md: md_clear_badblocks should return an error code on failure.
[deliverable/linux.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
a9add5d9
N
57#include <trace/events/block.h>
58
43b2e5d8 59#include "md.h"
bff61975 60#include "raid5.h"
54071b38 61#include "raid0.h"
ef740c37 62#include "bitmap.h"
72626685 63
851c30c9
SL
64#define cpu_to_group(cpu) cpu_to_node(cpu)
65#define ANY_GROUP NUMA_NO_NODE
66
67static struct workqueue_struct *raid5_wq;
1da177e4
LT
68/*
69 * Stripe cache
70 */
71
72#define NR_STRIPES 256
73#define STRIPE_SIZE PAGE_SIZE
74#define STRIPE_SHIFT (PAGE_SHIFT - 9)
75#define STRIPE_SECTORS (STRIPE_SIZE>>9)
76#define IO_THRESHOLD 1
8b3e6cdc 77#define BYPASS_THRESHOLD 1
fccddba0 78#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4 79#define HASH_MASK (NR_HASH - 1)
bfc90cb0 80#define MAX_STRIPE_BATCH 8
1da177e4 81
d1688a6d 82static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
83{
84 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85 return &conf->stripe_hashtbl[hash];
86}
1da177e4 87
566c09c5
SL
88static inline int stripe_hash_locks_hash(sector_t sect)
89{
90 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
91}
92
93static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
94{
95 spin_lock_irq(conf->hash_locks + hash);
96 spin_lock(&conf->device_lock);
97}
98
99static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
100{
101 spin_unlock(&conf->device_lock);
102 spin_unlock_irq(conf->hash_locks + hash);
103}
104
105static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
106{
107 int i;
108 local_irq_disable();
109 spin_lock(conf->hash_locks);
110 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
111 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
112 spin_lock(&conf->device_lock);
113}
114
115static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
116{
117 int i;
118 spin_unlock(&conf->device_lock);
119 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
120 spin_unlock(conf->hash_locks + i - 1);
121 local_irq_enable();
122}
123
1da177e4
LT
124/* bio's attached to a stripe+device for I/O are linked together in bi_sector
125 * order without overlap. There may be several bio's per stripe+device, and
126 * a bio could span several devices.
127 * When walking this list for a particular stripe+device, we must never proceed
128 * beyond a bio that extends past this device, as the next bio might no longer
129 * be valid.
db298e19 130 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
131 * of the current stripe+device
132 */
db298e19
N
133static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
134{
aa8b57aa 135 int sectors = bio_sectors(bio);
4f024f37 136 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
db298e19
N
137 return bio->bi_next;
138 else
139 return NULL;
140}
1da177e4 141
960e739d 142/*
5b99c2ff
JA
143 * We maintain a biased count of active stripes in the bottom 16 bits of
144 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d 145 */
e7836bd6 146static inline int raid5_bi_processed_stripes(struct bio *bio)
960e739d 147{
e7836bd6
SL
148 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
149 return (atomic_read(segments) >> 16) & 0xffff;
960e739d
JA
150}
151
e7836bd6 152static inline int raid5_dec_bi_active_stripes(struct bio *bio)
960e739d 153{
e7836bd6
SL
154 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
155 return atomic_sub_return(1, segments) & 0xffff;
960e739d
JA
156}
157
e7836bd6 158static inline void raid5_inc_bi_active_stripes(struct bio *bio)
960e739d 159{
e7836bd6
SL
160 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
161 atomic_inc(segments);
960e739d
JA
162}
163
e7836bd6
SL
164static inline void raid5_set_bi_processed_stripes(struct bio *bio,
165 unsigned int cnt)
960e739d 166{
e7836bd6
SL
167 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
168 int old, new;
960e739d 169
e7836bd6
SL
170 do {
171 old = atomic_read(segments);
172 new = (old & 0xffff) | (cnt << 16);
173 } while (atomic_cmpxchg(segments, old, new) != old);
960e739d
JA
174}
175
e7836bd6 176static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
960e739d 177{
e7836bd6
SL
178 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
179 atomic_set(segments, cnt);
960e739d
JA
180}
181
d0dabf7e
N
182/* Find first data disk in a raid6 stripe */
183static inline int raid6_d0(struct stripe_head *sh)
184{
67cc2b81
N
185 if (sh->ddf_layout)
186 /* ddf always start from first device */
187 return 0;
188 /* md starts just after Q block */
d0dabf7e
N
189 if (sh->qd_idx == sh->disks - 1)
190 return 0;
191 else
192 return sh->qd_idx + 1;
193}
16a53ecc
N
194static inline int raid6_next_disk(int disk, int raid_disks)
195{
196 disk++;
197 return (disk < raid_disks) ? disk : 0;
198}
a4456856 199
d0dabf7e
N
200/* When walking through the disks in a raid5, starting at raid6_d0,
201 * We need to map each disk to a 'slot', where the data disks are slot
202 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
203 * is raid_disks-1. This help does that mapping.
204 */
67cc2b81
N
205static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
206 int *count, int syndrome_disks)
d0dabf7e 207{
6629542e 208 int slot = *count;
67cc2b81 209
e4424fee 210 if (sh->ddf_layout)
6629542e 211 (*count)++;
d0dabf7e 212 if (idx == sh->pd_idx)
67cc2b81 213 return syndrome_disks;
d0dabf7e 214 if (idx == sh->qd_idx)
67cc2b81 215 return syndrome_disks + 1;
e4424fee 216 if (!sh->ddf_layout)
6629542e 217 (*count)++;
d0dabf7e
N
218 return slot;
219}
220
a4456856
DW
221static void return_io(struct bio *return_bi)
222{
223 struct bio *bi = return_bi;
224 while (bi) {
a4456856
DW
225
226 return_bi = bi->bi_next;
227 bi->bi_next = NULL;
4f024f37 228 bi->bi_iter.bi_size = 0;
0a82a8d1
LT
229 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
230 bi, 0);
0e13fe23 231 bio_endio(bi, 0);
a4456856
DW
232 bi = return_bi;
233 }
234}
235
d1688a6d 236static void print_raid5_conf (struct r5conf *conf);
1da177e4 237
600aa109
DW
238static int stripe_operations_active(struct stripe_head *sh)
239{
240 return sh->check_state || sh->reconstruct_state ||
241 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
242 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
243}
244
851c30c9
SL
245static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
246{
247 struct r5conf *conf = sh->raid_conf;
248 struct r5worker_group *group;
bfc90cb0 249 int thread_cnt;
851c30c9
SL
250 int i, cpu = sh->cpu;
251
252 if (!cpu_online(cpu)) {
253 cpu = cpumask_any(cpu_online_mask);
254 sh->cpu = cpu;
255 }
256
257 if (list_empty(&sh->lru)) {
258 struct r5worker_group *group;
259 group = conf->worker_groups + cpu_to_group(cpu);
260 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
261 group->stripes_cnt++;
262 sh->group = group;
851c30c9
SL
263 }
264
265 if (conf->worker_cnt_per_group == 0) {
266 md_wakeup_thread(conf->mddev->thread);
267 return;
268 }
269
270 group = conf->worker_groups + cpu_to_group(sh->cpu);
271
bfc90cb0
SL
272 group->workers[0].working = true;
273 /* at least one worker should run to avoid race */
274 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
275
276 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
277 /* wakeup more workers */
278 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
279 if (group->workers[i].working == false) {
280 group->workers[i].working = true;
281 queue_work_on(sh->cpu, raid5_wq,
282 &group->workers[i].work);
283 thread_cnt--;
284 }
285 }
851c30c9
SL
286}
287
566c09c5
SL
288static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
289 struct list_head *temp_inactive_list)
1da177e4 290{
4eb788df
SL
291 BUG_ON(!list_empty(&sh->lru));
292 BUG_ON(atomic_read(&conf->active_stripes)==0);
293 if (test_bit(STRIPE_HANDLE, &sh->state)) {
294 if (test_bit(STRIPE_DELAYED, &sh->state) &&
67f45548 295 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
4eb788df 296 list_add_tail(&sh->lru, &conf->delayed_list);
67f45548
N
297 if (atomic_read(&conf->preread_active_stripes)
298 < IO_THRESHOLD)
299 md_wakeup_thread(conf->mddev->thread);
300 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
301 sh->bm_seq - conf->seq_write > 0)
302 list_add_tail(&sh->lru, &conf->bitmap_list);
303 else {
304 clear_bit(STRIPE_DELAYED, &sh->state);
305 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9
SL
306 if (conf->worker_cnt_per_group == 0) {
307 list_add_tail(&sh->lru, &conf->handle_list);
308 } else {
309 raid5_wakeup_stripe_thread(sh);
310 return;
311 }
4eb788df
SL
312 }
313 md_wakeup_thread(conf->mddev->thread);
314 } else {
315 BUG_ON(stripe_operations_active(sh));
316 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
317 if (atomic_dec_return(&conf->preread_active_stripes)
318 < IO_THRESHOLD)
319 md_wakeup_thread(conf->mddev->thread);
320 atomic_dec(&conf->active_stripes);
566c09c5
SL
321 if (!test_bit(STRIPE_EXPANDING, &sh->state))
322 list_add_tail(&sh->lru, temp_inactive_list);
1da177e4
LT
323 }
324}
d0dabf7e 325
566c09c5
SL
326static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
327 struct list_head *temp_inactive_list)
4eb788df
SL
328{
329 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
330 do_release_stripe(conf, sh, temp_inactive_list);
331}
332
333/*
334 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
335 *
336 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
337 * given time. Adding stripes only takes device lock, while deleting stripes
338 * only takes hash lock.
339 */
340static void release_inactive_stripe_list(struct r5conf *conf,
341 struct list_head *temp_inactive_list,
342 int hash)
343{
344 int size;
345 bool do_wakeup = false;
346 unsigned long flags;
347
348 if (hash == NR_STRIPE_HASH_LOCKS) {
349 size = NR_STRIPE_HASH_LOCKS;
350 hash = NR_STRIPE_HASH_LOCKS - 1;
351 } else
352 size = 1;
353 while (size) {
354 struct list_head *list = &temp_inactive_list[size - 1];
355
356 /*
357 * We don't hold any lock here yet, get_active_stripe() might
358 * remove stripes from the list
359 */
360 if (!list_empty_careful(list)) {
361 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
362 if (list_empty(conf->inactive_list + hash) &&
363 !list_empty(list))
364 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5
SL
365 list_splice_tail_init(list, conf->inactive_list + hash);
366 do_wakeup = true;
367 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
368 }
369 size--;
370 hash--;
371 }
372
373 if (do_wakeup) {
374 wake_up(&conf->wait_for_stripe);
375 if (conf->retry_read_aligned)
376 md_wakeup_thread(conf->mddev->thread);
377 }
4eb788df
SL
378}
379
773ca82f 380/* should hold conf->device_lock already */
566c09c5
SL
381static int release_stripe_list(struct r5conf *conf,
382 struct list_head *temp_inactive_list)
773ca82f
SL
383{
384 struct stripe_head *sh;
385 int count = 0;
386 struct llist_node *head;
387
388 head = llist_del_all(&conf->released_stripes);
d265d9dc 389 head = llist_reverse_order(head);
773ca82f 390 while (head) {
566c09c5
SL
391 int hash;
392
773ca82f
SL
393 sh = llist_entry(head, struct stripe_head, release_list);
394 head = llist_next(head);
395 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396 smp_mb();
397 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
398 /*
399 * Don't worry the bit is set here, because if the bit is set
400 * again, the count is always > 1. This is true for
401 * STRIPE_ON_UNPLUG_LIST bit too.
402 */
566c09c5
SL
403 hash = sh->hash_lock_index;
404 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
405 count++;
406 }
407
408 return count;
409}
410
1da177e4
LT
411static void release_stripe(struct stripe_head *sh)
412{
d1688a6d 413 struct r5conf *conf = sh->raid_conf;
1da177e4 414 unsigned long flags;
566c09c5
SL
415 struct list_head list;
416 int hash;
773ca82f 417 bool wakeup;
16a53ecc 418
ad4068de 419 if (unlikely(!conf->mddev->thread) ||
420 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
421 goto slow_path;
422 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
423 if (wakeup)
424 md_wakeup_thread(conf->mddev->thread);
425 return;
426slow_path:
4eb788df 427 local_irq_save(flags);
773ca82f 428 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 429 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
430 INIT_LIST_HEAD(&list);
431 hash = sh->hash_lock_index;
432 do_release_stripe(conf, sh, &list);
4eb788df 433 spin_unlock(&conf->device_lock);
566c09c5 434 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
435 }
436 local_irq_restore(flags);
1da177e4
LT
437}
438
fccddba0 439static inline void remove_hash(struct stripe_head *sh)
1da177e4 440{
45b4233c
DW
441 pr_debug("remove_hash(), stripe %llu\n",
442 (unsigned long long)sh->sector);
1da177e4 443
fccddba0 444 hlist_del_init(&sh->hash);
1da177e4
LT
445}
446
d1688a6d 447static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 448{
fccddba0 449 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 450
45b4233c
DW
451 pr_debug("insert_hash(), stripe %llu\n",
452 (unsigned long long)sh->sector);
1da177e4 453
fccddba0 454 hlist_add_head(&sh->hash, hp);
1da177e4
LT
455}
456
457
458/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 459static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
460{
461 struct stripe_head *sh = NULL;
462 struct list_head *first;
463
566c09c5 464 if (list_empty(conf->inactive_list + hash))
1da177e4 465 goto out;
566c09c5 466 first = (conf->inactive_list + hash)->next;
1da177e4
LT
467 sh = list_entry(first, struct stripe_head, lru);
468 list_del_init(first);
469 remove_hash(sh);
470 atomic_inc(&conf->active_stripes);
566c09c5 471 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
472 if (list_empty(conf->inactive_list + hash))
473 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
474out:
475 return sh;
476}
477
e4e11e38 478static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
479{
480 struct page *p;
481 int i;
e4e11e38 482 int num = sh->raid_conf->pool_size;
1da177e4 483
e4e11e38 484 for (i = 0; i < num ; i++) {
1da177e4
LT
485 p = sh->dev[i].page;
486 if (!p)
487 continue;
488 sh->dev[i].page = NULL;
2d1f3b5d 489 put_page(p);
1da177e4
LT
490 }
491}
492
e4e11e38 493static int grow_buffers(struct stripe_head *sh)
1da177e4
LT
494{
495 int i;
e4e11e38 496 int num = sh->raid_conf->pool_size;
1da177e4 497
e4e11e38 498 for (i = 0; i < num; i++) {
1da177e4
LT
499 struct page *page;
500
501 if (!(page = alloc_page(GFP_KERNEL))) {
502 return 1;
503 }
504 sh->dev[i].page = page;
505 }
506 return 0;
507}
508
784052ec 509static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 510static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 511 struct stripe_head *sh);
1da177e4 512
b5663ba4 513static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 514{
d1688a6d 515 struct r5conf *conf = sh->raid_conf;
566c09c5 516 int i, seq;
1da177e4 517
78bafebd
ES
518 BUG_ON(atomic_read(&sh->count) != 0);
519 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 520 BUG_ON(stripe_operations_active(sh));
d84e0f10 521
45b4233c 522 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
523 (unsigned long long)sh->sector);
524
525 remove_hash(sh);
566c09c5
SL
526retry:
527 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 528 sh->generation = conf->generation - previous;
b5663ba4 529 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 530 sh->sector = sector;
911d4ee8 531 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
532 sh->state = 0;
533
7ecaa1e6
N
534
535 for (i = sh->disks; i--; ) {
1da177e4
LT
536 struct r5dev *dev = &sh->dev[i];
537
d84e0f10 538 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 539 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 540 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 541 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 542 dev->read, dev->towrite, dev->written,
1da177e4 543 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 544 WARN_ON(1);
1da177e4
LT
545 }
546 dev->flags = 0;
784052ec 547 raid5_build_block(sh, i, previous);
1da177e4 548 }
566c09c5
SL
549 if (read_seqcount_retry(&conf->gen_lock, seq))
550 goto retry;
1da177e4 551 insert_hash(conf, sh);
851c30c9 552 sh->cpu = smp_processor_id();
1da177e4
LT
553}
554
d1688a6d 555static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 556 short generation)
1da177e4
LT
557{
558 struct stripe_head *sh;
559
45b4233c 560 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 561 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 562 if (sh->sector == sector && sh->generation == generation)
1da177e4 563 return sh;
45b4233c 564 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
565 return NULL;
566}
567
674806d6
N
568/*
569 * Need to check if array has failed when deciding whether to:
570 * - start an array
571 * - remove non-faulty devices
572 * - add a spare
573 * - allow a reshape
574 * This determination is simple when no reshape is happening.
575 * However if there is a reshape, we need to carefully check
576 * both the before and after sections.
577 * This is because some failed devices may only affect one
578 * of the two sections, and some non-in_sync devices may
579 * be insync in the section most affected by failed devices.
580 */
908f4fbd 581static int calc_degraded(struct r5conf *conf)
674806d6 582{
908f4fbd 583 int degraded, degraded2;
674806d6 584 int i;
674806d6
N
585
586 rcu_read_lock();
587 degraded = 0;
588 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 589 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
590 if (rdev && test_bit(Faulty, &rdev->flags))
591 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
592 if (!rdev || test_bit(Faulty, &rdev->flags))
593 degraded++;
594 else if (test_bit(In_sync, &rdev->flags))
595 ;
596 else
597 /* not in-sync or faulty.
598 * If the reshape increases the number of devices,
599 * this is being recovered by the reshape, so
600 * this 'previous' section is not in_sync.
601 * If the number of devices is being reduced however,
602 * the device can only be part of the array if
603 * we are reverting a reshape, so this section will
604 * be in-sync.
605 */
606 if (conf->raid_disks >= conf->previous_raid_disks)
607 degraded++;
608 }
609 rcu_read_unlock();
908f4fbd
N
610 if (conf->raid_disks == conf->previous_raid_disks)
611 return degraded;
674806d6 612 rcu_read_lock();
908f4fbd 613 degraded2 = 0;
674806d6 614 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 615 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
616 if (rdev && test_bit(Faulty, &rdev->flags))
617 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 618 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 619 degraded2++;
674806d6
N
620 else if (test_bit(In_sync, &rdev->flags))
621 ;
622 else
623 /* not in-sync or faulty.
624 * If reshape increases the number of devices, this
625 * section has already been recovered, else it
626 * almost certainly hasn't.
627 */
628 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 629 degraded2++;
674806d6
N
630 }
631 rcu_read_unlock();
908f4fbd
N
632 if (degraded2 > degraded)
633 return degraded2;
634 return degraded;
635}
636
637static int has_failed(struct r5conf *conf)
638{
639 int degraded;
640
641 if (conf->mddev->reshape_position == MaxSector)
642 return conf->mddev->degraded > conf->max_degraded;
643
644 degraded = calc_degraded(conf);
674806d6
N
645 if (degraded > conf->max_degraded)
646 return 1;
647 return 0;
648}
649
b5663ba4 650static struct stripe_head *
d1688a6d 651get_active_stripe(struct r5conf *conf, sector_t sector,
a8c906ca 652 int previous, int noblock, int noquiesce)
1da177e4
LT
653{
654 struct stripe_head *sh;
566c09c5 655 int hash = stripe_hash_locks_hash(sector);
1da177e4 656
45b4233c 657 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 658
566c09c5 659 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
660
661 do {
72626685 662 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 663 conf->quiesce == 0 || noquiesce,
566c09c5 664 *(conf->hash_locks + hash));
86b42c71 665 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
666 if (!sh) {
667 if (!conf->inactive_blocked)
566c09c5 668 sh = get_free_stripe(conf, hash);
1da177e4
LT
669 if (noblock && sh == NULL)
670 break;
671 if (!sh) {
672 conf->inactive_blocked = 1;
566c09c5
SL
673 wait_event_lock_irq(
674 conf->wait_for_stripe,
675 !list_empty(conf->inactive_list + hash) &&
676 (atomic_read(&conf->active_stripes)
677 < (conf->max_nr_stripes * 3 / 4)
678 || !conf->inactive_blocked),
679 *(conf->hash_locks + hash));
1da177e4 680 conf->inactive_blocked = 0;
7da9d450 681 } else {
b5663ba4 682 init_stripe(sh, sector, previous);
7da9d450
N
683 atomic_inc(&sh->count);
684 }
e240c183 685 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 686 spin_lock(&conf->device_lock);
e240c183 687 if (!atomic_read(&sh->count)) {
1da177e4
LT
688 if (!test_bit(STRIPE_HANDLE, &sh->state))
689 atomic_inc(&conf->active_stripes);
5af9bef7
N
690 BUG_ON(list_empty(&sh->lru) &&
691 !test_bit(STRIPE_EXPANDING, &sh->state));
16a53ecc 692 list_del_init(&sh->lru);
bfc90cb0
SL
693 if (sh->group) {
694 sh->group->stripes_cnt--;
695 sh->group = NULL;
696 }
1da177e4 697 }
7da9d450 698 atomic_inc(&sh->count);
6d183de4 699 spin_unlock(&conf->device_lock);
1da177e4
LT
700 }
701 } while (sh == NULL);
702
566c09c5 703 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
704 return sh;
705}
706
05616be5
N
707/* Determine if 'data_offset' or 'new_data_offset' should be used
708 * in this stripe_head.
709 */
710static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
711{
712 sector_t progress = conf->reshape_progress;
713 /* Need a memory barrier to make sure we see the value
714 * of conf->generation, or ->data_offset that was set before
715 * reshape_progress was updated.
716 */
717 smp_rmb();
718 if (progress == MaxSector)
719 return 0;
720 if (sh->generation == conf->generation - 1)
721 return 0;
722 /* We are in a reshape, and this is a new-generation stripe,
723 * so use new_data_offset.
724 */
725 return 1;
726}
727
6712ecf8
N
728static void
729raid5_end_read_request(struct bio *bi, int error);
730static void
731raid5_end_write_request(struct bio *bi, int error);
91c00924 732
c4e5ac0a 733static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 734{
d1688a6d 735 struct r5conf *conf = sh->raid_conf;
91c00924
DW
736 int i, disks = sh->disks;
737
738 might_sleep();
739
740 for (i = disks; i--; ) {
741 int rw;
9a3e1101 742 int replace_only = 0;
977df362
N
743 struct bio *bi, *rbi;
744 struct md_rdev *rdev, *rrdev = NULL;
e9c7469b
TH
745 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
746 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
747 rw = WRITE_FUA;
748 else
749 rw = WRITE;
9e444768 750 if (test_bit(R5_Discard, &sh->dev[i].flags))
620125f2 751 rw |= REQ_DISCARD;
e9c7469b 752 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924 753 rw = READ;
9a3e1101
N
754 else if (test_and_clear_bit(R5_WantReplace,
755 &sh->dev[i].flags)) {
756 rw = WRITE;
757 replace_only = 1;
758 } else
91c00924 759 continue;
bc0934f0
SL
760 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
761 rw |= REQ_SYNC;
91c00924
DW
762
763 bi = &sh->dev[i].req;
977df362 764 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 765
91c00924 766 rcu_read_lock();
9a3e1101 767 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
768 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
769 rdev = rcu_dereference(conf->disks[i].rdev);
770 if (!rdev) {
771 rdev = rrdev;
772 rrdev = NULL;
773 }
9a3e1101
N
774 if (rw & WRITE) {
775 if (replace_only)
776 rdev = NULL;
dd054fce
N
777 if (rdev == rrdev)
778 /* We raced and saw duplicates */
779 rrdev = NULL;
9a3e1101 780 } else {
dd054fce 781 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
9a3e1101
N
782 rdev = rrdev;
783 rrdev = NULL;
784 }
977df362 785
91c00924
DW
786 if (rdev && test_bit(Faulty, &rdev->flags))
787 rdev = NULL;
788 if (rdev)
789 atomic_inc(&rdev->nr_pending);
977df362
N
790 if (rrdev && test_bit(Faulty, &rrdev->flags))
791 rrdev = NULL;
792 if (rrdev)
793 atomic_inc(&rrdev->nr_pending);
91c00924
DW
794 rcu_read_unlock();
795
73e92e51 796 /* We have already checked bad blocks for reads. Now
977df362
N
797 * need to check for writes. We never accept write errors
798 * on the replacement, so we don't to check rrdev.
73e92e51
N
799 */
800 while ((rw & WRITE) && rdev &&
801 test_bit(WriteErrorSeen, &rdev->flags)) {
802 sector_t first_bad;
803 int bad_sectors;
804 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
805 &first_bad, &bad_sectors);
806 if (!bad)
807 break;
808
809 if (bad < 0) {
810 set_bit(BlockedBadBlocks, &rdev->flags);
811 if (!conf->mddev->external &&
812 conf->mddev->flags) {
813 /* It is very unlikely, but we might
814 * still need to write out the
815 * bad block log - better give it
816 * a chance*/
817 md_check_recovery(conf->mddev);
818 }
1850753d 819 /*
820 * Because md_wait_for_blocked_rdev
821 * will dec nr_pending, we must
822 * increment it first.
823 */
824 atomic_inc(&rdev->nr_pending);
73e92e51
N
825 md_wait_for_blocked_rdev(rdev, conf->mddev);
826 } else {
827 /* Acknowledged bad block - skip the write */
828 rdev_dec_pending(rdev, conf->mddev);
829 rdev = NULL;
830 }
831 }
832
91c00924 833 if (rdev) {
9a3e1101
N
834 if (s->syncing || s->expanding || s->expanded
835 || s->replacing)
91c00924
DW
836 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
837
2b7497f0
DW
838 set_bit(STRIPE_IO_STARTED, &sh->state);
839
2f6db2a7 840 bio_reset(bi);
91c00924 841 bi->bi_bdev = rdev->bdev;
2f6db2a7
KO
842 bi->bi_rw = rw;
843 bi->bi_end_io = (rw & WRITE)
844 ? raid5_end_write_request
845 : raid5_end_read_request;
846 bi->bi_private = sh;
847
91c00924 848 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 849 __func__, (unsigned long long)sh->sector,
91c00924
DW
850 bi->bi_rw, i);
851 atomic_inc(&sh->count);
05616be5 852 if (use_new_offset(conf, sh))
4f024f37 853 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
854 + rdev->new_data_offset);
855 else
4f024f37 856 bi->bi_iter.bi_sector = (sh->sector
05616be5 857 + rdev->data_offset);
3f9e7c14 858 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
e59aa23f 859 bi->bi_rw |= REQ_NOMERGE;
3f9e7c14 860
4997b72e 861 bi->bi_vcnt = 1;
91c00924
DW
862 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
863 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 864 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
865 /*
866 * If this is discard request, set bi_vcnt 0. We don't
867 * want to confuse SCSI because SCSI will replace payload
868 */
869 if (rw & REQ_DISCARD)
870 bi->bi_vcnt = 0;
977df362
N
871 if (rrdev)
872 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
873
874 if (conf->mddev->gendisk)
875 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
876 bi, disk_devt(conf->mddev->gendisk),
877 sh->dev[i].sector);
91c00924 878 generic_make_request(bi);
977df362
N
879 }
880 if (rrdev) {
9a3e1101
N
881 if (s->syncing || s->expanding || s->expanded
882 || s->replacing)
977df362
N
883 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
884
885 set_bit(STRIPE_IO_STARTED, &sh->state);
886
2f6db2a7 887 bio_reset(rbi);
977df362 888 rbi->bi_bdev = rrdev->bdev;
2f6db2a7
KO
889 rbi->bi_rw = rw;
890 BUG_ON(!(rw & WRITE));
891 rbi->bi_end_io = raid5_end_write_request;
892 rbi->bi_private = sh;
893
977df362
N
894 pr_debug("%s: for %llu schedule op %ld on "
895 "replacement disc %d\n",
896 __func__, (unsigned long long)sh->sector,
897 rbi->bi_rw, i);
898 atomic_inc(&sh->count);
05616be5 899 if (use_new_offset(conf, sh))
4f024f37 900 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
901 + rrdev->new_data_offset);
902 else
4f024f37 903 rbi->bi_iter.bi_sector = (sh->sector
05616be5 904 + rrdev->data_offset);
4997b72e 905 rbi->bi_vcnt = 1;
977df362
N
906 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
907 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 908 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
909 /*
910 * If this is discard request, set bi_vcnt 0. We don't
911 * want to confuse SCSI because SCSI will replace payload
912 */
913 if (rw & REQ_DISCARD)
914 rbi->bi_vcnt = 0;
e3620a3a
JB
915 if (conf->mddev->gendisk)
916 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
917 rbi, disk_devt(conf->mddev->gendisk),
918 sh->dev[i].sector);
977df362
N
919 generic_make_request(rbi);
920 }
921 if (!rdev && !rrdev) {
b062962e 922 if (rw & WRITE)
91c00924
DW
923 set_bit(STRIPE_DEGRADED, &sh->state);
924 pr_debug("skip op %ld on disc %d for sector %llu\n",
925 bi->bi_rw, i, (unsigned long long)sh->sector);
926 clear_bit(R5_LOCKED, &sh->dev[i].flags);
927 set_bit(STRIPE_HANDLE, &sh->state);
928 }
929 }
930}
931
932static struct dma_async_tx_descriptor *
933async_copy_data(int frombio, struct bio *bio, struct page *page,
934 sector_t sector, struct dma_async_tx_descriptor *tx)
935{
7988613b
KO
936 struct bio_vec bvl;
937 struct bvec_iter iter;
91c00924 938 struct page *bio_page;
91c00924 939 int page_offset;
a08abd8c 940 struct async_submit_ctl submit;
0403e382 941 enum async_tx_flags flags = 0;
91c00924 942
4f024f37
KO
943 if (bio->bi_iter.bi_sector >= sector)
944 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 945 else
4f024f37 946 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 947
0403e382
DW
948 if (frombio)
949 flags |= ASYNC_TX_FENCE;
950 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
951
7988613b
KO
952 bio_for_each_segment(bvl, bio, iter) {
953 int len = bvl.bv_len;
91c00924
DW
954 int clen;
955 int b_offset = 0;
956
957 if (page_offset < 0) {
958 b_offset = -page_offset;
959 page_offset += b_offset;
960 len -= b_offset;
961 }
962
963 if (len > 0 && page_offset + len > STRIPE_SIZE)
964 clen = STRIPE_SIZE - page_offset;
965 else
966 clen = len;
967
968 if (clen > 0) {
7988613b
KO
969 b_offset += bvl.bv_offset;
970 bio_page = bvl.bv_page;
91c00924
DW
971 if (frombio)
972 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 973 b_offset, clen, &submit);
91c00924
DW
974 else
975 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 976 page_offset, clen, &submit);
91c00924 977 }
a08abd8c
DW
978 /* chain the operations */
979 submit.depend_tx = tx;
980
91c00924
DW
981 if (clen < len) /* hit end of page */
982 break;
983 page_offset += len;
984 }
985
986 return tx;
987}
988
989static void ops_complete_biofill(void *stripe_head_ref)
990{
991 struct stripe_head *sh = stripe_head_ref;
992 struct bio *return_bi = NULL;
e4d84909 993 int i;
91c00924 994
e46b272b 995 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
996 (unsigned long long)sh->sector);
997
998 /* clear completed biofills */
999 for (i = sh->disks; i--; ) {
1000 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1001
1002 /* acknowledge completion of a biofill operation */
e4d84909
DW
1003 /* and check if we need to reply to a read request,
1004 * new R5_Wantfill requests are held off until
83de75cc 1005 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1006 */
1007 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1008 struct bio *rbi, *rbi2;
91c00924 1009
91c00924
DW
1010 BUG_ON(!dev->read);
1011 rbi = dev->read;
1012 dev->read = NULL;
4f024f37 1013 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1014 dev->sector + STRIPE_SECTORS) {
1015 rbi2 = r5_next_bio(rbi, dev->sector);
e7836bd6 1016 if (!raid5_dec_bi_active_stripes(rbi)) {
91c00924
DW
1017 rbi->bi_next = return_bi;
1018 return_bi = rbi;
1019 }
91c00924
DW
1020 rbi = rbi2;
1021 }
1022 }
1023 }
83de75cc 1024 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
1025
1026 return_io(return_bi);
1027
e4d84909 1028 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
1029 release_stripe(sh);
1030}
1031
1032static void ops_run_biofill(struct stripe_head *sh)
1033{
1034 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1035 struct async_submit_ctl submit;
91c00924
DW
1036 int i;
1037
e46b272b 1038 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1039 (unsigned long long)sh->sector);
1040
1041 for (i = sh->disks; i--; ) {
1042 struct r5dev *dev = &sh->dev[i];
1043 if (test_bit(R5_Wantfill, &dev->flags)) {
1044 struct bio *rbi;
b17459c0 1045 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1046 dev->read = rbi = dev->toread;
1047 dev->toread = NULL;
b17459c0 1048 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1049 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1050 dev->sector + STRIPE_SECTORS) {
1051 tx = async_copy_data(0, rbi, dev->page,
1052 dev->sector, tx);
1053 rbi = r5_next_bio(rbi, dev->sector);
1054 }
1055 }
1056 }
1057
1058 atomic_inc(&sh->count);
a08abd8c
DW
1059 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1060 async_trigger_callback(&submit);
91c00924
DW
1061}
1062
4e7d2c0a 1063static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1064{
4e7d2c0a 1065 struct r5dev *tgt;
91c00924 1066
4e7d2c0a
DW
1067 if (target < 0)
1068 return;
91c00924 1069
4e7d2c0a 1070 tgt = &sh->dev[target];
91c00924
DW
1071 set_bit(R5_UPTODATE, &tgt->flags);
1072 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1073 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1074}
1075
ac6b53b6 1076static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1077{
1078 struct stripe_head *sh = stripe_head_ref;
91c00924 1079
e46b272b 1080 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1081 (unsigned long long)sh->sector);
1082
ac6b53b6 1083 /* mark the computed target(s) as uptodate */
4e7d2c0a 1084 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1085 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1086
ecc65c9b
DW
1087 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1088 if (sh->check_state == check_state_compute_run)
1089 sh->check_state = check_state_compute_result;
91c00924
DW
1090 set_bit(STRIPE_HANDLE, &sh->state);
1091 release_stripe(sh);
1092}
1093
d6f38f31
DW
1094/* return a pointer to the address conversion region of the scribble buffer */
1095static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1096 struct raid5_percpu *percpu)
1097{
1098 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1099}
1100
1101static struct dma_async_tx_descriptor *
1102ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1103{
91c00924 1104 int disks = sh->disks;
d6f38f31 1105 struct page **xor_srcs = percpu->scribble;
91c00924
DW
1106 int target = sh->ops.target;
1107 struct r5dev *tgt = &sh->dev[target];
1108 struct page *xor_dest = tgt->page;
1109 int count = 0;
1110 struct dma_async_tx_descriptor *tx;
a08abd8c 1111 struct async_submit_ctl submit;
91c00924
DW
1112 int i;
1113
1114 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1115 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1116 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1117
1118 for (i = disks; i--; )
1119 if (i != target)
1120 xor_srcs[count++] = sh->dev[i].page;
1121
1122 atomic_inc(&sh->count);
1123
0403e382 1124 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
ac6b53b6 1125 ops_complete_compute, sh, to_addr_conv(sh, percpu));
91c00924 1126 if (unlikely(count == 1))
a08abd8c 1127 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1128 else
a08abd8c 1129 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1130
91c00924
DW
1131 return tx;
1132}
1133
ac6b53b6
DW
1134/* set_syndrome_sources - populate source buffers for gen_syndrome
1135 * @srcs - (struct page *) array of size sh->disks
1136 * @sh - stripe_head to parse
1137 *
1138 * Populates srcs in proper layout order for the stripe and returns the
1139 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1140 * destination buffer is recorded in srcs[count] and the Q destination
1141 * is recorded in srcs[count+1]].
