md/raid5: split wait_for_stripe and introduce wait_for_quiescent
[deliverable/linux.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
46d5b785 57#include <linux/flex_array.h>
a9add5d9
N
58#include <trace/events/block.h>
59
43b2e5d8 60#include "md.h"
bff61975 61#include "raid5.h"
54071b38 62#include "raid0.h"
ef740c37 63#include "bitmap.h"
72626685 64
851c30c9
SL
65#define cpu_to_group(cpu) cpu_to_node(cpu)
66#define ANY_GROUP NUMA_NO_NODE
67
8e0e99ba
N
68static bool devices_handle_discard_safely = false;
69module_param(devices_handle_discard_safely, bool, 0644);
70MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 72static struct workqueue_struct *raid5_wq;
1da177e4
LT
73/*
74 * Stripe cache
75 */
76
77#define NR_STRIPES 256
78#define STRIPE_SIZE PAGE_SIZE
79#define STRIPE_SHIFT (PAGE_SHIFT - 9)
80#define STRIPE_SECTORS (STRIPE_SIZE>>9)
81#define IO_THRESHOLD 1
8b3e6cdc 82#define BYPASS_THRESHOLD 1
fccddba0 83#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4 84#define HASH_MASK (NR_HASH - 1)
bfc90cb0 85#define MAX_STRIPE_BATCH 8
1da177e4 86
d1688a6d 87static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
88{
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91}
1da177e4 92
566c09c5
SL
93static inline int stripe_hash_locks_hash(sector_t sect)
94{
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96}
97
98static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99{
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102}
103
104static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105{
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108}
109
110static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111{
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118}
119
120static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121{
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127}
128
1da177e4
LT
129/* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
db298e19 135 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
136 * of the current stripe+device
137 */
db298e19
N
138static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139{
aa8b57aa 140 int sectors = bio_sectors(bio);
4f024f37 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
db298e19
N
142 return bio->bi_next;
143 else
144 return NULL;
145}
1da177e4 146
960e739d 147/*
5b99c2ff
JA
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d 150 */
e7836bd6 151static inline int raid5_bi_processed_stripes(struct bio *bio)
960e739d 152{
e7836bd6
SL
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
960e739d
JA
155}
156
e7836bd6 157static inline int raid5_dec_bi_active_stripes(struct bio *bio)
960e739d 158{
e7836bd6
SL
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
960e739d
JA
161}
162
e7836bd6 163static inline void raid5_inc_bi_active_stripes(struct bio *bio)
960e739d 164{
e7836bd6
SL
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
960e739d
JA
167}
168
e7836bd6
SL
169static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
960e739d 171{
e7836bd6
SL
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
960e739d 174
e7836bd6
SL
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
960e739d
JA
179}
180
e7836bd6 181static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
960e739d 182{
e7836bd6
SL
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
960e739d
JA
185}
186
d0dabf7e
N
187/* Find first data disk in a raid6 stripe */
188static inline int raid6_d0(struct stripe_head *sh)
189{
67cc2b81
N
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
d0dabf7e
N
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198}
16a53ecc
N
199static inline int raid6_next_disk(int disk, int raid_disks)
200{
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203}
a4456856 204
d0dabf7e
N
205/* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
67cc2b81
N
210static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
d0dabf7e 212{
6629542e 213 int slot = *count;
67cc2b81 214
e4424fee 215 if (sh->ddf_layout)
6629542e 216 (*count)++;
d0dabf7e 217 if (idx == sh->pd_idx)
67cc2b81 218 return syndrome_disks;
d0dabf7e 219 if (idx == sh->qd_idx)
67cc2b81 220 return syndrome_disks + 1;
e4424fee 221 if (!sh->ddf_layout)
6629542e 222 (*count)++;
d0dabf7e
N
223 return slot;
224}
225
a4456856
DW
226static void return_io(struct bio *return_bi)
227{
228 struct bio *bi = return_bi;
229 while (bi) {
a4456856
DW
230
231 return_bi = bi->bi_next;
232 bi->bi_next = NULL;
4f024f37 233 bi->bi_iter.bi_size = 0;
0a82a8d1
LT
234 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235 bi, 0);
0e13fe23 236 bio_endio(bi, 0);
a4456856
DW
237 bi = return_bi;
238 }
239}
240
d1688a6d 241static void print_raid5_conf (struct r5conf *conf);
1da177e4 242
600aa109
DW
243static int stripe_operations_active(struct stripe_head *sh)
244{
245 return sh->check_state || sh->reconstruct_state ||
246 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248}
249
851c30c9
SL
250static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251{
