md: ensure new badblocks are handled promptly.
[deliverable/linux.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
43b2e5d8 56#include "md.h"
bff61975 57#include "raid5.h"
54071b38 58#include "raid0.h"
ef740c37 59#include "bitmap.h"
72626685 60
1da177e4
LT
61/*
62 * Stripe cache
63 */
64
65#define NR_STRIPES 256
66#define STRIPE_SIZE PAGE_SIZE
67#define STRIPE_SHIFT (PAGE_SHIFT - 9)
68#define STRIPE_SECTORS (STRIPE_SIZE>>9)
69#define IO_THRESHOLD 1
8b3e6cdc 70#define BYPASS_THRESHOLD 1
fccddba0 71#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
72#define HASH_MASK (NR_HASH - 1)
73
d1688a6d 74static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
75{
76 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77 return &conf->stripe_hashtbl[hash];
78}
1da177e4
LT
79
80/* bio's attached to a stripe+device for I/O are linked together in bi_sector
81 * order without overlap. There may be several bio's per stripe+device, and
82 * a bio could span several devices.
83 * When walking this list for a particular stripe+device, we must never proceed
84 * beyond a bio that extends past this device, as the next bio might no longer
85 * be valid.
db298e19 86 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
87 * of the current stripe+device
88 */
db298e19
N
89static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90{
91 int sectors = bio->bi_size >> 9;
92 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93 return bio->bi_next;
94 else
95 return NULL;
96}
1da177e4 97
960e739d 98/*
5b99c2ff
JA
99 * We maintain a biased count of active stripes in the bottom 16 bits of
100 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d
JA
101 */
102static inline int raid5_bi_phys_segments(struct bio *bio)
103{
5b99c2ff 104 return bio->bi_phys_segments & 0xffff;
960e739d
JA
105}
106
107static inline int raid5_bi_hw_segments(struct bio *bio)
108{
5b99c2ff 109 return (bio->bi_phys_segments >> 16) & 0xffff;
960e739d
JA
110}
111
112static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113{
114 --bio->bi_phys_segments;
115 return raid5_bi_phys_segments(bio);
116}
117
118static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119{
120 unsigned short val = raid5_bi_hw_segments(bio);
121
122 --val;
5b99c2ff 123 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
960e739d
JA
124 return val;
125}
126
127static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128{
9b2dc8b6 129 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
960e739d
JA
130}
131
d0dabf7e
N
132/* Find first data disk in a raid6 stripe */
133static inline int raid6_d0(struct stripe_head *sh)
134{
67cc2b81
N
135 if (sh->ddf_layout)
136 /* ddf always start from first device */
137 return 0;
138 /* md starts just after Q block */
d0dabf7e
N
139 if (sh->qd_idx == sh->disks - 1)
140 return 0;
141 else
142 return sh->qd_idx + 1;
143}
16a53ecc
N
144static inline int raid6_next_disk(int disk, int raid_disks)
145{
146 disk++;
147 return (disk < raid_disks) ? disk : 0;
148}
a4456856 149
d0dabf7e
N
150/* When walking through the disks in a raid5, starting at raid6_d0,
151 * We need to map each disk to a 'slot', where the data disks are slot
152 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153 * is raid_disks-1. This help does that mapping.
154 */
67cc2b81
N
155static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156 int *count, int syndrome_disks)
d0dabf7e 157{
6629542e 158 int slot = *count;
67cc2b81 159
e4424fee 160 if (sh->ddf_layout)
6629542e 161 (*count)++;
d0dabf7e 162 if (idx == sh->pd_idx)
67cc2b81 163 return syndrome_disks;
d0dabf7e 164 if (idx == sh->qd_idx)
67cc2b81 165 return syndrome_disks + 1;
e4424fee 166 if (!sh->ddf_layout)
6629542e 167 (*count)++;
d0dabf7e
N
168 return slot;
169}
170
a4456856
DW
171static void return_io(struct bio *return_bi)
172{
173 struct bio *bi = return_bi;
174 while (bi) {
a4456856
DW
175
176 return_bi = bi->bi_next;
177 bi->bi_next = NULL;
178 bi->bi_size = 0;
0e13fe23 179 bio_endio(bi, 0);
a4456856
DW
180 bi = return_bi;
181 }
182}
183
d1688a6d 184static void print_raid5_conf (struct r5conf *conf);
1da177e4 185
600aa109
DW
186static int stripe_operations_active(struct stripe_head *sh)
187{
188 return sh->check_state || sh->reconstruct_state ||
189 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
191}
192
d1688a6d 193static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
1da177e4
LT
194{
195 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
196 BUG_ON(!list_empty(&sh->lru));
197 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 198 if (test_bit(STRIPE_HANDLE, &sh->state)) {
482c0834 199 if (test_bit(STRIPE_DELAYED, &sh->state))
1da177e4 200 list_add_tail(&sh->lru, &conf->delayed_list);
482c0834
N
201 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
202 sh->bm_seq - conf->seq_write > 0)
72626685 203 list_add_tail(&sh->lru, &conf->bitmap_list);
482c0834 204 else {
72626685 205 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 206 list_add_tail(&sh->lru, &conf->handle_list);
72626685 207 }
1da177e4
LT
208 md_wakeup_thread(conf->mddev->thread);
209 } else {
600aa109 210 BUG_ON(stripe_operations_active(sh));
1da177e4
LT
211 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
212 atomic_dec(&conf->preread_active_stripes);
213 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
214 md_wakeup_thread(conf->mddev->thread);
215 }
1da177e4 216 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
217 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
218 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 219 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
220 if (conf->retry_read_aligned)
221 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 222 }
1da177e4
LT
223 }
224 }
225}
d0dabf7e 226
1da177e4
LT
227static void release_stripe(struct stripe_head *sh)
228{
d1688a6d 229 struct r5conf *conf = sh->raid_conf;
1da177e4 230 unsigned long flags;
16a53ecc 231
1da177e4
LT
232 spin_lock_irqsave(&conf->device_lock, flags);
233 __release_stripe(conf, sh);
234 spin_unlock_irqrestore(&conf->device_lock, flags);
235}
236
fccddba0 237static inline void remove_hash(struct stripe_head *sh)
1da177e4 238{
45b4233c
DW
239 pr_debug("remove_hash(), stripe %llu\n",
240 (unsigned long long)sh->sector);
1da177e4 241
fccddba0 242 hlist_del_init(&sh->hash);
1da177e4
LT
243}
244
d1688a6d 245static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 246{
fccddba0 247 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 248
45b4233c
DW
249 pr_debug("insert_hash(), stripe %llu\n",
250 (unsigned long long)sh->sector);
1da177e4 251
fccddba0 252 hlist_add_head(&sh->hash, hp);
1da177e4
LT
253}
254
255
256/* find an idle stripe, make sure it is unhashed, and return it. */
d1688a6d 257static struct stripe_head *get_free_stripe(struct r5conf *conf)
1da177e4
LT
258{
259 struct stripe_head *sh = NULL;
260 struct list_head *first;
261
1da177e4
LT
262 if (list_empty(&conf->inactive_list))
263 goto out;
264 first = conf->inactive_list.next;
265 sh = list_entry(first, struct stripe_head, lru);
266 list_del_init(first);
267 remove_hash(sh);
268 atomic_inc(&conf->active_stripes);
269out:
270 return sh;
271}
272
e4e11e38 273static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
274{
275 struct page *p;
276 int i;
e4e11e38 277 int num = sh->raid_conf->pool_size;
1da177e4 278
e4e11e38 279 for (i = 0; i < num ; i++) {
1da177e4
LT
280 p = sh->dev[i].page;
281 if (!p)
282 continue;
283 sh->dev[i].page = NULL;
2d1f3b5d 284 put_page(p);
1da177e4
LT
285 }
286}
287
e4e11e38 288static int grow_buffers(struct stripe_head *sh)
1da177e4
LT
289{
290 int i;
e4e11e38 291 int num = sh->raid_conf->pool_size;
1da177e4 292
e4e11e38 293 for (i = 0; i < num; i++) {
1da177e4
LT
294 struct page *page;
295
296 if (!(page = alloc_page(GFP_KERNEL))) {
297 return 1;
298 }
299 sh->dev[i].page = page;
300 }
301 return 0;
302}
303
784052ec 304static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 305static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 306 struct stripe_head *sh);
1da177e4 307
b5663ba4 308static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 309{
d1688a6d 310 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 311 int i;
1da177e4 312
78bafebd
ES
313 BUG_ON(atomic_read(&sh->count) != 0);
314 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 315 BUG_ON(stripe_operations_active(sh));
d84e0f10 316
45b4233c 317 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
318 (unsigned long long)sh->sector);
319
320 remove_hash(sh);
16a53ecc 321
86b42c71 322 sh->generation = conf->generation - previous;
b5663ba4 323 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 324 sh->sector = sector;
911d4ee8 325 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
326 sh->state = 0;
327
7ecaa1e6
N
328
329 for (i = sh->disks; i--; ) {
1da177e4
LT
330 struct r5dev *dev = &sh->dev[i];
331
d84e0f10 332 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 333 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 334 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 335 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 336 dev->read, dev->towrite, dev->written,
1da177e4 337 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 338 WARN_ON(1);
1da177e4
LT
339 }
340 dev->flags = 0;
784052ec 341 raid5_build_block(sh, i, previous);
1da177e4
LT
342 }
343 insert_hash(conf, sh);
344}
345
d1688a6d 346static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 347 short generation)
1da177e4
LT
348{
349 struct stripe_head *sh;
fccddba0 350 struct hlist_node *hn;
1da177e4 351
45b4233c 352 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 353 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
86b42c71 354 if (sh->sector == sector && sh->generation == generation)
1da177e4 355 return sh;
45b4233c 356 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
357 return NULL;
358}
359
674806d6
N
360/*
361 * Need to check if array has failed when deciding whether to:
362 * - start an array
363 * - remove non-faulty devices
364 * - add a spare
365 * - allow a reshape
366 * This determination is simple when no reshape is happening.
367 * However if there is a reshape, we need to carefully check
368 * both the before and after sections.
369 * This is because some failed devices may only affect one
370 * of the two sections, and some non-in_sync devices may
371 * be insync in the section most affected by failed devices.
372 */
d1688a6d 373static int has_failed(struct r5conf *conf)
674806d6
N
374{
375 int degraded;
376 int i;
377 if (conf->mddev->reshape_position == MaxSector)
378 return conf->mddev->degraded > conf->max_degraded;
379
380 rcu_read_lock();
381 degraded = 0;
382 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 383 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
674806d6
N
384 if (!rdev || test_bit(Faulty, &rdev->flags))
385 degraded++;
386 else if (test_bit(In_sync, &rdev->flags))
387 ;
388 else
389 /* not in-sync or faulty.
390 * If the reshape increases the number of devices,
391 * this is being recovered by the reshape, so
392 * this 'previous' section is not in_sync.
393 * If the number of devices is being reduced however,
394 * the device can only be part of the array if
395 * we are reverting a reshape, so this section will
396 * be in-sync.
397 */
398 if (conf->raid_disks >= conf->previous_raid_disks)
399 degraded++;
400 }
401 rcu_read_unlock();
402 if (degraded > conf->max_degraded)
403 return 1;
404 rcu_read_lock();
405 degraded = 0;
406 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 407 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
674806d6
N
408 if (!rdev || test_bit(Faulty, &rdev->flags))
409 degraded++;
410 else if (test_bit(In_sync, &rdev->flags))
411 ;
412 else
413 /* not in-sync or faulty.
414 * If reshape increases the number of devices, this
415 * section has already been recovered, else it
416 * almost certainly hasn't.
417 */
418 if (conf->raid_disks <= conf->previous_raid_disks)
419 degraded++;
420 }
421 rcu_read_unlock();
422 if (degraded > conf->max_degraded)
423 return 1;
424 return 0;
425}
426
b5663ba4 427static struct stripe_head *
d1688a6d 428get_active_stripe(struct r5conf *conf, sector_t sector,
a8c906ca 429 int previous, int noblock, int noquiesce)
1da177e4
LT
430{
431 struct stripe_head *sh;
432
45b4233c 433 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
434
435 spin_lock_irq(&conf->device_lock);
436
437 do {
72626685 438 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 439 conf->quiesce == 0 || noquiesce,
72626685 440 conf->device_lock, /* nothing */);
86b42c71 441 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
442 if (!sh) {
443 if (!conf->inactive_blocked)
444 sh = get_free_stripe(conf);
445 if (noblock && sh == NULL)
446 break;
447 if (!sh) {
448 conf->inactive_blocked = 1;
449 wait_event_lock_irq(conf->wait_for_stripe,
450 !list_empty(&conf->inactive_list) &&
5036805b
N
451 (atomic_read(&conf->active_stripes)
452 < (conf->max_nr_stripes *3/4)
1da177e4
LT
453 || !conf->inactive_blocked),
454 conf->device_lock,
7c13edc8 455 );
1da177e4
LT
456 conf->inactive_blocked = 0;
457 } else
b5663ba4 458 init_stripe(sh, sector, previous);
1da177e4
LT
459 } else {
460 if (atomic_read(&sh->count)) {
ab69ae12
N
461 BUG_ON(!list_empty(&sh->lru)
462 && !test_bit(STRIPE_EXPANDING, &sh->state));
1da177e4
LT
463 } else {
464 if (!test_bit(STRIPE_HANDLE, &sh->state))
465 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
466 if (list_empty(&sh->lru) &&
467 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
468 BUG();
469 list_del_init(&sh->lru);
1da177e4
LT
470 }
471 }
472 } while (sh == NULL);
473
474 if (sh)
475 atomic_inc(&sh->count);
476
477 spin_unlock_irq(&conf->device_lock);
478 return sh;
479}
480
6712ecf8
N
481static void
482raid5_end_read_request(struct bio *bi, int error);
483static void
484raid5_end_write_request(struct bio *bi, int error);
91c00924 485
c4e5ac0a 486static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 487{
d1688a6d 488 struct r5conf *conf = sh->raid_conf;
91c00924
DW
489 int i, disks = sh->disks;
490
491 might_sleep();
492
493 for (i = disks; i--; ) {
494 int rw;
495 struct bio *bi;
3cb03002 496 struct md_rdev *rdev;
e9c7469b
TH
497 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
498 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
499 rw = WRITE_FUA;
500 else
501 rw = WRITE;
502 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924
DW
503 rw = READ;
504 else
505 continue;
506
507 bi = &sh->dev[i].req;
508
509 bi->bi_rw = rw;
b062962e 510 if (rw & WRITE)
91c00924
DW
511 bi->bi_end_io = raid5_end_write_request;
512 else
513 bi->bi_end_io = raid5_end_read_request;
514
515 rcu_read_lock();
516 rdev = rcu_dereference(conf->disks[i].rdev);
517 if (rdev && test_bit(Faulty, &rdev->flags))
518 rdev = NULL;
519 if (rdev)
520 atomic_inc(&rdev->nr_pending);
521 rcu_read_unlock();
522
73e92e51
N
523 /* We have already checked bad blocks for reads. Now
524 * need to check for writes.
525 */
526 while ((rw & WRITE) && rdev &&
527 test_bit(WriteErrorSeen, &rdev->flags)) {
528 sector_t first_bad;
529 int bad_sectors;
530 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
531 &first_bad, &bad_sectors);
532 if (!bad)
533 break;
534
535 if (bad < 0) {
536 set_bit(BlockedBadBlocks, &rdev->flags);
537 if (!conf->mddev->external &&
538 conf->mddev->flags) {
539 /* It is very unlikely, but we might
540 * still need to write out the
541 * bad block log - better give it
542 * a chance*/
543 md_check_recovery(conf->mddev);
544 }
545 md_wait_for_blocked_rdev(rdev, conf->mddev);
546 } else {
547 /* Acknowledged bad block - skip the write */
548 rdev_dec_pending(rdev, conf->mddev);
549 rdev = NULL;
550 }
551 }
552
91c00924 553 if (rdev) {
c4e5ac0a 554 if (s->syncing || s->expanding || s->expanded)
91c00924
DW
555 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
556
2b7497f0
DW
557 set_bit(STRIPE_IO_STARTED, &sh->state);
558
91c00924
DW
559 bi->bi_bdev = rdev->bdev;
560 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 561 __func__, (unsigned long long)sh->sector,
91c00924
DW
562 bi->bi_rw, i);
563 atomic_inc(&sh->count);
564 bi->bi_sector = sh->sector + rdev->data_offset;
565 bi->bi_flags = 1 << BIO_UPTODATE;
566 bi->bi_vcnt = 1;
567 bi->bi_max_vecs = 1;
568 bi->bi_idx = 0;
569 bi->bi_io_vec = &sh->dev[i].vec;
570 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
571 bi->bi_io_vec[0].bv_offset = 0;
572 bi->bi_size = STRIPE_SIZE;
573 bi->bi_next = NULL;
91c00924
DW
574 generic_make_request(bi);
575 } else {
b062962e 576 if (rw & WRITE)
91c00924
DW
577 set_bit(STRIPE_DEGRADED, &sh->state);
578 pr_debug("skip op %ld on disc %d for sector %llu\n",
579 bi->bi_rw, i, (unsigned long long)sh->sector);
580 clear_bit(R5_LOCKED, &sh->dev[i].flags);
581 set_bit(STRIPE_HANDLE, &sh->state);
582 }
583 }
584}
585
586static struct dma_async_tx_descriptor *
587async_copy_data(int frombio, struct bio *bio, struct page *page,
588 sector_t sector, struct dma_async_tx_descriptor *tx)
589{
590 struct bio_vec *bvl;
591 struct page *bio_page;
592 int i;
593 int page_offset;
a08abd8c 594 struct async_submit_ctl submit;
0403e382 595 enum async_tx_flags flags = 0;
91c00924
DW
596
597 if (bio->bi_sector >= sector)
598 page_offset = (signed)(bio->bi_sector - sector) * 512;
599 else
600 page_offset = (signed)(sector - bio->bi_sector) * -512;
a08abd8c 601
0403e382
DW
602 if (frombio)
603 flags |= ASYNC_TX_FENCE;
604 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
605
91c00924 606 bio_for_each_segment(bvl, bio, i) {
fcde9075 607 int len = bvl->bv_len;
91c00924
DW
608 int clen;
609 int b_offset = 0;
610
611 if (page_offset < 0) {
612 b_offset = -page_offset;
613 page_offset += b_offset;
614 len -= b_offset;
615 }
616
617 if (len > 0 && page_offset + len > STRIPE_SIZE)
618 clen = STRIPE_SIZE - page_offset;
619 else
620 clen = len;
621
622 if (clen > 0) {
fcde9075
NK
623 b_offset += bvl->bv_offset;
624 bio_page = bvl->bv_page;
91c00924
DW
625 if (frombio)
626 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 627 b_offset, clen, &submit);
91c00924
DW
628 else
629 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 630 page_offset, clen, &submit);
91c00924 631 }
a08abd8c
DW
632 /* chain the operations */
633 submit.depend_tx = tx;
634
91c00924
DW
635 if (clen < len) /* hit end of page */
636 break;
637 page_offset += len;
638 }
639
640 return tx;
641}
642
643static void ops_complete_biofill(void *stripe_head_ref)
644{
645 struct stripe_head *sh = stripe_head_ref;
646 struct bio *return_bi = NULL;
d1688a6d 647 struct r5conf *conf = sh->raid_conf;
e4d84909 648 int i;
91c00924 649
e46b272b 650 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
651 (unsigned long long)sh->sector);
652
653 /* clear completed biofills */
83de75cc 654 spin_lock_irq(&conf->device_lock);
91c00924
DW
655 for (i = sh->disks; i--; ) {
656 struct r5dev *dev = &sh->dev[i];
91c00924
DW
657
658 /* acknowledge completion of a biofill operation */
e4d84909
DW
659 /* and check if we need to reply to a read request,
660 * new R5_Wantfill requests are held off until
83de75cc 661 * !STRIPE_BIOFILL_RUN
e4d84909
DW
662 */
663 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 664 struct bio *rbi, *rbi2;
91c00924 665
91c00924
DW
666 BUG_ON(!dev->read);
667 rbi = dev->read;
668 dev->read = NULL;
669 while (rbi && rbi->bi_sector <
670 dev->sector + STRIPE_SECTORS) {
671 rbi2 = r5_next_bio(rbi, dev->sector);
960e739d 672 if (!raid5_dec_bi_phys_segments(rbi)) {
91c00924
DW
673 rbi->bi_next = return_bi;
674 return_bi = rbi;
675 }
91c00924
DW
676 rbi = rbi2;
677 }
678 }
679 }
83de75cc
DW
680 spin_unlock_irq(&conf->device_lock);
681 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
682
683 return_io(return_bi);
684
e4d84909 685 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
686 release_stripe(sh);
687}
688
689static void ops_run_biofill(struct stripe_head *sh)
690{
691 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 692 struct r5conf *conf = sh->raid_conf;
a08abd8c 693 struct async_submit_ctl submit;
91c00924
DW
694 int i;
695
e46b272b 696 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
697 (unsigned long long)sh->sector);
698
699 for (i = sh->disks; i--; ) {
700 struct r5dev *dev = &sh->dev[i];
701 if (test_bit(R5_Wantfill, &dev->flags)) {
702 struct bio *rbi;
703 spin_lock_irq(&conf->device_lock);
704 dev->read = rbi = dev->toread;
705 dev->toread = NULL;
706 spin_unlock_irq(&conf->device_lock);
707 while (rbi && rbi->bi_sector <
708 dev->sector + STRIPE_SECTORS) {
709 tx = async_copy_data(0, rbi, dev->page,
710 dev->sector, tx);
711 rbi = r5_next_bio(rbi, dev->sector);
712 }
713 }
714 }
715
716 atomic_inc(&sh->count);
a08abd8c
DW
717 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
718 async_trigger_callback(&submit);
91c00924
DW
719}
720
4e7d2c0a 721static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 722{
4e7d2c0a 723 struct r5dev *tgt;
91c00924 724
4e7d2c0a
DW
725 if (target < 0)
726 return;
91c00924 727
4e7d2c0a 728 tgt = &sh->dev[target];
91c00924
DW
729 set_bit(R5_UPTODATE, &tgt->flags);
730 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
731 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
732}
733
ac6b53b6 734static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
735{
736 struct stripe_head *sh = stripe_head_ref;
91c00924 737
e46b272b 738 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
739 (unsigned long long)sh->sector);
740
ac6b53b6 741 /* mark the computed target(s) as uptodate */
4e7d2c0a 742 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 743 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 744
ecc65c9b
DW
745 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
746 if (sh->check_state == check_state_compute_run)
747 sh->check_state = check_state_compute_result;
91c00924
DW
748 set_bit(STRIPE_HANDLE, &sh->state);
749 release_stripe(sh);
750}
751
d6f38f31
DW
752/* return a pointer to the address conversion region of the scribble buffer */
753static addr_conv_t *to_addr_conv(struct stripe_head *sh,
754 struct raid5_percpu *percpu)
755{
756 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
757}
758
759static struct dma_async_tx_descriptor *
760ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 761{
91c00924 762 int disks = sh->disks;
d6f38f31 763 struct page **xor_srcs = percpu->scribble;
91c00924
DW
764 int target = sh->ops.target;
765 struct r5dev *tgt = &sh->dev[target];
766 struct page *xor_dest = tgt->page;
767 int count = 0;
768 struct dma_async_tx_descriptor *tx;
a08abd8c 769 struct async_submit_ctl submit;
91c00924
DW
770 int i;
771
772 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 773 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
774 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
775
776 for (i = disks; i--; )
777 if (i != target)
778 xor_srcs[count++] = sh->dev[i].page;
779
780 atomic_inc(&sh->count);
781
0403e382 782 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
ac6b53b6 783 ops_complete_compute, sh, to_addr_conv(sh, percpu));
91c00924 784 if (unlikely(count == 1))
a08abd8c 785 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 786 else
a08abd8c 787 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 788
91c00924
DW
789 return tx;
790}
791
ac6b53b6
DW
792/* set_syndrome_sources - populate source buffers for gen_syndrome
793 * @srcs - (struct page *) array of size sh->disks
794 * @sh - stripe_head to parse
795 *
796 * Populates srcs in proper layout order for the stripe and returns the
797 * 'count' of sources to be used in a call to async_gen_syndrome. The P
798 * destination buffer is recorded in srcs[count] and the Q destination
799 * is recorded in srcs[count+1]].