1142 */
1143static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1144{
1145 int disks = sh->disks;
1146 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1147 int d0_idx = raid6_d0(sh);
1148 int count;
1149 int i;
1150
1151 for (i = 0; i < disks; i++)
5dd33c9a 1152 srcs[i] = NULL;
ac6b53b6
DW
1153
1154 count = 0;
1155 i = d0_idx;
1156 do {
1157 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1158
1159 srcs[slot] = sh->dev[i].page;
1160 i = raid6_next_disk(i, disks);
1161 } while (i != d0_idx);
ac6b53b6 1162
e4424fee 1163 return syndrome_disks;
ac6b53b6
DW
1164}
1165
1166static struct dma_async_tx_descriptor *
1167ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1168{
1169 int disks = sh->disks;
1170 struct page **blocks = percpu->scribble;
1171 int target;
1172 int qd_idx = sh->qd_idx;
1173 struct dma_async_tx_descriptor *tx;
1174 struct async_submit_ctl submit;
1175 struct r5dev *tgt;
1176 struct page *dest;
1177 int i;
1178 int count;
1179
1180 if (sh->ops.target < 0)
1181 target = sh->ops.target2;
1182 else if (sh->ops.target2 < 0)
1183 target = sh->ops.target;
91c00924 1184 else
ac6b53b6
DW
1185 /* we should only have one valid target */
1186 BUG();
1187 BUG_ON(target < 0);
1188 pr_debug("%s: stripe %llu block: %d\n",
1189 __func__, (unsigned long long)sh->sector, target);
1190
1191 tgt = &sh->dev[target];
1192 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1193 dest = tgt->page;
1194
1195 atomic_inc(&sh->count);
1196
1197 if (target == qd_idx) {
1198 count = set_syndrome_sources(blocks, sh);
1199 blocks[count] = NULL; /* regenerating p is not necessary */
1200 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1201 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1202 ops_complete_compute, sh,
ac6b53b6
DW
1203 to_addr_conv(sh, percpu));
1204 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1205 } else {
1206 /* Compute any data- or p-drive using XOR */
1207 count = 0;
1208 for (i = disks; i-- ; ) {
1209 if (i == target || i == qd_idx)
1210 continue;
1211 blocks[count++] = sh->dev[i].page;
1212 }
1213
0403e382
DW
1214 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1215 NULL, ops_complete_compute, sh,
ac6b53b6
DW
1216 to_addr_conv(sh, percpu));
1217 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1218 }
91c00924 1219
91c00924
DW
1220 return tx;
1221}
1222
ac6b53b6
DW
1223static struct dma_async_tx_descriptor *
1224ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1225{
1226 int i, count, disks = sh->disks;
1227 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1228 int d0_idx = raid6_d0(sh);
1229 int faila = -1, failb = -1;
1230 int target = sh->ops.target;
1231 int target2 = sh->ops.target2;
1232 struct r5dev *tgt = &sh->dev[target];
1233 struct r5dev *tgt2 = &sh->dev[target2];
1234 struct dma_async_tx_descriptor *tx;
1235 struct page **blocks = percpu->scribble;
1236 struct async_submit_ctl submit;
1237
1238 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1239 __func__, (unsigned long long)sh->sector, target, target2);
1240 BUG_ON(target < 0 || target2 < 0);
1241 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1242 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1243
6c910a78 1244 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1245 * slot number conversion for 'faila' and 'failb'
1246 */
1247 for (i = 0; i < disks ; i++)
5dd33c9a 1248 blocks[i] = NULL;
ac6b53b6
DW
1249 count = 0;
1250 i = d0_idx;
1251 do {
1252 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1253
1254 blocks[slot] = sh->dev[i].page;
1255
1256 if (i == target)
1257 faila = slot;
1258 if (i == target2)
1259 failb = slot;
1260 i = raid6_next_disk(i, disks);
1261 } while (i != d0_idx);
ac6b53b6
DW
1262
1263 BUG_ON(faila == failb);
1264 if (failb < faila)
1265 swap(faila, failb);
1266 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1267 __func__, (unsigned long long)sh->sector, faila, failb);
1268
1269 atomic_inc(&sh->count);
1270
1271 if (failb == syndrome_disks+1) {
1272 /* Q disk is one of the missing disks */
1273 if (faila == syndrome_disks) {
1274 /* Missing P+Q, just recompute */
0403e382
DW
1275 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1276 ops_complete_compute, sh,
1277 to_addr_conv(sh, percpu));
e4424fee 1278 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1279 STRIPE_SIZE, &submit);
1280 } else {
1281 struct page *dest;
1282 int data_target;
1283 int qd_idx = sh->qd_idx;
1284
1285 /* Missing D+Q: recompute D from P, then recompute Q */
1286 if (target == qd_idx)
1287 data_target = target2;
1288 else
1289 data_target = target;
1290
1291 count = 0;
1292 for (i = disks; i-- ; ) {
1293 if (i == data_target || i == qd_idx)
1294 continue;
1295 blocks[count++] = sh->dev[i].page;
1296 }
1297 dest = sh->dev[data_target].page;
0403e382
DW
1298 init_async_submit(&submit,
1299 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1300 NULL, NULL, NULL,
1301 to_addr_conv(sh, percpu));
ac6b53b6
DW
1302 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1303 &submit);
1304
1305 count = set_syndrome_sources(blocks, sh);
0403e382
DW
1306 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1307 ops_complete_compute, sh,
1308 to_addr_conv(sh, percpu));
ac6b53b6
DW
1309 return async_gen_syndrome(blocks, 0, count+2,
1310 STRIPE_SIZE, &submit);
1311 }
ac6b53b6 1312 } else {
6c910a78
DW
1313 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1314 ops_complete_compute, sh,
1315 to_addr_conv(sh, percpu));
1316 if (failb == syndrome_disks) {
1317 /* We're missing D+P. */
1318 return async_raid6_datap_recov(syndrome_disks+2,
1319 STRIPE_SIZE, faila,
1320 blocks, &submit);
1321 } else {
1322 /* We're missing D+D. */
1323 return async_raid6_2data_recov(syndrome_disks+2,
1324 STRIPE_SIZE, faila, failb,
1325 blocks, &submit);
1326 }
ac6b53b6
DW
1327 }
1328}
1329
1330
91c00924
DW
1331static void ops_complete_prexor(void *stripe_head_ref)
1332{
1333 struct stripe_head *sh = stripe_head_ref;
1334
e46b272b 1335 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1336 (unsigned long long)sh->sector);
91c00924
DW
1337}
1338
1339static struct dma_async_tx_descriptor *
d6f38f31
DW
1340ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1341 struct dma_async_tx_descriptor *tx)
91c00924 1342{
91c00924 1343 int disks = sh->disks;
d6f38f31 1344 struct page **xor_srcs = percpu->scribble;
91c00924 1345 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1346 struct async_submit_ctl submit;
91c00924
DW
1347
1348 /* existing parity data subtracted */
1349 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1350
e46b272b 1351 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1352 (unsigned long long)sh->sector);
1353
1354 for (i = disks; i--; ) {
1355 struct r5dev *dev = &sh->dev[i];
1356 /* Only process blocks that are known to be uptodate */
d8ee0728 1357 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1358 xor_srcs[count++] = dev->page;
1359 }
1360
0403e382 1361 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
d6f38f31 1362 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
a08abd8c 1363 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1364
1365 return tx;
1366}
1367
1368static struct dma_async_tx_descriptor *
d8ee0728 1369ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1370{
1371 int disks = sh->disks;
d8ee0728 1372 int i;
91c00924 1373
e46b272b 1374 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1375 (unsigned long long)sh->sector);
1376
1377 for (i = disks; i--; ) {
1378 struct r5dev *dev = &sh->dev[i];
1379 struct bio *chosen;
91c00924 1380
d8ee0728 1381 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
1382 struct bio *wbi;
1383
b17459c0 1384 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1385 chosen = dev->towrite;
1386 dev->towrite = NULL;
1387 BUG_ON(dev->written);
1388 wbi = dev->written = chosen;
b17459c0 1389 spin_unlock_irq(&sh->stripe_lock);
91c00924 1390
4f024f37 1391 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1392 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1393 if (wbi->bi_rw & REQ_FUA)
1394 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1395 if (wbi->bi_rw & REQ_SYNC)
1396 set_bit(R5_SyncIO, &dev->flags);
9e444768 1397 if (wbi->bi_rw & REQ_DISCARD)
620125f2 1398 set_bit(R5_Discard, &dev->flags);
9e444768 1399 else
620125f2
SL
1400 tx = async_copy_data(1, wbi, dev->page,
1401 dev->sector, tx);
91c00924
DW
1402 wbi = r5_next_bio(wbi, dev->sector);
1403 }
1404 }
1405 }
1406
1407 return tx;
1408}
1409
ac6b53b6 1410static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1411{
1412 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1413 int disks = sh->disks;
1414 int pd_idx = sh->pd_idx;
1415 int qd_idx = sh->qd_idx;
1416 int i;
9e444768 1417 bool fua = false, sync = false, discard = false;
91c00924 1418
e46b272b 1419 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1420 (unsigned long long)sh->sector);
1421
bc0934f0 1422 for (i = disks; i--; ) {
e9c7469b 1423 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1424 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1425 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1426 }
e9c7469b 1427
91c00924
DW
1428 for (i = disks; i--; ) {
1429 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1430
e9c7469b 1431 if (dev->written || i == pd_idx || i == qd_idx) {
9e444768
SL
1432 if (!discard)
1433 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1434 if (fua)
1435 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1436 if (sync)
1437 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1438 }
91c00924
DW
1439 }
1440
d8ee0728
DW
1441 if (sh->reconstruct_state == reconstruct_state_drain_run)
1442 sh->reconstruct_state = reconstruct_state_drain_result;
1443 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1444 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1445 else {
1446 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1447 sh->reconstruct_state = reconstruct_state_result;
1448 }
91c00924
DW
1449
1450 set_bit(STRIPE_HANDLE, &sh->state);
1451 release_stripe(sh);
1452}
1453
1454static void
ac6b53b6
DW
1455ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1456 struct dma_async_tx_descriptor *tx)
91c00924 1457{
91c00924 1458 int disks = sh->disks;
d6f38f31 1459 struct page **xor_srcs = percpu->scribble;
a08abd8c 1460 struct async_submit_ctl submit;
91c00924
DW
1461 int count = 0, pd_idx = sh->pd_idx, i;
1462 struct page *xor_dest;
d8ee0728 1463 int prexor = 0;
91c00924 1464 unsigned long flags;
91c00924 1465
e46b272b 1466 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1467 (unsigned long long)sh->sector);
1468
620125f2
SL
1469 for (i = 0; i < sh->disks; i++) {
1470 if (pd_idx == i)
1471 continue;
1472 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1473 break;
1474 }
1475 if (i >= sh->disks) {
1476 atomic_inc(&sh->count);
620125f2
SL
1477 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1478 ops_complete_reconstruct(sh);
1479 return;
1480 }
91c00924
DW
1481 /* check if prexor is active which means only process blocks
1482 * that are part of a read-modify-write (written)
1483 */
d8ee0728
DW
1484 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1485 prexor = 1;
91c00924
DW
1486 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1487 for (i = disks; i--; ) {
1488 struct r5dev *dev = &sh->dev[i];
1489 if (dev->written)
1490 xor_srcs[count++] = dev->page;
1491 }
1492 } else {
1493 xor_dest = sh->dev[pd_idx].page;
1494 for (i = disks; i--; ) {
1495 struct r5dev *dev = &sh->dev[i];
1496 if (i != pd_idx)
1497 xor_srcs[count++] = dev->page;
1498 }
1499 }
1500
91c00924
DW
1501 /* 1/ if we prexor'd then the dest is reused as a source
1502 * 2/ if we did not prexor then we are redoing the parity
1503 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1504 * for the synchronous xor case
1505 */
88ba2aa5 1506 flags = ASYNC_TX_ACK |
91c00924
DW
1507 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1508
1509 atomic_inc(&sh->count);
1510
ac6b53b6 1511 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
d6f38f31 1512 to_addr_conv(sh, percpu));
a08abd8c
DW
1513 if (unlikely(count == 1))
1514 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1515 else
1516 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1517}
1518
ac6b53b6
DW
1519static void
1520ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1521 struct dma_async_tx_descriptor *tx)
1522{
1523 struct async_submit_ctl submit;
1524 struct page **blocks = percpu->scribble;
620125f2 1525 int count, i;
ac6b53b6
DW
1526
1527 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1528
620125f2
SL
1529 for (i = 0; i < sh->disks; i++) {
1530 if (sh->pd_idx == i || sh->qd_idx == i)
1531 continue;
1532 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1533 break;
1534 }
1535 if (i >= sh->disks) {
1536 atomic_inc(&sh->count);
620125f2
SL
1537 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1538 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1539 ops_complete_reconstruct(sh);
1540 return;
1541 }
1542
ac6b53b6
DW
1543 count = set_syndrome_sources(blocks, sh);
1544
1545 atomic_inc(&sh->count);
1546
1547 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1548 sh, to_addr_conv(sh, percpu));
1549 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
91c00924
DW
1550}
1551
1552static void ops_complete_check(void *stripe_head_ref)
1553{
1554 struct stripe_head *sh = stripe_head_ref;
91c00924 1555
e46b272b 1556 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1557 (unsigned long long)sh->sector);
1558
ecc65c9b 1559 sh->check_state = check_state_check_result;
91c00924
DW
1560 set_bit(STRIPE_HANDLE, &sh->state);
1561 release_stripe(sh);
1562}
1563
ac6b53b6 1564static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1565{
91c00924 1566 int disks = sh->disks;
ac6b53b6
DW
1567 int pd_idx = sh->pd_idx;
1568 int qd_idx = sh->qd_idx;
1569 struct page *xor_dest;
d6f38f31 1570 struct page **xor_srcs = percpu->scribble;
91c00924 1571 struct dma_async_tx_descriptor *tx;
a08abd8c 1572 struct async_submit_ctl submit;
ac6b53b6
DW
1573 int count;
1574 int i;
91c00924 1575
e46b272b 1576 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1577 (unsigned long long)sh->sector);
1578
ac6b53b6
DW
1579 count = 0;
1580 xor_dest = sh->dev[pd_idx].page;
1581 xor_srcs[count++] = xor_dest;
91c00924 1582 for (i = disks; i--; ) {
ac6b53b6
DW
1583 if (i == pd_idx || i == qd_idx)
1584 continue;
1585 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1586 }
1587
d6f38f31
DW
1588 init_async_submit(&submit, 0, NULL, NULL, NULL,
1589 to_addr_conv(sh, percpu));
099f53cb 1590 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1591 &sh->ops.zero_sum_result, &submit);
91c00924 1592
91c00924 1593 atomic_inc(&sh->count);
a08abd8c
DW
1594 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1595 tx = async_trigger_callback(&submit);
91c00924
DW
1596}
1597
ac6b53b6
DW
1598static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1599{
1600 struct page **srcs = percpu->scribble;
1601 struct async_submit_ctl submit;
1602 int count;
1603
1604 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1605 (unsigned long long)sh->sector, checkp);
1606
1607 count = set_syndrome_sources(srcs, sh);
1608 if (!checkp)
1609 srcs[count] = NULL;
91c00924 1610
91c00924 1611 atomic_inc(&sh->count);
ac6b53b6
DW
1612 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1613 sh, to_addr_conv(sh, percpu));
1614 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1615 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1616}
1617
51acbcec 1618static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1619{
1620 int overlap_clear = 0, i, disks = sh->disks;
1621 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1622 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1623 int level = conf->level;
d6f38f31
DW
1624 struct raid5_percpu *percpu;
1625 unsigned long cpu;
91c00924 1626
d6f38f31
DW
1627 cpu = get_cpu();
1628 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1629 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1630 ops_run_biofill(sh);
1631 overlap_clear++;
1632 }
1633
7b3a871e 1634 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1635 if (level < 6)
1636 tx = ops_run_compute5(sh, percpu);
1637 else {
1638 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1639 tx = ops_run_compute6_1(sh, percpu);
1640 else
1641 tx = ops_run_compute6_2(sh, percpu);
1642 }
1643 /* terminate the chain if reconstruct is not set to be run */
1644 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1645 async_tx_ack(tx);
1646 }
91c00924 1647
600aa109 1648 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 1649 tx = ops_run_prexor(sh, percpu, tx);
91c00924 1650
600aa109 1651 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1652 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1653 overlap_clear++;
1654 }
1655
ac6b53b6
DW
1656 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1657 if (level < 6)
1658 ops_run_reconstruct5(sh, percpu, tx);
1659 else
1660 ops_run_reconstruct6(sh, percpu, tx);
1661 }
91c00924 1662
ac6b53b6
DW
1663 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1664 if (sh->check_state == check_state_run)
1665 ops_run_check_p(sh, percpu);
1666 else if (sh->check_state == check_state_run_q)
1667 ops_run_check_pq(sh, percpu, 0);
1668 else if (sh->check_state == check_state_run_pq)
1669 ops_run_check_pq(sh, percpu, 1);
1670 else
1671 BUG();
1672 }
91c00924 1673
91c00924
DW
1674 if (overlap_clear)
1675 for (i = disks; i--; ) {
1676 struct r5dev *dev = &sh->dev[i];
1677 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1678 wake_up(&sh->raid_conf->wait_for_overlap);
1679 }
d6f38f31 1680 put_cpu();
91c00924
DW
1681}
1682
566c09c5 1683static int grow_one_stripe(struct r5conf *conf, int hash)
1da177e4
LT
1684{
1685 struct stripe_head *sh;
6ce32846 1686 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
3f294f4f
N
1687 if (!sh)
1688 return 0;
6ce32846 1689
3f294f4f 1690 sh->raid_conf = conf;
3f294f4f 1691
b17459c0
SL
1692 spin_lock_init(&sh->stripe_lock);
1693
e4e11e38
N
1694 if (grow_buffers(sh)) {
1695 shrink_buffers(sh);
3f294f4f
N
1696 kmem_cache_free(conf->slab_cache, sh);
1697 return 0;
1698 }
566c09c5 1699 sh->hash_lock_index = hash;
3f294f4f
N
1700 /* we just created an active stripe so... */
1701 atomic_set(&sh->count, 1);
1702 atomic_inc(&conf->active_stripes);
1703 INIT_LIST_HEAD(&sh->lru);
1704 release_stripe(sh);
1705 return 1;
1706}
1707
d1688a6d 1708static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 1709{
e18b890b 1710 struct kmem_cache *sc;
5e5e3e78 1711 int devs = max(conf->raid_disks, conf->previous_raid_disks);
566c09c5 1712 int hash;
1da177e4 1713
f4be6b43
N
1714 if (conf->mddev->gendisk)
1715 sprintf(conf->cache_name[0],
1716 "raid%d-%s", conf->level, mdname(conf->mddev));
1717 else
1718 sprintf(conf->cache_name[0],
1719 "raid%d-%p", conf->level, conf->mddev);
1720 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1721
ad01c9e3
N
1722 conf->active_name = 0;
1723 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 1724 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 1725 0, 0, NULL);
1da177e4
LT
1726 if (!sc)
1727 return 1;
1728 conf->slab_cache = sc;
ad01c9e3 1729 conf->pool_size = devs;
566c09c5
SL
1730 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1731 while (num--) {
1732 if (!grow_one_stripe(conf, hash))
1da177e4 1733 return 1;
566c09c5
SL
1734 conf->max_nr_stripes++;
1735 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1736 }
1da177e4
LT
1737 return 0;
1738}
29269553 1739
d6f38f31
DW
1740/**
1741 * scribble_len - return the required size of the scribble region
1742 * @num - total number of disks in the array
1743 *
1744 * The size must be enough to contain:
1745 * 1/ a struct page pointer for each device in the array +2
1746 * 2/ room to convert each entry in (1) to its corresponding dma
1747 * (dma_map_page()) or page (page_address()) address.
1748 *
1749 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1750 * calculate over all devices (not just the data blocks), using zeros in place
1751 * of the P and Q blocks.
1752 */
1753static size_t scribble_len(int num)
1754{
1755 size_t len;
1756
1757 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1758
1759 return len;
1760}
1761
d1688a6d 1762static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
1763{
1764 /* Make all the stripes able to hold 'newsize' devices.
1765 * New slots in each stripe get 'page' set to a new page.
1766 *
1767 * This happens in stages:
1768 * 1/ create a new kmem_cache and allocate the required number of
1769 * stripe_heads.
83f0d77a 1770 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
1771 * to the new stripe_heads. This will have the side effect of
1772 * freezing the array as once all stripe_heads have been collected,
1773 * no IO will be possible. Old stripe heads are freed once their
1774 * pages have been transferred over, and the old kmem_cache is
1775 * freed when all stripes are done.
1776 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1777 * we simple return a failre status - no need to clean anything up.
1778 * 4/ allocate new pages for the new slots in the new stripe_heads.
1779 * If this fails, we don't bother trying the shrink the
1780 * stripe_heads down again, we just leave them as they are.
1781 * As each stripe_head is processed the new one is released into
1782 * active service.
1783 *
1784 * Once step2 is started, we cannot afford to wait for a write,
1785 * so we use GFP_NOIO allocations.
1786 */
1787 struct stripe_head *osh, *nsh;
1788 LIST_HEAD(newstripes);
1789 struct disk_info *ndisks;
d6f38f31 1790 unsigned long cpu;
b5470dc5 1791 int err;
e18b890b 1792 struct kmem_cache *sc;
ad01c9e3 1793 int i;
566c09c5 1794 int hash, cnt;
ad01c9e3
N
1795
1796 if (newsize <= conf->pool_size)
1797 return 0; /* never bother to shrink */
1798
b5470dc5
DW
1799 err = md_allow_write(conf->mddev);
1800 if (err)
1801 return err;
2a2275d6 1802
ad01c9e3
N
1803 /* Step 1 */
1804 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1805 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1806 0, 0, NULL);
ad01c9e3
N
1807 if (!sc)
1808 return -ENOMEM;
1809
1810 for (i = conf->max_nr_stripes; i; i--) {
6ce32846 1811 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
ad01c9e3
N
1812 if (!nsh)
1813 break;
1814
ad01c9e3 1815 nsh->raid_conf = conf;
cb13ff69 1816 spin_lock_init(&nsh->stripe_lock);
ad01c9e3
N
1817
1818 list_add(&nsh->lru, &newstripes);
1819 }
1820 if (i) {
1821 /* didn't get enough, give up */
1822 while (!list_empty(&newstripes)) {
1823 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1824 list_del(&nsh->lru);
1825 kmem_cache_free(sc, nsh);
1826 }
1827 kmem_cache_destroy(sc);
1828 return -ENOMEM;
1829 }
1830 /* Step 2 - Must use GFP_NOIO now.
1831 * OK, we have enough stripes, start collecting inactive
1832 * stripes and copying them over
1833 */
566c09c5
SL
1834 hash = 0;
1835 cnt = 0;
ad01c9e3 1836 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5
SL
1837 lock_device_hash_lock(conf, hash);
1838 wait_event_cmd(conf->wait_for_stripe,
1839 !list_empty(conf->inactive_list + hash),
1840 unlock_device_hash_lock(conf, hash),
1841 lock_device_hash_lock(conf, hash));
1842 osh = get_free_stripe(conf, hash);
1843 unlock_device_hash_lock(conf, hash);
ad01c9e3
N
1844 atomic_set(&nsh->count, 1);
1845 for(i=0; i<conf->pool_size; i++)
1846 nsh->dev[i].page = osh->dev[i].page;
1847 for( ; i<newsize; i++)
1848 nsh->dev[i].page = NULL;
566c09c5 1849 nsh->hash_lock_index = hash;
ad01c9e3 1850 kmem_cache_free(conf->slab_cache, osh);
566c09c5
SL
1851 cnt++;
1852 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1853 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1854 hash++;
1855 cnt = 0;
1856 }
ad01c9e3
N
1857 }
1858 kmem_cache_destroy(conf->slab_cache);
1859
1860 /* Step 3.
1861 * At this point, we are holding all the stripes so the array
1862 * is completely stalled, so now is a good time to resize
d6f38f31 1863 * conf->disks and the scribble region
ad01c9e3
N
1864 */
1865 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1866 if (ndisks) {
1867 for (i=0; i<conf->raid_disks; i++)
1868 ndisks[i] = conf->disks[i];
1869 kfree(conf->disks);
1870 conf->disks = ndisks;
1871 } else
1872 err = -ENOMEM;
1873
d6f38f31
DW
1874 get_online_cpus();
1875 conf->scribble_len = scribble_len(newsize);
1876 for_each_present_cpu(cpu) {
1877 struct raid5_percpu *percpu;
1878 void *scribble;
1879
1880 percpu = per_cpu_ptr(conf->percpu, cpu);
1881 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1882
1883 if (scribble) {
1884 kfree(percpu->scribble);
1885 percpu->scribble = scribble;
1886 } else {
1887 err = -ENOMEM;
1888 break;
1889 }
1890 }
1891 put_online_cpus();
1892
ad01c9e3
N
1893 /* Step 4, return new stripes to service */
1894 while(!list_empty(&newstripes)) {
1895 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1896 list_del_init(&nsh->lru);
d6f38f31 1897
ad01c9e3
N
1898 for (i=conf->raid_disks; i < newsize; i++)
1899 if (nsh->dev[i].page == NULL) {
1900 struct page *p = alloc_page(GFP_NOIO);
1901 nsh->dev[i].page = p;
1902 if (!p)
1903 err = -ENOMEM;
1904 }
1905 release_stripe(nsh);
1906 }
1907 /* critical section pass, GFP_NOIO no longer needed */
1908
1909 conf->slab_cache = sc;
1910 conf->active_name = 1-conf->active_name;
1911 conf->pool_size = newsize;
1912 return err;
1913}
1da177e4 1914
566c09c5 1915static int drop_one_stripe(struct r5conf *conf, int hash)
1da177e4
LT
1916{
1917 struct stripe_head *sh;
1918
566c09c5
SL
1919 spin_lock_irq(conf->hash_locks + hash);
1920 sh = get_free_stripe(conf, hash);
1921 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
1922 if (!sh)
1923 return 0;
78bafebd 1924 BUG_ON(atomic_read(&sh->count));
e4e11e38 1925 shrink_buffers(sh);
3f294f4f
N
1926 kmem_cache_free(conf->slab_cache, sh);
1927 atomic_dec(&conf->active_stripes);
1928 return 1;
1929}
1930
d1688a6d 1931static void shrink_stripes(struct r5conf *conf)
3f294f4f 1932{
566c09c5
SL
1933 int hash;
1934 for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1935 while (drop_one_stripe(conf, hash))
1936 ;
3f294f4f 1937
29fc7e3e
N
1938 if (conf->slab_cache)
1939 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1940 conf->slab_cache = NULL;
1941}
1942
6712ecf8 1943static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1944{
99c0fb5f 1945 struct stripe_head *sh = bi->bi_private;
d1688a6d 1946 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 1947 int disks = sh->disks, i;
1da177e4 1948 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432 1949 char b[BDEVNAME_SIZE];
dd054fce 1950 struct md_rdev *rdev = NULL;
05616be5 1951 sector_t s;
1da177e4
LT
1952
1953 for (i=0 ; i<disks; i++)
1954 if (bi == &sh->dev[i].req)
1955 break;
1956
45b4233c
DW
1957 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1958 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1959 uptodate);
1960 if (i == disks) {
1961 BUG();
6712ecf8 1962 return;
1da177e4 1963 }
14a75d3e 1964 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
1965 /* If replacement finished while this request was outstanding,
1966 * 'replacement' might be NULL already.