252 struct r5conf *conf = sh->raid_conf;
253 struct r5worker_group *group;
bfc90cb0 254 int thread_cnt;
851c30c9
SL
255 int i, cpu = sh->cpu;
256
257 if (!cpu_online(cpu)) {
258 cpu = cpumask_any(cpu_online_mask);
259 sh->cpu = cpu;
260 }
261
262 if (list_empty(&sh->lru)) {
263 struct r5worker_group *group;
264 group = conf->worker_groups + cpu_to_group(cpu);
265 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
266 group->stripes_cnt++;
267 sh->group = group;
851c30c9
SL
268 }
269
270 if (conf->worker_cnt_per_group == 0) {
271 md_wakeup_thread(conf->mddev->thread);
272 return;
273 }
274
275 group = conf->worker_groups + cpu_to_group(sh->cpu);
276
bfc90cb0
SL
277 group->workers[0].working = true;
278 /* at least one worker should run to avoid race */
279 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282 /* wakeup more workers */
283 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284 if (group->workers[i].working == false) {
285 group->workers[i].working = true;
286 queue_work_on(sh->cpu, raid5_wq,
287 &group->workers[i].work);
288 thread_cnt--;
289 }
290 }
851c30c9
SL
291}
292
566c09c5
SL
293static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294 struct list_head *temp_inactive_list)
1da177e4 295{
4eb788df
SL
296 BUG_ON(!list_empty(&sh->lru));
297 BUG_ON(atomic_read(&conf->active_stripes)==0);
298 if (test_bit(STRIPE_HANDLE, &sh->state)) {
299 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 300 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 301 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 302 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
303 sh->bm_seq - conf->seq_write > 0)
304 list_add_tail(&sh->lru, &conf->bitmap_list);
305 else {
306 clear_bit(STRIPE_DELAYED, &sh->state);
307 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9
SL
308 if (conf->worker_cnt_per_group == 0) {
309 list_add_tail(&sh->lru, &conf->handle_list);
310 } else {
311 raid5_wakeup_stripe_thread(sh);
312 return;
313 }
4eb788df
SL
314 }
315 md_wakeup_thread(conf->mddev->thread);
316 } else {
317 BUG_ON(stripe_operations_active(sh));
318 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319 if (atomic_dec_return(&conf->preread_active_stripes)
320 < IO_THRESHOLD)
321 md_wakeup_thread(conf->mddev->thread);
322 atomic_dec(&conf->active_stripes);
566c09c5
SL
323 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324 list_add_tail(&sh->lru, temp_inactive_list);
1da177e4
LT
325 }
326}
d0dabf7e 327
566c09c5
SL
328static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329 struct list_head *temp_inactive_list)
4eb788df
SL
330{
331 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
332 do_release_stripe(conf, sh, temp_inactive_list);
333}
334
335/*
336 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337 *
338 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339 * given time. Adding stripes only takes device lock, while deleting stripes
340 * only takes hash lock.
341 */
342static void release_inactive_stripe_list(struct r5conf *conf,
343 struct list_head *temp_inactive_list,
344 int hash)
345{
346 int size;
347 bool do_wakeup = false;
348 unsigned long flags;
349
350 if (hash == NR_STRIPE_HASH_LOCKS) {
351 size = NR_STRIPE_HASH_LOCKS;
352 hash = NR_STRIPE_HASH_LOCKS - 1;
353 } else
354 size = 1;
355 while (size) {
356 struct list_head *list = &temp_inactive_list[size - 1];
357
358 /*
359 * We don't hold any lock here yet, get_active_stripe() might
360 * remove stripes from the list
361 */
362 if (!list_empty_careful(list)) {
363 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
364 if (list_empty(conf->inactive_list + hash) &&
365 !list_empty(list))
366 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5
SL
367 list_splice_tail_init(list, conf->inactive_list + hash);
368 do_wakeup = true;
369 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370 }
371 size--;
372 hash--;
373 }
374
375 if (do_wakeup) {
376 wake_up(&conf->wait_for_stripe);
b1b46486
YL
377 if (atomic_read(&conf->active_stripes) == 0)
378 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
379 if (conf->retry_read_aligned)
380 md_wakeup_thread(conf->mddev->thread);
381 }
4eb788df
SL
382}
383
773ca82f 384/* should hold conf->device_lock already */
566c09c5
SL
385static int release_stripe_list(struct r5conf *conf,
386 struct list_head *temp_inactive_list)
773ca82f
SL
387{
388 struct stripe_head *sh;
389 int count = 0;
390 struct llist_node *head;
391
392 head = llist_del_all(&conf->released_stripes);
d265d9dc 393 head = llist_reverse_order(head);
773ca82f 394 while (head) {
566c09c5
SL
395 int hash;
396
773ca82f
SL
397 sh = llist_entry(head, struct stripe_head, release_list);
398 head = llist_next(head);
399 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
400 smp_mb();
401 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
402 /*
403 * Don't worry the bit is set here, because if the bit is set
404 * again, the count is always > 1. This is true for
405 * STRIPE_ON_UNPLUG_LIST bit too.