800 */
801static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
802{
803 int disks = sh->disks;
804 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
805 int d0_idx = raid6_d0(sh);
806 int count;
807 int i;
808
809 for (i = 0; i < disks; i++)
5dd33c9a 810 srcs[i] = NULL;
ac6b53b6
DW
811
812 count = 0;
813 i = d0_idx;
814 do {
815 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
816
817 srcs[slot] = sh->dev[i].page;
818 i = raid6_next_disk(i, disks);
819 } while (i != d0_idx);
ac6b53b6 820
e4424fee 821 return syndrome_disks;
ac6b53b6
DW
822}
823
824static struct dma_async_tx_descriptor *
825ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
826{
827 int disks = sh->disks;
828 struct page **blocks = percpu->scribble;
829 int target;
830 int qd_idx = sh->qd_idx;
831 struct dma_async_tx_descriptor *tx;
832 struct async_submit_ctl submit;
833 struct r5dev *tgt;
834 struct page *dest;
835 int i;
836 int count;
837
838 if (sh->ops.target < 0)
839 target = sh->ops.target2;
840 else if (sh->ops.target2 < 0)
841 target = sh->ops.target;
91c00924 842 else
ac6b53b6
DW
843 /* we should only have one valid target */
844 BUG();
845 BUG_ON(target < 0);
846 pr_debug("%s: stripe %llu block: %d\n",
847 __func__, (unsigned long long)sh->sector, target);
848
849 tgt = &sh->dev[target];
850 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
851 dest = tgt->page;
852
853 atomic_inc(&sh->count);
854
855 if (target == qd_idx) {
856 count = set_syndrome_sources(blocks, sh);
857 blocks[count] = NULL; /* regenerating p is not necessary */
858 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
859 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
860 ops_complete_compute, sh,
ac6b53b6
DW
861 to_addr_conv(sh, percpu));
862 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
863 } else {
864 /* Compute any data- or p-drive using XOR */
865 count = 0;
866 for (i = disks; i-- ; ) {
867 if (i == target || i == qd_idx)
868 continue;
869 blocks[count++] = sh->dev[i].page;
870 }
871
0403e382
DW
872 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
873 NULL, ops_complete_compute, sh,
ac6b53b6
DW
874 to_addr_conv(sh, percpu));
875 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
876 }
91c00924 877
91c00924
DW
878 return tx;
879}
880
ac6b53b6
DW
881static struct dma_async_tx_descriptor *
882ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
883{
884 int i, count, disks = sh->disks;
885 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
886 int d0_idx = raid6_d0(sh);
887 int faila = -1, failb = -1;
888 int target = sh->ops.target;
889 int target2 = sh->ops.target2;
890 struct r5dev *tgt = &sh->dev[target];
891 struct r5dev *tgt2 = &sh->dev[target2];
892 struct dma_async_tx_descriptor *tx;
893 struct page **blocks = percpu->scribble;
894 struct async_submit_ctl submit;
895
896 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
897 __func__, (unsigned long long)sh->sector, target, target2);
898 BUG_ON(target < 0 || target2 < 0);
899 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
900 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
901
6c910a78 902 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
903 * slot number conversion for 'faila' and 'failb'
904 */
905 for (i = 0; i < disks ; i++)
5dd33c9a 906 blocks[i] = NULL;
ac6b53b6
DW
907 count = 0;
908 i = d0_idx;
909 do {
910 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
911
912 blocks[slot] = sh->dev[i].page;
913
914 if (i == target)
915 faila = slot;
916 if (i == target2)
917 failb = slot;
918 i = raid6_next_disk(i, disks);
919 } while (i != d0_idx);
ac6b53b6
DW
920
921 BUG_ON(faila == failb);
922 if (failb < faila)
923 swap(faila, failb);
924 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
925 __func__, (unsigned long long)sh->sector, faila, failb);
926
927 atomic_inc(&sh->count);
928
929 if (failb == syndrome_disks+1) {
930 /* Q disk is one of the missing disks */
931 if (faila == syndrome_disks) {
932 /* Missing P+Q, just recompute */
0403e382
DW
933 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
934 ops_complete_compute, sh,
935 to_addr_conv(sh, percpu));
e4424fee 936 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
937 STRIPE_SIZE, &submit);
938 } else {
939 struct page *dest;
940 int data_target;
941 int qd_idx = sh->qd_idx;
942
943 /* Missing D+Q: recompute D from P, then recompute Q */
944 if (target == qd_idx)
945 data_target = target2;
946 else
947 data_target = target;
948
949 count = 0;
950 for (i = disks; i-- ; ) {
951 if (i == data_target || i == qd_idx)
952 continue;
953 blocks[count++] = sh->dev[i].page;
954 }
955 dest = sh->dev[data_target].page;
0403e382
DW
956 init_async_submit(&submit,
957 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
958 NULL, NULL, NULL,
959 to_addr_conv(sh, percpu));
ac6b53b6
DW
960 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
961 &submit);
962
963 count = set_syndrome_sources(blocks, sh);
0403e382
DW
964 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
965 ops_complete_compute, sh,
966 to_addr_conv(sh, percpu));
ac6b53b6
DW
967 return async_gen_syndrome(blocks, 0, count+2,
968 STRIPE_SIZE, &submit);
969 }
ac6b53b6 970 } else {
6c910a78
DW
971 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
972 ops_complete_compute, sh,
973 to_addr_conv(sh, percpu));
974 if (failb == syndrome_disks) {
975 /* We're missing D+P. */
976 return async_raid6_datap_recov(syndrome_disks+2,
977 STRIPE_SIZE, faila,
978 blocks, &submit);
979 } else {
980 /* We're missing D+D. */
981 return async_raid6_2data_recov(syndrome_disks+2,
982 STRIPE_SIZE, faila, failb,
983 blocks, &submit);
984 }
ac6b53b6
DW
985 }
986}
987
988
91c00924
DW
989static void ops_complete_prexor(void *stripe_head_ref)
990{
991 struct stripe_head *sh = stripe_head_ref;
992
e46b272b 993 pr_debug("%s: stripe %llu\n", __func__,
91c00924 994 (unsigned long long)sh->sector);
91c00924
DW
995}
996
997static struct dma_async_tx_descriptor *
d6f38f31
DW
998ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
999 struct dma_async_tx_descriptor *tx)
91c00924 1000{
91c00924 1001 int disks = sh->disks;
d6f38f31 1002 struct page **xor_srcs = percpu->scribble;
91c00924 1003 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1004 struct async_submit_ctl submit;
91c00924
DW
1005
1006 /* existing parity data subtracted */
1007 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1008
e46b272b 1009 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1010 (unsigned long long)sh->sector);
1011
1012 for (i = disks; i--; ) {
1013 struct r5dev *dev = &sh->dev[i];
1014 /* Only process blocks that are known to be uptodate */
d8ee0728 1015 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1016 xor_srcs[count++] = dev->page;
1017 }
1018
0403e382 1019 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
d6f38f31 1020 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
a08abd8c 1021 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1022
1023 return tx;
1024}
1025
1026static struct dma_async_tx_descriptor *
d8ee0728 1027ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1028{
1029 int disks = sh->disks;
d8ee0728 1030 int i;
91c00924 1031
e46b272b 1032 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1033 (unsigned long long)sh->sector);
1034
1035 for (i = disks; i--; ) {
1036 struct r5dev *dev = &sh->dev[i];
1037 struct bio *chosen;
91c00924 1038
d8ee0728 1039 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
1040 struct bio *wbi;
1041
cbe47ec5 1042 spin_lock_irq(&sh->raid_conf->device_lock);
91c00924
DW
1043 chosen = dev->towrite;
1044 dev->towrite = NULL;
1045 BUG_ON(dev->written);
1046 wbi = dev->written = chosen;
cbe47ec5 1047 spin_unlock_irq(&sh->raid_conf->device_lock);
91c00924
DW
1048
1049 while (wbi && wbi->bi_sector <
1050 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1051 if (wbi->bi_rw & REQ_FUA)
1052 set_bit(R5_WantFUA, &dev->flags);
91c00924
DW
1053 tx = async_copy_data(1, wbi, dev->page,
1054 dev->sector, tx);
1055 wbi = r5_next_bio(wbi, dev->sector);
1056 }
1057 }
1058 }
1059
1060 return tx;
1061}
1062
ac6b53b6 1063static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1064{
1065 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1066 int disks = sh->disks;
1067 int pd_idx = sh->pd_idx;
1068 int qd_idx = sh->qd_idx;
1069 int i;
e9c7469b 1070 bool fua = false;
91c00924 1071
e46b272b 1072 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1073 (unsigned long long)sh->sector);
1074
e9c7469b
TH
1075 for (i = disks; i--; )
1076 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1077
91c00924
DW
1078 for (i = disks; i--; ) {
1079 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1080
e9c7469b 1081 if (dev->written || i == pd_idx || i == qd_idx) {
91c00924 1082 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1083 if (fua)
1084 set_bit(R5_WantFUA, &dev->flags);
1085 }
91c00924
DW
1086 }
1087
d8ee0728
DW
1088 if (sh->reconstruct_state == reconstruct_state_drain_run)
1089 sh->reconstruct_state = reconstruct_state_drain_result;
1090 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1091 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1092 else {
1093 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1094 sh->reconstruct_state = reconstruct_state_result;
1095 }
91c00924
DW
1096
1097 set_bit(STRIPE_HANDLE, &sh->state);
1098 release_stripe(sh);
1099}
1100
1101static void
ac6b53b6
DW
1102ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1103 struct dma_async_tx_descriptor *tx)
91c00924 1104{
91c00924 1105 int disks = sh->disks;
d6f38f31 1106 struct page **xor_srcs = percpu->scribble;
a08abd8c 1107 struct async_submit_ctl submit;
91c00924
DW
1108 int count = 0, pd_idx = sh->pd_idx, i;
1109 struct page *xor_dest;
d8ee0728 1110 int prexor = 0;
91c00924 1111 unsigned long flags;
91c00924 1112
e46b272b 1113 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1114 (unsigned long long)sh->sector);
1115
1116 /* check if prexor is active which means only process blocks
1117 * that are part of a read-modify-write (written)
1118 */
d8ee0728
DW
1119 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1120 prexor = 1;
91c00924
DW
1121 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1122 for (i = disks; i--; ) {
1123 struct r5dev *dev = &sh->dev[i];
1124 if (dev->written)
1125 xor_srcs[count++] = dev->page;
1126 }
1127 } else {
1128 xor_dest = sh->dev[pd_idx].page;
1129 for (i = disks; i--; ) {
1130 struct r5dev *dev = &sh->dev[i];
1131 if (i != pd_idx)
1132 xor_srcs[count++] = dev->page;
1133 }
1134 }
1135
91c00924
DW
1136 /* 1/ if we prexor'd then the dest is reused as a source
1137 * 2/ if we did not prexor then we are redoing the parity
1138 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1139 * for the synchronous xor case
1140 */
88ba2aa5 1141 flags = ASYNC_TX_ACK |
91c00924
DW
1142 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1143
1144 atomic_inc(&sh->count);
1145
ac6b53b6 1146 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
d6f38f31 1147 to_addr_conv(sh, percpu));
a08abd8c
DW
1148 if (unlikely(count == 1))
1149 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1150 else
1151 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1152}
1153
ac6b53b6
DW
1154static void
1155ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1156 struct dma_async_tx_descriptor *tx)
1157{
1158 struct async_submit_ctl submit;
1159 struct page **blocks = percpu->scribble;
1160 int count;
1161
1162 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1163
1164 count = set_syndrome_sources(blocks, sh);
1165
1166 atomic_inc(&sh->count);
1167
1168 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1169 sh, to_addr_conv(sh, percpu));
1170 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
91c00924
DW
1171}
1172
1173static void ops_complete_check(void *stripe_head_ref)
1174{
1175 struct stripe_head *sh = stripe_head_ref;
91c00924 1176
e46b272b 1177 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1178 (unsigned long long)sh->sector);
1179
ecc65c9b 1180 sh->check_state = check_state_check_result;
91c00924
DW
1181 set_bit(STRIPE_HANDLE, &sh->state);
1182 release_stripe(sh);
1183}
1184
ac6b53b6 1185static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1186{
91c00924 1187 int disks = sh->disks;
ac6b53b6
DW
1188 int pd_idx = sh->pd_idx;
1189 int qd_idx = sh->qd_idx;
1190 struct page *xor_dest;
d6f38f31 1191 struct page **xor_srcs = percpu->scribble;
91c00924 1192 struct dma_async_tx_descriptor *tx;
a08abd8c 1193 struct async_submit_ctl submit;
ac6b53b6
DW
1194 int count;
1195 int i;
91c00924 1196
e46b272b 1197 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1198 (unsigned long long)sh->sector);
1199
ac6b53b6
DW
1200 count = 0;
1201 xor_dest = sh->dev[pd_idx].page;
1202 xor_srcs[count++] = xor_dest;
91c00924 1203 for (i = disks; i--; ) {
ac6b53b6
DW
1204 if (i == pd_idx || i == qd_idx)
1205 continue;
1206 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1207 }
1208
d6f38f31
DW
1209 init_async_submit(&submit, 0, NULL, NULL, NULL,
1210 to_addr_conv(sh, percpu));
099f53cb 1211 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1212 &sh->ops.zero_sum_result, &submit);
91c00924 1213
91c00924 1214 atomic_inc(&sh->count);
a08abd8c
DW
1215 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1216 tx = async_trigger_callback(&submit);
91c00924
DW
1217}
1218
ac6b53b6
DW
1219static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1220{
1221 struct page **srcs = percpu->scribble;
1222 struct async_submit_ctl submit;
1223 int count;
1224
1225 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1226 (unsigned long long)sh->sector, checkp);
1227
1228 count = set_syndrome_sources(srcs, sh);
1229 if (!checkp)
1230 srcs[count] = NULL;
91c00924 1231
91c00924 1232 atomic_inc(&sh->count);
ac6b53b6
DW
1233 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1234 sh, to_addr_conv(sh, percpu));
1235 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1236 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1237}
1238
417b8d4a 1239static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1240{
1241 int overlap_clear = 0, i, disks = sh->disks;
1242 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1243 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1244 int level = conf->level;
d6f38f31
DW
1245 struct raid5_percpu *percpu;
1246 unsigned long cpu;
91c00924 1247
d6f38f31
DW
1248 cpu = get_cpu();
1249 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1250 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1251 ops_run_biofill(sh);
1252 overlap_clear++;
1253 }
1254
7b3a871e 1255 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1256 if (level < 6)
1257 tx = ops_run_compute5(sh, percpu);
1258 else {
1259 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1260 tx = ops_run_compute6_1(sh, percpu);
1261 else
1262 tx = ops_run_compute6_2(sh, percpu);
1263 }
1264 /* terminate the chain if reconstruct is not set to be run */
1265 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1266 async_tx_ack(tx);
1267 }
91c00924 1268
600aa109 1269 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 1270 tx = ops_run_prexor(sh, percpu, tx);
91c00924 1271
600aa109 1272 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1273 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1274 overlap_clear++;
1275 }
1276
ac6b53b6
DW
1277 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1278 if (level < 6)
1279 ops_run_reconstruct5(sh, percpu, tx);
1280 else
1281 ops_run_reconstruct6(sh, percpu, tx);
1282 }
91c00924 1283
ac6b53b6
DW
1284 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1285 if (sh->check_state == check_state_run)
1286 ops_run_check_p(sh, percpu);
1287 else if (sh->check_state == check_state_run_q)
1288 ops_run_check_pq(sh, percpu, 0);
1289 else if (sh->check_state == check_state_run_pq)
1290 ops_run_check_pq(sh, percpu, 1);
1291 else
1292 BUG();
1293 }
91c00924 1294
91c00924
DW
1295 if (overlap_clear)
1296 for (i = disks; i--; ) {
1297 struct r5dev *dev = &sh->dev[i];
1298 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1299 wake_up(&sh->raid_conf->wait_for_overlap);
1300 }
d6f38f31 1301 put_cpu();
91c00924
DW
1302}
1303
417b8d4a
DW
1304#ifdef CONFIG_MULTICORE_RAID456
1305static void async_run_ops(void *param, async_cookie_t cookie)
1306{
1307 struct stripe_head *sh = param;
1308 unsigned long ops_request = sh->ops.request;
1309
1310 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1311 wake_up(&sh->ops.wait_for_ops);
1312
1313 __raid_run_ops(sh, ops_request);
1314 release_stripe(sh);
1315}
1316
1317static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1318{
1319 /* since handle_stripe can be called outside of raid5d context
1320 * we need to ensure sh->ops.request is de-staged before another
1321 * request arrives
1322 */
1323 wait_event(sh->ops.wait_for_ops,
1324 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1325 sh->ops.request = ops_request;
1326
1327 atomic_inc(&sh->count);
1328 async_schedule(async_run_ops, sh);
1329}
1330#else
1331#define raid_run_ops __raid_run_ops
1332#endif
1333
d1688a6d 1334static int grow_one_stripe(struct r5conf *conf)
1da177e4
LT
1335{
1336 struct stripe_head *sh;
6ce32846 1337 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
3f294f4f
N
1338 if (!sh)
1339 return 0;
6ce32846 1340
3f294f4f 1341 sh->raid_conf = conf;
417b8d4a
DW
1342 #ifdef CONFIG_MULTICORE_RAID456
1343 init_waitqueue_head(&sh->ops.wait_for_ops);
1344 #endif
3f294f4f 1345
e4e11e38
N
1346 if (grow_buffers(sh)) {
1347 shrink_buffers(sh);
3f294f4f
N
1348 kmem_cache_free(conf->slab_cache, sh);
1349 return 0;
1350 }
1351 /* we just created an active stripe so... */
1352 atomic_set(&sh->count, 1);
1353 atomic_inc(&conf->active_stripes);
1354 INIT_LIST_HEAD(&sh->lru);
1355 release_stripe(sh);
1356 return 1;
1357}
1358
d1688a6d 1359static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 1360{
e18b890b 1361 struct kmem_cache *sc;
5e5e3e78 1362 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 1363
f4be6b43
N
1364 if (conf->mddev->gendisk)
1365 sprintf(conf->cache_name[0],
1366 "raid%d-%s", conf->level, mdname(conf->mddev));
1367 else
1368 sprintf(conf->cache_name[0],
1369 "raid%d-%p", conf->level, conf->mddev);
1370 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1371
ad01c9e3
N
1372 conf->active_name = 0;
1373 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 1374 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 1375 0, 0, NULL);
1da177e4
LT
1376 if (!sc)
1377 return 1;
1378 conf->slab_cache = sc;
ad01c9e3 1379 conf->pool_size = devs;
16a53ecc 1380 while (num--)
3f294f4f 1381 if (!grow_one_stripe(conf))
1da177e4 1382 return 1;
1da177e4
LT
1383 return 0;
1384}
29269553 1385
d6f38f31
DW
1386/**
1387 * scribble_len - return the required size of the scribble region
1388 * @num - total number of disks in the array
1389 *
1390 * The size must be enough to contain:
1391 * 1/ a struct page pointer for each device in the array +2
1392 * 2/ room to convert each entry in (1) to its corresponding dma
1393 * (dma_map_page()) or page (page_address()) address.
1394 *
1395 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1396 * calculate over all devices (not just the data blocks), using zeros in place
1397 * of the P and Q blocks.
1398 */
1399static size_t scribble_len(int num)
1400{
1401 size_t len;
1402
1403 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1404
1405 return len;
1406}
1407
d1688a6d 1408static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
1409{
1410 /* Make all the stripes able to hold 'newsize' devices.
1411 * New slots in each stripe get 'page' set to a new page.
1412 *
1413 * This happens in stages:
1414 * 1/ create a new kmem_cache and allocate the required number of
1415 * stripe_heads.
1416 * 2/ gather all the old stripe_heads and tranfer the pages across
1417 * to the new stripe_heads. This will have the side effect of
1418 * freezing the array as once all stripe_heads have been collected,
1419 * no IO will be possible. Old stripe heads are freed once their
1420 * pages have been transferred over, and the old kmem_cache is
1421 * freed when all stripes are done.
1422 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1423 * we simple return a failre status - no need to clean anything up.
1424 * 4/ allocate new pages for the new slots in the new stripe_heads.
1425 * If this fails, we don't bother trying the shrink the
1426 * stripe_heads down again, we just leave them as they are.
1427 * As each stripe_head is processed the new one is released into
1428 * active service.
1429 *
1430 * Once step2 is started, we cannot afford to wait for a write,
1431 * so we use GFP_NOIO allocations.
1432 */
1433 struct stripe_head *osh, *nsh;
1434 LIST_HEAD(newstripes);
1435 struct disk_info *ndisks;
d6f38f31 1436 unsigned long cpu;
b5470dc5 1437 int err;
e18b890b 1438 struct kmem_cache *sc;
ad01c9e3
N
1439 int i;
1440
1441 if (newsize <= conf->pool_size)
1442 return 0; /* never bother to shrink */
1443
b5470dc5
DW
1444 err = md_allow_write(conf->mddev);
1445 if (err)
1446 return err;
2a2275d6 1447
ad01c9e3
N
1448 /* Step 1 */
1449 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1450 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1451 0, 0, NULL);
ad01c9e3
N
1452 if (!sc)
1453 return -ENOMEM;
1454
1455 for (i = conf->max_nr_stripes; i; i--) {
6ce32846 1456 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
ad01c9e3
N
1457 if (!nsh)
1458 break;
1459
ad01c9e3 1460 nsh->raid_conf = conf;
417b8d4a
DW
1461 #ifdef CONFIG_MULTICORE_RAID456
1462 init_waitqueue_head(&nsh->ops.wait_for_ops);
1463 #endif
ad01c9e3
N
1464
1465 list_add(&nsh->lru, &newstripes);
1466 }
1467 if (i) {
1468 /* didn't get enough, give up */
1469 while (!list_empty(&newstripes)) {
1470 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1471 list_del(&nsh->lru);
1472 kmem_cache_free(sc, nsh);
1473 }
1474 kmem_cache_destroy(sc);
1475 return -ENOMEM;
1476 }
1477 /* Step 2 - Must use GFP_NOIO now.
1478 * OK, we have enough stripes, start collecting inactive
1479 * stripes and copying them over
1480 */
1481 list_for_each_entry(nsh, &newstripes, lru) {
1482 spin_lock_irq(&conf->device_lock);
1483 wait_event_lock_irq(conf->wait_for_stripe,
1484 !list_empty(&conf->inactive_list),
1485 conf->device_lock,
482c0834 1486 );
ad01c9e3
N
1487 osh = get_free_stripe(conf);
1488 spin_unlock_irq(&conf->device_lock);
1489 atomic_set(&nsh->count, 1);
1490 for(i=0; i<conf->pool_size; i++)
1491 nsh->dev[i].page = osh->dev[i].page;
1492 for( ; i<newsize; i++)
1493 nsh->dev[i].page = NULL;
1494 kmem_cache_free(conf->slab_cache, osh);
1495 }
1496 kmem_cache_destroy(conf->slab_cache);
1497
1498 /* Step 3.