1967 * In that case it moved down to 'rdev'.
1968 * rdev is not removed until all requests are finished.
1969 */
14a75d3e 1970 rdev = conf->disks[i].replacement;
dd054fce 1971 if (!rdev)
14a75d3e 1972 rdev = conf->disks[i].rdev;
1da177e4 1973
05616be5
N
1974 if (use_new_offset(conf, sh))
1975 s = sh->sector + rdev->new_data_offset;
1976 else
1977 s = sh->sector + rdev->data_offset;
1da177e4 1978 if (uptodate) {
1da177e4 1979 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1980 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
1981 /* Note that this cannot happen on a
1982 * replacement device. We just fail those on
1983 * any error
1984 */
8bda470e
CD
1985 printk_ratelimited(
1986 KERN_INFO
1987 "md/raid:%s: read error corrected"
1988 " (%lu sectors at %llu on %s)\n",
1989 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 1990 (unsigned long long)s,
8bda470e 1991 bdevname(rdev->bdev, b));
ddd5115f 1992 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
1993 clear_bit(R5_ReadError, &sh->dev[i].flags);
1994 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 1995 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1996 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1997
14a75d3e
N
1998 if (atomic_read(&rdev->read_errors))
1999 atomic_set(&rdev->read_errors, 0);
1da177e4 2000 } else {
14a75d3e 2001 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2002 int retry = 0;
2e8ac303 2003 int set_bad = 0;
d6950432 2004
1da177e4 2005 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2006 atomic_inc(&rdev->read_errors);
14a75d3e
N
2007 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2008 printk_ratelimited(
2009 KERN_WARNING
2010 "md/raid:%s: read error on replacement device "
2011 "(sector %llu on %s).\n",
2012 mdname(conf->mddev),
05616be5 2013 (unsigned long long)s,
14a75d3e 2014 bdn);
2e8ac303 2015 else if (conf->mddev->degraded >= conf->max_degraded) {
2016 set_bad = 1;
8bda470e
CD
2017 printk_ratelimited(
2018 KERN_WARNING
2019 "md/raid:%s: read error not correctable "
2020 "(sector %llu on %s).\n",
2021 mdname(conf->mddev),
05616be5 2022 (unsigned long long)s,
8bda470e 2023 bdn);
2e8ac303 2024 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2025 /* Oh, no!!! */
2e8ac303 2026 set_bad = 1;
8bda470e
CD
2027 printk_ratelimited(
2028 KERN_WARNING
2029 "md/raid:%s: read error NOT corrected!! "
2030 "(sector %llu on %s).\n",
2031 mdname(conf->mddev),
05616be5 2032 (unsigned long long)s,
8bda470e 2033 bdn);
2e8ac303 2034 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2035 > conf->max_nr_stripes)
14f8d26b 2036 printk(KERN_WARNING
0c55e022 2037 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2038 mdname(conf->mddev), bdn);
ba22dcbf
N
2039 else
2040 retry = 1;
edfa1f65
BY
2041 if (set_bad && test_bit(In_sync, &rdev->flags)
2042 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2043 retry = 1;
ba22dcbf 2044 if (retry)
3f9e7c14 2045 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2046 set_bit(R5_ReadError, &sh->dev[i].flags);
2047 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2048 } else
2049 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2050 else {
4e5314b5
N
2051 clear_bit(R5_ReadError, &sh->dev[i].flags);
2052 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2053 if (!(set_bad
2054 && test_bit(In_sync, &rdev->flags)
2055 && rdev_set_badblocks(
2056 rdev, sh->sector, STRIPE_SECTORS, 0)))
2057 md_error(conf->mddev, rdev);
ba22dcbf 2058 }
1da177e4 2059 }
14a75d3e 2060 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
2061 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2062 set_bit(STRIPE_HANDLE, &sh->state);
2063 release_stripe(sh);
1da177e4
LT
2064}
2065
d710e138 2066static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 2067{
99c0fb5f 2068 struct stripe_head *sh = bi->bi_private;
d1688a6d 2069 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2070 int disks = sh->disks, i;
977df362 2071 struct md_rdev *uninitialized_var(rdev);
1da177e4 2072 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
b84db560
N
2073 sector_t first_bad;
2074 int bad_sectors;
977df362 2075 int replacement = 0;
1da177e4 2076
977df362
N
2077 for (i = 0 ; i < disks; i++) {
2078 if (bi == &sh->dev[i].req) {
2079 rdev = conf->disks[i].rdev;
1da177e4 2080 break;
977df362
N
2081 }
2082 if (bi == &sh->dev[i].rreq) {
2083 rdev = conf->disks[i].replacement;
dd054fce
N
2084 if (rdev)
2085 replacement = 1;
2086 else
2087 /* rdev was removed and 'replacement'
2088 * replaced it. rdev is not removed
2089 * until all requests are finished.
2090 */
2091 rdev = conf->disks[i].rdev;
977df362
N
2092 break;
2093 }
2094 }
45b4233c 2095 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
2096 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2097 uptodate);
2098 if (i == disks) {
2099 BUG();
6712ecf8 2100 return;
1da177e4
LT
2101 }
2102
977df362
N
2103 if (replacement) {
2104 if (!uptodate)
2105 md_error(conf->mddev, rdev);
2106 else if (is_badblock(rdev, sh->sector,
2107 STRIPE_SECTORS,
2108 &first_bad, &bad_sectors))
2109 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2110 } else {
2111 if (!uptodate) {
9f97e4b1 2112 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2113 set_bit(WriteErrorSeen, &rdev->flags);
2114 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2115 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2116 set_bit(MD_RECOVERY_NEEDED,
2117 &rdev->mddev->recovery);
977df362
N
2118 } else if (is_badblock(rdev, sh->sector,
2119 STRIPE_SECTORS,
c0b32972 2120 &first_bad, &bad_sectors)) {
977df362 2121 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2122 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2123 /* That was a successful write so make
2124 * sure it looks like we already did
2125 * a re-write.
2126 */
2127 set_bit(R5_ReWrite, &sh->dev[i].flags);
2128 }
977df362
N
2129 }
2130 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2131
977df362
N
2132 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2133 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2134 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 2135 release_stripe(sh);
1da177e4
LT
2136}
2137
784052ec 2138static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 2139
784052ec 2140static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2141{
2142 struct r5dev *dev = &sh->dev[i];
2143
2144 bio_init(&dev->req);
2145 dev->req.bi_io_vec = &dev->vec;
2146 dev->req.bi_vcnt++;
2147 dev->req.bi_max_vecs++;
1da177e4 2148 dev->req.bi_private = sh;
995c4275 2149 dev->vec.bv_page = dev->page;
1da177e4 2150
977df362
N
2151 bio_init(&dev->rreq);
2152 dev->rreq.bi_io_vec = &dev->rvec;
2153 dev->rreq.bi_vcnt++;
2154 dev->rreq.bi_max_vecs++;
2155 dev->rreq.bi_private = sh;
2156 dev->rvec.bv_page = dev->page;
2157
1da177e4 2158 dev->flags = 0;
784052ec 2159 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
2160}
2161
fd01b88c 2162static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2163{
2164 char b[BDEVNAME_SIZE];
d1688a6d 2165 struct r5conf *conf = mddev->private;
908f4fbd 2166 unsigned long flags;
0c55e022 2167 pr_debug("raid456: error called\n");
1da177e4 2168
908f4fbd
N
2169 spin_lock_irqsave(&conf->device_lock, flags);
2170 clear_bit(In_sync, &rdev->flags);
2171 mddev->degraded = calc_degraded(conf);
2172 spin_unlock_irqrestore(&conf->device_lock, flags);
2173 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2174
de393cde 2175 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
2176 set_bit(Faulty, &rdev->flags);
2177 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2178 printk(KERN_ALERT
2179 "md/raid:%s: Disk failure on %s, disabling device.\n"
2180 "md/raid:%s: Operation continuing on %d devices.\n",
2181 mdname(mddev),
2182 bdevname(rdev->bdev, b),
2183 mdname(mddev),
2184 conf->raid_disks - mddev->degraded);
16a53ecc 2185}
1da177e4
LT
2186
2187/*
2188 * Input: a 'big' sector number,
2189 * Output: index of the data and parity disk, and the sector # in them.
2190 */
d1688a6d 2191static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
911d4ee8
N
2192 int previous, int *dd_idx,
2193 struct stripe_head *sh)
1da177e4 2194{
6e3b96ed 2195 sector_t stripe, stripe2;
35f2a591 2196 sector_t chunk_number;
1da177e4 2197 unsigned int chunk_offset;
911d4ee8 2198 int pd_idx, qd_idx;
67cc2b81 2199 int ddf_layout = 0;
1da177e4 2200 sector_t new_sector;
e183eaed
N
2201 int algorithm = previous ? conf->prev_algo
2202 : conf->algorithm;
09c9e5fa
AN
2203 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2204 : conf->chunk_sectors;
112bf897
N
2205 int raid_disks = previous ? conf->previous_raid_disks
2206 : conf->raid_disks;
2207 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2208
2209 /* First compute the information on this sector */
2210
2211 /*
2212 * Compute the chunk number and the sector offset inside the chunk
2213 */
2214 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2215 chunk_number = r_sector;
1da177e4
LT
2216
2217 /*
2218 * Compute the stripe number
2219 */
35f2a591
N
2220 stripe = chunk_number;
2221 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2222 stripe2 = stripe;
1da177e4
LT
2223 /*
2224 * Select the parity disk based on the user selected algorithm.
2225 */
84789554 2226 pd_idx = qd_idx = -1;
16a53ecc
N
2227 switch(conf->level) {
2228 case 4:
911d4ee8 2229 pd_idx = data_disks;
16a53ecc
N
2230 break;
2231 case 5:
e183eaed 2232 switch (algorithm) {
1da177e4 2233 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2234 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2235 if (*dd_idx >= pd_idx)
1da177e4
LT
2236 (*dd_idx)++;
2237 break;
2238 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2239 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2240 if (*dd_idx >= pd_idx)
1da177e4
LT
2241 (*dd_idx)++;
2242 break;
2243 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2244 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2245 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2246 break;
2247 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2248 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2249 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2250 break;
99c0fb5f
N
2251 case ALGORITHM_PARITY_0:
2252 pd_idx = 0;
2253 (*dd_idx)++;
2254 break;
2255 case ALGORITHM_PARITY_N:
2256 pd_idx = data_disks;
2257 break;
1da177e4 2258 default:
99c0fb5f 2259 BUG();
16a53ecc
N
2260 }
2261 break;
2262 case 6:
2263
e183eaed 2264 switch (algorithm) {
16a53ecc 2265 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2266 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2267 qd_idx = pd_idx + 1;
2268 if (pd_idx == raid_disks-1) {
99c0fb5f 2269 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2270 qd_idx = 0;
2271 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2272 (*dd_idx) += 2; /* D D P Q D */
2273 break;
2274 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2275 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2276 qd_idx = pd_idx + 1;
2277 if (pd_idx == raid_disks-1) {
99c0fb5f 2278 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2279 qd_idx = 0;
2280 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2281 (*dd_idx) += 2; /* D D P Q D */
2282 break;
2283 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2284 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2285 qd_idx = (pd_idx + 1) % raid_disks;
2286 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2287 break;
2288 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2289 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2290 qd_idx = (pd_idx + 1) % raid_disks;
2291 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2292 break;
99c0fb5f
N
2293
2294 case ALGORITHM_PARITY_0:
2295 pd_idx = 0;
2296 qd_idx = 1;
2297 (*dd_idx) += 2;
2298 break;
2299 case ALGORITHM_PARITY_N:
2300 pd_idx = data_disks;
2301 qd_idx = data_disks + 1;
2302 break;
2303
2304 case ALGORITHM_ROTATING_ZERO_RESTART:
2305 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2306 * of blocks for computing Q is different.
2307 */
6e3b96ed 2308 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2309 qd_idx = pd_idx + 1;
2310 if (pd_idx == raid_disks-1) {
2311 (*dd_idx)++; /* Q D D D P */
2312 qd_idx = 0;
2313 } else if (*dd_idx >= pd_idx)
2314 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2315 ddf_layout = 1;
99c0fb5f
N
2316 break;
2317
2318 case ALGORITHM_ROTATING_N_RESTART:
2319 /* Same a left_asymmetric, by first stripe is
2320 * D D D P Q rather than
2321 * Q D D D P
2322 */
6e3b96ed
N
2323 stripe2 += 1;
2324 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2325 qd_idx = pd_idx + 1;
2326 if (pd_idx == raid_disks-1) {
2327 (*dd_idx)++; /* Q D D D P */
2328 qd_idx = 0;
2329 } else if (*dd_idx >= pd_idx)
2330 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2331 ddf_layout = 1;
99c0fb5f
N
2332 break;
2333
2334 case ALGORITHM_ROTATING_N_CONTINUE:
2335 /* Same as left_symmetric but Q is before P */
6e3b96ed 2336 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2337 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2338 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2339 ddf_layout = 1;
99c0fb5f
N
2340 break;
2341
2342 case ALGORITHM_LEFT_ASYMMETRIC_6:
2343 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2344 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2345 if (*dd_idx >= pd_idx)
2346 (*dd_idx)++;
2347 qd_idx = raid_disks - 1;
2348 break;
2349
2350 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2351 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2352 if (*dd_idx >= pd_idx)
2353 (*dd_idx)++;
2354 qd_idx = raid_disks - 1;
2355 break;
2356
2357 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2358 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2359 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2360 qd_idx = raid_disks - 1;
2361 break;
2362
2363 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2364 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2365 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2366 qd_idx = raid_disks - 1;
2367 break;
2368
2369 case ALGORITHM_PARITY_0_6:
2370 pd_idx = 0;
2371 (*dd_idx)++;
2372 qd_idx = raid_disks - 1;
2373 break;
2374
16a53ecc 2375 default:
99c0fb5f 2376 BUG();
16a53ecc
N
2377 }
2378 break;
1da177e4
LT
2379 }
2380
911d4ee8
N
2381 if (sh) {
2382 sh->pd_idx = pd_idx;
2383 sh->qd_idx = qd_idx;
67cc2b81 2384 sh->ddf_layout = ddf_layout;
911d4ee8 2385 }
1da177e4
LT
2386 /*
2387 * Finally, compute the new sector number
2388 */
2389 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2390 return new_sector;
2391}
2392
2393
784052ec 2394static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2395{
d1688a6d 2396 struct r5conf *conf = sh->raid_conf;
b875e531
N
2397 int raid_disks = sh->disks;
2398 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2399 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2400 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2401 : conf->chunk_sectors;
e183eaed
N
2402 int algorithm = previous ? conf->prev_algo
2403 : conf->algorithm;
1da177e4
LT
2404 sector_t stripe;
2405 int chunk_offset;
35f2a591
N
2406 sector_t chunk_number;
2407 int dummy1, dd_idx = i;
1da177e4 2408 sector_t r_sector;
911d4ee8 2409 struct stripe_head sh2;
1da177e4 2410
16a53ecc 2411
1da177e4
LT
2412 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2413 stripe = new_sector;
1da177e4 2414
16a53ecc
N
2415 if (i == sh->pd_idx)
2416 return 0;
2417 switch(conf->level) {
2418 case 4: break;
2419 case 5:
e183eaed 2420 switch (algorithm) {
1da177e4
LT
2421 case ALGORITHM_LEFT_ASYMMETRIC:
2422 case ALGORITHM_RIGHT_ASYMMETRIC:
2423 if (i > sh->pd_idx)
2424 i--;
2425 break;
2426 case ALGORITHM_LEFT_SYMMETRIC:
2427 case ALGORITHM_RIGHT_SYMMETRIC:
2428 if (i < sh->pd_idx)
2429 i += raid_disks;
2430 i -= (sh->pd_idx + 1);
2431 break;
99c0fb5f
N
2432 case ALGORITHM_PARITY_0:
2433 i -= 1;
2434 break;
2435 case ALGORITHM_PARITY_N:
2436 break;
1da177e4 2437 default:
99c0fb5f 2438 BUG();
16a53ecc
N
2439 }
2440 break;
2441 case 6:
d0dabf7e 2442 if (i == sh->qd_idx)
16a53ecc 2443 return 0; /* It is the Q disk */
e183eaed 2444 switch (algorithm) {
16a53ecc
N
2445 case ALGORITHM_LEFT_ASYMMETRIC:
2446 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2447 case ALGORITHM_ROTATING_ZERO_RESTART:
2448 case ALGORITHM_ROTATING_N_RESTART:
2449 if (sh->pd_idx == raid_disks-1)
2450 i--; /* Q D D D P */
16a53ecc
N
2451 else if (i > sh->pd_idx)
2452 i -= 2; /* D D P Q D */
2453 break;
2454 case ALGORITHM_LEFT_SYMMETRIC:
2455 case ALGORITHM_RIGHT_SYMMETRIC:
2456 if (sh->pd_idx == raid_disks-1)
2457 i--; /* Q D D D P */
2458 else {
2459 /* D D P Q D */
2460 if (i < sh->pd_idx)
2461 i += raid_disks;
2462 i -= (sh->pd_idx + 2);
2463 }
2464 break;
99c0fb5f
N
2465 case ALGORITHM_PARITY_0:
2466 i -= 2;
2467 break;
2468 case ALGORITHM_PARITY_N:
2469 break;
2470 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2471 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2472 if (sh->pd_idx == 0)
2473 i--; /* P D D D Q */
e4424fee
N
2474 else {
2475 /* D D Q P D */
2476 if (i < sh->pd_idx)
2477 i += raid_disks;
2478 i -= (sh->pd_idx + 1);
2479 }
99c0fb5f
N
2480 break;
2481 case ALGORITHM_LEFT_ASYMMETRIC_6:
2482 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2483 if (i > sh->pd_idx)
2484 i--;
2485 break;
2486 case ALGORITHM_LEFT_SYMMETRIC_6:
2487 case ALGORITHM_RIGHT_SYMMETRIC_6:
2488 if (i < sh->pd_idx)
2489 i += data_disks + 1;
2490 i -= (sh->pd_idx + 1);
2491 break;
2492 case ALGORITHM_PARITY_0_6:
2493 i -= 1;
2494 break;
16a53ecc 2495 default:
99c0fb5f 2496 BUG();
16a53ecc
N
2497 }
2498 break;
1da177e4
LT
2499 }
2500
2501 chunk_number = stripe * data_disks + i;
35f2a591 2502 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2503
112bf897 2504 check = raid5_compute_sector(conf, r_sector,
784052ec 2505 previous, &dummy1, &sh2);
911d4ee8
N
2506 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2507 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2508 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2509 mdname(conf->mddev));
1da177e4
LT
2510 return 0;
2511 }
2512 return r_sector;
2513}
2514
2515
600aa109 2516static void
c0f7bddb 2517schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2518 int rcw, int expand)
e33129d8
DW
2519{
2520 int i, pd_idx = sh->pd_idx, disks = sh->disks;
d1688a6d 2521 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2522 int level = conf->level;
e33129d8
DW
2523
2524 if (rcw) {
e33129d8
DW
2525
2526 for (i = disks; i--; ) {
2527 struct r5dev *dev = &sh->dev[i];
2528
2529 if (dev->towrite) {
2530 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2531 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2532 if (!expand)
2533 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2534 s->locked++;
e33129d8
DW
2535 }
2536 }
ce7d363a
N
2537 /* if we are not expanding this is a proper write request, and
2538 * there will be bios with new data to be drained into the
2539 * stripe cache
2540 */
2541 if (!expand) {
2542 if (!s->locked)
2543 /* False alarm, nothing to do */
2544 return;
2545 sh->reconstruct_state = reconstruct_state_drain_run;
2546 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2547 } else
2548 sh->reconstruct_state = reconstruct_state_run;
2549
2550 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2551
c0f7bddb 2552 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2553 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2554 atomic_inc(&conf->pending_full_writes);
e33129d8 2555 } else {
c0f7bddb 2556 BUG_ON(level == 6);
e33129d8
DW
2557 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2558 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2559
e33129d8
DW
2560 for (i = disks; i--; ) {
2561 struct r5dev *dev = &sh->dev[i];
2562 if (i == pd_idx)
2563 continue;
2564
e33129d8
DW
2565 if (dev->towrite &&
2566 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2567 test_bit(R5_Wantcompute, &dev->flags))) {
2568 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2569 set_bit(R5_LOCKED, &dev->flags);
2570 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2571 s->locked++;
e33129d8
DW
2572 }
2573 }
ce7d363a
N
2574 if (!s->locked)
2575 /* False alarm - nothing to do */
2576 return;
2577 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2578 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2579 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2580 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2581 }
2582
c0f7bddb 2583 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2584 * are in flight
2585 */
2586 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2587 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2588 s->locked++;
e33129d8 2589
c0f7bddb
YT
2590 if (level == 6) {
2591 int qd_idx = sh->qd_idx;
2592 struct r5dev *dev = &sh->dev[qd_idx];
2593
2594 set_bit(R5_LOCKED, &dev->flags);
2595 clear_bit(R5_UPTODATE, &dev->flags);
2596 s->locked++;
2597 }
2598
600aa109 2599 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2600 __func__, (unsigned long long)sh->sector,
600aa109 2601 s->locked, s->ops_request);
e33129d8 2602}
16a53ecc 2603
1da177e4
LT
2604/*
2605 * Each stripe/dev can have one or more bion attached.
16a53ecc 2606 * toread/towrite point to the first in a chain.
1da177e4
LT
2607 * The bi_next chain must be in order.
2608 */
2609static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2610{
2611 struct bio **bip;
d1688a6d 2612 struct r5conf *conf = sh->raid_conf;
72626685 2613 int firstwrite=0;
1da177e4 2614
cbe47ec5 2615 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 2616 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
2617 (unsigned long long)sh->sector);
2618
b17459c0
SL
2619 /*
2620 * If several bio share a stripe. The bio bi_phys_segments acts as a
2621 * reference count to avoid race. The reference count should already be
2622 * increased before this function is called (for example, in
2623 * make_request()), so other bio sharing this stripe will not free the
2624 * stripe. If a stripe is owned by one stripe, the stripe lock will
2625 * protect it.
2626 */
2627 spin_lock_irq(&sh->stripe_lock);
72626685 2628 if (forwrite) {
1da177e4 2629 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 2630 if (*bip == NULL)
72626685
N
2631 firstwrite = 1;
2632 } else
1da177e4 2633 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
2634 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2635 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
2636 goto overlap;
2637 bip = & (*bip)->bi_next;
2638 }
4f024f37 2639 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
2640 goto overlap;
2641
78bafebd 2642 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2643 if (*bip)
2644 bi->bi_next = *bip;
2645 *bip = bi;
e7836bd6 2646 raid5_inc_bi_active_stripes(bi);
72626685 2647
1da177e4
LT
2648 if (forwrite) {
2649 /* check if page is covered */
2650 sector_t sector = sh->dev[dd_idx].sector;
2651 for (bi=sh->dev[dd_idx].towrite;
2652 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 2653 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 2654 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
2655 if (bio_end_sector(bi) >= sector)
2656 sector = bio_end_sector(bi);
1da177e4
LT
2657 }
2658 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2659 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2660 }
cbe47ec5
N
2661
2662 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 2663 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5 2664 (unsigned long long)sh->sector, dd_idx);
b97390ae 2665 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
2666
2667 if (conf->mddev->bitmap && firstwrite) {
2668 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2669 STRIPE_SECTORS, 0);
2670 sh->bm_seq = conf->seq_flush+1;
2671 set_bit(STRIPE_BIT_DELAY, &sh->state);
2672 }
1da177e4
LT
2673 return 1;
2674
2675 overlap:
2676 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 2677 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
2678 return 0;
2679}
2680
d1688a6d 2681static void end_reshape(struct r5conf *conf);
29269553 2682
d1688a6d 2683static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 2684 struct stripe_head *sh)
ccfcc3c1 2685{
784052ec 2686 int sectors_per_chunk =
09c9e5fa 2687 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 2688 int dd_idx;
2d2063ce 2689 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2690 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2691
112bf897
N
2692 raid5_compute_sector(conf,
2693 stripe * (disks - conf->max_degraded)
b875e531 2694 *sectors_per_chunk + chunk_offset,
112bf897 2695 previous,
911d4ee8 2696 &dd_idx, sh);
ccfcc3c1
N
2697}
2698
a4456856 2699static void
d1688a6d 2700handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
2701 struct stripe_head_state *s, int disks,
2702 struct bio **return_bi)
2703{
2704 int i;
2705 for (i = disks; i--; ) {
2706 struct bio *bi;
2707 int bitmap_end = 0;
2708
2709 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 2710 struct md_rdev *rdev;
a4456856
DW
2711 rcu_read_lock();
2712 rdev = rcu_dereference(conf->disks[i].rdev);
2713 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
2714 atomic_inc(&rdev->nr_pending);
2715 else
2716 rdev = NULL;
a4456856 2717 rcu_read_unlock();
7f0da59b
N
2718 if (rdev) {
2719 if (!rdev_set_badblocks(
2720 rdev,
2721 sh->sector,
2722 STRIPE_SECTORS, 0))
2723 md_error(conf->mddev, rdev);
2724 rdev_dec_pending(rdev, conf->mddev);
2725 }
a4456856 2726 }
b17459c0 2727 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
2728 /* fail all writes first */
2729 bi = sh->dev[i].towrite;
2730 sh->dev[i].towrite = NULL;
b17459c0 2731 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 2732 if (bi)
a4456856 2733 bitmap_end = 1;
a4456856
DW
2734
2735 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2736 wake_up(&conf->wait_for_overlap);
2737
4f024f37 2738 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
2739 sh->dev[i].sector + STRIPE_SECTORS) {
2740 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2741 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 2742 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
2743 md_write_end(conf->mddev);
2744 bi->bi_next = *return_bi;
2745 *return_bi = bi;
2746 }
2747 bi = nextbi;
2748 }
7eaf7e8e
SL
2749 if (bitmap_end)
2750 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2751 STRIPE_SECTORS, 0, 0);
2752 bitmap_end = 0;
a4456856
DW
2753 /* and fail all 'written' */
2754 bi = sh->dev[i].written;
2755 sh->dev[i].written = NULL;
2756 if (bi) bitmap_end = 1;
4f024f37 2757 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
2758 sh->dev[i].sector + STRIPE_SECTORS) {
2759 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2760 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 2761 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
2762 md_write_end(conf->mddev);
2763 bi->bi_next = *return_bi;
2764 *return_bi = bi;
2765 }
2766 bi = bi2;
2767 }
2768
b5e98d65
DW
2769 /* fail any reads if this device is non-operational and
2770 * the data has not reached the cache yet.
2771 */
2772 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2773 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2774 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 2775 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
2776 bi = sh->dev[i].toread;
2777 sh->dev[i].toread = NULL;
143c4d05 2778 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
2779 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2780 wake_up(&conf->wait_for_overlap);
4f024f37 2781 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
2782 sh->dev[i].sector + STRIPE_SECTORS) {
2783 struct bio *nextbi =
2784 r5_next_bio(bi, sh->dev[i].sector);
2785 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 2786 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
2787 bi->bi_next = *return_bi;
2788 *return_bi = bi;
2789 }
2790 bi = nextbi;
2791 }
2792 }
a4456856
DW
2793 if (bitmap_end)
2794 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2795 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
2796 /* If we were in the middle of a write the parity block might
2797 * still be locked - so just clear all R5_LOCKED flags
2798 */
2799 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856
DW
2800 }
2801
8b3e6cdc
DW
2802 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2803 if (atomic_dec_and_test(&conf->pending_full_writes))
2804 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2805}
2806
7f0da59b 2807static void
d1688a6d 2808handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
2809 struct stripe_head_state *s)
2810{
2811 int abort = 0;
2812 int i;
2813
7f0da59b 2814 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
2815 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2816 wake_up(&conf->wait_for_overlap);
7f0da59b 2817 s->syncing = 0;
9a3e1101 2818 s->replacing = 0;
7f0da59b 2819 /* There is nothing more to do for sync/check/repair.
18b9837e
N
2820 * Don't even need to abort as that is handled elsewhere
2821 * if needed, and not always wanted e.g. if there is a known
2822 * bad block here.
9a3e1101 2823 * For recover/replace we need to record a bad block on all
7f0da59b
N
2824 * non-sync devices, or abort the recovery
2825 */
18b9837e
N
2826 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2827 /* During recovery devices cannot be removed, so
2828 * locking and refcounting of rdevs is not needed
2829 */
2830 for (i = 0; i < conf->raid_disks; i++) {
2831 struct md_rdev *rdev = conf->disks[i].rdev;
2832 if (rdev
2833 && !test_bit(Faulty, &rdev->flags)
2834 && !test_bit(In_sync, &rdev->flags)
2835 && !rdev_set_badblocks(rdev, sh->sector,
2836 STRIPE_SECTORS, 0))
2837 abort = 1;
2838 rdev = conf->disks[i].replacement;
2839 if (rdev
2840 && !test_bit(Faulty, &rdev->flags)
2841 && !test_bit(In_sync, &rdev->flags)
2842 && !rdev_set_badblocks(rdev, sh->sector,
2843 STRIPE_SECTORS, 0))
2844 abort = 1;
2845 }
2846 if (abort)
2847 conf->recovery_disabled =
2848 conf->mddev->recovery_disabled;
7f0da59b 2849 }
18b9837e 2850 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
2851}
2852
9a3e1101
N
2853static int want_replace(struct stripe_head *sh, int disk_idx)
2854{
2855 struct md_rdev *rdev;
2856 int rv = 0;
2857 /* Doing recovery so rcu locking not required */
2858 rdev = sh->raid_conf->disks[disk_idx].replacement;
2859 if (rdev
2860 && !test_bit(Faulty, &rdev->flags)
2861 && !test_bit(In_sync, &rdev->flags)
2862 && (rdev->recovery_offset <= sh->sector
2863 || rdev->mddev->recovery_cp <= sh->sector))
2864 rv = 1;
2865
2866 return rv;
2867}
2868
93b3dbce 2869/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
2870 * to be read or computed to satisfy a request.
