh->dev[i];
546
d84e0f10 547 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 548 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 549 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 550 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 551 dev->read, dev->towrite, dev->written,
1da177e4 552 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 553 WARN_ON(1);
1da177e4
LT
554 }
555 dev->flags = 0;
784052ec 556 raid5_build_block(sh, i, previous);
1da177e4 557 }
566c09c5
SL
558 if (read_seqcount_retry(&conf->gen_lock, seq))
559 goto retry;
7a87f434 560 sh->overwrite_disks = 0;
1da177e4 561 insert_hash(conf, sh);
851c30c9 562 sh->cpu = smp_processor_id();
da41ba65 563 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
564}
565
d1688a6d 566static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 567 short generation)
1da177e4
LT
568{
569 struct stripe_head *sh;
570
45b4233c 571 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 572 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 573 if (sh->sector == sector && sh->generation == generation)
1da177e4 574 return sh;
45b4233c 575 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
576 return NULL;
577}
578
674806d6
N
579/*
580 * Need to check if array has failed when deciding whether to:
581 * - start an array
582 * - remove non-faulty devices
583 * - add a spare
584 * - allow a reshape
585 * This determination is simple when no reshape is happening.
586 * However if there is a reshape, we need to carefully check
587 * both the before and after sections.
588 * This is because some failed devices may only affect one
589 * of the two sections, and some non-in_sync devices may
590 * be insync in the section most affected by failed devices.
591 */
908f4fbd 592static int calc_degraded(struct r5conf *conf)
674806d6 593{
908f4fbd 594 int degraded, degraded2;
674806d6 595 int i;
674806d6
N
596
597 rcu_read_lock();
598 degraded = 0;
599 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 600 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
601 if (rdev && test_bit(Faulty, &rdev->flags))
602 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
603 if (!rdev || test_bit(Faulty, &rdev->flags))
604 degraded++;
605 else if (test_bit(In_sync, &rdev->flags))
606 ;
607 else
608 /* not in-sync or faulty.
609 * If the reshape increases the number of devices,
610 * this is being recovered by the reshape, so
611 * this 'previous' section is not in_sync.
612 * If the number of devices is being reduced however,
613 * the device can only be part of the array if
614 * we are reverting a reshape, so this section will
615 * be in-sync.
616 */
617 if (conf->raid_disks >= conf->previous_raid_disks)
618 degraded++;
619 }
620 rcu_read_unlock();
908f4fbd
N
621 if (conf->raid_disks == conf->previous_raid_disks)
622 return degraded;
674806d6 623 rcu_read_lock();
908f4fbd 624 degraded2 = 0;
674806d6 625 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 626 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
627 if (rdev && test_bit(Faulty, &rdev->flags))
628 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 629 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 630 degraded2++;
674806d6
N
631 else if (test_bit(In_sync, &rdev->flags))
632 ;
633 else
634 /* not in-sync or faulty.
635 * If reshape increases the number of devices, this
636 * section has already been recovered, else it
637 * almost certainly hasn't.
638 */
639 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 640 degraded2++;
674806d6
N
641 }
642 rcu_read_unlock();
908f4fbd
N
643 if (degraded2 > degraded)
644 return degraded2;
645 return degraded;
646}
647
648static int has_failed(struct r5conf *conf)
649{
650 int degraded;
651
652 if (conf->mddev->reshape_position == MaxSector)
653 return conf->mddev->degraded > conf->max_degraded;
654
655 degraded = calc_degraded(conf);
674806d6
N
656 if (degraded > conf->max_degraded)
657 return 1;
658 return 0;
659}
660
6d036f7d
SL
661struct stripe_head *
662raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
663 int previous, int noblock, int noquiesce)
1da177e4
LT
664{
665 struct stripe_head *sh;
566c09c5 666 int hash = stripe_hash_locks_hash(sector);
1da177e4 667
45b4233c 668 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 669
566c09c5 670 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
671
672 do {
b1b46486 673 wait_event_lock_irq(conf->wait_for_quiescent,
a8c906ca 674 conf->quiesce == 0 || noquiesce,
566c09c5 675 *(conf->hash_locks + hash));
86b42c71 676 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 677 if (!sh) {
edbe83ab 678 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 679 sh = get_free_stripe(conf, hash);
713bc5c2
SL
680 if (!sh && !test_bit(R5_DID_ALLOC,
681 &conf->cache_state))
edbe83ab
N
682 set_bit(R5_ALLOC_MORE,
683 &conf->cache_state);
684 }
1da177e4
LT
685 if (noblock && sh == NULL)
686 break;
687 if (!sh) {
5423399a
N
688 set_bit(R5_INACTIVE_BLOCKED,
689 &conf->cache_state);
e9e4c377
YL
690 wait_event_exclusive_cmd(
691 conf->wait_for_stripe[hash],
566c09c5
SL
692 !list_empty(conf->inactive_list + hash) &&
693 (atomic_read(&conf->active_stripes)
694 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
695 || !test_bit(R5_INACTIVE_BLOCKED,
696 &conf->cache_state)),
e9e4c377
YL
697 spin_unlock_irq(conf->hash_locks + hash),
698 spin_lock_irq(conf->hash_locks + hash));
5423399a
N
699 clear_bit(R5_INACTIVE_BLOCKED,
700 &conf->cache_state);
7da9d450 701 } else {
b5663ba4 702 init_stripe(sh, sector, previous);
7da9d450
N
703 atomic_inc(&sh->count);
704 }
e240c183 705 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 706 spin_lock(&conf->device_lock);
e240c183 707 if (!atomic_read(&sh->count)) {
1da177e4
LT
708 if (!test_bit(STRIPE_HANDLE, &sh->state))
709 atomic_inc(&conf->active_stripes);
5af9bef7
N
710 BUG_ON(list_empty(&sh->lru) &&
711 !test_bit(STRIPE_EXPANDING, &sh->state));
16a53ecc 712 list_del_init(&sh->lru);
bfc90cb0
SL
713 if (sh->group) {
714 sh->group->stripes_cnt--;
715 sh->group = NULL;
716 }
1da177e4 717 }
7da9d450 718 atomic_inc(&sh->count);
6d183de4 719 spin_unlock(&conf->device_lock);
1da177e4
LT
720 }
721 } while (sh == NULL);
722
e9e4c377
YL
723 if (!list_empty(conf->inactive_list + hash))
724 wake_up(&conf->wait_for_stripe[hash]);
725
566c09c5 726 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
727 return sh;
728}
729
7a87f434 730static bool is_full_stripe_write(struct stripe_head *sh)
731{
732 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
733 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
734}
735
59fc630b 736static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
737{
738 local_irq_disable();
739 if (sh1 > sh2) {
740 spin_lock(&sh2->stripe_lock);
741 spin_lock_nested(&sh1->stripe_lock, 1);
742 } else {
743 spin_lock(&sh1->stripe_lock);
744 spin_lock_nested(&sh2->stripe_lock, 1);
745 }
746}
747
748static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
749{
750 spin_unlock(&sh1->stripe_lock);
751 spin_unlock(&sh2->stripe_lock);
752 local_irq_enable();
753}
754
755/* Only freshly new full stripe normal write stripe can be added to a batch list */
756static bool stripe_can_batch(struct stripe_head *sh)
757{
9c3e333d
SL
758 struct r5conf *conf = sh->raid_conf;
759
760 if (conf->log)
761 return false;
59fc630b 762 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 763 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 764 is_full_stripe_write(sh);
765}
766
767/* we only do back search */
768static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
769{
770 struct stripe_head *head;
771 sector_t head_sector, tmp_sec;
772 int hash;
773 int dd_idx;
774
59fc630b 775 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
776 tmp_sec = sh->sector;
777 if (!sector_div(tmp_sec, conf->chunk_sectors))
778 return;
779 head_sector = sh->sector - STRIPE_SECTORS;
780
781 hash = stripe_hash_locks_hash(head_sector);
782 spin_lock_irq(conf->hash_locks + hash);
783 head = __find_stripe(conf, head_sector, conf->generation);
784 if (head && !atomic_inc_not_zero(&head->count)) {
785 spin_lock(&conf->device_lock);
786 if (!atomic_read(&head->count)) {
787 if (!test_bit(STRIPE_HANDLE, &head->state))
788 atomic_inc(&conf->active_stripes);
789 BUG_ON(list_empty(&head->lru) &&
790 !test_bit(STRIPE_EXPANDING, &head->state));
791 list_del_init(&head->lru);
792 if (head->group) {
793 head->group->stripes_cnt--;
794 head->group = NULL;
795 }
796 }
797 atomic_inc(&head->count);
798 spin_unlock(&conf->device_lock);
799 }
800 spin_unlock_irq(conf->hash_locks + hash);
801
802 if (!head)
803 return;
804 if (!stripe_can_batch(head))
805 goto out;
806
807 lock_two_stripes(head, sh);
808 /* clear_batch_ready clear the flag */
809 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
810 goto unlock_out;
811
812 if (sh->batch_head)
813 goto unlock_out;
814
815 dd_idx = 0;
816 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
817 dd_idx++;
818 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
819 goto unlock_out;
820
821 if (head->batch_head) {
822 spin_lock(&head->batch_head->batch_lock);
823 /* This batch list is already running */
824 if (!stripe_can_batch(head)) {
825 spin_unlock(&head->batch_head->batch_lock);
826 goto unlock_out;
827 }
828
829 /*
830 * at this point, head's BATCH_READY could be cleared, but we
831 * can still add the stripe to batch list
832 */
833 list_add(&sh->batch_list, &head->batch_list);
834 spin_unlock(&head->batch_head->batch_lock);
835
836 sh->batch_head = head->batch_head;
837 } else {
838 head->batch_head = head;
839 sh->batch_head = head->batch_head;
840 spin_lock(&head->batch_lock);
841 list_add_tail(&sh->batch_list, &head->batch_list);
842 spin_unlock(&head->batch_lock);
843 }
844
845 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
846 if (atomic_dec_return(&conf->preread_active_stripes)
847 < IO_THRESHOLD)
848 md_wakeup_thread(conf->mddev->thread);
849
2b6b2457
N
850 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
851 int seq = sh->bm_seq;
852 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
853 sh->batch_head->bm_seq > seq)
854 seq = sh->batch_head->bm_seq;
855 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
856 sh->batch_head->bm_seq = seq;
857 }
858
59fc630b 859 atomic_inc(&sh->count);
860unlock_out:
861 unlock_two_stripes(head, sh);
862out:
6d036f7d 863 raid5_release_stripe(head);
59fc630b 864}
865
05616be5
N
866/* Determine if 'data_offset' or 'new_data_offset' should be used
867 * in this stripe_head.
868 */
869static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
870{
871 sector_t progress = conf->reshape_progress;
872 /* Need a memory barrier to make sure we see the value
873 * of conf->generation, or ->data_offset that was set before
874 * reshape_progress was updated.
875 */
876 smp_rmb();
877 if (progress == MaxSector)
878 return 0;
879 if (sh->generation == conf->generation - 1)
880 return 0;
881 /* We are in a reshape, and this is a new-generation stripe,
882 * so use new_data_offset.
883 */
884 return 1;
885}
886
6712ecf8 887static void
4246a0b6 888raid5_end_read_request(struct bio *bi);
6712ecf8 889static void
4246a0b6 890raid5_end_write_request(struct bio *bi);
91c00924 891
c4e5ac0a 892static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 893{
d1688a6d 894 struct r5conf *conf = sh->raid_conf;
91c00924 895 int i, disks = sh->disks;
59fc630b 896 struct stripe_head *head_sh = sh;
91c00924
DW
897
898 might_sleep();
899
f6bed0ef
SL
900 if (r5l_write_stripe(conf->log, sh) == 0)
901 return;
91c00924
DW
902 for (i = disks; i--; ) {
903 int rw;
9a3e1101 904 int replace_only = 0;
977df362
N
905 struct bio *bi, *rbi;
906 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 907
908 sh = head_sh;
e9c7469b
TH
909 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
910 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
911 rw = WRITE_FUA;
912 else
913 rw = WRITE;
9e444768 914 if (test_bit(R5_Discard, &sh->dev[i].flags))
620125f2 915 rw |= REQ_DISCARD;
e9c7469b 916 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924 917 rw = READ;
9a3e1101
N
918 else if (test_and_clear_bit(R5_WantReplace,
919 &sh->dev[i].flags)) {
920 rw = WRITE;
921 replace_only = 1;
922 } else
91c00924 923 continue;
bc0934f0
SL
924 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
925 rw |= REQ_SYNC;
91c00924 926
59fc630b 927again:
91c00924 928 bi = &sh->dev[i].req;
977df362 929 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 930
91c00924 931 rcu_read_lock();
9a3e1101 932 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
933 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
934 rdev = rcu_dereference(conf->disks[i].rdev);
935 if (!rdev) {
936 rdev = rrdev;
937 rrdev = NULL;
938 }
9a3e1101
N
939 if (rw & WRITE) {
940 if (replace_only)
941 rdev = NULL;
dd054fce
N
942 if (rdev == rrdev)
943 /* We raced and saw duplicates */
944 rrdev = NULL;
9a3e1101 945 } else {
59fc630b 946 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
947 rdev = rrdev;
948 rrdev = NULL;
949 }
977df362 950
91c00924
DW
951 if (rdev && test_bit(Faulty, &rdev->flags))
952 rdev = NULL;
953 if (rdev)
954 atomic_inc(&rdev->nr_pending);
977df362
N
955 if (rrdev && test_bit(Faulty, &rrdev->flags))
956 rrdev = NULL;
957 if (rrdev)
958 atomic_inc(&rrdev->nr_pending);
91c00924
DW
959 rcu_read_unlock();
960
73e92e51 961 /* We have already checked bad blocks for reads. Now
977df362
N
962 * need to check for writes. We never accept write errors
963 * on the replacement, so we don't to check rrdev.
73e92e51
N
964 */
965 while ((rw & WRITE) && rdev &&
966 test_bit(WriteErrorSeen, &rdev->flags)) {
967 sector_t first_bad;
968 int bad_sectors;
969 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
970 &first_bad, &bad_sectors);
971 if (!bad)
972 break;
973
974 if (bad < 0) {
975 set_bit(BlockedBadBlocks, &rdev->flags);
976 if (!conf->mddev->external &&
977 conf->mddev->flags) {
978 /* It is very unlikely, but we might
979 * still need to write out the
980 * bad block log - better give it
981 * a chance*/
982 md_check_recovery(conf->mddev);
983 }
1850753d 984 /*
985 * Because md_wait_for_blocked_rdev
986 * will dec nr_pending, we must
987 * increment it first.
988 */
989 atomic_inc(&rdev->nr_pending);
73e92e51
N
990 md_wait_for_blocked_rdev(rdev, conf->mddev);
991 } else {
992 /* Acknowledged bad block - skip the write */
993 rdev_dec_pending(rdev, conf->mddev);
994 rdev = NULL;
995 }
996 }
997
91c00924 998 if (rdev) {
9a3e1101
N
999 if (s->syncing || s->expanding || s->expanded
1000 || s->replacing)
91c00924
DW
1001 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1002
2b7497f0
DW
1003 set_bit(STRIPE_IO_STARTED, &sh->state);
1004
2f6db2a7 1005 bio_reset(bi);
91c00924 1006 bi->bi_bdev = rdev->bdev;
2f6db2a7
KO
1007 bi->bi_rw = rw;
1008 bi->bi_end_io = (rw & WRITE)
1009 ? raid5_end_write_request
1010 : raid5_end_read_request;
1011 bi->bi_private = sh;
1012
91c00924 1013 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 1014 __func__, (unsigned long long)sh->sector,
91c00924
DW
1015 bi->bi_rw, i);
1016 atomic_inc(&sh->count);
59fc630b 1017 if (sh != head_sh)
1018 atomic_inc(&head_sh->count);
05616be5 1019 if (use_new_offset(conf, sh))
4f024f37 1020 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1021 + rdev->new_data_offset);
1022 else
4f024f37 1023 bi->bi_iter.bi_sector = (sh->sector
05616be5 1024 + rdev->data_offset);
59fc630b 1025 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
e59aa23f 1026 bi->bi_rw |= REQ_NOMERGE;
3f9e7c14 1027
d592a996
SL
1028 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1029 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1030 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1031 bi->bi_vcnt = 1;
91c00924
DW
1032 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1033 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1034 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1035 /*
1036 * If this is discard request, set bi_vcnt 0. We don't
1037 * want to confuse SCSI because SCSI will replace payload
1038 */
1039 if (rw & REQ_DISCARD)
1040 bi->bi_vcnt = 0;
977df362
N
1041 if (rrdev)
1042 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1043
1044 if (conf->mddev->gendisk)
1045 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1046 bi, disk_devt(conf->mddev->gendisk),
1047 sh->dev[i].sector);
91c00924 1048 generic_make_request(bi);
977df362
N
1049 }
1050 if (rrdev) {
9a3e1101
N
1051 if (s->syncing || s->expanding || s->expanded
1052 || s->replacing)
977df362
N
1053 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1054
1055 set_bit(STRIPE_IO_STARTED, &sh->state);
1056
2f6db2a7 1057 bio_reset(rbi);
977df362 1058 rbi->bi_bdev = rrdev->bdev;
2f6db2a7
KO
1059 rbi->bi_rw = rw;
1060 BUG_ON(!(rw & WRITE));
1061 rbi->bi_end_io = raid5_end_write_request;
1062 rbi->bi_private = sh;
1063
977df362
N
1064 pr_debug("%s: for %llu schedule op %ld on "
1065 "replacement disc %d\n",
1066 __func__, (unsigned long long)sh->sector,
1067 rbi->bi_rw, i);
1068 atomic_inc(&sh->count);
59fc630b 1069 if (sh != head_sh)
1070 atomic_inc(&head_sh->count);
05616be5 1071 if (use_new_offset(conf, sh))
4f024f37 1072 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1073 + rrdev->new_data_offset);
1074 else
4f024f37 1075 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1076 + rrdev->data_offset);
d592a996
SL
1077 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1078 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1079 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1080 rbi->bi_vcnt = 1;
977df362
N
1081 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1082 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1083 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1084 /*
1085 * If this is discard request, set bi_vcnt 0. We don't
1086 * want to confuse SCSI because SCSI will replace payload
1087 */
1088 if (rw & REQ_DISCARD)
1089 rbi->bi_vcnt = 0;
e3620a3a
JB
1090 if (conf->mddev->gendisk)
1091 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1092 rbi, disk_devt(conf->mddev->gendisk),
1093 sh->dev[i].sector);
977df362
N
1094 generic_make_request(rbi);
1095 }
1096 if (!rdev && !rrdev) {
b062962e 1097 if (rw & WRITE)
91c00924
DW
1098 set_bit(STRIPE_DEGRADED, &sh->state);
1099 pr_debug("skip op %ld on disc %d for sector %llu\n",
1100 bi->bi_rw, i, (unsigned long long)sh->sector);
1101 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1102 set_bit(STRIPE_HANDLE, &sh->state);
1103 }
59fc630b 1104
1105 if (!head_sh->batch_head)
1106 continue;
1107 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1108 batch_list);
1109 if (sh != head_sh)
1110 goto again;
91c00924
DW
1111 }
1112}
1113
1114static struct dma_async_tx_descriptor *
d592a996
SL
1115async_copy_data(int frombio, struct bio *bio, struct page **page,
1116 sector_t sector, struct dma_async_tx_descriptor *tx,
1117 struct stripe_head *sh)
91c00924 1118{
7988613b
KO
1119 struct bio_vec bvl;
1120 struct bvec_iter iter;
91c00924 1121 struct page *bio_page;
91c00924 1122 int page_offset;
a08abd8c 1123 struct async_submit_ctl submit;
0403e382 1124 enum async_tx_flags flags = 0;
91c00924 1125
4f024f37
KO
1126 if (bio->bi_iter.bi_sector >= sector)
1127 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1128 else
4f024f37 1129 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1130
0403e382
DW
1131 if (frombio)
1132 flags |= ASYNC_TX_FENCE;
1133 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1134
7988613b
KO
1135 bio_for_each_segment(bvl, bio, iter) {
1136 int len = bvl.bv_len;
91c00924
DW
1137 int clen;
1138 int b_offset = 0;
1139
1140 if (page_offset < 0) {
1141 b_offset = -page_offset;
1142 page_offset += b_offset;
1143 len -= b_offset;
1144 }
1145
1146 if (len > 0 && page_offset + len > STRIPE_SIZE)
1147 clen = STRIPE_SIZE - page_offset;
1148 else
1149 clen = len;
1150
1151 if (clen > 0) {
7988613b
KO
1152 b_offset += bvl.bv_offset;
1153 bio_page = bvl.bv_page;
d592a996
SL
1154 if (frombio) {
1155 if (sh->raid_conf->skip_copy &&
1156 b_offset == 0 && page_offset == 0 &&
1157 clen == STRIPE_SIZE)
1158 *page = bio_page;
1159 else
1160 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1161 b_offset, clen, &submit);
d592a996
SL
1162 } else
1163 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1164 page_offset, clen, &submit);
91c00924 1165 }
a08abd8c
DW
1166 /* chain the operations */
1167 submit.depend_tx = tx;
1168
91c00924
DW
1169 if (clen < len) /* hit end of page */
1170 break;
1171 page_offset += len;
1172 }
1173
1174 return tx;
1175}
1176
1177static void ops_complete_biofill(void *stripe_head_ref)
1178{
1179 struct stripe_head *sh = stripe_head_ref;
34a6f80e 1180 struct bio_list return_bi = BIO_EMPTY_LIST;
e4d84909 1181 int i;
91c00924 1182
e46b272b 1183 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1184 (unsigned long long)sh->sector);
1185
1186 /* clear completed biofills */
1187 for (i = sh->disks; i--; ) {
1188 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1189
1190 /* acknowledge completion of a biofill operation */
e4d84909
DW
1191 /* and check if we need to reply to a read request,
1192 * new R5_Wantfill requests are held off until
83de75cc 1193 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1194 */
1195 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1196 struct bio *rbi, *rbi2;
91c00924 1197
91c00924
DW
1198 BUG_ON(!dev->read);
1199 rbi = dev->read;
1200 dev->read = NULL;
4f024f37 1201 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1202 dev->sector + STRIPE_SECTORS) {
1203 rbi2 = r5_next_bio(rbi, dev->sector);
34a6f80e
N
1204 if (!raid5_dec_bi_active_stripes(rbi))
1205 bio_list_add(&return_bi, rbi);
91c00924
DW
1206 rbi = rbi2;
1207 }
1208 }
1209 }
83de75cc 1210 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924 1211
34a6f80e 1212 return_io(&return_bi);
91c00924 1213
e4d84909 1214 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1215 raid5_release_stripe(sh);
91c00924
DW
1216}
1217
1218static void ops_run_biofill(struct stripe_head *sh)
1219{
1220 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1221 struct async_submit_ctl submit;
91c00924
DW
1222 int i;
1223
59fc630b 1224 BUG_ON(sh->batch_head);
e46b272b 1225 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1226 (unsigned long long)sh->sector);
1227
1228 for (i = sh->disks; i--; ) {
1229 struct r5dev *dev = &sh->dev[i];
1230 if (test_bit(R5_Wantfill, &dev->flags)) {
1231 struct bio *rbi;
b17459c0 1232 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1233 dev->read = rbi = dev->toread;
1234 dev->toread = NULL;
b17459c0 1235 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1236 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1237 dev->sector + STRIPE_SECTORS) {
d592a996
SL
1238 tx = async_copy_data(0, rbi, &dev->page,
1239 dev->sector, tx, sh);
91c00924
DW
1240 rbi = r5_next_bio(rbi, dev->sector);
1241 }
1242 }
1243 }
1244
1245 atomic_inc(&sh->count);
a08abd8c
DW
1246 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1247 async_trigger_callback(&submit);
91c00924
DW
1248}
1249
4e7d2c0a 1250static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1251{
4e7d2c0a 1252 struct r5dev *tgt;
91c00924 1253
4e7d2c0a
DW
1254 if (target < 0)
1255 return;
91c00924 1256
4e7d2c0a 1257 tgt = &sh->dev[target];
91c00924
DW
1258 set_bit(R5_UPTODATE, &tgt->flags);
1259 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1260 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1261}
1262
ac6b53b6 1263static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1264{
1265 struct stripe_head *sh = stripe_head_ref;
91c00924 1266
e46b272b 1267 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1268 (unsigned long long)sh->sector);
1269
ac6b53b6 1270 /* mark the computed target(s) as uptodate */
4e7d2c0a 1271 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1272 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1273
ecc65c9b
DW
1274 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1275 if (sh->check_state == check_state_compute_run)
1276 sh->check_state = check_state_compute_result;
91c00924 1277 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1278 raid5_release_stripe(sh);
91c00924
DW
1279}
1280
d6f38f31
DW
1281/* return a pointer to the address conversion region of the scribble buffer */
1282static addr_conv_t *to_addr_conv(struct stripe_head *sh,
46d5b785 1283 struct raid5_percpu *percpu, int i)
d6f38f31 1284{
46d5b785 1285 void *addr;
1286
1287 addr = flex_array_get(percpu->scribble, i);
1288 return addr + sizeof(struct page *) * (sh->disks + 2);
1289}
1290
1291/* return a pointer to the address conversion region of the scribble buffer */
1292static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1293{
1294 void *addr;
1295
1296 addr = flex_array_get(percpu->scribble, i);
1297 return addr;
d6f38f31
DW
1298}
1299
1300static struct dma_async_tx_descriptor *
1301ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1302{
91c00924 1303 int disks = sh->disks;
46d5b785 1304 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1305 int target = sh->ops.target;
1306 struct r5dev *tgt = &sh->dev[target];
1307 struct page *xor_dest = tgt->page;
1308 int count = 0;
1309 struct dma_async_tx_descriptor *tx;
a08abd8c 1310 struct async_submit_ctl submit;
91c00924
DW
1311 int i;
1312
59fc630b 1313 BUG_ON(sh->batch_head);
1314
91c00924 1315 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1316 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1317 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1318
1319 for (i = disks; i--; )
1320 if (i != target)
1321 xor_srcs[count++] = sh->dev[i].page;
1322
1323 atomic_inc(&sh->count);
1324
0403e382 1325 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1326 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1327 if (unlikely(count == 1))
a08abd8c 1328 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1329 else
a08abd8c 1330 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1331
91c00924
DW
1332 return tx;
1333}
1334
ac6b53b6
DW
1335/* set_syndrome_sources - populate source buffers for gen_syndrome
1336 * @srcs - (struct page *) array of size sh->disks
1337 * @sh - stripe_head to parse
1338 *
1339 * Populates srcs in proper layout order for the stripe and returns the
1340 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1341 * destination buffer is recorded in srcs[count] and the Q destination
1342 * is recorded in srcs[count+1]].