1499 * At this point, we are holding all the stripes so the array
1500 * is completely stalled, so now is a good time to resize
d6f38f31 1501 * conf->disks and the scribble region
ad01c9e3
N
1502 */
1503 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1504 if (ndisks) {
1505 for (i=0; i<conf->raid_disks; i++)
1506 ndisks[i] = conf->disks[i];
1507 kfree(conf->disks);
1508 conf->disks = ndisks;
1509 } else
1510 err = -ENOMEM;
1511
d6f38f31
DW
1512 get_online_cpus();
1513 conf->scribble_len = scribble_len(newsize);
1514 for_each_present_cpu(cpu) {
1515 struct raid5_percpu *percpu;
1516 void *scribble;
1517
1518 percpu = per_cpu_ptr(conf->percpu, cpu);
1519 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1520
1521 if (scribble) {
1522 kfree(percpu->scribble);
1523 percpu->scribble = scribble;
1524 } else {
1525 err = -ENOMEM;
1526 break;
1527 }
1528 }
1529 put_online_cpus();
1530
ad01c9e3
N
1531 /* Step 4, return new stripes to service */
1532 while(!list_empty(&newstripes)) {
1533 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1534 list_del_init(&nsh->lru);
d6f38f31 1535
ad01c9e3
N
1536 for (i=conf->raid_disks; i < newsize; i++)
1537 if (nsh->dev[i].page == NULL) {
1538 struct page *p = alloc_page(GFP_NOIO);
1539 nsh->dev[i].page = p;
1540 if (!p)
1541 err = -ENOMEM;
1542 }
1543 release_stripe(nsh);
1544 }
1545 /* critical section pass, GFP_NOIO no longer needed */
1546
1547 conf->slab_cache = sc;
1548 conf->active_name = 1-conf->active_name;
1549 conf->pool_size = newsize;
1550 return err;
1551}
1da177e4 1552
d1688a6d 1553static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
1554{
1555 struct stripe_head *sh;
1556
3f294f4f
N
1557 spin_lock_irq(&conf->device_lock);
1558 sh = get_free_stripe(conf);
1559 spin_unlock_irq(&conf->device_lock);
1560 if (!sh)
1561 return 0;
78bafebd 1562 BUG_ON(atomic_read(&sh->count));
e4e11e38 1563 shrink_buffers(sh);
3f294f4f
N
1564 kmem_cache_free(conf->slab_cache, sh);
1565 atomic_dec(&conf->active_stripes);
1566 return 1;
1567}
1568
d1688a6d 1569static void shrink_stripes(struct r5conf *conf)
3f294f4f
N
1570{
1571 while (drop_one_stripe(conf))
1572 ;
1573
29fc7e3e
N
1574 if (conf->slab_cache)
1575 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1576 conf->slab_cache = NULL;
1577}
1578
6712ecf8 1579static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1580{
99c0fb5f 1581 struct stripe_head *sh = bi->bi_private;
d1688a6d 1582 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 1583 int disks = sh->disks, i;
1da177e4 1584 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432 1585 char b[BDEVNAME_SIZE];
3cb03002 1586 struct md_rdev *rdev;
1da177e4 1587
1da177e4
LT
1588
1589 for (i=0 ; i<disks; i++)
1590 if (bi == &sh->dev[i].req)
1591 break;
1592
45b4233c
DW
1593 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1594 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1595 uptodate);
1596 if (i == disks) {
1597 BUG();
6712ecf8 1598 return;
1da177e4
LT
1599 }
1600
1601 if (uptodate) {
1da177e4 1602 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1603 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432 1604 rdev = conf->disks[i].rdev;
8bda470e
CD
1605 printk_ratelimited(
1606 KERN_INFO
1607 "md/raid:%s: read error corrected"
1608 " (%lu sectors at %llu on %s)\n",
1609 mdname(conf->mddev), STRIPE_SECTORS,
1610 (unsigned long long)(sh->sector
1611 + rdev->data_offset),
1612 bdevname(rdev->bdev, b));
ddd5115f 1613 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
1614 clear_bit(R5_ReadError, &sh->dev[i].flags);
1615 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1616 }
ba22dcbf
N
1617 if (atomic_read(&conf->disks[i].rdev->read_errors))
1618 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1619 } else {
d6950432 1620 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1621 int retry = 0;
d6950432
N
1622 rdev = conf->disks[i].rdev;
1623
1da177e4 1624 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1625 atomic_inc(&rdev->read_errors);
7b0bb536 1626 if (conf->mddev->degraded >= conf->max_degraded)
8bda470e
CD
1627 printk_ratelimited(
1628 KERN_WARNING
1629 "md/raid:%s: read error not correctable "
1630 "(sector %llu on %s).\n",
1631 mdname(conf->mddev),
1632 (unsigned long long)(sh->sector
1633 + rdev->data_offset),
1634 bdn);
ba22dcbf 1635 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1636 /* Oh, no!!! */
8bda470e
CD
1637 printk_ratelimited(
1638 KERN_WARNING
1639 "md/raid:%s: read error NOT corrected!! "
1640 "(sector %llu on %s).\n",
1641 mdname(conf->mddev),
1642 (unsigned long long)(sh->sector
1643 + rdev->data_offset),
1644 bdn);
d6950432 1645 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1646 > conf->max_nr_stripes)
14f8d26b 1647 printk(KERN_WARNING
0c55e022 1648 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 1649 mdname(conf->mddev), bdn);
ba22dcbf
N
1650 else
1651 retry = 1;
1652 if (retry)
1653 set_bit(R5_ReadError, &sh->dev[i].flags);
1654 else {
4e5314b5
N
1655 clear_bit(R5_ReadError, &sh->dev[i].flags);
1656 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1657 md_error(conf->mddev, rdev);
ba22dcbf 1658 }
1da177e4
LT
1659 }
1660 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1661 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1662 set_bit(STRIPE_HANDLE, &sh->state);
1663 release_stripe(sh);
1da177e4
LT
1664}
1665
d710e138 1666static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1667{
99c0fb5f 1668 struct stripe_head *sh = bi->bi_private;
d1688a6d 1669 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 1670 int disks = sh->disks, i;
1da177e4 1671 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
b84db560
N
1672 sector_t first_bad;
1673 int bad_sectors;
1da177e4 1674
1da177e4
LT
1675 for (i=0 ; i<disks; i++)
1676 if (bi == &sh->dev[i].req)
1677 break;
1678
45b4233c 1679 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1680 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1681 uptodate);
1682 if (i == disks) {
1683 BUG();
6712ecf8 1684 return;
1da177e4
LT
1685 }
1686
bc2607f3
N
1687 if (!uptodate) {
1688 set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags);
1689 set_bit(R5_WriteError, &sh->dev[i].flags);
b84db560
N
1690 } else if (is_badblock(conf->disks[i].rdev, sh->sector, STRIPE_SECTORS,
1691 &first_bad, &bad_sectors))
1692 set_bit(R5_MadeGood, &sh->dev[i].flags);
1da177e4
LT
1693
1694 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1695
1696 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1697 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1698 release_stripe(sh);
1da177e4
LT
1699}
1700
1701
784052ec 1702static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 1703
784052ec 1704static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1705{
1706 struct r5dev *dev = &sh->dev[i];
1707
1708 bio_init(&dev->req);
1709 dev->req.bi_io_vec = &dev->vec;
1710 dev->req.bi_vcnt++;
1711 dev->req.bi_max_vecs++;
1712 dev->vec.bv_page = dev->page;
1713 dev->vec.bv_len = STRIPE_SIZE;
1714 dev->vec.bv_offset = 0;
1715
1716 dev->req.bi_sector = sh->sector;
1717 dev->req.bi_private = sh;
1718
1719 dev->flags = 0;
784052ec 1720 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
1721}
1722
fd01b88c 1723static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1724{
1725 char b[BDEVNAME_SIZE];
d1688a6d 1726 struct r5conf *conf = mddev->private;
0c55e022 1727 pr_debug("raid456: error called\n");
1da177e4 1728
6f8d0c77
N
1729 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1730 unsigned long flags;
1731 spin_lock_irqsave(&conf->device_lock, flags);
1732 mddev->degraded++;
1733 spin_unlock_irqrestore(&conf->device_lock, flags);
1734 /*
1735 * if recovery was running, make sure it aborts.
1736 */
1737 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1738 }
de393cde 1739 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
1740 set_bit(Faulty, &rdev->flags);
1741 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1742 printk(KERN_ALERT
1743 "md/raid:%s: Disk failure on %s, disabling device.\n"
1744 "md/raid:%s: Operation continuing on %d devices.\n",
1745 mdname(mddev),
1746 bdevname(rdev->bdev, b),
1747 mdname(mddev),
1748 conf->raid_disks - mddev->degraded);
16a53ecc 1749}
1da177e4
LT
1750
1751/*
1752 * Input: a 'big' sector number,
1753 * Output: index of the data and parity disk, and the sector # in them.
1754 */
d1688a6d 1755static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
911d4ee8
N
1756 int previous, int *dd_idx,
1757 struct stripe_head *sh)
1da177e4 1758{
6e3b96ed 1759 sector_t stripe, stripe2;
35f2a591 1760 sector_t chunk_number;
1da177e4 1761 unsigned int chunk_offset;
911d4ee8 1762 int pd_idx, qd_idx;
67cc2b81 1763 int ddf_layout = 0;
1da177e4 1764 sector_t new_sector;
e183eaed
N
1765 int algorithm = previous ? conf->prev_algo
1766 : conf->algorithm;
09c9e5fa
AN
1767 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1768 : conf->chunk_sectors;
112bf897
N
1769 int raid_disks = previous ? conf->previous_raid_disks
1770 : conf->raid_disks;
1771 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1772
1773 /* First compute the information on this sector */
1774
1775 /*
1776 * Compute the chunk number and the sector offset inside the chunk
1777 */
1778 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1779 chunk_number = r_sector;
1da177e4
LT
1780
1781 /*
1782 * Compute the stripe number
1783 */
35f2a591
N
1784 stripe = chunk_number;
1785 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 1786 stripe2 = stripe;
1da177e4
LT
1787 /*
1788 * Select the parity disk based on the user selected algorithm.
1789 */
84789554 1790 pd_idx = qd_idx = -1;
16a53ecc
N
1791 switch(conf->level) {
1792 case 4:
911d4ee8 1793 pd_idx = data_disks;
16a53ecc
N
1794 break;
1795 case 5:
e183eaed 1796 switch (algorithm) {
1da177e4 1797 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1798 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1799 if (*dd_idx >= pd_idx)
1da177e4
LT
1800 (*dd_idx)++;
1801 break;
1802 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1803 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1804 if (*dd_idx >= pd_idx)
1da177e4
LT
1805 (*dd_idx)++;
1806 break;
1807 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1808 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1809 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
1810 break;
1811 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1812 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1813 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 1814 break;
99c0fb5f
N
1815 case ALGORITHM_PARITY_0:
1816 pd_idx = 0;
1817 (*dd_idx)++;
1818 break;
1819 case ALGORITHM_PARITY_N:
1820 pd_idx = data_disks;
1821 break;
1da177e4 1822 default:
99c0fb5f 1823 BUG();
16a53ecc
N
1824 }
1825 break;
1826 case 6:
1827
e183eaed 1828 switch (algorithm) {
16a53ecc 1829 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1830 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1831 qd_idx = pd_idx + 1;
1832 if (pd_idx == raid_disks-1) {
99c0fb5f 1833 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1834 qd_idx = 0;
1835 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1836 (*dd_idx) += 2; /* D D P Q D */
1837 break;
1838 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1839 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1840 qd_idx = pd_idx + 1;
1841 if (pd_idx == raid_disks-1) {
99c0fb5f 1842 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1843 qd_idx = 0;
1844 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1845 (*dd_idx) += 2; /* D D P Q D */
1846 break;
1847 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1848 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1849 qd_idx = (pd_idx + 1) % raid_disks;
1850 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
1851 break;
1852 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1853 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1854 qd_idx = (pd_idx + 1) % raid_disks;
1855 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 1856 break;
99c0fb5f
N
1857
1858 case ALGORITHM_PARITY_0:
1859 pd_idx = 0;
1860 qd_idx = 1;
1861 (*dd_idx) += 2;
1862 break;
1863 case ALGORITHM_PARITY_N:
1864 pd_idx = data_disks;
1865 qd_idx = data_disks + 1;
1866 break;
1867
1868 case ALGORITHM_ROTATING_ZERO_RESTART:
1869 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1870 * of blocks for computing Q is different.
1871 */
6e3b96ed 1872 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
1873 qd_idx = pd_idx + 1;
1874 if (pd_idx == raid_disks-1) {
1875 (*dd_idx)++; /* Q D D D P */
1876 qd_idx = 0;
1877 } else if (*dd_idx >= pd_idx)
1878 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1879 ddf_layout = 1;
99c0fb5f
N
1880 break;
1881
1882 case ALGORITHM_ROTATING_N_RESTART:
1883 /* Same a left_asymmetric, by first stripe is
1884 * D D D P Q rather than
1885 * Q D D D P
1886 */
6e3b96ed
N
1887 stripe2 += 1;
1888 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
1889 qd_idx = pd_idx + 1;
1890 if (pd_idx == raid_disks-1) {
1891 (*dd_idx)++; /* Q D D D P */
1892 qd_idx = 0;
1893 } else if (*dd_idx >= pd_idx)
1894 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1895 ddf_layout = 1;
99c0fb5f
N
1896 break;
1897
1898 case ALGORITHM_ROTATING_N_CONTINUE:
1899 /* Same as left_symmetric but Q is before P */
6e3b96ed 1900 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
1901 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1902 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 1903 ddf_layout = 1;
99c0fb5f
N
1904 break;
1905
1906 case ALGORITHM_LEFT_ASYMMETRIC_6:
1907 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 1908 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1909 if (*dd_idx >= pd_idx)
1910 (*dd_idx)++;
1911 qd_idx = raid_disks - 1;
1912 break;
1913
1914 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 1915 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1916 if (*dd_idx >= pd_idx)
1917 (*dd_idx)++;
1918 qd_idx = raid_disks - 1;
1919 break;
1920
1921 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 1922 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1923 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1924 qd_idx = raid_disks - 1;
1925 break;
1926
1927 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 1928 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1929 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1930 qd_idx = raid_disks - 1;
1931 break;
1932
1933 case ALGORITHM_PARITY_0_6:
1934 pd_idx = 0;
1935 (*dd_idx)++;
1936 qd_idx = raid_disks - 1;
1937 break;
1938
16a53ecc 1939 default:
99c0fb5f 1940 BUG();
16a53ecc
N
1941 }
1942 break;
1da177e4
LT
1943 }
1944
911d4ee8
N
1945 if (sh) {
1946 sh->pd_idx = pd_idx;
1947 sh->qd_idx = qd_idx;
67cc2b81 1948 sh->ddf_layout = ddf_layout;
911d4ee8 1949 }
1da177e4
LT
1950 /*
1951 * Finally, compute the new sector number
1952 */
1953 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1954 return new_sector;
1955}
1956
1957
784052ec 1958static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 1959{
d1688a6d 1960 struct r5conf *conf = sh->raid_conf;
b875e531
N
1961 int raid_disks = sh->disks;
1962 int data_disks = raid_disks - conf->max_degraded;
1da177e4 1963 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
1964 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1965 : conf->chunk_sectors;
e183eaed
N
1966 int algorithm = previous ? conf->prev_algo
1967 : conf->algorithm;
1da177e4
LT
1968 sector_t stripe;
1969 int chunk_offset;
35f2a591
N
1970 sector_t chunk_number;
1971 int dummy1, dd_idx = i;
1da177e4 1972 sector_t r_sector;
911d4ee8 1973 struct stripe_head sh2;
1da177e4 1974
16a53ecc 1975
1da177e4
LT
1976 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1977 stripe = new_sector;
1da177e4 1978
16a53ecc
N
1979 if (i == sh->pd_idx)
1980 return 0;
1981 switch(conf->level) {
1982 case 4: break;
1983 case 5:
e183eaed 1984 switch (algorithm) {
1da177e4
LT
1985 case ALGORITHM_LEFT_ASYMMETRIC:
1986 case ALGORITHM_RIGHT_ASYMMETRIC:
1987 if (i > sh->pd_idx)
1988 i--;
1989 break;
1990 case ALGORITHM_LEFT_SYMMETRIC:
1991 case ALGORITHM_RIGHT_SYMMETRIC:
1992 if (i < sh->pd_idx)
1993 i += raid_disks;
1994 i -= (sh->pd_idx + 1);
1995 break;
99c0fb5f
N
1996 case ALGORITHM_PARITY_0:
1997 i -= 1;
1998 break;
1999 case ALGORITHM_PARITY_N:
2000 break;
1da177e4 2001 default:
99c0fb5f 2002 BUG();
16a53ecc
N
2003 }
2004 break;
2005 case 6:
d0dabf7e 2006 if (i == sh->qd_idx)
16a53ecc 2007 return 0; /* It is the Q disk */
e183eaed 2008 switch (algorithm) {
16a53ecc
N
2009 case ALGORITHM_LEFT_ASYMMETRIC:
2010 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2011 case ALGORITHM_ROTATING_ZERO_RESTART:
2012 case ALGORITHM_ROTATING_N_RESTART:
2013 if (sh->pd_idx == raid_disks-1)
2014 i--; /* Q D D D P */
16a53ecc
N
2015 else if (i > sh->pd_idx)
2016 i -= 2; /* D D P Q D */
2017 break;
2018 case ALGORITHM_LEFT_SYMMETRIC:
2019 case ALGORITHM_RIGHT_SYMMETRIC:
2020 if (sh->pd_idx == raid_disks-1)
2021 i--; /* Q D D D P */
2022 else {
2023 /* D D P Q D */
2024 if (i < sh->pd_idx)
2025 i += raid_disks;
2026 i -= (sh->pd_idx + 2);
2027 }
2028 break;
99c0fb5f
N
2029 case ALGORITHM_PARITY_0:
2030 i -= 2;
2031 break;
2032 case ALGORITHM_PARITY_N:
2033 break;
2034 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2035 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2036 if (sh->pd_idx == 0)
2037 i--; /* P D D D Q */
e4424fee
N
2038 else {
2039 /* D D Q P D */
2040 if (i < sh->pd_idx)
2041 i += raid_disks;
2042 i -= (sh->pd_idx + 1);
2043 }
99c0fb5f
N
2044 break;
2045 case ALGORITHM_LEFT_ASYMMETRIC_6:
2046 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2047 if (i > sh->pd_idx)
2048 i--;
2049 break;
2050 case ALGORITHM_LEFT_SYMMETRIC_6:
2051 case ALGORITHM_RIGHT_SYMMETRIC_6:
2052 if (i < sh->pd_idx)
2053 i += data_disks + 1;
2054 i -= (sh->pd_idx + 1);
2055 break;
2056 case ALGORITHM_PARITY_0_6:
2057 i -= 1;
2058 break;
16a53ecc 2059 default:
99c0fb5f 2060 BUG();
16a53ecc
N
2061 }
2062 break;
1da177e4
LT
2063 }
2064
2065 chunk_number = stripe * data_disks + i;
35f2a591 2066 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2067
112bf897 2068 check = raid5_compute_sector(conf, r_sector,
784052ec 2069 previous, &dummy1, &sh2);
911d4ee8
N
2070 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2071 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2072 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2073 mdname(conf->mddev));
1da177e4
LT
2074 return 0;
2075 }
2076 return r_sector;
2077}
2078
2079
600aa109 2080static void
c0f7bddb 2081schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2082 int rcw, int expand)
e33129d8
DW
2083{
2084 int i, pd_idx = sh->pd_idx, disks = sh->disks;
d1688a6d 2085 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2086 int level = conf->level;
e33129d8
DW
2087
2088 if (rcw) {
2089 /* if we are not expanding this is a proper write request, and
2090 * there will be bios with new data to be drained into the
2091 * stripe cache
2092 */
2093 if (!expand) {
600aa109
DW
2094 sh->reconstruct_state = reconstruct_state_drain_run;
2095 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2096 } else
2097 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 2098
ac6b53b6 2099 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2100
2101 for (i = disks; i--; ) {
2102 struct r5dev *dev = &sh->dev[i];
2103
2104 if (dev->towrite) {
2105 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2106 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2107 if (!expand)
2108 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2109 s->locked++;
e33129d8
DW
2110 }
2111 }
c0f7bddb 2112 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2113 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2114 atomic_inc(&conf->pending_full_writes);
e33129d8 2115 } else {
c0f7bddb 2116 BUG_ON(level == 6);
e33129d8
DW
2117 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2118 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2119
d8ee0728 2120 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
600aa109
DW
2121 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2122 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
ac6b53b6 2123 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2124
2125 for (i = disks; i--; ) {
2126 struct r5dev *dev = &sh->dev[i];
2127 if (i == pd_idx)
2128 continue;
2129
e33129d8
DW
2130 if (dev->towrite &&
2131 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2132 test_bit(R5_Wantcompute, &dev->flags))) {
2133 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2134 set_bit(R5_LOCKED, &dev->flags);
2135 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2136 s->locked++;
e33129d8
DW
2137 }
2138 }
2139 }
2140
c0f7bddb 2141 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2142 * are in flight
2143 */
2144 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2145 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2146 s->locked++;
e33129d8 2147
c0f7bddb
YT
2148 if (level == 6) {
2149 int qd_idx = sh->qd_idx;
2150 struct r5dev *dev = &sh->dev[qd_idx];
2151
2152 set_bit(R5_LOCKED, &dev->flags);
2153 clear_bit(R5_UPTODATE, &dev->flags);
2154 s->locked++;
2155 }
2156
600aa109 2157 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2158 __func__, (unsigned long long)sh->sector,
600aa109 2159 s->locked, s->ops_request);
e33129d8 2160}
16a53ecc 2161
1da177e4
LT
2162/*
2163 * Each stripe/dev can have one or more bion attached.
16a53ecc 2164 * toread/towrite point to the first in a chain.
1da177e4
LT
2165 * The bi_next chain must be in order.
2166 */
2167static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2168{
2169 struct bio **bip;
d1688a6d 2170 struct r5conf *conf = sh->raid_conf;
72626685 2171 int firstwrite=0;
1da177e4 2172
cbe47ec5 2173 pr_debug("adding bi b#%llu to stripe s#%llu\n",
1da177e4
LT
2174 (unsigned long long)bi->bi_sector,
2175 (unsigned long long)sh->sector);
2176
2177
1da177e4 2178 spin_lock_irq(&conf->device_lock);
72626685 2179 if (forwrite) {
1da177e4 2180 bip = &sh->dev[dd_idx].towrite;
72626685
N
2181 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2182 firstwrite = 1;
2183 } else
1da177e4
LT
2184 bip = &sh->dev[dd_idx].toread;
2185 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2186 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2187 goto overlap;
2188 bip = & (*bip)->bi_next;
2189 }
2190 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2191 goto overlap;
2192
78bafebd 2193 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2194 if (*bip)
2195 bi->bi_next = *bip;
2196 *bip = bi;
960e739d 2197 bi->bi_phys_segments++;
72626685 2198
1da177e4
LT
2199 if (forwrite) {
2200 /* check if page is covered */
2201 sector_t sector = sh->dev[dd_idx].sector;
2202 for (bi=sh->dev[dd_idx].towrite;
2203 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2204 bi && bi->bi_sector <= sector;
2205 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2206 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2207 sector = bi->bi_sector + (bi->bi_size>>9);
2208 }
2209 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2210 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2211 }
cbe47ec5 2212 spin_unlock_irq(&conf->device_lock);
cbe47ec5
N
2213
2214 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2215 (unsigned long long)(*bip)->bi_sector,
2216 (unsigned long long)sh->sector, dd_idx);
2217
2218 if (conf->mddev->bitmap && firstwrite) {
2219 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2220 STRIPE_SECTORS, 0);
2221 sh->bm_seq = conf->seq_flush+1;
2222 set_bit(STRIPE_BIT_DELAY, &sh->state);
2223 }
1da177e4
LT
2224 return 1;
2225
2226 overlap:
2227 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2228 spin_unlock_irq(&conf->device_lock);
1da177e4
LT
2229 return 0;
2230}
2231
d1688a6d 2232static void end_reshape(struct r5conf *conf);
29269553 2233
d1688a6d 2234static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 2235 struct stripe_head *sh)
ccfcc3c1 2236{
784052ec 2237 int sectors_per_chunk =
09c9e5fa 2238 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 2239 int dd_idx;
2d2063ce 2240 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2241 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2242
112bf897
N
2243 raid5_compute_sector(conf,
2244 stripe * (disks - conf->max_degraded)
b875e531 2245 *sectors_per_chunk + chunk_offset,
112bf897 2246 previous,
911d4ee8 2247 &dd_idx, sh);
ccfcc3c1
N
2248}
2249
a4456856 2250static void
d1688a6d 2251handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
2252 struct stripe_head_state *s, int disks,
2253 struct bio **return_bi)
2254{
2255 int i;
2256 for (i = disks; i--; ) {
2257 struct bio *bi;
2258 int bitmap_end = 0;
2259
2260 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 2261 struct md_rdev *rdev;
a4456856
DW
2262 rcu_read_lock();
2263 rdev = rcu_dereference(conf->disks[i].rdev);
2264 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
2265 atomic_inc(&rdev->nr_pending);
2266 else
2267 rdev = NULL;
a4456856 2268 rcu_read_unlock();
7f0da59b
N
2269 if (rdev) {
2270 if (!rdev_set_badblocks(
2271 rdev,
2272 sh->sector,
2273 STRIPE_SECTORS, 0))
2274 md_error(conf->mddev, rdev);
2275 rdev_dec_pending(rdev, conf->mddev);
2276 }
a4456856
DW
2277 }
2278 spin_lock_irq(&conf->device_lock);
2279 /* fail all writes first */
2280 bi = sh->dev[i].towrite;
2281 sh->dev[i].towrite = NULL;
2282 if (bi) {
2283 s->to_write--;
2284 bitmap_end = 1;
2285 }
2286
2287 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2288 wake_up(&conf->wait_for_overlap);
2289
2290 while (bi && bi->bi_sector <
2291 sh->dev[i].sector + STRIPE_SECTORS) {
2292 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2293 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2294 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2295 md_write_end(conf->mddev);
2296 bi->bi_next = *return_bi;
2297 *return_bi = bi;
2298 }
2299 bi = nextbi;
2300 }
2301 /* and fail all 'written' */
2302 bi = sh->dev[i].written;
2303 sh->dev[i].written = NULL;
2304 if (bi) bitmap_end = 1;
2305 while (bi && bi->bi_sector <
2306 sh->dev[i].sector + STRIPE_SECTORS) {
2307 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2308 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2309 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2310 md_write_end(conf->mddev);
2311 bi->bi_next = *return_bi;
2312 *return_bi = bi;
2313 }
2314 bi = bi2;
2315 }
2316
b5e98d65
DW
2317 /* fail any reads if this device is non-operational and
2318 * the data has not reached the cache yet.