2871 *
2872 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 2873 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 2874 */
93b3dbce
N
2875static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2876 int disk_idx, int disks)
a4456856 2877{
5599becc 2878 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
2879 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2880 &sh->dev[s->failed_num[1]] };
5599becc 2881
93b3dbce 2882 /* is the data in this block needed, and can we get it? */
5599becc
YT
2883 if (!test_bit(R5_LOCKED, &dev->flags) &&
2884 !test_bit(R5_UPTODATE, &dev->flags) &&
2885 (dev->toread ||
2886 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2887 s->syncing || s->expanding ||
9a3e1101 2888 (s->replacing && want_replace(sh, disk_idx)) ||
5d35e09c
N
2889 (s->failed >= 1 && fdev[0]->toread) ||
2890 (s->failed >= 2 && fdev[1]->toread) ||
93b3dbce 2891 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
67f45548 2892 (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) &&
93b3dbce 2893 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
67f45548
N
2894 (sh->raid_conf->level == 6 && s->failed && s->to_write &&
2895 s->to_write < sh->raid_conf->raid_disks - 2 &&
2896 (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))))) {
5599becc
YT
2897 /* we would like to get this block, possibly by computing it,
2898 * otherwise read it if the backing disk is insync
2899 */
2900 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2901 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2902 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
2903 (s->failed && (disk_idx == s->failed_num[0] ||
2904 disk_idx == s->failed_num[1]))) {
5599becc
YT
2905 /* have disk failed, and we're requested to fetch it;
2906 * do compute it
a4456856 2907 */
5599becc
YT
2908 pr_debug("Computing stripe %llu block %d\n",
2909 (unsigned long long)sh->sector, disk_idx);
2910 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2911 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2912 set_bit(R5_Wantcompute, &dev->flags);
2913 sh->ops.target = disk_idx;
2914 sh->ops.target2 = -1; /* no 2nd target */
2915 s->req_compute = 1;
93b3dbce
N
2916 /* Careful: from this point on 'uptodate' is in the eye
2917 * of raid_run_ops which services 'compute' operations
2918 * before writes. R5_Wantcompute flags a block that will
2919 * be R5_UPTODATE by the time it is needed for a
2920 * subsequent operation.
2921 */
5599becc
YT
2922 s->uptodate++;
2923 return 1;
2924 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2925 /* Computing 2-failure is *very* expensive; only
2926 * do it if failed >= 2
2927 */
2928 int other;
2929 for (other = disks; other--; ) {
2930 if (other == disk_idx)
2931 continue;
2932 if (!test_bit(R5_UPTODATE,
2933 &sh->dev[other].flags))
2934 break;
a4456856 2935 }
5599becc
YT
2936 BUG_ON(other < 0);
2937 pr_debug("Computing stripe %llu blocks %d,%d\n",
2938 (unsigned long long)sh->sector,
2939 disk_idx, other);
2940 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2941 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2942 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2943 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2944 sh->ops.target = disk_idx;
2945 sh->ops.target2 = other;
2946 s->uptodate += 2;
2947 s->req_compute = 1;
2948 return 1;
2949 } else if (test_bit(R5_Insync, &dev->flags)) {
2950 set_bit(R5_LOCKED, &dev->flags);
2951 set_bit(R5_Wantread, &dev->flags);
2952 s->locked++;
2953 pr_debug("Reading block %d (sync=%d)\n",
2954 disk_idx, s->syncing);
a4456856
DW
2955 }
2956 }
5599becc
YT
2957
2958 return 0;
2959}
2960
2961/**
93b3dbce 2962 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 2963 */
93b3dbce
N
2964static void handle_stripe_fill(struct stripe_head *sh,
2965 struct stripe_head_state *s,
2966 int disks)
5599becc
YT
2967{
2968 int i;
2969
2970 /* look for blocks to read/compute, skip this if a compute
2971 * is already in flight, or if the stripe contents are in the
2972 * midst of changing due to a write
2973 */
2974 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2975 !sh->reconstruct_state)
2976 for (i = disks; i--; )
93b3dbce 2977 if (fetch_block(sh, s, i, disks))
5599becc 2978 break;
a4456856
DW
2979 set_bit(STRIPE_HANDLE, &sh->state);
2980}
2981
2982
1fe797e6 2983/* handle_stripe_clean_event
a4456856
DW
2984 * any written block on an uptodate or failed drive can be returned.
2985 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2986 * never LOCKED, so we don't need to test 'failed' directly.
2987 */
d1688a6d 2988static void handle_stripe_clean_event(struct r5conf *conf,
a4456856
DW
2989 struct stripe_head *sh, int disks, struct bio **return_bi)
2990{
2991 int i;
2992 struct r5dev *dev;
f8dfcffd 2993 int discard_pending = 0;
a4456856
DW
2994
2995 for (i = disks; i--; )
2996 if (sh->dev[i].written) {
2997 dev = &sh->dev[i];
2998 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 2999 (test_bit(R5_UPTODATE, &dev->flags) ||
ca64cae9 3000 test_bit(R5_Discard, &dev->flags))) {
a4456856
DW
3001 /* We can return any write requests */
3002 struct bio *wbi, *wbi2;
45b4233c 3003 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3004 if (test_and_clear_bit(R5_Discard, &dev->flags))
3005 clear_bit(R5_UPTODATE, &dev->flags);
a4456856
DW
3006 wbi = dev->written;
3007 dev->written = NULL;
4f024f37 3008 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3009 dev->sector + STRIPE_SECTORS) {
3010 wbi2 = r5_next_bio(wbi, dev->sector);
e7836bd6 3011 if (!raid5_dec_bi_active_stripes(wbi)) {
a4456856
DW
3012 md_write_end(conf->mddev);
3013 wbi->bi_next = *return_bi;
3014 *return_bi = wbi;
3015 }
3016 wbi = wbi2;
3017 }
7eaf7e8e
SL
3018 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3019 STRIPE_SECTORS,
a4456856 3020 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3021 0);
f8dfcffd
N
3022 } else if (test_bit(R5_Discard, &dev->flags))
3023 discard_pending = 1;
3024 }
3025 if (!discard_pending &&
3026 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3027 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3028 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3029 if (sh->qd_idx >= 0) {
3030 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3031 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3032 }
3033 /* now that discard is done we can proceed with any sync */
3034 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3035 /*
3036 * SCSI discard will change some bio fields and the stripe has
3037 * no updated data, so remove it from hash list and the stripe
3038 * will be reinitialized
3039 */
3040 spin_lock_irq(&conf->device_lock);
3041 remove_hash(sh);
3042 spin_unlock_irq(&conf->device_lock);
f8dfcffd
N
3043 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3044 set_bit(STRIPE_HANDLE, &sh->state);
3045
3046 }
8b3e6cdc
DW
3047
3048 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3049 if (atomic_dec_and_test(&conf->pending_full_writes))
3050 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3051}
3052
d1688a6d 3053static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
3054 struct stripe_head *sh,
3055 struct stripe_head_state *s,
3056 int disks)
a4456856
DW
3057{
3058 int rmw = 0, rcw = 0, i;
a7854487
AL
3059 sector_t recovery_cp = conf->mddev->recovery_cp;
3060
3061 /* RAID6 requires 'rcw' in current implementation.
3062 * Otherwise, check whether resync is now happening or should start.
3063 * If yes, then the array is dirty (after unclean shutdown or
3064 * initial creation), so parity in some stripes might be inconsistent.
3065 * In this case, we need to always do reconstruct-write, to ensure
3066 * that in case of drive failure or read-error correction, we
3067 * generate correct data from the parity.
3068 */
3069 if (conf->max_degraded == 2 ||
3070 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3071 /* Calculate the real rcw later - for now make it
c8ac1803
N
3072 * look like rcw is cheaper
3073 */
3074 rcw = 1; rmw = 2;
a7854487
AL
3075 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3076 conf->max_degraded, (unsigned long long)recovery_cp,
3077 (unsigned long long)sh->sector);
c8ac1803 3078 } else for (i = disks; i--; ) {
a4456856
DW
3079 /* would I have to read this buffer for read_modify_write */
3080 struct r5dev *dev = &sh->dev[i];
3081 if ((dev->towrite || i == sh->pd_idx) &&
3082 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3083 !(test_bit(R5_UPTODATE, &dev->flags) ||
3084 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3085 if (test_bit(R5_Insync, &dev->flags))
3086 rmw++;
3087 else
3088 rmw += 2*disks; /* cannot read it */
3089 }
3090 /* Would I have to read this buffer for reconstruct_write */
3091 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3092 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3093 !(test_bit(R5_UPTODATE, &dev->flags) ||
3094 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3095 if (test_bit(R5_Insync, &dev->flags))
3096 rcw++;
a4456856
DW
3097 else
3098 rcw += 2*disks;
3099 }
3100 }
45b4233c 3101 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
3102 (unsigned long long)sh->sector, rmw, rcw);
3103 set_bit(STRIPE_HANDLE, &sh->state);
a9add5d9 3104 if (rmw < rcw && rmw > 0) {
a4456856 3105 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3106 if (conf->mddev->queue)
3107 blk_add_trace_msg(conf->mddev->queue,
3108 "raid5 rmw %llu %d",
3109 (unsigned long long)sh->sector, rmw);
a4456856
DW
3110 for (i = disks; i--; ) {
3111 struct r5dev *dev = &sh->dev[i];
3112 if ((dev->towrite || i == sh->pd_idx) &&
3113 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3114 !(test_bit(R5_UPTODATE, &dev->flags) ||
3115 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3116 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3117 if (test_bit(STRIPE_PREREAD_ACTIVE,
3118 &sh->state)) {
3119 pr_debug("Read_old block %d for r-m-w\n",
3120 i);
a4456856
DW
3121 set_bit(R5_LOCKED, &dev->flags);
3122 set_bit(R5_Wantread, &dev->flags);
3123 s->locked++;
3124 } else {
3125 set_bit(STRIPE_DELAYED, &sh->state);
3126 set_bit(STRIPE_HANDLE, &sh->state);
3127 }
3128 }
3129 }
a9add5d9 3130 }
c8ac1803 3131 if (rcw <= rmw && rcw > 0) {
a4456856 3132 /* want reconstruct write, but need to get some data */
a9add5d9 3133 int qread =0;
c8ac1803 3134 rcw = 0;
a4456856
DW
3135 for (i = disks; i--; ) {
3136 struct r5dev *dev = &sh->dev[i];
3137 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3138 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3139 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3140 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3141 test_bit(R5_Wantcompute, &dev->flags))) {
3142 rcw++;
67f45548
N
3143 if (test_bit(R5_Insync, &dev->flags) &&
3144 test_bit(STRIPE_PREREAD_ACTIVE,
3145 &sh->state)) {
45b4233c 3146 pr_debug("Read_old block "
a4456856
DW
3147 "%d for Reconstruct\n", i);
3148 set_bit(R5_LOCKED, &dev->flags);
3149 set_bit(R5_Wantread, &dev->flags);
3150 s->locked++;
a9add5d9 3151 qread++;
a4456856
DW
3152 } else {
3153 set_bit(STRIPE_DELAYED, &sh->state);
3154 set_bit(STRIPE_HANDLE, &sh->state);
3155 }
3156 }
3157 }
e3620a3a 3158 if (rcw && conf->mddev->queue)
a9add5d9
N
3159 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3160 (unsigned long long)sh->sector,
3161 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3162 }
a4456856
DW
3163 /* now if nothing is locked, and if we have enough data,
3164 * we can start a write request
3165 */
f38e1219
DW
3166 /* since handle_stripe can be called at any time we need to handle the
3167 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
3168 * subsequent call wants to start a write request. raid_run_ops only
3169 * handles the case where compute block and reconstruct are requested
f38e1219
DW
3170 * simultaneously. If this is not the case then new writes need to be
3171 * held off until the compute completes.
3172 */
976ea8d4
DW
3173 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3174 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3175 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 3176 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
3177}
3178
d1688a6d 3179static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3180 struct stripe_head_state *s, int disks)
3181{
ecc65c9b 3182 struct r5dev *dev = NULL;
bd2ab670 3183
a4456856 3184 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 3185
ecc65c9b
DW
3186 switch (sh->check_state) {
3187 case check_state_idle:
3188 /* start a new check operation if there are no failures */
bd2ab670 3189 if (s->failed == 0) {
bd2ab670 3190 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
3191 sh->check_state = check_state_run;
3192 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 3193 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 3194 s->uptodate--;
ecc65c9b 3195 break;
bd2ab670 3196 }
f2b3b44d 3197 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
3198 /* fall through */
3199 case check_state_compute_result:
3200 sh->check_state = check_state_idle;
3201 if (!dev)
3202 dev = &sh->dev[sh->pd_idx];
3203
3204 /* check that a write has not made the stripe insync */
3205 if (test_bit(STRIPE_INSYNC, &sh->state))
3206 break;
c8894419 3207
a4456856 3208 /* either failed parity check, or recovery is happening */
a4456856
DW
3209 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3210 BUG_ON(s->uptodate != disks);
3211
3212 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 3213 s->locked++;
a4456856 3214 set_bit(R5_Wantwrite, &dev->flags);
830ea016 3215
a4456856 3216 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 3217 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
3218 break;
3219 case check_state_run:
3220 break; /* we will be called again upon completion */
3221 case check_state_check_result:
3222 sh->check_state = check_state_idle;
3223
3224 /* if a failure occurred during the check operation, leave
3225 * STRIPE_INSYNC not set and let the stripe be handled again
3226 */
3227 if (s->failed)
3228 break;
3229
3230 /* handle a successful check operation, if parity is correct
3231 * we are done. Otherwise update the mismatch count and repair
3232 * parity if !MD_RECOVERY_CHECK
3233 */
ad283ea4 3234 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
3235 /* parity is correct (on disc,
3236 * not in buffer any more)
3237 */
3238 set_bit(STRIPE_INSYNC, &sh->state);
3239 else {
7f7583d4 3240 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
3241 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3242 /* don't try to repair!! */
3243 set_bit(STRIPE_INSYNC, &sh->state);
3244 else {
3245 sh->check_state = check_state_compute_run;
976ea8d4 3246 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
3247 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3248 set_bit(R5_Wantcompute,
3249 &sh->dev[sh->pd_idx].flags);
3250 sh->ops.target = sh->pd_idx;
ac6b53b6 3251 sh->ops.target2 = -1;
ecc65c9b
DW
3252 s->uptodate++;
3253 }
3254 }
3255 break;
3256 case check_state_compute_run:
3257 break;
3258 default:
3259 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3260 __func__, sh->check_state,
3261 (unsigned long long) sh->sector);
3262 BUG();
a4456856
DW
3263 }
3264}
3265
3266
d1688a6d 3267static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 3268 struct stripe_head_state *s,
f2b3b44d 3269 int disks)
a4456856 3270{
a4456856 3271 int pd_idx = sh->pd_idx;
34e04e87 3272 int qd_idx = sh->qd_idx;
d82dfee0 3273 struct r5dev *dev;
a4456856
DW
3274
3275 set_bit(STRIPE_HANDLE, &sh->state);
3276
3277 BUG_ON(s->failed > 2);
d82dfee0 3278
a4456856
DW
3279 /* Want to check and possibly repair P and Q.
3280 * However there could be one 'failed' device, in which
3281 * case we can only check one of them, possibly using the
3282 * other to generate missing data
3283 */
3284
d82dfee0
DW
3285 switch (sh->check_state) {
3286 case check_state_idle:
3287 /* start a new check operation if there are < 2 failures */
f2b3b44d 3288 if (s->failed == s->q_failed) {
d82dfee0 3289 /* The only possible failed device holds Q, so it
a4456856
DW
3290 * makes sense to check P (If anything else were failed,
3291 * we would have used P to recreate it).
3292 */
d82dfee0 3293 sh->check_state = check_state_run;
a4456856 3294 }
f2b3b44d 3295 if (!s->q_failed && s->failed < 2) {
d82dfee0 3296 /* Q is not failed, and we didn't use it to generate
a4456856
DW
3297 * anything, so it makes sense to check it
3298 */
d82dfee0
DW
3299 if (sh->check_state == check_state_run)
3300 sh->check_state = check_state_run_pq;
3301 else
3302 sh->check_state = check_state_run_q;
a4456856 3303 }
a4456856 3304
d82dfee0
DW
3305 /* discard potentially stale zero_sum_result */
3306 sh->ops.zero_sum_result = 0;
a4456856 3307
d82dfee0
DW
3308 if (sh->check_state == check_state_run) {
3309 /* async_xor_zero_sum destroys the contents of P */
3310 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3311 s->uptodate--;
a4456856 3312 }
d82dfee0
DW
3313 if (sh->check_state >= check_state_run &&
3314 sh->check_state <= check_state_run_pq) {
3315 /* async_syndrome_zero_sum preserves P and Q, so
3316 * no need to mark them !uptodate here
3317 */
3318 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3319 break;
a4456856
DW
3320 }
3321
d82dfee0
DW
3322 /* we have 2-disk failure */
3323 BUG_ON(s->failed != 2);
3324 /* fall through */
3325 case check_state_compute_result:
3326 sh->check_state = check_state_idle;
a4456856 3327
d82dfee0
DW
3328 /* check that a write has not made the stripe insync */
3329 if (test_bit(STRIPE_INSYNC, &sh->state))
3330 break;
a4456856
DW
3331
3332 /* now write out any block on a failed drive,
d82dfee0 3333 * or P or Q if they were recomputed
a4456856 3334 */
d82dfee0 3335 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 3336 if (s->failed == 2) {
f2b3b44d 3337 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
3338 s->locked++;
3339 set_bit(R5_LOCKED, &dev->flags);
3340 set_bit(R5_Wantwrite, &dev->flags);
3341 }
3342 if (s->failed >= 1) {
f2b3b44d 3343 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
3344 s->locked++;
3345 set_bit(R5_LOCKED, &dev->flags);
3346 set_bit(R5_Wantwrite, &dev->flags);
3347 }
d82dfee0 3348 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
3349 dev = &sh->dev[pd_idx];
3350 s->locked++;
3351 set_bit(R5_LOCKED, &dev->flags);
3352 set_bit(R5_Wantwrite, &dev->flags);
3353 }
d82dfee0 3354 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
3355 dev = &sh->dev[qd_idx];
3356 s->locked++;
3357 set_bit(R5_LOCKED, &dev->flags);
3358 set_bit(R5_Wantwrite, &dev->flags);
3359 }
3360 clear_bit(STRIPE_DEGRADED, &sh->state);
3361
3362 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
3363 break;
3364 case check_state_run:
3365 case check_state_run_q:
3366 case check_state_run_pq:
3367 break; /* we will be called again upon completion */
3368 case check_state_check_result:
3369 sh->check_state = check_state_idle;
3370
3371 /* handle a successful check operation, if parity is correct
3372 * we are done. Otherwise update the mismatch count and repair
3373 * parity if !MD_RECOVERY_CHECK
3374 */
3375 if (sh->ops.zero_sum_result == 0) {
3376 /* both parities are correct */
3377 if (!s->failed)
3378 set_bit(STRIPE_INSYNC, &sh->state);
3379 else {
3380 /* in contrast to the raid5 case we can validate
3381 * parity, but still have a failure to write
3382 * back
3383 */
3384 sh->check_state = check_state_compute_result;
3385 /* Returning at this point means that we may go
3386 * off and bring p and/or q uptodate again so
3387 * we make sure to check zero_sum_result again
3388 * to verify if p or q need writeback
3389 */
3390 }
3391 } else {
7f7583d4 3392 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
3393 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3394 /* don't try to repair!! */
3395 set_bit(STRIPE_INSYNC, &sh->state);
3396 else {
3397 int *target = &sh->ops.target;
3398
3399 sh->ops.target = -1;
3400 sh->ops.target2 = -1;
3401 sh->check_state = check_state_compute_run;
3402 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3403 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3404 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3405 set_bit(R5_Wantcompute,
3406 &sh->dev[pd_idx].flags);
3407 *target = pd_idx;
3408 target = &sh->ops.target2;
3409 s->uptodate++;
3410 }
3411 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3412 set_bit(R5_Wantcompute,
3413 &sh->dev[qd_idx].flags);
3414 *target = qd_idx;
3415 s->uptodate++;
3416 }
3417 }
3418 }
3419 break;
3420 case check_state_compute_run:
3421 break;
3422 default:
3423 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3424 __func__, sh->check_state,
3425 (unsigned long long) sh->sector);
3426 BUG();
a4456856
DW
3427 }
3428}
3429
d1688a6d 3430static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3431{
3432 int i;
3433
3434 /* We have read all the blocks in this stripe and now we need to
3435 * copy some of them into a target stripe for expand.
3436 */
f0a50d37 3437 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
3438 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3439 for (i = 0; i < sh->disks; i++)
34e04e87 3440 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3441 int dd_idx, j;
a4456856 3442 struct stripe_head *sh2;
a08abd8c 3443 struct async_submit_ctl submit;
a4456856 3444
784052ec 3445 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
3446 sector_t s = raid5_compute_sector(conf, bn, 0,
3447 &dd_idx, NULL);
a8c906ca 3448 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3449 if (sh2 == NULL)
3450 /* so far only the early blocks of this stripe
3451 * have been requested. When later blocks
3452 * get requested, we will try again
3453 */
3454 continue;
3455 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3456 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3457 /* must have already done this block */
3458 release_stripe(sh2);
3459 continue;
3460 }
f0a50d37
DW
3461
3462 /* place all the copies on one channel */
a08abd8c 3463 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3464 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3465 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3466 &submit);
f0a50d37 3467
a4456856
DW
3468 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3469 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3470 for (j = 0; j < conf->raid_disks; j++)
3471 if (j != sh2->pd_idx &&
86c374ba 3472 j != sh2->qd_idx &&
a4456856
DW
3473 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3474 break;
3475 if (j == conf->raid_disks) {
3476 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3477 set_bit(STRIPE_HANDLE, &sh2->state);
3478 }
3479 release_stripe(sh2);
f0a50d37 3480
a4456856 3481 }
a2e08551 3482 /* done submitting copies, wait for them to complete */
749586b7 3483 async_tx_quiesce(&tx);
a4456856 3484}
1da177e4
LT
3485
3486/*
3487 * handle_stripe - do things to a stripe.
3488 *
9a3e1101
N
3489 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3490 * state of various bits to see what needs to be done.
1da177e4 3491 * Possible results:
9a3e1101
N
3492 * return some read requests which now have data
3493 * return some write requests which are safely on storage
1da177e4
LT
3494 * schedule a read on some buffers
3495 * schedule a write of some buffers
3496 * return confirmation of parity correctness
3497 *
1da177e4 3498 */
a4456856 3499
acfe726b 3500static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 3501{
d1688a6d 3502 struct r5conf *conf = sh->raid_conf;
f416885e 3503 int disks = sh->disks;
474af965
N
3504 struct r5dev *dev;
3505 int i;
9a3e1101 3506 int do_recovery = 0;
1da177e4 3507
acfe726b
N
3508 memset(s, 0, sizeof(*s));
3509
acfe726b
N
3510 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3511 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3512 s->failed_num[0] = -1;
3513 s->failed_num[1] = -1;
1da177e4 3514
acfe726b 3515 /* Now to look around and see what can be done */
1da177e4 3516 rcu_read_lock();
16a53ecc 3517 for (i=disks; i--; ) {
3cb03002 3518 struct md_rdev *rdev;
31c176ec
N
3519 sector_t first_bad;
3520 int bad_sectors;
3521 int is_bad = 0;
acfe726b 3522
16a53ecc 3523 dev = &sh->dev[i];
1da177e4 3524
45b4233c 3525 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
3526 i, dev->flags,
3527 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
3528 /* maybe we can reply to a read
3529 *
3530 * new wantfill requests are only permitted while
3531 * ops_complete_biofill is guaranteed to be inactive
3532 */
3533 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3534 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3535 set_bit(R5_Wantfill, &dev->flags);
1da177e4 3536
16a53ecc 3537 /* now count some things */
cc94015a
N
3538 if (test_bit(R5_LOCKED, &dev->flags))
3539 s->locked++;
3540 if (test_bit(R5_UPTODATE, &dev->flags))
3541 s->uptodate++;
2d6e4ecc 3542 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
3543 s->compute++;
3544 BUG_ON(s->compute > 2);
2d6e4ecc 3545 }
1da177e4 3546
acfe726b 3547 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 3548 s->to_fill++;
acfe726b 3549 else if (dev->toread)
cc94015a 3550 s->to_read++;
16a53ecc 3551 if (dev->towrite) {
cc94015a 3552 s->to_write++;
16a53ecc 3553 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 3554 s->non_overwrite++;
16a53ecc 3555 }
a4456856 3556 if (dev->written)
cc94015a 3557 s->written++;
14a75d3e
N
3558 /* Prefer to use the replacement for reads, but only
3559 * if it is recovered enough and has no bad blocks.
3560 */
3561 rdev = rcu_dereference(conf->disks[i].replacement);
3562 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3563 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3564 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3565 &first_bad, &bad_sectors))
3566 set_bit(R5_ReadRepl, &dev->flags);
3567 else {
9a3e1101
N
3568 if (rdev)
3569 set_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
3570 rdev = rcu_dereference(conf->disks[i].rdev);
3571 clear_bit(R5_ReadRepl, &dev->flags);
3572 }
9283d8c5
N
3573 if (rdev && test_bit(Faulty, &rdev->flags))
3574 rdev = NULL;
31c176ec
N
3575 if (rdev) {
3576 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3577 &first_bad, &bad_sectors);
3578 if (s->blocked_rdev == NULL
3579 && (test_bit(Blocked, &rdev->flags)
3580 || is_bad < 0)) {
3581 if (is_bad < 0)
3582 set_bit(BlockedBadBlocks,
3583 &rdev->flags);
3584 s->blocked_rdev = rdev;
3585 atomic_inc(&rdev->nr_pending);
3586 }
6bfe0b49 3587 }
415e72d0
N
3588 clear_bit(R5_Insync, &dev->flags);
3589 if (!rdev)
3590 /* Not in-sync */;
31c176ec
N
3591 else if (is_bad) {
3592 /* also not in-sync */
18b9837e
N
3593 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3594 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
3595 /* treat as in-sync, but with a read error
3596 * which we can now try to correct
3597 */
3598 set_bit(R5_Insync, &dev->flags);
3599 set_bit(R5_ReadError, &dev->flags);
3600 }
3601 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 3602 set_bit(R5_Insync, &dev->flags);
30d7a483 3603 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 3604 /* in sync if before recovery_offset */
30d7a483
N
3605 set_bit(R5_Insync, &dev->flags);
3606 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3607 test_bit(R5_Expanded, &dev->flags))
3608 /* If we've reshaped into here, we assume it is Insync.
3609 * We will shortly update recovery_offset to make
3610 * it official.
3611 */
3612 set_bit(R5_Insync, &dev->flags);
3613
1cc03eb9 3614 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
3615 /* This flag does not apply to '.replacement'
3616 * only to .rdev, so make sure to check that*/
3617 struct md_rdev *rdev2 = rcu_dereference(
3618 conf->disks[i].rdev);
3619 if (rdev2 == rdev)
3620 clear_bit(R5_Insync, &dev->flags);
3621 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 3622 s->handle_bad_blocks = 1;
14a75d3e 3623 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
3624 } else
3625 clear_bit(R5_WriteError, &dev->flags);
3626 }
1cc03eb9 3627 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
3628 /* This flag does not apply to '.replacement'
3629 * only to .rdev, so make sure to check that*/
3630 struct md_rdev *rdev2 = rcu_dereference(
3631 conf->disks[i].rdev);
3632 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 3633 s->handle_bad_blocks = 1;
14a75d3e 3634 atomic_inc(&rdev2->nr_pending);
b84db560
N
3635 } else
3636 clear_bit(R5_MadeGood, &dev->flags);
3637 }
977df362
N
3638 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3639 struct md_rdev *rdev2 = rcu_dereference(
3640 conf->disks[i].replacement);
3641 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3642 s->handle_bad_blocks = 1;
3643 atomic_inc(&rdev2->nr_pending);
3644 } else
3645 clear_bit(R5_MadeGoodRepl, &dev->flags);
3646 }
415e72d0 3647 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
3648 /* The ReadError flag will just be confusing now */
3649 clear_bit(R5_ReadError, &dev->flags);
3650 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3651 }
415e72d0
N
3652 if (test_bit(R5_ReadError, &dev->flags))
3653 clear_bit(R5_Insync, &dev->flags);
3654 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
3655 if (s->failed < 2)
3656 s->failed_num[s->failed] = i;
3657 s->failed++;
9a3e1101
N
3658 if (rdev && !test_bit(Faulty, &rdev->flags))
3659 do_recovery = 1;
415e72d0 3660 }
1da177e4 3661 }
9a3e1101
N
3662 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3663 /* If there is a failed device being replaced,
3664 * we must be recovering.
3665 * else if we are after recovery_cp, we must be syncing
c6d2e084 3666 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
3667 * else we can only be replacing
3668 * sync and recovery both need to read all devices, and so
3669 * use the same flag.