1343 */
584acdd4
MS
1344static int set_syndrome_sources(struct page **srcs,
1345 struct stripe_head *sh,
1346 int srctype)
ac6b53b6
DW
1347{
1348 int disks = sh->disks;
1349 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1350 int d0_idx = raid6_d0(sh);
1351 int count;
1352 int i;
1353
1354 for (i = 0; i < disks; i++)
5dd33c9a 1355 srcs[i] = NULL;
ac6b53b6
DW
1356
1357 count = 0;
1358 i = d0_idx;
1359 do {
1360 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1361 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1362
584acdd4
MS
1363 if (i == sh->qd_idx || i == sh->pd_idx ||
1364 (srctype == SYNDROME_SRC_ALL) ||
1365 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1366 test_bit(R5_Wantdrain, &dev->flags)) ||
1367 (srctype == SYNDROME_SRC_WRITTEN &&
1368 dev->written))
1369 srcs[slot] = sh->dev[i].page;
ac6b53b6
DW
1370 i = raid6_next_disk(i, disks);
1371 } while (i != d0_idx);
ac6b53b6 1372
e4424fee 1373 return syndrome_disks;
ac6b53b6
DW
1374}
1375
1376static struct dma_async_tx_descriptor *
1377ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1378{
1379 int disks = sh->disks;
46d5b785 1380 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1381 int target;
1382 int qd_idx = sh->qd_idx;
1383 struct dma_async_tx_descriptor *tx;
1384 struct async_submit_ctl submit;
1385 struct r5dev *tgt;
1386 struct page *dest;
1387 int i;
1388 int count;
1389
59fc630b 1390 BUG_ON(sh->batch_head);
ac6b53b6
DW
1391 if (sh->ops.target < 0)
1392 target = sh->ops.target2;
1393 else if (sh->ops.target2 < 0)
1394 target = sh->ops.target;
91c00924 1395 else
ac6b53b6
DW
1396 /* we should only have one valid target */
1397 BUG();
1398 BUG_ON(target < 0);
1399 pr_debug("%s: stripe %llu block: %d\n",
1400 __func__, (unsigned long long)sh->sector, target);
1401
1402 tgt = &sh->dev[target];
1403 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1404 dest = tgt->page;
1405
1406 atomic_inc(&sh->count);
1407
1408 if (target == qd_idx) {
584acdd4 1409 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1410 blocks[count] = NULL; /* regenerating p is not necessary */
1411 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1412 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1413 ops_complete_compute, sh,
46d5b785 1414 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1415 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1416 } else {
1417 /* Compute any data- or p-drive using XOR */
1418 count = 0;
1419 for (i = disks; i-- ; ) {
1420 if (i == target || i == qd_idx)
1421 continue;
1422 blocks[count++] = sh->dev[i].page;
1423 }
1424
0403e382
DW
1425 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1426 NULL, ops_complete_compute, sh,
46d5b785 1427 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1428 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1429 }
91c00924 1430
91c00924
DW
1431 return tx;
1432}
1433
ac6b53b6
DW
1434static struct dma_async_tx_descriptor *
1435ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1436{
1437 int i, count, disks = sh->disks;
1438 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1439 int d0_idx = raid6_d0(sh);
1440 int faila = -1, failb = -1;
1441 int target = sh->ops.target;
1442 int target2 = sh->ops.target2;
1443 struct r5dev *tgt = &sh->dev[target];
1444 struct r5dev *tgt2 = &sh->dev[target2];
1445 struct dma_async_tx_descriptor *tx;
46d5b785 1446 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1447 struct async_submit_ctl submit;
1448
59fc630b 1449 BUG_ON(sh->batch_head);
ac6b53b6
DW
1450 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1451 __func__, (unsigned long long)sh->sector, target, target2);
1452 BUG_ON(target < 0 || target2 < 0);
1453 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1454 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1455
6c910a78 1456 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1457 * slot number conversion for 'faila' and 'failb'
1458 */
1459 for (i = 0; i < disks ; i++)
5dd33c9a 1460 blocks[i] = NULL;
ac6b53b6
DW
1461 count = 0;
1462 i = d0_idx;
1463 do {
1464 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1465
1466 blocks[slot] = sh->dev[i].page;
1467
1468 if (i == target)
1469 faila = slot;
1470 if (i == target2)
1471 failb = slot;
1472 i = raid6_next_disk(i, disks);
1473 } while (i != d0_idx);
ac6b53b6
DW
1474
1475 BUG_ON(faila == failb);
1476 if (failb < faila)
1477 swap(faila, failb);
1478 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1479 __func__, (unsigned long long)sh->sector, faila, failb);
1480
1481 atomic_inc(&sh->count);
1482
1483 if (failb == syndrome_disks+1) {
1484 /* Q disk is one of the missing disks */
1485 if (faila == syndrome_disks) {
1486 /* Missing P+Q, just recompute */
0403e382
DW
1487 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1488 ops_complete_compute, sh,
46d5b785 1489 to_addr_conv(sh, percpu, 0));
e4424fee 1490 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1491 STRIPE_SIZE, &submit);
1492 } else {
1493 struct page *dest;
1494 int data_target;
1495 int qd_idx = sh->qd_idx;
1496
1497 /* Missing D+Q: recompute D from P, then recompute Q */
1498 if (target == qd_idx)
1499 data_target = target2;
1500 else
1501 data_target = target;
1502
1503 count = 0;
1504 for (i = disks; i-- ; ) {
1505 if (i == data_target || i == qd_idx)
1506 continue;
1507 blocks[count++] = sh->dev[i].page;
1508 }
1509 dest = sh->dev[data_target].page;
0403e382
DW
1510 init_async_submit(&submit,
1511 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1512 NULL, NULL, NULL,
46d5b785 1513 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1514 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1515 &submit);
1516
584acdd4 1517 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1518 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1519 ops_complete_compute, sh,
46d5b785 1520 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1521 return async_gen_syndrome(blocks, 0, count+2,
1522 STRIPE_SIZE, &submit);
1523 }
ac6b53b6 1524 } else {
6c910a78
DW
1525 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1526 ops_complete_compute, sh,
46d5b785 1527 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1528 if (failb == syndrome_disks) {
1529 /* We're missing D+P. */
1530 return async_raid6_datap_recov(syndrome_disks+2,
1531 STRIPE_SIZE, faila,
1532 blocks, &submit);
1533 } else {
1534 /* We're missing D+D. */
1535 return async_raid6_2data_recov(syndrome_disks+2,
1536 STRIPE_SIZE, faila, failb,
1537 blocks, &submit);
1538 }
ac6b53b6
DW
1539 }
1540}
1541
91c00924
DW
1542static void ops_complete_prexor(void *stripe_head_ref)
1543{
1544 struct stripe_head *sh = stripe_head_ref;
1545
e46b272b 1546 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1547 (unsigned long long)sh->sector);
91c00924
DW
1548}
1549
1550static struct dma_async_tx_descriptor *
584acdd4
MS
1551ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1552 struct dma_async_tx_descriptor *tx)
91c00924 1553{
91c00924 1554 int disks = sh->disks;
46d5b785 1555 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1556 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1557 struct async_submit_ctl submit;
91c00924
DW
1558
1559 /* existing parity data subtracted */
1560 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1561
59fc630b 1562 BUG_ON(sh->batch_head);
e46b272b 1563 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1564 (unsigned long long)sh->sector);
1565
1566 for (i = disks; i--; ) {
1567 struct r5dev *dev = &sh->dev[i];
1568 /* Only process blocks that are known to be uptodate */
d8ee0728 1569 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1570 xor_srcs[count++] = dev->page;
1571 }
1572
0403e382 1573 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1574 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1575 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1576
1577 return tx;
1578}
1579
584acdd4
MS
1580static struct dma_async_tx_descriptor *
1581ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1582 struct dma_async_tx_descriptor *tx)
1583{
1584 struct page **blocks = to_addr_page(percpu, 0);
1585 int count;
1586 struct async_submit_ctl submit;
1587
1588 pr_debug("%s: stripe %llu\n", __func__,
1589 (unsigned long long)sh->sector);
1590
1591 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1592
1593 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1594 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1595 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1596
1597 return tx;
1598}
1599
91c00924 1600static struct dma_async_tx_descriptor *
d8ee0728 1601ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1602{
1603 int disks = sh->disks;
d8ee0728 1604 int i;
59fc630b 1605 struct stripe_head *head_sh = sh;
91c00924 1606
e46b272b 1607 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1608 (unsigned long long)sh->sector);
1609
1610 for (i = disks; i--; ) {
59fc630b 1611 struct r5dev *dev;
91c00924 1612 struct bio *chosen;
91c00924 1613
59fc630b 1614 sh = head_sh;
1615 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1616 struct bio *wbi;
1617
59fc630b 1618again:
1619 dev = &sh->dev[i];
b17459c0 1620 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1621 chosen = dev->towrite;
1622 dev->towrite = NULL;
7a87f434 1623 sh->overwrite_disks = 0;
91c00924
DW
1624 BUG_ON(dev->written);
1625 wbi = dev->written = chosen;
b17459c0 1626 spin_unlock_irq(&sh->stripe_lock);
d592a996 1627 WARN_ON(dev->page != dev->orig_page);
91c00924 1628
4f024f37 1629 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1630 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1631 if (wbi->bi_rw & REQ_FUA)
1632 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1633 if (wbi->bi_rw & REQ_SYNC)
1634 set_bit(R5_SyncIO, &dev->flags);
9e444768 1635 if (wbi->bi_rw & REQ_DISCARD)
620125f2 1636 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1637 else {
1638 tx = async_copy_data(1, wbi, &dev->page,
1639 dev->sector, tx, sh);
1640 if (dev->page != dev->orig_page) {
1641 set_bit(R5_SkipCopy, &dev->flags);
1642 clear_bit(R5_UPTODATE, &dev->flags);
1643 clear_bit(R5_OVERWRITE, &dev->flags);
1644 }
1645 }
91c00924
DW
1646 wbi = r5_next_bio(wbi, dev->sector);
1647 }
59fc630b 1648
1649 if (head_sh->batch_head) {
1650 sh = list_first_entry(&sh->batch_list,
1651 struct stripe_head,
1652 batch_list);
1653 if (sh == head_sh)
1654 continue;
1655 goto again;
1656 }
91c00924
DW
1657 }
1658 }
1659
1660 return tx;
1661}
1662
ac6b53b6 1663static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1664{
1665 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1666 int disks = sh->disks;
1667 int pd_idx = sh->pd_idx;
1668 int qd_idx = sh->qd_idx;
1669 int i;
9e444768 1670 bool fua = false, sync = false, discard = false;
91c00924 1671
e46b272b 1672 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1673 (unsigned long long)sh->sector);
1674
bc0934f0 1675 for (i = disks; i--; ) {
e9c7469b 1676 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1677 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1678 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1679 }
e9c7469b 1680
91c00924
DW
1681 for (i = disks; i--; ) {
1682 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1683
e9c7469b 1684 if (dev->written || i == pd_idx || i == qd_idx) {
d592a996 1685 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
9e444768 1686 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1687 if (fua)
1688 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1689 if (sync)
1690 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1691 }
91c00924
DW
1692 }
1693
d8ee0728
DW
1694 if (sh->reconstruct_state == reconstruct_state_drain_run)
1695 sh->reconstruct_state = reconstruct_state_drain_result;
1696 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1697 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1698 else {
1699 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1700 sh->reconstruct_state = reconstruct_state_result;
1701 }
91c00924
DW
1702
1703 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1704 raid5_release_stripe(sh);
91c00924
DW
1705}
1706
1707static void
ac6b53b6
DW
1708ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1709 struct dma_async_tx_descriptor *tx)
91c00924 1710{
91c00924 1711 int disks = sh->disks;
59fc630b 1712 struct page **xor_srcs;
a08abd8c 1713 struct async_submit_ctl submit;
59fc630b 1714 int count, pd_idx = sh->pd_idx, i;
91c00924 1715 struct page *xor_dest;
d8ee0728 1716 int prexor = 0;
91c00924 1717 unsigned long flags;
59fc630b 1718 int j = 0;
1719 struct stripe_head *head_sh = sh;
1720 int last_stripe;
91c00924 1721
e46b272b 1722 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1723 (unsigned long long)sh->sector);
1724
620125f2
SL
1725 for (i = 0; i < sh->disks; i++) {
1726 if (pd_idx == i)
1727 continue;
1728 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1729 break;
1730 }
1731 if (i >= sh->disks) {
1732 atomic_inc(&sh->count);
620125f2
SL
1733 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1734 ops_complete_reconstruct(sh);
1735 return;
1736 }
59fc630b 1737again:
1738 count = 0;
1739 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1740 /* check if prexor is active which means only process blocks
1741 * that are part of a read-modify-write (written)
1742 */
59fc630b 1743 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1744 prexor = 1;
91c00924
DW
1745 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1746 for (i = disks; i--; ) {
1747 struct r5dev *dev = &sh->dev[i];
59fc630b 1748 if (head_sh->dev[i].written)
91c00924
DW
1749 xor_srcs[count++] = dev->page;
1750 }
1751 } else {
1752 xor_dest = sh->dev[pd_idx].page;
1753 for (i = disks; i--; ) {
1754 struct r5dev *dev = &sh->dev[i];
1755 if (i != pd_idx)
1756 xor_srcs[count++] = dev->page;
1757 }
1758 }
1759
91c00924
DW
1760 /* 1/ if we prexor'd then the dest is reused as a source
1761 * 2/ if we did not prexor then we are redoing the parity
1762 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1763 * for the synchronous xor case
1764 */
59fc630b 1765 last_stripe = !head_sh->batch_head ||
1766 list_first_entry(&sh->batch_list,
1767 struct stripe_head, batch_list) == head_sh;
1768 if (last_stripe) {
1769 flags = ASYNC_TX_ACK |
1770 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1771
1772 atomic_inc(&head_sh->count);
1773 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1774 to_addr_conv(sh, percpu, j));
1775 } else {
1776 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1777 init_async_submit(&submit, flags, tx, NULL, NULL,
1778 to_addr_conv(sh, percpu, j));
1779 }
91c00924 1780
a08abd8c
DW
1781 if (unlikely(count == 1))
1782 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1783 else
1784 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1785 if (!last_stripe) {
1786 j++;
1787 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1788 batch_list);
1789 goto again;
1790 }
91c00924
DW
1791}
1792
ac6b53b6
DW
1793static void
1794ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1795 struct dma_async_tx_descriptor *tx)
1796{
1797 struct async_submit_ctl submit;
59fc630b 1798 struct page **blocks;
1799 int count, i, j = 0;
1800 struct stripe_head *head_sh = sh;
1801 int last_stripe;
584acdd4
MS
1802 int synflags;
1803 unsigned long txflags;
ac6b53b6
DW
1804
1805 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1806
620125f2
SL
1807 for (i = 0; i < sh->disks; i++) {
1808 if (sh->pd_idx == i || sh->qd_idx == i)
1809 continue;
1810 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1811 break;
1812 }
1813 if (i >= sh->disks) {
1814 atomic_inc(&sh->count);
620125f2
SL
1815 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1816 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1817 ops_complete_reconstruct(sh);
1818 return;
1819 }
1820
59fc630b 1821again:
1822 blocks = to_addr_page(percpu, j);
584acdd4
MS
1823
1824 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1825 synflags = SYNDROME_SRC_WRITTEN;
1826 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1827 } else {
1828 synflags = SYNDROME_SRC_ALL;
1829 txflags = ASYNC_TX_ACK;
1830 }
1831
1832 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1833 last_stripe = !head_sh->batch_head ||
1834 list_first_entry(&sh->batch_list,
1835 struct stripe_head, batch_list) == head_sh;
1836
1837 if (last_stripe) {
1838 atomic_inc(&head_sh->count);
584acdd4 1839 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1840 head_sh, to_addr_conv(sh, percpu, j));
1841 } else
1842 init_async_submit(&submit, 0, tx, NULL, NULL,
1843 to_addr_conv(sh, percpu, j));
48769695 1844 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1845 if (!last_stripe) {
1846 j++;
1847 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1848 batch_list);
1849 goto again;
1850 }
91c00924
DW
1851}
1852
1853static void ops_complete_check(void *stripe_head_ref)
1854{
1855 struct stripe_head *sh = stripe_head_ref;
91c00924 1856
e46b272b 1857 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1858 (unsigned long long)sh->sector);
1859
ecc65c9b 1860 sh->check_state = check_state_check_result;
91c00924 1861 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1862 raid5_release_stripe(sh);
91c00924
DW
1863}
1864
ac6b53b6 1865static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1866{
91c00924 1867 int disks = sh->disks;
ac6b53b6
DW
1868 int pd_idx = sh->pd_idx;
1869 int qd_idx = sh->qd_idx;
1870 struct page *xor_dest;
46d5b785 1871 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1872 struct dma_async_tx_descriptor *tx;
a08abd8c 1873 struct async_submit_ctl submit;
ac6b53b6
DW
1874 int count;
1875 int i;
91c00924 1876
e46b272b 1877 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1878 (unsigned long long)sh->sector);
1879
59fc630b 1880 BUG_ON(sh->batch_head);
ac6b53b6
DW
1881 count = 0;
1882 xor_dest = sh->dev[pd_idx].page;
1883 xor_srcs[count++] = xor_dest;
91c00924 1884 for (i = disks; i--; ) {
ac6b53b6
DW
1885 if (i == pd_idx || i == qd_idx)
1886 continue;
1887 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1888 }
1889
d6f38f31 1890 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 1891 to_addr_conv(sh, percpu, 0));
099f53cb 1892 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1893 &sh->ops.zero_sum_result, &submit);
91c00924 1894
91c00924 1895 atomic_inc(&sh->count);
a08abd8c
DW
1896 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1897 tx = async_trigger_callback(&submit);
91c00924
DW
1898}
1899
ac6b53b6
DW
1900static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1901{
46d5b785 1902 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
1903 struct async_submit_ctl submit;
1904 int count;
1905
1906 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1907 (unsigned long long)sh->sector, checkp);
1908
59fc630b 1909 BUG_ON(sh->batch_head);
584acdd4 1910 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1911 if (!checkp)
1912 srcs[count] = NULL;
91c00924 1913
91c00924 1914 atomic_inc(&sh->count);
ac6b53b6 1915 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 1916 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1917 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1918 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1919}
1920
51acbcec 1921static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1922{
1923 int overlap_clear = 0, i, disks = sh->disks;
1924 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1925 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1926 int level = conf->level;
d6f38f31
DW
1927 struct raid5_percpu *percpu;
1928 unsigned long cpu;
91c00924 1929
d6f38f31
DW
1930 cpu = get_cpu();
1931 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1932 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1933 ops_run_biofill(sh);
1934 overlap_clear++;
1935 }
1936
7b3a871e 1937 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1938 if (level < 6)
1939 tx = ops_run_compute5(sh, percpu);
1940 else {
1941 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1942 tx = ops_run_compute6_1(sh, percpu);
1943 else
1944 tx = ops_run_compute6_2(sh, percpu);
1945 }
1946 /* terminate the chain if reconstruct is not set to be run */
1947 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1948 async_tx_ack(tx);
1949 }
91c00924 1950
584acdd4
MS
1951 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1952 if (level < 6)
1953 tx = ops_run_prexor5(sh, percpu, tx);
1954 else
1955 tx = ops_run_prexor6(sh, percpu, tx);
1956 }
91c00924 1957
600aa109 1958 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1959 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1960 overlap_clear++;
1961 }
1962
ac6b53b6
DW
1963 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1964 if (level < 6)
1965 ops_run_reconstruct5(sh, percpu, tx);
1966 else
1967 ops_run_reconstruct6(sh, percpu, tx);
1968 }
91c00924 1969
ac6b53b6
DW
1970 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1971 if (sh->check_state == check_state_run)
1972 ops_run_check_p(sh, percpu);
1973 else if (sh->check_state == check_state_run_q)
1974 ops_run_check_pq(sh, percpu, 0);
1975 else if (sh->check_state == check_state_run_pq)
1976 ops_run_check_pq(sh, percpu, 1);
1977 else
1978 BUG();
1979 }
91c00924 1980
59fc630b 1981 if (overlap_clear && !sh->batch_head)
91c00924
DW
1982 for (i = disks; i--; ) {
1983 struct r5dev *dev = &sh->dev[i];
1984 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1985 wake_up(&sh->raid_conf->wait_for_overlap);
1986 }
d6f38f31 1987 put_cpu();
91c00924
DW
1988}
1989
f18c1a35
N
1990static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1991{
1992 struct stripe_head *sh;
1993
1994 sh = kmem_cache_zalloc(sc, gfp);
1995 if (sh) {
1996 spin_lock_init(&sh->stripe_lock);
1997 spin_lock_init(&sh->batch_lock);
1998 INIT_LIST_HEAD(&sh->batch_list);
1999 INIT_LIST_HEAD(&sh->lru);
2000 atomic_set(&sh->count, 1);
2001 }
2002 return sh;
2003}
486f0644 2004static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
2005{
2006 struct stripe_head *sh;
f18c1a35
N
2007
2008 sh = alloc_stripe(conf->slab_cache, gfp);
3f294f4f
N
2009 if (!sh)
2010 return 0;
6ce32846 2011
3f294f4f 2012 sh->raid_conf = conf;
3f294f4f 2013
a9683a79 2014 if (grow_buffers(sh, gfp)) {
e4e11e38 2015 shrink_buffers(sh);
3f294f4f
N
2016 kmem_cache_free(conf->slab_cache, sh);
2017 return 0;
2018 }
486f0644
N
2019 sh->hash_lock_index =
2020 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2021 /* we just created an active stripe so... */
3f294f4f 2022 atomic_inc(&conf->active_stripes);
59fc630b 2023
6d036f7d 2024 raid5_release_stripe(sh);
486f0644 2025 conf->max_nr_stripes++;
3f294f4f
N
2026 return 1;
2027}
2028
d1688a6d 2029static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2030{
e18b890b 2031 struct kmem_cache *sc;
5e5e3e78 2032 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2033
f4be6b43
N
2034 if (conf->mddev->gendisk)
2035 sprintf(conf->cache_name[0],
2036 "raid%d-%s", conf->level, mdname(conf->mddev));
2037 else
2038 sprintf(conf->cache_name[0],
2039 "raid%d-%p", conf->level, conf->mddev);
2040 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2041
ad01c9e3
N
2042 conf->active_name = 0;
2043 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2044 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2045 0, 0, NULL);
1da177e4
LT
2046 if (!sc)
2047 return 1;
2048 conf->slab_cache = sc;
ad01c9e3 2049 conf->pool_size = devs;
486f0644
N
2050 while (num--)
2051 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2052 return 1;
486f0644 2053
1da177e4
LT
2054 return 0;
2055}
29269553 2056
d6f38f31
DW
2057/**
2058 * scribble_len - return the required size of the scribble region
2059 * @num - total number of disks in the array
2060 *
2061 * The size must be enough to contain:
2062 * 1/ a struct page pointer for each device in the array +2
2063 * 2/ room to convert each entry in (1) to its corresponding dma
2064 * (dma_map_page()) or page (page_address()) address.
2065 *
2066 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2067 * calculate over all devices (not just the data blocks), using zeros in place
2068 * of the P and Q blocks.
2069 */
46d5b785 2070static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
d6f38f31 2071{
46d5b785 2072 struct flex_array *ret;
d6f38f31
DW
2073 size_t len;
2074
2075 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
46d5b785 2076 ret = flex_array_alloc(len, cnt, flags);
2077 if (!ret)
2078 return NULL;
2079 /* always prealloc all elements, so no locking is required */
2080 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2081 flex_array_free(ret);
2082 return NULL;
2083 }
2084 return ret;
d6f38f31
DW
2085}
2086
738a2738
N
2087static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2088{
2089 unsigned long cpu;
2090 int err = 0;
2091
27a353c0
SL
2092 /*
2093 * Never shrink. And mddev_suspend() could deadlock if this is called
2094 * from raid5d. In that case, scribble_disks and scribble_sectors
2095 * should equal to new_disks and new_sectors
2096 */
2097 if (conf->scribble_disks >= new_disks &&
2098 conf->scribble_sectors >= new_sectors)
2099 return 0;
738a2738
N
2100 mddev_suspend(conf->mddev);
2101 get_online_cpus();
2102 for_each_present_cpu(cpu) {
2103 struct raid5_percpu *percpu;
2104 struct flex_array *scribble;
2105
2106 percpu = per_cpu_ptr(conf->percpu, cpu);
2107 scribble = scribble_alloc(new_disks,
2108 new_sectors / STRIPE_SECTORS,
2109 GFP_NOIO);
2110
2111 if (scribble) {
2112 flex_array_free(percpu->scribble);
2113 percpu->scribble = scribble;
2114 } else {
2115 err = -ENOMEM;
2116 break;
2117 }
2118 }
2119 put_online_cpus();
2120 mddev_resume(conf->mddev);
27a353c0
SL
2121 if (!err) {
2122 conf->scribble_disks = new_disks;
2123 conf->scribble_sectors = new_sectors;
2124 }
738a2738
N
2125 return err;
2126}
2127
d1688a6d 2128static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2129{
2130 /* Make all the stripes able to hold 'newsize' devices.
2131 * New slots in each stripe get 'page' set to a new page.
2132 *
2133 * This happens in stages:
2134 * 1/ create a new kmem_cache and allocate the required number of
2135 * stripe_heads.
83f0d77a 2136 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2137 * to the new stripe_heads. This will have the side effect of
2138 * freezing the array as once all stripe_heads have been collected,
2139 * no IO will be possible. Old stripe heads are freed once their
2140 * pages have been transferred over, and the old kmem_cache is
2141 * freed when all stripes are done.
2142 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2143 * we simple return a failre status - no need to clean anything up.
2144 * 4/ allocate new pages for the new slots in the new stripe_heads.
2145 * If this fails, we don't bother trying the shrink the
2146 * stripe_heads down again, we just leave them as they are.
2147 * As each stripe_head is processed the new one is released into
2148 * active service.
2149 *
2150 * Once step2 is started, we cannot afford to wait for a write,
2151 * so we use GFP_NOIO allocations.
2152 */
2153 struct stripe_head *osh, *nsh;
2154 LIST_HEAD(newstripes);
2155 struct disk_info *ndisks;
b5470dc5 2156 int err;
e18b890b 2157 struct kmem_cache *sc;
ad01c9e3 2158 int i;
566c09c5 2159 int hash, cnt;
ad01c9e3
N
2160
2161 if (newsize <= conf->pool_size)
2162 return 0; /* never bother to shrink */
2163
b5470dc5
DW
2164 err = md_allow_write(conf->mddev);
2165 if (err)
2166 return err;
2a2275d6 2167
ad01c9e3
N
2168 /* Step 1 */
2169 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2170 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2171 0, 0, NULL);
ad01c9e3
N
2172 if (!sc)
2173 return -ENOMEM;
2174
2d5b569b
N
2175 /* Need to ensure auto-resizing doesn't interfere */
2176 mutex_lock(&conf->cache_size_mutex);
2177
ad01c9e3 2178 for (i = conf->max_nr_stripes; i; i--) {
f18c1a35 2179 nsh = alloc_stripe(sc, GFP_KERNEL);
ad01c9e3
N
2180 if (!nsh)
2181 break;
2182
ad01c9e3 2183 nsh->raid_conf = conf;
ad01c9e3
N
2184 list_add(&nsh->lru, &newstripes);
2185 }
2186 if (i) {
2187 /* didn't get enough, give up */
2188 while (!list_empty(&newstripes)) {
2189 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2190 list_del(&nsh->lru);
2191 kmem_cache_free(sc, nsh);
2192 }
2193 kmem_cache_destroy(sc);
2d5b569b 2194 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2195 return -ENOMEM;
2196 }
2197 /* Step 2 - Must use GFP_NOIO now.
2198 * OK, we have enough stripes, start collecting inactive
2199 * stripes and copying them over
2200 */
566c09c5
SL
2201 hash = 0;
2202 cnt = 0;
ad01c9e3 2203 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5 2204 lock_device_hash_lock(conf, hash);
e9e4c377 2205 wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
566c09c5
SL
2206 !list_empty(conf->inactive_list + hash),
2207 unlock_device_hash_lock(conf, hash),
2208 lock_device_hash_lock(conf, hash));
2209 osh = get_free_stripe(conf, hash);
2210 unlock_device_hash_lock(conf, hash);
f18c1a35 2211
d592a996 2212 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2213 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2214 nsh->dev[i].orig_page = osh->dev[i].page;
2215 }
566c09c5 2216 nsh->hash_lock_index = hash;
ad01c9e3 2217 kmem_cache_free(conf->slab_cache, osh);
566c09c5
SL
2218 cnt++;
2219 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2220 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2221 hash++;
2222 cnt = 0;
2223 }
ad01c9e3
N
2224 }
2225 kmem_cache_destroy(conf->slab_cache);
2226
2227 /* Step 3.
2228 * At this point, we are holding all the stripes so the array
2229 * is completely stalled, so now is a good time to resize
d6f38f31 2230 * conf->disks and the scribble region
ad01c9e3
N
2231 */
2232 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2233 if (ndisks) {
2234 for (i=0; i<conf->raid_disks; i++)
2235 ndisks[i] = conf->disks[i];
2236 kfree(conf->disks);
2237 conf->disks = ndisks;
2238 } else
2239 err = -ENOMEM;
2240
2d5b569b 2241 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2242 /* Step 4, return new stripes to service */
2243 while(!list_empty(&newstripes)) {
2244 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2245 list_del_init(&nsh->lru);
d6f38f31 2246
ad01c9e3
N
2247 for (i=conf->raid_disks; i < newsize; i++)
2248 if (nsh->dev[i].page == NULL) {
2249 struct page *p = alloc_page(GFP_NOIO);
2250 nsh->dev[i].page = p;
d592a996 2251 nsh->dev[i].orig_page = p;
ad01c9e3
N
2252 if (!p)
2253 err = -ENOMEM;
2254 }
6d036f7d 2255 raid5_release_stripe(nsh);
ad01c9e3
N
2256 }
2257 /* critical section pass, GFP_NOIO no longer needed */
2258
2259 conf->slab_cache = sc;
2260 conf->active_name = 1-conf->active_name;
6e9eac2d
N
2261 if (!err)
2262 conf->pool_size = newsize;
ad01c9e3
N
2263 return err;
2264}
1da177e4 2265
486f0644 2266static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2267{
2268 struct stripe_head *sh;
49895bcc 2269 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
1da177e4 2270
566c09c5
SL
2271 spin_lock_irq(conf->hash_locks + hash);
2272 sh = get_free_stripe(conf, hash);
2273 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2274 if (!sh)
2275 return 0;
78bafebd 2276 BUG_ON(atomic_read(&sh->count));
e4e11e38 2277 shrink_buffers(sh);
3f294f4f
N
2278 kmem_cache_free(conf->slab_cache, sh);
2279 atomic_dec(&conf->active_stripes);
486f0644 2280 conf->max_nr_stripes--;
3f294f4f
N
2281 return 1;
2282}
2283
d1688a6d 2284static void shrink_stripes(struct r5conf *conf)
3f294f4f 2285{
486f0644
N
2286 while (conf->max_nr_stripes &&
2287 drop_one_stripe(conf))
2288 ;
3f294f4f 2289
644df1a8 2290 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2291 conf->slab_cache = NULL;
2292}
2293
4246a0b6 2294static void raid5_end_read_request(struct bio * bi)
1da177e4 2295{
99c0fb5f 2296 struct stripe_head *sh = bi->bi_private;
d1688a6d 2297 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2298 int disks = sh->disks, i;
d6950432 2299 char b[BDEVNAME_SIZE];
dd054fce 2300 struct md_rdev *rdev = NULL;
05616be5 2301 sector_t s;
1da177e4
LT
2302
2303 for (i=0 ; i<disks; i++)
2304 if (bi == &sh->dev[i].req)
2305 break;
2306
4246a0b6 2307 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
45b4233c 2308 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2309 bi->bi_error);
1da177e4
LT
2310 if (i == disks) {
2311 BUG();
6712ecf8 2312 return;
1da177e4 2313 }
14a75d3e 2314 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2315 /* If replacement finished while this request was outstanding,
2316 * 'replacement' might be NULL already.
2317 * In that case it moved down to 'rdev'.
2318 * rdev is not removed until all requests are finished.
2319 */
14a75d3e 2320 rdev = conf->disks[i].replacement;
dd054fce 2321 if (!rdev)
14a75d3e 2322 rdev = conf->disks[i].rdev;
1da177e4 2323
05616be5
N
2324 if (use_new_offset(conf, sh))
2325 s = sh->sector + rdev->new_data_offset;
2326 else
2327 s = sh->sector + rdev->data_offset;
4246a0b6 2328 if (!bi->bi_error) {
1da177e4 2329 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2330 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2331 /* Note that this cannot happen on a
2332 * replacement device. We just fail those on
2333 * any error
2334 */
8bda470e
CD
2335 printk_ratelimited(
2336 KERN_INFO
2337 "md/raid:%s: read error corrected"
2338 " (%lu sectors at %llu on %s)\n",
2339 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2340 (unsigned long long)s,
8bda470e 2341 bdevname(rdev->bdev, b));
ddd5115f 2342 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2343 clear_bit(R5_ReadError, &sh->dev[i].flags);
2344 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2345 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2346 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2347
14a75d3e
N
2348 if (atomic_read(&rdev->read_errors))
2349 atomic_set(&rdev->read_errors, 0);
1da177e4 2350 } else {
14a75d3e 2351 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2352 int retry = 0;
2e8ac303 2353 int set_bad = 0;
d6950432 2354
1da177e4 2355 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2356 atomic_inc(&rdev->read_errors);
14a75d3e
N
2357 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2358 printk_ratelimited(
2359 KERN_WARNING
2360 "md/raid:%s: read error on replacement device "
2361 "(sector %llu on %s).\n",
2362 mdname(conf->mddev),
05616be5 2363 (unsigned long long)s,
14a75d3e 2364 bdn);
2e8ac303 2365 else if (conf->mddev->degraded >= conf->max_degraded) {
2366 set_bad = 1;
8bda470e
CD
2367 printk_ratelimited(
2368 KERN_WARNING
2369 "md/raid:%s: read error not correctable "
2370 "(sector %llu on %s).\n",
2371 mdname(conf->mddev),
05616be5 2372 (unsigned long long)s,
8bda470e 2373 bdn);
2e8ac303 2374 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2375 /* Oh, no!!! */
2e8ac303 2376 set_bad = 1;
8bda470e
CD
2377 printk_ratelimited(
2378 KERN_WARNING
2379 "md/raid:%s: read error NOT corrected!! "
2380 "(sector %llu on %s).\n",
2381 mdname(conf->mddev),
05616be5 2382 (unsigned long long)s,
8bda470e 2383 bdn);
2e8ac303 2384 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2385 > conf->max_nr_stripes)
14f8d26b 2386 printk(KERN_WARNING
0c55e022 2387 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2388 mdname(conf->mddev), bdn);
ba22dcbf
N
2389 else
2390 retry = 1;
edfa1f65
BY
2391 if (set_bad && test_bit(In_sync, &rdev->flags)
2392 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2393 retry = 1;
ba22dcbf 2394 if (retry)
3f9e7c14 2395 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2396 set_bit(R5_ReadError, &sh->dev[i].flags);
2397 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2398 } else
2399 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2400 else {
4e5314b5
N
2401 clear_bit(R5_ReadError, &sh->dev[i].flags);
2402 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2403 if (!(set_bad
2404 && test_bit(In_sync, &rdev->flags)
2405 && rdev_set_badblocks(
2406 rdev, sh->sector, STRIPE_SECTORS, 0)))
2407 md_error(conf->mddev, rdev);
ba22dcbf 2408 }
1da177e4 2409 }
14a75d3e 2410 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
2411 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2412 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2413 raid5_release_stripe(sh);
1da177e4
LT
2414}
2415
4246a0b6 2416static void raid5_end_write_request(struct bio *bi)
1da177e4 2417{
99c0fb5f 2418 struct stripe_head *sh = bi->bi_private;
d1688a6d 2419 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2420 int disks = sh->disks, i;
977df362 2421 struct md_rdev *uninitialized_var(rdev);
b84db560
N
2422 sector_t first_bad;
2423 int bad_sectors;
977df362 2424 int replacement = 0;
1da177e4 2425
977df362
N
2426 for (i = 0 ; i < disks; i++) {
2427 if (bi == &sh->dev[i].req) {
2428 rdev = conf->disks[i].rdev;
1da177e4 2429 break;
977df362
N
2430 }
2431 if (bi == &sh->dev[i].rreq) {
2432 rdev = conf->disks[i].replacement;
dd054fce
N
2433 if (rdev)
2434 replacement = 1;
2435 else
2436 /* rdev was removed and 'replacement'
2437 * replaced it. rdev is not removed
2438 * until all requests are finished.
2439 */
2440 rdev = conf->disks[i].rdev;
977df362
N
2441 break;
2442 }
2443 }
4246a0b6 2444 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
1da177e4 2445 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2446 bi->bi_error);
1da177e4
LT
2447 if (i == disks) {
2448 BUG();
6712ecf8 2449 return;
1da177e4
LT
2450 }
2451
977df362 2452 if (replacement) {
4246a0b6 2453 if (bi->bi_error)
977df362
N
2454 md_error(conf->mddev, rdev);
2455 else if (is_badblock(rdev, sh->sector,
2456 STRIPE_SECTORS,
2457 &first_bad, &bad_sectors))
2458 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2459 } else {
4246a0b6 2460 if (bi->bi_error) {
9f97e4b1 2461 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2462 set_bit(WriteErrorSeen, &rdev->flags);
2463 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2464 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2465 set_bit(MD_RECOVERY_NEEDED,
2466 &rdev->mddev->recovery);
977df362
N
2467 } else if (is_badblock(rdev, sh->sector,
2468 STRIPE_SECTORS,
c0b32972 2469 &first_bad, &bad_sectors)) {
977df362 2470 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2471 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2472 /* That was a successful write so make
2473 * sure it looks like we already did
2474 * a re-write.
2475 */
2476 set_bit(R5_ReWrite, &sh->dev[i].flags);
2477 }
977df362
N
2478 }
2479 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2480
4246a0b6 2481 if (sh->batch_head && bi->bi_error && !replacement)
72ac7330 2482 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2483
977df362
N
2484 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2485 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2486 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2487 raid5_release_stripe(sh);
59fc630b 2488
2489 if (sh->batch_head && sh != sh->batch_head)
6d036f7d 2490 raid5_release_stripe(sh->batch_head);
1da177e4
LT
2491}
2492
784052ec 2493static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2494{
2495 struct r5dev *dev = &sh->dev[i];
2496
2497 bio_init(&dev->req);
2498 dev->req.bi_io_vec = &dev->vec;
d592a996 2499 dev->req.bi_max_vecs = 1;
1da177e4
LT
2500 dev->req.bi_private = sh;
2501
977df362
N
2502 bio_init(&dev->rreq);
2503 dev->rreq.bi_io_vec = &dev->rvec;
d592a996 2504 dev->rreq.bi_max_vecs = 1;
977df362 2505 dev->rreq.bi_private = sh;
977df362 2506
1da177e4 2507 dev->flags = 0;
6d036f7d 2508 dev->sector = raid5_compute_blocknr(sh, i, previous);
1da177e4
LT
2509}
2510
849674e4 2511static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2512{
2513 char b[BDEVNAME_SIZE];
d1688a6d 2514 struct r5conf *conf = mddev->private;
908f4fbd 2515 unsigned long flags;
0c55e022 2516 pr_debug("raid456: error called\n");
1da177e4 2517
908f4fbd
N
2518 spin_lock_irqsave(&conf->device_lock, flags);
2519 clear_bit(In_sync, &rdev->flags);
2520 mddev->degraded = calc_degraded(conf);
2521 spin_unlock_irqrestore(&conf->device_lock, flags);
2522 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2523
de393cde 2524 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
2525 set_bit(Faulty, &rdev->flags);
2526 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c3cce6cd 2527 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6f8d0c77
N
2528 printk(KERN_ALERT
2529 "md/raid:%s: Disk failure on %s, disabling device.\n"
2530 "md/raid:%s: Operation continuing on %d devices.\n",
2531 mdname(mddev),
2532 bdevname(rdev->bdev, b),
2533 mdname(mddev),
2534 conf->raid_disks - mddev->degraded);
16a53ecc 2535}
1da177e4
LT
2536
2537/*
2538 * Input: a 'big' sector number,
2539 * Output: index of the data and parity disk, and the sector # in them.