2319 */
2320 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2321 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2322 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
2323 bi = sh->dev[i].toread;
2324 sh->dev[i].toread = NULL;
2325 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2326 wake_up(&conf->wait_for_overlap);
2327 if (bi) s->to_read--;
2328 while (bi && bi->bi_sector <
2329 sh->dev[i].sector + STRIPE_SECTORS) {
2330 struct bio *nextbi =
2331 r5_next_bio(bi, sh->dev[i].sector);
2332 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2333 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2334 bi->bi_next = *return_bi;
2335 *return_bi = bi;
2336 }
2337 bi = nextbi;
2338 }
2339 }
2340 spin_unlock_irq(&conf->device_lock);
2341 if (bitmap_end)
2342 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2343 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
2344 /* If we were in the middle of a write the parity block might
2345 * still be locked - so just clear all R5_LOCKED flags
2346 */
2347 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856
DW
2348 }
2349
8b3e6cdc
DW
2350 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2351 if (atomic_dec_and_test(&conf->pending_full_writes))
2352 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2353}
2354
7f0da59b 2355static void
d1688a6d 2356handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
2357 struct stripe_head_state *s)
2358{
2359 int abort = 0;
2360 int i;
2361
2362 md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2363 clear_bit(STRIPE_SYNCING, &sh->state);
2364 s->syncing = 0;
2365 /* There is nothing more to do for sync/check/repair.
2366 * For recover we need to record a bad block on all
2367 * non-sync devices, or abort the recovery
2368 */
2369 if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2370 return;
2371 /* During recovery devices cannot be removed, so locking and
2372 * refcounting of rdevs is not needed
2373 */
2374 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 2375 struct md_rdev *rdev = conf->disks[i].rdev;
7f0da59b
N
2376 if (!rdev
2377 || test_bit(Faulty, &rdev->flags)
2378 || test_bit(In_sync, &rdev->flags))
2379 continue;
2380 if (!rdev_set_badblocks(rdev, sh->sector,
2381 STRIPE_SECTORS, 0))
2382 abort = 1;
2383 }
2384 if (abort) {
2385 conf->recovery_disabled = conf->mddev->recovery_disabled;
2386 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2387 }
2388}
2389
93b3dbce 2390/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
2391 * to be read or computed to satisfy a request.
2392 *
2393 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 2394 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 2395 */
93b3dbce
N
2396static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2397 int disk_idx, int disks)
a4456856 2398{
5599becc 2399 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
2400 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2401 &sh->dev[s->failed_num[1]] };
5599becc 2402
93b3dbce 2403 /* is the data in this block needed, and can we get it? */
5599becc
YT
2404 if (!test_bit(R5_LOCKED, &dev->flags) &&
2405 !test_bit(R5_UPTODATE, &dev->flags) &&
2406 (dev->toread ||
2407 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2408 s->syncing || s->expanding ||
5d35e09c
N
2409 (s->failed >= 1 && fdev[0]->toread) ||
2410 (s->failed >= 2 && fdev[1]->toread) ||
93b3dbce
N
2411 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2412 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2413 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
5599becc
YT
2414 /* we would like to get this block, possibly by computing it,
2415 * otherwise read it if the backing disk is insync
2416 */
2417 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2418 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2419 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
2420 (s->failed && (disk_idx == s->failed_num[0] ||
2421 disk_idx == s->failed_num[1]))) {
5599becc
YT
2422 /* have disk failed, and we're requested to fetch it;
2423 * do compute it
a4456856 2424 */
5599becc
YT
2425 pr_debug("Computing stripe %llu block %d\n",
2426 (unsigned long long)sh->sector, disk_idx);
2427 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2428 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2429 set_bit(R5_Wantcompute, &dev->flags);
2430 sh->ops.target = disk_idx;
2431 sh->ops.target2 = -1; /* no 2nd target */
2432 s->req_compute = 1;
93b3dbce
N
2433 /* Careful: from this point on 'uptodate' is in the eye
2434 * of raid_run_ops which services 'compute' operations
2435 * before writes. R5_Wantcompute flags a block that will
2436 * be R5_UPTODATE by the time it is needed for a
2437 * subsequent operation.
2438 */
5599becc
YT
2439 s->uptodate++;
2440 return 1;
2441 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2442 /* Computing 2-failure is *very* expensive; only
2443 * do it if failed >= 2
2444 */
2445 int other;
2446 for (other = disks; other--; ) {
2447 if (other == disk_idx)
2448 continue;
2449 if (!test_bit(R5_UPTODATE,
2450 &sh->dev[other].flags))
2451 break;
a4456856 2452 }
5599becc
YT
2453 BUG_ON(other < 0);
2454 pr_debug("Computing stripe %llu blocks %d,%d\n",
2455 (unsigned long long)sh->sector,
2456 disk_idx, other);
2457 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2458 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2459 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2460 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2461 sh->ops.target = disk_idx;
2462 sh->ops.target2 = other;
2463 s->uptodate += 2;
2464 s->req_compute = 1;
2465 return 1;
2466 } else if (test_bit(R5_Insync, &dev->flags)) {
2467 set_bit(R5_LOCKED, &dev->flags);
2468 set_bit(R5_Wantread, &dev->flags);
2469 s->locked++;
2470 pr_debug("Reading block %d (sync=%d)\n",
2471 disk_idx, s->syncing);
a4456856
DW
2472 }
2473 }
5599becc
YT
2474
2475 return 0;
2476}
2477
2478/**
93b3dbce 2479 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 2480 */
93b3dbce
N
2481static void handle_stripe_fill(struct stripe_head *sh,
2482 struct stripe_head_state *s,
2483 int disks)
5599becc
YT
2484{
2485 int i;
2486
2487 /* look for blocks to read/compute, skip this if a compute
2488 * is already in flight, or if the stripe contents are in the
2489 * midst of changing due to a write
2490 */
2491 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2492 !sh->reconstruct_state)
2493 for (i = disks; i--; )
93b3dbce 2494 if (fetch_block(sh, s, i, disks))
5599becc 2495 break;
a4456856
DW
2496 set_bit(STRIPE_HANDLE, &sh->state);
2497}
2498
2499
1fe797e6 2500/* handle_stripe_clean_event
a4456856
DW
2501 * any written block on an uptodate or failed drive can be returned.
2502 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2503 * never LOCKED, so we don't need to test 'failed' directly.
2504 */
d1688a6d 2505static void handle_stripe_clean_event(struct r5conf *conf,
a4456856
DW
2506 struct stripe_head *sh, int disks, struct bio **return_bi)
2507{
2508 int i;
2509 struct r5dev *dev;
2510
2511 for (i = disks; i--; )
2512 if (sh->dev[i].written) {
2513 dev = &sh->dev[i];
2514 if (!test_bit(R5_LOCKED, &dev->flags) &&
2515 test_bit(R5_UPTODATE, &dev->flags)) {
2516 /* We can return any write requests */
2517 struct bio *wbi, *wbi2;
2518 int bitmap_end = 0;
45b4233c 2519 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2520 spin_lock_irq(&conf->device_lock);
2521 wbi = dev->written;
2522 dev->written = NULL;
2523 while (wbi && wbi->bi_sector <
2524 dev->sector + STRIPE_SECTORS) {
2525 wbi2 = r5_next_bio(wbi, dev->sector);
960e739d 2526 if (!raid5_dec_bi_phys_segments(wbi)) {
a4456856
DW
2527 md_write_end(conf->mddev);
2528 wbi->bi_next = *return_bi;
2529 *return_bi = wbi;
2530 }
2531 wbi = wbi2;
2532 }
2533 if (dev->towrite == NULL)
2534 bitmap_end = 1;
2535 spin_unlock_irq(&conf->device_lock);
2536 if (bitmap_end)
2537 bitmap_endwrite(conf->mddev->bitmap,
2538 sh->sector,
2539 STRIPE_SECTORS,
2540 !test_bit(STRIPE_DEGRADED, &sh->state),
2541 0);
2542 }
2543 }
8b3e6cdc
DW
2544
2545 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2546 if (atomic_dec_and_test(&conf->pending_full_writes))
2547 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2548}
2549
d1688a6d 2550static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
2551 struct stripe_head *sh,
2552 struct stripe_head_state *s,
2553 int disks)
a4456856
DW
2554{
2555 int rmw = 0, rcw = 0, i;
c8ac1803
N
2556 if (conf->max_degraded == 2) {
2557 /* RAID6 requires 'rcw' in current implementation
2558 * Calculate the real rcw later - for now fake it
2559 * look like rcw is cheaper
2560 */
2561 rcw = 1; rmw = 2;
2562 } else for (i = disks; i--; ) {
a4456856
DW
2563 /* would I have to read this buffer for read_modify_write */
2564 struct r5dev *dev = &sh->dev[i];
2565 if ((dev->towrite || i == sh->pd_idx) &&
2566 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2567 !(test_bit(R5_UPTODATE, &dev->flags) ||
2568 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2569 if (test_bit(R5_Insync, &dev->flags))
2570 rmw++;
2571 else
2572 rmw += 2*disks; /* cannot read it */
2573 }
2574 /* Would I have to read this buffer for reconstruct_write */
2575 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2576 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2577 !(test_bit(R5_UPTODATE, &dev->flags) ||
2578 test_bit(R5_Wantcompute, &dev->flags))) {
2579 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2580 else
2581 rcw += 2*disks;
2582 }
2583 }
45b4233c 2584 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2585 (unsigned long long)sh->sector, rmw, rcw);
2586 set_bit(STRIPE_HANDLE, &sh->state);
2587 if (rmw < rcw && rmw > 0)
2588 /* prefer read-modify-write, but need to get some data */
2589 for (i = disks; i--; ) {
2590 struct r5dev *dev = &sh->dev[i];
2591 if ((dev->towrite || i == sh->pd_idx) &&
2592 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2593 !(test_bit(R5_UPTODATE, &dev->flags) ||
2594 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2595 test_bit(R5_Insync, &dev->flags)) {
2596 if (
2597 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2598 pr_debug("Read_old block "
a4456856
DW
2599 "%d for r-m-w\n", i);
2600 set_bit(R5_LOCKED, &dev->flags);
2601 set_bit(R5_Wantread, &dev->flags);
2602 s->locked++;
2603 } else {
2604 set_bit(STRIPE_DELAYED, &sh->state);
2605 set_bit(STRIPE_HANDLE, &sh->state);
2606 }
2607 }
2608 }
c8ac1803 2609 if (rcw <= rmw && rcw > 0) {
a4456856 2610 /* want reconstruct write, but need to get some data */
c8ac1803 2611 rcw = 0;
a4456856
DW
2612 for (i = disks; i--; ) {
2613 struct r5dev *dev = &sh->dev[i];
2614 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 2615 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 2616 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 2617 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
2618 test_bit(R5_Wantcompute, &dev->flags))) {
2619 rcw++;
2620 if (!test_bit(R5_Insync, &dev->flags))
2621 continue; /* it's a failed drive */
a4456856
DW
2622 if (
2623 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2624 pr_debug("Read_old block "
a4456856
DW
2625 "%d for Reconstruct\n", i);
2626 set_bit(R5_LOCKED, &dev->flags);
2627 set_bit(R5_Wantread, &dev->flags);
2628 s->locked++;
2629 } else {
2630 set_bit(STRIPE_DELAYED, &sh->state);
2631 set_bit(STRIPE_HANDLE, &sh->state);
2632 }
2633 }
2634 }
c8ac1803 2635 }
a4456856
DW
2636 /* now if nothing is locked, and if we have enough data,
2637 * we can start a write request
2638 */
f38e1219
DW
2639 /* since handle_stripe can be called at any time we need to handle the
2640 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
2641 * subsequent call wants to start a write request. raid_run_ops only
2642 * handles the case where compute block and reconstruct are requested
f38e1219
DW
2643 * simultaneously. If this is not the case then new writes need to be
2644 * held off until the compute completes.
2645 */
976ea8d4
DW
2646 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2647 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2648 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 2649 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
2650}
2651
d1688a6d 2652static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
2653 struct stripe_head_state *s, int disks)
2654{
ecc65c9b 2655 struct r5dev *dev = NULL;
bd2ab670 2656
a4456856 2657 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2658
ecc65c9b
DW
2659 switch (sh->check_state) {
2660 case check_state_idle:
2661 /* start a new check operation if there are no failures */
bd2ab670 2662 if (s->failed == 0) {
bd2ab670 2663 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2664 sh->check_state = check_state_run;
2665 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2666 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2667 s->uptodate--;
ecc65c9b 2668 break;
bd2ab670 2669 }
f2b3b44d 2670 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
2671 /* fall through */
2672 case check_state_compute_result:
2673 sh->check_state = check_state_idle;
2674 if (!dev)
2675 dev = &sh->dev[sh->pd_idx];
2676
2677 /* check that a write has not made the stripe insync */
2678 if (test_bit(STRIPE_INSYNC, &sh->state))
2679 break;
c8894419 2680
a4456856 2681 /* either failed parity check, or recovery is happening */
a4456856
DW
2682 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2683 BUG_ON(s->uptodate != disks);
2684
2685 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2686 s->locked++;
a4456856 2687 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2688
a4456856 2689 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2690 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2691 break;
2692 case check_state_run:
2693 break; /* we will be called again upon completion */
2694 case check_state_check_result:
2695 sh->check_state = check_state_idle;
2696
2697 /* if a failure occurred during the check operation, leave
2698 * STRIPE_INSYNC not set and let the stripe be handled again
2699 */
2700 if (s->failed)
2701 break;
2702
2703 /* handle a successful check operation, if parity is correct
2704 * we are done. Otherwise update the mismatch count and repair
2705 * parity if !MD_RECOVERY_CHECK
2706 */
ad283ea4 2707 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
2708 /* parity is correct (on disc,
2709 * not in buffer any more)
2710 */
2711 set_bit(STRIPE_INSYNC, &sh->state);
2712 else {
2713 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2714 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2715 /* don't try to repair!! */
2716 set_bit(STRIPE_INSYNC, &sh->state);
2717 else {
2718 sh->check_state = check_state_compute_run;
976ea8d4 2719 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2720 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2721 set_bit(R5_Wantcompute,
2722 &sh->dev[sh->pd_idx].flags);
2723 sh->ops.target = sh->pd_idx;
ac6b53b6 2724 sh->ops.target2 = -1;
ecc65c9b
DW
2725 s->uptodate++;
2726 }
2727 }
2728 break;
2729 case check_state_compute_run:
2730 break;
2731 default:
2732 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2733 __func__, sh->check_state,
2734 (unsigned long long) sh->sector);
2735 BUG();
a4456856
DW
2736 }
2737}
2738
2739
d1688a6d 2740static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 2741 struct stripe_head_state *s,
f2b3b44d 2742 int disks)
a4456856 2743{
a4456856 2744 int pd_idx = sh->pd_idx;
34e04e87 2745 int qd_idx = sh->qd_idx;
d82dfee0 2746 struct r5dev *dev;
a4456856
DW
2747
2748 set_bit(STRIPE_HANDLE, &sh->state);
2749
2750 BUG_ON(s->failed > 2);
d82dfee0 2751
a4456856
DW
2752 /* Want to check and possibly repair P and Q.
2753 * However there could be one 'failed' device, in which
2754 * case we can only check one of them, possibly using the
2755 * other to generate missing data
2756 */
2757
d82dfee0
DW
2758 switch (sh->check_state) {
2759 case check_state_idle:
2760 /* start a new check operation if there are < 2 failures */
f2b3b44d 2761 if (s->failed == s->q_failed) {
d82dfee0 2762 /* The only possible failed device holds Q, so it
a4456856
DW
2763 * makes sense to check P (If anything else were failed,
2764 * we would have used P to recreate it).
2765 */
d82dfee0 2766 sh->check_state = check_state_run;
a4456856 2767 }
f2b3b44d 2768 if (!s->q_failed && s->failed < 2) {
d82dfee0 2769 /* Q is not failed, and we didn't use it to generate
a4456856
DW
2770 * anything, so it makes sense to check it
2771 */
d82dfee0
DW
2772 if (sh->check_state == check_state_run)
2773 sh->check_state = check_state_run_pq;
2774 else
2775 sh->check_state = check_state_run_q;
a4456856 2776 }
a4456856 2777
d82dfee0
DW
2778 /* discard potentially stale zero_sum_result */
2779 sh->ops.zero_sum_result = 0;
a4456856 2780
d82dfee0
DW
2781 if (sh->check_state == check_state_run) {
2782 /* async_xor_zero_sum destroys the contents of P */
2783 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2784 s->uptodate--;
a4456856 2785 }
d82dfee0
DW
2786 if (sh->check_state >= check_state_run &&
2787 sh->check_state <= check_state_run_pq) {
2788 /* async_syndrome_zero_sum preserves P and Q, so
2789 * no need to mark them !uptodate here
2790 */
2791 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2792 break;
a4456856
DW
2793 }
2794
d82dfee0
DW
2795 /* we have 2-disk failure */
2796 BUG_ON(s->failed != 2);
2797 /* fall through */
2798 case check_state_compute_result:
2799 sh->check_state = check_state_idle;
a4456856 2800
d82dfee0
DW
2801 /* check that a write has not made the stripe insync */
2802 if (test_bit(STRIPE_INSYNC, &sh->state))
2803 break;
a4456856
DW
2804
2805 /* now write out any block on a failed drive,
d82dfee0 2806 * or P or Q if they were recomputed
a4456856 2807 */
d82dfee0 2808 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 2809 if (s->failed == 2) {
f2b3b44d 2810 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
2811 s->locked++;
2812 set_bit(R5_LOCKED, &dev->flags);
2813 set_bit(R5_Wantwrite, &dev->flags);
2814 }
2815 if (s->failed >= 1) {
f2b3b44d 2816 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
2817 s->locked++;
2818 set_bit(R5_LOCKED, &dev->flags);
2819 set_bit(R5_Wantwrite, &dev->flags);
2820 }
d82dfee0 2821 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
2822 dev = &sh->dev[pd_idx];
2823 s->locked++;
2824 set_bit(R5_LOCKED, &dev->flags);
2825 set_bit(R5_Wantwrite, &dev->flags);
2826 }
d82dfee0 2827 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
2828 dev = &sh->dev[qd_idx];
2829 s->locked++;
2830 set_bit(R5_LOCKED, &dev->flags);
2831 set_bit(R5_Wantwrite, &dev->flags);
2832 }
2833 clear_bit(STRIPE_DEGRADED, &sh->state);
2834
2835 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
2836 break;
2837 case check_state_run:
2838 case check_state_run_q:
2839 case check_state_run_pq:
2840 break; /* we will be called again upon completion */
2841 case check_state_check_result:
2842 sh->check_state = check_state_idle;
2843
2844 /* handle a successful check operation, if parity is correct
2845 * we are done. Otherwise update the mismatch count and repair
2846 * parity if !MD_RECOVERY_CHECK
2847 */
2848 if (sh->ops.zero_sum_result == 0) {
2849 /* both parities are correct */
2850 if (!s->failed)
2851 set_bit(STRIPE_INSYNC, &sh->state);
2852 else {
2853 /* in contrast to the raid5 case we can validate
2854 * parity, but still have a failure to write
2855 * back
2856 */
2857 sh->check_state = check_state_compute_result;
2858 /* Returning at this point means that we may go
2859 * off and bring p and/or q uptodate again so
2860 * we make sure to check zero_sum_result again
2861 * to verify if p or q need writeback
2862 */
2863 }
2864 } else {
2865 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2866 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2867 /* don't try to repair!! */
2868 set_bit(STRIPE_INSYNC, &sh->state);
2869 else {
2870 int *target = &sh->ops.target;
2871
2872 sh->ops.target = -1;
2873 sh->ops.target2 = -1;
2874 sh->check_state = check_state_compute_run;
2875 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2876 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2877 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2878 set_bit(R5_Wantcompute,
2879 &sh->dev[pd_idx].flags);
2880 *target = pd_idx;
2881 target = &sh->ops.target2;
2882 s->uptodate++;
2883 }
2884 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2885 set_bit(R5_Wantcompute,
2886 &sh->dev[qd_idx].flags);
2887 *target = qd_idx;
2888 s->uptodate++;
2889 }
2890 }
2891 }
2892 break;
2893 case check_state_compute_run:
2894 break;
2895 default:
2896 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2897 __func__, sh->check_state,
2898 (unsigned long long) sh->sector);
2899 BUG();
a4456856
DW
2900 }
2901}
2902
d1688a6d 2903static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
2904{
2905 int i;
2906
2907 /* We have read all the blocks in this stripe and now we need to
2908 * copy some of them into a target stripe for expand.
2909 */
f0a50d37 2910 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2911 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2912 for (i = 0; i < sh->disks; i++)
34e04e87 2913 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 2914 int dd_idx, j;
a4456856 2915 struct stripe_head *sh2;
a08abd8c 2916 struct async_submit_ctl submit;
a4456856 2917
784052ec 2918 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
2919 sector_t s = raid5_compute_sector(conf, bn, 0,
2920 &dd_idx, NULL);
a8c906ca 2921 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
2922 if (sh2 == NULL)
2923 /* so far only the early blocks of this stripe
2924 * have been requested. When later blocks
2925 * get requested, we will try again
2926 */
2927 continue;
2928 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2929 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2930 /* must have already done this block */
2931 release_stripe(sh2);
2932 continue;
2933 }
f0a50d37
DW
2934
2935 /* place all the copies on one channel */
a08abd8c 2936 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 2937 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 2938 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 2939 &submit);
f0a50d37 2940
a4456856
DW
2941 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2942 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2943 for (j = 0; j < conf->raid_disks; j++)
2944 if (j != sh2->pd_idx &&
86c374ba 2945 j != sh2->qd_idx &&
a4456856
DW
2946 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2947 break;
2948 if (j == conf->raid_disks) {
2949 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2950 set_bit(STRIPE_HANDLE, &sh2->state);
2951 }
2952 release_stripe(sh2);
f0a50d37 2953
a4456856 2954 }
a2e08551
N
2955 /* done submitting copies, wait for them to complete */
2956 if (tx) {
2957 async_tx_ack(tx);
2958 dma_wait_for_async_tx(tx);
2959 }
a4456856 2960}
1da177e4 2961
6bfe0b49 2962
1da177e4
LT
2963/*
2964 * handle_stripe - do things to a stripe.
2965 *
2966 * We lock the stripe and then examine the state of various bits
2967 * to see what needs to be done.
2968 * Possible results:
2969 * return some read request which now have data
2970 * return some write requests which are safely on disc
2971 * schedule a read on some buffers
2972 * schedule a write of some buffers
2973 * return confirmation of parity correctness
2974 *
1da177e4
LT
2975 * buffers are taken off read_list or write_list, and bh_cache buffers
2976 * get BH_Lock set before the stripe lock is released.