3670 */
3671 if (do_recovery ||
c6d2e084 3672 sh->sector >= conf->mddev->recovery_cp ||
3673 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
3674 s->syncing = 1;
3675 else
3676 s->replacing = 1;
3677 }
1da177e4 3678 rcu_read_unlock();
cc94015a
N
3679}
3680
3681static void handle_stripe(struct stripe_head *sh)
3682{
3683 struct stripe_head_state s;
d1688a6d 3684 struct r5conf *conf = sh->raid_conf;
3687c061 3685 int i;
84789554
N
3686 int prexor;
3687 int disks = sh->disks;
474af965 3688 struct r5dev *pdev, *qdev;
cc94015a
N
3689
3690 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 3691 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
3692 /* already being handled, ensure it gets handled
3693 * again when current action finishes */
3694 set_bit(STRIPE_HANDLE, &sh->state);
3695 return;
3696 }
3697
f8dfcffd
N
3698 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3699 spin_lock(&sh->stripe_lock);
3700 /* Cannot process 'sync' concurrently with 'discard' */
3701 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3702 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3703 set_bit(STRIPE_SYNCING, &sh->state);
3704 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 3705 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
3706 }
3707 spin_unlock(&sh->stripe_lock);
cc94015a
N
3708 }
3709 clear_bit(STRIPE_DELAYED, &sh->state);
3710
3711 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3712 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3713 (unsigned long long)sh->sector, sh->state,
3714 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3715 sh->check_state, sh->reconstruct_state);
3687c061 3716
acfe726b 3717 analyse_stripe(sh, &s);
c5a31000 3718
bc2607f3
N
3719 if (s.handle_bad_blocks) {
3720 set_bit(STRIPE_HANDLE, &sh->state);
3721 goto finish;
3722 }
3723
474af965
N
3724 if (unlikely(s.blocked_rdev)) {
3725 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 3726 s.replacing || s.to_write || s.written) {
474af965
N
3727 set_bit(STRIPE_HANDLE, &sh->state);
3728 goto finish;
3729 }
3730 /* There is nothing for the blocked_rdev to block */
3731 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3732 s.blocked_rdev = NULL;
3733 }
3734
3735 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3736 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3737 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3738 }
3739
3740 pr_debug("locked=%d uptodate=%d to_read=%d"
3741 " to_write=%d failed=%d failed_num=%d,%d\n",
3742 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3743 s.failed_num[0], s.failed_num[1]);
3744 /* check if the array has lost more than max_degraded devices and,
3745 * if so, some requests might need to be failed.
3746 */
9a3f530f
N
3747 if (s.failed > conf->max_degraded) {
3748 sh->check_state = 0;
3749 sh->reconstruct_state = 0;
3750 if (s.to_read+s.to_write+s.written)
3751 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 3752 if (s.syncing + s.replacing)
9a3f530f
N
3753 handle_failed_sync(conf, sh, &s);
3754 }
474af965 3755
84789554
N
3756 /* Now we check to see if any write operations have recently
3757 * completed
3758 */
3759 prexor = 0;
3760 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3761 prexor = 1;
3762 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3763 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3764 sh->reconstruct_state = reconstruct_state_idle;
3765
3766 /* All the 'written' buffers and the parity block are ready to
3767 * be written back to disk
3768 */
9e444768
SL
3769 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3770 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 3771 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
3772 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3773 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
3774 for (i = disks; i--; ) {
3775 struct r5dev *dev = &sh->dev[i];
3776 if (test_bit(R5_LOCKED, &dev->flags) &&
3777 (i == sh->pd_idx || i == sh->qd_idx ||
3778 dev->written)) {
3779 pr_debug("Writing block %d\n", i);
3780 set_bit(R5_Wantwrite, &dev->flags);
3781 if (prexor)
3782 continue;
3783 if (!test_bit(R5_Insync, &dev->flags) ||
3784 ((i == sh->pd_idx || i == sh->qd_idx) &&
3785 s.failed == 0))
3786 set_bit(STRIPE_INSYNC, &sh->state);
3787 }
3788 }
3789 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3790 s.dec_preread_active = 1;
3791 }
3792
ef5b7c69
N
3793 /*
3794 * might be able to return some write requests if the parity blocks
3795 * are safe, or on a failed drive
3796 */
3797 pdev = &sh->dev[sh->pd_idx];
3798 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3799 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3800 qdev = &sh->dev[sh->qd_idx];
3801 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3802 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3803 || conf->level < 6;
3804
3805 if (s.written &&
3806 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3807 && !test_bit(R5_LOCKED, &pdev->flags)
3808 && (test_bit(R5_UPTODATE, &pdev->flags) ||
3809 test_bit(R5_Discard, &pdev->flags))))) &&
3810 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3811 && !test_bit(R5_LOCKED, &qdev->flags)
3812 && (test_bit(R5_UPTODATE, &qdev->flags) ||
3813 test_bit(R5_Discard, &qdev->flags))))))
3814 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3815
3816 /* Now we might consider reading some blocks, either to check/generate
3817 * parity, or to satisfy requests
3818 * or to load a block that is being partially written.
3819 */
3820 if (s.to_read || s.non_overwrite
3821 || (conf->level == 6 && s.to_write && s.failed)
3822 || (s.syncing && (s.uptodate + s.compute < disks))
3823 || s.replacing
3824 || s.expanding)
3825 handle_stripe_fill(sh, &s, disks);
3826
84789554
N
3827 /* Now to consider new write requests and what else, if anything
3828 * should be read. We do not handle new writes when:
3829 * 1/ A 'write' operation (copy+xor) is already in flight.
3830 * 2/ A 'check' operation is in flight, as it may clobber the parity
3831 * block.
3832 */
3833 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3834 handle_stripe_dirtying(conf, sh, &s, disks);
3835
3836 /* maybe we need to check and possibly fix the parity for this stripe
3837 * Any reads will already have been scheduled, so we just see if enough
3838 * data is available. The parity check is held off while parity
3839 * dependent operations are in flight.
3840 */
3841 if (sh->check_state ||
3842 (s.syncing && s.locked == 0 &&
3843 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3844 !test_bit(STRIPE_INSYNC, &sh->state))) {
3845 if (conf->level == 6)
3846 handle_parity_checks6(conf, sh, &s, disks);
3847 else
3848 handle_parity_checks5(conf, sh, &s, disks);
3849 }
c5a31000 3850
f94c0b66
N
3851 if ((s.replacing || s.syncing) && s.locked == 0
3852 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3853 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
3854 /* Write out to replacement devices where possible */
3855 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
3856 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3857 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
3858 set_bit(R5_WantReplace, &sh->dev[i].flags);
3859 set_bit(R5_LOCKED, &sh->dev[i].flags);
3860 s.locked++;
3861 }
f94c0b66
N
3862 if (s.replacing)
3863 set_bit(STRIPE_INSYNC, &sh->state);
3864 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
3865 }
3866 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 3867 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 3868 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
3869 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3870 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3871 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3872 wake_up(&conf->wait_for_overlap);
c5a31000
N
3873 }
3874
3875 /* If the failed drives are just a ReadError, then we might need
3876 * to progress the repair/check process
3877 */
3878 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3879 for (i = 0; i < s.failed; i++) {
3880 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3881 if (test_bit(R5_ReadError, &dev->flags)
3882 && !test_bit(R5_LOCKED, &dev->flags)
3883 && test_bit(R5_UPTODATE, &dev->flags)
3884 ) {
3885 if (!test_bit(R5_ReWrite, &dev->flags)) {
3886 set_bit(R5_Wantwrite, &dev->flags);
3887 set_bit(R5_ReWrite, &dev->flags);
3888 set_bit(R5_LOCKED, &dev->flags);
3889 s.locked++;
3890 } else {
3891 /* let's read it back */
3892 set_bit(R5_Wantread, &dev->flags);
3893 set_bit(R5_LOCKED, &dev->flags);
3894 s.locked++;
3895 }
3896 }
3897 }
3898
3899
3687c061
N
3900 /* Finish reconstruct operations initiated by the expansion process */
3901 if (sh->reconstruct_state == reconstruct_state_result) {
3902 struct stripe_head *sh_src
3903 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3904 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3905 /* sh cannot be written until sh_src has been read.
3906 * so arrange for sh to be delayed a little
3907 */
3908 set_bit(STRIPE_DELAYED, &sh->state);
3909 set_bit(STRIPE_HANDLE, &sh->state);
3910 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3911 &sh_src->state))
3912 atomic_inc(&conf->preread_active_stripes);
3913 release_stripe(sh_src);
3914 goto finish;
3915 }
3916 if (sh_src)
3917 release_stripe(sh_src);
3918
3919 sh->reconstruct_state = reconstruct_state_idle;
3920 clear_bit(STRIPE_EXPANDING, &sh->state);
3921 for (i = conf->raid_disks; i--; ) {
3922 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3923 set_bit(R5_LOCKED, &sh->dev[i].flags);
3924 s.locked++;
3925 }
3926 }
f416885e 3927
3687c061
N
3928 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3929 !sh->reconstruct_state) {
3930 /* Need to write out all blocks after computing parity */
3931 sh->disks = conf->raid_disks;
3932 stripe_set_idx(sh->sector, conf, 0, sh);
3933 schedule_reconstruction(sh, &s, 1, 1);
3934 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3935 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3936 atomic_dec(&conf->reshape_stripes);
3937 wake_up(&conf->wait_for_overlap);
3938 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3939 }
3940
3941 if (s.expanding && s.locked == 0 &&
3942 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3943 handle_stripe_expansion(conf, sh);
16a53ecc 3944
3687c061 3945finish:
6bfe0b49 3946 /* wait for this device to become unblocked */
5f066c63
N
3947 if (unlikely(s.blocked_rdev)) {
3948 if (conf->mddev->external)
3949 md_wait_for_blocked_rdev(s.blocked_rdev,
3950 conf->mddev);
3951 else
3952 /* Internal metadata will immediately
3953 * be written by raid5d, so we don't
3954 * need to wait here.
3955 */
3956 rdev_dec_pending(s.blocked_rdev,
3957 conf->mddev);
3958 }
6bfe0b49 3959
bc2607f3
N
3960 if (s.handle_bad_blocks)
3961 for (i = disks; i--; ) {
3cb03002 3962 struct md_rdev *rdev;
bc2607f3
N
3963 struct r5dev *dev = &sh->dev[i];
3964 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3965 /* We own a safe reference to the rdev */
3966 rdev = conf->disks[i].rdev;
3967 if (!rdev_set_badblocks(rdev, sh->sector,
3968 STRIPE_SECTORS, 0))
3969 md_error(conf->mddev, rdev);
3970 rdev_dec_pending(rdev, conf->mddev);
3971 }
b84db560
N
3972 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3973 rdev = conf->disks[i].rdev;
3974 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 3975 STRIPE_SECTORS, 0);
b84db560
N
3976 rdev_dec_pending(rdev, conf->mddev);
3977 }
977df362
N
3978 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3979 rdev = conf->disks[i].replacement;
dd054fce
N
3980 if (!rdev)
3981 /* rdev have been moved down */
3982 rdev = conf->disks[i].rdev;
977df362 3983 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 3984 STRIPE_SECTORS, 0);
977df362
N
3985 rdev_dec_pending(rdev, conf->mddev);
3986 }
bc2607f3
N
3987 }
3988
6c0069c0
YT
3989 if (s.ops_request)
3990 raid_run_ops(sh, s.ops_request);
3991
f0e43bcd 3992 ops_run_io(sh, &s);
16a53ecc 3993
c5709ef6 3994 if (s.dec_preread_active) {
729a1866 3995 /* We delay this until after ops_run_io so that if make_request
e9c7469b 3996 * is waiting on a flush, it won't continue until the writes
729a1866
N
3997 * have actually been submitted.
3998 */
3999 atomic_dec(&conf->preread_active_stripes);
4000 if (atomic_read(&conf->preread_active_stripes) <
4001 IO_THRESHOLD)
4002 md_wakeup_thread(conf->mddev->thread);
4003 }
4004
c5709ef6 4005 return_io(s.return_bi);
16a53ecc 4006
257a4b42 4007 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
4008}
4009
d1688a6d 4010static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
4011{
4012 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4013 while (!list_empty(&conf->delayed_list)) {
4014 struct list_head *l = conf->delayed_list.next;
4015 struct stripe_head *sh;
4016 sh = list_entry(l, struct stripe_head, lru);
4017 list_del_init(l);
4018 clear_bit(STRIPE_DELAYED, &sh->state);
4019 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4020 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 4021 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 4022 raid5_wakeup_stripe_thread(sh);
16a53ecc 4023 }
482c0834 4024 }
16a53ecc
N
4025}
4026
566c09c5
SL
4027static void activate_bit_delay(struct r5conf *conf,
4028 struct list_head *temp_inactive_list)
16a53ecc
N
4029{
4030 /* device_lock is held */
4031 struct list_head head;
4032 list_add(&head, &conf->bitmap_list);
4033 list_del_init(&conf->bitmap_list);
4034 while (!list_empty(&head)) {
4035 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 4036 int hash;
16a53ecc
N
4037 list_del_init(&sh->lru);
4038 atomic_inc(&sh->count);
566c09c5
SL
4039 hash = sh->hash_lock_index;
4040 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
4041 }
4042}
4043
fd01b88c 4044int md_raid5_congested(struct mddev *mddev, int bits)
f022b2fd 4045{
d1688a6d 4046 struct r5conf *conf = mddev->private;
f022b2fd
N
4047
4048 /* No difference between reads and writes. Just check
4049 * how busy the stripe_cache is
4050 */
3fa841d7 4051
f022b2fd
N
4052 if (conf->inactive_blocked)
4053 return 1;
4054 if (conf->quiesce)
4055 return 1;
4bda556a 4056 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
4057 return 1;
4058
4059 return 0;
4060}
11d8a6e3
N
4061EXPORT_SYMBOL_GPL(md_raid5_congested);
4062
4063static int raid5_congested(void *data, int bits)
4064{
fd01b88c 4065 struct mddev *mddev = data;
11d8a6e3
N
4066
4067 return mddev_congested(mddev, bits) ||
4068 md_raid5_congested(mddev, bits);
4069}
f022b2fd 4070
23032a0e
RBJ
4071/* We want read requests to align with chunks where possible,
4072 * but write requests don't need to.
4073 */
cc371e66
AK
4074static int raid5_mergeable_bvec(struct request_queue *q,
4075 struct bvec_merge_data *bvm,
4076 struct bio_vec *biovec)
23032a0e 4077{
fd01b88c 4078 struct mddev *mddev = q->queuedata;
cc371e66 4079 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 4080 int max;
9d8f0363 4081 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 4082 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 4083
cc371e66 4084 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
4085 return biovec->bv_len; /* always allow writes to be mergeable */
4086
664e7c41
AN
4087 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4088 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
4089 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4090 if (max < 0) max = 0;
4091 if (max <= biovec->bv_len && bio_sectors == 0)
4092 return biovec->bv_len;
4093 else
4094 return max;
4095}
4096
f679623f 4097
fd01b88c 4098static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 4099{
4f024f37 4100 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 4101 unsigned int chunk_sectors = mddev->chunk_sectors;
aa8b57aa 4102 unsigned int bio_sectors = bio_sectors(bio);
f679623f 4103
664e7c41
AN
4104 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4105 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
4106 return chunk_sectors >=
4107 ((sector & (chunk_sectors - 1)) + bio_sectors);
4108}
4109
46031f9a
RBJ
4110/*
4111 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4112 * later sampled by raid5d.
4113 */
d1688a6d 4114static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
4115{
4116 unsigned long flags;
4117
4118 spin_lock_irqsave(&conf->device_lock, flags);
4119
4120 bi->bi_next = conf->retry_read_aligned_list;
4121 conf->retry_read_aligned_list = bi;
4122
4123 spin_unlock_irqrestore(&conf->device_lock, flags);
4124 md_wakeup_thread(conf->mddev->thread);
4125}
4126
4127
d1688a6d 4128static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
4129{
4130 struct bio *bi;
4131
4132 bi = conf->retry_read_aligned;
4133 if (bi) {
4134 conf->retry_read_aligned = NULL;
4135 return bi;
4136 }
4137 bi = conf->retry_read_aligned_list;
4138 if(bi) {
387bb173 4139 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 4140 bi->bi_next = NULL;
960e739d
JA
4141 /*
4142 * this sets the active strip count to 1 and the processed
4143 * strip count to zero (upper 8 bits)
4144 */
e7836bd6 4145 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
46031f9a
RBJ
4146 }
4147
4148 return bi;
4149}
4150
4151
f679623f
RBJ
4152/*
4153 * The "raid5_align_endio" should check if the read succeeded and if it
4154 * did, call bio_endio on the original bio (having bio_put the new bio
4155 * first).
4156 * If the read failed..
4157 */
6712ecf8 4158static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
4159{
4160 struct bio* raid_bi = bi->bi_private;
fd01b88c 4161 struct mddev *mddev;
d1688a6d 4162 struct r5conf *conf;
46031f9a 4163 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3cb03002 4164 struct md_rdev *rdev;
46031f9a 4165
f679623f 4166 bio_put(bi);
46031f9a 4167
46031f9a
RBJ
4168 rdev = (void*)raid_bi->bi_next;
4169 raid_bi->bi_next = NULL;
2b7f2228
N
4170 mddev = rdev->mddev;
4171 conf = mddev->private;
46031f9a
RBJ
4172
4173 rdev_dec_pending(rdev, conf->mddev);
4174
4175 if (!error && uptodate) {
0a82a8d1
LT
4176 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4177 raid_bi, 0);
6712ecf8 4178 bio_endio(raid_bi, 0);
46031f9a
RBJ
4179 if (atomic_dec_and_test(&conf->active_aligned_reads))
4180 wake_up(&conf->wait_for_stripe);
6712ecf8 4181 return;
46031f9a
RBJ
4182 }
4183
4184
45b4233c 4185 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
4186
4187 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
4188}
4189
387bb173
NB
4190static int bio_fits_rdev(struct bio *bi)
4191{
165125e1 4192 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 4193
aa8b57aa 4194 if (bio_sectors(bi) > queue_max_sectors(q))
387bb173
NB
4195 return 0;
4196 blk_recount_segments(q, bi);
8a78362c 4197 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
4198 return 0;
4199
4200 if (q->merge_bvec_fn)
4201 /* it's too hard to apply the merge_bvec_fn at this stage,
4202 * just just give up
4203 */
4204 return 0;
4205
4206 return 1;
4207}
4208
4209
fd01b88c 4210static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
f679623f 4211{
d1688a6d 4212 struct r5conf *conf = mddev->private;
8553fe7e 4213 int dd_idx;
f679623f 4214 struct bio* align_bi;
3cb03002 4215 struct md_rdev *rdev;
671488cc 4216 sector_t end_sector;
f679623f
RBJ
4217
4218 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 4219 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
4220 return 0;
4221 }
4222 /*
a167f663 4223 * use bio_clone_mddev to make a copy of the bio
f679623f 4224 */
a167f663 4225 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
4226 if (!align_bi)
4227 return 0;
4228 /*
4229 * set bi_end_io to a new function, and set bi_private to the
4230 * original bio.
4231 */
4232 align_bi->bi_end_io = raid5_align_endio;
4233 align_bi->bi_private = raid_bio;
4234 /*
4235 * compute position
4236 */
4f024f37
KO
4237 align_bi->bi_iter.bi_sector =
4238 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4239 0, &dd_idx, NULL);
f679623f 4240
f73a1c7d 4241 end_sector = bio_end_sector(align_bi);
f679623f 4242 rcu_read_lock();
671488cc
N
4243 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4244 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4245 rdev->recovery_offset < end_sector) {
4246 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4247 if (rdev &&
4248 (test_bit(Faulty, &rdev->flags) ||
4249 !(test_bit(In_sync, &rdev->flags) ||
4250 rdev->recovery_offset >= end_sector)))
4251 rdev = NULL;
4252 }
4253 if (rdev) {
31c176ec
N
4254 sector_t first_bad;
4255 int bad_sectors;
4256
f679623f
RBJ
4257 atomic_inc(&rdev->nr_pending);
4258 rcu_read_unlock();
46031f9a
RBJ
4259 raid_bio->bi_next = (void*)rdev;
4260 align_bi->bi_bdev = rdev->bdev;
4261 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
46031f9a 4262
31c176ec 4263 if (!bio_fits_rdev(align_bi) ||
4f024f37
KO
4264 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4265 bio_sectors(align_bi),
31c176ec
N
4266 &first_bad, &bad_sectors)) {
4267 /* too big in some way, or has a known bad block */
387bb173
NB
4268 bio_put(align_bi);
4269 rdev_dec_pending(rdev, mddev);
4270 return 0;
4271 }
4272
6c0544e2 4273 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 4274 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 4275
46031f9a
RBJ
4276 spin_lock_irq(&conf->device_lock);
4277 wait_event_lock_irq(conf->wait_for_stripe,
4278 conf->quiesce == 0,
eed8c02e 4279 conf->device_lock);
46031f9a
RBJ
4280 atomic_inc(&conf->active_aligned_reads);
4281 spin_unlock_irq(&conf->device_lock);
4282
e3620a3a
JB
4283 if (mddev->gendisk)
4284 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4285 align_bi, disk_devt(mddev->gendisk),
4f024f37 4286 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
4287 generic_make_request(align_bi);
4288 return 1;
4289 } else {
4290 rcu_read_unlock();
46031f9a 4291 bio_put(align_bi);
f679623f
RBJ
4292 return 0;
4293 }
4294}
4295
8b3e6cdc
DW
4296/* __get_priority_stripe - get the next stripe to process
4297 *
4298 * Full stripe writes are allowed to pass preread active stripes up until
4299 * the bypass_threshold is exceeded. In general the bypass_count
4300 * increments when the handle_list is handled before the hold_list; however, it
4301 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4302 * stripe with in flight i/o. The bypass_count will be reset when the
4303 * head of the hold_list has changed, i.e. the head was promoted to the
4304 * handle_list.
4305 */
851c30c9 4306static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 4307{
851c30c9
SL
4308 struct stripe_head *sh = NULL, *tmp;
4309 struct list_head *handle_list = NULL;
bfc90cb0 4310 struct r5worker_group *wg = NULL;
851c30c9
SL
4311
4312 if (conf->worker_cnt_per_group == 0) {
4313 handle_list = &conf->handle_list;
4314 } else if (group != ANY_GROUP) {
4315 handle_list = &conf->worker_groups[group].handle_list;
bfc90cb0 4316 wg = &conf->worker_groups[group];
851c30c9
SL
4317 } else {
4318 int i;
4319 for (i = 0; i < conf->group_cnt; i++) {
4320 handle_list = &conf->worker_groups[i].handle_list;
bfc90cb0 4321 wg = &conf->worker_groups[i];
851c30c9
SL
4322 if (!list_empty(handle_list))
4323 break;
4324 }
4325 }
8b3e6cdc
DW
4326
4327 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4328 __func__,
851c30c9 4329 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
4330 list_empty(&conf->hold_list) ? "empty" : "busy",
4331 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4332
851c30c9
SL
4333 if (!list_empty(handle_list)) {
4334 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
4335
4336 if (list_empty(&conf->hold_list))
4337 conf->bypass_count = 0;
4338 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4339 if (conf->hold_list.next == conf->last_hold)
4340 conf->bypass_count++;
4341 else {
4342 conf->last_hold = conf->hold_list.next;
4343 conf->bypass_count -= conf->bypass_threshold;
4344 if (conf->bypass_count < 0)
4345 conf->bypass_count = 0;
4346 }
4347 }
4348 } else if (!list_empty(&conf->hold_list) &&
4349 ((conf->bypass_threshold &&
4350 conf->bypass_count > conf->bypass_threshold) ||
4351 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
4352
4353 list_for_each_entry(tmp, &conf->hold_list, lru) {
4354 if (conf->worker_cnt_per_group == 0 ||
4355 group == ANY_GROUP ||
4356 !cpu_online(tmp->cpu) ||
4357 cpu_to_group(tmp->cpu) == group) {
4358 sh = tmp;
4359 break;
4360 }
4361 }
4362
4363 if (sh) {
4364 conf->bypass_count -= conf->bypass_threshold;
4365 if (conf->bypass_count < 0)
4366 conf->bypass_count = 0;
4367 }
bfc90cb0 4368 wg = NULL;
851c30c9
SL
4369 }
4370
4371 if (!sh)
8b3e6cdc
DW
4372 return NULL;
4373
bfc90cb0
SL
4374 if (wg) {
4375 wg->stripes_cnt--;
4376 sh->group = NULL;
4377 }
8b3e6cdc 4378 list_del_init(&sh->lru);
c7a6d35e 4379 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
4380 return sh;
4381}
f679623f 4382
8811b596
SL
4383struct raid5_plug_cb {
4384 struct blk_plug_cb cb;
4385 struct list_head list;
566c09c5 4386 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
4387};
4388
4389static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4390{
4391 struct raid5_plug_cb *cb = container_of(
4392 blk_cb, struct raid5_plug_cb, cb);
4393 struct stripe_head *sh;
4394 struct mddev *mddev = cb->cb.data;
4395 struct r5conf *conf = mddev->private;
a9add5d9 4396 int cnt = 0;
566c09c5 4397 int hash;
8811b596
SL
4398
4399 if (cb->list.next && !list_empty(&cb->list)) {
4400 spin_lock_irq(&conf->device_lock);
4401 while (!list_empty(&cb->list)) {
4402 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4403 list_del_init(&sh->lru);
4404 /*
4405 * avoid race release_stripe_plug() sees
4406 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4407 * is still in our list
4408 */
4409 smp_mb__before_clear_bit();
4410 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
4411 /*
4412 * STRIPE_ON_RELEASE_LIST could be set here. In that
4413 * case, the count is always > 1 here
4414 */
566c09c5
SL
4415 hash = sh->hash_lock_index;
4416 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 4417 cnt++;
8811b596
SL
4418 }
4419 spin_unlock_irq(&conf->device_lock);
4420 }
566c09c5
SL
4421 release_inactive_stripe_list(conf, cb->temp_inactive_list,
4422 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
4423 if (mddev->queue)
4424 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
4425 kfree(cb);
4426}
4427
4428static void release_stripe_plug(struct mddev *mddev,
4429 struct stripe_head *sh)
4430{
4431 struct blk_plug_cb *blk_cb = blk_check_plugged(
4432 raid5_unplug, mddev,
4433 sizeof(struct raid5_plug_cb));
4434 struct raid5_plug_cb *cb;
4435
4436 if (!blk_cb) {
4437 release_stripe(sh);
4438 return;
4439 }
4440
4441 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4442
566c09c5
SL
4443 if (cb->list.next == NULL) {
4444 int i;
8811b596 4445 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
4446 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4447 INIT_LIST_HEAD(cb->temp_inactive_list + i);
4448 }
8811b596
SL
4449
4450 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4451 list_add_tail(&sh->lru, &cb->list);
4452 else
4453 release_stripe(sh);
4454}
4455
620125f2
SL
4456static void make_discard_request(struct mddev *mddev, struct bio *bi)
4457{
4458 struct r5conf *conf = mddev->private;
4459 sector_t logical_sector, last_sector;
4460 struct stripe_head *sh;
4461 int remaining;
4462 int stripe_sectors;
4463
4464 if (mddev->reshape_position != MaxSector)
4465 /* Skip discard while reshape is happening */
4466 return;
4467
4f024f37
KO
4468 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4469 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
4470
4471 bi->bi_next = NULL;
4472 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4473
4474 stripe_sectors = conf->chunk_sectors *
4475 (conf->raid_disks - conf->max_degraded);
4476 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4477 stripe_sectors);
4478 sector_div(last_sector, stripe_sectors);
4479
4480 logical_sector *= conf->chunk_sectors;
4481 last_sector *= conf->chunk_sectors;
4482
4483 for (; logical_sector < last_sector;
4484 logical_sector += STRIPE_SECTORS) {
4485 DEFINE_WAIT(w);
4486 int d;
4487 again:
4488 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4489 prepare_to_wait(&conf->wait_for_overlap, &w,
4490 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
4491 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4492 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4493 release_stripe(sh);
4494 schedule();
4495 goto again;
4496 }
4497 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
4498 spin_lock_irq(&sh->stripe_lock);
4499 for (d = 0; d < conf->raid_disks; d++) {
4500 if (d == sh->pd_idx || d == sh->qd_idx)
4501 continue;
4502 if (sh->dev[d].towrite || sh->dev[d].toread) {
4503 set_bit(R5_Overlap, &sh->dev[d].flags);
4504 spin_unlock_irq(&sh->stripe_lock);
4505 release_stripe(sh);
4506 schedule();
4507 goto again;
4508 }
4509 }
f8dfcffd 4510 set_bit(STRIPE_DISCARD, &sh->state);
620125f2
SL
4511 finish_wait(&conf->wait_for_overlap, &w);
4512 for (d = 0; d < conf->raid_disks; d++) {
4513 if (d == sh->pd_idx || d == sh->qd_idx)
4514 continue;
4515 sh->dev[d].towrite = bi;
4516 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4517 raid5_inc_bi_active_stripes(bi);
4518 }
4519 spin_unlock_irq(&sh->stripe_lock);
4520 if (conf->mddev->bitmap) {
4521 for (d = 0;
4522 d < conf->raid_disks - conf->max_degraded;
4523 d++)
4524 bitmap_startwrite(mddev->bitmap,
4525 sh->sector,
4526 STRIPE_SECTORS,
4527 0);
4528 sh->bm_seq = conf->seq_flush + 1;
4529 set_bit(STRIPE_BIT_DELAY, &sh->state);
4530 }
4531
4532 set_bit(STRIPE_HANDLE, &sh->state);
4533 clear_bit(STRIPE_DELAYED, &sh->state);
4534 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4535 atomic_inc(&conf->preread_active_stripes);
4536 release_stripe_plug(mddev, sh);
4537 }
4538
4539 remaining = raid5_dec_bi_active_stripes(bi);
4540 if (remaining == 0) {
4541 md_write_end(mddev);
4542 bio_endio(bi, 0);
4543 }
4544}
4545
b4fdcb02 4546static void make_request(struct mddev *mddev, struct bio * bi)
1da177e4 4547{
d1688a6d 4548 struct r5conf *conf = mddev->private;
911d4ee8 4549 int dd_idx;
1da177e4
LT
4550 sector_t new_sector;
4551 sector_t logical_sector, last_sector;
4552 struct stripe_head *sh;
a362357b 4553 const int rw = bio_data_dir(bi);
49077326 4554 int remaining;
27c0f68f
SL
4555 DEFINE_WAIT(w);
4556 bool do_prepare;
1da177e4 4557
e9c7469b
TH
4558 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4559 md_flush_request(mddev, bi);
5a7bbad2 4560 return;
e5dcdd80
N
4561 }
4562
3d310eb7 4563 md_write_start(mddev, bi);
06d91a5f 4564
802ba064 4565 if (rw == READ &&
52488615 4566 mddev->reshape_position == MaxSector &&
21a52c6d 4567 chunk_aligned_read(mddev,bi))
5a7bbad2 4568 return;
52488615 4569
620125f2
SL
4570 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4571 make_discard_request(mddev, bi);
4572 return;
4573 }
4574
4f024f37 4575 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 4576 last_sector = bio_end_sector(bi);
1da177e4
LT
4577 bi->bi_next = NULL;
4578 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 4579
27c0f68f 4580 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 4581 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 4582 int previous;
c46501b2 4583 int seq;
b578d55f 4584
27c0f68f 4585 do_prepare = false;
7ecaa1e6 4586 retry:
c46501b2 4587 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 4588 previous = 0;
27c0f68f
SL
4589 if (do_prepare)
4590 prepare_to_wait(&conf->wait_for_overlap, &w,
4591 TASK_UNINTERRUPTIBLE);
b0f9ec04 4592 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 4593 /* spinlock is needed as reshape_progress may be
df8e7f76
N
4594 * 64bit on a 32bit platform, and so it might be
4595 * possible to see a half-updated value
aeb878b0 4596 * Of course reshape_progress could change after
df8e7f76
N
4597 * the lock is dropped, so once we get a reference
4598 * to the stripe that we think it is, we will have
4599 * to check again.