2540 */
6d036f7d
SL
2541sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2542 int previous, int *dd_idx,
2543 struct stripe_head *sh)
1da177e4 2544{
6e3b96ed 2545 sector_t stripe, stripe2;
35f2a591 2546 sector_t chunk_number;
1da177e4 2547 unsigned int chunk_offset;
911d4ee8 2548 int pd_idx, qd_idx;
67cc2b81 2549 int ddf_layout = 0;
1da177e4 2550 sector_t new_sector;
e183eaed
N
2551 int algorithm = previous ? conf->prev_algo
2552 : conf->algorithm;
09c9e5fa
AN
2553 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2554 : conf->chunk_sectors;
112bf897
N
2555 int raid_disks = previous ? conf->previous_raid_disks
2556 : conf->raid_disks;
2557 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2558
2559 /* First compute the information on this sector */
2560
2561 /*
2562 * Compute the chunk number and the sector offset inside the chunk
2563 */
2564 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2565 chunk_number = r_sector;
1da177e4
LT
2566
2567 /*
2568 * Compute the stripe number
2569 */
35f2a591
N
2570 stripe = chunk_number;
2571 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2572 stripe2 = stripe;
1da177e4
LT
2573 /*
2574 * Select the parity disk based on the user selected algorithm.
2575 */
84789554 2576 pd_idx = qd_idx = -1;
16a53ecc
N
2577 switch(conf->level) {
2578 case 4:
911d4ee8 2579 pd_idx = data_disks;
16a53ecc
N
2580 break;
2581 case 5:
e183eaed 2582 switch (algorithm) {
1da177e4 2583 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2584 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2585 if (*dd_idx >= pd_idx)
1da177e4
LT
2586 (*dd_idx)++;
2587 break;
2588 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2589 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2590 if (*dd_idx >= pd_idx)
1da177e4
LT
2591 (*dd_idx)++;
2592 break;
2593 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2594 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2595 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2596 break;
2597 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2598 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2599 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2600 break;
99c0fb5f
N
2601 case ALGORITHM_PARITY_0:
2602 pd_idx = 0;
2603 (*dd_idx)++;
2604 break;
2605 case ALGORITHM_PARITY_N:
2606 pd_idx = data_disks;
2607 break;
1da177e4 2608 default:
99c0fb5f 2609 BUG();
16a53ecc
N
2610 }
2611 break;
2612 case 6:
2613
e183eaed 2614 switch (algorithm) {
16a53ecc 2615 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2616 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2617 qd_idx = pd_idx + 1;
2618 if (pd_idx == raid_disks-1) {
99c0fb5f 2619 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2620 qd_idx = 0;
2621 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2622 (*dd_idx) += 2; /* D D P Q D */
2623 break;
2624 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2625 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2626 qd_idx = pd_idx + 1;
2627 if (pd_idx == raid_disks-1) {
99c0fb5f 2628 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2629 qd_idx = 0;
2630 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2631 (*dd_idx) += 2; /* D D P Q D */
2632 break;
2633 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2634 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2635 qd_idx = (pd_idx + 1) % raid_disks;
2636 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2637 break;
2638 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2639 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2640 qd_idx = (pd_idx + 1) % raid_disks;
2641 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2642 break;
99c0fb5f
N
2643
2644 case ALGORITHM_PARITY_0:
2645 pd_idx = 0;
2646 qd_idx = 1;
2647 (*dd_idx) += 2;
2648 break;
2649 case ALGORITHM_PARITY_N:
2650 pd_idx = data_disks;
2651 qd_idx = data_disks + 1;
2652 break;
2653
2654 case ALGORITHM_ROTATING_ZERO_RESTART:
2655 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2656 * of blocks for computing Q is different.
2657 */
6e3b96ed 2658 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2659 qd_idx = pd_idx + 1;
2660 if (pd_idx == raid_disks-1) {
2661 (*dd_idx)++; /* Q D D D P */
2662 qd_idx = 0;
2663 } else if (*dd_idx >= pd_idx)
2664 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2665 ddf_layout = 1;
99c0fb5f
N
2666 break;
2667
2668 case ALGORITHM_ROTATING_N_RESTART:
2669 /* Same a left_asymmetric, by first stripe is
2670 * D D D P Q rather than
2671 * Q D D D P
2672 */
6e3b96ed
N
2673 stripe2 += 1;
2674 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2675 qd_idx = pd_idx + 1;
2676 if (pd_idx == raid_disks-1) {
2677 (*dd_idx)++; /* Q D D D P */
2678 qd_idx = 0;
2679 } else if (*dd_idx >= pd_idx)
2680 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2681 ddf_layout = 1;
99c0fb5f
N
2682 break;
2683
2684 case ALGORITHM_ROTATING_N_CONTINUE:
2685 /* Same as left_symmetric but Q is before P */
6e3b96ed 2686 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2687 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2688 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2689 ddf_layout = 1;
99c0fb5f
N
2690 break;
2691
2692 case ALGORITHM_LEFT_ASYMMETRIC_6:
2693 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2694 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2695 if (*dd_idx >= pd_idx)
2696 (*dd_idx)++;
2697 qd_idx = raid_disks - 1;
2698 break;
2699
2700 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2701 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2702 if (*dd_idx >= pd_idx)
2703 (*dd_idx)++;
2704 qd_idx = raid_disks - 1;
2705 break;
2706
2707 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2708 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2709 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2710 qd_idx = raid_disks - 1;
2711 break;
2712
2713 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2714 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2715 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2716 qd_idx = raid_disks - 1;
2717 break;
2718
2719 case ALGORITHM_PARITY_0_6:
2720 pd_idx = 0;
2721 (*dd_idx)++;
2722 qd_idx = raid_disks - 1;
2723 break;
2724
16a53ecc 2725 default:
99c0fb5f 2726 BUG();
16a53ecc
N
2727 }
2728 break;
1da177e4
LT
2729 }
2730
911d4ee8
N
2731 if (sh) {
2732 sh->pd_idx = pd_idx;
2733 sh->qd_idx = qd_idx;
67cc2b81 2734 sh->ddf_layout = ddf_layout;
911d4ee8 2735 }
1da177e4
LT
2736 /*
2737 * Finally, compute the new sector number
2738 */
2739 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2740 return new_sector;
2741}
2742
6d036f7d 2743sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2744{
d1688a6d 2745 struct r5conf *conf = sh->raid_conf;
b875e531
N
2746 int raid_disks = sh->disks;
2747 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2748 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2749 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2750 : conf->chunk_sectors;
e183eaed
N
2751 int algorithm = previous ? conf->prev_algo
2752 : conf->algorithm;
1da177e4
LT
2753 sector_t stripe;
2754 int chunk_offset;
35f2a591
N
2755 sector_t chunk_number;
2756 int dummy1, dd_idx = i;
1da177e4 2757 sector_t r_sector;
911d4ee8 2758 struct stripe_head sh2;
1da177e4
LT
2759
2760 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2761 stripe = new_sector;
1da177e4 2762
16a53ecc
N
2763 if (i == sh->pd_idx)
2764 return 0;
2765 switch(conf->level) {
2766 case 4: break;
2767 case 5:
e183eaed 2768 switch (algorithm) {
1da177e4
LT
2769 case ALGORITHM_LEFT_ASYMMETRIC:
2770 case ALGORITHM_RIGHT_ASYMMETRIC:
2771 if (i > sh->pd_idx)
2772 i--;
2773 break;
2774 case ALGORITHM_LEFT_SYMMETRIC:
2775 case ALGORITHM_RIGHT_SYMMETRIC:
2776 if (i < sh->pd_idx)
2777 i += raid_disks;
2778 i -= (sh->pd_idx + 1);
2779 break;
99c0fb5f
N
2780 case ALGORITHM_PARITY_0:
2781 i -= 1;
2782 break;
2783 case ALGORITHM_PARITY_N:
2784 break;
1da177e4 2785 default:
99c0fb5f 2786 BUG();
16a53ecc
N
2787 }
2788 break;
2789 case 6:
d0dabf7e 2790 if (i == sh->qd_idx)
16a53ecc 2791 return 0; /* It is the Q disk */
e183eaed 2792 switch (algorithm) {
16a53ecc
N
2793 case ALGORITHM_LEFT_ASYMMETRIC:
2794 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2795 case ALGORITHM_ROTATING_ZERO_RESTART:
2796 case ALGORITHM_ROTATING_N_RESTART:
2797 if (sh->pd_idx == raid_disks-1)
2798 i--; /* Q D D D P */
16a53ecc
N
2799 else if (i > sh->pd_idx)
2800 i -= 2; /* D D P Q D */
2801 break;
2802 case ALGORITHM_LEFT_SYMMETRIC:
2803 case ALGORITHM_RIGHT_SYMMETRIC:
2804 if (sh->pd_idx == raid_disks-1)
2805 i--; /* Q D D D P */
2806 else {
2807 /* D D P Q D */
2808 if (i < sh->pd_idx)
2809 i += raid_disks;
2810 i -= (sh->pd_idx + 2);
2811 }
2812 break;
99c0fb5f
N
2813 case ALGORITHM_PARITY_0:
2814 i -= 2;
2815 break;
2816 case ALGORITHM_PARITY_N:
2817 break;
2818 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2819 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2820 if (sh->pd_idx == 0)
2821 i--; /* P D D D Q */
e4424fee
N
2822 else {
2823 /* D D Q P D */
2824 if (i < sh->pd_idx)
2825 i += raid_disks;
2826 i -= (sh->pd_idx + 1);
2827 }
99c0fb5f
N
2828 break;
2829 case ALGORITHM_LEFT_ASYMMETRIC_6:
2830 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2831 if (i > sh->pd_idx)
2832 i--;
2833 break;
2834 case ALGORITHM_LEFT_SYMMETRIC_6:
2835 case ALGORITHM_RIGHT_SYMMETRIC_6:
2836 if (i < sh->pd_idx)
2837 i += data_disks + 1;
2838 i -= (sh->pd_idx + 1);
2839 break;
2840 case ALGORITHM_PARITY_0_6:
2841 i -= 1;
2842 break;
16a53ecc 2843 default:
99c0fb5f 2844 BUG();
16a53ecc
N
2845 }
2846 break;
1da177e4
LT
2847 }
2848
2849 chunk_number = stripe * data_disks + i;
35f2a591 2850 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2851
112bf897 2852 check = raid5_compute_sector(conf, r_sector,
784052ec 2853 previous, &dummy1, &sh2);
911d4ee8
N
2854 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2855 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2856 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2857 mdname(conf->mddev));
1da177e4
LT
2858 return 0;
2859 }
2860 return r_sector;
2861}
2862
600aa109 2863static void
c0f7bddb 2864schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2865 int rcw, int expand)
e33129d8 2866{
584acdd4 2867 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 2868 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2869 int level = conf->level;
e33129d8
DW
2870
2871 if (rcw) {
e33129d8
DW
2872
2873 for (i = disks; i--; ) {
2874 struct r5dev *dev = &sh->dev[i];
2875
2876 if (dev->towrite) {
2877 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2878 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2879 if (!expand)
2880 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2881 s->locked++;
e33129d8
DW
2882 }
2883 }
ce7d363a
N
2884 /* if we are not expanding this is a proper write request, and
2885 * there will be bios with new data to be drained into the
2886 * stripe cache
2887 */
2888 if (!expand) {
2889 if (!s->locked)
2890 /* False alarm, nothing to do */
2891 return;
2892 sh->reconstruct_state = reconstruct_state_drain_run;
2893 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2894 } else
2895 sh->reconstruct_state = reconstruct_state_run;
2896
2897 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2898
c0f7bddb 2899 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2900 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2901 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
2902 } else {
2903 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2904 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
2905 BUG_ON(level == 6 &&
2906 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2907 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 2908
e33129d8
DW
2909 for (i = disks; i--; ) {
2910 struct r5dev *dev = &sh->dev[i];
584acdd4 2911 if (i == pd_idx || i == qd_idx)
e33129d8
DW
2912 continue;
2913
e33129d8
DW
2914 if (dev->towrite &&
2915 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2916 test_bit(R5_Wantcompute, &dev->flags))) {
2917 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2918 set_bit(R5_LOCKED, &dev->flags);
2919 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2920 s->locked++;
e33129d8
DW
2921 }
2922 }
ce7d363a
N
2923 if (!s->locked)
2924 /* False alarm - nothing to do */
2925 return;
2926 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2927 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2928 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2929 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2930 }
2931
c0f7bddb 2932 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2933 * are in flight
2934 */
2935 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2936 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2937 s->locked++;
e33129d8 2938
c0f7bddb
YT
2939 if (level == 6) {
2940 int qd_idx = sh->qd_idx;
2941 struct r5dev *dev = &sh->dev[qd_idx];
2942
2943 set_bit(R5_LOCKED, &dev->flags);
2944 clear_bit(R5_UPTODATE, &dev->flags);
2945 s->locked++;
2946 }
2947
600aa109 2948 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2949 __func__, (unsigned long long)sh->sector,
600aa109 2950 s->locked, s->ops_request);
e33129d8 2951}
16a53ecc 2952
1da177e4
LT
2953/*
2954 * Each stripe/dev can have one or more bion attached.
16a53ecc 2955 * toread/towrite point to the first in a chain.
1da177e4
LT
2956 * The bi_next chain must be in order.
2957 */
da41ba65 2958static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2959 int forwrite, int previous)
1da177e4
LT
2960{
2961 struct bio **bip;
d1688a6d 2962 struct r5conf *conf = sh->raid_conf;
72626685 2963 int firstwrite=0;
1da177e4 2964
cbe47ec5 2965 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 2966 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
2967 (unsigned long long)sh->sector);
2968
b17459c0
SL
2969 /*
2970 * If several bio share a stripe. The bio bi_phys_segments acts as a
2971 * reference count to avoid race. The reference count should already be
2972 * increased before this function is called (for example, in
849674e4 2973 * raid5_make_request()), so other bio sharing this stripe will not free the
b17459c0
SL
2974 * stripe. If a stripe is owned by one stripe, the stripe lock will
2975 * protect it.
2976 */
2977 spin_lock_irq(&sh->stripe_lock);
59fc630b 2978 /* Don't allow new IO added to stripes in batch list */
2979 if (sh->batch_head)
2980 goto overlap;
72626685 2981 if (forwrite) {
1da177e4 2982 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 2983 if (*bip == NULL)
72626685
N
2984 firstwrite = 1;
2985 } else
1da177e4 2986 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
2987 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2988 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
2989 goto overlap;
2990 bip = & (*bip)->bi_next;
2991 }
4f024f37 2992 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
2993 goto overlap;
2994
da41ba65 2995 if (!forwrite || previous)
2996 clear_bit(STRIPE_BATCH_READY, &sh->state);
2997
78bafebd 2998 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2999 if (*bip)
3000 bi->bi_next = *bip;
3001 *bip = bi;
e7836bd6 3002 raid5_inc_bi_active_stripes(bi);
72626685 3003
1da177e4
LT
3004 if (forwrite) {
3005 /* check if page is covered */
3006 sector_t sector = sh->dev[dd_idx].sector;
3007 for (bi=sh->dev[dd_idx].towrite;
3008 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 3009 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 3010 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
3011 if (bio_end_sector(bi) >= sector)
3012 sector = bio_end_sector(bi);
1da177e4
LT
3013 }
3014 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 3015 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3016 sh->overwrite_disks++;
1da177e4 3017 }
cbe47ec5
N
3018
3019 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 3020 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5
N
3021 (unsigned long long)sh->sector, dd_idx);
3022
3023 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3024 /* Cannot hold spinlock over bitmap_startwrite,
3025 * but must ensure this isn't added to a batch until
3026 * we have added to the bitmap and set bm_seq.
3027 * So set STRIPE_BITMAP_PENDING to prevent
3028 * batching.
3029 * If multiple add_stripe_bio() calls race here they
3030 * much all set STRIPE_BITMAP_PENDING. So only the first one
3031 * to complete "bitmap_startwrite" gets to set
3032 * STRIPE_BIT_DELAY. This is important as once a stripe
3033 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3034 * any more.
3035 */
3036 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3037 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
3038 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3039 STRIPE_SECTORS, 0);
d0852df5
N
3040 spin_lock_irq(&sh->stripe_lock);
3041 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3042 if (!sh->batch_head) {
3043 sh->bm_seq = conf->seq_flush+1;
3044 set_bit(STRIPE_BIT_DELAY, &sh->state);
3045 }
cbe47ec5 3046 }
d0852df5 3047 spin_unlock_irq(&sh->stripe_lock);
59fc630b 3048
3049 if (stripe_can_batch(sh))
3050 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
3051 return 1;
3052
3053 overlap:
3054 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 3055 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3056 return 0;
3057}
3058
d1688a6d 3059static void end_reshape(struct r5conf *conf);
29269553 3060
d1688a6d 3061static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3062 struct stripe_head *sh)
ccfcc3c1 3063{
784052ec 3064 int sectors_per_chunk =
09c9e5fa 3065 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3066 int dd_idx;
2d2063ce 3067 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3068 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3069
112bf897
N
3070 raid5_compute_sector(conf,
3071 stripe * (disks - conf->max_degraded)
b875e531 3072 *sectors_per_chunk + chunk_offset,
112bf897 3073 previous,
911d4ee8 3074 &dd_idx, sh);
ccfcc3c1
N
3075}
3076
a4456856 3077static void
d1688a6d 3078handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856 3079 struct stripe_head_state *s, int disks,
34a6f80e 3080 struct bio_list *return_bi)
a4456856
DW
3081{
3082 int i;
59fc630b 3083 BUG_ON(sh->batch_head);
a4456856
DW
3084 for (i = disks; i--; ) {
3085 struct bio *bi;
3086 int bitmap_end = 0;
3087
3088 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3089 struct md_rdev *rdev;
a4456856
DW
3090 rcu_read_lock();
3091 rdev = rcu_dereference(conf->disks[i].rdev);
3092 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
3093 atomic_inc(&rdev->nr_pending);
3094 else
3095 rdev = NULL;
a4456856 3096 rcu_read_unlock();
7f0da59b
N
3097 if (rdev) {
3098 if (!rdev_set_badblocks(
3099 rdev,
3100 sh->sector,
3101 STRIPE_SECTORS, 0))
3102 md_error(conf->mddev, rdev);
3103 rdev_dec_pending(rdev, conf->mddev);
3104 }
a4456856 3105 }
b17459c0 3106 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3107 /* fail all writes first */
3108 bi = sh->dev[i].towrite;
3109 sh->dev[i].towrite = NULL;
7a87f434 3110 sh->overwrite_disks = 0;
b17459c0 3111 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3112 if (bi)
a4456856 3113 bitmap_end = 1;
a4456856 3114
0576b1c6
SL
3115 r5l_stripe_write_finished(sh);
3116
a4456856
DW
3117 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3118 wake_up(&conf->wait_for_overlap);
3119
4f024f37 3120 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3121 sh->dev[i].sector + STRIPE_SECTORS) {
3122 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3123
3124 bi->bi_error = -EIO;
e7836bd6 3125 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856 3126 md_write_end(conf->mddev);
34a6f80e 3127 bio_list_add(return_bi, bi);
a4456856
DW
3128 }
3129 bi = nextbi;
3130 }
7eaf7e8e
SL
3131 if (bitmap_end)
3132 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3133 STRIPE_SECTORS, 0, 0);
3134 bitmap_end = 0;
a4456856
DW
3135 /* and fail all 'written' */
3136 bi = sh->dev[i].written;
3137 sh->dev[i].written = NULL;
d592a996
SL
3138 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3139 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3140 sh->dev[i].page = sh->dev[i].orig_page;
3141 }
3142
a4456856 3143 if (bi) bitmap_end = 1;
4f024f37 3144 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3145 sh->dev[i].sector + STRIPE_SECTORS) {
3146 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3147
3148 bi->bi_error = -EIO;
e7836bd6 3149 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856 3150 md_write_end(conf->mddev);
34a6f80e 3151 bio_list_add(return_bi, bi);
a4456856
DW
3152 }
3153 bi = bi2;
3154 }
3155
b5e98d65
DW
3156 /* fail any reads if this device is non-operational and
3157 * the data has not reached the cache yet.
3158 */
3159 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
6e74a9cf 3160 s->failed > conf->max_degraded &&
b5e98d65
DW
3161 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3162 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3163 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3164 bi = sh->dev[i].toread;
3165 sh->dev[i].toread = NULL;
143c4d05 3166 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3167 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3168 wake_up(&conf->wait_for_overlap);
ebda780b
SL
3169 if (bi)
3170 s->to_read--;
4f024f37 3171 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3172 sh->dev[i].sector + STRIPE_SECTORS) {
3173 struct bio *nextbi =
3174 r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3175
3176 bi->bi_error = -EIO;
34a6f80e
N
3177 if (!raid5_dec_bi_active_stripes(bi))
3178 bio_list_add(return_bi, bi);
a4456856
DW
3179 bi = nextbi;
3180 }
3181 }
a4456856
DW
3182 if (bitmap_end)
3183 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3184 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3185 /* If we were in the middle of a write the parity block might
3186 * still be locked - so just clear all R5_LOCKED flags
3187 */
3188 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3189 }
ebda780b
SL
3190 s->to_write = 0;
3191 s->written = 0;
a4456856 3192
8b3e6cdc
DW
3193 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3194 if (atomic_dec_and_test(&conf->pending_full_writes))
3195 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3196}
3197
7f0da59b 3198static void
d1688a6d 3199handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3200 struct stripe_head_state *s)
3201{
3202 int abort = 0;
3203 int i;
3204
59fc630b 3205 BUG_ON(sh->batch_head);
7f0da59b 3206 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3207 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3208 wake_up(&conf->wait_for_overlap);
7f0da59b 3209 s->syncing = 0;
9a3e1101 3210 s->replacing = 0;
7f0da59b 3211 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3212 * Don't even need to abort as that is handled elsewhere
3213 * if needed, and not always wanted e.g. if there is a known
3214 * bad block here.
9a3e1101 3215 * For recover/replace we need to record a bad block on all
7f0da59b
N
3216 * non-sync devices, or abort the recovery
3217 */
18b9837e
N
3218 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3219 /* During recovery devices cannot be removed, so
3220 * locking and refcounting of rdevs is not needed
3221 */
3222 for (i = 0; i < conf->raid_disks; i++) {
3223 struct md_rdev *rdev = conf->disks[i].rdev;
3224 if (rdev
3225 && !test_bit(Faulty, &rdev->flags)
3226 && !test_bit(In_sync, &rdev->flags)
3227 && !rdev_set_badblocks(rdev, sh->sector,
3228 STRIPE_SECTORS, 0))
3229 abort = 1;
3230 rdev = conf->disks[i].replacement;
3231 if (rdev
3232 && !test_bit(Faulty, &rdev->flags)
3233 && !test_bit(In_sync, &rdev->flags)
3234 && !rdev_set_badblocks(rdev, sh->sector,
3235 STRIPE_SECTORS, 0))
3236 abort = 1;
3237 }
3238 if (abort)
3239 conf->recovery_disabled =
3240 conf->mddev->recovery_disabled;
7f0da59b 3241 }
18b9837e 3242 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3243}
3244
9a3e1101
N
3245static int want_replace(struct stripe_head *sh, int disk_idx)
3246{
3247 struct md_rdev *rdev;
3248 int rv = 0;
3249 /* Doing recovery so rcu locking not required */
3250 rdev = sh->raid_conf->disks[disk_idx].replacement;
3251 if (rdev
3252 && !test_bit(Faulty, &rdev->flags)
3253 && !test_bit(In_sync, &rdev->flags)
3254 && (rdev->recovery_offset <= sh->sector
3255 || rdev->mddev->recovery_cp <= sh->sector))
3256 rv = 1;
3257
3258 return rv;
3259}
3260
93b3dbce 3261/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
3262 * to be read or computed to satisfy a request.
3263 *
3264 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 3265 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 3266 */
2c58f06e
N
3267
3268static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3269 int disk_idx, int disks)
a4456856 3270{
5599becc 3271 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3272 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3273 &sh->dev[s->failed_num[1]] };
ea664c82 3274 int i;
5599becc 3275
a79cfe12
N
3276
3277 if (test_bit(R5_LOCKED, &dev->flags) ||
3278 test_bit(R5_UPTODATE, &dev->flags))
3279 /* No point reading this as we already have it or have
3280 * decided to get it.
3281 */
3282 return 0;
3283
3284 if (dev->toread ||
3285 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3286 /* We need this block to directly satisfy a request */
3287 return 1;
3288
3289 if (s->syncing || s->expanding ||
3290 (s->replacing && want_replace(sh, disk_idx)))
3291 /* When syncing, or expanding we read everything.
3292 * When replacing, we need the replaced block.
3293 */
3294 return 1;
3295
3296 if ((s->failed >= 1 && fdev[0]->toread) ||
3297 (s->failed >= 2 && fdev[1]->toread))
3298 /* If we want to read from a failed device, then
3299 * we need to actually read every other device.
3300 */
3301 return 1;
3302
a9d56950
N
3303 /* Sometimes neither read-modify-write nor reconstruct-write
3304 * cycles can work. In those cases we read every block we
3305 * can. Then the parity-update is certain to have enough to
3306 * work with.
3307 * This can only be a problem when we need to write something,
3308 * and some device has failed. If either of those tests
3309 * fail we need look no further.
3310 */
3311 if (!s->failed || !s->to_write)
3312 return 0;
3313
3314 if (test_bit(R5_Insync, &dev->flags) &&
3315 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3316 /* Pre-reads at not permitted until after short delay
3317 * to gather multiple requests. However if this
3318 * device is no Insync, the block could only be be computed
3319 * and there is no need to delay that.
3320 */
3321 return 0;
ea664c82 3322
36707bb2 3323 for (i = 0; i < s->failed && i < 2; i++) {
ea664c82
N
3324 if (fdev[i]->towrite &&
3325 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3326 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3327 /* If we have a partial write to a failed
3328 * device, then we will need to reconstruct
3329 * the content of that device, so all other
3330 * devices must be read.
3331 */
3332 return 1;
3333 }
3334
3335 /* If we are forced to do a reconstruct-write, either because
3336 * the current RAID6 implementation only supports that, or
3337 * or because parity cannot be trusted and we are currently
3338 * recovering it, there is extra need to be careful.
3339 * If one of the devices that we would need to read, because
3340 * it is not being overwritten (and maybe not written at all)
3341 * is missing/faulty, then we need to read everything we can.
3342 */
3343 if (sh->raid_conf->level != 6 &&
3344 sh->sector < sh->raid_conf->mddev->recovery_cp)
3345 /* reconstruct-write isn't being forced */
3346 return 0;
36707bb2 3347 for (i = 0; i < s->failed && i < 2; i++) {
10d82c5f
N
3348 if (s->failed_num[i] != sh->pd_idx &&
3349 s->failed_num[i] != sh->qd_idx &&
3350 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3351 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3352 return 1;
3353 }
3354
2c58f06e
N
3355 return 0;
3356}
3357
3358static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3359 int disk_idx, int disks)
3360{
3361 struct r5dev *dev = &sh->dev[disk_idx];
3362
3363 /* is the data in this block needed, and can we get it? */
3364 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3365 /* we would like to get this block, possibly by computing it,
3366 * otherwise read it if the backing disk is insync
3367 */
3368 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3369 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3370 BUG_ON(sh->batch_head);
5599becc 3371 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
3372 (s->failed && (disk_idx == s->failed_num[0] ||
3373 disk_idx == s->failed_num[1]))) {
5599becc
YT
3374 /* have disk failed, and we're requested to fetch it;
3375 * do compute it
a4456856 3376 */
5599becc
YT
3377 pr_debug("Computing stripe %llu block %d\n",
3378 (unsigned long long)sh->sector, disk_idx);
3379 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3380 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3381 set_bit(R5_Wantcompute, &dev->flags);
3382 sh->ops.target = disk_idx;
3383 sh->ops.target2 = -1; /* no 2nd target */
3384 s->req_compute = 1;
93b3dbce
N
3385 /* Careful: from this point on 'uptodate' is in the eye
3386 * of raid_run_ops which services 'compute' operations
3387 * before writes. R5_Wantcompute flags a block that will
3388 * be R5_UPTODATE by the time it is needed for a
3389 * subsequent operation.
3390 */
5599becc
YT
3391 s->uptodate++;
3392 return 1;
3393 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3394 /* Computing 2-failure is *very* expensive; only
3395 * do it if failed >= 2
3396 */
3397 int other;
3398 for (other = disks; other--; ) {
3399 if (other == disk_idx)
3400 continue;
3401 if (!test_bit(R5_UPTODATE,
3402 &sh->dev[other].flags))
3403 break;
a4456856 3404 }
5599becc
YT
3405 BUG_ON(other < 0);
3406 pr_debug("Computing stripe %llu blocks %d,%d\n",
3407 (unsigned long long)sh->sector,
3408 disk_idx, other);
3409 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3410 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3411 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3412 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3413 sh->ops.target = disk_idx;
3414 sh->ops.target2 = other;
3415 s->uptodate += 2;
3416 s->req_compute = 1;
3417 return 1;
3418 } else if (test_bit(R5_Insync, &dev->flags)) {
3419 set_bit(R5_LOCKED, &dev->flags);
3420 set_bit(R5_Wantread, &dev->flags);
3421 s->locked++;
3422 pr_debug("Reading block %d (sync=%d)\n",
3423 disk_idx, s->syncing);
a4456856
DW
3424 }
3425 }
5599becc
YT
3426
3427 return 0;
3428}
3429
3430/**
93b3dbce 3431 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3432 */
93b3dbce
N
3433static void handle_stripe_fill(struct stripe_head *sh,
3434 struct stripe_head_state *s,
3435 int disks)
5599becc
YT
3436{
3437 int i;
3438
3439 /* look for blocks to read/compute, skip this if a compute
3440 * is already in flight, or if the stripe contents are in the
3441 * midst of changing due to a write
3442 */
3443 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3444 !sh->reconstruct_state)
3445 for (i = disks; i--; )
93b3dbce 3446 if (fetch_block(sh, s, i, disks))
5599becc 3447 break;
a4456856
DW
3448 set_bit(STRIPE_HANDLE, &sh->state);
3449}
3450
787b76fa
N
3451static void break_stripe_batch_list(struct stripe_head *head_sh,
3452 unsigned long handle_flags);
1fe797e6 3453/* handle_stripe_clean_event
a4456856
DW
3454 * any written block on an uptodate or failed drive can be returned.
3455 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3456 * never LOCKED, so we don't need to test 'failed' directly.