2977 *
2978 */
a4456856 2979
acfe726b 2980static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 2981{
d1688a6d 2982 struct r5conf *conf = sh->raid_conf;
f416885e 2983 int disks = sh->disks;
474af965
N
2984 struct r5dev *dev;
2985 int i;
1da177e4 2986
acfe726b
N
2987 memset(s, 0, sizeof(*s));
2988
2989 s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2990 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2991 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2992 s->failed_num[0] = -1;
2993 s->failed_num[1] = -1;
1da177e4 2994
acfe726b 2995 /* Now to look around and see what can be done */
1da177e4 2996 rcu_read_lock();
c4c1663b 2997 spin_lock_irq(&conf->device_lock);
16a53ecc 2998 for (i=disks; i--; ) {
3cb03002 2999 struct md_rdev *rdev;
31c176ec
N
3000 sector_t first_bad;
3001 int bad_sectors;
3002 int is_bad = 0;
acfe726b 3003
16a53ecc 3004 dev = &sh->dev[i];
1da177e4 3005
45b4233c 3006 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc 3007 i, dev->flags, dev->toread, dev->towrite, dev->written);
6c0069c0
YT
3008 /* maybe we can reply to a read
3009 *
3010 * new wantfill requests are only permitted while
3011 * ops_complete_biofill is guaranteed to be inactive
3012 */
3013 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3014 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3015 set_bit(R5_Wantfill, &dev->flags);
1da177e4 3016
16a53ecc 3017 /* now count some things */
cc94015a
N
3018 if (test_bit(R5_LOCKED, &dev->flags))
3019 s->locked++;
3020 if (test_bit(R5_UPTODATE, &dev->flags))
3021 s->uptodate++;
2d6e4ecc 3022 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
3023 s->compute++;
3024 BUG_ON(s->compute > 2);
2d6e4ecc 3025 }
1da177e4 3026
acfe726b 3027 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 3028 s->to_fill++;
acfe726b 3029 else if (dev->toread)
cc94015a 3030 s->to_read++;
16a53ecc 3031 if (dev->towrite) {
cc94015a 3032 s->to_write++;
16a53ecc 3033 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 3034 s->non_overwrite++;
16a53ecc 3035 }
a4456856 3036 if (dev->written)
cc94015a 3037 s->written++;
16a53ecc 3038 rdev = rcu_dereference(conf->disks[i].rdev);
31c176ec
N
3039 if (rdev) {
3040 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3041 &first_bad, &bad_sectors);
3042 if (s->blocked_rdev == NULL
3043 && (test_bit(Blocked, &rdev->flags)
3044 || is_bad < 0)) {
3045 if (is_bad < 0)
3046 set_bit(BlockedBadBlocks,
3047 &rdev->flags);
3048 s->blocked_rdev = rdev;
3049 atomic_inc(&rdev->nr_pending);
3050 }
6bfe0b49 3051 }
415e72d0
N
3052 clear_bit(R5_Insync, &dev->flags);
3053 if (!rdev)
3054 /* Not in-sync */;
31c176ec
N
3055 else if (is_bad) {
3056 /* also not in-sync */
3057 if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3058 /* treat as in-sync, but with a read error
3059 * which we can now try to correct
3060 */
3061 set_bit(R5_Insync, &dev->flags);
3062 set_bit(R5_ReadError, &dev->flags);
3063 }
3064 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 3065 set_bit(R5_Insync, &dev->flags);
355840e7 3066 else if (!test_bit(Faulty, &rdev->flags)) {
415e72d0
N
3067 /* in sync if before recovery_offset */
3068 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3069 set_bit(R5_Insync, &dev->flags);
3070 }
bc2607f3
N
3071 if (test_bit(R5_WriteError, &dev->flags)) {
3072 clear_bit(R5_Insync, &dev->flags);
3073 if (!test_bit(Faulty, &rdev->flags)) {
3074 s->handle_bad_blocks = 1;
3075 atomic_inc(&rdev->nr_pending);
3076 } else
3077 clear_bit(R5_WriteError, &dev->flags);
3078 }
b84db560
N
3079 if (test_bit(R5_MadeGood, &dev->flags)) {
3080 if (!test_bit(Faulty, &rdev->flags)) {
3081 s->handle_bad_blocks = 1;
3082 atomic_inc(&rdev->nr_pending);
3083 } else
3084 clear_bit(R5_MadeGood, &dev->flags);
3085 }
415e72d0 3086 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
3087 /* The ReadError flag will just be confusing now */
3088 clear_bit(R5_ReadError, &dev->flags);
3089 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3090 }
415e72d0
N
3091 if (test_bit(R5_ReadError, &dev->flags))
3092 clear_bit(R5_Insync, &dev->flags);
3093 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
3094 if (s->failed < 2)
3095 s->failed_num[s->failed] = i;
3096 s->failed++;
415e72d0 3097 }
1da177e4 3098 }
c4c1663b 3099 spin_unlock_irq(&conf->device_lock);
1da177e4 3100 rcu_read_unlock();
cc94015a
N
3101}
3102
3103static void handle_stripe(struct stripe_head *sh)
3104{
3105 struct stripe_head_state s;
d1688a6d 3106 struct r5conf *conf = sh->raid_conf;
3687c061 3107 int i;
84789554
N
3108 int prexor;
3109 int disks = sh->disks;
474af965 3110 struct r5dev *pdev, *qdev;
cc94015a
N
3111
3112 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 3113 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
3114 /* already being handled, ensure it gets handled
3115 * again when current action finishes */
3116 set_bit(STRIPE_HANDLE, &sh->state);
3117 return;
3118 }
3119
3120 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3121 set_bit(STRIPE_SYNCING, &sh->state);
3122 clear_bit(STRIPE_INSYNC, &sh->state);
3123 }
3124 clear_bit(STRIPE_DELAYED, &sh->state);
3125
3126 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3127 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3128 (unsigned long long)sh->sector, sh->state,
3129 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3130 sh->check_state, sh->reconstruct_state);
3687c061 3131
acfe726b 3132 analyse_stripe(sh, &s);
c5a31000 3133
bc2607f3
N
3134 if (s.handle_bad_blocks) {
3135 set_bit(STRIPE_HANDLE, &sh->state);
3136 goto finish;
3137 }
3138
474af965
N
3139 if (unlikely(s.blocked_rdev)) {
3140 if (s.syncing || s.expanding || s.expanded ||
3141 s.to_write || s.written) {
3142 set_bit(STRIPE_HANDLE, &sh->state);
3143 goto finish;
3144 }
3145 /* There is nothing for the blocked_rdev to block */
3146 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3147 s.blocked_rdev = NULL;
3148 }
3149
3150 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3151 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3152 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3153 }
3154
3155 pr_debug("locked=%d uptodate=%d to_read=%d"
3156 " to_write=%d failed=%d failed_num=%d,%d\n",
3157 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3158 s.failed_num[0], s.failed_num[1]);
3159 /* check if the array has lost more than max_degraded devices and,
3160 * if so, some requests might need to be failed.
3161 */
9a3f530f
N
3162 if (s.failed > conf->max_degraded) {
3163 sh->check_state = 0;
3164 sh->reconstruct_state = 0;
3165 if (s.to_read+s.to_write+s.written)
3166 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3167 if (s.syncing)
3168 handle_failed_sync(conf, sh, &s);
3169 }
474af965
N
3170
3171 /*
3172 * might be able to return some write requests if the parity blocks
3173 * are safe, or on a failed drive
3174 */
3175 pdev = &sh->dev[sh->pd_idx];
3176 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3177 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3178 qdev = &sh->dev[sh->qd_idx];
3179 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3180 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3181 || conf->level < 6;
3182
3183 if (s.written &&
3184 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3185 && !test_bit(R5_LOCKED, &pdev->flags)
3186 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3187 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3188 && !test_bit(R5_LOCKED, &qdev->flags)
3189 && test_bit(R5_UPTODATE, &qdev->flags)))))
3190 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3191
3192 /* Now we might consider reading some blocks, either to check/generate
3193 * parity, or to satisfy requests
3194 * or to load a block that is being partially written.
3195 */
3196 if (s.to_read || s.non_overwrite
3197 || (conf->level == 6 && s.to_write && s.failed)
3198 || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3199 handle_stripe_fill(sh, &s, disks);
3200
84789554
N
3201 /* Now we check to see if any write operations have recently
3202 * completed
3203 */
3204 prexor = 0;
3205 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3206 prexor = 1;
3207 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3208 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3209 sh->reconstruct_state = reconstruct_state_idle;
3210
3211 /* All the 'written' buffers and the parity block are ready to
3212 * be written back to disk
3213 */
3214 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3215 BUG_ON(sh->qd_idx >= 0 &&
3216 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3217 for (i = disks; i--; ) {
3218 struct r5dev *dev = &sh->dev[i];
3219 if (test_bit(R5_LOCKED, &dev->flags) &&
3220 (i == sh->pd_idx || i == sh->qd_idx ||
3221 dev->written)) {
3222 pr_debug("Writing block %d\n", i);
3223 set_bit(R5_Wantwrite, &dev->flags);
3224 if (prexor)
3225 continue;
3226 if (!test_bit(R5_Insync, &dev->flags) ||
3227 ((i == sh->pd_idx || i == sh->qd_idx) &&
3228 s.failed == 0))
3229 set_bit(STRIPE_INSYNC, &sh->state);
3230 }
3231 }
3232 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3233 s.dec_preread_active = 1;
3234 }
3235
3236 /* Now to consider new write requests and what else, if anything
3237 * should be read. We do not handle new writes when:
3238 * 1/ A 'write' operation (copy+xor) is already in flight.
3239 * 2/ A 'check' operation is in flight, as it may clobber the parity
3240 * block.
3241 */
3242 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3243 handle_stripe_dirtying(conf, sh, &s, disks);
3244
3245 /* maybe we need to check and possibly fix the parity for this stripe
3246 * Any reads will already have been scheduled, so we just see if enough
3247 * data is available. The parity check is held off while parity
3248 * dependent operations are in flight.
3249 */
3250 if (sh->check_state ||
3251 (s.syncing && s.locked == 0 &&
3252 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3253 !test_bit(STRIPE_INSYNC, &sh->state))) {
3254 if (conf->level == 6)
3255 handle_parity_checks6(conf, sh, &s, disks);
3256 else
3257 handle_parity_checks5(conf, sh, &s, disks);
3258 }
c5a31000
N
3259
3260 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3261 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3262 clear_bit(STRIPE_SYNCING, &sh->state);
3263 }
3264
3265 /* If the failed drives are just a ReadError, then we might need
3266 * to progress the repair/check process
3267 */
3268 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3269 for (i = 0; i < s.failed; i++) {
3270 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3271 if (test_bit(R5_ReadError, &dev->flags)
3272 && !test_bit(R5_LOCKED, &dev->flags)
3273 && test_bit(R5_UPTODATE, &dev->flags)
3274 ) {
3275 if (!test_bit(R5_ReWrite, &dev->flags)) {
3276 set_bit(R5_Wantwrite, &dev->flags);
3277 set_bit(R5_ReWrite, &dev->flags);
3278 set_bit(R5_LOCKED, &dev->flags);
3279 s.locked++;
3280 } else {
3281 /* let's read it back */
3282 set_bit(R5_Wantread, &dev->flags);
3283 set_bit(R5_LOCKED, &dev->flags);
3284 s.locked++;
3285 }
3286 }
3287 }
3288
3289
3687c061
N
3290 /* Finish reconstruct operations initiated by the expansion process */
3291 if (sh->reconstruct_state == reconstruct_state_result) {
3292 struct stripe_head *sh_src
3293 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3294 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3295 /* sh cannot be written until sh_src has been read.
3296 * so arrange for sh to be delayed a little
3297 */
3298 set_bit(STRIPE_DELAYED, &sh->state);
3299 set_bit(STRIPE_HANDLE, &sh->state);
3300 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3301 &sh_src->state))
3302 atomic_inc(&conf->preread_active_stripes);
3303 release_stripe(sh_src);
3304 goto finish;
3305 }
3306 if (sh_src)
3307 release_stripe(sh_src);
3308
3309 sh->reconstruct_state = reconstruct_state_idle;
3310 clear_bit(STRIPE_EXPANDING, &sh->state);
3311 for (i = conf->raid_disks; i--; ) {
3312 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3313 set_bit(R5_LOCKED, &sh->dev[i].flags);
3314 s.locked++;
3315 }
3316 }
f416885e 3317
3687c061
N
3318 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3319 !sh->reconstruct_state) {
3320 /* Need to write out all blocks after computing parity */
3321 sh->disks = conf->raid_disks;
3322 stripe_set_idx(sh->sector, conf, 0, sh);
3323 schedule_reconstruction(sh, &s, 1, 1);
3324 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3325 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3326 atomic_dec(&conf->reshape_stripes);
3327 wake_up(&conf->wait_for_overlap);
3328 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3329 }
3330
3331 if (s.expanding && s.locked == 0 &&
3332 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3333 handle_stripe_expansion(conf, sh);
16a53ecc 3334
3687c061 3335finish:
6bfe0b49 3336 /* wait for this device to become unblocked */
43220aa0 3337 if (conf->mddev->external && unlikely(s.blocked_rdev))
c5709ef6 3338 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
6bfe0b49 3339
bc2607f3
N
3340 if (s.handle_bad_blocks)
3341 for (i = disks; i--; ) {
3cb03002 3342 struct md_rdev *rdev;
bc2607f3
N
3343 struct r5dev *dev = &sh->dev[i];
3344 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3345 /* We own a safe reference to the rdev */
3346 rdev = conf->disks[i].rdev;
3347 if (!rdev_set_badblocks(rdev, sh->sector,
3348 STRIPE_SECTORS, 0))
3349 md_error(conf->mddev, rdev);
3350 rdev_dec_pending(rdev, conf->mddev);
3351 }
b84db560
N
3352 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3353 rdev = conf->disks[i].rdev;
3354 rdev_clear_badblocks(rdev, sh->sector,
3355 STRIPE_SECTORS);
3356 rdev_dec_pending(rdev, conf->mddev);
3357 }
bc2607f3
N
3358 }
3359
6c0069c0
YT
3360 if (s.ops_request)
3361 raid_run_ops(sh, s.ops_request);
3362
f0e43bcd 3363 ops_run_io(sh, &s);
16a53ecc 3364
c5709ef6 3365 if (s.dec_preread_active) {
729a1866 3366 /* We delay this until after ops_run_io so that if make_request
e9c7469b 3367 * is waiting on a flush, it won't continue until the writes
729a1866
N
3368 * have actually been submitted.
3369 */
3370 atomic_dec(&conf->preread_active_stripes);
3371 if (atomic_read(&conf->preread_active_stripes) <
3372 IO_THRESHOLD)
3373 md_wakeup_thread(conf->mddev->thread);
3374 }
3375
c5709ef6 3376 return_io(s.return_bi);
16a53ecc 3377
257a4b42 3378 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
3379}
3380
d1688a6d 3381static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
3382{
3383 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3384 while (!list_empty(&conf->delayed_list)) {
3385 struct list_head *l = conf->delayed_list.next;
3386 struct stripe_head *sh;
3387 sh = list_entry(l, struct stripe_head, lru);
3388 list_del_init(l);
3389 clear_bit(STRIPE_DELAYED, &sh->state);
3390 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3391 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3392 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3393 }
482c0834 3394 }
16a53ecc
N
3395}
3396
d1688a6d 3397static void activate_bit_delay(struct r5conf *conf)
16a53ecc
N
3398{
3399 /* device_lock is held */
3400 struct list_head head;
3401 list_add(&head, &conf->bitmap_list);
3402 list_del_init(&conf->bitmap_list);
3403 while (!list_empty(&head)) {
3404 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3405 list_del_init(&sh->lru);
3406 atomic_inc(&sh->count);
3407 __release_stripe(conf, sh);
3408 }
3409}
3410
fd01b88c 3411int md_raid5_congested(struct mddev *mddev, int bits)
f022b2fd 3412{
d1688a6d 3413 struct r5conf *conf = mddev->private;
f022b2fd
N
3414
3415 /* No difference between reads and writes. Just check
3416 * how busy the stripe_cache is
3417 */
3fa841d7 3418
f022b2fd
N
3419 if (conf->inactive_blocked)
3420 return 1;
3421 if (conf->quiesce)
3422 return 1;
3423 if (list_empty_careful(&conf->inactive_list))
3424 return 1;
3425
3426 return 0;
3427}
11d8a6e3
N
3428EXPORT_SYMBOL_GPL(md_raid5_congested);
3429
3430static int raid5_congested(void *data, int bits)
3431{
fd01b88c 3432 struct mddev *mddev = data;
11d8a6e3
N
3433
3434 return mddev_congested(mddev, bits) ||
3435 md_raid5_congested(mddev, bits);
3436}
f022b2fd 3437
23032a0e
RBJ
3438/* We want read requests to align with chunks where possible,
3439 * but write requests don't need to.
3440 */
cc371e66
AK
3441static int raid5_mergeable_bvec(struct request_queue *q,
3442 struct bvec_merge_data *bvm,
3443 struct bio_vec *biovec)
23032a0e 3444{
fd01b88c 3445 struct mddev *mddev = q->queuedata;
cc371e66 3446 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 3447 int max;
9d8f0363 3448 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 3449 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3450
cc371e66 3451 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3452 return biovec->bv_len; /* always allow writes to be mergeable */
3453
664e7c41
AN
3454 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3455 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
3456 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3457 if (max < 0) max = 0;
3458 if (max <= biovec->bv_len && bio_sectors == 0)
3459 return biovec->bv_len;
3460 else
3461 return max;
3462}
3463
f679623f 3464
fd01b88c 3465static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f
RBJ
3466{
3467 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 3468 unsigned int chunk_sectors = mddev->chunk_sectors;
f679623f
RBJ
3469 unsigned int bio_sectors = bio->bi_size >> 9;
3470
664e7c41
AN
3471 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3472 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
3473 return chunk_sectors >=
3474 ((sector & (chunk_sectors - 1)) + bio_sectors);
3475}
3476
46031f9a
RBJ
3477/*
3478 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3479 * later sampled by raid5d.
3480 */
d1688a6d 3481static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
3482{
3483 unsigned long flags;
3484
3485 spin_lock_irqsave(&conf->device_lock, flags);
3486
3487 bi->bi_next = conf->retry_read_aligned_list;
3488 conf->retry_read_aligned_list = bi;
3489
3490 spin_unlock_irqrestore(&conf->device_lock, flags);
3491 md_wakeup_thread(conf->mddev->thread);
3492}
3493
3494
d1688a6d 3495static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
3496{
3497 struct bio *bi;
3498
3499 bi = conf->retry_read_aligned;
3500 if (bi) {
3501 conf->retry_read_aligned = NULL;
3502 return bi;
3503 }
3504 bi = conf->retry_read_aligned_list;
3505 if(bi) {
387bb173 3506 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3507 bi->bi_next = NULL;
960e739d
JA
3508 /*
3509 * this sets the active strip count to 1 and the processed
3510 * strip count to zero (upper 8 bits)
3511 */
46031f9a 3512 bi->bi_phys_segments = 1; /* biased count of active stripes */
46031f9a
RBJ
3513 }
3514
3515 return bi;
3516}
3517
3518
f679623f
RBJ
3519/*
3520 * The "raid5_align_endio" should check if the read succeeded and if it
3521 * did, call bio_endio on the original bio (having bio_put the new bio
3522 * first).
3523 * If the read failed..
3524 */
6712ecf8 3525static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3526{
3527 struct bio* raid_bi = bi->bi_private;
fd01b88c 3528 struct mddev *mddev;
d1688a6d 3529 struct r5conf *conf;
46031f9a 3530 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3cb03002 3531 struct md_rdev *rdev;
46031f9a 3532
f679623f 3533 bio_put(bi);
46031f9a 3534
46031f9a
RBJ
3535 rdev = (void*)raid_bi->bi_next;
3536 raid_bi->bi_next = NULL;
2b7f2228
N
3537 mddev = rdev->mddev;
3538 conf = mddev->private;
46031f9a
RBJ
3539
3540 rdev_dec_pending(rdev, conf->mddev);
3541
3542 if (!error && uptodate) {
6712ecf8 3543 bio_endio(raid_bi, 0);
46031f9a
RBJ
3544 if (atomic_dec_and_test(&conf->active_aligned_reads))
3545 wake_up(&conf->wait_for_stripe);
6712ecf8 3546 return;
46031f9a
RBJ
3547 }
3548
3549
45b4233c 3550 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3551
3552 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3553}
3554
387bb173
NB
3555static int bio_fits_rdev(struct bio *bi)
3556{
165125e1 3557 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 3558
ae03bf63 3559 if ((bi->bi_size>>9) > queue_max_sectors(q))
387bb173
NB
3560 return 0;
3561 blk_recount_segments(q, bi);
8a78362c 3562 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
3563 return 0;
3564
3565 if (q->merge_bvec_fn)
3566 /* it's too hard to apply the merge_bvec_fn at this stage,
3567 * just just give up
3568 */
3569 return 0;
3570
3571 return 1;
3572}
3573
3574
fd01b88c 3575static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
f679623f 3576{
d1688a6d 3577 struct r5conf *conf = mddev->private;
8553fe7e 3578 int dd_idx;
f679623f 3579 struct bio* align_bi;
3cb03002 3580 struct md_rdev *rdev;
f679623f
RBJ
3581
3582 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3583 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3584 return 0;
3585 }
3586 /*
a167f663 3587 * use bio_clone_mddev to make a copy of the bio
f679623f 3588 */
a167f663 3589 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
3590 if (!align_bi)
3591 return 0;
3592 /*
3593 * set bi_end_io to a new function, and set bi_private to the
3594 * original bio.
3595 */
3596 align_bi->bi_end_io = raid5_align_endio;
3597 align_bi->bi_private = raid_bio;
3598 /*
3599 * compute position
3600 */
112bf897
N
3601 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3602 0,
911d4ee8 3603 &dd_idx, NULL);
f679623f
RBJ
3604
3605 rcu_read_lock();
3606 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3607 if (rdev && test_bit(In_sync, &rdev->flags)) {
31c176ec
N
3608 sector_t first_bad;
3609 int bad_sectors;
3610
f679623f
RBJ
3611 atomic_inc(&rdev->nr_pending);
3612 rcu_read_unlock();
46031f9a
RBJ
3613 raid_bio->bi_next = (void*)rdev;
3614 align_bi->bi_bdev = rdev->bdev;
3615 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3616 align_bi->bi_sector += rdev->data_offset;
3617
31c176ec
N
3618 if (!bio_fits_rdev(align_bi) ||
3619 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3620 &first_bad, &bad_sectors)) {
3621 /* too big in some way, or has a known bad block */
387bb173
NB
3622 bio_put(align_bi);
3623 rdev_dec_pending(rdev, mddev);
3624 return 0;
3625 }
3626
46031f9a
RBJ
3627 spin_lock_irq(&conf->device_lock);
3628 wait_event_lock_irq(conf->wait_for_stripe,
3629 conf->quiesce == 0,
3630 conf->device_lock, /* nothing */);
3631 atomic_inc(&conf->active_aligned_reads);
3632 spin_unlock_irq(&conf->device_lock);
3633
f679623f
RBJ
3634 generic_make_request(align_bi);
3635 return 1;
3636 } else {
3637 rcu_read_unlock();
46031f9a 3638 bio_put(align_bi);
f679623f
RBJ
3639 return 0;
3640 }
3641}
3642
8b3e6cdc
DW
3643/* __get_priority_stripe - get the next stripe to process
3644 *
3645 * Full stripe writes are allowed to pass preread active stripes up until
3646 * the bypass_threshold is exceeded. In general the bypass_count
3647 * increments when the handle_list is handled before the hold_list; however, it
3648 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3649 * stripe with in flight i/o. The bypass_count will be reset when the
3650 * head of the hold_list has changed, i.e. the head was promoted to the
3651 * handle_list.
3652 */
d1688a6d 3653static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
8b3e6cdc
DW
3654{
3655 struct stripe_head *sh;
3656
3657 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3658 __func__,
3659 list_empty(&conf->handle_list) ? "empty" : "busy",
3660 list_empty(&conf->hold_list) ? "empty" : "busy",
3661 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3662
3663 if (!list_empty(&conf->handle_list)) {
3664 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3665
3666 if (list_empty(&conf->hold_list))
3667 conf->bypass_count = 0;
3668 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3669 if (conf->hold_list.next == conf->last_hold)
3670 conf->bypass_count++;
3671 else {
3672 conf->last_hold = conf->hold_list.next;
3673 conf->bypass_count -= conf->bypass_threshold;
3674 if (conf->bypass_count < 0)
3675 conf->bypass_count = 0;
3676 }
3677 }
3678 } else if (!list_empty(&conf->hold_list) &&
3679 ((conf->bypass_threshold &&
3680 conf->bypass_count > conf->bypass_threshold) ||
3681 atomic_read(&conf->pending_full_writes) == 0)) {
3682 sh = list_entry(conf->hold_list.next,
3683 typeof(*sh), lru);
3684 conf->bypass_count -= conf->bypass_threshold;
3685 if (conf->bypass_count < 0)
3686 conf->bypass_count = 0;
3687 } else
3688 return NULL;
3689
3690 list_del_init(&sh->lru);
3691 atomic_inc(&sh->count);
3692 BUG_ON(atomic_read(&sh->count) != 1);
3693 return sh;
3694}
f679623f 3695
b4fdcb02 3696static void make_request(struct mddev *mddev, struct bio * bi)
1da177e4 3697{
d1688a6d 3698 struct r5conf *conf = mddev->private;
911d4ee8 3699 int dd_idx;
1da177e4
LT
3700 sector_t new_sector;
3701 sector_t logical_sector, last_sector;
3702 struct stripe_head *sh;
a362357b 3703 const int rw = bio_data_dir(bi);
49077326 3704 int remaining;
7c13edc8 3705 int plugged;
1da177e4 3706
e9c7469b
TH
3707 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3708 md_flush_request(mddev, bi);
5a7bbad2 3709 return;
e5dcdd80
N
3710 }
3711
3d310eb7 3712 md_write_start(mddev, bi);
06d91a5f 3713
802ba064 3714 if (rw == READ &&
52488615 3715 mddev->reshape_position == MaxSector &&
21a52c6d 3716 chunk_aligned_read(mddev,bi))
5a7bbad2 3717 return;
52488615 3718
1da177e4
LT
3719 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3720 last_sector = bi->bi_sector + (bi->bi_size>>9);
3721 bi->bi_next = NULL;
3722 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3723
7c13edc8 3724 plugged = mddev_check_plugged(mddev);
1da177e4
LT
3725 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3726 DEFINE_WAIT(w);
16a53ecc 3727 int disks, data_disks;
b5663ba4 3728 int previous;
b578d55f 3729
7ecaa1e6 3730 retry:
b5663ba4 3731 previous = 0;
b0f9ec04 3732 disks = conf->raid_disks;
b578d55f 3733 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
b0f9ec04 3734 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 3735 /* spinlock is needed as reshape_progress may be
df8e7f76
N
3736 * 64bit on a 32bit platform, and so it might be
3737 * possible to see a half-updated value
aeb878b0 3738 * Of course reshape_progress could change after
df8e7f76
N
3739 * the lock is dropped, so once we get a reference
3740 * to the stripe that we think it is, we will have
3741 * to check again.