4600 */
7ecaa1e6 4601 spin_lock_irq(&conf->device_lock);
2c810cdd 4602 if (mddev->reshape_backwards
fef9c61f
N
4603 ? logical_sector < conf->reshape_progress
4604 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
4605 previous = 1;
4606 } else {
2c810cdd 4607 if (mddev->reshape_backwards
fef9c61f
N
4608 ? logical_sector < conf->reshape_safe
4609 : logical_sector >= conf->reshape_safe) {
b578d55f
N
4610 spin_unlock_irq(&conf->device_lock);
4611 schedule();
27c0f68f 4612 do_prepare = true;
b578d55f
N
4613 goto retry;
4614 }
4615 }
7ecaa1e6
N
4616 spin_unlock_irq(&conf->device_lock);
4617 }
16a53ecc 4618
112bf897
N
4619 new_sector = raid5_compute_sector(conf, logical_sector,
4620 previous,
911d4ee8 4621 &dd_idx, NULL);
0c55e022 4622 pr_debug("raid456: make_request, sector %llu logical %llu\n",
c46501b2 4623 (unsigned long long)new_sector,
1da177e4
LT
4624 (unsigned long long)logical_sector);
4625
b5663ba4 4626 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 4627 (bi->bi_rw&RWA_MASK), 0);
1da177e4 4628 if (sh) {
b0f9ec04 4629 if (unlikely(previous)) {
7ecaa1e6 4630 /* expansion might have moved on while waiting for a
df8e7f76
N
4631 * stripe, so we must do the range check again.
4632 * Expansion could still move past after this
4633 * test, but as we are holding a reference to
4634 * 'sh', we know that if that happens,
4635 * STRIPE_EXPANDING will get set and the expansion
4636 * won't proceed until we finish with the stripe.
7ecaa1e6
N
4637 */
4638 int must_retry = 0;
4639 spin_lock_irq(&conf->device_lock);
2c810cdd 4640 if (mddev->reshape_backwards
b0f9ec04
N
4641 ? logical_sector >= conf->reshape_progress
4642 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
4643 /* mismatch, need to try again */
4644 must_retry = 1;
4645 spin_unlock_irq(&conf->device_lock);
4646 if (must_retry) {
4647 release_stripe(sh);
7a3ab908 4648 schedule();
27c0f68f 4649 do_prepare = true;
7ecaa1e6
N
4650 goto retry;
4651 }
4652 }
c46501b2
N
4653 if (read_seqcount_retry(&conf->gen_lock, seq)) {
4654 /* Might have got the wrong stripe_head
4655 * by accident
4656 */
4657 release_stripe(sh);
4658 goto retry;
4659 }
e62e58a5 4660
ffd96e35 4661 if (rw == WRITE &&
a5c308d4 4662 logical_sector >= mddev->suspend_lo &&
e464eafd
N
4663 logical_sector < mddev->suspend_hi) {
4664 release_stripe(sh);
e62e58a5
N
4665 /* As the suspend_* range is controlled by
4666 * userspace, we want an interruptible
4667 * wait.
4668 */
4669 flush_signals(current);
4670 prepare_to_wait(&conf->wait_for_overlap,
4671 &w, TASK_INTERRUPTIBLE);
4672 if (logical_sector >= mddev->suspend_lo &&
27c0f68f 4673 logical_sector < mddev->suspend_hi) {
e62e58a5 4674 schedule();
27c0f68f
SL
4675 do_prepare = true;
4676 }
e464eafd
N
4677 goto retry;
4678 }
7ecaa1e6
N
4679
4680 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
ffd96e35 4681 !add_stripe_bio(sh, bi, dd_idx, rw)) {
7ecaa1e6
N
4682 /* Stripe is busy expanding or
4683 * add failed due to overlap. Flush everything
1da177e4
LT
4684 * and wait a while
4685 */
482c0834 4686 md_wakeup_thread(mddev->thread);
1da177e4
LT
4687 release_stripe(sh);
4688 schedule();
27c0f68f 4689 do_prepare = true;
1da177e4
LT
4690 goto retry;
4691 }
6ed3003c
N
4692 set_bit(STRIPE_HANDLE, &sh->state);
4693 clear_bit(STRIPE_DELAYED, &sh->state);
a852d7b8 4694 if ((bi->bi_rw & REQ_SYNC) &&
729a1866
N
4695 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4696 atomic_inc(&conf->preread_active_stripes);
8811b596 4697 release_stripe_plug(mddev, sh);
1da177e4
LT
4698 } else {
4699 /* cannot get stripe for read-ahead, just give-up */
4700 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1da177e4
LT
4701 break;
4702 }
1da177e4 4703 }
27c0f68f 4704 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 4705
e7836bd6 4706 remaining = raid5_dec_bi_active_stripes(bi);
f6344757 4707 if (remaining == 0) {
1da177e4 4708
16a53ecc 4709 if ( rw == WRITE )
1da177e4 4710 md_write_end(mddev);
6712ecf8 4711
0a82a8d1
LT
4712 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4713 bi, 0);
0e13fe23 4714 bio_endio(bi, 0);
1da177e4 4715 }
1da177e4
LT
4716}
4717
fd01b88c 4718static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 4719
fd01b88c 4720static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 4721{
52c03291
N
4722 /* reshaping is quite different to recovery/resync so it is
4723 * handled quite separately ... here.
4724 *
4725 * On each call to sync_request, we gather one chunk worth of
4726 * destination stripes and flag them as expanding.
4727 * Then we find all the source stripes and request reads.
4728 * As the reads complete, handle_stripe will copy the data
4729 * into the destination stripe and release that stripe.
4730 */
d1688a6d 4731 struct r5conf *conf = mddev->private;
1da177e4 4732 struct stripe_head *sh;
ccfcc3c1 4733 sector_t first_sector, last_sector;
f416885e
N
4734 int raid_disks = conf->previous_raid_disks;
4735 int data_disks = raid_disks - conf->max_degraded;
4736 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
4737 int i;
4738 int dd_idx;
c8f517c4 4739 sector_t writepos, readpos, safepos;
ec32a2bd 4740 sector_t stripe_addr;
7a661381 4741 int reshape_sectors;
ab69ae12 4742 struct list_head stripes;
52c03291 4743
fef9c61f
N
4744 if (sector_nr == 0) {
4745 /* If restarting in the middle, skip the initial sectors */
2c810cdd 4746 if (mddev->reshape_backwards &&
fef9c61f
N
4747 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4748 sector_nr = raid5_size(mddev, 0, 0)
4749 - conf->reshape_progress;
2c810cdd 4750 } else if (!mddev->reshape_backwards &&
fef9c61f
N
4751 conf->reshape_progress > 0)
4752 sector_nr = conf->reshape_progress;
f416885e 4753 sector_div(sector_nr, new_data_disks);
fef9c61f 4754 if (sector_nr) {
8dee7211
N
4755 mddev->curr_resync_completed = sector_nr;
4756 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
4757 *skipped = 1;
4758 return sector_nr;
4759 }
52c03291
N
4760 }
4761
7a661381
N
4762 /* We need to process a full chunk at a time.
4763 * If old and new chunk sizes differ, we need to process the
4764 * largest of these
4765 */
664e7c41
AN
4766 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4767 reshape_sectors = mddev->new_chunk_sectors;
7a661381 4768 else
9d8f0363 4769 reshape_sectors = mddev->chunk_sectors;
7a661381 4770
b5254dd5
N
4771 /* We update the metadata at least every 10 seconds, or when
4772 * the data about to be copied would over-write the source of
4773 * the data at the front of the range. i.e. one new_stripe
4774 * along from reshape_progress new_maps to after where
4775 * reshape_safe old_maps to
52c03291 4776 */
fef9c61f 4777 writepos = conf->reshape_progress;
f416885e 4778 sector_div(writepos, new_data_disks);
c8f517c4
N
4779 readpos = conf->reshape_progress;
4780 sector_div(readpos, data_disks);
fef9c61f 4781 safepos = conf->reshape_safe;
f416885e 4782 sector_div(safepos, data_disks);
2c810cdd 4783 if (mddev->reshape_backwards) {
ed37d83e 4784 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 4785 readpos += reshape_sectors;
7a661381 4786 safepos += reshape_sectors;
fef9c61f 4787 } else {
7a661381 4788 writepos += reshape_sectors;
ed37d83e
N
4789 readpos -= min_t(sector_t, reshape_sectors, readpos);
4790 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 4791 }
52c03291 4792
b5254dd5
N
4793 /* Having calculated the 'writepos' possibly use it
4794 * to set 'stripe_addr' which is where we will write to.
4795 */
4796 if (mddev->reshape_backwards) {
4797 BUG_ON(conf->reshape_progress == 0);
4798 stripe_addr = writepos;
4799 BUG_ON((mddev->dev_sectors &
4800 ~((sector_t)reshape_sectors - 1))
4801 - reshape_sectors - stripe_addr
4802 != sector_nr);
4803 } else {
4804 BUG_ON(writepos != sector_nr + reshape_sectors);
4805 stripe_addr = sector_nr;
4806 }
4807
c8f517c4
N
4808 /* 'writepos' is the most advanced device address we might write.
4809 * 'readpos' is the least advanced device address we might read.
4810 * 'safepos' is the least address recorded in the metadata as having
4811 * been reshaped.
b5254dd5
N
4812 * If there is a min_offset_diff, these are adjusted either by
4813 * increasing the safepos/readpos if diff is negative, or
4814 * increasing writepos if diff is positive.
4815 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
4816 * ensure safety in the face of a crash - that must be done by userspace
4817 * making a backup of the data. So in that case there is no particular
4818 * rush to update metadata.
4819 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4820 * update the metadata to advance 'safepos' to match 'readpos' so that
4821 * we can be safe in the event of a crash.
4822 * So we insist on updating metadata if safepos is behind writepos and
4823 * readpos is beyond writepos.
4824 * In any case, update the metadata every 10 seconds.
4825 * Maybe that number should be configurable, but I'm not sure it is
4826 * worth it.... maybe it could be a multiple of safemode_delay???
4827 */
b5254dd5
N
4828 if (conf->min_offset_diff < 0) {
4829 safepos += -conf->min_offset_diff;
4830 readpos += -conf->min_offset_diff;
4831 } else
4832 writepos += conf->min_offset_diff;
4833
2c810cdd 4834 if ((mddev->reshape_backwards
c8f517c4
N
4835 ? (safepos > writepos && readpos < writepos)
4836 : (safepos < writepos && readpos > writepos)) ||
4837 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
4838 /* Cannot proceed until we've updated the superblock... */
4839 wait_event(conf->wait_for_overlap,
c91abf5a
N
4840 atomic_read(&conf->reshape_stripes)==0
4841 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4842 if (atomic_read(&conf->reshape_stripes) != 0)
4843 return 0;
fef9c61f 4844 mddev->reshape_position = conf->reshape_progress;
75d3da43 4845 mddev->curr_resync_completed = sector_nr;
c8f517c4 4846 conf->reshape_checkpoint = jiffies;
850b2b42 4847 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 4848 md_wakeup_thread(mddev->thread);
850b2b42 4849 wait_event(mddev->sb_wait, mddev->flags == 0 ||
c91abf5a
N
4850 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4851 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4852 return 0;
52c03291 4853 spin_lock_irq(&conf->device_lock);
fef9c61f 4854 conf->reshape_safe = mddev->reshape_position;
52c03291
N
4855 spin_unlock_irq(&conf->device_lock);
4856 wake_up(&conf->wait_for_overlap);
acb180b0 4857 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
4858 }
4859
ab69ae12 4860 INIT_LIST_HEAD(&stripes);
7a661381 4861 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 4862 int j;
a9f326eb 4863 int skipped_disk = 0;
a8c906ca 4864 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
4865 set_bit(STRIPE_EXPANDING, &sh->state);
4866 atomic_inc(&conf->reshape_stripes);
4867 /* If any of this stripe is beyond the end of the old
4868 * array, then we need to zero those blocks
4869 */
4870 for (j=sh->disks; j--;) {
4871 sector_t s;
4872 if (j == sh->pd_idx)
4873 continue;
f416885e 4874 if (conf->level == 6 &&
d0dabf7e 4875 j == sh->qd_idx)
f416885e 4876 continue;
784052ec 4877 s = compute_blocknr(sh, j, 0);
b522adcd 4878 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 4879 skipped_disk = 1;
52c03291
N
4880 continue;
4881 }
4882 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4883 set_bit(R5_Expanded, &sh->dev[j].flags);
4884 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4885 }
a9f326eb 4886 if (!skipped_disk) {
52c03291
N
4887 set_bit(STRIPE_EXPAND_READY, &sh->state);
4888 set_bit(STRIPE_HANDLE, &sh->state);
4889 }
ab69ae12 4890 list_add(&sh->lru, &stripes);
52c03291
N
4891 }
4892 spin_lock_irq(&conf->device_lock);
2c810cdd 4893 if (mddev->reshape_backwards)
7a661381 4894 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 4895 else
7a661381 4896 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
4897 spin_unlock_irq(&conf->device_lock);
4898 /* Ok, those stripe are ready. We can start scheduling
4899 * reads on the source stripes.
4900 * The source stripes are determined by mapping the first and last
4901 * block on the destination stripes.
4902 */
52c03291 4903 first_sector =
ec32a2bd 4904 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 4905 1, &dd_idx, NULL);
52c03291 4906 last_sector =
0e6e0271 4907 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 4908 * new_data_disks - 1),
911d4ee8 4909 1, &dd_idx, NULL);
58c0fed4
AN
4910 if (last_sector >= mddev->dev_sectors)
4911 last_sector = mddev->dev_sectors - 1;
52c03291 4912 while (first_sector <= last_sector) {
a8c906ca 4913 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
4914 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4915 set_bit(STRIPE_HANDLE, &sh->state);
4916 release_stripe(sh);
4917 first_sector += STRIPE_SECTORS;
4918 }
ab69ae12
N
4919 /* Now that the sources are clearly marked, we can release
4920 * the destination stripes
4921 */
4922 while (!list_empty(&stripes)) {
4923 sh = list_entry(stripes.next, struct stripe_head, lru);
4924 list_del_init(&sh->lru);
4925 release_stripe(sh);
4926 }
c6207277
N
4927 /* If this takes us to the resync_max point where we have to pause,
4928 * then we need to write out the superblock.
4929 */
7a661381 4930 sector_nr += reshape_sectors;
c03f6a19
N
4931 if ((sector_nr - mddev->curr_resync_completed) * 2
4932 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
4933 /* Cannot proceed until we've updated the superblock... */
4934 wait_event(conf->wait_for_overlap,
c91abf5a
N
4935 atomic_read(&conf->reshape_stripes) == 0
4936 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4937 if (atomic_read(&conf->reshape_stripes) != 0)
4938 goto ret;
fef9c61f 4939 mddev->reshape_position = conf->reshape_progress;
75d3da43 4940 mddev->curr_resync_completed = sector_nr;
c8f517c4 4941 conf->reshape_checkpoint = jiffies;
c6207277
N
4942 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4943 md_wakeup_thread(mddev->thread);
4944 wait_event(mddev->sb_wait,
4945 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
c91abf5a
N
4946 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4947 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4948 goto ret;
c6207277 4949 spin_lock_irq(&conf->device_lock);
fef9c61f 4950 conf->reshape_safe = mddev->reshape_position;
c6207277
N
4951 spin_unlock_irq(&conf->device_lock);
4952 wake_up(&conf->wait_for_overlap);
acb180b0 4953 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 4954 }
c91abf5a 4955ret:
7a661381 4956 return reshape_sectors;
52c03291
N
4957}
4958
4959/* FIXME go_faster isn't used */
fd01b88c 4960static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
52c03291 4961{
d1688a6d 4962 struct r5conf *conf = mddev->private;
52c03291 4963 struct stripe_head *sh;
58c0fed4 4964 sector_t max_sector = mddev->dev_sectors;
57dab0bd 4965 sector_t sync_blocks;
16a53ecc
N
4966 int still_degraded = 0;
4967 int i;
1da177e4 4968
72626685 4969 if (sector_nr >= max_sector) {
1da177e4 4970 /* just being told to finish up .. nothing much to do */
cea9c228 4971
29269553
N
4972 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4973 end_reshape(conf);
4974 return 0;
4975 }
72626685
N
4976
4977 if (mddev->curr_resync < max_sector) /* aborted */
4978 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4979 &sync_blocks, 1);
16a53ecc 4980 else /* completed sync */
72626685
N
4981 conf->fullsync = 0;
4982 bitmap_close_sync(mddev->bitmap);
4983
1da177e4
LT
4984 return 0;
4985 }
ccfcc3c1 4986
64bd660b
N
4987 /* Allow raid5_quiesce to complete */
4988 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4989
52c03291
N
4990 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4991 return reshape_request(mddev, sector_nr, skipped);
f6705578 4992
c6207277
N
4993 /* No need to check resync_max as we never do more than one
4994 * stripe, and as resync_max will always be on a chunk boundary,
4995 * if the check in md_do_sync didn't fire, there is no chance
4996 * of overstepping resync_max here
4997 */
4998
16a53ecc 4999 /* if there is too many failed drives and we are trying
1da177e4
LT
5000 * to resync, then assert that we are finished, because there is
5001 * nothing we can do.
5002 */
3285edf1 5003 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 5004 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 5005 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 5006 *skipped = 1;
1da177e4
LT
5007 return rv;
5008 }
6f608040 5009 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5010 !conf->fullsync &&
5011 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5012 sync_blocks >= STRIPE_SECTORS) {
72626685
N
5013 /* we can skip this block, and probably more */
5014 sync_blocks /= STRIPE_SECTORS;
5015 *skipped = 1;
5016 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5017 }
1da177e4 5018
b47490c9
N
5019 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5020
a8c906ca 5021 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 5022 if (sh == NULL) {
a8c906ca 5023 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 5024 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 5025 * is trying to get access
1da177e4 5026 */
66c006a5 5027 schedule_timeout_uninterruptible(1);
1da177e4 5028 }
16a53ecc
N
5029 /* Need to check if array will still be degraded after recovery/resync
5030 * We don't need to check the 'failed' flag as when that gets set,
5031 * recovery aborts.
5032 */
f001a70c 5033 for (i = 0; i < conf->raid_disks; i++)
16a53ecc
N
5034 if (conf->disks[i].rdev == NULL)
5035 still_degraded = 1;
5036
5037 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5038
83206d66 5039 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
1da177e4 5040
1442577b 5041 handle_stripe(sh);
1da177e4
LT
5042 release_stripe(sh);
5043
5044 return STRIPE_SECTORS;
5045}
5046
d1688a6d 5047static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
5048{
5049 /* We may not be able to submit a whole bio at once as there
5050 * may not be enough stripe_heads available.
5051 * We cannot pre-allocate enough stripe_heads as we may need
5052 * more than exist in the cache (if we allow ever large chunks).
5053 * So we do one stripe head at a time and record in
5054 * ->bi_hw_segments how many have been done.
5055 *
5056 * We *know* that this entire raid_bio is in one chunk, so
5057 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5058 */
5059 struct stripe_head *sh;
911d4ee8 5060 int dd_idx;
46031f9a
RBJ
5061 sector_t sector, logical_sector, last_sector;
5062 int scnt = 0;
5063 int remaining;
5064 int handled = 0;
5065
4f024f37
KO
5066 logical_sector = raid_bio->bi_iter.bi_sector &
5067 ~((sector_t)STRIPE_SECTORS-1);
112bf897 5068 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 5069 0, &dd_idx, NULL);
f73a1c7d 5070 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
5071
5072 for (; logical_sector < last_sector;
387bb173
NB
5073 logical_sector += STRIPE_SECTORS,
5074 sector += STRIPE_SECTORS,
5075 scnt++) {
46031f9a 5076
e7836bd6 5077 if (scnt < raid5_bi_processed_stripes(raid_bio))
46031f9a
RBJ
5078 /* already done this stripe */
5079 continue;
5080
a8c906ca 5081 sh = get_active_stripe(conf, sector, 0, 1, 0);
46031f9a
RBJ
5082
5083 if (!sh) {
5084 /* failed to get a stripe - must wait */
e7836bd6 5085 raid5_set_bi_processed_stripes(raid_bio, scnt);
46031f9a
RBJ
5086 conf->retry_read_aligned = raid_bio;
5087 return handled;
5088 }
5089
387bb173
NB
5090 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5091 release_stripe(sh);
e7836bd6 5092 raid5_set_bi_processed_stripes(raid_bio, scnt);
387bb173
NB
5093 conf->retry_read_aligned = raid_bio;
5094 return handled;
5095 }
5096
3f9e7c14 5097 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 5098 handle_stripe(sh);
46031f9a
RBJ
5099 release_stripe(sh);
5100 handled++;
5101 }
e7836bd6 5102 remaining = raid5_dec_bi_active_stripes(raid_bio);
0a82a8d1
LT
5103 if (remaining == 0) {
5104 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5105 raid_bio, 0);
0e13fe23 5106 bio_endio(raid_bio, 0);
0a82a8d1 5107 }
46031f9a
RBJ
5108 if (atomic_dec_and_test(&conf->active_aligned_reads))
5109 wake_up(&conf->wait_for_stripe);
5110 return handled;
5111}
5112
bfc90cb0 5113static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
5114 struct r5worker *worker,
5115 struct list_head *temp_inactive_list)
46a06401
SL
5116{
5117 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
5118 int i, batch_size = 0, hash;
5119 bool release_inactive = false;
46a06401
SL
5120
5121 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 5122 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
5123 batch[batch_size++] = sh;
5124
566c09c5
SL
5125 if (batch_size == 0) {
5126 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5127 if (!list_empty(temp_inactive_list + i))
5128 break;
5129 if (i == NR_STRIPE_HASH_LOCKS)
5130 return batch_size;
5131 release_inactive = true;
5132 }
46a06401
SL
5133 spin_unlock_irq(&conf->device_lock);
5134
566c09c5
SL
5135 release_inactive_stripe_list(conf, temp_inactive_list,
5136 NR_STRIPE_HASH_LOCKS);
5137
5138 if (release_inactive) {
5139 spin_lock_irq(&conf->device_lock);
5140 return 0;
5141 }
5142
46a06401
SL
5143 for (i = 0; i < batch_size; i++)
5144 handle_stripe(batch[i]);
5145
5146 cond_resched();
5147
5148 spin_lock_irq(&conf->device_lock);
566c09c5
SL
5149 for (i = 0; i < batch_size; i++) {
5150 hash = batch[i]->hash_lock_index;
5151 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5152 }
46a06401
SL
5153 return batch_size;
5154}
46031f9a 5155
851c30c9
SL
5156static void raid5_do_work(struct work_struct *work)
5157{
5158 struct r5worker *worker = container_of(work, struct r5worker, work);
5159 struct r5worker_group *group = worker->group;
5160 struct r5conf *conf = group->conf;
5161 int group_id = group - conf->worker_groups;
5162 int handled;
5163 struct blk_plug plug;
5164
5165 pr_debug("+++ raid5worker active\n");
5166
5167 blk_start_plug(&plug);
5168 handled = 0;
5169 spin_lock_irq(&conf->device_lock);
5170 while (1) {
5171 int batch_size, released;
5172
566c09c5 5173 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 5174
566c09c5
SL
5175 batch_size = handle_active_stripes(conf, group_id, worker,
5176 worker->temp_inactive_list);
bfc90cb0 5177 worker->working = false;
851c30c9
SL
5178 if (!batch_size && !released)
5179 break;
5180 handled += batch_size;
5181 }
5182 pr_debug("%d stripes handled\n", handled);
5183
5184 spin_unlock_irq(&conf->device_lock);
5185 blk_finish_plug(&plug);
5186
5187 pr_debug("--- raid5worker inactive\n");
5188}
5189
1da177e4
LT
5190/*
5191 * This is our raid5 kernel thread.
5192 *
5193 * We scan the hash table for stripes which can be handled now.
5194 * During the scan, completed stripes are saved for us by the interrupt
5195 * handler, so that they will not have to wait for our next wakeup.