3457 */
d1688a6d 3458static void handle_stripe_clean_event(struct r5conf *conf,
34a6f80e 3459 struct stripe_head *sh, int disks, struct bio_list *return_bi)
a4456856
DW
3460{
3461 int i;
3462 struct r5dev *dev;
f8dfcffd 3463 int discard_pending = 0;
59fc630b 3464 struct stripe_head *head_sh = sh;
3465 bool do_endio = false;
a4456856
DW
3466
3467 for (i = disks; i--; )
3468 if (sh->dev[i].written) {
3469 dev = &sh->dev[i];
3470 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3471 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3472 test_bit(R5_Discard, &dev->flags) ||
3473 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3474 /* We can return any write requests */
3475 struct bio *wbi, *wbi2;
45b4233c 3476 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3477 if (test_and_clear_bit(R5_Discard, &dev->flags))
3478 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3479 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3480 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3481 }
59fc630b 3482 do_endio = true;
3483
3484returnbi:
3485 dev->page = dev->orig_page;
a4456856
DW
3486 wbi = dev->written;
3487 dev->written = NULL;
4f024f37 3488 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3489 dev->sector + STRIPE_SECTORS) {
3490 wbi2 = r5_next_bio(wbi, dev->sector);
e7836bd6 3491 if (!raid5_dec_bi_active_stripes(wbi)) {
a4456856 3492 md_write_end(conf->mddev);
34a6f80e 3493 bio_list_add(return_bi, wbi);
a4456856
DW
3494 }
3495 wbi = wbi2;
3496 }
7eaf7e8e
SL
3497 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3498 STRIPE_SECTORS,
a4456856 3499 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3500 0);
59fc630b 3501 if (head_sh->batch_head) {
3502 sh = list_first_entry(&sh->batch_list,
3503 struct stripe_head,
3504 batch_list);
3505 if (sh != head_sh) {
3506 dev = &sh->dev[i];
3507 goto returnbi;
3508 }
3509 }
3510 sh = head_sh;
3511 dev = &sh->dev[i];
f8dfcffd
N
3512 } else if (test_bit(R5_Discard, &dev->flags))
3513 discard_pending = 1;
d592a996
SL
3514 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3515 WARN_ON(dev->page != dev->orig_page);
f8dfcffd 3516 }
f6bed0ef 3517
0576b1c6
SL
3518 r5l_stripe_write_finished(sh);
3519
f8dfcffd
N
3520 if (!discard_pending &&
3521 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
b8a9d66d 3522 int hash;
f8dfcffd
N
3523 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3524 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3525 if (sh->qd_idx >= 0) {
3526 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3527 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3528 }
3529 /* now that discard is done we can proceed with any sync */
3530 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3531 /*
3532 * SCSI discard will change some bio fields and the stripe has
3533 * no updated data, so remove it from hash list and the stripe
3534 * will be reinitialized
3535 */
59fc630b 3536unhash:
b8a9d66d
RG
3537 hash = sh->hash_lock_index;
3538 spin_lock_irq(conf->hash_locks + hash);
d47648fc 3539 remove_hash(sh);
b8a9d66d 3540 spin_unlock_irq(conf->hash_locks + hash);
59fc630b 3541 if (head_sh->batch_head) {
3542 sh = list_first_entry(&sh->batch_list,
3543 struct stripe_head, batch_list);
3544 if (sh != head_sh)
3545 goto unhash;
3546 }
59fc630b 3547 sh = head_sh;
3548
f8dfcffd
N
3549 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3550 set_bit(STRIPE_HANDLE, &sh->state);
3551
3552 }
8b3e6cdc
DW
3553
3554 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3555 if (atomic_dec_and_test(&conf->pending_full_writes))
3556 md_wakeup_thread(conf->mddev->thread);
59fc630b 3557
787b76fa
N
3558 if (head_sh->batch_head && do_endio)
3559 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
3560}
3561
d1688a6d 3562static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
3563 struct stripe_head *sh,
3564 struct stripe_head_state *s,
3565 int disks)
a4456856
DW
3566{
3567 int rmw = 0, rcw = 0, i;
a7854487
AL
3568 sector_t recovery_cp = conf->mddev->recovery_cp;
3569
584acdd4 3570 /* Check whether resync is now happening or should start.
a7854487
AL
3571 * If yes, then the array is dirty (after unclean shutdown or
3572 * initial creation), so parity in some stripes might be inconsistent.
3573 * In this case, we need to always do reconstruct-write, to ensure
3574 * that in case of drive failure or read-error correction, we
3575 * generate correct data from the parity.
3576 */
584acdd4 3577 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3578 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3579 s->failed == 0)) {
a7854487 3580 /* Calculate the real rcw later - for now make it
c8ac1803
N
3581 * look like rcw is cheaper
3582 */
3583 rcw = 1; rmw = 2;
584acdd4
MS
3584 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3585 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3586 (unsigned long long)sh->sector);
c8ac1803 3587 } else for (i = disks; i--; ) {
a4456856
DW
3588 /* would I have to read this buffer for read_modify_write */
3589 struct r5dev *dev = &sh->dev[i];
584acdd4 3590 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3591 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3592 !(test_bit(R5_UPTODATE, &dev->flags) ||
3593 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3594 if (test_bit(R5_Insync, &dev->flags))
3595 rmw++;
3596 else
3597 rmw += 2*disks; /* cannot read it */
3598 }
3599 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3600 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3601 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3602 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3603 !(test_bit(R5_UPTODATE, &dev->flags) ||
3604 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3605 if (test_bit(R5_Insync, &dev->flags))
3606 rcw++;
a4456856
DW
3607 else
3608 rcw += 2*disks;
3609 }
3610 }
45b4233c 3611 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
3612 (unsigned long long)sh->sector, rmw, rcw);
3613 set_bit(STRIPE_HANDLE, &sh->state);
584acdd4 3614 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
a4456856 3615 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3616 if (conf->mddev->queue)
3617 blk_add_trace_msg(conf->mddev->queue,
3618 "raid5 rmw %llu %d",
3619 (unsigned long long)sh->sector, rmw);
a4456856
DW
3620 for (i = disks; i--; ) {
3621 struct r5dev *dev = &sh->dev[i];
584acdd4 3622 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3623 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3624 !(test_bit(R5_UPTODATE, &dev->flags) ||
3625 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3626 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3627 if (test_bit(STRIPE_PREREAD_ACTIVE,
3628 &sh->state)) {
3629 pr_debug("Read_old block %d for r-m-w\n",
3630 i);
a4456856
DW
3631 set_bit(R5_LOCKED, &dev->flags);
3632 set_bit(R5_Wantread, &dev->flags);
3633 s->locked++;
3634 } else {
3635 set_bit(STRIPE_DELAYED, &sh->state);
3636 set_bit(STRIPE_HANDLE, &sh->state);
3637 }
3638 }
3639 }
a9add5d9 3640 }
584acdd4 3641 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
a4456856 3642 /* want reconstruct write, but need to get some data */
a9add5d9 3643 int qread =0;
c8ac1803 3644 rcw = 0;
a4456856
DW
3645 for (i = disks; i--; ) {
3646 struct r5dev *dev = &sh->dev[i];
3647 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3648 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3649 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3650 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3651 test_bit(R5_Wantcompute, &dev->flags))) {
3652 rcw++;
67f45548
N
3653 if (test_bit(R5_Insync, &dev->flags) &&
3654 test_bit(STRIPE_PREREAD_ACTIVE,
3655 &sh->state)) {
45b4233c 3656 pr_debug("Read_old block "
a4456856
DW
3657 "%d for Reconstruct\n", i);
3658 set_bit(R5_LOCKED, &dev->flags);
3659 set_bit(R5_Wantread, &dev->flags);
3660 s->locked++;
a9add5d9 3661 qread++;
a4456856
DW
3662 } else {
3663 set_bit(STRIPE_DELAYED, &sh->state);
3664 set_bit(STRIPE_HANDLE, &sh->state);
3665 }
3666 }
3667 }
e3620a3a 3668 if (rcw && conf->mddev->queue)
a9add5d9
N
3669 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3670 (unsigned long long)sh->sector,
3671 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3672 }
b1b02fe9
N
3673
3674 if (rcw > disks && rmw > disks &&
3675 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3676 set_bit(STRIPE_DELAYED, &sh->state);
3677
a4456856
DW
3678 /* now if nothing is locked, and if we have enough data,
3679 * we can start a write request
3680 */
f38e1219
DW
3681 /* since handle_stripe can be called at any time we need to handle the
3682 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
3683 * subsequent call wants to start a write request. raid_run_ops only
3684 * handles the case where compute block and reconstruct are requested
f38e1219
DW
3685 * simultaneously. If this is not the case then new writes need to be
3686 * held off until the compute completes.
3687 */
976ea8d4
DW
3688 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3689 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3690 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 3691 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
3692}
3693
d1688a6d 3694static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3695 struct stripe_head_state *s, int disks)
3696{
ecc65c9b 3697 struct r5dev *dev = NULL;
bd2ab670 3698
59fc630b 3699 BUG_ON(sh->batch_head);
a4456856 3700 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 3701
ecc65c9b
DW
3702 switch (sh->check_state) {
3703 case check_state_idle:
3704 /* start a new check operation if there are no failures */
bd2ab670 3705 if (s->failed == 0) {
bd2ab670 3706 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
3707 sh->check_state = check_state_run;
3708 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 3709 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 3710 s->uptodate--;
ecc65c9b 3711 break;
bd2ab670 3712 }
f2b3b44d 3713 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
3714 /* fall through */
3715 case check_state_compute_result:
3716 sh->check_state = check_state_idle;
3717 if (!dev)
3718 dev = &sh->dev[sh->pd_idx];
3719
3720 /* check that a write has not made the stripe insync */
3721 if (test_bit(STRIPE_INSYNC, &sh->state))
3722 break;
c8894419 3723
a4456856 3724 /* either failed parity check, or recovery is happening */
a4456856
DW
3725 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3726 BUG_ON(s->uptodate != disks);
3727
3728 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 3729 s->locked++;
a4456856 3730 set_bit(R5_Wantwrite, &dev->flags);
830ea016 3731
a4456856 3732 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 3733 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
3734 break;
3735 case check_state_run:
3736 break; /* we will be called again upon completion */
3737 case check_state_check_result:
3738 sh->check_state = check_state_idle;
3739
3740 /* if a failure occurred during the check operation, leave
3741 * STRIPE_INSYNC not set and let the stripe be handled again
3742 */
3743 if (s->failed)
3744 break;
3745
3746 /* handle a successful check operation, if parity is correct
3747 * we are done. Otherwise update the mismatch count and repair
3748 * parity if !MD_RECOVERY_CHECK
3749 */
ad283ea4 3750 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
3751 /* parity is correct (on disc,
3752 * not in buffer any more)
3753 */
3754 set_bit(STRIPE_INSYNC, &sh->state);
3755 else {
7f7583d4 3756 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
3757 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3758 /* don't try to repair!! */
3759 set_bit(STRIPE_INSYNC, &sh->state);
3760 else {
3761 sh->check_state = check_state_compute_run;
976ea8d4 3762 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
3763 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3764 set_bit(R5_Wantcompute,
3765 &sh->dev[sh->pd_idx].flags);
3766 sh->ops.target = sh->pd_idx;
ac6b53b6 3767 sh->ops.target2 = -1;
ecc65c9b
DW
3768 s->uptodate++;
3769 }
3770 }
3771 break;
3772 case check_state_compute_run:
3773 break;
3774 default:
3775 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3776 __func__, sh->check_state,
3777 (unsigned long long) sh->sector);
3778 BUG();
a4456856
DW
3779 }
3780}
3781
d1688a6d 3782static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 3783 struct stripe_head_state *s,
f2b3b44d 3784 int disks)
a4456856 3785{
a4456856 3786 int pd_idx = sh->pd_idx;
34e04e87 3787 int qd_idx = sh->qd_idx;
d82dfee0 3788 struct r5dev *dev;
a4456856 3789
59fc630b 3790 BUG_ON(sh->batch_head);
a4456856
DW
3791 set_bit(STRIPE_HANDLE, &sh->state);
3792
3793 BUG_ON(s->failed > 2);
d82dfee0 3794
a4456856
DW
3795 /* Want to check and possibly repair P and Q.
3796 * However there could be one 'failed' device, in which
3797 * case we can only check one of them, possibly using the
3798 * other to generate missing data
3799 */
3800
d82dfee0
DW
3801 switch (sh->check_state) {
3802 case check_state_idle:
3803 /* start a new check operation if there are < 2 failures */
f2b3b44d 3804 if (s->failed == s->q_failed) {
d82dfee0 3805 /* The only possible failed device holds Q, so it
a4456856
DW
3806 * makes sense to check P (If anything else were failed,
3807 * we would have used P to recreate it).
3808 */
d82dfee0 3809 sh->check_state = check_state_run;
a4456856 3810 }
f2b3b44d 3811 if (!s->q_failed && s->failed < 2) {
d82dfee0 3812 /* Q is not failed, and we didn't use it to generate
a4456856
DW
3813 * anything, so it makes sense to check it
3814 */
d82dfee0
DW
3815 if (sh->check_state == check_state_run)
3816 sh->check_state = check_state_run_pq;
3817 else
3818 sh->check_state = check_state_run_q;
a4456856 3819 }
a4456856 3820
d82dfee0
DW
3821 /* discard potentially stale zero_sum_result */
3822 sh->ops.zero_sum_result = 0;
a4456856 3823
d82dfee0
DW
3824 if (sh->check_state == check_state_run) {
3825 /* async_xor_zero_sum destroys the contents of P */
3826 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3827 s->uptodate--;
a4456856 3828 }
d82dfee0
DW
3829 if (sh->check_state >= check_state_run &&
3830 sh->check_state <= check_state_run_pq) {
3831 /* async_syndrome_zero_sum preserves P and Q, so
3832 * no need to mark them !uptodate here
3833 */
3834 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3835 break;
a4456856
DW
3836 }
3837
d82dfee0
DW
3838 /* we have 2-disk failure */
3839 BUG_ON(s->failed != 2);
3840 /* fall through */
3841 case check_state_compute_result:
3842 sh->check_state = check_state_idle;
a4456856 3843
d82dfee0
DW
3844 /* check that a write has not made the stripe insync */
3845 if (test_bit(STRIPE_INSYNC, &sh->state))
3846 break;
a4456856
DW
3847
3848 /* now write out any block on a failed drive,
d82dfee0 3849 * or P or Q if they were recomputed
a4456856 3850 */
d82dfee0 3851 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 3852 if (s->failed == 2) {
f2b3b44d 3853 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
3854 s->locked++;
3855 set_bit(R5_LOCKED, &dev->flags);
3856 set_bit(R5_Wantwrite, &dev->flags);
3857 }
3858 if (s->failed >= 1) {
f2b3b44d 3859 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
3860 s->locked++;
3861 set_bit(R5_LOCKED, &dev->flags);
3862 set_bit(R5_Wantwrite, &dev->flags);
3863 }
d82dfee0 3864 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
3865 dev = &sh->dev[pd_idx];
3866 s->locked++;
3867 set_bit(R5_LOCKED, &dev->flags);
3868 set_bit(R5_Wantwrite, &dev->flags);
3869 }
d82dfee0 3870 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
3871 dev = &sh->dev[qd_idx];
3872 s->locked++;
3873 set_bit(R5_LOCKED, &dev->flags);
3874 set_bit(R5_Wantwrite, &dev->flags);
3875 }
3876 clear_bit(STRIPE_DEGRADED, &sh->state);
3877
3878 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
3879 break;
3880 case check_state_run:
3881 case check_state_run_q:
3882 case check_state_run_pq:
3883 break; /* we will be called again upon completion */
3884 case check_state_check_result:
3885 sh->check_state = check_state_idle;
3886
3887 /* handle a successful check operation, if parity is correct
3888 * we are done. Otherwise update the mismatch count and repair
3889 * parity if !MD_RECOVERY_CHECK
3890 */
3891 if (sh->ops.zero_sum_result == 0) {
3892 /* both parities are correct */
3893 if (!s->failed)
3894 set_bit(STRIPE_INSYNC, &sh->state);
3895 else {
3896 /* in contrast to the raid5 case we can validate
3897 * parity, but still have a failure to write
3898 * back
3899 */
3900 sh->check_state = check_state_compute_result;
3901 /* Returning at this point means that we may go
3902 * off and bring p and/or q uptodate again so
3903 * we make sure to check zero_sum_result again
3904 * to verify if p or q need writeback
3905 */
3906 }
3907 } else {
7f7583d4 3908 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
3909 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3910 /* don't try to repair!! */
3911 set_bit(STRIPE_INSYNC, &sh->state);
3912 else {
3913 int *target = &sh->ops.target;
3914
3915 sh->ops.target = -1;
3916 sh->ops.target2 = -1;
3917 sh->check_state = check_state_compute_run;
3918 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3919 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3920 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3921 set_bit(R5_Wantcompute,
3922 &sh->dev[pd_idx].flags);
3923 *target = pd_idx;
3924 target = &sh->ops.target2;
3925 s->uptodate++;
3926 }
3927 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3928 set_bit(R5_Wantcompute,
3929 &sh->dev[qd_idx].flags);
3930 *target = qd_idx;
3931 s->uptodate++;
3932 }
3933 }
3934 }
3935 break;
3936 case check_state_compute_run:
3937 break;
3938 default:
3939 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3940 __func__, sh->check_state,
3941 (unsigned long long) sh->sector);
3942 BUG();
a4456856
DW
3943 }
3944}
3945
d1688a6d 3946static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3947{
3948 int i;
3949
3950 /* We have read all the blocks in this stripe and now we need to
3951 * copy some of them into a target stripe for expand.
3952 */
f0a50d37 3953 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 3954 BUG_ON(sh->batch_head);
a4456856
DW
3955 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3956 for (i = 0; i < sh->disks; i++)
34e04e87 3957 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3958 int dd_idx, j;
a4456856 3959 struct stripe_head *sh2;
a08abd8c 3960 struct async_submit_ctl submit;
a4456856 3961
6d036f7d 3962 sector_t bn = raid5_compute_blocknr(sh, i, 1);
911d4ee8
N
3963 sector_t s = raid5_compute_sector(conf, bn, 0,
3964 &dd_idx, NULL);
6d036f7d 3965 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3966 if (sh2 == NULL)
3967 /* so far only the early blocks of this stripe
3968 * have been requested. When later blocks
3969 * get requested, we will try again
3970 */
3971 continue;
3972 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3973 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3974 /* must have already done this block */
6d036f7d 3975 raid5_release_stripe(sh2);
a4456856
DW
3976 continue;
3977 }
f0a50d37
DW
3978
3979 /* place all the copies on one channel */
a08abd8c 3980 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3981 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3982 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3983 &submit);
f0a50d37 3984
a4456856
DW
3985 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3986 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3987 for (j = 0; j < conf->raid_disks; j++)
3988 if (j != sh2->pd_idx &&
86c374ba 3989 j != sh2->qd_idx &&
a4456856
DW
3990 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3991 break;
3992 if (j == conf->raid_disks) {
3993 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3994 set_bit(STRIPE_HANDLE, &sh2->state);
3995 }
6d036f7d 3996 raid5_release_stripe(sh2);
f0a50d37 3997
a4456856 3998 }
a2e08551 3999 /* done submitting copies, wait for them to complete */
749586b7 4000 async_tx_quiesce(&tx);
a4456856 4001}
1da177e4
LT
4002
4003/*
4004 * handle_stripe - do things to a stripe.
4005 *
9a3e1101
N
4006 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4007 * state of various bits to see what needs to be done.
1da177e4 4008 * Possible results:
9a3e1101
N
4009 * return some read requests which now have data
4010 * return some write requests which are safely on storage
1da177e4
LT
4011 * schedule a read on some buffers
4012 * schedule a write of some buffers
4013 * return confirmation of parity correctness
4014 *
1da177e4 4015 */
a4456856 4016
acfe726b 4017static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 4018{
d1688a6d 4019 struct r5conf *conf = sh->raid_conf;
f416885e 4020 int disks = sh->disks;
474af965
N
4021 struct r5dev *dev;
4022 int i;
9a3e1101 4023 int do_recovery = 0;
1da177e4 4024
acfe726b
N
4025 memset(s, 0, sizeof(*s));
4026
dabc4ec6 4027 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4028 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4029 s->failed_num[0] = -1;
4030 s->failed_num[1] = -1;
6e74a9cf 4031 s->log_failed = r5l_log_disk_error(conf);
1da177e4 4032
acfe726b 4033 /* Now to look around and see what can be done */
1da177e4 4034 rcu_read_lock();
16a53ecc 4035 for (i=disks; i--; ) {
3cb03002 4036 struct md_rdev *rdev;
31c176ec
N
4037 sector_t first_bad;
4038 int bad_sectors;
4039 int is_bad = 0;
acfe726b 4040
16a53ecc 4041 dev = &sh->dev[i];
1da177e4 4042
45b4233c 4043 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4044 i, dev->flags,
4045 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4046 /* maybe we can reply to a read
4047 *
4048 * new wantfill requests are only permitted while
4049 * ops_complete_biofill is guaranteed to be inactive
4050 */
4051 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4052 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4053 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4054
16a53ecc 4055 /* now count some things */
cc94015a
N
4056 if (test_bit(R5_LOCKED, &dev->flags))
4057 s->locked++;
4058 if (test_bit(R5_UPTODATE, &dev->flags))
4059 s->uptodate++;
2d6e4ecc 4060 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4061 s->compute++;
4062 BUG_ON(s->compute > 2);
2d6e4ecc 4063 }
1da177e4 4064
acfe726b 4065 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4066 s->to_fill++;
acfe726b 4067 else if (dev->toread)
cc94015a 4068 s->to_read++;
16a53ecc 4069 if (dev->towrite) {
cc94015a 4070 s->to_write++;
16a53ecc 4071 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4072 s->non_overwrite++;
16a53ecc 4073 }
a4456856 4074 if (dev->written)
cc94015a 4075 s->written++;
14a75d3e
N
4076 /* Prefer to use the replacement for reads, but only
4077 * if it is recovered enough and has no bad blocks.
4078 */
4079 rdev = rcu_dereference(conf->disks[i].replacement);
4080 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4081 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4082 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4083 &first_bad, &bad_sectors))
4084 set_bit(R5_ReadRepl, &dev->flags);
4085 else {
e6030cb0 4086 if (rdev && !test_bit(Faulty, &rdev->flags))
9a3e1101 4087 set_bit(R5_NeedReplace, &dev->flags);
e6030cb0
N
4088 else
4089 clear_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4090 rdev = rcu_dereference(conf->disks[i].rdev);
4091 clear_bit(R5_ReadRepl, &dev->flags);
4092 }
9283d8c5
N
4093 if (rdev && test_bit(Faulty, &rdev->flags))
4094 rdev = NULL;
31c176ec
N
4095 if (rdev) {
4096 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4097 &first_bad, &bad_sectors);
4098 if (s->blocked_rdev == NULL
4099 && (test_bit(Blocked, &rdev->flags)
4100 || is_bad < 0)) {
4101 if (is_bad < 0)
4102 set_bit(BlockedBadBlocks,
4103 &rdev->flags);
4104 s->blocked_rdev = rdev;
4105 atomic_inc(&rdev->nr_pending);
4106 }
6bfe0b49 4107 }
415e72d0
N
4108 clear_bit(R5_Insync, &dev->flags);
4109 if (!rdev)
4110 /* Not in-sync */;
31c176ec
N
4111 else if (is_bad) {
4112 /* also not in-sync */
18b9837e
N
4113 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4114 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4115 /* treat as in-sync, but with a read error
4116 * which we can now try to correct
4117 */
4118 set_bit(R5_Insync, &dev->flags);
4119 set_bit(R5_ReadError, &dev->flags);
4120 }
4121 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4122 set_bit(R5_Insync, &dev->flags);
30d7a483 4123 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4124 /* in sync if before recovery_offset */
30d7a483
N
4125 set_bit(R5_Insync, &dev->flags);
4126 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4127 test_bit(R5_Expanded, &dev->flags))
4128 /* If we've reshaped into here, we assume it is Insync.
4129 * We will shortly update recovery_offset to make
4130 * it official.
4131 */
4132 set_bit(R5_Insync, &dev->flags);
4133
1cc03eb9 4134 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4135 /* This flag does not apply to '.replacement'
4136 * only to .rdev, so make sure to check that*/
4137 struct md_rdev *rdev2 = rcu_dereference(
4138 conf->disks[i].rdev);
4139 if (rdev2 == rdev)
4140 clear_bit(R5_Insync, &dev->flags);
4141 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4142 s->handle_bad_blocks = 1;
14a75d3e 4143 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4144 } else
4145 clear_bit(R5_WriteError, &dev->flags);
4146 }
1cc03eb9 4147 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4148 /* This flag does not apply to '.replacement'
4149 * only to .rdev, so make sure to check that*/
4150 struct md_rdev *rdev2 = rcu_dereference(
4151 conf->disks[i].rdev);
4152 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4153 s->handle_bad_blocks = 1;
14a75d3e 4154 atomic_inc(&rdev2->nr_pending);
b84db560
N
4155 } else
4156 clear_bit(R5_MadeGood, &dev->flags);
4157 }
977df362
N
4158 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4159 struct md_rdev *rdev2 = rcu_dereference(
4160 conf->disks[i].replacement);
4161 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4162 s->handle_bad_blocks = 1;
4163 atomic_inc(&rdev2->nr_pending);
4164 } else
4165 clear_bit(R5_MadeGoodRepl, &dev->flags);
4166 }
415e72d0 4167 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4168 /* The ReadError flag will just be confusing now */
4169 clear_bit(R5_ReadError, &dev->flags);
4170 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4171 }
415e72d0
N
4172 if (test_bit(R5_ReadError, &dev->flags))
4173 clear_bit(R5_Insync, &dev->flags);
4174 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4175 if (s->failed < 2)
4176 s->failed_num[s->failed] = i;
4177 s->failed++;
9a3e1101
N
4178 if (rdev && !test_bit(Faulty, &rdev->flags))
4179 do_recovery = 1;
415e72d0 4180 }
1da177e4 4181 }
9a3e1101
N
4182 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4183 /* If there is a failed device being replaced,
4184 * we must be recovering.
4185 * else if we are after recovery_cp, we must be syncing
c6d2e084 4186 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4187 * else we can only be replacing
4188 * sync and recovery both need to read all devices, and so
4189 * use the same flag.
4190 */
4191 if (do_recovery ||
c6d2e084 4192 sh->sector >= conf->mddev->recovery_cp ||
4193 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4194 s->syncing = 1;
4195 else
4196 s->replacing = 1;
4197 }
1da177e4 4198 rcu_read_unlock();
cc94015a
N
4199}
4200
59fc630b 4201static int clear_batch_ready(struct stripe_head *sh)
4202{
b15a9dbd
N
4203 /* Return '1' if this is a member of batch, or
4204 * '0' if it is a lone stripe or a head which can now be
4205 * handled.
4206 */
59fc630b 4207 struct stripe_head *tmp;
4208 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4209 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4210 spin_lock(&sh->stripe_lock);
4211 if (!sh->batch_head) {
4212 spin_unlock(&sh->stripe_lock);
4213 return 0;
4214 }
4215
4216 /*
4217 * this stripe could be added to a batch list before we check
4218 * BATCH_READY, skips it
4219 */
4220 if (sh->batch_head != sh) {
4221 spin_unlock(&sh->stripe_lock);
4222 return 1;
4223 }
4224 spin_lock(&sh->batch_lock);
4225 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4226 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4227 spin_unlock(&sh->batch_lock);
4228 spin_unlock(&sh->stripe_lock);
4229
4230 /*
4231 * BATCH_READY is cleared, no new stripes can be added.
4232 * batch_list can be accessed without lock
4233 */
4234 return 0;
4235}
4236
3960ce79
N
4237static void break_stripe_batch_list(struct stripe_head *head_sh,
4238 unsigned long handle_flags)
72ac7330 4239{
4e3d62ff 4240 struct stripe_head *sh, *next;
72ac7330 4241 int i;
fb642b92 4242 int do_wakeup = 0;
72ac7330 4243
bb27051f
N
4244 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4245
72ac7330 4246 list_del_init(&sh->batch_list);
4247
1b956f7a
N
4248 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4249 (1 << STRIPE_SYNCING) |
4250 (1 << STRIPE_REPLACED) |
4251 (1 << STRIPE_PREREAD_ACTIVE) |
4252 (1 << STRIPE_DELAYED) |
4253 (1 << STRIPE_BIT_DELAY) |
4254 (1 << STRIPE_FULL_WRITE) |
4255 (1 << STRIPE_BIOFILL_RUN) |
4256 (1 << STRIPE_COMPUTE_RUN) |
4257 (1 << STRIPE_OPS_REQ_PENDING) |
4258 (1 << STRIPE_DISCARD) |
4259 (1 << STRIPE_BATCH_READY) |
4260 (1 << STRIPE_BATCH_ERR) |
4261 (1 << STRIPE_BITMAP_PENDING)));
4262 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4263 (1 << STRIPE_REPLACED)));
4264
4265 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4266 (1 << STRIPE_DEGRADED)),
4267 head_sh->state & (1 << STRIPE_INSYNC));
4268
72ac7330 4269 sh->check_state = head_sh->check_state;
4270 sh->reconstruct_state = head_sh->reconstruct_state;
fb642b92
N
4271 for (i = 0; i < sh->disks; i++) {
4272 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4273 do_wakeup = 1;
72ac7330 4274 sh->dev[i].flags = head_sh->dev[i].flags &
4275 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4276 }
72ac7330 4277 spin_lock_irq(&sh->stripe_lock);
4278 sh->batch_head = NULL;
4279 spin_unlock_irq(&sh->stripe_lock);
3960ce79
N
4280 if (handle_flags == 0 ||
4281 sh->state & handle_flags)
4282 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 4283 raid5_release_stripe(sh);
72ac7330 4284 }
fb642b92
N
4285 spin_lock_irq(&head_sh->stripe_lock);
4286 head_sh->batch_head = NULL;
4287 spin_unlock_irq(&head_sh->stripe_lock);
4288 for (i = 0; i < head_sh->disks; i++)
4289 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4290 do_wakeup = 1;
3960ce79
N
4291 if (head_sh->state & handle_flags)
4292 set_bit(STRIPE_HANDLE, &head_sh->state);
fb642b92
N
4293
4294 if (do_wakeup)
4295 wake_up(&head_sh->raid_conf->wait_for_overlap);
72ac7330 4296}
4297
cc94015a
N
4298static void handle_stripe(struct stripe_head *sh)
4299{
4300 struct stripe_head_state s;
d1688a6d 4301 struct r5conf *conf = sh->raid_conf;
3687c061 4302 int i;
84789554
N
4303 int prexor;
4304 int disks = sh->disks;
474af965 4305 struct r5dev *pdev, *qdev;
cc94015a
N
4306
4307 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 4308 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4309 /* already being handled, ensure it gets handled
4310 * again when current action finishes */
4311 set_bit(STRIPE_HANDLE, &sh->state);
4312 return;
4313 }
4314
59fc630b 4315 if (clear_batch_ready(sh) ) {
4316 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4317 return;
4318 }
4319
4e3d62ff 4320 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 4321 break_stripe_batch_list(sh, 0);
72ac7330 4322
dabc4ec6 4323 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd
N
4324 spin_lock(&sh->stripe_lock);
4325 /* Cannot process 'sync' concurrently with 'discard' */
4326 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4327 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4328 set_bit(STRIPE_SYNCING, &sh->state);
4329 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4330 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4331 }
4332 spin_unlock(&sh->stripe_lock);
cc94015a
N
4333 }
4334 clear_bit(STRIPE_DELAYED, &sh->state);
4335
4336 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4337 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4338 (unsigned long long)sh->sector, sh->state,
4339 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4340 sh->check_state, sh->reconstruct_state);
3687c061 4341
acfe726b 4342 analyse_stripe(sh, &s);
c5a31000 4343
b70abcb2
SL
4344 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4345 goto finish;
4346
bc2607f3
N
4347 if (s.handle_bad_blocks) {
4348 set_bit(STRIPE_HANDLE, &sh->state);
4349 goto finish;
4350 }
4351
474af965
N
4352 if (unlikely(s.blocked_rdev)) {
4353 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4354 s.replacing || s.to_write || s.written) {
474af965
N
4355 set_bit(STRIPE_HANDLE, &sh->state);
4356 goto finish;
4357 }
4358 /* There is nothing for the blocked_rdev to block */
4359 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4360 s.blocked_rdev = NULL;
4361 }
4362
4363 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4364 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4365 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4366 }
4367
4368 pr_debug("locked=%d uptodate=%d to_read=%d"
4369 " to_write=%d failed=%d failed_num=%d,%d\n",
4370 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4371 s.failed_num[0], s.failed_num[1]);
4372 /* check if the array has lost more than max_degraded devices and,
4373 * if so, some requests might need to be failed.
4374 */
6e74a9cf 4375 if (s.failed > conf->max_degraded || s.log_failed) {
9a3f530f
N
4376 sh->check_state = 0;
4377 sh->reconstruct_state = 0;
626f2092 4378 break_stripe_batch_list(sh, 0);
9a3f530f
N
4379 if (s.to_read+s.to_write+s.written)
4380 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 4381 if (s.syncing + s.replacing)
9a3f530f
N
4382 handle_failed_sync(conf, sh, &s);
4383 }
474af965 4384
84789554
N
4385 /* Now we check to see if any write operations have recently
4386 * completed
4387 */
4388 prexor = 0;
4389 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4390 prexor = 1;
4391 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4392 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4393 sh->reconstruct_state = reconstruct_state_idle;
4394
4395 /* All the 'written' buffers and the parity block are ready to
4396 * be written back to disk
4397 */
9e444768
SL
4398 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4399 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4400 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4401 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4402 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4403 for (i = disks; i--; ) {
4404 struct r5dev *dev = &sh->dev[i];
4405 if (test_bit(R5_LOCKED, &dev->flags) &&
4406 (i == sh->pd_idx || i == sh->qd_idx ||
4407 dev->written)) {
4408 pr_debug("Writing block %d\n", i);
4409 set_bit(R5_Wantwrite, &dev->flags);
4410 if (prexor)
4411 continue;
9c4bdf69
N
4412 if (s.failed > 1)
4413 continue;
84789554
N
4414 if (!test_bit(R5_Insync, &dev->flags) ||
4415 ((i == sh->pd_idx || i == sh->qd_idx) &&
4416 s.failed == 0))
4417 set_bit(STRIPE_INSYNC, &sh->state);
4418 }
4419 }
4420 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4421 s.dec_preread_active = 1;
4422 }
4423
ef5b7c69
N
4424 /*
4425 * might be able to return some write requests if the parity blocks
4426 * are safe, or on a failed drive
4427 */
4428 pdev = &sh->dev[sh->pd_idx];
4429 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4430 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4431 qdev = &sh->dev[sh->qd_idx];
4432 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4433 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4434 || conf->level < 6;
4435
4436 if (s.written &&
4437 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4438 && !test_bit(R5_LOCKED, &pdev->flags)
4439 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4440 test_bit(R5_Discard, &pdev->flags))))) &&
4441 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4442 && !test_bit(R5_LOCKED, &qdev->flags)
4443 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4444 test_bit(R5_Discard, &qdev->flags))))))
4445 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4446
4447 /* Now we might consider reading some blocks, either to check/generate
4448 * parity, or to satisfy requests
4449 * or to load a block that is being partially written.