3742 */
7ecaa1e6 3743 spin_lock_irq(&conf->device_lock);
fef9c61f
N
3744 if (mddev->delta_disks < 0
3745 ? logical_sector < conf->reshape_progress
3746 : logical_sector >= conf->reshape_progress) {
7ecaa1e6 3747 disks = conf->previous_raid_disks;
b5663ba4
N
3748 previous = 1;
3749 } else {
fef9c61f
N
3750 if (mddev->delta_disks < 0
3751 ? logical_sector < conf->reshape_safe
3752 : logical_sector >= conf->reshape_safe) {
b578d55f
N
3753 spin_unlock_irq(&conf->device_lock);
3754 schedule();
3755 goto retry;
3756 }
3757 }
7ecaa1e6
N
3758 spin_unlock_irq(&conf->device_lock);
3759 }
16a53ecc
N
3760 data_disks = disks - conf->max_degraded;
3761
112bf897
N
3762 new_sector = raid5_compute_sector(conf, logical_sector,
3763 previous,
911d4ee8 3764 &dd_idx, NULL);
0c55e022 3765 pr_debug("raid456: make_request, sector %llu logical %llu\n",
1da177e4
LT
3766 (unsigned long long)new_sector,
3767 (unsigned long long)logical_sector);
3768
b5663ba4 3769 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 3770 (bi->bi_rw&RWA_MASK), 0);
1da177e4 3771 if (sh) {
b0f9ec04 3772 if (unlikely(previous)) {
7ecaa1e6 3773 /* expansion might have moved on while waiting for a
df8e7f76
N
3774 * stripe, so we must do the range check again.
3775 * Expansion could still move past after this
3776 * test, but as we are holding a reference to
3777 * 'sh', we know that if that happens,
3778 * STRIPE_EXPANDING will get set and the expansion
3779 * won't proceed until we finish with the stripe.
7ecaa1e6
N
3780 */
3781 int must_retry = 0;
3782 spin_lock_irq(&conf->device_lock);
b0f9ec04
N
3783 if (mddev->delta_disks < 0
3784 ? logical_sector >= conf->reshape_progress
3785 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
3786 /* mismatch, need to try again */
3787 must_retry = 1;
3788 spin_unlock_irq(&conf->device_lock);
3789 if (must_retry) {
3790 release_stripe(sh);
7a3ab908 3791 schedule();
7ecaa1e6
N
3792 goto retry;
3793 }
3794 }
e62e58a5 3795
ffd96e35 3796 if (rw == WRITE &&
a5c308d4 3797 logical_sector >= mddev->suspend_lo &&
e464eafd
N
3798 logical_sector < mddev->suspend_hi) {
3799 release_stripe(sh);
e62e58a5
N
3800 /* As the suspend_* range is controlled by
3801 * userspace, we want an interruptible
3802 * wait.
3803 */
3804 flush_signals(current);
3805 prepare_to_wait(&conf->wait_for_overlap,
3806 &w, TASK_INTERRUPTIBLE);
3807 if (logical_sector >= mddev->suspend_lo &&
3808 logical_sector < mddev->suspend_hi)
3809 schedule();
e464eafd
N
3810 goto retry;
3811 }
7ecaa1e6
N
3812
3813 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
ffd96e35 3814 !add_stripe_bio(sh, bi, dd_idx, rw)) {
7ecaa1e6
N
3815 /* Stripe is busy expanding or
3816 * add failed due to overlap. Flush everything
1da177e4
LT
3817 * and wait a while
3818 */
482c0834 3819 md_wakeup_thread(mddev->thread);
1da177e4
LT
3820 release_stripe(sh);
3821 schedule();
3822 goto retry;
3823 }
3824 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
3825 set_bit(STRIPE_HANDLE, &sh->state);
3826 clear_bit(STRIPE_DELAYED, &sh->state);
e9c7469b 3827 if ((bi->bi_rw & REQ_SYNC) &&
729a1866
N
3828 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3829 atomic_inc(&conf->preread_active_stripes);
1da177e4 3830 release_stripe(sh);
1da177e4
LT
3831 } else {
3832 /* cannot get stripe for read-ahead, just give-up */
3833 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3834 finish_wait(&conf->wait_for_overlap, &w);
3835 break;
3836 }
3837
3838 }
7c13edc8
N
3839 if (!plugged)
3840 md_wakeup_thread(mddev->thread);
3841
1da177e4 3842 spin_lock_irq(&conf->device_lock);
960e739d 3843 remaining = raid5_dec_bi_phys_segments(bi);
f6344757
N
3844 spin_unlock_irq(&conf->device_lock);
3845 if (remaining == 0) {
1da177e4 3846
16a53ecc 3847 if ( rw == WRITE )
1da177e4 3848 md_write_end(mddev);
6712ecf8 3849
0e13fe23 3850 bio_endio(bi, 0);
1da177e4 3851 }
1da177e4
LT
3852}
3853
fd01b88c 3854static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 3855
fd01b88c 3856static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 3857{
52c03291
N
3858 /* reshaping is quite different to recovery/resync so it is
3859 * handled quite separately ... here.
3860 *
3861 * On each call to sync_request, we gather one chunk worth of
3862 * destination stripes and flag them as expanding.
3863 * Then we find all the source stripes and request reads.
3864 * As the reads complete, handle_stripe will copy the data
3865 * into the destination stripe and release that stripe.
3866 */
d1688a6d 3867 struct r5conf *conf = mddev->private;
1da177e4 3868 struct stripe_head *sh;
ccfcc3c1 3869 sector_t first_sector, last_sector;
f416885e
N
3870 int raid_disks = conf->previous_raid_disks;
3871 int data_disks = raid_disks - conf->max_degraded;
3872 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
3873 int i;
3874 int dd_idx;
c8f517c4 3875 sector_t writepos, readpos, safepos;
ec32a2bd 3876 sector_t stripe_addr;
7a661381 3877 int reshape_sectors;
ab69ae12 3878 struct list_head stripes;
52c03291 3879
fef9c61f
N
3880 if (sector_nr == 0) {
3881 /* If restarting in the middle, skip the initial sectors */
3882 if (mddev->delta_disks < 0 &&
3883 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3884 sector_nr = raid5_size(mddev, 0, 0)
3885 - conf->reshape_progress;
a639755c 3886 } else if (mddev->delta_disks >= 0 &&
fef9c61f
N
3887 conf->reshape_progress > 0)
3888 sector_nr = conf->reshape_progress;
f416885e 3889 sector_div(sector_nr, new_data_disks);
fef9c61f 3890 if (sector_nr) {
8dee7211
N
3891 mddev->curr_resync_completed = sector_nr;
3892 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
3893 *skipped = 1;
3894 return sector_nr;
3895 }
52c03291
N
3896 }
3897
7a661381
N
3898 /* We need to process a full chunk at a time.
3899 * If old and new chunk sizes differ, we need to process the
3900 * largest of these
3901 */
664e7c41
AN
3902 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3903 reshape_sectors = mddev->new_chunk_sectors;
7a661381 3904 else
9d8f0363 3905 reshape_sectors = mddev->chunk_sectors;
7a661381 3906
52c03291
N
3907 /* we update the metadata when there is more than 3Meg
3908 * in the block range (that is rather arbitrary, should
3909 * probably be time based) or when the data about to be
3910 * copied would over-write the source of the data at
3911 * the front of the range.
fef9c61f
N
3912 * i.e. one new_stripe along from reshape_progress new_maps
3913 * to after where reshape_safe old_maps to
52c03291 3914 */
fef9c61f 3915 writepos = conf->reshape_progress;
f416885e 3916 sector_div(writepos, new_data_disks);
c8f517c4
N
3917 readpos = conf->reshape_progress;
3918 sector_div(readpos, data_disks);
fef9c61f 3919 safepos = conf->reshape_safe;
f416885e 3920 sector_div(safepos, data_disks);
fef9c61f 3921 if (mddev->delta_disks < 0) {
ed37d83e 3922 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 3923 readpos += reshape_sectors;
7a661381 3924 safepos += reshape_sectors;
fef9c61f 3925 } else {
7a661381 3926 writepos += reshape_sectors;
ed37d83e
N
3927 readpos -= min_t(sector_t, reshape_sectors, readpos);
3928 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 3929 }
52c03291 3930
c8f517c4
N
3931 /* 'writepos' is the most advanced device address we might write.
3932 * 'readpos' is the least advanced device address we might read.
3933 * 'safepos' is the least address recorded in the metadata as having
3934 * been reshaped.
3935 * If 'readpos' is behind 'writepos', then there is no way that we can
3936 * ensure safety in the face of a crash - that must be done by userspace
3937 * making a backup of the data. So in that case there is no particular
3938 * rush to update metadata.
3939 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3940 * update the metadata to advance 'safepos' to match 'readpos' so that
3941 * we can be safe in the event of a crash.
3942 * So we insist on updating metadata if safepos is behind writepos and
3943 * readpos is beyond writepos.
3944 * In any case, update the metadata every 10 seconds.
3945 * Maybe that number should be configurable, but I'm not sure it is
3946 * worth it.... maybe it could be a multiple of safemode_delay???
3947 */
fef9c61f 3948 if ((mddev->delta_disks < 0
c8f517c4
N
3949 ? (safepos > writepos && readpos < writepos)
3950 : (safepos < writepos && readpos > writepos)) ||
3951 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
3952 /* Cannot proceed until we've updated the superblock... */
3953 wait_event(conf->wait_for_overlap,
3954 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 3955 mddev->reshape_position = conf->reshape_progress;
75d3da43 3956 mddev->curr_resync_completed = sector_nr;
c8f517c4 3957 conf->reshape_checkpoint = jiffies;
850b2b42 3958 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 3959 md_wakeup_thread(mddev->thread);
850b2b42 3960 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
3961 kthread_should_stop());
3962 spin_lock_irq(&conf->device_lock);
fef9c61f 3963 conf->reshape_safe = mddev->reshape_position;
52c03291
N
3964 spin_unlock_irq(&conf->device_lock);
3965 wake_up(&conf->wait_for_overlap);
acb180b0 3966 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
3967 }
3968
ec32a2bd
N
3969 if (mddev->delta_disks < 0) {
3970 BUG_ON(conf->reshape_progress == 0);
3971 stripe_addr = writepos;
3972 BUG_ON((mddev->dev_sectors &
7a661381
N
3973 ~((sector_t)reshape_sectors - 1))
3974 - reshape_sectors - stripe_addr
ec32a2bd
N
3975 != sector_nr);
3976 } else {
7a661381 3977 BUG_ON(writepos != sector_nr + reshape_sectors);
ec32a2bd
N
3978 stripe_addr = sector_nr;
3979 }
ab69ae12 3980 INIT_LIST_HEAD(&stripes);
7a661381 3981 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 3982 int j;
a9f326eb 3983 int skipped_disk = 0;
a8c906ca 3984 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
3985 set_bit(STRIPE_EXPANDING, &sh->state);
3986 atomic_inc(&conf->reshape_stripes);
3987 /* If any of this stripe is beyond the end of the old
3988 * array, then we need to zero those blocks
3989 */
3990 for (j=sh->disks; j--;) {
3991 sector_t s;
3992 if (j == sh->pd_idx)
3993 continue;
f416885e 3994 if (conf->level == 6 &&
d0dabf7e 3995 j == sh->qd_idx)
f416885e 3996 continue;
784052ec 3997 s = compute_blocknr(sh, j, 0);
b522adcd 3998 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 3999 skipped_disk = 1;
52c03291
N
4000 continue;
4001 }
4002 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4003 set_bit(R5_Expanded, &sh->dev[j].flags);
4004 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4005 }
a9f326eb 4006 if (!skipped_disk) {
52c03291
N
4007 set_bit(STRIPE_EXPAND_READY, &sh->state);
4008 set_bit(STRIPE_HANDLE, &sh->state);
4009 }
ab69ae12 4010 list_add(&sh->lru, &stripes);
52c03291
N
4011 }
4012 spin_lock_irq(&conf->device_lock);
fef9c61f 4013 if (mddev->delta_disks < 0)
7a661381 4014 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 4015 else
7a661381 4016 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
4017 spin_unlock_irq(&conf->device_lock);
4018 /* Ok, those stripe are ready. We can start scheduling
4019 * reads on the source stripes.
4020 * The source stripes are determined by mapping the first and last
4021 * block on the destination stripes.
4022 */
52c03291 4023 first_sector =
ec32a2bd 4024 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 4025 1, &dd_idx, NULL);
52c03291 4026 last_sector =
0e6e0271 4027 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 4028 * new_data_disks - 1),
911d4ee8 4029 1, &dd_idx, NULL);
58c0fed4
AN
4030 if (last_sector >= mddev->dev_sectors)
4031 last_sector = mddev->dev_sectors - 1;
52c03291 4032 while (first_sector <= last_sector) {
a8c906ca 4033 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
4034 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4035 set_bit(STRIPE_HANDLE, &sh->state);
4036 release_stripe(sh);
4037 first_sector += STRIPE_SECTORS;
4038 }
ab69ae12
N
4039 /* Now that the sources are clearly marked, we can release
4040 * the destination stripes
4041 */
4042 while (!list_empty(&stripes)) {
4043 sh = list_entry(stripes.next, struct stripe_head, lru);
4044 list_del_init(&sh->lru);
4045 release_stripe(sh);
4046 }
c6207277
N
4047 /* If this takes us to the resync_max point where we have to pause,
4048 * then we need to write out the superblock.
4049 */
7a661381 4050 sector_nr += reshape_sectors;
c03f6a19
N
4051 if ((sector_nr - mddev->curr_resync_completed) * 2
4052 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
4053 /* Cannot proceed until we've updated the superblock... */
4054 wait_event(conf->wait_for_overlap,
4055 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 4056 mddev->reshape_position = conf->reshape_progress;
75d3da43 4057 mddev->curr_resync_completed = sector_nr;
c8f517c4 4058 conf->reshape_checkpoint = jiffies;
c6207277
N
4059 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4060 md_wakeup_thread(mddev->thread);
4061 wait_event(mddev->sb_wait,
4062 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4063 || kthread_should_stop());
4064 spin_lock_irq(&conf->device_lock);
fef9c61f 4065 conf->reshape_safe = mddev->reshape_position;
c6207277
N
4066 spin_unlock_irq(&conf->device_lock);
4067 wake_up(&conf->wait_for_overlap);
acb180b0 4068 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 4069 }
7a661381 4070 return reshape_sectors;
52c03291
N
4071}
4072
4073/* FIXME go_faster isn't used */
fd01b88c 4074static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
52c03291 4075{
d1688a6d 4076 struct r5conf *conf = mddev->private;
52c03291 4077 struct stripe_head *sh;
58c0fed4 4078 sector_t max_sector = mddev->dev_sectors;
57dab0bd 4079 sector_t sync_blocks;
16a53ecc
N
4080 int still_degraded = 0;
4081 int i;
1da177e4 4082
72626685 4083 if (sector_nr >= max_sector) {
1da177e4 4084 /* just being told to finish up .. nothing much to do */
cea9c228 4085
29269553
N
4086 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4087 end_reshape(conf);
4088 return 0;
4089 }
72626685
N
4090
4091 if (mddev->curr_resync < max_sector) /* aborted */
4092 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4093 &sync_blocks, 1);
16a53ecc 4094 else /* completed sync */
72626685
N
4095 conf->fullsync = 0;
4096 bitmap_close_sync(mddev->bitmap);
4097
1da177e4
LT
4098 return 0;
4099 }
ccfcc3c1 4100
64bd660b
N
4101 /* Allow raid5_quiesce to complete */
4102 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4103
52c03291
N
4104 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4105 return reshape_request(mddev, sector_nr, skipped);
f6705578 4106
c6207277
N
4107 /* No need to check resync_max as we never do more than one
4108 * stripe, and as resync_max will always be on a chunk boundary,
4109 * if the check in md_do_sync didn't fire, there is no chance
4110 * of overstepping resync_max here
4111 */
4112
16a53ecc 4113 /* if there is too many failed drives and we are trying
1da177e4
LT
4114 * to resync, then assert that we are finished, because there is
4115 * nothing we can do.
4116 */
3285edf1 4117 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 4118 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 4119 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 4120 *skipped = 1;
1da177e4
LT
4121 return rv;
4122 }
72626685 4123 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 4124 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
4125 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4126 /* we can skip this block, and probably more */
4127 sync_blocks /= STRIPE_SECTORS;
4128 *skipped = 1;
4129 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4130 }
1da177e4 4131
b47490c9
N
4132
4133 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4134
a8c906ca 4135 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 4136 if (sh == NULL) {
a8c906ca 4137 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 4138 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 4139 * is trying to get access
1da177e4 4140 */
66c006a5 4141 schedule_timeout_uninterruptible(1);
1da177e4 4142 }
16a53ecc
N
4143 /* Need to check if array will still be degraded after recovery/resync
4144 * We don't need to check the 'failed' flag as when that gets set,
4145 * recovery aborts.
4146 */
f001a70c 4147 for (i = 0; i < conf->raid_disks; i++)
16a53ecc
N
4148 if (conf->disks[i].rdev == NULL)
4149 still_degraded = 1;
4150
4151 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4152
83206d66 4153 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
1da177e4 4154
1442577b 4155 handle_stripe(sh);
1da177e4
LT
4156 release_stripe(sh);
4157
4158 return STRIPE_SECTORS;
4159}
4160
d1688a6d 4161static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
4162{
4163 /* We may not be able to submit a whole bio at once as there
4164 * may not be enough stripe_heads available.
4165 * We cannot pre-allocate enough stripe_heads as we may need
4166 * more than exist in the cache (if we allow ever large chunks).
4167 * So we do one stripe head at a time and record in
4168 * ->bi_hw_segments how many have been done.
4169 *
4170 * We *know* that this entire raid_bio is in one chunk, so
4171 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4172 */
4173 struct stripe_head *sh;
911d4ee8 4174 int dd_idx;
46031f9a
RBJ
4175 sector_t sector, logical_sector, last_sector;
4176 int scnt = 0;
4177 int remaining;
4178 int handled = 0;
4179
4180 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 4181 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 4182 0, &dd_idx, NULL);
46031f9a
RBJ
4183 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4184
4185 for (; logical_sector < last_sector;
387bb173
NB
4186 logical_sector += STRIPE_SECTORS,
4187 sector += STRIPE_SECTORS,
4188 scnt++) {
46031f9a 4189
960e739d 4190 if (scnt < raid5_bi_hw_segments(raid_bio))
46031f9a
RBJ
4191 /* already done this stripe */
4192 continue;
4193
a8c906ca 4194 sh = get_active_stripe(conf, sector, 0, 1, 0);
46031f9a
RBJ
4195
4196 if (!sh) {
4197 /* failed to get a stripe - must wait */
960e739d 4198 raid5_set_bi_hw_segments(raid_bio, scnt);
46031f9a
RBJ
4199 conf->retry_read_aligned = raid_bio;
4200 return handled;
4201 }
4202
4203 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
4204 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4205 release_stripe(sh);
960e739d 4206 raid5_set_bi_hw_segments(raid_bio, scnt);
387bb173
NB
4207 conf->retry_read_aligned = raid_bio;
4208 return handled;
4209 }
4210
36d1c647 4211 handle_stripe(sh);
46031f9a
RBJ
4212 release_stripe(sh);
4213 handled++;
4214 }
4215 spin_lock_irq(&conf->device_lock);
960e739d 4216 remaining = raid5_dec_bi_phys_segments(raid_bio);
46031f9a 4217 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
4218 if (remaining == 0)
4219 bio_endio(raid_bio, 0);
46031f9a
RBJ
4220 if (atomic_dec_and_test(&conf->active_aligned_reads))
4221 wake_up(&conf->wait_for_stripe);
4222 return handled;
4223}
4224
46031f9a 4225
1da177e4
LT
4226/*
4227 * This is our raid5 kernel thread.
4228 *
4229 * We scan the hash table for stripes which can be handled now.
4230 * During the scan, completed stripes are saved for us by the interrupt
4231 * handler, so that they will not have to wait for our next wakeup.