5196 */
4ed8731d 5197static void raid5d(struct md_thread *thread)
1da177e4 5198{
4ed8731d 5199 struct mddev *mddev = thread->mddev;
d1688a6d 5200 struct r5conf *conf = mddev->private;
1da177e4 5201 int handled;
e1dfa0a2 5202 struct blk_plug plug;
1da177e4 5203
45b4233c 5204 pr_debug("+++ raid5d active\n");
1da177e4
LT
5205
5206 md_check_recovery(mddev);
1da177e4 5207
e1dfa0a2 5208 blk_start_plug(&plug);
1da177e4
LT
5209 handled = 0;
5210 spin_lock_irq(&conf->device_lock);
5211 while (1) {
46031f9a 5212 struct bio *bio;
773ca82f
SL
5213 int batch_size, released;
5214
566c09c5 5215 released = release_stripe_list(conf, conf->temp_inactive_list);
1da177e4 5216
0021b7bc 5217 if (
7c13edc8
N
5218 !list_empty(&conf->bitmap_list)) {
5219 /* Now is a good time to flush some bitmap updates */
5220 conf->seq_flush++;
700e432d 5221 spin_unlock_irq(&conf->device_lock);
72626685 5222 bitmap_unplug(mddev->bitmap);
700e432d 5223 spin_lock_irq(&conf->device_lock);
7c13edc8 5224 conf->seq_write = conf->seq_flush;
566c09c5 5225 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 5226 }
0021b7bc 5227 raid5_activate_delayed(conf);
72626685 5228
46031f9a
RBJ
5229 while ((bio = remove_bio_from_retry(conf))) {
5230 int ok;
5231 spin_unlock_irq(&conf->device_lock);
5232 ok = retry_aligned_read(conf, bio);
5233 spin_lock_irq(&conf->device_lock);
5234 if (!ok)
5235 break;
5236 handled++;
5237 }
5238
566c09c5
SL
5239 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5240 conf->temp_inactive_list);
773ca82f 5241 if (!batch_size && !released)
1da177e4 5242 break;
46a06401 5243 handled += batch_size;
1da177e4 5244
46a06401
SL
5245 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5246 spin_unlock_irq(&conf->device_lock);
de393cde 5247 md_check_recovery(mddev);
46a06401
SL
5248 spin_lock_irq(&conf->device_lock);
5249 }
1da177e4 5250 }
45b4233c 5251 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
5252
5253 spin_unlock_irq(&conf->device_lock);
5254
c9f21aaf 5255 async_tx_issue_pending_all();
e1dfa0a2 5256 blk_finish_plug(&plug);
1da177e4 5257
45b4233c 5258 pr_debug("--- raid5d inactive\n");
1da177e4
LT
5259}
5260
3f294f4f 5261static ssize_t
fd01b88c 5262raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 5263{
d1688a6d 5264 struct r5conf *conf = mddev->private;
96de1e66
N
5265 if (conf)
5266 return sprintf(page, "%d\n", conf->max_nr_stripes);
5267 else
5268 return 0;
3f294f4f
N
5269}
5270
c41d4ac4 5271int
fd01b88c 5272raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 5273{
d1688a6d 5274 struct r5conf *conf = mddev->private;
b5470dc5 5275 int err;
566c09c5 5276 int hash;
b5470dc5 5277
c41d4ac4 5278 if (size <= 16 || size > 32768)
3f294f4f 5279 return -EINVAL;
566c09c5 5280 hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
c41d4ac4 5281 while (size < conf->max_nr_stripes) {
566c09c5 5282 if (drop_one_stripe(conf, hash))
3f294f4f
N
5283 conf->max_nr_stripes--;
5284 else
5285 break;
566c09c5
SL
5286 hash--;
5287 if (hash < 0)
5288 hash = NR_STRIPE_HASH_LOCKS - 1;
3f294f4f 5289 }
b5470dc5
DW
5290 err = md_allow_write(mddev);
5291 if (err)
5292 return err;
566c09c5 5293 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
c41d4ac4 5294 while (size > conf->max_nr_stripes) {
566c09c5 5295 if (grow_one_stripe(conf, hash))
3f294f4f
N
5296 conf->max_nr_stripes++;
5297 else break;
566c09c5 5298 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
3f294f4f 5299 }
c41d4ac4
N
5300 return 0;
5301}
5302EXPORT_SYMBOL(raid5_set_cache_size);
5303
5304static ssize_t
fd01b88c 5305raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 5306{
d1688a6d 5307 struct r5conf *conf = mddev->private;
c41d4ac4
N
5308 unsigned long new;
5309 int err;
5310
5311 if (len >= PAGE_SIZE)
5312 return -EINVAL;
5313 if (!conf)
5314 return -ENODEV;
5315
b29bebd6 5316 if (kstrtoul(page, 10, &new))
c41d4ac4
N
5317 return -EINVAL;
5318 err = raid5_set_cache_size(mddev, new);
5319 if (err)
5320 return err;
3f294f4f
N
5321 return len;
5322}
007583c9 5323
96de1e66
N
5324static struct md_sysfs_entry
5325raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5326 raid5_show_stripe_cache_size,
5327 raid5_store_stripe_cache_size);
3f294f4f 5328
8b3e6cdc 5329static ssize_t
fd01b88c 5330raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 5331{
d1688a6d 5332 struct r5conf *conf = mddev->private;
8b3e6cdc
DW
5333 if (conf)
5334 return sprintf(page, "%d\n", conf->bypass_threshold);
5335 else
5336 return 0;
5337}
5338
5339static ssize_t
fd01b88c 5340raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 5341{
d1688a6d 5342 struct r5conf *conf = mddev->private;
4ef197d8 5343 unsigned long new;
8b3e6cdc
DW
5344 if (len >= PAGE_SIZE)
5345 return -EINVAL;
5346 if (!conf)
5347 return -ENODEV;
5348
b29bebd6 5349 if (kstrtoul(page, 10, &new))
8b3e6cdc 5350 return -EINVAL;
4ef197d8 5351 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
5352 return -EINVAL;
5353 conf->bypass_threshold = new;
5354 return len;
5355}
5356
5357static struct md_sysfs_entry
5358raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5359 S_IRUGO | S_IWUSR,
5360 raid5_show_preread_threshold,
5361 raid5_store_preread_threshold);
5362
3f294f4f 5363static ssize_t
fd01b88c 5364stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 5365{
d1688a6d 5366 struct r5conf *conf = mddev->private;
96de1e66
N
5367 if (conf)
5368 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5369 else
5370 return 0;
3f294f4f
N
5371}
5372
96de1e66
N
5373static struct md_sysfs_entry
5374raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 5375
b721420e
SL
5376static ssize_t
5377raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5378{
5379 struct r5conf *conf = mddev->private;
5380 if (conf)
5381 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5382 else
5383 return 0;
5384}
5385
60aaf933 5386static int alloc_thread_groups(struct r5conf *conf, int cnt,
5387 int *group_cnt,
5388 int *worker_cnt_per_group,
5389 struct r5worker_group **worker_groups);
b721420e
SL
5390static ssize_t
5391raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5392{
5393 struct r5conf *conf = mddev->private;
5394 unsigned long new;
5395 int err;
60aaf933 5396 struct r5worker_group *new_groups, *old_groups;
5397 int group_cnt, worker_cnt_per_group;
b721420e
SL
5398
5399 if (len >= PAGE_SIZE)
5400 return -EINVAL;
5401 if (!conf)
5402 return -ENODEV;
5403
5404 if (kstrtoul(page, 10, &new))
5405 return -EINVAL;
5406
5407 if (new == conf->worker_cnt_per_group)
5408 return len;
5409
5410 mddev_suspend(mddev);
5411
5412 old_groups = conf->worker_groups;
d206dcfa 5413 if (old_groups)
5414 flush_workqueue(raid5_wq);
5415
60aaf933 5416 err = alloc_thread_groups(conf, new,
5417 &group_cnt, &worker_cnt_per_group,
5418 &new_groups);
5419 if (!err) {
5420 spin_lock_irq(&conf->device_lock);
5421 conf->group_cnt = group_cnt;
5422 conf->worker_cnt_per_group = worker_cnt_per_group;
5423 conf->worker_groups = new_groups;
5424 spin_unlock_irq(&conf->device_lock);
b721420e 5425
b721420e
SL
5426 if (old_groups)
5427 kfree(old_groups[0].workers);
5428 kfree(old_groups);
5429 }
5430
5431 mddev_resume(mddev);
5432
5433 if (err)
5434 return err;
5435 return len;
5436}
5437
5438static struct md_sysfs_entry
5439raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5440 raid5_show_group_thread_cnt,
5441 raid5_store_group_thread_cnt);
5442
007583c9 5443static struct attribute *raid5_attrs[] = {
3f294f4f
N
5444 &raid5_stripecache_size.attr,
5445 &raid5_stripecache_active.attr,
8b3e6cdc 5446 &raid5_preread_bypass_threshold.attr,
b721420e 5447 &raid5_group_thread_cnt.attr,
3f294f4f
N
5448 NULL,
5449};
007583c9
N
5450static struct attribute_group raid5_attrs_group = {
5451 .name = NULL,
5452 .attrs = raid5_attrs,
3f294f4f
N
5453};
5454
60aaf933 5455static int alloc_thread_groups(struct r5conf *conf, int cnt,
5456 int *group_cnt,
5457 int *worker_cnt_per_group,
5458 struct r5worker_group **worker_groups)
851c30c9 5459{
566c09c5 5460 int i, j, k;
851c30c9
SL
5461 ssize_t size;
5462 struct r5worker *workers;
5463
60aaf933 5464 *worker_cnt_per_group = cnt;
851c30c9 5465 if (cnt == 0) {
60aaf933 5466 *group_cnt = 0;
5467 *worker_groups = NULL;
851c30c9
SL
5468 return 0;
5469 }
60aaf933 5470 *group_cnt = num_possible_nodes();
851c30c9 5471 size = sizeof(struct r5worker) * cnt;
60aaf933 5472 workers = kzalloc(size * *group_cnt, GFP_NOIO);
5473 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5474 *group_cnt, GFP_NOIO);
5475 if (!*worker_groups || !workers) {
851c30c9 5476 kfree(workers);
60aaf933 5477 kfree(*worker_groups);
851c30c9
SL
5478 return -ENOMEM;
5479 }
5480
60aaf933 5481 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
5482 struct r5worker_group *group;
5483
0c775d52 5484 group = &(*worker_groups)[i];
851c30c9
SL
5485 INIT_LIST_HEAD(&group->handle_list);
5486 group->conf = conf;
5487 group->workers = workers + i * cnt;
5488
5489 for (j = 0; j < cnt; j++) {
566c09c5
SL
5490 struct r5worker *worker = group->workers + j;
5491 worker->group = group;
5492 INIT_WORK(&worker->work, raid5_do_work);
5493
5494 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5495 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
5496 }
5497 }
5498
5499 return 0;
5500}
5501
5502static void free_thread_groups(struct r5conf *conf)
5503{
5504 if (conf->worker_groups)
5505 kfree(conf->worker_groups[0].workers);
5506 kfree(conf->worker_groups);
5507 conf->worker_groups = NULL;
5508}
5509
80c3a6ce 5510static sector_t
fd01b88c 5511raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 5512{
d1688a6d 5513 struct r5conf *conf = mddev->private;
80c3a6ce
DW
5514
5515 if (!sectors)
5516 sectors = mddev->dev_sectors;
5e5e3e78 5517 if (!raid_disks)
7ec05478 5518 /* size is defined by the smallest of previous and new size */
5e5e3e78 5519 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 5520
9d8f0363 5521 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 5522 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
5523 return sectors * (raid_disks - conf->max_degraded);
5524}
5525
789b5e03
ON
5526static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5527{
5528 safe_put_page(percpu->spare_page);
5529 kfree(percpu->scribble);
5530 percpu->spare_page = NULL;
5531 percpu->scribble = NULL;
5532}
5533
5534static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5535{
5536 if (conf->level == 6 && !percpu->spare_page)
5537 percpu->spare_page = alloc_page(GFP_KERNEL);
5538 if (!percpu->scribble)
5539 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5540
5541 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5542 free_scratch_buffer(conf, percpu);
5543 return -ENOMEM;
5544 }
5545
5546 return 0;
5547}
5548
d1688a6d 5549static void raid5_free_percpu(struct r5conf *conf)
36d1c647 5550{
36d1c647
DW
5551 unsigned long cpu;
5552
5553 if (!conf->percpu)
5554 return;
5555
36d1c647
DW
5556#ifdef CONFIG_HOTPLUG_CPU
5557 unregister_cpu_notifier(&conf->cpu_notify);
5558#endif
789b5e03
ON
5559
5560 get_online_cpus();
5561 for_each_possible_cpu(cpu)
5562 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
5563 put_online_cpus();
5564
5565 free_percpu(conf->percpu);
5566}
5567
d1688a6d 5568static void free_conf(struct r5conf *conf)
95fc17aa 5569{
851c30c9 5570 free_thread_groups(conf);
95fc17aa 5571 shrink_stripes(conf);
36d1c647 5572 raid5_free_percpu(conf);
95fc17aa
DW
5573 kfree(conf->disks);
5574 kfree(conf->stripe_hashtbl);
5575 kfree(conf);
5576}
5577
36d1c647
DW
5578#ifdef CONFIG_HOTPLUG_CPU
5579static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5580 void *hcpu)
5581{
d1688a6d 5582 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
5583 long cpu = (long)hcpu;
5584 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5585
5586 switch (action) {
5587 case CPU_UP_PREPARE:
5588 case CPU_UP_PREPARE_FROZEN:
789b5e03 5589 if (alloc_scratch_buffer(conf, percpu)) {
36d1c647
DW
5590 pr_err("%s: failed memory allocation for cpu%ld\n",
5591 __func__, cpu);
55af6bb5 5592 return notifier_from_errno(-ENOMEM);
36d1c647
DW
5593 }
5594 break;
5595 case CPU_DEAD:
5596 case CPU_DEAD_FROZEN:
789b5e03 5597 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
5598 break;
5599 default:
5600 break;
5601 }
5602 return NOTIFY_OK;
5603}
5604#endif
5605
d1688a6d 5606static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
5607{
5608 unsigned long cpu;
789b5e03 5609 int err = 0;
36d1c647 5610
789b5e03
ON
5611 conf->percpu = alloc_percpu(struct raid5_percpu);
5612 if (!conf->percpu)
36d1c647 5613 return -ENOMEM;
789b5e03
ON
5614
5615#ifdef CONFIG_HOTPLUG_CPU
5616 conf->cpu_notify.notifier_call = raid456_cpu_notify;
5617 conf->cpu_notify.priority = 0;
5618 err = register_cpu_notifier(&conf->cpu_notify);
5619 if (err)
5620 return err;
5621#endif
36d1c647
DW
5622
5623 get_online_cpus();
36d1c647 5624 for_each_present_cpu(cpu) {
789b5e03
ON
5625 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5626 if (err) {
5627 pr_err("%s: failed memory allocation for cpu%ld\n",
5628 __func__, cpu);
36d1c647
DW
5629 break;
5630 }
36d1c647 5631 }
36d1c647
DW
5632 put_online_cpus();
5633
5634 return err;
5635}
5636
d1688a6d 5637static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 5638{
d1688a6d 5639 struct r5conf *conf;
5e5e3e78 5640 int raid_disk, memory, max_disks;
3cb03002 5641 struct md_rdev *rdev;
1da177e4 5642 struct disk_info *disk;
0232605d 5643 char pers_name[6];
566c09c5 5644 int i;
60aaf933 5645 int group_cnt, worker_cnt_per_group;
5646 struct r5worker_group *new_group;
1da177e4 5647
91adb564
N
5648 if (mddev->new_level != 5
5649 && mddev->new_level != 4
5650 && mddev->new_level != 6) {
0c55e022 5651 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
5652 mdname(mddev), mddev->new_level);
5653 return ERR_PTR(-EIO);
1da177e4 5654 }
91adb564
N
5655 if ((mddev->new_level == 5
5656 && !algorithm_valid_raid5(mddev->new_layout)) ||
5657 (mddev->new_level == 6
5658 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 5659 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
5660 mdname(mddev), mddev->new_layout);
5661 return ERR_PTR(-EIO);
99c0fb5f 5662 }
91adb564 5663 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 5664 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
5665 mdname(mddev), mddev->raid_disks);
5666 return ERR_PTR(-EINVAL);
4bbf3771
N
5667 }
5668
664e7c41
AN
5669 if (!mddev->new_chunk_sectors ||
5670 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5671 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
5672 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5673 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 5674 return ERR_PTR(-EINVAL);
f6705578
N
5675 }
5676
d1688a6d 5677 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 5678 if (conf == NULL)
1da177e4 5679 goto abort;
851c30c9 5680 /* Don't enable multi-threading by default*/
60aaf933 5681 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5682 &new_group)) {
5683 conf->group_cnt = group_cnt;
5684 conf->worker_cnt_per_group = worker_cnt_per_group;
5685 conf->worker_groups = new_group;
5686 } else
851c30c9 5687 goto abort;
f5efd45a 5688 spin_lock_init(&conf->device_lock);
c46501b2 5689 seqcount_init(&conf->gen_lock);
f5efd45a
DW
5690 init_waitqueue_head(&conf->wait_for_stripe);
5691 init_waitqueue_head(&conf->wait_for_overlap);
5692 INIT_LIST_HEAD(&conf->handle_list);
5693 INIT_LIST_HEAD(&conf->hold_list);
5694 INIT_LIST_HEAD(&conf->delayed_list);
5695 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 5696 init_llist_head(&conf->released_stripes);
f5efd45a
DW
5697 atomic_set(&conf->active_stripes, 0);
5698 atomic_set(&conf->preread_active_stripes, 0);
5699 atomic_set(&conf->active_aligned_reads, 0);
5700 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 5701 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
5702
5703 conf->raid_disks = mddev->raid_disks;
5704 if (mddev->reshape_position == MaxSector)
5705 conf->previous_raid_disks = mddev->raid_disks;
5706 else
f6705578 5707 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78
N
5708 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5709 conf->scribble_len = scribble_len(max_disks);
f6705578 5710
5e5e3e78 5711 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
5712 GFP_KERNEL);
5713 if (!conf->disks)
5714 goto abort;
9ffae0cf 5715
1da177e4
LT
5716 conf->mddev = mddev;
5717
fccddba0 5718 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 5719 goto abort;
1da177e4 5720
566c09c5
SL
5721 /* We init hash_locks[0] separately to that it can be used
5722 * as the reference lock in the spin_lock_nest_lock() call
5723 * in lock_all_device_hash_locks_irq in order to convince
5724 * lockdep that we know what we are doing.
5725 */
5726 spin_lock_init(conf->hash_locks);
5727 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5728 spin_lock_init(conf->hash_locks + i);
5729
5730 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5731 INIT_LIST_HEAD(conf->inactive_list + i);
5732
5733 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5734 INIT_LIST_HEAD(conf->temp_inactive_list + i);
5735
36d1c647
DW
5736 conf->level = mddev->new_level;
5737 if (raid5_alloc_percpu(conf) != 0)
5738 goto abort;
5739
0c55e022 5740 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 5741
dafb20fa 5742 rdev_for_each(rdev, mddev) {
1da177e4 5743 raid_disk = rdev->raid_disk;
5e5e3e78 5744 if (raid_disk >= max_disks
1da177e4
LT
5745 || raid_disk < 0)
5746 continue;
5747 disk = conf->disks + raid_disk;
5748
17045f52
N
5749 if (test_bit(Replacement, &rdev->flags)) {
5750 if (disk->replacement)
5751 goto abort;
5752 disk->replacement = rdev;
5753 } else {
5754 if (disk->rdev)
5755 goto abort;
5756 disk->rdev = rdev;
5757 }
1da177e4 5758
b2d444d7 5759 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 5760 char b[BDEVNAME_SIZE];
0c55e022
N
5761 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5762 " disk %d\n",
5763 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 5764 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
5765 /* Cannot rely on bitmap to complete recovery */
5766 conf->fullsync = 1;
1da177e4
LT
5767 }
5768
09c9e5fa 5769 conf->chunk_sectors = mddev->new_chunk_sectors;
91adb564 5770 conf->level = mddev->new_level;
16a53ecc
N
5771 if (conf->level == 6)
5772 conf->max_degraded = 2;
5773 else
5774 conf->max_degraded = 1;
91adb564 5775 conf->algorithm = mddev->new_layout;
fef9c61f 5776 conf->reshape_progress = mddev->reshape_position;
e183eaed 5777 if (conf->reshape_progress != MaxSector) {
09c9e5fa 5778 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
5779 conf->prev_algo = mddev->layout;
5780 }
1da177e4 5781
91adb564 5782 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 5783 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 5784 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
566c09c5 5785 if (grow_stripes(conf, NR_STRIPES)) {
91adb564 5786 printk(KERN_ERR
0c55e022
N
5787 "md/raid:%s: couldn't allocate %dkB for buffers\n",
5788 mdname(mddev), memory);
91adb564
N
5789 goto abort;
5790 } else
0c55e022
N
5791 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5792 mdname(mddev), memory);
1da177e4 5793
0232605d
N
5794 sprintf(pers_name, "raid%d", mddev->new_level);
5795 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564
N
5796 if (!conf->thread) {
5797 printk(KERN_ERR
0c55e022 5798 "md/raid:%s: couldn't allocate thread.\n",
91adb564 5799 mdname(mddev));
16a53ecc
N
5800 goto abort;
5801 }
91adb564
N
5802
5803 return conf;
5804
5805 abort:
5806 if (conf) {
95fc17aa 5807 free_conf(conf);
91adb564
N
5808 return ERR_PTR(-EIO);
5809 } else
5810 return ERR_PTR(-ENOMEM);
5811}
5812
c148ffdc
N
5813
5814static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5815{
5816 switch (algo) {
5817 case ALGORITHM_PARITY_0:
5818 if (raid_disk < max_degraded)
5819 return 1;
5820 break;
5821 case ALGORITHM_PARITY_N:
5822 if (raid_disk >= raid_disks - max_degraded)
5823 return 1;
5824 break;
5825 case ALGORITHM_PARITY_0_6:
5826 if (raid_disk == 0 ||
5827 raid_disk == raid_disks - 1)
5828 return 1;
5829 break;
5830 case ALGORITHM_LEFT_ASYMMETRIC_6:
5831 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5832 case ALGORITHM_LEFT_SYMMETRIC_6:
5833 case ALGORITHM_RIGHT_SYMMETRIC_6:
5834 if (raid_disk == raid_disks - 1)
5835 return 1;
5836 }
5837 return 0;
5838}
5839
fd01b88c 5840static int run(struct mddev *mddev)
91adb564 5841{
d1688a6d 5842 struct r5conf *conf;
9f7c2220 5843 int working_disks = 0;
c148ffdc 5844 int dirty_parity_disks = 0;
3cb03002 5845 struct md_rdev *rdev;
c148ffdc 5846 sector_t reshape_offset = 0;
17045f52 5847 int i;
b5254dd5
N
5848 long long min_offset_diff = 0;
5849 int first = 1;
91adb564 5850
8c6ac868 5851 if (mddev->recovery_cp != MaxSector)
0c55e022 5852 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
5853 " -- starting background reconstruction\n",
5854 mdname(mddev));
b5254dd5
N
5855
5856 rdev_for_each(rdev, mddev) {
5857 long long diff;
5858 if (rdev->raid_disk < 0)
5859 continue;
5860 diff = (rdev->new_data_offset - rdev->data_offset);
5861 if (first) {
5862 min_offset_diff = diff;
5863 first = 0;
5864 } else if (mddev->reshape_backwards &&
5865 diff < min_offset_diff)
5866 min_offset_diff = diff;
5867 else if (!mddev->reshape_backwards &&
5868 diff > min_offset_diff)
5869 min_offset_diff = diff;
5870 }
5871
91adb564
N
5872 if (mddev->reshape_position != MaxSector) {
5873 /* Check that we can continue the reshape.
b5254dd5
N
5874 * Difficulties arise if the stripe we would write to
5875 * next is at or after the stripe we would read from next.
5876 * For a reshape that changes the number of devices, this
5877 * is only possible for a very short time, and mdadm makes
5878 * sure that time appears to have past before assembling
5879 * the array. So we fail if that time hasn't passed.
5880 * For a reshape that keeps the number of devices the same
5881 * mdadm must be monitoring the reshape can keeping the
5882 * critical areas read-only and backed up. It will start
5883 * the array in read-only mode, so we check for that.
91adb564
N
5884 */
5885 sector_t here_new, here_old;
5886 int old_disks;
18b00334 5887 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 5888
88ce4930 5889 if (mddev->new_level != mddev->level) {
0c55e022 5890 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
5891 "required - aborting.\n",
5892 mdname(mddev));
5893 return -EINVAL;
5894 }
91adb564
N
5895 old_disks = mddev->raid_disks - mddev->delta_disks;
5896 /* reshape_position must be on a new-stripe boundary, and one
5897 * further up in new geometry must map after here in old
5898 * geometry.
5899 */
5900 here_new = mddev->reshape_position;
664e7c41 5901 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 5902 (mddev->raid_disks - max_degraded))) {
0c55e022
N
5903 printk(KERN_ERR "md/raid:%s: reshape_position not "
5904 "on a stripe boundary\n", mdname(mddev));
91adb564
N
5905 return -EINVAL;
5906 }
c148ffdc 5907 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
5908 /* here_new is the stripe we will write to */
5909 here_old = mddev->reshape_position;
9d8f0363 5910 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
5911 (old_disks-max_degraded));
5912 /* here_old is the first stripe that we might need to read
5913 * from */
67ac6011 5914 if (mddev->delta_disks == 0) {
b5254dd5
N
5915 if ((here_new * mddev->new_chunk_sectors !=
5916 here_old * mddev->chunk_sectors)) {
5917 printk(KERN_ERR "md/raid:%s: reshape position is"
5918 " confused - aborting\n", mdname(mddev));
5919 return -EINVAL;
5920 }
67ac6011 5921 /* We cannot be sure it is safe to start an in-place
b5254dd5 5922 * reshape. It is only safe if user-space is monitoring
67ac6011
N
5923 * and taking constant backups.
5924 * mdadm always starts a situation like this in
5925 * readonly mode so it can take control before
5926 * allowing any writes. So just check for that.
5927 */
b5254dd5
N
5928 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5929 abs(min_offset_diff) >= mddev->new_chunk_sectors)
5930 /* not really in-place - so OK */;
5931 else if (mddev->ro == 0) {
5932 printk(KERN_ERR "md/raid:%s: in-place reshape "
5933 "must be started in read-only mode "
5934 "- aborting\n",
0c55e022 5935 mdname(mddev));
67ac6011
N
5936 return -EINVAL;
5937 }
2c810cdd 5938 } else if (mddev->reshape_backwards
b5254dd5 5939 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
67ac6011
N
5940 here_old * mddev->chunk_sectors)
5941 : (here_new * mddev->new_chunk_sectors >=
b5254dd5 5942 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
91adb564 5943 /* Reading from the same stripe as writing to - bad */
0c55e022
N
5944 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5945 "auto-recovery - aborting.\n",
5946 mdname(mddev));
91adb564
N
5947 return -EINVAL;
5948 }
0c55e022
N
5949 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5950 mdname(mddev));
91adb564
N
5951 /* OK, we should be able to continue; */
5952 } else {
5953 BUG_ON(mddev->level != mddev->new_level);
5954 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 5955 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 5956 BUG_ON(mddev->delta_disks != 0);
1da177e4 5957 }
91adb564 5958
245f46c2
N
5959 if (mddev->private == NULL)
5960 conf = setup_conf(mddev);
5961 else
5962 conf = mddev->private;
5963
91adb564
N
5964 if (IS_ERR(conf))
5965 return PTR_ERR(conf);
5966
b5254dd5 5967 conf->min_offset_diff = min_offset_diff;
91adb564
N
5968 mddev->thread = conf->thread;
5969 conf->thread = NULL;
5970 mddev->private = conf;
5971
17045f52
N
5972 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5973 i++) {
5974 rdev = conf->disks[i].rdev;
5975 if (!rdev && conf->disks[i].replacement) {
5976 /* The replacement is all we have yet */
5977 rdev = conf->disks[i].replacement;
5978 conf->disks[i].replacement = NULL;
5979 clear_bit(Replacement, &rdev->flags);
5980 conf->disks[i].rdev = rdev;
5981 }
5982 if (!rdev)
c148ffdc 5983 continue;
17045f52
N
5984 if (conf->disks[i].replacement &&
5985 conf->reshape_progress != MaxSector) {
5986 /* replacements and reshape simply do not mix. */
5987 printk(KERN_ERR "md: cannot handle concurrent "
5988 "replacement and reshape.\n");
5989 goto abort;
5990 }
2f115882 5991 if (test_bit(In_sync, &rdev->flags)) {
91adb564 5992 working_disks++;
2f115882
N
5993 continue;
5994 }
c148ffdc
N
5995 /* This disc is not fully in-sync. However if it
5996 * just stored parity (beyond the recovery_offset),
5997 * when we don't need to be concerned about the
5998 * array being dirty.
5999 * When reshape goes 'backwards', we never have
6000 * partially completed devices, so we only need
6001 * to worry about reshape going forwards.
6002 */
6003 /* Hack because v0.91 doesn't store recovery_offset properly. */
6004 if (mddev->major_version == 0 &&
6005 mddev->minor_version > 90)
6006 rdev->recovery_offset = reshape_offset;
5026d7a9 6007
c148ffdc
N
6008 if (rdev->recovery_offset < reshape_offset) {
6009 /* We need to check old and new layout */
6010 if (!only_parity(rdev->raid_disk,
6011 conf->algorithm,
6012 conf->raid_disks,
6013 conf->max_degraded))
6014 continue;
6015 }
6016 if (!only_parity(rdev->raid_disk,
6017 conf->prev_algo,
6018 conf->previous_raid_disks,
6019 conf->max_degraded))
6020 continue;
6021 dirty_parity_disks++;
6022 }
91adb564 6023
17045f52
N
6024 /*
6025 * 0 for a fully functional array, 1 or 2 for a degraded array.
6026 */
908f4fbd 6027 mddev->degraded = calc_degraded(conf);
91adb564 6028
674806d6 6029 if (has_failed(conf)) {
0c55e022 6030 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 6031 " (%d/%d failed)\n",
02c2de8c 6032 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
6033 goto abort;
6034 }
6035
91adb564 6036 /* device size must be a multiple of chunk size */
9d8f0363 6037 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
6038 mddev->resync_max_sectors = mddev->dev_sectors;
6039
c148ffdc 6040 if (mddev->degraded > dirty_parity_disks &&
1da177e4 6041 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
6042 if (mddev->ok_start_degraded)
6043 printk(KERN_WARNING
0c55e022
N
6044 "md/raid:%s: starting dirty degraded array"
6045 " - data corruption possible.\n",
6ff8d8ec
N
6046 mdname(mddev));
6047 else {
6048 printk(KERN_ERR
0c55e022 6049 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
6050 mdname(mddev));
6051 goto abort;
6052 }
1da177e4
LT
6053 }
6054
1da177e4 6055 if (mddev->degraded == 0)
0c55e022
N
6056 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6057 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
6058 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6059 mddev->new_layout);
1da177e4 6060 else
0c55e022
N
6061 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6062 " out of %d devices, algorithm %d\n",
6063 mdname(mddev), conf->level,
6064 mddev->raid_disks - mddev->degraded,
6065 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
6066
6067 print_raid5_conf(conf);
6068
fef9c61f 6069 if (conf->reshape_progress != MaxSector) {
fef9c61f 6070 conf->reshape_safe = conf->reshape_progress;
f6705578
N
6071 atomic_set(&conf->reshape_stripes, 0);
6072 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6073 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6074 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6075 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6076 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 6077 "reshape");
f6705578
N
6078 }
6079
1da177e4
LT
6080
6081 /* Ok, everything is just fine now */
a64c876f
N
6082 if (mddev->to_remove == &raid5_attrs_group)
6083 mddev->to_remove = NULL;
00bcb4ac
N
6084 else if (mddev->kobj.sd &&
6085 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 6086 printk(KERN_WARNING
4a5add49 6087 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 6088 mdname(mddev));
4a5add49 6089 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 6090
4a5add49 6091 if (mddev->queue) {
9f7c2220 6092 int chunk_size;
620125f2 6093 bool discard_supported = true;
4a5add49
N
6094 /* read-ahead size must cover two whole stripes, which
6095 * is 2 * (datadisks) * chunksize where 'n' is the
6096 * number of raid devices
6097 */
6098 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6099 int stripe = data_disks *
6100 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6101 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6102 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 6103
4a5add49 6104 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
f022b2fd 6105
11d8a6e3
N
6106 mddev->queue->backing_dev_info.congested_data = mddev;
6107 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
7a5febe9 6108
9f7c2220
N
6109 chunk_size = mddev->chunk_sectors << 9;
6110 blk_queue_io_min(mddev->queue, chunk_size);
6111 blk_queue_io_opt(mddev->queue, chunk_size *
6112 (conf->raid_disks - conf->max_degraded));
c78afc62 6113 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
6114 /*
6115 * We can only discard a whole stripe. It doesn't make sense to
6116 * discard data disk but write parity disk
6117 */
6118 stripe = stripe * PAGE_SIZE;
4ac6875e
N
6119 /* Round up to power of 2, as discard handling
6120 * currently assumes that */
6121 while ((stripe-1) & stripe)
6122 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
6123 mddev->queue->limits.discard_alignment = stripe;
6124 mddev->queue->limits.discard_granularity = stripe;
6125 /*
6126 * unaligned part of discard request will be ignored, so can't
6127 * guarantee discard_zerors_data
6128 */
6129 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 6130
5026d7a9
PA
6131 blk_queue_max_write_same_sectors(mddev->queue, 0);
6132
05616be5 6133 rdev_for_each(rdev, mddev) {
9f7c2220
N
6134 disk_stack_limits(mddev->gendisk, rdev->bdev,
6135 rdev->data_offset << 9);
05616be5
N
6136 disk_stack_limits(mddev->gendisk, rdev->bdev,
6137 rdev->new_data_offset << 9);
620125f2
SL
6138 /*
6139 * discard_zeroes_data is required, otherwise data
6140 * could be lost. Consider a scenario: discard a stripe
6141 * (the stripe could be inconsistent if
6142 * discard_zeroes_data is 0); write one disk of the
6143 * stripe (the stripe could be inconsistent again
6144 * depending on which disks are used to calculate
6145 * parity); the disk is broken; The stripe data of this
6146 * disk is lost.
6147 */
6148 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6149 !bdev_get_queue(rdev->bdev)->
6150 limits.discard_zeroes_data)
6151 discard_supported = false;
05616be5 6152 }
620125f2
SL
6153
6154 if (discard_supported &&
6155 mddev->queue->limits.max_discard_sectors >= stripe &&
6156 mddev->queue->limits.discard_granularity >= stripe)
6157 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6158 mddev->queue);
6159 else
6160 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6161 mddev->queue);
9f7c2220 6162 }
23032a0e 6163
1da177e4
LT
6164 return 0;
6165abort:
01f96c0a 6166 md_unregister_thread(&mddev->thread);
e4f869d9
N
6167 print_raid5_conf(conf);
6168 free_conf(conf);
1da177e4 6169 mddev->private = NULL;
0c55e022 6170 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
6171 return -EIO;
6172}
6173
fd01b88c 6174static int stop(struct mddev *mddev)
1da177e4 6175{
d1688a6d 6176 struct r5conf *conf = mddev->private;
1da177e4 6177
01f96c0a 6178 md_unregister_thread(&mddev->thread);
11d8a6e3
N
6179 if (mddev->queue)
6180 mddev->queue->backing_dev_info.congested_fn = NULL;
95fc17aa 6181 free_conf(conf);
a64c876f
N
6182 mddev->private = NULL;
6183 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
6184 return 0;
6185}
6186
fd01b88c 6187static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 6188{
d1688a6d 6189 struct r5conf *conf = mddev->private;
1da177e4
LT
6190 int i;
6191
9d8f0363
AN
6192 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6193 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 6194 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
6195 for (i = 0; i < conf->raid_disks; i++)
6196 seq_printf (seq, "%s",
6197 conf->disks[i].rdev &&
b2d444d7 6198 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 6199 seq_printf (seq, "]");
1da177e4
LT
6200}
6201
d1688a6d 6202static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
6203{
6204 int i;
6205 struct disk_info *tmp;
6206
0c55e022 6207 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
6208 if (!conf) {
6209 printk("(conf==NULL)\n");
6210 return;
6211 }
0c55e022
N
6212 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6213 conf->raid_disks,
6214 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
6215
6216 for (i = 0; i < conf->raid_disks; i++) {
6217 char b[BDEVNAME_SIZE];
6218 tmp = conf->disks + i;
6219 if (tmp->rdev)
0c55e022
N
6220 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6221 i, !test_bit(Faulty, &tmp->rdev->flags),
6222 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
6223 }
6224}
6225
fd01b88c 6226static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
6227{
6228 int i;
d1688a6d 6229 struct r5conf *conf = mddev->private;
1da177e4 6230 struct disk_info *tmp;
6b965620
N
6231 int count = 0;
6232 unsigned long flags;
1da177e4
LT
6233
6234 for (i = 0; i < conf->raid_disks; i++) {
6235 tmp = conf->disks + i;
dd054fce
N
6236 if (tmp->replacement
6237 && tmp->replacement->recovery_offset == MaxSector
6238 && !test_bit(Faulty, &tmp->replacement->flags)
6239 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6240 /* Replacement has just become active. */
6241 if (!tmp->rdev
6242 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6243 count++;
6244 if (tmp->rdev) {
6245 /* Replaced device not technically faulty,
6246 * but we need to be sure it gets removed
6247 * and never re-added.