4450 */
4451 if (s.to_read || s.non_overwrite
4452 || (conf->level == 6 && s.to_write && s.failed)
4453 || (s.syncing && (s.uptodate + s.compute < disks))
4454 || s.replacing
4455 || s.expanding)
4456 handle_stripe_fill(sh, &s, disks);
4457
84789554
N
4458 /* Now to consider new write requests and what else, if anything
4459 * should be read. We do not handle new writes when:
4460 * 1/ A 'write' operation (copy+xor) is already in flight.
4461 * 2/ A 'check' operation is in flight, as it may clobber the parity
4462 * block.
4463 */
4464 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4465 handle_stripe_dirtying(conf, sh, &s, disks);
4466
4467 /* maybe we need to check and possibly fix the parity for this stripe
4468 * Any reads will already have been scheduled, so we just see if enough
4469 * data is available. The parity check is held off while parity
4470 * dependent operations are in flight.
4471 */
4472 if (sh->check_state ||
4473 (s.syncing && s.locked == 0 &&
4474 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4475 !test_bit(STRIPE_INSYNC, &sh->state))) {
4476 if (conf->level == 6)
4477 handle_parity_checks6(conf, sh, &s, disks);
4478 else
4479 handle_parity_checks5(conf, sh, &s, disks);
4480 }
c5a31000 4481
f94c0b66
N
4482 if ((s.replacing || s.syncing) && s.locked == 0
4483 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4484 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4485 /* Write out to replacement devices where possible */
4486 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4487 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4488 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4489 set_bit(R5_WantReplace, &sh->dev[i].flags);
4490 set_bit(R5_LOCKED, &sh->dev[i].flags);
4491 s.locked++;
4492 }
f94c0b66
N
4493 if (s.replacing)
4494 set_bit(STRIPE_INSYNC, &sh->state);
4495 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4496 }
4497 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4498 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4499 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4500 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4501 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4502 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4503 wake_up(&conf->wait_for_overlap);
c5a31000
N
4504 }
4505
4506 /* If the failed drives are just a ReadError, then we might need
4507 * to progress the repair/check process
4508 */
4509 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4510 for (i = 0; i < s.failed; i++) {
4511 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4512 if (test_bit(R5_ReadError, &dev->flags)
4513 && !test_bit(R5_LOCKED, &dev->flags)
4514 && test_bit(R5_UPTODATE, &dev->flags)
4515 ) {
4516 if (!test_bit(R5_ReWrite, &dev->flags)) {
4517 set_bit(R5_Wantwrite, &dev->flags);
4518 set_bit(R5_ReWrite, &dev->flags);
4519 set_bit(R5_LOCKED, &dev->flags);
4520 s.locked++;
4521 } else {
4522 /* let's read it back */
4523 set_bit(R5_Wantread, &dev->flags);
4524 set_bit(R5_LOCKED, &dev->flags);
4525 s.locked++;
4526 }
4527 }
4528 }
4529
3687c061
N
4530 /* Finish reconstruct operations initiated by the expansion process */
4531 if (sh->reconstruct_state == reconstruct_state_result) {
4532 struct stripe_head *sh_src
6d036f7d 4533 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
3687c061
N
4534 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4535 /* sh cannot be written until sh_src has been read.
4536 * so arrange for sh to be delayed a little
4537 */
4538 set_bit(STRIPE_DELAYED, &sh->state);
4539 set_bit(STRIPE_HANDLE, &sh->state);
4540 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4541 &sh_src->state))
4542 atomic_inc(&conf->preread_active_stripes);
6d036f7d 4543 raid5_release_stripe(sh_src);
3687c061
N
4544 goto finish;
4545 }
4546 if (sh_src)
6d036f7d 4547 raid5_release_stripe(sh_src);
3687c061
N
4548
4549 sh->reconstruct_state = reconstruct_state_idle;
4550 clear_bit(STRIPE_EXPANDING, &sh->state);
4551 for (i = conf->raid_disks; i--; ) {
4552 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4553 set_bit(R5_LOCKED, &sh->dev[i].flags);
4554 s.locked++;
4555 }
4556 }
f416885e 4557
3687c061
N
4558 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4559 !sh->reconstruct_state) {
4560 /* Need to write out all blocks after computing parity */
4561 sh->disks = conf->raid_disks;
4562 stripe_set_idx(sh->sector, conf, 0, sh);
4563 schedule_reconstruction(sh, &s, 1, 1);
4564 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4565 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4566 atomic_dec(&conf->reshape_stripes);
4567 wake_up(&conf->wait_for_overlap);
4568 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4569 }
4570
4571 if (s.expanding && s.locked == 0 &&
4572 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4573 handle_stripe_expansion(conf, sh);
16a53ecc 4574
3687c061 4575finish:
6bfe0b49 4576 /* wait for this device to become unblocked */
5f066c63
N
4577 if (unlikely(s.blocked_rdev)) {
4578 if (conf->mddev->external)
4579 md_wait_for_blocked_rdev(s.blocked_rdev,
4580 conf->mddev);
4581 else
4582 /* Internal metadata will immediately
4583 * be written by raid5d, so we don't
4584 * need to wait here.
4585 */
4586 rdev_dec_pending(s.blocked_rdev,
4587 conf->mddev);
4588 }
6bfe0b49 4589
bc2607f3
N
4590 if (s.handle_bad_blocks)
4591 for (i = disks; i--; ) {
3cb03002 4592 struct md_rdev *rdev;
bc2607f3
N
4593 struct r5dev *dev = &sh->dev[i];
4594 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4595 /* We own a safe reference to the rdev */
4596 rdev = conf->disks[i].rdev;
4597 if (!rdev_set_badblocks(rdev, sh->sector,
4598 STRIPE_SECTORS, 0))
4599 md_error(conf->mddev, rdev);
4600 rdev_dec_pending(rdev, conf->mddev);
4601 }
b84db560
N
4602 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4603 rdev = conf->disks[i].rdev;
4604 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4605 STRIPE_SECTORS, 0);
b84db560
N
4606 rdev_dec_pending(rdev, conf->mddev);
4607 }
977df362
N
4608 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4609 rdev = conf->disks[i].replacement;
dd054fce
N
4610 if (!rdev)
4611 /* rdev have been moved down */
4612 rdev = conf->disks[i].rdev;
977df362 4613 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4614 STRIPE_SECTORS, 0);
977df362
N
4615 rdev_dec_pending(rdev, conf->mddev);
4616 }
bc2607f3
N
4617 }
4618
6c0069c0
YT
4619 if (s.ops_request)
4620 raid_run_ops(sh, s.ops_request);
4621
f0e43bcd 4622 ops_run_io(sh, &s);
16a53ecc 4623
c5709ef6 4624 if (s.dec_preread_active) {
729a1866 4625 /* We delay this until after ops_run_io so that if make_request
e9c7469b 4626 * is waiting on a flush, it won't continue until the writes
729a1866
N
4627 * have actually been submitted.
4628 */
4629 atomic_dec(&conf->preread_active_stripes);
4630 if (atomic_read(&conf->preread_active_stripes) <
4631 IO_THRESHOLD)
4632 md_wakeup_thread(conf->mddev->thread);
4633 }
4634
c3cce6cd
N
4635 if (!bio_list_empty(&s.return_bi)) {
4636 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4637 spin_lock_irq(&conf->device_lock);
4638 bio_list_merge(&conf->return_bi, &s.return_bi);
4639 spin_unlock_irq(&conf->device_lock);
4640 md_wakeup_thread(conf->mddev->thread);
4641 } else
4642 return_io(&s.return_bi);
4643 }
16a53ecc 4644
257a4b42 4645 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
4646}
4647
d1688a6d 4648static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
4649{
4650 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4651 while (!list_empty(&conf->delayed_list)) {
4652 struct list_head *l = conf->delayed_list.next;
4653 struct stripe_head *sh;
4654 sh = list_entry(l, struct stripe_head, lru);
4655 list_del_init(l);
4656 clear_bit(STRIPE_DELAYED, &sh->state);
4657 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4658 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 4659 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 4660 raid5_wakeup_stripe_thread(sh);
16a53ecc 4661 }
482c0834 4662 }
16a53ecc
N
4663}
4664
566c09c5
SL
4665static void activate_bit_delay(struct r5conf *conf,
4666 struct list_head *temp_inactive_list)
16a53ecc
N
4667{
4668 /* device_lock is held */
4669 struct list_head head;
4670 list_add(&head, &conf->bitmap_list);
4671 list_del_init(&conf->bitmap_list);
4672 while (!list_empty(&head)) {
4673 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 4674 int hash;
16a53ecc
N
4675 list_del_init(&sh->lru);
4676 atomic_inc(&sh->count);
566c09c5
SL
4677 hash = sh->hash_lock_index;
4678 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
4679 }
4680}
4681
5c675f83 4682static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 4683{
d1688a6d 4684 struct r5conf *conf = mddev->private;
f022b2fd
N
4685
4686 /* No difference between reads and writes. Just check
4687 * how busy the stripe_cache is
4688 */
3fa841d7 4689
5423399a 4690 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
f022b2fd
N
4691 return 1;
4692 if (conf->quiesce)
4693 return 1;
4bda556a 4694 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
4695 return 1;
4696
4697 return 0;
4698}
4699
fd01b88c 4700static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 4701{
3cb5edf4 4702 struct r5conf *conf = mddev->private;
4f024f37 4703 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
3cb5edf4 4704 unsigned int chunk_sectors;
aa8b57aa 4705 unsigned int bio_sectors = bio_sectors(bio);
f679623f 4706
3cb5edf4 4707 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
f679623f
RBJ
4708 return chunk_sectors >=
4709 ((sector & (chunk_sectors - 1)) + bio_sectors);
4710}
4711
46031f9a
RBJ
4712/*
4713 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4714 * later sampled by raid5d.
4715 */
d1688a6d 4716static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
4717{
4718 unsigned long flags;
4719
4720 spin_lock_irqsave(&conf->device_lock, flags);
4721
4722 bi->bi_next = conf->retry_read_aligned_list;
4723 conf->retry_read_aligned_list = bi;
4724
4725 spin_unlock_irqrestore(&conf->device_lock, flags);
4726 md_wakeup_thread(conf->mddev->thread);
4727}
4728
d1688a6d 4729static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
4730{
4731 struct bio *bi;
4732
4733 bi = conf->retry_read_aligned;
4734 if (bi) {
4735 conf->retry_read_aligned = NULL;
4736 return bi;
4737 }
4738 bi = conf->retry_read_aligned_list;
4739 if(bi) {
387bb173 4740 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 4741 bi->bi_next = NULL;
960e739d
JA
4742 /*
4743 * this sets the active strip count to 1 and the processed
4744 * strip count to zero (upper 8 bits)
4745 */
e7836bd6 4746 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
46031f9a
RBJ
4747 }
4748
4749 return bi;
4750}
4751
f679623f
RBJ
4752/*
4753 * The "raid5_align_endio" should check if the read succeeded and if it
4754 * did, call bio_endio on the original bio (having bio_put the new bio
4755 * first).
4756 * If the read failed..
4757 */
4246a0b6 4758static void raid5_align_endio(struct bio *bi)
f679623f
RBJ
4759{
4760 struct bio* raid_bi = bi->bi_private;
fd01b88c 4761 struct mddev *mddev;
d1688a6d 4762 struct r5conf *conf;
3cb03002 4763 struct md_rdev *rdev;
9b81c842 4764 int error = bi->bi_error;
46031f9a 4765
f679623f 4766 bio_put(bi);
46031f9a 4767
46031f9a
RBJ
4768 rdev = (void*)raid_bi->bi_next;
4769 raid_bi->bi_next = NULL;
2b7f2228
N
4770 mddev = rdev->mddev;
4771 conf = mddev->private;
46031f9a
RBJ
4772
4773 rdev_dec_pending(rdev, conf->mddev);
4774
9b81c842 4775 if (!error) {
0a82a8d1
LT
4776 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4777 raid_bi, 0);
4246a0b6 4778 bio_endio(raid_bi);
46031f9a 4779 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 4780 wake_up(&conf->wait_for_quiescent);
6712ecf8 4781 return;
46031f9a
RBJ
4782 }
4783
45b4233c 4784 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
4785
4786 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
4787}
4788
7ef6b12a 4789static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
f679623f 4790{
d1688a6d 4791 struct r5conf *conf = mddev->private;
8553fe7e 4792 int dd_idx;
f679623f 4793 struct bio* align_bi;
3cb03002 4794 struct md_rdev *rdev;
671488cc 4795 sector_t end_sector;
f679623f
RBJ
4796
4797 if (!in_chunk_boundary(mddev, raid_bio)) {
7ef6b12a 4798 pr_debug("%s: non aligned\n", __func__);
f679623f
RBJ
4799 return 0;
4800 }
4801 /*
a167f663 4802 * use bio_clone_mddev to make a copy of the bio
f679623f 4803 */
a167f663 4804 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
4805 if (!align_bi)
4806 return 0;
4807 /*
4808 * set bi_end_io to a new function, and set bi_private to the
4809 * original bio.
4810 */
4811 align_bi->bi_end_io = raid5_align_endio;
4812 align_bi->bi_private = raid_bio;
4813 /*
4814 * compute position
4815 */
4f024f37
KO
4816 align_bi->bi_iter.bi_sector =
4817 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4818 0, &dd_idx, NULL);
f679623f 4819
f73a1c7d 4820 end_sector = bio_end_sector(align_bi);
f679623f 4821 rcu_read_lock();
671488cc
N
4822 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4823 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4824 rdev->recovery_offset < end_sector) {
4825 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4826 if (rdev &&
4827 (test_bit(Faulty, &rdev->flags) ||
4828 !(test_bit(In_sync, &rdev->flags) ||
4829 rdev->recovery_offset >= end_sector)))
4830 rdev = NULL;
4831 }
4832 if (rdev) {
31c176ec
N
4833 sector_t first_bad;
4834 int bad_sectors;
4835
f679623f
RBJ
4836 atomic_inc(&rdev->nr_pending);
4837 rcu_read_unlock();
46031f9a
RBJ
4838 raid_bio->bi_next = (void*)rdev;
4839 align_bi->bi_bdev = rdev->bdev;
b7c44ed9 4840 bio_clear_flag(align_bi, BIO_SEG_VALID);
46031f9a 4841
7140aafc 4842 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4f024f37 4843 bio_sectors(align_bi),
31c176ec 4844 &first_bad, &bad_sectors)) {
387bb173
NB
4845 bio_put(align_bi);
4846 rdev_dec_pending(rdev, mddev);
4847 return 0;
4848 }
4849
6c0544e2 4850 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 4851 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 4852
46031f9a 4853 spin_lock_irq(&conf->device_lock);
b1b46486 4854 wait_event_lock_irq(conf->wait_for_quiescent,
46031f9a 4855 conf->quiesce == 0,
eed8c02e 4856 conf->device_lock);
46031f9a
RBJ
4857 atomic_inc(&conf->active_aligned_reads);
4858 spin_unlock_irq(&conf->device_lock);
4859
e3620a3a
JB
4860 if (mddev->gendisk)
4861 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4862 align_bi, disk_devt(mddev->gendisk),
4f024f37 4863 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
4864 generic_make_request(align_bi);
4865 return 1;
4866 } else {
4867 rcu_read_unlock();
46031f9a 4868 bio_put(align_bi);
f679623f
RBJ
4869 return 0;
4870 }
4871}
4872
7ef6b12a
ML
4873static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4874{
4875 struct bio *split;
4876
4877 do {
4878 sector_t sector = raid_bio->bi_iter.bi_sector;
4879 unsigned chunk_sects = mddev->chunk_sectors;
4880 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4881
4882 if (sectors < bio_sectors(raid_bio)) {
4883 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4884 bio_chain(split, raid_bio);
4885 } else
4886 split = raid_bio;
4887
4888 if (!raid5_read_one_chunk(mddev, split)) {
4889 if (split != raid_bio)
4890 generic_make_request(raid_bio);
4891 return split;
4892 }
4893 } while (split != raid_bio);
4894
4895 return NULL;
4896}
4897
8b3e6cdc
DW
4898/* __get_priority_stripe - get the next stripe to process
4899 *
4900 * Full stripe writes are allowed to pass preread active stripes up until
4901 * the bypass_threshold is exceeded. In general the bypass_count
4902 * increments when the handle_list is handled before the hold_list; however, it
4903 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4904 * stripe with in flight i/o. The bypass_count will be reset when the
4905 * head of the hold_list has changed, i.e. the head was promoted to the
4906 * handle_list.
4907 */
851c30c9 4908static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 4909{
851c30c9
SL
4910 struct stripe_head *sh = NULL, *tmp;
4911 struct list_head *handle_list = NULL;
bfc90cb0 4912 struct r5worker_group *wg = NULL;
851c30c9
SL
4913
4914 if (conf->worker_cnt_per_group == 0) {
4915 handle_list = &conf->handle_list;
4916 } else if (group != ANY_GROUP) {
4917 handle_list = &conf->worker_groups[group].handle_list;
bfc90cb0 4918 wg = &conf->worker_groups[group];
851c30c9
SL
4919 } else {
4920 int i;
4921 for (i = 0; i < conf->group_cnt; i++) {
4922 handle_list = &conf->worker_groups[i].handle_list;
bfc90cb0 4923 wg = &conf->worker_groups[i];
851c30c9
SL
4924 if (!list_empty(handle_list))
4925 break;
4926 }
4927 }
8b3e6cdc
DW
4928
4929 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4930 __func__,
851c30c9 4931 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
4932 list_empty(&conf->hold_list) ? "empty" : "busy",
4933 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4934
851c30c9
SL
4935 if (!list_empty(handle_list)) {
4936 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
4937
4938 if (list_empty(&conf->hold_list))
4939 conf->bypass_count = 0;
4940 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4941 if (conf->hold_list.next == conf->last_hold)
4942 conf->bypass_count++;
4943 else {
4944 conf->last_hold = conf->hold_list.next;
4945 conf->bypass_count -= conf->bypass_threshold;
4946 if (conf->bypass_count < 0)
4947 conf->bypass_count = 0;
4948 }
4949 }
4950 } else if (!list_empty(&conf->hold_list) &&
4951 ((conf->bypass_threshold &&
4952 conf->bypass_count > conf->bypass_threshold) ||
4953 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
4954
4955 list_for_each_entry(tmp, &conf->hold_list, lru) {
4956 if (conf->worker_cnt_per_group == 0 ||
4957 group == ANY_GROUP ||
4958 !cpu_online(tmp->cpu) ||
4959 cpu_to_group(tmp->cpu) == group) {
4960 sh = tmp;
4961 break;
4962 }
4963 }
4964
4965 if (sh) {
4966 conf->bypass_count -= conf->bypass_threshold;
4967 if (conf->bypass_count < 0)
4968 conf->bypass_count = 0;
4969 }
bfc90cb0 4970 wg = NULL;
851c30c9
SL
4971 }
4972
4973 if (!sh)
8b3e6cdc
DW
4974 return NULL;
4975
bfc90cb0
SL
4976 if (wg) {
4977 wg->stripes_cnt--;
4978 sh->group = NULL;
4979 }
8b3e6cdc 4980 list_del_init(&sh->lru);
c7a6d35e 4981 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
4982 return sh;
4983}
f679623f 4984
8811b596
SL
4985struct raid5_plug_cb {
4986 struct blk_plug_cb cb;
4987 struct list_head list;
566c09c5 4988 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
4989};
4990
4991static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4992{
4993 struct raid5_plug_cb *cb = container_of(
4994 blk_cb, struct raid5_plug_cb, cb);
4995 struct stripe_head *sh;
4996 struct mddev *mddev = cb->cb.data;
4997 struct r5conf *conf = mddev->private;
a9add5d9 4998 int cnt = 0;
566c09c5 4999 int hash;
8811b596
SL
5000
5001 if (cb->list.next && !list_empty(&cb->list)) {
5002 spin_lock_irq(&conf->device_lock);
5003 while (!list_empty(&cb->list)) {
5004 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5005 list_del_init(&sh->lru);
5006 /*
5007 * avoid race release_stripe_plug() sees
5008 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5009 * is still in our list
5010 */
4e857c58 5011 smp_mb__before_atomic();
8811b596 5012 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
5013 /*
5014 * STRIPE_ON_RELEASE_LIST could be set here. In that
5015 * case, the count is always > 1 here
5016 */
566c09c5
SL
5017 hash = sh->hash_lock_index;
5018 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 5019 cnt++;
8811b596
SL
5020 }
5021 spin_unlock_irq(&conf->device_lock);
5022 }
566c09c5
SL
5023 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5024 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
5025 if (mddev->queue)
5026 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
5027 kfree(cb);
5028}
5029
5030static void release_stripe_plug(struct mddev *mddev,
5031 struct stripe_head *sh)
5032{
5033 struct blk_plug_cb *blk_cb = blk_check_plugged(
5034 raid5_unplug, mddev,
5035 sizeof(struct raid5_plug_cb));
5036 struct raid5_plug_cb *cb;
5037
5038 if (!blk_cb) {
6d036f7d 5039 raid5_release_stripe(sh);
8811b596
SL
5040 return;
5041 }
5042
5043 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5044
566c09c5
SL
5045 if (cb->list.next == NULL) {
5046 int i;
8811b596 5047 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5048 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5049 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5050 }
8811b596
SL
5051
5052 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5053 list_add_tail(&sh->lru, &cb->list);
5054 else
6d036f7d 5055 raid5_release_stripe(sh);
8811b596
SL
5056}
5057
620125f2
SL
5058static void make_discard_request(struct mddev *mddev, struct bio *bi)
5059{
5060 struct r5conf *conf = mddev->private;
5061 sector_t logical_sector, last_sector;
5062 struct stripe_head *sh;
5063 int remaining;
5064 int stripe_sectors;
5065
5066 if (mddev->reshape_position != MaxSector)
5067 /* Skip discard while reshape is happening */
5068 return;
5069
4f024f37
KO
5070 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5071 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
5072
5073 bi->bi_next = NULL;
5074 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5075
5076 stripe_sectors = conf->chunk_sectors *
5077 (conf->raid_disks - conf->max_degraded);
5078 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5079 stripe_sectors);
5080 sector_div(last_sector, stripe_sectors);
5081
5082 logical_sector *= conf->chunk_sectors;
5083 last_sector *= conf->chunk_sectors;
5084
5085 for (; logical_sector < last_sector;
5086 logical_sector += STRIPE_SECTORS) {
5087 DEFINE_WAIT(w);
5088 int d;
5089 again:
6d036f7d 5090 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
620125f2
SL
5091 prepare_to_wait(&conf->wait_for_overlap, &w,
5092 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5093 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5094 if (test_bit(STRIPE_SYNCING, &sh->state)) {
6d036f7d 5095 raid5_release_stripe(sh);
f8dfcffd
N
5096 schedule();
5097 goto again;
5098 }
5099 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5100 spin_lock_irq(&sh->stripe_lock);
5101 for (d = 0; d < conf->raid_disks; d++) {
5102 if (d == sh->pd_idx || d == sh->qd_idx)
5103 continue;
5104 if (sh->dev[d].towrite || sh->dev[d].toread) {
5105 set_bit(R5_Overlap, &sh->dev[d].flags);
5106 spin_unlock_irq(&sh->stripe_lock);
6d036f7d 5107 raid5_release_stripe(sh);
620125f2
SL
5108 schedule();
5109 goto again;
5110 }
5111 }
f8dfcffd 5112 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5113 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5114 sh->overwrite_disks = 0;
620125f2
SL
5115 for (d = 0; d < conf->raid_disks; d++) {
5116 if (d == sh->pd_idx || d == sh->qd_idx)
5117 continue;
5118 sh->dev[d].towrite = bi;
5119 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5120 raid5_inc_bi_active_stripes(bi);
7a87f434 5121 sh->overwrite_disks++;
620125f2
SL
5122 }
5123 spin_unlock_irq(&sh->stripe_lock);
5124 if (conf->mddev->bitmap) {
5125 for (d = 0;
5126 d < conf->raid_disks - conf->max_degraded;
5127 d++)
5128 bitmap_startwrite(mddev->bitmap,
5129 sh->sector,
5130 STRIPE_SECTORS,
5131 0);
5132 sh->bm_seq = conf->seq_flush + 1;
5133 set_bit(STRIPE_BIT_DELAY, &sh->state);
5134 }
5135
5136 set_bit(STRIPE_HANDLE, &sh->state);
5137 clear_bit(STRIPE_DELAYED, &sh->state);
5138 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5139 atomic_inc(&conf->preread_active_stripes);
5140 release_stripe_plug(mddev, sh);
5141 }
5142
5143 remaining = raid5_dec_bi_active_stripes(bi);
5144 if (remaining == 0) {
5145 md_write_end(mddev);
4246a0b6 5146 bio_endio(bi);
620125f2
SL
5147 }
5148}
5149
849674e4 5150static void raid5_make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5151{
d1688a6d 5152 struct r5conf *conf = mddev->private;
911d4ee8 5153 int dd_idx;
1da177e4
LT
5154 sector_t new_sector;
5155 sector_t logical_sector, last_sector;
5156 struct stripe_head *sh;
a362357b 5157 const int rw = bio_data_dir(bi);
49077326 5158 int remaining;
27c0f68f
SL
5159 DEFINE_WAIT(w);
5160 bool do_prepare;
1da177e4 5161
e9c7469b 5162 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
828cbe98
SL
5163 int ret = r5l_handle_flush_request(conf->log, bi);
5164
5165 if (ret == 0)
5166 return;
5167 if (ret == -ENODEV) {
5168 md_flush_request(mddev, bi);
5169 return;
5170 }
5171 /* ret == -EAGAIN, fallback */
e5dcdd80
N
5172 }
5173
3d310eb7 5174 md_write_start(mddev, bi);
06d91a5f 5175
9ffc8f7c
EM
5176 /*
5177 * If array is degraded, better not do chunk aligned read because
5178 * later we might have to read it again in order to reconstruct
5179 * data on failed drives.
5180 */
5181 if (rw == READ && mddev->degraded == 0 &&
7ef6b12a
ML
5182 mddev->reshape_position == MaxSector) {
5183 bi = chunk_aligned_read(mddev, bi);
5184 if (!bi)
5185 return;
5186 }
52488615 5187
620125f2
SL
5188 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5189 make_discard_request(mddev, bi);
5190 return;
5191 }
5192
4f024f37 5193 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5194 last_sector = bio_end_sector(bi);
1da177e4
LT
5195 bi->bi_next = NULL;
5196 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 5197
27c0f68f 5198 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5199 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5200 int previous;
c46501b2 5201 int seq;
b578d55f 5202
27c0f68f 5203 do_prepare = false;
7ecaa1e6 5204 retry:
c46501b2 5205 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5206 previous = 0;
27c0f68f
SL
5207 if (do_prepare)
5208 prepare_to_wait(&conf->wait_for_overlap, &w,
5209 TASK_UNINTERRUPTIBLE);
b0f9ec04 5210 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5211 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5212 * 64bit on a 32bit platform, and so it might be
5213 * possible to see a half-updated value
aeb878b0 5214 * Of course reshape_progress could change after
df8e7f76
N
5215 * the lock is dropped, so once we get a reference
5216 * to the stripe that we think it is, we will have
5217 * to check again.
5218 */
7ecaa1e6 5219 spin_lock_irq(&conf->device_lock);
2c810cdd 5220 if (mddev->reshape_backwards
fef9c61f
N
5221 ? logical_sector < conf->reshape_progress
5222 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5223 previous = 1;
5224 } else {
2c810cdd 5225 if (mddev->reshape_backwards
fef9c61f
N
5226 ? logical_sector < conf->reshape_safe
5227 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5228 spin_unlock_irq(&conf->device_lock);
5229 schedule();
27c0f68f 5230 do_prepare = true;
b578d55f
N
5231 goto retry;
5232 }
5233 }
7ecaa1e6
N
5234 spin_unlock_irq(&conf->device_lock);
5235 }
16a53ecc 5236
112bf897
N
5237 new_sector = raid5_compute_sector(conf, logical_sector,
5238 previous,
911d4ee8 5239 &dd_idx, NULL);
849674e4 5240 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
c46501b2 5241 (unsigned long long)new_sector,
1da177e4
LT
5242 (unsigned long long)logical_sector);
5243
6d036f7d 5244 sh = raid5_get_active_stripe(conf, new_sector, previous,
a8c906ca 5245 (bi->bi_rw&RWA_MASK), 0);
1da177e4 5246 if (sh) {
b0f9ec04 5247 if (unlikely(previous)) {
7ecaa1e6 5248 /* expansion might have moved on while waiting for a
df8e7f76
N
5249 * stripe, so we must do the range check again.
5250 * Expansion could still move past after this
5251 * test, but as we are holding a reference to
5252 * 'sh', we know that if that happens,
5253 * STRIPE_EXPANDING will get set and the expansion
5254 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5255 */
5256 int must_retry = 0;
5257 spin_lock_irq(&conf->device_lock);
2c810cdd 5258 if (mddev->reshape_backwards
b0f9ec04
N
5259 ? logical_sector >= conf->reshape_progress
5260 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5261 /* mismatch, need to try again */
5262 must_retry = 1;
5263 spin_unlock_irq(&conf->device_lock);
5264 if (must_retry) {
6d036f7d 5265 raid5_release_stripe(sh);
7a3ab908 5266 schedule();
27c0f68f 5267 do_prepare = true;
7ecaa1e6
N
5268 goto retry;
5269 }
5270 }
c46501b2
N
5271 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5272 /* Might have got the wrong stripe_head
5273 * by accident
5274 */
6d036f7d 5275 raid5_release_stripe(sh);
c46501b2
N
5276 goto retry;
5277 }
e62e58a5 5278
ffd96e35 5279 if (rw == WRITE &&
a5c308d4 5280 logical_sector >= mddev->suspend_lo &&
e464eafd 5281 logical_sector < mddev->suspend_hi) {
6d036f7d 5282 raid5_release_stripe(sh);
e62e58a5
N
5283 /* As the suspend_* range is controlled by
5284 * userspace, we want an interruptible
5285 * wait.
5286 */
5287 flush_signals(current);
5288 prepare_to_wait(&conf->wait_for_overlap,
5289 &w, TASK_INTERRUPTIBLE);
5290 if (logical_sector >= mddev->suspend_lo &&
27c0f68f 5291 logical_sector < mddev->suspend_hi) {
e62e58a5 5292 schedule();
27c0f68f
SL
5293 do_prepare = true;
5294 }
e464eafd
N
5295 goto retry;
5296 }
7ecaa1e6
N
5297
5298 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5299 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5300 /* Stripe is busy expanding or
5301 * add failed due to overlap. Flush everything
1da177e4
LT
5302 * and wait a while
5303 */
482c0834 5304 md_wakeup_thread(mddev->thread);
6d036f7d 5305 raid5_release_stripe(sh);
1da177e4 5306 schedule();
27c0f68f 5307 do_prepare = true;
1da177e4
LT
5308 goto retry;
5309 }
6ed3003c
N
5310 set_bit(STRIPE_HANDLE, &sh->state);
5311 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5312 if ((!sh->batch_head || sh == sh->batch_head) &&
5313 (bi->bi_rw & REQ_SYNC) &&
729a1866
N
5314 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5315 atomic_inc(&conf->preread_active_stripes);
8811b596 5316 release_stripe_plug(mddev, sh);
1da177e4
LT
5317 } else {
5318 /* cannot get stripe for read-ahead, just give-up */
4246a0b6 5319 bi->bi_error = -EIO;
1da177e4
LT
5320 break;
5321 }
1da177e4 5322 }
27c0f68f 5323 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5324
e7836bd6 5325 remaining = raid5_dec_bi_active_stripes(bi);
f6344757 5326 if (remaining == 0) {
1da177e4 5327
16a53ecc 5328 if ( rw == WRITE )
1da177e4 5329 md_write_end(mddev);
6712ecf8 5330
0a82a8d1
LT
5331 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5332 bi, 0);
4246a0b6 5333 bio_endio(bi);
1da177e4 5334 }
1da177e4
LT
5335}
5336
fd01b88c 5337static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5338
fd01b88c 5339static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5340{
52c03291
N
5341 /* reshaping is quite different to recovery/resync so it is
5342 * handled quite separately ... here.