4232 */
fd01b88c 4233static void raid5d(struct mddev *mddev)
1da177e4
LT
4234{
4235 struct stripe_head *sh;
d1688a6d 4236 struct r5conf *conf = mddev->private;
1da177e4 4237 int handled;
e1dfa0a2 4238 struct blk_plug plug;
1da177e4 4239
45b4233c 4240 pr_debug("+++ raid5d active\n");
1da177e4
LT
4241
4242 md_check_recovery(mddev);
1da177e4 4243
e1dfa0a2 4244 blk_start_plug(&plug);
1da177e4
LT
4245 handled = 0;
4246 spin_lock_irq(&conf->device_lock);
4247 while (1) {
46031f9a 4248 struct bio *bio;
1da177e4 4249
7c13edc8
N
4250 if (atomic_read(&mddev->plug_cnt) == 0 &&
4251 !list_empty(&conf->bitmap_list)) {
4252 /* Now is a good time to flush some bitmap updates */
4253 conf->seq_flush++;
700e432d 4254 spin_unlock_irq(&conf->device_lock);
72626685 4255 bitmap_unplug(mddev->bitmap);
700e432d 4256 spin_lock_irq(&conf->device_lock);
7c13edc8 4257 conf->seq_write = conf->seq_flush;
72626685
N
4258 activate_bit_delay(conf);
4259 }
7c13edc8
N
4260 if (atomic_read(&mddev->plug_cnt) == 0)
4261 raid5_activate_delayed(conf);
72626685 4262
46031f9a
RBJ
4263 while ((bio = remove_bio_from_retry(conf))) {
4264 int ok;
4265 spin_unlock_irq(&conf->device_lock);
4266 ok = retry_aligned_read(conf, bio);
4267 spin_lock_irq(&conf->device_lock);
4268 if (!ok)
4269 break;
4270 handled++;
4271 }
4272
8b3e6cdc
DW
4273 sh = __get_priority_stripe(conf);
4274
c9f21aaf 4275 if (!sh)
1da177e4 4276 break;
1da177e4
LT
4277 spin_unlock_irq(&conf->device_lock);
4278
4279 handled++;
417b8d4a
DW
4280 handle_stripe(sh);
4281 release_stripe(sh);
4282 cond_resched();
1da177e4 4283
de393cde
N
4284 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4285 md_check_recovery(mddev);
4286
1da177e4
LT
4287 spin_lock_irq(&conf->device_lock);
4288 }
45b4233c 4289 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4290
4291 spin_unlock_irq(&conf->device_lock);
4292
c9f21aaf 4293 async_tx_issue_pending_all();
e1dfa0a2 4294 blk_finish_plug(&plug);
1da177e4 4295
45b4233c 4296 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4297}
4298
3f294f4f 4299static ssize_t
fd01b88c 4300raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 4301{
d1688a6d 4302 struct r5conf *conf = mddev->private;
96de1e66
N
4303 if (conf)
4304 return sprintf(page, "%d\n", conf->max_nr_stripes);
4305 else
4306 return 0;
3f294f4f
N
4307}
4308
c41d4ac4 4309int
fd01b88c 4310raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 4311{
d1688a6d 4312 struct r5conf *conf = mddev->private;
b5470dc5
DW
4313 int err;
4314
c41d4ac4 4315 if (size <= 16 || size > 32768)
3f294f4f 4316 return -EINVAL;
c41d4ac4 4317 while (size < conf->max_nr_stripes) {
3f294f4f
N
4318 if (drop_one_stripe(conf))
4319 conf->max_nr_stripes--;
4320 else
4321 break;
4322 }
b5470dc5
DW
4323 err = md_allow_write(mddev);
4324 if (err)
4325 return err;
c41d4ac4 4326 while (size > conf->max_nr_stripes) {
3f294f4f
N
4327 if (grow_one_stripe(conf))
4328 conf->max_nr_stripes++;
4329 else break;
4330 }
c41d4ac4
N
4331 return 0;
4332}
4333EXPORT_SYMBOL(raid5_set_cache_size);
4334
4335static ssize_t
fd01b88c 4336raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 4337{
d1688a6d 4338 struct r5conf *conf = mddev->private;
c41d4ac4
N
4339 unsigned long new;
4340 int err;
4341
4342 if (len >= PAGE_SIZE)
4343 return -EINVAL;
4344 if (!conf)
4345 return -ENODEV;
4346
4347 if (strict_strtoul(page, 10, &new))
4348 return -EINVAL;
4349 err = raid5_set_cache_size(mddev, new);
4350 if (err)
4351 return err;
3f294f4f
N
4352 return len;
4353}
007583c9 4354
96de1e66
N
4355static struct md_sysfs_entry
4356raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4357 raid5_show_stripe_cache_size,
4358 raid5_store_stripe_cache_size);
3f294f4f 4359
8b3e6cdc 4360static ssize_t
fd01b88c 4361raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 4362{
d1688a6d 4363 struct r5conf *conf = mddev->private;
8b3e6cdc
DW
4364 if (conf)
4365 return sprintf(page, "%d\n", conf->bypass_threshold);
4366 else
4367 return 0;
4368}
4369
4370static ssize_t
fd01b88c 4371raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 4372{
d1688a6d 4373 struct r5conf *conf = mddev->private;
4ef197d8 4374 unsigned long new;
8b3e6cdc
DW
4375 if (len >= PAGE_SIZE)
4376 return -EINVAL;
4377 if (!conf)
4378 return -ENODEV;
4379
4ef197d8 4380 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4381 return -EINVAL;
4ef197d8 4382 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4383 return -EINVAL;
4384 conf->bypass_threshold = new;
4385 return len;
4386}
4387
4388static struct md_sysfs_entry
4389raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4390 S_IRUGO | S_IWUSR,
4391 raid5_show_preread_threshold,
4392 raid5_store_preread_threshold);
4393
3f294f4f 4394static ssize_t
fd01b88c 4395stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 4396{
d1688a6d 4397 struct r5conf *conf = mddev->private;
96de1e66
N
4398 if (conf)
4399 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4400 else
4401 return 0;
3f294f4f
N
4402}
4403
96de1e66
N
4404static struct md_sysfs_entry
4405raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4406
007583c9 4407static struct attribute *raid5_attrs[] = {
3f294f4f
N
4408 &raid5_stripecache_size.attr,
4409 &raid5_stripecache_active.attr,
8b3e6cdc 4410 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4411 NULL,
4412};
007583c9
N
4413static struct attribute_group raid5_attrs_group = {
4414 .name = NULL,
4415 .attrs = raid5_attrs,
3f294f4f
N
4416};
4417
80c3a6ce 4418static sector_t
fd01b88c 4419raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 4420{
d1688a6d 4421 struct r5conf *conf = mddev->private;
80c3a6ce
DW
4422
4423 if (!sectors)
4424 sectors = mddev->dev_sectors;
5e5e3e78 4425 if (!raid_disks)
7ec05478 4426 /* size is defined by the smallest of previous and new size */
5e5e3e78 4427 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 4428
9d8f0363 4429 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 4430 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
4431 return sectors * (raid_disks - conf->max_degraded);
4432}
4433
d1688a6d 4434static void raid5_free_percpu(struct r5conf *conf)
36d1c647
DW
4435{
4436 struct raid5_percpu *percpu;
4437 unsigned long cpu;
4438
4439 if (!conf->percpu)
4440 return;
4441
4442 get_online_cpus();
4443 for_each_possible_cpu(cpu) {
4444 percpu = per_cpu_ptr(conf->percpu, cpu);
4445 safe_put_page(percpu->spare_page);
d6f38f31 4446 kfree(percpu->scribble);
36d1c647
DW
4447 }
4448#ifdef CONFIG_HOTPLUG_CPU
4449 unregister_cpu_notifier(&conf->cpu_notify);
4450#endif
4451 put_online_cpus();
4452
4453 free_percpu(conf->percpu);
4454}
4455
d1688a6d 4456static void free_conf(struct r5conf *conf)
95fc17aa
DW
4457{
4458 shrink_stripes(conf);
36d1c647 4459 raid5_free_percpu(conf);
95fc17aa
DW
4460 kfree(conf->disks);
4461 kfree(conf->stripe_hashtbl);
4462 kfree(conf);
4463}
4464
36d1c647
DW
4465#ifdef CONFIG_HOTPLUG_CPU
4466static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4467 void *hcpu)
4468{
d1688a6d 4469 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
4470 long cpu = (long)hcpu;
4471 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4472
4473 switch (action) {
4474 case CPU_UP_PREPARE:
4475 case CPU_UP_PREPARE_FROZEN:
d6f38f31 4476 if (conf->level == 6 && !percpu->spare_page)
36d1c647 4477 percpu->spare_page = alloc_page(GFP_KERNEL);
d6f38f31
DW
4478 if (!percpu->scribble)
4479 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4480
4481 if (!percpu->scribble ||
4482 (conf->level == 6 && !percpu->spare_page)) {
4483 safe_put_page(percpu->spare_page);
4484 kfree(percpu->scribble);
36d1c647
DW
4485 pr_err("%s: failed memory allocation for cpu%ld\n",
4486 __func__, cpu);
55af6bb5 4487 return notifier_from_errno(-ENOMEM);
36d1c647
DW
4488 }
4489 break;
4490 case CPU_DEAD:
4491 case CPU_DEAD_FROZEN:
4492 safe_put_page(percpu->spare_page);
d6f38f31 4493 kfree(percpu->scribble);
36d1c647 4494 percpu->spare_page = NULL;
d6f38f31 4495 percpu->scribble = NULL;
36d1c647
DW
4496 break;
4497 default:
4498 break;
4499 }
4500 return NOTIFY_OK;
4501}
4502#endif
4503
d1688a6d 4504static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
4505{
4506 unsigned long cpu;
4507 struct page *spare_page;
a29d8b8e 4508 struct raid5_percpu __percpu *allcpus;
d6f38f31 4509 void *scribble;
36d1c647
DW
4510 int err;
4511
36d1c647
DW
4512 allcpus = alloc_percpu(struct raid5_percpu);
4513 if (!allcpus)
4514 return -ENOMEM;
4515 conf->percpu = allcpus;
4516
4517 get_online_cpus();
4518 err = 0;
4519 for_each_present_cpu(cpu) {
d6f38f31
DW
4520 if (conf->level == 6) {
4521 spare_page = alloc_page(GFP_KERNEL);
4522 if (!spare_page) {
4523 err = -ENOMEM;
4524 break;
4525 }
4526 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4527 }
5e5e3e78 4528 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
d6f38f31 4529 if (!scribble) {
36d1c647
DW
4530 err = -ENOMEM;
4531 break;
4532 }
d6f38f31 4533 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
36d1c647
DW
4534 }
4535#ifdef CONFIG_HOTPLUG_CPU
4536 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4537 conf->cpu_notify.priority = 0;
4538 if (err == 0)
4539 err = register_cpu_notifier(&conf->cpu_notify);
4540#endif
4541 put_online_cpus();
4542
4543 return err;
4544}
4545
d1688a6d 4546static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 4547{
d1688a6d 4548 struct r5conf *conf;
5e5e3e78 4549 int raid_disk, memory, max_disks;
3cb03002 4550 struct md_rdev *rdev;
1da177e4 4551 struct disk_info *disk;
1da177e4 4552
91adb564
N
4553 if (mddev->new_level != 5
4554 && mddev->new_level != 4
4555 && mddev->new_level != 6) {
0c55e022 4556 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
4557 mdname(mddev), mddev->new_level);
4558 return ERR_PTR(-EIO);
1da177e4 4559 }
91adb564
N
4560 if ((mddev->new_level == 5
4561 && !algorithm_valid_raid5(mddev->new_layout)) ||
4562 (mddev->new_level == 6
4563 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 4564 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
4565 mdname(mddev), mddev->new_layout);
4566 return ERR_PTR(-EIO);
99c0fb5f 4567 }
91adb564 4568 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 4569 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
4570 mdname(mddev), mddev->raid_disks);
4571 return ERR_PTR(-EINVAL);
4bbf3771
N
4572 }
4573
664e7c41
AN
4574 if (!mddev->new_chunk_sectors ||
4575 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4576 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
4577 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4578 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 4579 return ERR_PTR(-EINVAL);
f6705578
N
4580 }
4581
d1688a6d 4582 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 4583 if (conf == NULL)
1da177e4 4584 goto abort;
f5efd45a
DW
4585 spin_lock_init(&conf->device_lock);
4586 init_waitqueue_head(&conf->wait_for_stripe);
4587 init_waitqueue_head(&conf->wait_for_overlap);
4588 INIT_LIST_HEAD(&conf->handle_list);
4589 INIT_LIST_HEAD(&conf->hold_list);
4590 INIT_LIST_HEAD(&conf->delayed_list);
4591 INIT_LIST_HEAD(&conf->bitmap_list);
4592 INIT_LIST_HEAD(&conf->inactive_list);
4593 atomic_set(&conf->active_stripes, 0);
4594 atomic_set(&conf->preread_active_stripes, 0);
4595 atomic_set(&conf->active_aligned_reads, 0);
4596 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 4597 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
4598
4599 conf->raid_disks = mddev->raid_disks;
4600 if (mddev->reshape_position == MaxSector)
4601 conf->previous_raid_disks = mddev->raid_disks;
4602 else
f6705578 4603 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78
N
4604 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4605 conf->scribble_len = scribble_len(max_disks);
f6705578 4606
5e5e3e78 4607 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
4608 GFP_KERNEL);
4609 if (!conf->disks)
4610 goto abort;
9ffae0cf 4611
1da177e4
LT
4612 conf->mddev = mddev;
4613
fccddba0 4614 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4615 goto abort;
1da177e4 4616
36d1c647
DW
4617 conf->level = mddev->new_level;
4618 if (raid5_alloc_percpu(conf) != 0)
4619 goto abort;
4620
0c55e022 4621 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 4622
159ec1fc 4623 list_for_each_entry(rdev, &mddev->disks, same_set) {
1da177e4 4624 raid_disk = rdev->raid_disk;
5e5e3e78 4625 if (raid_disk >= max_disks
1da177e4
LT
4626 || raid_disk < 0)
4627 continue;
4628 disk = conf->disks + raid_disk;
4629
4630 disk->rdev = rdev;
4631
b2d444d7 4632 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 4633 char b[BDEVNAME_SIZE];
0c55e022
N
4634 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4635 " disk %d\n",
4636 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 4637 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
4638 /* Cannot rely on bitmap to complete recovery */
4639 conf->fullsync = 1;
1da177e4
LT
4640 }
4641
09c9e5fa 4642 conf->chunk_sectors = mddev->new_chunk_sectors;
91adb564 4643 conf->level = mddev->new_level;
16a53ecc
N
4644 if (conf->level == 6)
4645 conf->max_degraded = 2;
4646 else
4647 conf->max_degraded = 1;
91adb564 4648 conf->algorithm = mddev->new_layout;
1da177e4 4649 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 4650 conf->reshape_progress = mddev->reshape_position;
e183eaed 4651 if (conf->reshape_progress != MaxSector) {
09c9e5fa 4652 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
4653 conf->prev_algo = mddev->layout;
4654 }
1da177e4 4655
91adb564 4656 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 4657 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
91adb564
N
4658 if (grow_stripes(conf, conf->max_nr_stripes)) {
4659 printk(KERN_ERR
0c55e022
N
4660 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4661 mdname(mddev), memory);
91adb564
N
4662 goto abort;
4663 } else
0c55e022
N
4664 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4665 mdname(mddev), memory);
1da177e4 4666
0da3c619 4667 conf->thread = md_register_thread(raid5d, mddev, NULL);
91adb564
N
4668 if (!conf->thread) {
4669 printk(KERN_ERR
0c55e022 4670 "md/raid:%s: couldn't allocate thread.\n",
91adb564 4671 mdname(mddev));
16a53ecc
N
4672 goto abort;
4673 }
91adb564
N
4674
4675 return conf;
4676
4677 abort:
4678 if (conf) {
95fc17aa 4679 free_conf(conf);
91adb564
N
4680 return ERR_PTR(-EIO);
4681 } else
4682 return ERR_PTR(-ENOMEM);
4683}
4684
c148ffdc
N
4685
4686static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4687{
4688 switch (algo) {
4689 case ALGORITHM_PARITY_0:
4690 if (raid_disk < max_degraded)
4691 return 1;
4692 break;
4693 case ALGORITHM_PARITY_N:
4694 if (raid_disk >= raid_disks - max_degraded)
4695 return 1;
4696 break;
4697 case ALGORITHM_PARITY_0_6:
4698 if (raid_disk == 0 ||
4699 raid_disk == raid_disks - 1)
4700 return 1;
4701 break;
4702 case ALGORITHM_LEFT_ASYMMETRIC_6:
4703 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4704 case ALGORITHM_LEFT_SYMMETRIC_6:
4705 case ALGORITHM_RIGHT_SYMMETRIC_6:
4706 if (raid_disk == raid_disks - 1)
4707 return 1;
4708 }
4709 return 0;
4710}
4711
fd01b88c 4712static int run(struct mddev *mddev)
91adb564 4713{
d1688a6d 4714 struct r5conf *conf;
9f7c2220 4715 int working_disks = 0;
c148ffdc 4716 int dirty_parity_disks = 0;
3cb03002 4717 struct md_rdev *rdev;
c148ffdc 4718 sector_t reshape_offset = 0;
91adb564 4719
8c6ac868 4720 if (mddev->recovery_cp != MaxSector)
0c55e022 4721 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
4722 " -- starting background reconstruction\n",
4723 mdname(mddev));
91adb564
N
4724 if (mddev->reshape_position != MaxSector) {
4725 /* Check that we can continue the reshape.
4726 * Currently only disks can change, it must
4727 * increase, and we must be past the point where
4728 * a stripe over-writes itself
4729 */
4730 sector_t here_new, here_old;
4731 int old_disks;
18b00334 4732 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 4733
88ce4930 4734 if (mddev->new_level != mddev->level) {
0c55e022 4735 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
4736 "required - aborting.\n",
4737 mdname(mddev));
4738 return -EINVAL;
4739 }
91adb564
N
4740 old_disks = mddev->raid_disks - mddev->delta_disks;
4741 /* reshape_position must be on a new-stripe boundary, and one
4742 * further up in new geometry must map after here in old
4743 * geometry.
4744 */
4745 here_new = mddev->reshape_position;
664e7c41 4746 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 4747 (mddev->raid_disks - max_degraded))) {
0c55e022
N
4748 printk(KERN_ERR "md/raid:%s: reshape_position not "
4749 "on a stripe boundary\n", mdname(mddev));
91adb564
N
4750 return -EINVAL;
4751 }
c148ffdc 4752 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
4753 /* here_new is the stripe we will write to */
4754 here_old = mddev->reshape_position;
9d8f0363 4755 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
4756 (old_disks-max_degraded));
4757 /* here_old is the first stripe that we might need to read
4758 * from */
67ac6011
N
4759 if (mddev->delta_disks == 0) {
4760 /* We cannot be sure it is safe to start an in-place
4761 * reshape. It is only safe if user-space if monitoring
4762 * and taking constant backups.
4763 * mdadm always starts a situation like this in
4764 * readonly mode so it can take control before
4765 * allowing any writes. So just check for that.
4766 */
4767 if ((here_new * mddev->new_chunk_sectors !=
4768 here_old * mddev->chunk_sectors) ||
4769 mddev->ro == 0) {
0c55e022
N
4770 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4771 " in read-only mode - aborting\n",
4772 mdname(mddev));
67ac6011
N
4773 return -EINVAL;
4774 }
4775 } else if (mddev->delta_disks < 0
4776 ? (here_new * mddev->new_chunk_sectors <=
4777 here_old * mddev->chunk_sectors)
4778 : (here_new * mddev->new_chunk_sectors >=
4779 here_old * mddev->chunk_sectors)) {
91adb564 4780 /* Reading from the same stripe as writing to - bad */
0c55e022
N
4781 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4782 "auto-recovery - aborting.\n",
4783 mdname(mddev));
91adb564
N
4784 return -EINVAL;
4785 }
0c55e022
N
4786 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4787 mdname(mddev));
91adb564
N
4788 /* OK, we should be able to continue; */
4789 } else {
4790 BUG_ON(mddev->level != mddev->new_level);
4791 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 4792 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 4793 BUG_ON(mddev->delta_disks != 0);
1da177e4 4794 }
91adb564 4795
245f46c2
N
4796 if (mddev->private == NULL)
4797 conf = setup_conf(mddev);
4798 else
4799 conf = mddev->private;
4800
91adb564
N
4801 if (IS_ERR(conf))
4802 return PTR_ERR(conf);
4803
4804 mddev->thread = conf->thread;
4805 conf->thread = NULL;
4806 mddev->private = conf;
4807
4808 /*
4809 * 0 for a fully functional array, 1 or 2 for a degraded array.
4810 */
c148ffdc
N
4811 list_for_each_entry(rdev, &mddev->disks, same_set) {
4812 if (rdev->raid_disk < 0)
4813 continue;
2f115882 4814 if (test_bit(In_sync, &rdev->flags)) {
91adb564 4815 working_disks++;
2f115882
N
4816 continue;
4817 }
c148ffdc
N
4818 /* This disc is not fully in-sync. However if it
4819 * just stored parity (beyond the recovery_offset),
4820 * when we don't need to be concerned about the
4821 * array being dirty.
4822 * When reshape goes 'backwards', we never have
4823 * partially completed devices, so we only need
4824 * to worry about reshape going forwards.
4825 */
4826 /* Hack because v0.91 doesn't store recovery_offset properly. */
4827 if (mddev->major_version == 0 &&
4828 mddev->minor_version > 90)
4829 rdev->recovery_offset = reshape_offset;
4830
c148ffdc
N
4831 if (rdev->recovery_offset < reshape_offset) {
4832 /* We need to check old and new layout */
4833 if (!only_parity(rdev->raid_disk,
4834 conf->algorithm,
4835 conf->raid_disks,
4836 conf->max_degraded))
4837 continue;
4838 }
4839 if (!only_parity(rdev->raid_disk,
4840 conf->prev_algo,
4841 conf->previous_raid_disks,
4842 conf->max_degraded))
4843 continue;
4844 dirty_parity_disks++;
4845 }
91adb564 4846
5e5e3e78
N
4847 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4848 - working_disks);
91adb564 4849
674806d6 4850 if (has_failed(conf)) {
0c55e022 4851 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 4852 " (%d/%d failed)\n",
02c2de8c 4853 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
4854 goto abort;
4855 }
4856
91adb564 4857 /* device size must be a multiple of chunk size */
9d8f0363 4858 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
4859 mddev->resync_max_sectors = mddev->dev_sectors;
4860
c148ffdc 4861 if (mddev->degraded > dirty_parity_disks &&
1da177e4 4862 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
4863 if (mddev->ok_start_degraded)
4864 printk(KERN_WARNING
0c55e022
N
4865 "md/raid:%s: starting dirty degraded array"
4866 " - data corruption possible.\n",
6ff8d8ec
N
4867 mdname(mddev));
4868 else {
4869 printk(KERN_ERR
0c55e022 4870 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
4871 mdname(mddev));
4872 goto abort;
4873 }
1da177e4
LT
4874 }
4875
1da177e4 4876 if (mddev->degraded == 0)
0c55e022
N
4877 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4878 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
4879 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4880 mddev->new_layout);
1da177e4 4881 else
0c55e022
N
4882 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4883 " out of %d devices, algorithm %d\n",
4884 mdname(mddev), conf->level,
4885 mddev->raid_disks - mddev->degraded,
4886 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
4887
4888 print_raid5_conf(conf);
4889
fef9c61f 4890 if (conf->reshape_progress != MaxSector) {
fef9c61f 4891 conf->reshape_safe = conf->reshape_progress;
f6705578
N
4892 atomic_set(&conf->reshape_stripes, 0);
4893 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4894 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4895 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4896 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4897 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 4898 "reshape");
f6705578
N
4899 }
4900
1da177e4
LT
4901
4902 /* Ok, everything is just fine now */
a64c876f
N
4903 if (mddev->to_remove == &raid5_attrs_group)
4904 mddev->to_remove = NULL;
00bcb4ac
N
4905 else if (mddev->kobj.sd &&
4906 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 4907 printk(KERN_WARNING
4a5add49 4908 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 4909 mdname(mddev));
4a5add49 4910 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 4911
4a5add49 4912 if (mddev->queue) {
9f7c2220 4913 int chunk_size;
4a5add49
N
4914 /* read-ahead size must cover two whole stripes, which
4915 * is 2 * (datadisks) * chunksize where 'n' is the
4916 * number of raid devices
4917 */
4918 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4919 int stripe = data_disks *
4920 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4921 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4922 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 4923
4a5add49 4924 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
f022b2fd 4925
11d8a6e3
N
4926 mddev->queue->backing_dev_info.congested_data = mddev;
4927 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
7a5febe9 4928
9f7c2220
N
4929 chunk_size = mddev->chunk_sectors << 9;
4930 blk_queue_io_min(mddev->queue, chunk_size);
4931 blk_queue_io_opt(mddev->queue, chunk_size *
4932 (conf->raid_disks - conf->max_degraded));
8f6c2e4b 4933
9f7c2220
N
4934 list_for_each_entry(rdev, &mddev->disks, same_set)
4935 disk_stack_limits(mddev->gendisk, rdev->bdev,
4936 rdev->data_offset << 9);
4937 }
23032a0e 4938
1da177e4
LT
4939 return 0;
4940abort:
01f96c0a 4941 md_unregister_thread(&mddev->thread);
e4f869d9
N
4942 print_raid5_conf(conf);
4943 free_conf(conf);
1da177e4 4944 mddev->private = NULL;
0c55e022 4945 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
4946 return -EIO;
4947}
4948
fd01b88c 4949static int stop(struct mddev *mddev)
1da177e4 4950{
d1688a6d 4951 struct r5conf *conf = mddev->private;
1da177e4 4952
01f96c0a 4953 md_unregister_thread(&mddev->thread);
11d8a6e3
N
4954 if (mddev->queue)
4955 mddev->queue->backing_dev_info.congested_fn = NULL;
95fc17aa 4956 free_conf(conf);
a64c876f
N
4957 mddev->private = NULL;
4958 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
4959 return 0;
4960}
4961
fd01b88c 4962static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 4963{
d1688a6d 4964 struct r5conf *conf = mddev->private;
1da177e4
LT
4965 int i;
4966
9d8f0363
AN
4967 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
4968 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 4969 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
4970 for (i = 0; i < conf->raid_disks; i++)
4971 seq_printf (seq, "%s",
4972 conf->disks[i].rdev &&
b2d444d7 4973 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 4974 seq_printf (seq, "]");
1da177e4
LT
4975}
4976
d1688a6d 4977static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
4978{
4979 int i;
4980 struct disk_info *tmp;
4981
0c55e022 4982 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
4983 if (!conf) {
4984 printk("(conf==NULL)\n");
4985 return;
4986 }
0c55e022
N
4987 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
4988 conf->raid_disks,
4989 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
4990
4991 for (i = 0; i < conf->raid_disks; i++) {
4992 char b[BDEVNAME_SIZE];
4993 tmp = conf->disks + i;
4994 if (tmp->rdev)
0c55e022
N
4995 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
4996 i, !test_bit(Faulty, &tmp->rdev->flags),
4997 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
4998 }
4999}
5000
fd01b88c 5001static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
5002{
5003 int i;
d1688a6d 5004 struct r5conf *conf = mddev->private;
1da177e4 5005 struct disk_info *tmp;
6b965620
N
5006 int count = 0;
5007 unsigned long flags;
1da177e4
LT
5008
5009 for (i = 0; i < conf->raid_disks; i++) {
5010 tmp = conf->disks + i;
5011 if (tmp->rdev
70fffd0b 5012 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 5013 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 5014 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 5015 count++;
43c73ca4 5016 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
5017 }
5018 }
6b965620
N
5019 spin_lock_irqsave(&conf->device_lock, flags);
5020 mddev->degraded -= count;
5021 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 5022 print_raid5_conf(conf);
6b965620 5023 return count;
1da177e4
LT
5024}
5025
fd01b88c 5026static int raid5_remove_disk(struct mddev *mddev, int number)
1da177e4 5027{
d1688a6d 5028 struct r5conf *conf = mddev->private;
1da177e4 5029 int err = 0;
3cb03002 5030 struct md_rdev *rdev;
1da177e4
LT
5031 struct disk_info *p = conf->disks + number;
5032
5033 print_raid5_conf(conf);
5034 rdev = p->rdev;
5035 if (rdev) {
ec32a2bd
N
5036 if (number >= conf->raid_disks &&
5037 conf->reshape_progress == MaxSector)
5038 clear_bit(In_sync, &rdev->flags);
5039
b2d444d7 5040 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
5041 atomic_read(&rdev->nr_pending)) {
5042 err = -EBUSY;
5043 goto abort;
5044 }
dfc70645
N
5045 /* Only remove non-faulty devices if recovery
5046 * isn't possible.
5047 */
5048 if (!test_bit(Faulty, &rdev->flags) &&
7f0da59b 5049 mddev->recovery_disabled != conf->recovery_disabled &&
674806d6 5050 !has_failed(conf) &&
ec32a2bd 5051 number < conf->raid_disks) {
dfc70645
N
5052 err = -EBUSY;
5053 goto abort;
5054 }
1da177e4 5055 p->rdev = NULL;
fbd568a3 5056 synchronize_rcu();
1da177e4
LT
5057 if (atomic_read(&rdev->nr_pending)) {
5058 /* lost the race, try later */
5059 err = -EBUSY;
5060 p->rdev = rdev;
5061 }
5062 }
5063abort:
5064
5065 print_raid5_conf(conf);
5066 return err;
5067}
5068
fd01b88c 5069static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 5070{
d1688a6d 5071 struct r5conf *conf = mddev->private;
199050ea 5072 int err = -EEXIST;
1da177e4
LT
5073 int disk;
5074 struct disk_info *p;
6c2fce2e
NB
5075 int first = 0;
5076 int last = conf->raid_disks - 1;
1da177e4 5077
7f0da59b
N
5078 if (mddev->recovery_disabled == conf->recovery_disabled)
5079 return -EBUSY;
5080
674806d6 5081 if (has_failed(conf))
1da177e4 5082 /* no point adding a device */
199050ea 5083 return -EINVAL;
1da177e4 5084
6c2fce2e
NB
5085 if (rdev->raid_disk >= 0)
5086 first = last = rdev->raid_disk;
1da177e4
LT
5087
5088 /*
16a53ecc
N
5089 * find the disk ... but prefer rdev->saved_raid_disk
5090 * if possible.