6248 */
6249 set_bit(Faulty, &tmp->rdev->flags);
6250 sysfs_notify_dirent_safe(
6251 tmp->rdev->sysfs_state);
6252 }
6253 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6254 } else if (tmp->rdev
70fffd0b 6255 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 6256 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 6257 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 6258 count++;
43c73ca4 6259 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
6260 }
6261 }
6b965620 6262 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 6263 mddev->degraded = calc_degraded(conf);
6b965620 6264 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 6265 print_raid5_conf(conf);
6b965620 6266 return count;
1da177e4
LT
6267}
6268
b8321b68 6269static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 6270{
d1688a6d 6271 struct r5conf *conf = mddev->private;
1da177e4 6272 int err = 0;
b8321b68 6273 int number = rdev->raid_disk;
657e3e4d 6274 struct md_rdev **rdevp;
1da177e4
LT
6275 struct disk_info *p = conf->disks + number;
6276
6277 print_raid5_conf(conf);
657e3e4d
N
6278 if (rdev == p->rdev)
6279 rdevp = &p->rdev;
6280 else if (rdev == p->replacement)
6281 rdevp = &p->replacement;
6282 else
6283 return 0;
6284
6285 if (number >= conf->raid_disks &&
6286 conf->reshape_progress == MaxSector)
6287 clear_bit(In_sync, &rdev->flags);
6288
6289 if (test_bit(In_sync, &rdev->flags) ||
6290 atomic_read(&rdev->nr_pending)) {
6291 err = -EBUSY;
6292 goto abort;
6293 }
6294 /* Only remove non-faulty devices if recovery
6295 * isn't possible.
6296 */
6297 if (!test_bit(Faulty, &rdev->flags) &&
6298 mddev->recovery_disabled != conf->recovery_disabled &&
6299 !has_failed(conf) &&
dd054fce 6300 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
6301 number < conf->raid_disks) {
6302 err = -EBUSY;
6303 goto abort;
6304 }
6305 *rdevp = NULL;
6306 synchronize_rcu();
6307 if (atomic_read(&rdev->nr_pending)) {
6308 /* lost the race, try later */
6309 err = -EBUSY;
6310 *rdevp = rdev;
dd054fce
N
6311 } else if (p->replacement) {
6312 /* We must have just cleared 'rdev' */
6313 p->rdev = p->replacement;
6314 clear_bit(Replacement, &p->replacement->flags);
6315 smp_mb(); /* Make sure other CPUs may see both as identical
6316 * but will never see neither - if they are careful
6317 */
6318 p->replacement = NULL;
6319 clear_bit(WantReplacement, &rdev->flags);
6320 } else
6321 /* We might have just removed the Replacement as faulty-
6322 * clear the bit just in case
6323 */
6324 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
6325abort:
6326
6327 print_raid5_conf(conf);
6328 return err;
6329}
6330
fd01b88c 6331static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 6332{
d1688a6d 6333 struct r5conf *conf = mddev->private;
199050ea 6334 int err = -EEXIST;
1da177e4
LT
6335 int disk;
6336 struct disk_info *p;
6c2fce2e
NB
6337 int first = 0;
6338 int last = conf->raid_disks - 1;
1da177e4 6339
7f0da59b
N
6340 if (mddev->recovery_disabled == conf->recovery_disabled)
6341 return -EBUSY;
6342
dc10c643 6343 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 6344 /* no point adding a device */
199050ea 6345 return -EINVAL;
1da177e4 6346
6c2fce2e
NB
6347 if (rdev->raid_disk >= 0)
6348 first = last = rdev->raid_disk;
1da177e4
LT
6349
6350 /*
16a53ecc
N
6351 * find the disk ... but prefer rdev->saved_raid_disk
6352 * if possible.
1da177e4 6353 */
16a53ecc 6354 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 6355 rdev->saved_raid_disk >= first &&
16a53ecc 6356 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
6357 first = rdev->saved_raid_disk;
6358
6359 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
6360 p = conf->disks + disk;
6361 if (p->rdev == NULL) {
b2d444d7 6362 clear_bit(In_sync, &rdev->flags);
1da177e4 6363 rdev->raid_disk = disk;
199050ea 6364 err = 0;
72626685
N
6365 if (rdev->saved_raid_disk != disk)
6366 conf->fullsync = 1;
d6065f7b 6367 rcu_assign_pointer(p->rdev, rdev);
5cfb22a1 6368 goto out;
1da177e4 6369 }
5cfb22a1
N
6370 }
6371 for (disk = first; disk <= last; disk++) {
6372 p = conf->disks + disk;
7bfec5f3
N
6373 if (test_bit(WantReplacement, &p->rdev->flags) &&
6374 p->replacement == NULL) {
6375 clear_bit(In_sync, &rdev->flags);
6376 set_bit(Replacement, &rdev->flags);
6377 rdev->raid_disk = disk;
6378 err = 0;
6379 conf->fullsync = 1;
6380 rcu_assign_pointer(p->replacement, rdev);
6381 break;
6382 }
6383 }
5cfb22a1 6384out:
1da177e4 6385 print_raid5_conf(conf);
199050ea 6386 return err;
1da177e4
LT
6387}
6388
fd01b88c 6389static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
6390{
6391 /* no resync is happening, and there is enough space
6392 * on all devices, so we can resize.
6393 * We need to make sure resync covers any new space.
6394 * If the array is shrinking we should possibly wait until
6395 * any io in the removed space completes, but it hardly seems
6396 * worth it.
6397 */
a4a6125a 6398 sector_t newsize;
9d8f0363 6399 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
a4a6125a
N
6400 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6401 if (mddev->external_size &&
6402 mddev->array_sectors > newsize)
b522adcd 6403 return -EINVAL;
a4a6125a
N
6404 if (mddev->bitmap) {
6405 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6406 if (ret)
6407 return ret;
6408 }
6409 md_set_array_sectors(mddev, newsize);
f233ea5c 6410 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 6411 revalidate_disk(mddev->gendisk);
b098636c
N
6412 if (sectors > mddev->dev_sectors &&
6413 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 6414 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
6415 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6416 }
58c0fed4 6417 mddev->dev_sectors = sectors;
4b5c7ae8 6418 mddev->resync_max_sectors = sectors;
1da177e4
LT
6419 return 0;
6420}
6421
fd01b88c 6422static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
6423{
6424 /* Can only proceed if there are plenty of stripe_heads.
6425 * We need a minimum of one full stripe,, and for sensible progress
6426 * it is best to have about 4 times that.
6427 * If we require 4 times, then the default 256 4K stripe_heads will
6428 * allow for chunk sizes up to 256K, which is probably OK.
6429 * If the chunk size is greater, user-space should request more
6430 * stripe_heads first.
6431 */
d1688a6d 6432 struct r5conf *conf = mddev->private;
01ee22b4
N
6433 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6434 > conf->max_nr_stripes ||
6435 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6436 > conf->max_nr_stripes) {
0c55e022
N
6437 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
6438 mdname(mddev),
01ee22b4
N
6439 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6440 / STRIPE_SIZE)*4);
6441 return 0;
6442 }
6443 return 1;
6444}
6445
fd01b88c 6446static int check_reshape(struct mddev *mddev)
29269553 6447{
d1688a6d 6448 struct r5conf *conf = mddev->private;
29269553 6449
88ce4930
N
6450 if (mddev->delta_disks == 0 &&
6451 mddev->new_layout == mddev->layout &&
664e7c41 6452 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 6453 return 0; /* nothing to do */
674806d6 6454 if (has_failed(conf))
ec32a2bd 6455 return -EINVAL;
fdcfbbb6 6456 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
6457 /* We might be able to shrink, but the devices must
6458 * be made bigger first.
6459 * For raid6, 4 is the minimum size.
6460 * Otherwise 2 is the minimum
6461 */
6462 int min = 2;
6463 if (mddev->level == 6)
6464 min = 4;
6465 if (mddev->raid_disks + mddev->delta_disks < min)
6466 return -EINVAL;
6467 }
29269553 6468
01ee22b4 6469 if (!check_stripe_cache(mddev))
29269553 6470 return -ENOSPC;
29269553 6471
e56108d6
N
6472 return resize_stripes(conf, (conf->previous_raid_disks
6473 + mddev->delta_disks));
63c70c4f
N
6474}
6475
fd01b88c 6476static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 6477{
d1688a6d 6478 struct r5conf *conf = mddev->private;
3cb03002 6479 struct md_rdev *rdev;
63c70c4f 6480 int spares = 0;
c04be0aa 6481 unsigned long flags;
63c70c4f 6482
f416885e 6483 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
6484 return -EBUSY;
6485
01ee22b4
N
6486 if (!check_stripe_cache(mddev))
6487 return -ENOSPC;
6488
30b67645
N
6489 if (has_failed(conf))
6490 return -EINVAL;
6491
c6563a8c 6492 rdev_for_each(rdev, mddev) {
469518a3
N
6493 if (!test_bit(In_sync, &rdev->flags)
6494 && !test_bit(Faulty, &rdev->flags))
29269553 6495 spares++;
c6563a8c 6496 }
63c70c4f 6497
f416885e 6498 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
6499 /* Not enough devices even to make a degraded array
6500 * of that size
6501 */
6502 return -EINVAL;
6503
ec32a2bd
N
6504 /* Refuse to reduce size of the array. Any reductions in
6505 * array size must be through explicit setting of array_size
6506 * attribute.
6507 */
6508 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6509 < mddev->array_sectors) {
0c55e022 6510 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
6511 "before number of disks\n", mdname(mddev));
6512 return -EINVAL;
6513 }
6514
f6705578 6515 atomic_set(&conf->reshape_stripes, 0);
29269553 6516 spin_lock_irq(&conf->device_lock);
c46501b2 6517 write_seqcount_begin(&conf->gen_lock);
29269553 6518 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 6519 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
6520 conf->prev_chunk_sectors = conf->chunk_sectors;
6521 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
6522 conf->prev_algo = conf->algorithm;
6523 conf->algorithm = mddev->new_layout;
05616be5
N
6524 conf->generation++;
6525 /* Code that selects data_offset needs to see the generation update
6526 * if reshape_progress has been set - so a memory barrier needed.
6527 */
6528 smp_mb();
2c810cdd 6529 if (mddev->reshape_backwards)
fef9c61f
N
6530 conf->reshape_progress = raid5_size(mddev, 0, 0);
6531 else
6532 conf->reshape_progress = 0;
6533 conf->reshape_safe = conf->reshape_progress;
c46501b2 6534 write_seqcount_end(&conf->gen_lock);
29269553
N
6535 spin_unlock_irq(&conf->device_lock);
6536
4d77e3ba
N
6537 /* Now make sure any requests that proceeded on the assumption
6538 * the reshape wasn't running - like Discard or Read - have
6539 * completed.
6540 */
6541 mddev_suspend(mddev);
6542 mddev_resume(mddev);
6543
29269553
N
6544 /* Add some new drives, as many as will fit.
6545 * We know there are enough to make the newly sized array work.
3424bf6a
N
6546 * Don't add devices if we are reducing the number of
6547 * devices in the array. This is because it is not possible
6548 * to correctly record the "partially reconstructed" state of
6549 * such devices during the reshape and confusion could result.
29269553 6550 */
87a8dec9 6551 if (mddev->delta_disks >= 0) {
dafb20fa 6552 rdev_for_each(rdev, mddev)
87a8dec9
N
6553 if (rdev->raid_disk < 0 &&
6554 !test_bit(Faulty, &rdev->flags)) {
6555 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 6556 if (rdev->raid_disk
9d4c7d87 6557 >= conf->previous_raid_disks)
87a8dec9 6558 set_bit(In_sync, &rdev->flags);
9d4c7d87 6559 else
87a8dec9 6560 rdev->recovery_offset = 0;
36fad858
NK
6561
6562 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 6563 /* Failure here is OK */;
50da0840 6564 }
87a8dec9
N
6565 } else if (rdev->raid_disk >= conf->previous_raid_disks
6566 && !test_bit(Faulty, &rdev->flags)) {
6567 /* This is a spare that was manually added */
6568 set_bit(In_sync, &rdev->flags);
87a8dec9 6569 }
29269553 6570
87a8dec9
N
6571 /* When a reshape changes the number of devices,
6572 * ->degraded is measured against the larger of the
6573 * pre and post number of devices.
6574 */
ec32a2bd 6575 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 6576 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
6577 spin_unlock_irqrestore(&conf->device_lock, flags);
6578 }
63c70c4f 6579 mddev->raid_disks = conf->raid_disks;
e516402c 6580 mddev->reshape_position = conf->reshape_progress;
850b2b42 6581 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 6582
29269553
N
6583 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6584 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6585 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6586 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6587 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 6588 "reshape");
29269553
N
6589 if (!mddev->sync_thread) {
6590 mddev->recovery = 0;
6591 spin_lock_irq(&conf->device_lock);
ba8805b9 6592 write_seqcount_begin(&conf->gen_lock);
29269553 6593 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
6594 mddev->new_chunk_sectors =
6595 conf->chunk_sectors = conf->prev_chunk_sectors;
6596 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
6597 rdev_for_each(rdev, mddev)
6598 rdev->new_data_offset = rdev->data_offset;
6599 smp_wmb();
ba8805b9 6600 conf->generation --;
fef9c61f 6601 conf->reshape_progress = MaxSector;
1e3fa9bd 6602 mddev->reshape_position = MaxSector;
ba8805b9 6603 write_seqcount_end(&conf->gen_lock);
29269553
N
6604 spin_unlock_irq(&conf->device_lock);
6605 return -EAGAIN;
6606 }
c8f517c4 6607 conf->reshape_checkpoint = jiffies;
29269553
N
6608 md_wakeup_thread(mddev->sync_thread);
6609 md_new_event(mddev);
6610 return 0;
6611}
29269553 6612
ec32a2bd
N
6613/* This is called from the reshape thread and should make any
6614 * changes needed in 'conf'
6615 */
d1688a6d 6616static void end_reshape(struct r5conf *conf)
29269553 6617{
29269553 6618
f6705578 6619 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 6620 struct md_rdev *rdev;
f6705578 6621
f6705578 6622 spin_lock_irq(&conf->device_lock);
cea9c228 6623 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
6624 rdev_for_each(rdev, conf->mddev)
6625 rdev->data_offset = rdev->new_data_offset;
6626 smp_wmb();
fef9c61f 6627 conf->reshape_progress = MaxSector;
f6705578 6628 spin_unlock_irq(&conf->device_lock);
b0f9ec04 6629 wake_up(&conf->wait_for_overlap);
16a53ecc
N
6630
6631 /* read-ahead size must cover two whole stripes, which is
6632 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6633 */
4a5add49 6634 if (conf->mddev->queue) {
cea9c228 6635 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 6636 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 6637 / PAGE_SIZE);
16a53ecc
N
6638 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6639 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6640 }
29269553 6641 }
29269553
N
6642}
6643
ec32a2bd
N
6644/* This is called from the raid5d thread with mddev_lock held.
6645 * It makes config changes to the device.
6646 */
fd01b88c 6647static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 6648{
d1688a6d 6649 struct r5conf *conf = mddev->private;
cea9c228
N
6650
6651 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6652
ec32a2bd
N
6653 if (mddev->delta_disks > 0) {
6654 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6655 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 6656 revalidate_disk(mddev->gendisk);
ec32a2bd
N
6657 } else {
6658 int d;
908f4fbd
N
6659 spin_lock_irq(&conf->device_lock);
6660 mddev->degraded = calc_degraded(conf);
6661 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
6662 for (d = conf->raid_disks ;
6663 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 6664 d++) {
3cb03002 6665 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
6666 if (rdev)
6667 clear_bit(In_sync, &rdev->flags);
6668 rdev = conf->disks[d].replacement;
6669 if (rdev)
6670 clear_bit(In_sync, &rdev->flags);
1a67dde0 6671 }
cea9c228 6672 }
88ce4930 6673 mddev->layout = conf->algorithm;
09c9e5fa 6674 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
6675 mddev->reshape_position = MaxSector;
6676 mddev->delta_disks = 0;
2c810cdd 6677 mddev->reshape_backwards = 0;
cea9c228
N
6678 }
6679}
6680
fd01b88c 6681static void raid5_quiesce(struct mddev *mddev, int state)
72626685 6682{
d1688a6d 6683 struct r5conf *conf = mddev->private;
72626685
N
6684
6685 switch(state) {
e464eafd
N
6686 case 2: /* resume for a suspend */
6687 wake_up(&conf->wait_for_overlap);
6688 break;
6689
72626685 6690 case 1: /* stop all writes */
566c09c5 6691 lock_all_device_hash_locks_irq(conf);
64bd660b
N
6692 /* '2' tells resync/reshape to pause so that all
6693 * active stripes can drain
6694 */
6695 conf->quiesce = 2;
566c09c5 6696 wait_event_cmd(conf->wait_for_stripe,
46031f9a
RBJ
6697 atomic_read(&conf->active_stripes) == 0 &&
6698 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
6699 unlock_all_device_hash_locks_irq(conf),
6700 lock_all_device_hash_locks_irq(conf));
64bd660b 6701 conf->quiesce = 1;
566c09c5 6702 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
6703 /* allow reshape to continue */
6704 wake_up(&conf->wait_for_overlap);
72626685
N
6705 break;
6706
6707 case 0: /* re-enable writes */
566c09c5 6708 lock_all_device_hash_locks_irq(conf);
72626685
N
6709 conf->quiesce = 0;
6710 wake_up(&conf->wait_for_stripe);
e464eafd 6711 wake_up(&conf->wait_for_overlap);
566c09c5 6712 unlock_all_device_hash_locks_irq(conf);
72626685
N
6713 break;
6714 }
72626685 6715}
b15c2e57 6716
d562b0c4 6717
fd01b88c 6718static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 6719{
e373ab10 6720 struct r0conf *raid0_conf = mddev->private;
d76c8420 6721 sector_t sectors;
54071b38 6722
f1b29bca 6723 /* for raid0 takeover only one zone is supported */
e373ab10 6724 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
6725 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6726 mdname(mddev));
f1b29bca
DW
6727 return ERR_PTR(-EINVAL);
6728 }
6729
e373ab10
N
6730 sectors = raid0_conf->strip_zone[0].zone_end;
6731 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 6732 mddev->dev_sectors = sectors;
f1b29bca 6733 mddev->new_level = level;
54071b38
TM
6734 mddev->new_layout = ALGORITHM_PARITY_N;
6735 mddev->new_chunk_sectors = mddev->chunk_sectors;
6736 mddev->raid_disks += 1;
6737 mddev->delta_disks = 1;
6738 /* make sure it will be not marked as dirty */
6739 mddev->recovery_cp = MaxSector;
6740
6741 return setup_conf(mddev);
6742}
6743
6744
fd01b88c 6745static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
6746{
6747 int chunksect;
6748
6749 if (mddev->raid_disks != 2 ||
6750 mddev->degraded > 1)
6751 return ERR_PTR(-EINVAL);
6752
6753 /* Should check if there are write-behind devices? */
6754
6755 chunksect = 64*2; /* 64K by default */
6756
6757 /* The array must be an exact multiple of chunksize */
6758 while (chunksect && (mddev->array_sectors & (chunksect-1)))
6759 chunksect >>= 1;
6760
6761 if ((chunksect<<9) < STRIPE_SIZE)
6762 /* array size does not allow a suitable chunk size */
6763 return ERR_PTR(-EINVAL);
6764
6765 mddev->new_level = 5;
6766 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 6767 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
6768
6769 return setup_conf(mddev);
6770}
6771
fd01b88c 6772static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
6773{
6774 int new_layout;
6775
6776 switch (mddev->layout) {
6777 case ALGORITHM_LEFT_ASYMMETRIC_6:
6778 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6779 break;
6780 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6781 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6782 break;
6783 case ALGORITHM_LEFT_SYMMETRIC_6:
6784 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6785 break;
6786 case ALGORITHM_RIGHT_SYMMETRIC_6:
6787 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6788 break;
6789 case ALGORITHM_PARITY_0_6:
6790 new_layout = ALGORITHM_PARITY_0;
6791 break;
6792 case ALGORITHM_PARITY_N:
6793 new_layout = ALGORITHM_PARITY_N;
6794 break;
6795 default:
6796 return ERR_PTR(-EINVAL);
6797 }
6798 mddev->new_level = 5;
6799 mddev->new_layout = new_layout;
6800 mddev->delta_disks = -1;
6801 mddev->raid_disks -= 1;
6802 return setup_conf(mddev);
6803}
6804
d562b0c4 6805
fd01b88c 6806static int raid5_check_reshape(struct mddev *mddev)
b3546035 6807{
88ce4930
N
6808 /* For a 2-drive array, the layout and chunk size can be changed
6809 * immediately as not restriping is needed.
6810 * For larger arrays we record the new value - after validation
6811 * to be used by a reshape pass.
b3546035 6812 */
d1688a6d 6813 struct r5conf *conf = mddev->private;
597a711b 6814 int new_chunk = mddev->new_chunk_sectors;
b3546035 6815
597a711b 6816 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
6817 return -EINVAL;
6818 if (new_chunk > 0) {
0ba459d2 6819 if (!is_power_of_2(new_chunk))
b3546035 6820 return -EINVAL;
597a711b 6821 if (new_chunk < (PAGE_SIZE>>9))
b3546035 6822 return -EINVAL;
597a711b 6823 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
6824 /* not factor of array size */
6825 return -EINVAL;
6826 }
6827
6828 /* They look valid */
6829
88ce4930 6830 if (mddev->raid_disks == 2) {
597a711b
N
6831 /* can make the change immediately */
6832 if (mddev->new_layout >= 0) {
6833 conf->algorithm = mddev->new_layout;
6834 mddev->layout = mddev->new_layout;
88ce4930
N
6835 }
6836 if (new_chunk > 0) {
597a711b
N
6837 conf->chunk_sectors = new_chunk ;
6838 mddev->chunk_sectors = new_chunk;
88ce4930
N
6839 }
6840 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6841 md_wakeup_thread(mddev->thread);
b3546035 6842 }
50ac168a 6843 return check_reshape(mddev);
88ce4930
N
6844}
6845
fd01b88c 6846static int raid6_check_reshape(struct mddev *mddev)
88ce4930 6847{
597a711b 6848 int new_chunk = mddev->new_chunk_sectors;
50ac168a 6849
597a711b 6850 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 6851 return -EINVAL;
b3546035 6852 if (new_chunk > 0) {
0ba459d2 6853 if (!is_power_of_2(new_chunk))
88ce4930 6854 return -EINVAL;
597a711b 6855 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 6856 return -EINVAL;
597a711b 6857 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
6858 /* not factor of array size */
6859 return -EINVAL;
b3546035 6860 }
88ce4930
N
6861
6862 /* They look valid */
50ac168a 6863 return check_reshape(mddev);
b3546035
N
6864}
6865
fd01b88c 6866static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
6867{
6868 /* raid5 can take over:
f1b29bca 6869 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
6870 * raid1 - if there are two drives. We need to know the chunk size
6871 * raid4 - trivial - just use a raid4 layout.
6872 * raid6 - Providing it is a *_6 layout
d562b0c4 6873 */
f1b29bca
DW
6874 if (mddev->level == 0)
6875 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
6876 if (mddev->level == 1)
6877 return raid5_takeover_raid1(mddev);
e9d4758f
N
6878 if (mddev->level == 4) {
6879 mddev->new_layout = ALGORITHM_PARITY_N;
6880 mddev->new_level = 5;
6881 return setup_conf(mddev);
6882 }
fc9739c6
N
6883 if (mddev->level == 6)
6884 return raid5_takeover_raid6(mddev);
d562b0c4
N
6885
6886 return ERR_PTR(-EINVAL);
6887}
6888
fd01b88c 6889static void *raid4_takeover(struct mddev *mddev)
a78d38a1 6890{
f1b29bca
DW
6891 /* raid4 can take over:
6892 * raid0 - if there is only one strip zone
6893 * raid5 - if layout is right
a78d38a1 6894 */
f1b29bca
DW
6895 if (mddev->level == 0)
6896 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
6897 if (mddev->level == 5 &&
6898 mddev->layout == ALGORITHM_PARITY_N) {
6899 mddev->new_layout = 0;
6900 mddev->new_level = 4;
6901 return setup_conf(mddev);
6902 }
6903 return ERR_PTR(-EINVAL);
6904}
d562b0c4 6905
84fc4b56 6906static struct md_personality raid5_personality;
245f46c2 6907
fd01b88c 6908static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
6909{
6910 /* Currently can only take over a raid5. We map the
6911 * personality to an equivalent raid6 personality
6912 * with the Q block at the end.
6913 */
6914 int new_layout;
6915
6916 if (mddev->pers != &raid5_personality)
6917 return ERR_PTR(-EINVAL);
6918 if (mddev->degraded > 1)
6919 return ERR_PTR(-EINVAL);
6920 if (mddev->raid_disks > 253)
6921 return ERR_PTR(-EINVAL);
6922 if (mddev->raid_disks < 3)
6923 return ERR_PTR(-EINVAL);
6924
6925 switch (mddev->layout) {
6926 case ALGORITHM_LEFT_ASYMMETRIC:
6927 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6928 break;
6929 case ALGORITHM_RIGHT_ASYMMETRIC:
6930 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6931 break;
6932 case ALGORITHM_LEFT_SYMMETRIC:
6933 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6934 break;
6935 case ALGORITHM_RIGHT_SYMMETRIC:
6936 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6937 break;
6938 case ALGORITHM_PARITY_0:
6939 new_layout = ALGORITHM_PARITY_0_6;
6940 break;
6941 case ALGORITHM_PARITY_N:
6942 new_layout = ALGORITHM_PARITY_N;
6943 break;
6944 default:
6945 return ERR_PTR(-EINVAL);
6946 }
6947 mddev->new_level = 6;
6948 mddev->new_layout = new_layout;
6949 mddev->delta_disks = 1;
6950 mddev->raid_disks += 1;
6951 return setup_conf(mddev);
6952}
6953
6954
84fc4b56 6955static struct md_personality raid6_personality =
16a53ecc
N
6956{
6957 .name = "raid6",
6958 .level = 6,
6959 .owner = THIS_MODULE,
6960 .make_request = make_request,
6961 .run = run,
6962 .stop = stop,
6963 .status = status,
6964 .error_handler = error,
6965 .hot_add_disk = raid5_add_disk,
6966 .hot_remove_disk= raid5_remove_disk,
6967 .spare_active = raid5_spare_active,
6968 .sync_request = sync_request,
6969 .resize = raid5_resize,
80c3a6ce 6970 .size = raid5_size,
50ac168a 6971 .check_reshape = raid6_check_reshape,
f416885e 6972 .start_reshape = raid5_start_reshape,
cea9c228 6973 .finish_reshape = raid5_finish_reshape,
16a53ecc 6974 .quiesce = raid5_quiesce,
245f46c2 6975 .takeover = raid6_takeover,
16a53ecc 6976};
84fc4b56 6977static struct md_personality raid5_personality =
1da177e4
LT
6978{
6979 .name = "raid5",
2604b703 6980 .level = 5,
1da177e4
LT
6981 .owner = THIS_MODULE,
6982 .make_request = make_request,
6983 .run = run,
6984 .stop = stop,
6985 .status = status,
6986 .error_handler = error,
6987 .hot_add_disk = raid5_add_disk,
6988 .hot_remove_disk= raid5_remove_disk,
6989 .spare_active = raid5_spare_active,
6990 .sync_request = sync_request,
6991 .resize = raid5_resize,
80c3a6ce 6992 .size = raid5_size,
63c70c4f
N
6993 .check_reshape = raid5_check_reshape,
6994 .start_reshape = raid5_start_reshape,
cea9c228 6995 .finish_reshape = raid5_finish_reshape,
72626685 6996 .quiesce = raid5_quiesce,
d562b0c4 6997 .takeover = raid5_takeover,
1da177e4
LT
6998};
6999
84fc4b56 7000static struct md_personality raid4_personality =
1da177e4 7001{
2604b703
N
7002 .name = "raid4",
7003 .level = 4,
7004 .owner = THIS_MODULE,
7005 .make_request = make_request,
7006 .run = run,
7007 .stop = stop,
7008 .status = status,
7009 .error_handler = error,
7010 .hot_add_disk = raid5_add_disk,
7011 .hot_remove_disk= raid5_remove_disk,
7012 .spare_active = raid5_spare_active,
7013 .sync_request = sync_request,
7014 .resize = raid5_resize,
80c3a6ce 7015 .size = raid5_size,
3d37890b
N
7016 .check_reshape = raid5_check_reshape,
7017 .start_reshape = raid5_start_reshape,
cea9c228 7018 .finish_reshape = raid5_finish_reshape,
2604b703 7019 .quiesce = raid5_quiesce,
a78d38a1 7020 .takeover = raid4_takeover,
2604b703
N
7021};
7022
7023static int __init raid5_init(void)
7024{
851c30c9
SL
7025 raid5_wq = alloc_workqueue("raid5wq",
7026 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7027 if (!raid5_wq)
7028 return -ENOMEM;
16a53ecc 7029 register_md_personality(&raid6_personality);
2604b703
N
7030 register_md_personality(&raid5_personality);
7031 register_md_personality(&raid4_personality);
7032 return 0;
1da177e4
LT
7033}
7034
2604b703 7035static void raid5_exit(void)
1da177e4 7036{
16a53ecc 7037 unregister_md_personality(&raid6_personality);
2604b703
N
7038 unregister_md_personality(&raid5_personality);
7039 unregister_md_personality(&raid4_personality);
851c30c9 7040 destroy_workqueue(raid5_wq);
1da177e4
LT
7041}
7042
7043module_init(raid5_init);
7044module_exit(raid5_exit);
7045MODULE_LICENSE("GPL");
0efb9e61 7046MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 7047MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
7048MODULE_ALIAS("md-raid5");
7049MODULE_ALIAS("md-raid4");
2604b703
N
7050MODULE_ALIAS("md-level-5");
7051MODULE_ALIAS("md-level-4");
16a53ecc
N
7052MODULE_ALIAS("md-personality-8"); /* RAID6 */
7053MODULE_ALIAS("md-raid6");
7054MODULE_ALIAS("md-level-6");
7055
7056/* This used to be two separate modules, they were: */
7057MODULE_ALIAS("raid5");
7058MODULE_ALIAS("raid6");
This page took 1.552925 seconds and 5 git commands to generate.