5343 *
5344 * On each call to sync_request, we gather one chunk worth of
5345 * destination stripes and flag them as expanding.
5346 * Then we find all the source stripes and request reads.
5347 * As the reads complete, handle_stripe will copy the data
5348 * into the destination stripe and release that stripe.
5349 */
d1688a6d 5350 struct r5conf *conf = mddev->private;
1da177e4 5351 struct stripe_head *sh;
ccfcc3c1 5352 sector_t first_sector, last_sector;
f416885e
N
5353 int raid_disks = conf->previous_raid_disks;
5354 int data_disks = raid_disks - conf->max_degraded;
5355 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5356 int i;
5357 int dd_idx;
c8f517c4 5358 sector_t writepos, readpos, safepos;
ec32a2bd 5359 sector_t stripe_addr;
7a661381 5360 int reshape_sectors;
ab69ae12 5361 struct list_head stripes;
92140480 5362 sector_t retn;
52c03291 5363
fef9c61f
N
5364 if (sector_nr == 0) {
5365 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5366 if (mddev->reshape_backwards &&
fef9c61f
N
5367 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5368 sector_nr = raid5_size(mddev, 0, 0)
5369 - conf->reshape_progress;
6cbd8148
N
5370 } else if (mddev->reshape_backwards &&
5371 conf->reshape_progress == MaxSector) {
5372 /* shouldn't happen, but just in case, finish up.*/
5373 sector_nr = MaxSector;
2c810cdd 5374 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5375 conf->reshape_progress > 0)
5376 sector_nr = conf->reshape_progress;
f416885e 5377 sector_div(sector_nr, new_data_disks);
fef9c61f 5378 if (sector_nr) {
8dee7211
N
5379 mddev->curr_resync_completed = sector_nr;
5380 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f 5381 *skipped = 1;
92140480
N
5382 retn = sector_nr;
5383 goto finish;
fef9c61f 5384 }
52c03291
N
5385 }
5386
7a661381
N
5387 /* We need to process a full chunk at a time.
5388 * If old and new chunk sizes differ, we need to process the
5389 * largest of these
5390 */
3cb5edf4
N
5391
5392 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
7a661381 5393
b5254dd5
N
5394 /* We update the metadata at least every 10 seconds, or when
5395 * the data about to be copied would over-write the source of
5396 * the data at the front of the range. i.e. one new_stripe
5397 * along from reshape_progress new_maps to after where
5398 * reshape_safe old_maps to
52c03291 5399 */
fef9c61f 5400 writepos = conf->reshape_progress;
f416885e 5401 sector_div(writepos, new_data_disks);
c8f517c4
N
5402 readpos = conf->reshape_progress;
5403 sector_div(readpos, data_disks);
fef9c61f 5404 safepos = conf->reshape_safe;
f416885e 5405 sector_div(safepos, data_disks);
2c810cdd 5406 if (mddev->reshape_backwards) {
c74c0d76
N
5407 BUG_ON(writepos < reshape_sectors);
5408 writepos -= reshape_sectors;
c8f517c4 5409 readpos += reshape_sectors;
7a661381 5410 safepos += reshape_sectors;
fef9c61f 5411 } else {
7a661381 5412 writepos += reshape_sectors;
c74c0d76
N
5413 /* readpos and safepos are worst-case calculations.
5414 * A negative number is overly pessimistic, and causes
5415 * obvious problems for unsigned storage. So clip to 0.
5416 */
ed37d83e
N
5417 readpos -= min_t(sector_t, reshape_sectors, readpos);
5418 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5419 }
52c03291 5420
b5254dd5
N
5421 /* Having calculated the 'writepos' possibly use it
5422 * to set 'stripe_addr' which is where we will write to.
5423 */
5424 if (mddev->reshape_backwards) {
5425 BUG_ON(conf->reshape_progress == 0);
5426 stripe_addr = writepos;
5427 BUG_ON((mddev->dev_sectors &
5428 ~((sector_t)reshape_sectors - 1))
5429 - reshape_sectors - stripe_addr
5430 != sector_nr);
5431 } else {
5432 BUG_ON(writepos != sector_nr + reshape_sectors);
5433 stripe_addr = sector_nr;
5434 }
5435
c8f517c4
N
5436 /* 'writepos' is the most advanced device address we might write.
5437 * 'readpos' is the least advanced device address we might read.
5438 * 'safepos' is the least address recorded in the metadata as having
5439 * been reshaped.
b5254dd5
N
5440 * If there is a min_offset_diff, these are adjusted either by
5441 * increasing the safepos/readpos if diff is negative, or
5442 * increasing writepos if diff is positive.
5443 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5444 * ensure safety in the face of a crash - that must be done by userspace
5445 * making a backup of the data. So in that case there is no particular
5446 * rush to update metadata.
5447 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5448 * update the metadata to advance 'safepos' to match 'readpos' so that
5449 * we can be safe in the event of a crash.
5450 * So we insist on updating metadata if safepos is behind writepos and
5451 * readpos is beyond writepos.
5452 * In any case, update the metadata every 10 seconds.
5453 * Maybe that number should be configurable, but I'm not sure it is
5454 * worth it.... maybe it could be a multiple of safemode_delay???
5455 */
b5254dd5
N
5456 if (conf->min_offset_diff < 0) {
5457 safepos += -conf->min_offset_diff;
5458 readpos += -conf->min_offset_diff;
5459 } else
5460 writepos += conf->min_offset_diff;
5461
2c810cdd 5462 if ((mddev->reshape_backwards
c8f517c4
N
5463 ? (safepos > writepos && readpos < writepos)
5464 : (safepos < writepos && readpos > writepos)) ||
5465 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5466 /* Cannot proceed until we've updated the superblock... */
5467 wait_event(conf->wait_for_overlap,
c91abf5a
N
5468 atomic_read(&conf->reshape_stripes)==0
5469 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5470 if (atomic_read(&conf->reshape_stripes) != 0)
5471 return 0;
fef9c61f 5472 mddev->reshape_position = conf->reshape_progress;
75d3da43 5473 mddev->curr_resync_completed = sector_nr;
c8f517c4 5474 conf->reshape_checkpoint = jiffies;
850b2b42 5475 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 5476 md_wakeup_thread(mddev->thread);
850b2b42 5477 wait_event(mddev->sb_wait, mddev->flags == 0 ||
c91abf5a
N
5478 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5479 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5480 return 0;
52c03291 5481 spin_lock_irq(&conf->device_lock);
fef9c61f 5482 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5483 spin_unlock_irq(&conf->device_lock);
5484 wake_up(&conf->wait_for_overlap);
acb180b0 5485 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
5486 }
5487
ab69ae12 5488 INIT_LIST_HEAD(&stripes);
7a661381 5489 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5490 int j;
a9f326eb 5491 int skipped_disk = 0;
6d036f7d 5492 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5493 set_bit(STRIPE_EXPANDING, &sh->state);
5494 atomic_inc(&conf->reshape_stripes);
5495 /* If any of this stripe is beyond the end of the old
5496 * array, then we need to zero those blocks
5497 */
5498 for (j=sh->disks; j--;) {
5499 sector_t s;
5500 if (j == sh->pd_idx)
5501 continue;
f416885e 5502 if (conf->level == 6 &&
d0dabf7e 5503 j == sh->qd_idx)
f416885e 5504 continue;
6d036f7d 5505 s = raid5_compute_blocknr(sh, j, 0);
b522adcd 5506 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5507 skipped_disk = 1;
52c03291
N
5508 continue;
5509 }
5510 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5511 set_bit(R5_Expanded, &sh->dev[j].flags);
5512 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5513 }
a9f326eb 5514 if (!skipped_disk) {
52c03291
N
5515 set_bit(STRIPE_EXPAND_READY, &sh->state);
5516 set_bit(STRIPE_HANDLE, &sh->state);
5517 }
ab69ae12 5518 list_add(&sh->lru, &stripes);
52c03291
N
5519 }
5520 spin_lock_irq(&conf->device_lock);
2c810cdd 5521 if (mddev->reshape_backwards)
7a661381 5522 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5523 else
7a661381 5524 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5525 spin_unlock_irq(&conf->device_lock);
5526 /* Ok, those stripe are ready. We can start scheduling
5527 * reads on the source stripes.
5528 * The source stripes are determined by mapping the first and last
5529 * block on the destination stripes.
5530 */
52c03291 5531 first_sector =
ec32a2bd 5532 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5533 1, &dd_idx, NULL);
52c03291 5534 last_sector =
0e6e0271 5535 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5536 * new_data_disks - 1),
911d4ee8 5537 1, &dd_idx, NULL);
58c0fed4
AN
5538 if (last_sector >= mddev->dev_sectors)
5539 last_sector = mddev->dev_sectors - 1;
52c03291 5540 while (first_sector <= last_sector) {
6d036f7d 5541 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5542 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5543 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 5544 raid5_release_stripe(sh);
52c03291
N
5545 first_sector += STRIPE_SECTORS;
5546 }
ab69ae12
N
5547 /* Now that the sources are clearly marked, we can release
5548 * the destination stripes
5549 */
5550 while (!list_empty(&stripes)) {
5551 sh = list_entry(stripes.next, struct stripe_head, lru);
5552 list_del_init(&sh->lru);
6d036f7d 5553 raid5_release_stripe(sh);
ab69ae12 5554 }
c6207277
N
5555 /* If this takes us to the resync_max point where we have to pause,
5556 * then we need to write out the superblock.
5557 */
7a661381 5558 sector_nr += reshape_sectors;
92140480
N
5559 retn = reshape_sectors;
5560finish:
c5e19d90
N
5561 if (mddev->curr_resync_completed > mddev->resync_max ||
5562 (sector_nr - mddev->curr_resync_completed) * 2
c03f6a19 5563 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5564 /* Cannot proceed until we've updated the superblock... */
5565 wait_event(conf->wait_for_overlap,
c91abf5a
N
5566 atomic_read(&conf->reshape_stripes) == 0
5567 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5568 if (atomic_read(&conf->reshape_stripes) != 0)
5569 goto ret;
fef9c61f 5570 mddev->reshape_position = conf->reshape_progress;
75d3da43 5571 mddev->curr_resync_completed = sector_nr;
c8f517c4 5572 conf->reshape_checkpoint = jiffies;
c6207277
N
5573 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5574 md_wakeup_thread(mddev->thread);
5575 wait_event(mddev->sb_wait,
5576 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
c91abf5a
N
5577 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5578 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5579 goto ret;
c6207277 5580 spin_lock_irq(&conf->device_lock);
fef9c61f 5581 conf->reshape_safe = mddev->reshape_position;
c6207277
N
5582 spin_unlock_irq(&conf->device_lock);
5583 wake_up(&conf->wait_for_overlap);
acb180b0 5584 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 5585 }
c91abf5a 5586ret:
92140480 5587 return retn;
52c03291
N
5588}
5589
849674e4
SL
5590static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5591 int *skipped)
52c03291 5592{
d1688a6d 5593 struct r5conf *conf = mddev->private;
52c03291 5594 struct stripe_head *sh;
58c0fed4 5595 sector_t max_sector = mddev->dev_sectors;
57dab0bd 5596 sector_t sync_blocks;
16a53ecc
N
5597 int still_degraded = 0;
5598 int i;
1da177e4 5599
72626685 5600 if (sector_nr >= max_sector) {
1da177e4 5601 /* just being told to finish up .. nothing much to do */
cea9c228 5602
29269553
N
5603 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5604 end_reshape(conf);
5605 return 0;
5606 }
72626685
N
5607
5608 if (mddev->curr_resync < max_sector) /* aborted */
5609 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5610 &sync_blocks, 1);
16a53ecc 5611 else /* completed sync */
72626685
N
5612 conf->fullsync = 0;
5613 bitmap_close_sync(mddev->bitmap);
5614
1da177e4
LT
5615 return 0;
5616 }
ccfcc3c1 5617
64bd660b
N
5618 /* Allow raid5_quiesce to complete */
5619 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5620
52c03291
N
5621 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5622 return reshape_request(mddev, sector_nr, skipped);
f6705578 5623
c6207277
N
5624 /* No need to check resync_max as we never do more than one
5625 * stripe, and as resync_max will always be on a chunk boundary,
5626 * if the check in md_do_sync didn't fire, there is no chance
5627 * of overstepping resync_max here
5628 */
5629
16a53ecc 5630 /* if there is too many failed drives and we are trying
1da177e4
LT
5631 * to resync, then assert that we are finished, because there is
5632 * nothing we can do.
5633 */
3285edf1 5634 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 5635 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 5636 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 5637 *skipped = 1;
1da177e4
LT
5638 return rv;
5639 }
6f608040 5640 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5641 !conf->fullsync &&
5642 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5643 sync_blocks >= STRIPE_SECTORS) {
72626685
N
5644 /* we can skip this block, and probably more */
5645 sync_blocks /= STRIPE_SECTORS;
5646 *skipped = 1;
5647 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5648 }
1da177e4 5649
c40f341f 5650 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
b47490c9 5651
6d036f7d 5652 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 5653 if (sh == NULL) {
6d036f7d 5654 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 5655 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 5656 * is trying to get access
1da177e4 5657 */
66c006a5 5658 schedule_timeout_uninterruptible(1);
1da177e4 5659 }
16a53ecc 5660 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
5661 * Note in case of > 1 drive failures it's possible we're rebuilding
5662 * one drive while leaving another faulty drive in array.
16a53ecc 5663 */
16d9cfab
EM
5664 rcu_read_lock();
5665 for (i = 0; i < conf->raid_disks; i++) {
5666 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5667
5668 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 5669 still_degraded = 1;
16d9cfab
EM
5670 }
5671 rcu_read_unlock();
16a53ecc
N
5672
5673 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5674
83206d66 5675 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 5676 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 5677
6d036f7d 5678 raid5_release_stripe(sh);
1da177e4
LT
5679
5680 return STRIPE_SECTORS;
5681}
5682
d1688a6d 5683static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
5684{
5685 /* We may not be able to submit a whole bio at once as there
5686 * may not be enough stripe_heads available.
5687 * We cannot pre-allocate enough stripe_heads as we may need
5688 * more than exist in the cache (if we allow ever large chunks).
5689 * So we do one stripe head at a time and record in
5690 * ->bi_hw_segments how many have been done.
5691 *
5692 * We *know* that this entire raid_bio is in one chunk, so
5693 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5694 */
5695 struct stripe_head *sh;
911d4ee8 5696 int dd_idx;
46031f9a
RBJ
5697 sector_t sector, logical_sector, last_sector;
5698 int scnt = 0;
5699 int remaining;
5700 int handled = 0;
5701
4f024f37
KO
5702 logical_sector = raid_bio->bi_iter.bi_sector &
5703 ~((sector_t)STRIPE_SECTORS-1);
112bf897 5704 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 5705 0, &dd_idx, NULL);
f73a1c7d 5706 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
5707
5708 for (; logical_sector < last_sector;
387bb173
NB
5709 logical_sector += STRIPE_SECTORS,
5710 sector += STRIPE_SECTORS,
5711 scnt++) {
46031f9a 5712
e7836bd6 5713 if (scnt < raid5_bi_processed_stripes(raid_bio))
46031f9a
RBJ
5714 /* already done this stripe */
5715 continue;
5716
6d036f7d 5717 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
5718
5719 if (!sh) {
5720 /* failed to get a stripe - must wait */
e7836bd6 5721 raid5_set_bi_processed_stripes(raid_bio, scnt);
46031f9a
RBJ
5722 conf->retry_read_aligned = raid_bio;
5723 return handled;
5724 }
5725
da41ba65 5726 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6d036f7d 5727 raid5_release_stripe(sh);
e7836bd6 5728 raid5_set_bi_processed_stripes(raid_bio, scnt);
387bb173
NB
5729 conf->retry_read_aligned = raid_bio;
5730 return handled;
5731 }
5732
3f9e7c14 5733 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 5734 handle_stripe(sh);
6d036f7d 5735 raid5_release_stripe(sh);
46031f9a
RBJ
5736 handled++;
5737 }
e7836bd6 5738 remaining = raid5_dec_bi_active_stripes(raid_bio);
0a82a8d1
LT
5739 if (remaining == 0) {
5740 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5741 raid_bio, 0);
4246a0b6 5742 bio_endio(raid_bio);
0a82a8d1 5743 }
46031f9a 5744 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5745 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
5746 return handled;
5747}
5748
bfc90cb0 5749static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
5750 struct r5worker *worker,
5751 struct list_head *temp_inactive_list)
46a06401
SL
5752{
5753 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
5754 int i, batch_size = 0, hash;
5755 bool release_inactive = false;
46a06401
SL
5756
5757 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 5758 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
5759 batch[batch_size++] = sh;
5760
566c09c5
SL
5761 if (batch_size == 0) {
5762 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5763 if (!list_empty(temp_inactive_list + i))
5764 break;
a8c34f91
SL
5765 if (i == NR_STRIPE_HASH_LOCKS) {
5766 spin_unlock_irq(&conf->device_lock);
5767 r5l_flush_stripe_to_raid(conf->log);
5768 spin_lock_irq(&conf->device_lock);
566c09c5 5769 return batch_size;
a8c34f91 5770 }
566c09c5
SL
5771 release_inactive = true;
5772 }
46a06401
SL
5773 spin_unlock_irq(&conf->device_lock);
5774
566c09c5
SL
5775 release_inactive_stripe_list(conf, temp_inactive_list,
5776 NR_STRIPE_HASH_LOCKS);
5777
a8c34f91 5778 r5l_flush_stripe_to_raid(conf->log);
566c09c5
SL
5779 if (release_inactive) {
5780 spin_lock_irq(&conf->device_lock);
5781 return 0;
5782 }
5783
46a06401
SL
5784 for (i = 0; i < batch_size; i++)
5785 handle_stripe(batch[i]);
f6bed0ef 5786 r5l_write_stripe_run(conf->log);
46a06401
SL
5787
5788 cond_resched();
5789
5790 spin_lock_irq(&conf->device_lock);
566c09c5
SL
5791 for (i = 0; i < batch_size; i++) {
5792 hash = batch[i]->hash_lock_index;
5793 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5794 }
46a06401
SL
5795 return batch_size;
5796}
46031f9a 5797
851c30c9
SL
5798static void raid5_do_work(struct work_struct *work)
5799{
5800 struct r5worker *worker = container_of(work, struct r5worker, work);
5801 struct r5worker_group *group = worker->group;
5802 struct r5conf *conf = group->conf;
5803 int group_id = group - conf->worker_groups;
5804 int handled;
5805 struct blk_plug plug;
5806
5807 pr_debug("+++ raid5worker active\n");
5808
5809 blk_start_plug(&plug);
5810 handled = 0;
5811 spin_lock_irq(&conf->device_lock);
5812 while (1) {
5813 int batch_size, released;
5814
566c09c5 5815 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 5816
566c09c5
SL
5817 batch_size = handle_active_stripes(conf, group_id, worker,
5818 worker->temp_inactive_list);
bfc90cb0 5819 worker->working = false;
851c30c9
SL
5820 if (!batch_size && !released)
5821 break;
5822 handled += batch_size;
5823 }
5824 pr_debug("%d stripes handled\n", handled);
5825
5826 spin_unlock_irq(&conf->device_lock);
5827 blk_finish_plug(&plug);
5828
5829 pr_debug("--- raid5worker inactive\n");
5830}
5831
1da177e4
LT
5832/*
5833 * This is our raid5 kernel thread.
5834 *
5835 * We scan the hash table for stripes which can be handled now.
5836 * During the scan, completed stripes are saved for us by the interrupt
5837 * handler, so that they will not have to wait for our next wakeup.
5838 */
4ed8731d 5839static void raid5d(struct md_thread *thread)
1da177e4 5840{
4ed8731d 5841 struct mddev *mddev = thread->mddev;
d1688a6d 5842 struct r5conf *conf = mddev->private;
1da177e4 5843 int handled;
e1dfa0a2 5844 struct blk_plug plug;
1da177e4 5845
45b4233c 5846 pr_debug("+++ raid5d active\n");
1da177e4
LT
5847
5848 md_check_recovery(mddev);
1da177e4 5849
c3cce6cd
N
5850 if (!bio_list_empty(&conf->return_bi) &&
5851 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5852 struct bio_list tmp = BIO_EMPTY_LIST;
5853 spin_lock_irq(&conf->device_lock);
5854 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5855 bio_list_merge(&tmp, &conf->return_bi);
5856 bio_list_init(&conf->return_bi);
5857 }
5858 spin_unlock_irq(&conf->device_lock);
5859 return_io(&tmp);
5860 }
5861
e1dfa0a2 5862 blk_start_plug(&plug);
1da177e4
LT
5863 handled = 0;
5864 spin_lock_irq(&conf->device_lock);
5865 while (1) {
46031f9a 5866 struct bio *bio;
773ca82f
SL
5867 int batch_size, released;
5868
566c09c5 5869 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
5870 if (released)
5871 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 5872
0021b7bc 5873 if (
7c13edc8
N
5874 !list_empty(&conf->bitmap_list)) {
5875 /* Now is a good time to flush some bitmap updates */
5876 conf->seq_flush++;
700e432d 5877 spin_unlock_irq(&conf->device_lock);
72626685 5878 bitmap_unplug(mddev->bitmap);
700e432d 5879 spin_lock_irq(&conf->device_lock);
7c13edc8 5880 conf->seq_write = conf->seq_flush;
566c09c5 5881 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 5882 }
0021b7bc 5883 raid5_activate_delayed(conf);
72626685 5884
46031f9a
RBJ
5885 while ((bio = remove_bio_from_retry(conf))) {
5886 int ok;
5887 spin_unlock_irq(&conf->device_lock);
5888 ok = retry_aligned_read(conf, bio);
5889 spin_lock_irq(&conf->device_lock);
5890 if (!ok)
5891 break;
5892 handled++;
5893 }
5894
566c09c5
SL
5895 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5896 conf->temp_inactive_list);
773ca82f 5897 if (!batch_size && !released)
1da177e4 5898 break;
46a06401 5899 handled += batch_size;
1da177e4 5900
46a06401
SL
5901 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5902 spin_unlock_irq(&conf->device_lock);
de393cde 5903 md_check_recovery(mddev);
46a06401
SL
5904 spin_lock_irq(&conf->device_lock);
5905 }
1da177e4 5906 }
45b4233c 5907 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
5908
5909 spin_unlock_irq(&conf->device_lock);
2d5b569b
N
5910 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5911 mutex_trylock(&conf->cache_size_mutex)) {
edbe83ab
N
5912 grow_one_stripe(conf, __GFP_NOWARN);
5913 /* Set flag even if allocation failed. This helps
5914 * slow down allocation requests when mem is short
5915 */
5916 set_bit(R5_DID_ALLOC, &conf->cache_state);
2d5b569b 5917 mutex_unlock(&conf->cache_size_mutex);
edbe83ab 5918 }
1da177e4 5919
0576b1c6
SL
5920 r5l_flush_stripe_to_raid(conf->log);
5921
c9f21aaf 5922 async_tx_issue_pending_all();
e1dfa0a2 5923 blk_finish_plug(&plug);
1da177e4 5924
45b4233c 5925 pr_debug("--- raid5d inactive\n");
1da177e4
LT
5926}
5927
3f294f4f 5928static ssize_t
fd01b88c 5929raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 5930{
7b1485ba
N
5931 struct r5conf *conf;
5932 int ret = 0;
5933 spin_lock(&mddev->lock);
5934 conf = mddev->private;
96de1e66 5935 if (conf)
edbe83ab 5936 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
5937 spin_unlock(&mddev->lock);
5938 return ret;
3f294f4f
N
5939}
5940
c41d4ac4 5941int
fd01b88c 5942raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 5943{
d1688a6d 5944 struct r5conf *conf = mddev->private;
b5470dc5
DW
5945 int err;
5946
c41d4ac4 5947 if (size <= 16 || size > 32768)
3f294f4f 5948 return -EINVAL;
486f0644 5949
edbe83ab 5950 conf->min_nr_stripes = size;
2d5b569b 5951 mutex_lock(&conf->cache_size_mutex);
486f0644
N
5952 while (size < conf->max_nr_stripes &&
5953 drop_one_stripe(conf))
5954 ;
2d5b569b 5955 mutex_unlock(&conf->cache_size_mutex);
486f0644 5956
edbe83ab 5957
b5470dc5
DW
5958 err = md_allow_write(mddev);
5959 if (err)
5960 return err;
486f0644 5961
2d5b569b 5962 mutex_lock(&conf->cache_size_mutex);
486f0644
N
5963 while (size > conf->max_nr_stripes)
5964 if (!grow_one_stripe(conf, GFP_KERNEL))
5965 break;
2d5b569b 5966 mutex_unlock(&conf->cache_size_mutex);
486f0644 5967
c41d4ac4
N
5968 return 0;
5969}
5970EXPORT_SYMBOL(raid5_set_cache_size);
5971
5972static ssize_t
fd01b88c 5973raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 5974{
6791875e 5975 struct r5conf *conf;
c41d4ac4
N
5976 unsigned long new;
5977 int err;
5978
5979 if (len >= PAGE_SIZE)
5980 return -EINVAL;
b29bebd6 5981 if (kstrtoul(page, 10, &new))
c41d4ac4 5982 return -EINVAL;
6791875e 5983 err = mddev_lock(mddev);
c41d4ac4
N
5984 if (err)
5985 return err;
6791875e
N
5986 conf = mddev->private;
5987 if (!conf)
5988 err = -ENODEV;
5989 else
5990 err = raid5_set_cache_size(mddev, new);
5991 mddev_unlock(mddev);
5992
5993 return err ?: len;
3f294f4f 5994}
007583c9 5995
96de1e66
N
5996static struct md_sysfs_entry
5997raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5998 raid5_show_stripe_cache_size,
5999 raid5_store_stripe_cache_size);
3f294f4f 6000
d06f191f
MS
6001static ssize_t
6002raid5_show_rmw_level(struct mddev *mddev, char *page)
6003{
6004 struct r5conf *conf = mddev->private;
6005 if (conf)
6006 return sprintf(page, "%d\n", conf->rmw_level);
6007 else
6008 return 0;
6009}
6010
6011static ssize_t
6012raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6013{
6014 struct r5conf *conf = mddev->private;
6015 unsigned long new;
6016
6017 if (!conf)
6018 return -ENODEV;
6019
6020 if (len >= PAGE_SIZE)
6021 return -EINVAL;
6022
6023 if (kstrtoul(page, 10, &new))
6024 return -EINVAL;
6025
6026 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6027 return -EINVAL;
6028
6029 if (new != PARITY_DISABLE_RMW &&
6030 new != PARITY_ENABLE_RMW &&
6031 new != PARITY_PREFER_RMW)
6032 return -EINVAL;
6033
6034 conf->rmw_level = new;
6035 return len;
6036}
6037
6038static struct md_sysfs_entry
6039raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6040 raid5_show_rmw_level,
6041 raid5_store_rmw_level);
6042
6043
8b3e6cdc 6044static ssize_t
fd01b88c 6045raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 6046{
7b1485ba
N
6047 struct r5conf *conf;
6048 int ret = 0;
6049 spin_lock(&mddev->lock);
6050 conf = mddev->private;
8b3e6cdc 6051 if (conf)
7b1485ba
N
6052 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6053 spin_unlock(&mddev->lock);
6054 return ret;
8b3e6cdc
DW
6055}
6056
6057static ssize_t
fd01b88c 6058raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 6059{
6791875e 6060 struct r5conf *conf;
4ef197d8 6061 unsigned long new;
6791875e
N
6062 int err;
6063
8b3e6cdc
DW
6064 if (len >= PAGE_SIZE)
6065 return -EINVAL;
b29bebd6 6066 if (kstrtoul(page, 10, &new))
8b3e6cdc 6067 return -EINVAL;
6791875e
N
6068
6069 err = mddev_lock(mddev);
6070 if (err)
6071 return err;
6072 conf = mddev->private;
6073 if (!conf)
6074 err = -ENODEV;
edbe83ab 6075 else if (new > conf->min_nr_stripes)
6791875e
N
6076 err = -EINVAL;
6077 else
6078 conf->bypass_threshold = new;
6079 mddev_unlock(mddev);
6080 return err ?: len;
8b3e6cdc
DW
6081}
6082
6083static struct md_sysfs_entry
6084raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6085 S_IRUGO | S_IWUSR,
6086 raid5_show_preread_threshold,
6087 raid5_store_preread_threshold);
6088
d592a996
SL
6089static ssize_t
6090raid5_show_skip_copy(struct mddev *mddev, char *page)
6091{
7b1485ba
N
6092 struct r5conf *conf;
6093 int ret = 0;
6094 spin_lock(&mddev->lock);
6095 conf = mddev->private;
d592a996 6096 if (conf)
7b1485ba
N
6097 ret = sprintf(page, "%d\n", conf->skip_copy);
6098 spin_unlock(&mddev->lock);
6099 return ret;
d592a996
SL
6100}
6101
6102static ssize_t
6103raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6104{
6791875e 6105 struct r5conf *conf;
d592a996 6106 unsigned long new;
6791875e
N
6107 int err;
6108
d592a996
SL
6109 if (len >= PAGE_SIZE)
6110 return -EINVAL;
d592a996
SL
6111 if (kstrtoul(page, 10, &new))
6112 return -EINVAL;
6113 new = !!new;
6791875e
N
6114
6115 err = mddev_lock(mddev);
6116 if (err)
6117 return err;
6118 conf = mddev->private;
6119 if (!conf)
6120 err = -ENODEV;
6121 else if (new != conf->skip_copy) {
6122 mddev_suspend(mddev);
6123 conf->skip_copy = new;
6124 if (new)
6125 mddev->queue->backing_dev_info.capabilities |=
6126 BDI_CAP_STABLE_WRITES;
6127 else
6128 mddev->queue->backing_dev_info.capabilities &=
6129 ~BDI_CAP_STABLE_WRITES;
6130 mddev_resume(mddev);
6131 }
6132 mddev_unlock(mddev);
6133 return err ?: len;
d592a996
SL
6134}
6135
6136static struct md_sysfs_entry
6137raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6138 raid5_show_skip_copy,
6139 raid5_store_skip_copy);
6140
3f294f4f 6141static ssize_t
fd01b88c 6142stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6143{
d1688a6d 6144 struct r5conf *conf = mddev->private;
96de1e66
N
6145 if (conf)
6146 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6147 else
6148 return 0;
3f294f4f
N
6149}
6150
96de1e66
N
6151static struct md_sysfs_entry
6152raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6153
b721420e
SL
6154static ssize_t
6155raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6156{
7b1485ba
N
6157 struct r5conf *conf;
6158 int ret = 0;
6159 spin_lock(&mddev->lock);
6160 conf = mddev->private;
b721420e 6161 if (conf)
7b1485ba
N
6162 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6163 spin_unlock(&mddev->lock);
6164 return ret;
b721420e
SL
6165}
6166
60aaf933 6167static int alloc_thread_groups(struct r5conf *conf, int cnt,
6168 int *group_cnt,
6169 int *worker_cnt_per_group,
6170 struct r5worker_group **worker_groups);
b721420e
SL
6171static ssize_t
6172raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6173{
6791875e 6174 struct r5conf *conf;
b721420e
SL
6175 unsigned long new;
6176 int err;
60aaf933 6177 struct r5worker_group *new_groups, *old_groups;
6178 int group_cnt, worker_cnt_per_group;
b721420e
SL
6179
6180 if (len >= PAGE_SIZE)
6181 return -EINVAL;
b721420e
SL
6182 if (kstrtoul(page, 10, &new))
6183 return -EINVAL;
6184
6791875e
N
6185 err = mddev_lock(mddev);
6186 if (err)
6187 return err;
6188 conf = mddev->private;
6189 if (!conf)
6190 err = -ENODEV;
6191 else if (new != conf->worker_cnt_per_group) {
6192 mddev_suspend(mddev);
b721420e 6193
6791875e
N
6194 old_groups = conf->worker_groups;
6195 if (old_groups)
6196 flush_workqueue(raid5_wq);
d206dcfa 6197
6791875e
N
6198 err = alloc_thread_groups(conf, new,
6199 &group_cnt, &worker_cnt_per_group,
6200 &new_groups);
6201 if (!err) {
6202 spin_lock_irq(&conf->device_lock);
6203 conf->group_cnt = group_cnt;
6204 conf->worker_cnt_per_group = worker_cnt_per_group;
6205 conf->worker_groups = new_groups;
6206 spin_unlock_irq(&conf->device_lock);
b721420e 6207
6791875e
N
6208 if (old_groups)
6209 kfree(old_groups[0].workers);
6210 kfree(old_groups);
6211 }
6212 mddev_resume(mddev);
b721420e 6213 }
6791875e 6214 mddev_unlock(mddev);
b721420e 6215
6791875e 6216 return err ?: len;
b721420e
SL
6217}
6218
6219static struct md_sysfs_entry
6220raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6221 raid5_show_group_thread_cnt,
6222 raid5_store_group_thread_cnt);
6223
007583c9 6224static struct attribute *raid5_attrs[] = {
3f294f4f
N
6225 &raid5_stripecache_size.attr,
6226 &raid5_stripecache_active.attr,
8b3e6cdc 6227 &raid5_preread_bypass_threshold.attr,
b721420e 6228 &raid5_group_thread_cnt.attr,
d592a996 6229 &raid5_skip_copy.attr,
d06f191f 6230 &raid5_rmw_level.attr,
3f294f4f
N
6231 NULL,
6232};
007583c9
N
6233static struct attribute_group raid5_attrs_group = {
6234 .name = NULL,
6235 .attrs = raid5_attrs,
3f294f4f
N
6236};
6237
60aaf933 6238static int alloc_thread_groups(struct r5conf *conf, int cnt,
6239 int *group_cnt,
6240 int *worker_cnt_per_group,
6241 struct r5worker_group **worker_groups)
851c30c9 6242{
566c09c5 6243 int i, j, k;