1da177e4 5091 */
16a53ecc 5092 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 5093 rdev->saved_raid_disk >= first &&
16a53ecc
N
5094 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5095 disk = rdev->saved_raid_disk;
5096 else
6c2fce2e
NB
5097 disk = first;
5098 for ( ; disk <= last ; disk++)
1da177e4 5099 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 5100 clear_bit(In_sync, &rdev->flags);
1da177e4 5101 rdev->raid_disk = disk;
199050ea 5102 err = 0;
72626685
N
5103 if (rdev->saved_raid_disk != disk)
5104 conf->fullsync = 1;
d6065f7b 5105 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
5106 break;
5107 }
5108 print_raid5_conf(conf);
199050ea 5109 return err;
1da177e4
LT
5110}
5111
fd01b88c 5112static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
5113{
5114 /* no resync is happening, and there is enough space
5115 * on all devices, so we can resize.
5116 * We need to make sure resync covers any new space.
5117 * If the array is shrinking we should possibly wait until
5118 * any io in the removed space completes, but it hardly seems
5119 * worth it.
5120 */
9d8f0363 5121 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
1f403624
DW
5122 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5123 mddev->raid_disks));
b522adcd
DW
5124 if (mddev->array_sectors >
5125 raid5_size(mddev, sectors, mddev->raid_disks))
5126 return -EINVAL;
f233ea5c 5127 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5128 revalidate_disk(mddev->gendisk);
b098636c
N
5129 if (sectors > mddev->dev_sectors &&
5130 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 5131 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
5132 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5133 }
58c0fed4 5134 mddev->dev_sectors = sectors;
4b5c7ae8 5135 mddev->resync_max_sectors = sectors;
1da177e4
LT
5136 return 0;
5137}
5138
fd01b88c 5139static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
5140{
5141 /* Can only proceed if there are plenty of stripe_heads.
5142 * We need a minimum of one full stripe,, and for sensible progress
5143 * it is best to have about 4 times that.
5144 * If we require 4 times, then the default 256 4K stripe_heads will
5145 * allow for chunk sizes up to 256K, which is probably OK.
5146 * If the chunk size is greater, user-space should request more
5147 * stripe_heads first.
5148 */
d1688a6d 5149 struct r5conf *conf = mddev->private;
01ee22b4
N
5150 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5151 > conf->max_nr_stripes ||
5152 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5153 > conf->max_nr_stripes) {
0c55e022
N
5154 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5155 mdname(mddev),
01ee22b4
N
5156 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5157 / STRIPE_SIZE)*4);
5158 return 0;
5159 }
5160 return 1;
5161}
5162
fd01b88c 5163static int check_reshape(struct mddev *mddev)
29269553 5164{
d1688a6d 5165 struct r5conf *conf = mddev->private;
29269553 5166
88ce4930
N
5167 if (mddev->delta_disks == 0 &&
5168 mddev->new_layout == mddev->layout &&
664e7c41 5169 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 5170 return 0; /* nothing to do */
dba034ee
N
5171 if (mddev->bitmap)
5172 /* Cannot grow a bitmap yet */
5173 return -EBUSY;
674806d6 5174 if (has_failed(conf))
ec32a2bd
N
5175 return -EINVAL;
5176 if (mddev->delta_disks < 0) {
5177 /* We might be able to shrink, but the devices must
5178 * be made bigger first.
5179 * For raid6, 4 is the minimum size.
5180 * Otherwise 2 is the minimum
5181 */
5182 int min = 2;
5183 if (mddev->level == 6)
5184 min = 4;
5185 if (mddev->raid_disks + mddev->delta_disks < min)
5186 return -EINVAL;
5187 }
29269553 5188
01ee22b4 5189 if (!check_stripe_cache(mddev))
29269553 5190 return -ENOSPC;
29269553 5191
ec32a2bd 5192 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
63c70c4f
N
5193}
5194
fd01b88c 5195static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 5196{
d1688a6d 5197 struct r5conf *conf = mddev->private;
3cb03002 5198 struct md_rdev *rdev;
63c70c4f 5199 int spares = 0;
c04be0aa 5200 unsigned long flags;
63c70c4f 5201
f416885e 5202 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
5203 return -EBUSY;
5204
01ee22b4
N
5205 if (!check_stripe_cache(mddev))
5206 return -ENOSPC;
5207
159ec1fc 5208 list_for_each_entry(rdev, &mddev->disks, same_set)
469518a3
N
5209 if (!test_bit(In_sync, &rdev->flags)
5210 && !test_bit(Faulty, &rdev->flags))
29269553 5211 spares++;
63c70c4f 5212
f416885e 5213 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
5214 /* Not enough devices even to make a degraded array
5215 * of that size
5216 */
5217 return -EINVAL;
5218
ec32a2bd
N
5219 /* Refuse to reduce size of the array. Any reductions in
5220 * array size must be through explicit setting of array_size
5221 * attribute.
5222 */
5223 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5224 < mddev->array_sectors) {
0c55e022 5225 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
5226 "before number of disks\n", mdname(mddev));
5227 return -EINVAL;
5228 }
5229
f6705578 5230 atomic_set(&conf->reshape_stripes, 0);
29269553
N
5231 spin_lock_irq(&conf->device_lock);
5232 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 5233 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
5234 conf->prev_chunk_sectors = conf->chunk_sectors;
5235 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
5236 conf->prev_algo = conf->algorithm;
5237 conf->algorithm = mddev->new_layout;
fef9c61f
N
5238 if (mddev->delta_disks < 0)
5239 conf->reshape_progress = raid5_size(mddev, 0, 0);
5240 else
5241 conf->reshape_progress = 0;
5242 conf->reshape_safe = conf->reshape_progress;
86b42c71 5243 conf->generation++;
29269553
N
5244 spin_unlock_irq(&conf->device_lock);
5245
5246 /* Add some new drives, as many as will fit.
5247 * We know there are enough to make the newly sized array work.
3424bf6a
N
5248 * Don't add devices if we are reducing the number of
5249 * devices in the array. This is because it is not possible
5250 * to correctly record the "partially reconstructed" state of
5251 * such devices during the reshape and confusion could result.
29269553 5252 */
87a8dec9
N
5253 if (mddev->delta_disks >= 0) {
5254 int added_devices = 0;
5255 list_for_each_entry(rdev, &mddev->disks, same_set)
5256 if (rdev->raid_disk < 0 &&
5257 !test_bit(Faulty, &rdev->flags)) {
5258 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9
N
5259 if (rdev->raid_disk
5260 >= conf->previous_raid_disks) {
5261 set_bit(In_sync, &rdev->flags);
5262 added_devices++;
5263 } else
5264 rdev->recovery_offset = 0;
36fad858
NK
5265
5266 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 5267 /* Failure here is OK */;
50da0840 5268 }
87a8dec9
N
5269 } else if (rdev->raid_disk >= conf->previous_raid_disks
5270 && !test_bit(Faulty, &rdev->flags)) {
5271 /* This is a spare that was manually added */
5272 set_bit(In_sync, &rdev->flags);
5273 added_devices++;
5274 }
29269553 5275
87a8dec9
N
5276 /* When a reshape changes the number of devices,
5277 * ->degraded is measured against the larger of the
5278 * pre and post number of devices.
5279 */
ec32a2bd 5280 spin_lock_irqsave(&conf->device_lock, flags);
9eb07c25 5281 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
ec32a2bd
N
5282 - added_devices;
5283 spin_unlock_irqrestore(&conf->device_lock, flags);
5284 }
63c70c4f 5285 mddev->raid_disks = conf->raid_disks;
e516402c 5286 mddev->reshape_position = conf->reshape_progress;
850b2b42 5287 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 5288
29269553
N
5289 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5290 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5291 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5292 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5293 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5294 "reshape");
29269553
N
5295 if (!mddev->sync_thread) {
5296 mddev->recovery = 0;
5297 spin_lock_irq(&conf->device_lock);
5298 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
fef9c61f 5299 conf->reshape_progress = MaxSector;
29269553
N
5300 spin_unlock_irq(&conf->device_lock);
5301 return -EAGAIN;
5302 }
c8f517c4 5303 conf->reshape_checkpoint = jiffies;
29269553
N
5304 md_wakeup_thread(mddev->sync_thread);
5305 md_new_event(mddev);
5306 return 0;
5307}
29269553 5308
ec32a2bd
N
5309/* This is called from the reshape thread and should make any
5310 * changes needed in 'conf'
5311 */
d1688a6d 5312static void end_reshape(struct r5conf *conf)
29269553 5313{
29269553 5314
f6705578 5315 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f6705578 5316
f6705578 5317 spin_lock_irq(&conf->device_lock);
cea9c228 5318 conf->previous_raid_disks = conf->raid_disks;
fef9c61f 5319 conf->reshape_progress = MaxSector;
f6705578 5320 spin_unlock_irq(&conf->device_lock);
b0f9ec04 5321 wake_up(&conf->wait_for_overlap);
16a53ecc
N
5322
5323 /* read-ahead size must cover two whole stripes, which is
5324 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5325 */
4a5add49 5326 if (conf->mddev->queue) {
cea9c228 5327 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 5328 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 5329 / PAGE_SIZE);
16a53ecc
N
5330 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5331 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5332 }
29269553 5333 }
29269553
N
5334}
5335
ec32a2bd
N
5336/* This is called from the raid5d thread with mddev_lock held.
5337 * It makes config changes to the device.
5338 */
fd01b88c 5339static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 5340{
d1688a6d 5341 struct r5conf *conf = mddev->private;
cea9c228
N
5342
5343 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5344
ec32a2bd
N
5345 if (mddev->delta_disks > 0) {
5346 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5347 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5348 revalidate_disk(mddev->gendisk);
ec32a2bd
N
5349 } else {
5350 int d;
ec32a2bd
N
5351 mddev->degraded = conf->raid_disks;
5352 for (d = 0; d < conf->raid_disks ; d++)
5353 if (conf->disks[d].rdev &&
5354 test_bit(In_sync,
5355 &conf->disks[d].rdev->flags))
5356 mddev->degraded--;
5357 for (d = conf->raid_disks ;
5358 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 5359 d++) {
3cb03002 5360 struct md_rdev *rdev = conf->disks[d].rdev;
1a67dde0 5361 if (rdev && raid5_remove_disk(mddev, d) == 0) {
36fad858 5362 sysfs_unlink_rdev(mddev, rdev);
1a67dde0
N
5363 rdev->raid_disk = -1;
5364 }
5365 }
cea9c228 5366 }
88ce4930 5367 mddev->layout = conf->algorithm;
09c9e5fa 5368 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
5369 mddev->reshape_position = MaxSector;
5370 mddev->delta_disks = 0;
cea9c228
N
5371 }
5372}
5373
fd01b88c 5374static void raid5_quiesce(struct mddev *mddev, int state)
72626685 5375{
d1688a6d 5376 struct r5conf *conf = mddev->private;
72626685
N
5377
5378 switch(state) {
e464eafd
N
5379 case 2: /* resume for a suspend */
5380 wake_up(&conf->wait_for_overlap);
5381 break;
5382
72626685
N
5383 case 1: /* stop all writes */
5384 spin_lock_irq(&conf->device_lock);
64bd660b
N
5385 /* '2' tells resync/reshape to pause so that all
5386 * active stripes can drain
5387 */
5388 conf->quiesce = 2;
72626685 5389 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
5390 atomic_read(&conf->active_stripes) == 0 &&
5391 atomic_read(&conf->active_aligned_reads) == 0,
72626685 5392 conf->device_lock, /* nothing */);
64bd660b 5393 conf->quiesce = 1;
72626685 5394 spin_unlock_irq(&conf->device_lock);
64bd660b
N
5395 /* allow reshape to continue */
5396 wake_up(&conf->wait_for_overlap);
72626685
N
5397 break;
5398
5399 case 0: /* re-enable writes */
5400 spin_lock_irq(&conf->device_lock);
5401 conf->quiesce = 0;
5402 wake_up(&conf->wait_for_stripe);
e464eafd 5403 wake_up(&conf->wait_for_overlap);
72626685
N
5404 spin_unlock_irq(&conf->device_lock);
5405 break;
5406 }
72626685 5407}
b15c2e57 5408
d562b0c4 5409
fd01b88c 5410static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 5411{
e373ab10 5412 struct r0conf *raid0_conf = mddev->private;
d76c8420 5413 sector_t sectors;
54071b38 5414
f1b29bca 5415 /* for raid0 takeover only one zone is supported */
e373ab10 5416 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
5417 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5418 mdname(mddev));
f1b29bca
DW
5419 return ERR_PTR(-EINVAL);
5420 }
5421
e373ab10
N
5422 sectors = raid0_conf->strip_zone[0].zone_end;
5423 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 5424 mddev->dev_sectors = sectors;
f1b29bca 5425 mddev->new_level = level;
54071b38
TM
5426 mddev->new_layout = ALGORITHM_PARITY_N;
5427 mddev->new_chunk_sectors = mddev->chunk_sectors;
5428 mddev->raid_disks += 1;
5429 mddev->delta_disks = 1;
5430 /* make sure it will be not marked as dirty */
5431 mddev->recovery_cp = MaxSector;
5432
5433 return setup_conf(mddev);
5434}
5435
5436
fd01b88c 5437static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
5438{
5439 int chunksect;
5440
5441 if (mddev->raid_disks != 2 ||
5442 mddev->degraded > 1)
5443 return ERR_PTR(-EINVAL);
5444
5445 /* Should check if there are write-behind devices? */
5446
5447 chunksect = 64*2; /* 64K by default */
5448
5449 /* The array must be an exact multiple of chunksize */
5450 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5451 chunksect >>= 1;
5452
5453 if ((chunksect<<9) < STRIPE_SIZE)
5454 /* array size does not allow a suitable chunk size */
5455 return ERR_PTR(-EINVAL);
5456
5457 mddev->new_level = 5;
5458 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 5459 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
5460
5461 return setup_conf(mddev);
5462}
5463
fd01b88c 5464static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
5465{
5466 int new_layout;
5467
5468 switch (mddev->layout) {
5469 case ALGORITHM_LEFT_ASYMMETRIC_6:
5470 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5471 break;
5472 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5473 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5474 break;
5475 case ALGORITHM_LEFT_SYMMETRIC_6:
5476 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5477 break;
5478 case ALGORITHM_RIGHT_SYMMETRIC_6:
5479 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5480 break;
5481 case ALGORITHM_PARITY_0_6:
5482 new_layout = ALGORITHM_PARITY_0;
5483 break;
5484 case ALGORITHM_PARITY_N:
5485 new_layout = ALGORITHM_PARITY_N;
5486 break;
5487 default:
5488 return ERR_PTR(-EINVAL);
5489 }
5490 mddev->new_level = 5;
5491 mddev->new_layout = new_layout;
5492 mddev->delta_disks = -1;
5493 mddev->raid_disks -= 1;
5494 return setup_conf(mddev);
5495}
5496
d562b0c4 5497
fd01b88c 5498static int raid5_check_reshape(struct mddev *mddev)
b3546035 5499{
88ce4930
N
5500 /* For a 2-drive array, the layout and chunk size can be changed
5501 * immediately as not restriping is needed.
5502 * For larger arrays we record the new value - after validation
5503 * to be used by a reshape pass.
b3546035 5504 */
d1688a6d 5505 struct r5conf *conf = mddev->private;
597a711b 5506 int new_chunk = mddev->new_chunk_sectors;
b3546035 5507
597a711b 5508 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
5509 return -EINVAL;
5510 if (new_chunk > 0) {
0ba459d2 5511 if (!is_power_of_2(new_chunk))
b3546035 5512 return -EINVAL;
597a711b 5513 if (new_chunk < (PAGE_SIZE>>9))
b3546035 5514 return -EINVAL;
597a711b 5515 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
5516 /* not factor of array size */
5517 return -EINVAL;
5518 }
5519
5520 /* They look valid */
5521
88ce4930 5522 if (mddev->raid_disks == 2) {
597a711b
N
5523 /* can make the change immediately */
5524 if (mddev->new_layout >= 0) {
5525 conf->algorithm = mddev->new_layout;
5526 mddev->layout = mddev->new_layout;
88ce4930
N
5527 }
5528 if (new_chunk > 0) {
597a711b
N
5529 conf->chunk_sectors = new_chunk ;
5530 mddev->chunk_sectors = new_chunk;
88ce4930
N
5531 }
5532 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5533 md_wakeup_thread(mddev->thread);
b3546035 5534 }
50ac168a 5535 return check_reshape(mddev);
88ce4930
N
5536}
5537
fd01b88c 5538static int raid6_check_reshape(struct mddev *mddev)
88ce4930 5539{
597a711b 5540 int new_chunk = mddev->new_chunk_sectors;
50ac168a 5541
597a711b 5542 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 5543 return -EINVAL;
b3546035 5544 if (new_chunk > 0) {
0ba459d2 5545 if (!is_power_of_2(new_chunk))
88ce4930 5546 return -EINVAL;
597a711b 5547 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 5548 return -EINVAL;
597a711b 5549 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
5550 /* not factor of array size */
5551 return -EINVAL;
b3546035 5552 }
88ce4930
N
5553
5554 /* They look valid */
50ac168a 5555 return check_reshape(mddev);
b3546035
N
5556}
5557
fd01b88c 5558static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
5559{
5560 /* raid5 can take over:
f1b29bca 5561 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
5562 * raid1 - if there are two drives. We need to know the chunk size
5563 * raid4 - trivial - just use a raid4 layout.
5564 * raid6 - Providing it is a *_6 layout
d562b0c4 5565 */
f1b29bca
DW
5566 if (mddev->level == 0)
5567 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
5568 if (mddev->level == 1)
5569 return raid5_takeover_raid1(mddev);
e9d4758f
N
5570 if (mddev->level == 4) {
5571 mddev->new_layout = ALGORITHM_PARITY_N;
5572 mddev->new_level = 5;
5573 return setup_conf(mddev);
5574 }
fc9739c6
N
5575 if (mddev->level == 6)
5576 return raid5_takeover_raid6(mddev);
d562b0c4
N
5577
5578 return ERR_PTR(-EINVAL);
5579}
5580
fd01b88c 5581static void *raid4_takeover(struct mddev *mddev)
a78d38a1 5582{
f1b29bca
DW
5583 /* raid4 can take over:
5584 * raid0 - if there is only one strip zone
5585 * raid5 - if layout is right
a78d38a1 5586 */
f1b29bca
DW
5587 if (mddev->level == 0)
5588 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
5589 if (mddev->level == 5 &&
5590 mddev->layout == ALGORITHM_PARITY_N) {
5591 mddev->new_layout = 0;
5592 mddev->new_level = 4;
5593 return setup_conf(mddev);
5594 }
5595 return ERR_PTR(-EINVAL);
5596}
d562b0c4 5597
84fc4b56 5598static struct md_personality raid5_personality;
245f46c2 5599
fd01b88c 5600static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
5601{
5602 /* Currently can only take over a raid5. We map the
5603 * personality to an equivalent raid6 personality
5604 * with the Q block at the end.
5605 */
5606 int new_layout;
5607
5608 if (mddev->pers != &raid5_personality)
5609 return ERR_PTR(-EINVAL);
5610 if (mddev->degraded > 1)
5611 return ERR_PTR(-EINVAL);
5612 if (mddev->raid_disks > 253)
5613 return ERR_PTR(-EINVAL);
5614 if (mddev->raid_disks < 3)
5615 return ERR_PTR(-EINVAL);
5616
5617 switch (mddev->layout) {
5618 case ALGORITHM_LEFT_ASYMMETRIC:
5619 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5620 break;
5621 case ALGORITHM_RIGHT_ASYMMETRIC:
5622 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5623 break;
5624 case ALGORITHM_LEFT_SYMMETRIC:
5625 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5626 break;
5627 case ALGORITHM_RIGHT_SYMMETRIC:
5628 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5629 break;
5630 case ALGORITHM_PARITY_0:
5631 new_layout = ALGORITHM_PARITY_0_6;
5632 break;
5633 case ALGORITHM_PARITY_N:
5634 new_layout = ALGORITHM_PARITY_N;
5635 break;
5636 default:
5637 return ERR_PTR(-EINVAL);
5638 }
5639 mddev->new_level = 6;
5640 mddev->new_layout = new_layout;
5641 mddev->delta_disks = 1;
5642 mddev->raid_disks += 1;
5643 return setup_conf(mddev);
5644}
5645
5646
84fc4b56 5647static struct md_personality raid6_personality =
16a53ecc
N
5648{
5649 .name = "raid6",
5650 .level = 6,
5651 .owner = THIS_MODULE,
5652 .make_request = make_request,
5653 .run = run,
5654 .stop = stop,
5655 .status = status,
5656 .error_handler = error,
5657 .hot_add_disk = raid5_add_disk,
5658 .hot_remove_disk= raid5_remove_disk,
5659 .spare_active = raid5_spare_active,
5660 .sync_request = sync_request,
5661 .resize = raid5_resize,
80c3a6ce 5662 .size = raid5_size,
50ac168a 5663 .check_reshape = raid6_check_reshape,
f416885e 5664 .start_reshape = raid5_start_reshape,
cea9c228 5665 .finish_reshape = raid5_finish_reshape,
16a53ecc 5666 .quiesce = raid5_quiesce,
245f46c2 5667 .takeover = raid6_takeover,
16a53ecc 5668};
84fc4b56 5669static struct md_personality raid5_personality =
1da177e4
LT
5670{
5671 .name = "raid5",
2604b703 5672 .level = 5,
1da177e4
LT
5673 .owner = THIS_MODULE,
5674 .make_request = make_request,
5675 .run = run,
5676 .stop = stop,
5677 .status = status,
5678 .error_handler = error,
5679 .hot_add_disk = raid5_add_disk,
5680 .hot_remove_disk= raid5_remove_disk,
5681 .spare_active = raid5_spare_active,
5682 .sync_request = sync_request,
5683 .resize = raid5_resize,
80c3a6ce 5684 .size = raid5_size,
63c70c4f
N
5685 .check_reshape = raid5_check_reshape,
5686 .start_reshape = raid5_start_reshape,
cea9c228 5687 .finish_reshape = raid5_finish_reshape,
72626685 5688 .quiesce = raid5_quiesce,
d562b0c4 5689 .takeover = raid5_takeover,
1da177e4
LT
5690};
5691
84fc4b56 5692static struct md_personality raid4_personality =
1da177e4 5693{
2604b703
N
5694 .name = "raid4",
5695 .level = 4,
5696 .owner = THIS_MODULE,
5697 .make_request = make_request,
5698 .run = run,
5699 .stop = stop,
5700 .status = status,
5701 .error_handler = error,
5702 .hot_add_disk = raid5_add_disk,
5703 .hot_remove_disk= raid5_remove_disk,
5704 .spare_active = raid5_spare_active,
5705 .sync_request = sync_request,
5706 .resize = raid5_resize,
80c3a6ce 5707 .size = raid5_size,
3d37890b
N
5708 .check_reshape = raid5_check_reshape,
5709 .start_reshape = raid5_start_reshape,
cea9c228 5710 .finish_reshape = raid5_finish_reshape,
2604b703 5711 .quiesce = raid5_quiesce,
a78d38a1 5712 .takeover = raid4_takeover,
2604b703
N
5713};
5714
5715static int __init raid5_init(void)
5716{
16a53ecc 5717 register_md_personality(&raid6_personality);
2604b703
N
5718 register_md_personality(&raid5_personality);
5719 register_md_personality(&raid4_personality);
5720 return 0;
1da177e4
LT
5721}
5722
2604b703 5723static void raid5_exit(void)
1da177e4 5724{
16a53ecc 5725 unregister_md_personality(&raid6_personality);
2604b703
N
5726 unregister_md_personality(&raid5_personality);
5727 unregister_md_personality(&raid4_personality);
1da177e4
LT
5728}
5729
5730module_init(raid5_init);
5731module_exit(raid5_exit);
5732MODULE_LICENSE("GPL");
0efb9e61 5733MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 5734MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
5735MODULE_ALIAS("md-raid5");
5736MODULE_ALIAS("md-raid4");
2604b703
N
5737MODULE_ALIAS("md-level-5");
5738MODULE_ALIAS("md-level-4");
16a53ecc
N
5739MODULE_ALIAS("md-personality-8"); /* RAID6 */
5740MODULE_ALIAS("md-raid6");
5741MODULE_ALIAS("md-level-6");
5742
5743/* This used to be two separate modules, they were: */
5744MODULE_ALIAS("raid5");
5745MODULE_ALIAS("raid6");
This page took 1.114997 seconds and 5 git commands to generate.