851c30c9
SL
6244 ssize_t size;
6245 struct r5worker *workers;
6246
60aaf933 6247 *worker_cnt_per_group = cnt;
851c30c9 6248 if (cnt == 0) {
60aaf933 6249 *group_cnt = 0;
6250 *worker_groups = NULL;
851c30c9
SL
6251 return 0;
6252 }
60aaf933 6253 *group_cnt = num_possible_nodes();
851c30c9 6254 size = sizeof(struct r5worker) * cnt;
60aaf933 6255 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6256 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6257 *group_cnt, GFP_NOIO);
6258 if (!*worker_groups || !workers) {
851c30c9 6259 kfree(workers);
60aaf933 6260 kfree(*worker_groups);
851c30c9
SL
6261 return -ENOMEM;
6262 }
6263
60aaf933 6264 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6265 struct r5worker_group *group;
6266
0c775d52 6267 group = &(*worker_groups)[i];
851c30c9
SL
6268 INIT_LIST_HEAD(&group->handle_list);
6269 group->conf = conf;
6270 group->workers = workers + i * cnt;
6271
6272 for (j = 0; j < cnt; j++) {
566c09c5
SL
6273 struct r5worker *worker = group->workers + j;
6274 worker->group = group;
6275 INIT_WORK(&worker->work, raid5_do_work);
6276
6277 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6278 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6279 }
6280 }
6281
6282 return 0;
6283}
6284
6285static void free_thread_groups(struct r5conf *conf)
6286{
6287 if (conf->worker_groups)
6288 kfree(conf->worker_groups[0].workers);
6289 kfree(conf->worker_groups);
6290 conf->worker_groups = NULL;
6291}
6292
80c3a6ce 6293static sector_t
fd01b88c 6294raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6295{
d1688a6d 6296 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6297
6298 if (!sectors)
6299 sectors = mddev->dev_sectors;
5e5e3e78 6300 if (!raid_disks)
7ec05478 6301 /* size is defined by the smallest of previous and new size */
5e5e3e78 6302 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6303
3cb5edf4
N
6304 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6305 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
80c3a6ce
DW
6306 return sectors * (raid_disks - conf->max_degraded);
6307}
6308
789b5e03
ON
6309static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6310{
6311 safe_put_page(percpu->spare_page);
46d5b785 6312 if (percpu->scribble)
6313 flex_array_free(percpu->scribble);
789b5e03
ON
6314 percpu->spare_page = NULL;
6315 percpu->scribble = NULL;
6316}
6317
6318static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6319{
6320 if (conf->level == 6 && !percpu->spare_page)
6321 percpu->spare_page = alloc_page(GFP_KERNEL);
6322 if (!percpu->scribble)
46d5b785 6323 percpu->scribble = scribble_alloc(max(conf->raid_disks,
738a2738
N
6324 conf->previous_raid_disks),
6325 max(conf->chunk_sectors,
6326 conf->prev_chunk_sectors)
6327 / STRIPE_SECTORS,
6328 GFP_KERNEL);
789b5e03
ON
6329
6330 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6331 free_scratch_buffer(conf, percpu);
6332 return -ENOMEM;
6333 }
6334
6335 return 0;
6336}
6337
d1688a6d 6338static void raid5_free_percpu(struct r5conf *conf)
36d1c647 6339{
36d1c647
DW
6340 unsigned long cpu;
6341
6342 if (!conf->percpu)
6343 return;
6344
36d1c647
DW
6345#ifdef CONFIG_HOTPLUG_CPU
6346 unregister_cpu_notifier(&conf->cpu_notify);
6347#endif
789b5e03
ON
6348
6349 get_online_cpus();
6350 for_each_possible_cpu(cpu)
6351 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6352 put_online_cpus();
6353
6354 free_percpu(conf->percpu);
6355}
6356
d1688a6d 6357static void free_conf(struct r5conf *conf)
95fc17aa 6358{
5c7e81c3
SL
6359 if (conf->log)
6360 r5l_exit_log(conf->log);
edbe83ab
N
6361 if (conf->shrinker.seeks)
6362 unregister_shrinker(&conf->shrinker);
5c7e81c3 6363
851c30c9 6364 free_thread_groups(conf);
95fc17aa 6365 shrink_stripes(conf);
36d1c647 6366 raid5_free_percpu(conf);
95fc17aa
DW
6367 kfree(conf->disks);
6368 kfree(conf->stripe_hashtbl);
6369 kfree(conf);
6370}
6371
36d1c647
DW
6372#ifdef CONFIG_HOTPLUG_CPU
6373static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6374 void *hcpu)
6375{
d1688a6d 6376 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
6377 long cpu = (long)hcpu;
6378 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6379
6380 switch (action) {
6381 case CPU_UP_PREPARE:
6382 case CPU_UP_PREPARE_FROZEN:
789b5e03 6383 if (alloc_scratch_buffer(conf, percpu)) {
36d1c647
DW
6384 pr_err("%s: failed memory allocation for cpu%ld\n",
6385 __func__, cpu);
55af6bb5 6386 return notifier_from_errno(-ENOMEM);
36d1c647
DW
6387 }
6388 break;
6389 case CPU_DEAD:
6390 case CPU_DEAD_FROZEN:
789b5e03 6391 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6392 break;
6393 default:
6394 break;
6395 }
6396 return NOTIFY_OK;
6397}
6398#endif
6399
d1688a6d 6400static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
6401{
6402 unsigned long cpu;
789b5e03 6403 int err = 0;
36d1c647 6404
789b5e03
ON
6405 conf->percpu = alloc_percpu(struct raid5_percpu);
6406 if (!conf->percpu)
36d1c647 6407 return -ENOMEM;
789b5e03
ON
6408
6409#ifdef CONFIG_HOTPLUG_CPU
6410 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6411 conf->cpu_notify.priority = 0;
6412 err = register_cpu_notifier(&conf->cpu_notify);
6413 if (err)
6414 return err;
6415#endif
36d1c647
DW
6416
6417 get_online_cpus();
36d1c647 6418 for_each_present_cpu(cpu) {
789b5e03
ON
6419 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6420 if (err) {
6421 pr_err("%s: failed memory allocation for cpu%ld\n",
6422 __func__, cpu);
36d1c647
DW
6423 break;
6424 }
36d1c647 6425 }
36d1c647
DW
6426 put_online_cpus();
6427
27a353c0
SL
6428 if (!err) {
6429 conf->scribble_disks = max(conf->raid_disks,
6430 conf->previous_raid_disks);
6431 conf->scribble_sectors = max(conf->chunk_sectors,
6432 conf->prev_chunk_sectors);
6433 }
36d1c647
DW
6434 return err;
6435}
6436
edbe83ab
N
6437static unsigned long raid5_cache_scan(struct shrinker *shrink,
6438 struct shrink_control *sc)
6439{
6440 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
2d5b569b
N
6441 unsigned long ret = SHRINK_STOP;
6442
6443 if (mutex_trylock(&conf->cache_size_mutex)) {
6444 ret= 0;
49895bcc
N
6445 while (ret < sc->nr_to_scan &&
6446 conf->max_nr_stripes > conf->min_nr_stripes) {
2d5b569b
N
6447 if (drop_one_stripe(conf) == 0) {
6448 ret = SHRINK_STOP;
6449 break;
6450 }
6451 ret++;
6452 }
6453 mutex_unlock(&conf->cache_size_mutex);
edbe83ab
N
6454 }
6455 return ret;
6456}
6457
6458static unsigned long raid5_cache_count(struct shrinker *shrink,
6459 struct shrink_control *sc)
6460{
6461 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6462
6463 if (conf->max_nr_stripes < conf->min_nr_stripes)
6464 /* unlikely, but not impossible */
6465 return 0;
6466 return conf->max_nr_stripes - conf->min_nr_stripes;
6467}
6468
d1688a6d 6469static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6470{
d1688a6d 6471 struct r5conf *conf;
5e5e3e78 6472 int raid_disk, memory, max_disks;
3cb03002 6473 struct md_rdev *rdev;
1da177e4 6474 struct disk_info *disk;
0232605d 6475 char pers_name[6];
566c09c5 6476 int i;
60aaf933 6477 int group_cnt, worker_cnt_per_group;
6478 struct r5worker_group *new_group;
1da177e4 6479
91adb564
N
6480 if (mddev->new_level != 5
6481 && mddev->new_level != 4
6482 && mddev->new_level != 6) {
0c55e022 6483 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
6484 mdname(mddev), mddev->new_level);
6485 return ERR_PTR(-EIO);
1da177e4 6486 }
91adb564
N
6487 if ((mddev->new_level == 5
6488 && !algorithm_valid_raid5(mddev->new_layout)) ||
6489 (mddev->new_level == 6
6490 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 6491 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
6492 mdname(mddev), mddev->new_layout);
6493 return ERR_PTR(-EIO);
99c0fb5f 6494 }
91adb564 6495 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 6496 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
6497 mdname(mddev), mddev->raid_disks);
6498 return ERR_PTR(-EINVAL);
4bbf3771
N
6499 }
6500
664e7c41
AN
6501 if (!mddev->new_chunk_sectors ||
6502 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6503 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
6504 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6505 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6506 return ERR_PTR(-EINVAL);
f6705578
N
6507 }
6508
d1688a6d 6509 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6510 if (conf == NULL)
1da177e4 6511 goto abort;
851c30c9 6512 /* Don't enable multi-threading by default*/
60aaf933 6513 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6514 &new_group)) {
6515 conf->group_cnt = group_cnt;
6516 conf->worker_cnt_per_group = worker_cnt_per_group;
6517 conf->worker_groups = new_group;
6518 } else
851c30c9 6519 goto abort;
f5efd45a 6520 spin_lock_init(&conf->device_lock);
c46501b2 6521 seqcount_init(&conf->gen_lock);
2d5b569b 6522 mutex_init(&conf->cache_size_mutex);
b1b46486 6523 init_waitqueue_head(&conf->wait_for_quiescent);
e9e4c377
YL
6524 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6525 init_waitqueue_head(&conf->wait_for_stripe[i]);
6526 }
f5efd45a
DW
6527 init_waitqueue_head(&conf->wait_for_overlap);
6528 INIT_LIST_HEAD(&conf->handle_list);
6529 INIT_LIST_HEAD(&conf->hold_list);
6530 INIT_LIST_HEAD(&conf->delayed_list);
6531 INIT_LIST_HEAD(&conf->bitmap_list);
c3cce6cd 6532 bio_list_init(&conf->return_bi);
773ca82f 6533 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6534 atomic_set(&conf->active_stripes, 0);
6535 atomic_set(&conf->preread_active_stripes, 0);
6536 atomic_set(&conf->active_aligned_reads, 0);
6537 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6538 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6539
6540 conf->raid_disks = mddev->raid_disks;
6541 if (mddev->reshape_position == MaxSector)
6542 conf->previous_raid_disks = mddev->raid_disks;
6543 else
f6705578 6544 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6545 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6546
5e5e3e78 6547 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
6548 GFP_KERNEL);
6549 if (!conf->disks)
6550 goto abort;
9ffae0cf 6551
1da177e4
LT
6552 conf->mddev = mddev;
6553
fccddba0 6554 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6555 goto abort;
1da177e4 6556
566c09c5
SL
6557 /* We init hash_locks[0] separately to that it can be used
6558 * as the reference lock in the spin_lock_nest_lock() call
6559 * in lock_all_device_hash_locks_irq in order to convince
6560 * lockdep that we know what we are doing.
6561 */
6562 spin_lock_init(conf->hash_locks);
6563 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6564 spin_lock_init(conf->hash_locks + i);
6565
6566 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6567 INIT_LIST_HEAD(conf->inactive_list + i);
6568
6569 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6570 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6571
36d1c647 6572 conf->level = mddev->new_level;
46d5b785 6573 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
6574 if (raid5_alloc_percpu(conf) != 0)
6575 goto abort;
6576
0c55e022 6577 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 6578
dafb20fa 6579 rdev_for_each(rdev, mddev) {
1da177e4 6580 raid_disk = rdev->raid_disk;
5e5e3e78 6581 if (raid_disk >= max_disks
f2076e7d 6582 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
1da177e4
LT
6583 continue;
6584 disk = conf->disks + raid_disk;
6585
17045f52
N
6586 if (test_bit(Replacement, &rdev->flags)) {
6587 if (disk->replacement)
6588 goto abort;
6589 disk->replacement = rdev;
6590 } else {
6591 if (disk->rdev)
6592 goto abort;
6593 disk->rdev = rdev;
6594 }
1da177e4 6595
b2d444d7 6596 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 6597 char b[BDEVNAME_SIZE];
0c55e022
N
6598 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6599 " disk %d\n",
6600 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 6601 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
6602 /* Cannot rely on bitmap to complete recovery */
6603 conf->fullsync = 1;
1da177e4
LT
6604 }
6605
91adb564 6606 conf->level = mddev->new_level;
584acdd4 6607 if (conf->level == 6) {
16a53ecc 6608 conf->max_degraded = 2;
584acdd4
MS
6609 if (raid6_call.xor_syndrome)
6610 conf->rmw_level = PARITY_ENABLE_RMW;
6611 else
6612 conf->rmw_level = PARITY_DISABLE_RMW;
6613 } else {
16a53ecc 6614 conf->max_degraded = 1;
584acdd4
MS
6615 conf->rmw_level = PARITY_ENABLE_RMW;
6616 }
91adb564 6617 conf->algorithm = mddev->new_layout;
fef9c61f 6618 conf->reshape_progress = mddev->reshape_position;
e183eaed 6619 if (conf->reshape_progress != MaxSector) {
09c9e5fa 6620 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed 6621 conf->prev_algo = mddev->layout;
5cac6bcb
N
6622 } else {
6623 conf->prev_chunk_sectors = conf->chunk_sectors;
6624 conf->prev_algo = conf->algorithm;
e183eaed 6625 }
1da177e4 6626
edbe83ab
N
6627 conf->min_nr_stripes = NR_STRIPES;
6628 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 6629 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 6630 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 6631 if (grow_stripes(conf, conf->min_nr_stripes)) {
91adb564 6632 printk(KERN_ERR
0c55e022
N
6633 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6634 mdname(mddev), memory);
91adb564
N
6635 goto abort;
6636 } else
0c55e022
N
6637 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6638 mdname(mddev), memory);
edbe83ab
N
6639 /*
6640 * Losing a stripe head costs more than the time to refill it,
6641 * it reduces the queue depth and so can hurt throughput.
6642 * So set it rather large, scaled by number of devices.
6643 */
6644 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6645 conf->shrinker.scan_objects = raid5_cache_scan;
6646 conf->shrinker.count_objects = raid5_cache_count;
6647 conf->shrinker.batch = 128;
6648 conf->shrinker.flags = 0;
6649 register_shrinker(&conf->shrinker);
1da177e4 6650
0232605d
N
6651 sprintf(pers_name, "raid%d", mddev->new_level);
6652 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564
N
6653 if (!conf->thread) {
6654 printk(KERN_ERR
0c55e022 6655 "md/raid:%s: couldn't allocate thread.\n",
91adb564 6656 mdname(mddev));
16a53ecc
N
6657 goto abort;
6658 }
91adb564
N
6659
6660 return conf;
6661
6662 abort:
6663 if (conf) {
95fc17aa 6664 free_conf(conf);
91adb564
N
6665 return ERR_PTR(-EIO);
6666 } else
6667 return ERR_PTR(-ENOMEM);
6668}
6669
c148ffdc
N
6670static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6671{
6672 switch (algo) {
6673 case ALGORITHM_PARITY_0:
6674 if (raid_disk < max_degraded)
6675 return 1;
6676 break;
6677 case ALGORITHM_PARITY_N:
6678 if (raid_disk >= raid_disks - max_degraded)
6679 return 1;
6680 break;
6681 case ALGORITHM_PARITY_0_6:
f72ffdd6 6682 if (raid_disk == 0 ||
c148ffdc
N
6683 raid_disk == raid_disks - 1)
6684 return 1;
6685 break;
6686 case ALGORITHM_LEFT_ASYMMETRIC_6:
6687 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6688 case ALGORITHM_LEFT_SYMMETRIC_6:
6689 case ALGORITHM_RIGHT_SYMMETRIC_6:
6690 if (raid_disk == raid_disks - 1)
6691 return 1;
6692 }
6693 return 0;
6694}
6695
849674e4 6696static int raid5_run(struct mddev *mddev)
91adb564 6697{
d1688a6d 6698 struct r5conf *conf;
9f7c2220 6699 int working_disks = 0;
c148ffdc 6700 int dirty_parity_disks = 0;
3cb03002 6701 struct md_rdev *rdev;
713cf5a6 6702 struct md_rdev *journal_dev = NULL;
c148ffdc 6703 sector_t reshape_offset = 0;
17045f52 6704 int i;
b5254dd5
N
6705 long long min_offset_diff = 0;
6706 int first = 1;
91adb564 6707
8c6ac868 6708 if (mddev->recovery_cp != MaxSector)
0c55e022 6709 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
6710 " -- starting background reconstruction\n",
6711 mdname(mddev));
b5254dd5
N
6712
6713 rdev_for_each(rdev, mddev) {
6714 long long diff;
713cf5a6 6715
f2076e7d 6716 if (test_bit(Journal, &rdev->flags)) {
713cf5a6 6717 journal_dev = rdev;
f2076e7d
SL
6718 continue;
6719 }
b5254dd5
N
6720 if (rdev->raid_disk < 0)
6721 continue;
6722 diff = (rdev->new_data_offset - rdev->data_offset);
6723 if (first) {
6724 min_offset_diff = diff;
6725 first = 0;
6726 } else if (mddev->reshape_backwards &&
6727 diff < min_offset_diff)
6728 min_offset_diff = diff;
6729 else if (!mddev->reshape_backwards &&
6730 diff > min_offset_diff)
6731 min_offset_diff = diff;
6732 }
6733
91adb564
N
6734 if (mddev->reshape_position != MaxSector) {
6735 /* Check that we can continue the reshape.
b5254dd5
N
6736 * Difficulties arise if the stripe we would write to
6737 * next is at or after the stripe we would read from next.
6738 * For a reshape that changes the number of devices, this
6739 * is only possible for a very short time, and mdadm makes
6740 * sure that time appears to have past before assembling
6741 * the array. So we fail if that time hasn't passed.
6742 * For a reshape that keeps the number of devices the same
6743 * mdadm must be monitoring the reshape can keeping the
6744 * critical areas read-only and backed up. It will start
6745 * the array in read-only mode, so we check for that.
91adb564
N
6746 */
6747 sector_t here_new, here_old;
6748 int old_disks;
18b00334 6749 int max_degraded = (mddev->level == 6 ? 2 : 1);
05256d98
N
6750 int chunk_sectors;
6751 int new_data_disks;
91adb564 6752
713cf5a6
SL
6753 if (journal_dev) {
6754 printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6755 mdname(mddev));
6756 return -EINVAL;
6757 }
6758
88ce4930 6759 if (mddev->new_level != mddev->level) {
0c55e022 6760 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
6761 "required - aborting.\n",
6762 mdname(mddev));
6763 return -EINVAL;
6764 }
91adb564
N
6765 old_disks = mddev->raid_disks - mddev->delta_disks;
6766 /* reshape_position must be on a new-stripe boundary, and one
6767 * further up in new geometry must map after here in old
6768 * geometry.
05256d98
N
6769 * If the chunk sizes are different, then as we perform reshape
6770 * in units of the largest of the two, reshape_position needs
6771 * be a multiple of the largest chunk size times new data disks.
91adb564
N
6772 */
6773 here_new = mddev->reshape_position;
05256d98
N
6774 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6775 new_data_disks = mddev->raid_disks - max_degraded;
6776 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
0c55e022
N
6777 printk(KERN_ERR "md/raid:%s: reshape_position not "
6778 "on a stripe boundary\n", mdname(mddev));
91adb564
N
6779 return -EINVAL;
6780 }
05256d98 6781 reshape_offset = here_new * chunk_sectors;
91adb564
N
6782 /* here_new is the stripe we will write to */
6783 here_old = mddev->reshape_position;
05256d98 6784 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
91adb564
N
6785 /* here_old is the first stripe that we might need to read
6786 * from */
67ac6011
N
6787 if (mddev->delta_disks == 0) {
6788 /* We cannot be sure it is safe to start an in-place
b5254dd5 6789 * reshape. It is only safe if user-space is monitoring
67ac6011
N
6790 * and taking constant backups.
6791 * mdadm always starts a situation like this in
6792 * readonly mode so it can take control before
6793 * allowing any writes. So just check for that.
6794 */
b5254dd5
N
6795 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6796 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6797 /* not really in-place - so OK */;
6798 else if (mddev->ro == 0) {
6799 printk(KERN_ERR "md/raid:%s: in-place reshape "
6800 "must be started in read-only mode "
6801 "- aborting\n",
0c55e022 6802 mdname(mddev));
67ac6011
N
6803 return -EINVAL;
6804 }
2c810cdd 6805 } else if (mddev->reshape_backwards
05256d98
N
6806 ? (here_new * chunk_sectors + min_offset_diff <=
6807 here_old * chunk_sectors)
6808 : (here_new * chunk_sectors >=
6809 here_old * chunk_sectors + (-min_offset_diff))) {
91adb564 6810 /* Reading from the same stripe as writing to - bad */
0c55e022
N
6811 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6812 "auto-recovery - aborting.\n",
6813 mdname(mddev));
91adb564
N
6814 return -EINVAL;
6815 }
0c55e022
N
6816 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6817 mdname(mddev));
91adb564
N
6818 /* OK, we should be able to continue; */
6819 } else {
6820 BUG_ON(mddev->level != mddev->new_level);
6821 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 6822 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 6823 BUG_ON(mddev->delta_disks != 0);
1da177e4 6824 }
91adb564 6825
245f46c2
N
6826 if (mddev->private == NULL)
6827 conf = setup_conf(mddev);
6828 else
6829 conf = mddev->private;
6830
91adb564
N
6831 if (IS_ERR(conf))
6832 return PTR_ERR(conf);
6833
7dde2ad3
SL
6834 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) {
6835 printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n",
6836 mdname(mddev));
6837 mddev->ro = 1;
6838 set_disk_ro(mddev->gendisk, 1);
6839 }
6840
b5254dd5 6841 conf->min_offset_diff = min_offset_diff;
91adb564
N
6842 mddev->thread = conf->thread;
6843 conf->thread = NULL;
6844 mddev->private = conf;
6845
17045f52
N
6846 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6847 i++) {
6848 rdev = conf->disks[i].rdev;
6849 if (!rdev && conf->disks[i].replacement) {
6850 /* The replacement is all we have yet */
6851 rdev = conf->disks[i].replacement;
6852 conf->disks[i].replacement = NULL;
6853 clear_bit(Replacement, &rdev->flags);
6854 conf->disks[i].rdev = rdev;
6855 }
6856 if (!rdev)
c148ffdc 6857 continue;
17045f52
N
6858 if (conf->disks[i].replacement &&
6859 conf->reshape_progress != MaxSector) {
6860 /* replacements and reshape simply do not mix. */
6861 printk(KERN_ERR "md: cannot handle concurrent "
6862 "replacement and reshape.\n");
6863 goto abort;
6864 }
2f115882 6865 if (test_bit(In_sync, &rdev->flags)) {
91adb564 6866 working_disks++;
2f115882
N
6867 continue;
6868 }
c148ffdc
N
6869 /* This disc is not fully in-sync. However if it
6870 * just stored parity (beyond the recovery_offset),
6871 * when we don't need to be concerned about the
6872 * array being dirty.
6873 * When reshape goes 'backwards', we never have
6874 * partially completed devices, so we only need
6875 * to worry about reshape going forwards.
6876 */
6877 /* Hack because v0.91 doesn't store recovery_offset properly. */
6878 if (mddev->major_version == 0 &&
6879 mddev->minor_version > 90)
6880 rdev->recovery_offset = reshape_offset;
5026d7a9 6881
c148ffdc
N
6882 if (rdev->recovery_offset < reshape_offset) {
6883 /* We need to check old and new layout */
6884 if (!only_parity(rdev->raid_disk,
6885 conf->algorithm,
6886 conf->raid_disks,
6887 conf->max_degraded))
6888 continue;
6889 }
6890 if (!only_parity(rdev->raid_disk,
6891 conf->prev_algo,
6892 conf->previous_raid_disks,
6893 conf->max_degraded))
6894 continue;
6895 dirty_parity_disks++;
6896 }
91adb564 6897
17045f52
N
6898 /*
6899 * 0 for a fully functional array, 1 or 2 for a degraded array.
6900 */
908f4fbd 6901 mddev->degraded = calc_degraded(conf);
91adb564 6902
674806d6 6903 if (has_failed(conf)) {
0c55e022 6904 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 6905 " (%d/%d failed)\n",
02c2de8c 6906 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
6907 goto abort;
6908 }
6909
91adb564 6910 /* device size must be a multiple of chunk size */
9d8f0363 6911 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
6912 mddev->resync_max_sectors = mddev->dev_sectors;
6913
c148ffdc 6914 if (mddev->degraded > dirty_parity_disks &&
1da177e4 6915 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
6916 if (mddev->ok_start_degraded)
6917 printk(KERN_WARNING
0c55e022
N
6918 "md/raid:%s: starting dirty degraded array"
6919 " - data corruption possible.\n",
6ff8d8ec
N
6920 mdname(mddev));
6921 else {
6922 printk(KERN_ERR
0c55e022 6923 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
6924 mdname(mddev));
6925 goto abort;
6926 }
1da177e4
LT
6927 }
6928
1da177e4 6929 if (mddev->degraded == 0)
0c55e022
N
6930 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6931 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
6932 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6933 mddev->new_layout);
1da177e4 6934 else
0c55e022
N
6935 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6936 " out of %d devices, algorithm %d\n",
6937 mdname(mddev), conf->level,
6938 mddev->raid_disks - mddev->degraded,
6939 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
6940
6941 print_raid5_conf(conf);
6942
fef9c61f 6943 if (conf->reshape_progress != MaxSector) {
fef9c61f 6944 conf->reshape_safe = conf->reshape_progress;
f6705578
N
6945 atomic_set(&conf->reshape_stripes, 0);
6946 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6947 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6948 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6949 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6950 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 6951 "reshape");
f6705578
N
6952 }
6953
1da177e4 6954 /* Ok, everything is just fine now */
a64c876f
N
6955 if (mddev->to_remove == &raid5_attrs_group)
6956 mddev->to_remove = NULL;
00bcb4ac
N
6957 else if (mddev->kobj.sd &&
6958 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 6959 printk(KERN_WARNING
4a5add49 6960 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 6961 mdname(mddev));
4a5add49 6962 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 6963
4a5add49 6964 if (mddev->queue) {
9f7c2220 6965 int chunk_size;
620125f2 6966 bool discard_supported = true;
4a5add49
N
6967 /* read-ahead size must cover two whole stripes, which
6968 * is 2 * (datadisks) * chunksize where 'n' is the
6969 * number of raid devices
6970 */
6971 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6972 int stripe = data_disks *
6973 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6974 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6975 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 6976
9f7c2220
N
6977 chunk_size = mddev->chunk_sectors << 9;
6978 blk_queue_io_min(mddev->queue, chunk_size);
6979 blk_queue_io_opt(mddev->queue, chunk_size *
6980 (conf->raid_disks - conf->max_degraded));
c78afc62 6981 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
6982 /*
6983 * We can only discard a whole stripe. It doesn't make sense to
6984 * discard data disk but write parity disk
6985 */
6986 stripe = stripe * PAGE_SIZE;
4ac6875e
N
6987 /* Round up to power of 2, as discard handling
6988 * currently assumes that */
6989 while ((stripe-1) & stripe)
6990 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
6991 mddev->queue->limits.discard_alignment = stripe;
6992 mddev->queue->limits.discard_granularity = stripe;
6993 /*
6994 * unaligned part of discard request will be ignored, so can't
8e0e99ba 6995 * guarantee discard_zeroes_data
620125f2
SL
6996 */
6997 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 6998
5026d7a9
PA
6999 blk_queue_max_write_same_sectors(mddev->queue, 0);
7000
05616be5 7001 rdev_for_each(rdev, mddev) {
9f7c2220
N
7002 disk_stack_limits(mddev->gendisk, rdev->bdev,
7003 rdev->data_offset << 9);
05616be5
N
7004 disk_stack_limits(mddev->gendisk, rdev->bdev,
7005 rdev->new_data_offset << 9);
620125f2
SL
7006 /*
7007 * discard_zeroes_data is required, otherwise data
7008 * could be lost. Consider a scenario: discard a stripe
7009 * (the stripe could be inconsistent if
7010 * discard_zeroes_data is 0); write one disk of the
7011 * stripe (the stripe could be inconsistent again
7012 * depending on which disks are used to calculate
7013 * parity); the disk is broken; The stripe data of this
7014 * disk is lost.
7015 */
7016 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7017 !bdev_get_queue(rdev->bdev)->
7018 limits.discard_zeroes_data)
7019 discard_supported = false;
8e0e99ba
N
7020 /* Unfortunately, discard_zeroes_data is not currently
7021 * a guarantee - just a hint. So we only allow DISCARD
7022 * if the sysadmin has confirmed that only safe devices
7023 * are in use by setting a module parameter.
7024 */
7025 if (!devices_handle_discard_safely) {
7026 if (discard_supported) {
7027 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7028 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7029 }
7030 discard_supported = false;
7031 }
05616be5 7032 }
620125f2
SL
7033
7034 if (discard_supported &&
e7597e69
JS
7035 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7036 mddev->queue->limits.discard_granularity >= stripe)
620125f2
SL
7037 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7038 mddev->queue);
7039 else
7040 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7041 mddev->queue);
9f7c2220 7042 }
23032a0e 7043
5c7e81c3
SL
7044 if (journal_dev) {
7045 char b[BDEVNAME_SIZE];
7046
7047 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7048 mdname(mddev), bdevname(journal_dev->bdev, b));
7049 r5l_init_log(conf, journal_dev);
7050 }
7051
1da177e4
LT
7052 return 0;
7053abort:
01f96c0a 7054 md_unregister_thread(&mddev->thread);
e4f869d9
N
7055 print_raid5_conf(conf);
7056 free_conf(conf);
1da177e4 7057 mddev->private = NULL;
0c55e022 7058 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
7059 return -EIO;
7060}
7061
afa0f557 7062static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 7063{
afa0f557 7064 struct r5conf *conf = priv;
1da177e4 7065
95fc17aa 7066 free_conf(conf);
a64c876f 7067 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
7068}
7069
849674e4 7070static void raid5_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 7071{
d1688a6d 7072 struct r5conf *conf = mddev->private;
1da177e4
LT
7073 int i;
7074
9d8f0363 7075 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
3cb5edf4 7076 conf->chunk_sectors / 2, mddev->layout);
02c2de8c 7077 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
7078 for (i = 0; i < conf->raid_disks; i++)
7079 seq_printf (seq, "%s",
7080 conf->disks[i].rdev &&
b2d444d7 7081 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 7082 seq_printf (seq, "]");
1da177e4
LT
7083}
7084
d1688a6d 7085static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
7086{
7087 int i;
7088 struct disk_info *tmp;
7089
0c55e022 7090 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
7091 if (!conf) {
7092 printk("(conf==NULL)\n");
7093 return;
7094 }
0c55e022
N
7095 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7096 conf->raid_disks,
7097 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
7098
7099 for (i = 0; i < conf->raid_disks; i++) {
7100 char b[BDEVNAME_SIZE];
7101 tmp = conf->disks + i;
7102 if (tmp->rdev)
0c55e022
N
7103 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7104 i, !test_bit(Faulty, &tmp->rdev->flags),
7105 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
7106 }
7107}
7108
fd01b88c 7109static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
7110{
7111 int i;
d1688a6d 7112 struct r5conf *conf = mddev->private;
1da177e4 7113 struct disk_info *tmp;
6b965620
N
7114 int count = 0;
7115 unsigned long flags;
1da177e4
LT
7116
7117 for (i = 0; i < conf->raid_disks; i++) {
7118 tmp = conf->disks + i;
dd054fce
N
7119 if (tmp->replacement
7120 && tmp->replacement->recovery_offset == MaxSector
7121 && !test_bit(Faulty, &tmp->replacement->flags)
7122 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7123 /* Replacement has just become active. */
7124 if (!tmp->rdev
7125 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7126 count++;
7127 if (tmp->rdev) {
7128 /* Replaced device not technically faulty,
7129 * but we need to be sure it gets removed
7130 * and never re-added.
7131 */
7132 set_bit(Faulty, &tmp->rdev->flags);
7133 sysfs_notify_dirent_safe(
7134 tmp->rdev->sysfs_state);
7135 }
7136 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7137 } else if (tmp->rdev
70fffd0b 7138 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 7139 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 7140 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 7141 count++;
43c73ca4 7142 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
7143 }
7144 }
6b965620 7145 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7146 mddev->degraded = calc_degraded(conf);
6b965620 7147 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7148 print_raid5_conf(conf);
6b965620 7149 return count;
1da177e4
LT
7150}
7151
b8321b68 7152static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7153{
d1688a6d 7154 struct r5conf *conf = mddev->private;
1da177e4 7155 int err = 0;
b8321b68 7156 int number = rdev->raid_disk;
657e3e4d 7157 struct md_rdev **rdevp;
1da177e4
LT
7158 struct disk_info *p = conf->disks + number;
7159
7160 print_raid5_conf(conf);
f6b6ec5c
SL
7161 if (test_bit(Journal, &rdev->flags) && conf->log) {
7162 struct r5l_log *log;
c2bb6242 7163 /*
f6b6ec5c
SL
7164 * we can't wait pending write here, as this is called in
7165 * raid5d, wait will deadlock.
c2bb6242 7166 */
f6b6ec5c
SL
7167 if (atomic_read(&mddev->writes_pending))
7168 return -EBUSY;
7169 log = conf->log;
7170 conf->log = NULL;
7171 synchronize_rcu();
7172 r5l_exit_log(log);
7173 return 0;
c2bb6242 7174 }
657e3e4d
N
7175 if (rdev == p->rdev)
7176 rdevp = &p->rdev;
7177 else if (rdev == p->replacement)
7178 rdevp = &p->replacement;
7179 else
7180 return 0;
7181
7182 if (number >= conf->raid_disks &&
7183 conf->reshape_progress == MaxSector)
7184 clear_bit(In_sync, &rdev->flags);
7185
7186 if (test_bit(In_sync, &rdev->flags) ||
7187 atomic_read(&rdev->nr_pending)) {
7188 err = -EBUSY;
7189 goto abort;
7190 }
7191 /* Only remove non-faulty devices if recovery
7192 * isn't possible.
7193 */
7194 if (!test_bit(Faulty, &rdev->flags) &&
7195 mddev->recovery_disabled != conf->recovery_disabled &&
7196 !has_failed(conf) &&
dd054fce 7197 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7198 number < conf->raid_disks) {
7199 err = -EBUSY;
7200 goto abort;
7201 }
7202 *rdevp = NULL;
7203 synchronize_rcu();
7204 if (atomic_read(&rdev->nr_pending)) {
7205 /* lost the race, try later */
7206 err = -EBUSY;
7207 *rdevp = rdev;
dd054fce
N
7208 } else if (p->replacement) {
7209 /* We must have just cleared 'rdev' */
7210 p->rdev = p->replacement;
7211 clear_bit(Replacement, &p->replacement->flags);
7212 smp_mb(); /* Make sure other CPUs may see both as identical
7213 * but will never see neither - if they are careful
7214 */
7215 p->replacement = NULL;
7216 clear_bit(WantReplacement, &rdev->flags);
7217 } else
7218 /* We might have just removed the Replacement as faulty-
7219 * clear the bit just in case
7220 */
7221 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7222abort:
7223
7224 print_raid5_conf(conf);
7225 return err;
7226}
7227
fd01b88c 7228static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7229{
d1688a6d 7230 struct r5conf *conf = mddev->private;
199050ea 7231 int err = -EEXIST;
1da177e4
LT
7232 int disk;
7233 struct disk_info *p;
6c2fce2e
NB
7234 int first = 0;
7235 int last = conf->raid_disks - 1;
1da177e4 7236
f6b6ec5c
SL
7237 if (test_bit(Journal, &rdev->flags)) {
7238 char b[BDEVNAME_SIZE];
7239 if (conf->log)
7240 return -EBUSY;
7241
7242 rdev->raid_disk = 0;
7243 /*
7244 * The array is in readonly mode if journal is missing, so no
7245 * write requests running. We should be safe
7246 */
7247 r5l_init_log(conf, rdev);
7248 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7249 mdname(mddev), bdevname(rdev->bdev, b));
7250 return 0;
7251 }
7f0da59b
N
7252 if (mddev->recovery_disabled == conf->recovery_disabled)
7253 return -EBUSY;
7254
dc10c643 7255 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7256 /* no point adding a device */
199050ea 7257 return -EINVAL;
1da177e4 7258
6c2fce2e
NB
7259 if (rdev->raid_disk >= 0)
7260 first = last = rdev->raid_disk;
1da177e4
LT
7261
7262 /*
16a53ecc
N
7263 * find the disk ... but prefer rdev->saved_raid_disk
7264 * if possible.
1da177e4 7265 */
16a53ecc 7266 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7267 rdev->saved_raid_disk >= first &&
16a53ecc 7268 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7269 first = rdev->saved_raid_disk;
7270
7271 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7272 p = conf->disks + disk;
7273 if (p->rdev == NULL) {
b2d444d7 7274 clear_bit(In_sync, &rdev->flags);
1da177e4 7275 rdev->raid_disk = disk;
199050ea 7276 err = 0;
72626685
N
7277 if (rdev->saved_raid_disk != disk)
7278 conf->fullsync = 1;
d6065f7b 7279 rcu_assign_pointer(p->rdev, rdev);
5cfb22a1 7280 goto out;
1da177e4 7281 }
5cfb22a1
N
7282 }
7283 for (disk = first; disk <= last; disk++) {
7284 p = conf->disks + disk;
7bfec5f3
N
7285 if (test_bit(WantReplacement, &p->rdev->flags) &&
7286 p->replacement == NULL) {
7287 clear_bit(In_sync, &rdev->flags);
7288 set_bit(Replacement, &rdev->flags);
7289 rdev->raid_disk = disk;
7290 err = 0;
7291 conf->fullsync = 1;
7292 rcu_assign_pointer(p->replacement, rdev);
7293 break;
7294 }
7295 }
5cfb22a1 7296out:
1da177e4 7297 print_raid5_conf(conf);
199050ea 7298 return err;
1da177e4
LT
7299}
7300
fd01b88c 7301static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7302{
7303 /* no resync is happening, and there is enough space
7304 * on all devices, so we can resize.
7305 * We need to make sure resync covers any new space.
7306 * If the array is shrinking we should possibly wait until
7307 * any io in the removed space completes, but it hardly seems
7308 * worth it.
7309 */
a4a6125a 7310 sector_t newsize;
3cb5edf4
N
7311 struct r5conf *conf = mddev->private;
7312
713cf5a6
SL
7313 if (conf->log)
7314 return -EINVAL;
3cb5edf4 7315 sectors &= ~((sector_t)conf->chunk_sectors - 1);
a4a6125a
N
7316 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7317 if (mddev->external_size &&
7318 mddev->array_sectors > newsize)
b522adcd 7319 return -EINVAL;
a4a6125a
N
7320 if (mddev->bitmap) {
7321 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7322 if (ret)
7323 return ret;
7324 }
7325 md_set_array_sectors(mddev, newsize);
f233ea5c 7326 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7327 revalidate_disk(mddev->gendisk);
b098636c
N
7328 if (sectors > mddev->dev_sectors &&
7329 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7330 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7331 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7332 }
58c0fed4 7333 mddev->dev_sectors = sectors;
4b5c7ae8 7334 mddev->resync_max_sectors = sectors;
1da177e4
LT
7335 return 0;
7336}
7337
fd01b88c 7338static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7339{
7340 /* Can only proceed if there are plenty of stripe_heads.
7341 * We need a minimum of one full stripe,, and for sensible progress
7342 * it is best to have about 4 times that.
7343 * If we require 4 times, then the default 256 4K stripe_heads will
7344 * allow for chunk sizes up to 256K, which is probably OK.
7345 * If the chunk size is greater, user-space should request more
7346 * stripe_heads first.
7347 */
d1688a6d 7348 struct r5conf *conf = mddev->private;
01ee22b4 7349 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7350 > conf->min_nr_stripes ||
01ee22b4 7351 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7352 > conf->min_nr_stripes) {
0c55e022
N
7353 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7354 mdname(mddev),
01ee22b4
N
7355 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7356 / STRIPE_SIZE)*4);
7357 return 0;
7358 }
7359 return 1;
7360}
7361
fd01b88c 7362static int check_reshape(struct mddev *mddev)
29269553 7363{
d1688a6d 7364 struct r5conf *conf = mddev->private;
29269553 7365
713cf5a6
SL
7366 if (conf->log)
7367 return -EINVAL;
88ce4930
N
7368 if (mddev->delta_disks == 0 &&
7369 mddev->new_layout == mddev->layout &&
664e7c41 7370 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7371 return 0; /* nothing to do */
674806d6 7372 if (has_failed(conf))
ec32a2bd 7373 return -EINVAL;
fdcfbbb6 7374 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7375 /* We might be able to shrink, but the devices must
7376 * be made bigger first.
7377 * For raid6, 4 is the minimum size.
7378 * Otherwise 2 is the minimum
7379 */
7380 int min = 2;
7381 if (mddev->level == 6)
7382 min = 4;
7383 if (mddev->raid_disks + mddev->delta_disks < min)
7384 return -EINVAL;
7385 }
29269553 7386
01ee22b4 7387 if (!check_stripe_cache(mddev))
29269553 7388 return -ENOSPC;
29269553 7389
738a2738
N
7390 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7391 mddev->delta_disks > 0)
7392 if (resize_chunks(conf,
7393 conf->previous_raid_disks
7394 + max(0, mddev->delta_disks),
7395 max(mddev->new_chunk_sectors,
7396 mddev->chunk_sectors)
7397 ) < 0)
7398 return -ENOMEM;
e56108d6
N
7399 return resize_stripes(conf, (conf->previous_raid_disks
7400 + mddev->delta_disks));
63c70c4f
N
7401}
7402
fd01b88c 7403static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7404{
d1688a6d 7405 struct r5conf *conf = mddev->private;
3cb03002 7406 struct md_rdev *rdev;
63c70c4f 7407 int spares = 0;
c04be0aa 7408 unsigned long flags;
63c70c4f 7409
f416885e 7410 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7411 return -EBUSY;
7412
01ee22b4
N
7413 if (!check_stripe_cache(mddev))
7414 return -ENOSPC;
7415
30b67645
N
7416 if (has_failed(conf))
7417 return -EINVAL;
7418
c6563a8c 7419 rdev_for_each(rdev, mddev) {
469518a3
N
7420 if (!test_bit(In_sync, &rdev->flags)
7421 && !test_bit(Faulty, &rdev->flags))
29269553 7422 spares++;
c6563a8c 7423 }
63c70c4f 7424
f416885e 7425 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7426 /* Not enough devices even to make a degraded array
7427 * of that size
7428 */
7429 return -EINVAL;
7430
ec32a2bd
N
7431 /* Refuse to reduce size of the array. Any reductions in
7432 * array size must be through explicit setting of array_size
7433 * attribute.
7434 */
7435 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7436 < mddev->array_sectors) {
0c55e022 7437 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
7438 "before number of disks\n", mdname(mddev));
7439 return -EINVAL;
7440 }
7441
f6705578 7442 atomic_set(&conf->reshape_stripes, 0);
29269553 7443 spin_lock_irq(&conf->device_lock);
c46501b2 7444 write_seqcount_begin(&conf->gen_lock);
29269553 7445 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7446 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7447 conf->prev_chunk_sectors = conf->chunk_sectors;
7448 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7449 conf->prev_algo = conf->algorithm;
7450 conf->algorithm = mddev->new_layout;
05616be5
N
7451 conf->generation++;
7452 /* Code that selects data_offset needs to see the generation update
7453 * if reshape_progress has been set - so a memory barrier needed.
7454 */
7455 smp_mb();
2c810cdd 7456 if (mddev->reshape_backwards)
fef9c61f
N
7457 conf->reshape_progress = raid5_size(mddev, 0, 0);
7458 else
7459 conf->reshape_progress = 0;
7460 conf->reshape_safe = conf->reshape_progress;
c46501b2 7461 write_seqcount_end(&conf->gen_lock);
29269553
N
7462 spin_unlock_irq(&conf->device_lock);
7463
4d77e3ba
N
7464 /* Now make sure any requests that proceeded on the assumption
7465 * the reshape wasn't running - like Discard or Read - have
7466 * completed.
7467 */
7468 mddev_suspend(mddev);
7469 mddev_resume(mddev);
7470
29269553
N
7471 /* Add some new drives, as many as will fit.
7472 * We know there are enough to make the newly sized array work.
3424bf6a
N
7473 * Don't add devices if we are reducing the number of
7474 * devices in the array. This is because it is not possible
7475 * to correctly record the "partially reconstructed" state of
7476 * such devices during the reshape and confusion could result.
29269553 7477 */
87a8dec9 7478 if (mddev->delta_disks >= 0) {
dafb20fa 7479 rdev_for_each(rdev, mddev)
87a8dec9
N
7480 if (rdev->raid_disk < 0 &&
7481 !test_bit(Faulty, &rdev->flags)) {
7482 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7483 if (rdev->raid_disk
9d4c7d87 7484 >= conf->previous_raid_disks)
87a8dec9 7485 set_bit(In_sync, &rdev->flags);
9d4c7d87 7486 else
87a8dec9 7487 rdev->recovery_offset = 0;
36fad858
NK
7488
7489 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 7490 /* Failure here is OK */;
50da0840 7491 }
87a8dec9
N
7492 } else if (rdev->raid_disk >= conf->previous_raid_disks
7493 && !test_bit(Faulty, &rdev->flags)) {
7494 /* This is a spare that was manually added */
7495 set_bit(In_sync, &rdev->flags);
87a8dec9 7496 }
29269553 7497
87a8dec9
N
7498 /* When a reshape changes the number of devices,
7499 * ->degraded is measured against the larger of the
7500 * pre and post number of devices.
7501 */
ec32a2bd 7502 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7503 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
7504 spin_unlock_irqrestore(&conf->device_lock, flags);
7505 }
63c70c4f 7506 mddev->raid_disks = conf->raid_disks;
e516402c 7507 mddev->reshape_position = conf->reshape_progress;
850b2b42 7508 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 7509
29269553
N
7510 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7511 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 7512 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553
N
7513 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7514 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7515 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7516 "reshape");
29269553
N
7517 if (!mddev->sync_thread) {
7518 mddev->recovery = 0;
7519 spin_lock_irq(&conf->device_lock);
ba8805b9 7520 write_seqcount_begin(&conf->gen_lock);
29269553 7521 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7522 mddev->new_chunk_sectors =
7523 conf->chunk_sectors = conf->prev_chunk_sectors;
7524 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7525 rdev_for_each(rdev, mddev)
7526 rdev->new_data_offset = rdev->data_offset;
7527 smp_wmb();
ba8805b9 7528 conf->generation --;
fef9c61f 7529 conf->reshape_progress = MaxSector;
1e3fa9bd 7530 mddev->reshape_position = MaxSector;
ba8805b9 7531 write_seqcount_end(&conf->gen_lock);
29269553
N
7532 spin_unlock_irq(&conf->device_lock);
7533 return -EAGAIN;
7534 }
c8f517c4 7535 conf->reshape_checkpoint = jiffies;
29269553
N
7536 md_wakeup_thread(mddev->sync_thread);
7537 md_new_event(mddev);
7538 return 0;
7539}
29269553 7540
ec32a2bd
N
7541/* This is called from the reshape thread and should make any
7542 * changes needed in 'conf'
7543 */
d1688a6d 7544static void end_reshape(struct r5conf *conf)
29269553 7545{
29269553 7546
f6705578 7547 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 7548 struct md_rdev *rdev;
f6705578 7549
f6705578 7550 spin_lock_irq(&conf->device_lock);
cea9c228 7551 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
7552 rdev_for_each(rdev, conf->mddev)
7553 rdev->data_offset = rdev->new_data_offset;
7554 smp_wmb();
fef9c61f 7555 conf->reshape_progress = MaxSector;
6cbd8148 7556 conf->mddev->reshape_position = MaxSector;
f6705578 7557 spin_unlock_irq(&conf->device_lock);
b0f9ec04 7558 wake_up(&conf->wait_for_overlap);
16a53ecc
N
7559
7560 /* read-ahead size must cover two whole stripes, which is
7561 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7562 */
4a5add49 7563 if (conf->mddev->queue) {
cea9c228 7564 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 7565 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 7566 / PAGE_SIZE);
16a53ecc
N
7567 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7568 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7569 }
29269553 7570 }
29269553
N
7571}
7572
ec32a2bd
N
7573/* This is called from the raid5d thread with mddev_lock held.
7574 * It makes config changes to the device.
7575 */
fd01b88c 7576static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 7577{
d1688a6d 7578 struct r5conf *conf = mddev->private;
cea9c228
N
7579
7580 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7581
ec32a2bd
N
7582 if (mddev->delta_disks > 0) {
7583 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7584 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7585 revalidate_disk(mddev->gendisk);
ec32a2bd
N
7586 } else {
7587 int d;
908f4fbd
N
7588 spin_lock_irq(&conf->device_lock);
7589 mddev->degraded = calc_degraded(conf);
7590 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
7591 for (d = conf->raid_disks ;
7592 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 7593 d++) {
3cb03002 7594 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
7595 if (rdev)
7596 clear_bit(In_sync, &rdev->flags);
7597 rdev = conf->disks[d].replacement;
7598 if (rdev)
7599 clear_bit(In_sync, &rdev->flags);
1a67dde0 7600 }
cea9c228 7601 }
88ce4930 7602 mddev->layout = conf->algorithm;
09c9e5fa 7603 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
7604 mddev->reshape_position = MaxSector;
7605 mddev->delta_disks = 0;
2c810cdd 7606 mddev->reshape_backwards = 0;
cea9c228
N
7607 }
7608}
7609
fd01b88c 7610static void raid5_quiesce(struct mddev *mddev, int state)
72626685 7611{
d1688a6d 7612 struct r5conf *conf = mddev->private;
72626685
N
7613
7614 switch(state) {
e464eafd
N
7615 case 2: /* resume for a suspend */
7616 wake_up(&conf->wait_for_overlap);
7617 break;
7618
72626685 7619 case 1: /* stop all writes */
566c09c5 7620 lock_all_device_hash_locks_irq(conf);
64bd660b
N
7621 /* '2' tells resync/reshape to pause so that all
7622 * active stripes can drain
7623 */
7624 conf->quiesce = 2;
b1b46486 7625 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
7626 atomic_read(&conf->active_stripes) == 0 &&
7627 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
7628 unlock_all_device_hash_locks_irq(conf),
7629 lock_all_device_hash_locks_irq(conf));
64bd660b 7630 conf->quiesce = 1;
566c09c5 7631 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
7632 /* allow reshape to continue */
7633 wake_up(&conf->wait_for_overlap);
72626685
N
7634 break;
7635
7636 case 0: /* re-enable writes */
566c09c5 7637 lock_all_device_hash_locks_irq(conf);
72626685 7638 conf->quiesce = 0;
b1b46486 7639 wake_up(&conf->wait_for_quiescent);
e464eafd 7640 wake_up(&conf->wait_for_overlap);
566c09c5 7641 unlock_all_device_hash_locks_irq(conf);
72626685
N
7642 break;
7643 }
e6c033f7 7644 r5l_quiesce(conf->log, state);
72626685 7645}
b15c2e57 7646
fd01b88c 7647static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 7648{
e373ab10 7649 struct r0conf *raid0_conf = mddev->private;
d76c8420 7650 sector_t sectors;
54071b38 7651
f1b29bca 7652 /* for raid0 takeover only one zone is supported */
e373ab10 7653 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
7654 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7655 mdname(mddev));
f1b29bca
DW
7656 return ERR_PTR(-EINVAL);
7657 }
7658
e373ab10
N
7659 sectors = raid0_conf->strip_zone[0].zone_end;
7660 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 7661 mddev->dev_sectors = sectors;
f1b29bca 7662 mddev->new_level = level;
54071b38
TM
7663 mddev->new_layout = ALGORITHM_PARITY_N;
7664 mddev->new_chunk_sectors = mddev->chunk_sectors;
7665 mddev->raid_disks += 1;
7666 mddev->delta_disks = 1;
7667 /* make sure it will be not marked as dirty */
7668 mddev->recovery_cp = MaxSector;
7669
7670 return setup_conf(mddev);
7671}
7672
fd01b88c 7673static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
7674{
7675 int chunksect;
7676
7677 if (mddev->raid_disks != 2 ||
7678 mddev->degraded > 1)
7679 return ERR_PTR(-EINVAL);
7680
7681 /* Should check if there are write-behind devices? */
7682
7683 chunksect = 64*2; /* 64K by default */
7684
7685 /* The array must be an exact multiple of chunksize */
7686 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7687 chunksect >>= 1;
7688
7689 if ((chunksect<<9) < STRIPE_SIZE)
7690 /* array size does not allow a suitable chunk size */
7691 return ERR_PTR(-EINVAL);
7692
7693 mddev->new_level = 5;
7694 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 7695 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
7696
7697 return setup_conf(mddev);
7698}
7699
fd01b88c 7700static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
7701{
7702 int new_layout;
7703
7704 switch (mddev->layout) {
7705 case ALGORITHM_LEFT_ASYMMETRIC_6:
7706 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7707 break;
7708 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7709 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7710 break;
7711 case ALGORITHM_LEFT_SYMMETRIC_6:
7712 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7713 break;
7714 case ALGORITHM_RIGHT_SYMMETRIC_6:
7715 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7716 break;
7717 case ALGORITHM_PARITY_0_6:
7718 new_layout = ALGORITHM_PARITY_0;
7719 break;
7720 case ALGORITHM_PARITY_N:
7721 new_layout = ALGORITHM_PARITY_N;
7722 break;
7723 default:
7724 return ERR_PTR(-EINVAL);
7725 }
7726 mddev->new_level = 5;
7727 mddev->new_layout = new_layout;
7728 mddev->delta_disks = -1;
7729 mddev->raid_disks -= 1;
7730 return setup_conf(mddev);
7731}
7732
fd01b88c 7733static int raid5_check_reshape(struct mddev *mddev)
b3546035 7734{
88ce4930
N
7735 /* For a 2-drive array, the layout and chunk size can be changed
7736 * immediately as not restriping is needed.
7737 * For larger arrays we record the new value - after validation
7738 * to be used by a reshape pass.
b3546035 7739 */
d1688a6d 7740 struct r5conf *conf = mddev->private;
597a711b 7741 int new_chunk = mddev->new_chunk_sectors;
b3546035 7742
597a711b 7743 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
7744 return -EINVAL;
7745 if (new_chunk > 0) {
0ba459d2 7746 if (!is_power_of_2(new_chunk))
b3546035 7747 return -EINVAL;
597a711b 7748 if (new_chunk < (PAGE_SIZE>>9))
b3546035 7749 return -EINVAL;
597a711b 7750 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
7751 /* not factor of array size */
7752 return -EINVAL;
7753 }
7754
7755 /* They look valid */
7756
88ce4930 7757 if (mddev->raid_disks == 2) {
597a711b
N
7758 /* can make the change immediately */
7759 if (mddev->new_layout >= 0) {
7760 conf->algorithm = mddev->new_layout;
7761 mddev->layout = mddev->new_layout;
88ce4930
N
7762 }
7763 if (new_chunk > 0) {
597a711b
N
7764 conf->chunk_sectors = new_chunk ;
7765 mddev->chunk_sectors = new_chunk;
88ce4930
N
7766 }
7767 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7768 md_wakeup_thread(mddev->thread);
b3546035 7769 }
50ac168a 7770 return check_reshape(mddev);
88ce4930
N
7771}
7772
fd01b88c 7773static int raid6_check_reshape(struct mddev *mddev)
88ce4930 7774{
597a711b 7775 int new_chunk = mddev->new_chunk_sectors;
50ac168a 7776
597a711b 7777 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 7778 return -EINVAL;
b3546035 7779 if (new_chunk > 0) {
0ba459d2 7780 if (!is_power_of_2(new_chunk))
88ce4930 7781 return -EINVAL;
597a711b 7782 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 7783 return -EINVAL;
597a711b 7784 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
7785 /* not factor of array size */
7786 return -EINVAL;
b3546035 7787 }
88ce4930
N
7788
7789 /* They look valid */
50ac168a 7790 return check_reshape(mddev);
b3546035
N
7791}
7792
fd01b88c 7793static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
7794{
7795 /* raid5 can take over:
f1b29bca 7796 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
7797 * raid1 - if there are two drives. We need to know the chunk size
7798 * raid4 - trivial - just use a raid4 layout.
7799 * raid6 - Providing it is a *_6 layout
d562b0c4 7800 */
f1b29bca
DW
7801 if (mddev->level == 0)
7802 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
7803 if (mddev->level == 1)
7804 return raid5_takeover_raid1(mddev);
e9d4758f
N
7805 if (mddev->level == 4) {
7806 mddev->new_layout = ALGORITHM_PARITY_N;
7807 mddev->new_level = 5;
7808 return setup_conf(mddev);
7809 }
fc9739c6
N
7810 if (mddev->level == 6)
7811 return raid5_takeover_raid6(mddev);
d562b0c4
N
7812
7813 return ERR_PTR(-EINVAL);
7814}
7815
fd01b88c 7816static void *raid4_takeover(struct mddev *mddev)
a78d38a1 7817{
f1b29bca
DW
7818 /* raid4 can take over:
7819 * raid0 - if there is only one strip zone
7820 * raid5 - if layout is right
a78d38a1 7821 */
f1b29bca
DW
7822 if (mddev->level == 0)
7823 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
7824 if (mddev->level == 5 &&
7825 mddev->layout == ALGORITHM_PARITY_N) {
7826 mddev->new_layout = 0;
7827 mddev->new_level = 4;
7828 return setup_conf(mddev);
7829 }
7830 return ERR_PTR(-EINVAL);
7831}
d562b0c4 7832
84fc4b56 7833static struct md_personality raid5_personality;
245f46c2 7834
fd01b88c 7835static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
7836{
7837 /* Currently can only take over a raid5. We map the
7838 * personality to an equivalent raid6 personality
7839 * with the Q block at the end.
7840 */
7841 int new_layout;
7842
7843 if (mddev->pers != &raid5_personality)
7844 return ERR_PTR(-EINVAL);
7845 if (mddev->degraded > 1)
7846 return ERR_PTR(-EINVAL);
7847 if (mddev->raid_disks > 253)
7848 return ERR_PTR(-EINVAL);
7849 if (mddev->raid_disks < 3)
7850 return ERR_PTR(-EINVAL);
7851
7852 switch (mddev->layout) {
7853 case ALGORITHM_LEFT_ASYMMETRIC:
7854 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7855 break;
7856 case ALGORITHM_RIGHT_ASYMMETRIC:
7857 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7858 break;
7859 case ALGORITHM_LEFT_SYMMETRIC:
7860 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7861 break;
7862 case ALGORITHM_RIGHT_SYMMETRIC:
7863 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7864 break;
7865 case ALGORITHM_PARITY_0:
7866 new_layout = ALGORITHM_PARITY_0_6;
7867 break;
7868 case ALGORITHM_PARITY_N:
7869 new_layout = ALGORITHM_PARITY_N;
7870 break;
7871 default:
7872 return ERR_PTR(-EINVAL);
7873 }
7874 mddev->new_level = 6;
7875 mddev->new_layout = new_layout;
7876 mddev->delta_disks = 1;
7877 mddev->raid_disks += 1;
7878 return setup_conf(mddev);
7879}
7880
84fc4b56 7881static struct md_personality raid6_personality =
16a53ecc
N
7882{
7883 .name = "raid6",
7884 .level = 6,
7885 .owner = THIS_MODULE,
849674e4
SL
7886 .make_request = raid5_make_request,
7887 .run = raid5_run,
afa0f557 7888 .free = raid5_free,
849674e4
SL
7889 .status = raid5_status,
7890 .error_handler = raid5_error,
16a53ecc
N
7891 .hot_add_disk = raid5_add_disk,
7892 .hot_remove_disk= raid5_remove_disk,
7893 .spare_active = raid5_spare_active,
849674e4 7894 .sync_request = raid5_sync_request,
16a53ecc 7895 .resize = raid5_resize,
80c3a6ce 7896 .size = raid5_size,
50ac168a 7897 .check_reshape = raid6_check_reshape,
f416885e 7898 .start_reshape = raid5_start_reshape,
cea9c228 7899 .finish_reshape = raid5_finish_reshape,
16a53ecc 7900 .quiesce = raid5_quiesce,
245f46c2 7901 .takeover = raid6_takeover,
5c675f83 7902 .congested = raid5_congested,
16a53ecc 7903};
84fc4b56 7904static struct md_personality raid5_personality =
1da177e4
LT
7905{
7906 .name = "raid5",
2604b703 7907 .level = 5,
1da177e4 7908 .owner = THIS_MODULE,
849674e4
SL
7909 .make_request = raid5_make_request,
7910 .run = raid5_run,
afa0f557 7911 .free = raid5_free,
849674e4
SL
7912 .status = raid5_status,
7913 .error_handler = raid5_error,
1da177e4
LT
7914 .hot_add_disk = raid5_add_disk,
7915 .hot_remove_disk= raid5_remove_disk,
7916 .spare_active = raid5_spare_active,
849674e4 7917 .sync_request = raid5_sync_request,
1da177e4 7918 .resize = raid5_resize,
80c3a6ce 7919 .size = raid5_size,
63c70c4f
N
7920 .check_reshape = raid5_check_reshape,
7921 .start_reshape = raid5_start_reshape,
cea9c228 7922 .finish_reshape = raid5_finish_reshape,
72626685 7923 .quiesce = raid5_quiesce,
d562b0c4 7924 .takeover = raid5_takeover,
5c675f83 7925 .congested = raid5_congested,
1da177e4
LT
7926};
7927
84fc4b56 7928static struct md_personality raid4_personality =
1da177e4 7929{
2604b703
N
7930 .name = "raid4",
7931 .level = 4,
7932 .owner = THIS_MODULE,
849674e4
SL
7933 .make_request = raid5_make_request,
7934 .run = raid5_run,
afa0f557 7935 .free = raid5_free,
849674e4
SL
7936 .status = raid5_status,
7937 .error_handler = raid5_error,
2604b703
N
7938 .hot_add_disk = raid5_add_disk,
7939 .hot_remove_disk= raid5_remove_disk,
7940 .spare_active = raid5_spare_active,
849674e4 7941 .sync_request = raid5_sync_request,
2604b703 7942 .resize = raid5_resize,
80c3a6ce 7943 .size = raid5_size,
3d37890b
N
7944 .check_reshape = raid5_check_reshape,
7945 .start_reshape = raid5_start_reshape,
cea9c228 7946 .finish_reshape = raid5_finish_reshape,
2604b703 7947 .quiesce = raid5_quiesce,
a78d38a1 7948 .takeover = raid4_takeover,
5c675f83 7949 .congested = raid5_congested,
2604b703
N
7950};
7951
7952static int __init raid5_init(void)
7953{
851c30c9
SL
7954 raid5_wq = alloc_workqueue("raid5wq",
7955 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7956 if (!raid5_wq)
7957 return -ENOMEM;
16a53ecc 7958 register_md_personality(&raid6_personality);
2604b703
N
7959 register_md_personality(&raid5_personality);
7960 register_md_personality(&raid4_personality);
7961 return 0;
1da177e4
LT
7962}
7963
2604b703 7964static void raid5_exit(void)
1da177e4 7965{
16a53ecc 7966 unregister_md_personality(&raid6_personality);
2604b703
N
7967 unregister_md_personality(&raid5_personality);
7968 unregister_md_personality(&raid4_personality);
851c30c9 7969 destroy_workqueue(raid5_wq);
1da177e4
LT
7970}
7971
7972module_init(raid5_init);
7973module_exit(raid5_exit);
7974MODULE_LICENSE("GPL");
0efb9e61 7975MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 7976MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
7977MODULE_ALIAS("md-raid5");
7978MODULE_ALIAS("md-raid4");
2604b703
N
7979MODULE_ALIAS("md-level-5");
7980MODULE_ALIAS("md-level-4");
16a53ecc
N
7981MODULE_ALIAS("md-personality-8"); /* RAID6 */
7982MODULE_ALIAS("md-raid6");
7983MODULE_ALIAS("md-level-6");
7984
7985/* This used to be two separate modules, they were: */
7986MODULE_ALIAS("raid5");
7987MODULE_ALIAS("raid6");
This page took 1.705085 seconds and 5 git commands to generate.