406 */
566c09c5
SL
407 hash = sh->hash_lock_index;
408 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
409 count++;
410 }
411
412 return count;
413}
414
1da177e4
LT
415static void release_stripe(struct stripe_head *sh)
416{
d1688a6d 417 struct r5conf *conf = sh->raid_conf;
1da177e4 418 unsigned long flags;
566c09c5
SL
419 struct list_head list;
420 int hash;
773ca82f 421 bool wakeup;
16a53ecc 422
cf170f3f
ES
423 /* Avoid release_list until the last reference.
424 */
425 if (atomic_add_unless(&sh->count, -1, 1))
426 return;
427
ad4068de 428 if (unlikely(!conf->mddev->thread) ||
429 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
430 goto slow_path;
431 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
432 if (wakeup)
433 md_wakeup_thread(conf->mddev->thread);
434 return;
435slow_path:
4eb788df 436 local_irq_save(flags);
773ca82f 437 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 438 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
439 INIT_LIST_HEAD(&list);
440 hash = sh->hash_lock_index;
441 do_release_stripe(conf, sh, &list);
4eb788df 442 spin_unlock(&conf->device_lock);
566c09c5 443 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
444 }
445 local_irq_restore(flags);
1da177e4
LT
446}
447
fccddba0 448static inline void remove_hash(struct stripe_head *sh)
1da177e4 449{
45b4233c
DW
450 pr_debug("remove_hash(), stripe %llu\n",
451 (unsigned long long)sh->sector);
1da177e4 452
fccddba0 453 hlist_del_init(&sh->hash);
1da177e4
LT
454}
455
d1688a6d 456static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 457{
fccddba0 458 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 459
45b4233c
DW
460 pr_debug("insert_hash(), stripe %llu\n",
461 (unsigned long long)sh->sector);
1da177e4 462
fccddba0 463 hlist_add_head(&sh->hash, hp);
1da177e4
LT
464}
465
1da177e4 466/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 467static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
468{
469 struct stripe_head *sh = NULL;
470 struct list_head *first;
471
566c09c5 472 if (list_empty(conf->inactive_list + hash))
1da177e4 473 goto out;
566c09c5 474 first = (conf->inactive_list + hash)->next;
1da177e4
LT
475 sh = list_entry(first, struct stripe_head, lru);
476 list_del_init(first);
477 remove_hash(sh);
478 atomic_inc(&conf->active_stripes);
566c09c5 479 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
480 if (list_empty(conf->inactive_list + hash))
481 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
482out:
483 return sh;
484}
485
e4e11e38 486static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
487{
488 struct page *p;
489 int i;
e4e11e38 490 int num = sh->raid_conf->pool_size;
1da177e4 491
e4e11e38 492 for (i = 0; i < num ; i++) {
d592a996 493 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
494 p = sh->dev[i].page;
495 if (!p)
496 continue;
497 sh->dev[i].page = NULL;
2d1f3b5d 498 put_page(p);
1da177e4
LT
499 }
500}
501
a9683a79 502static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
503{
504 int i;
e4e11e38 505 int num = sh->raid_conf->pool_size;
1da177e4 506
e4e11e38 507 for (i = 0; i < num; i++) {
1da177e4
LT
508 struct page *page;
509
a9683a79 510 if (!(page = alloc_page(gfp))) {
1da177e4
LT
511 return 1;
512 }
513 sh->dev[i].page = page;
d592a996 514 sh->dev[i].orig_page = page;
1da177e4
LT
515 }
516 return 0;
517}
518
784052ec 519static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 520static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 521 struct stripe_head *sh);
1da177e4 522
b5663ba4 523static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 524{
d1688a6d 525 struct r5conf *conf = sh->raid_conf;
566c09c5 526 int i, seq;
1da177e4 527
78bafebd
ES
528 BUG_ON(atomic_read(&sh->count) != 0);
529 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 530 BUG_ON(stripe_operations_active(sh));
59fc630b 531 BUG_ON(sh->batch_head);
d84e0f10 532
45b4233c 533 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 534 (unsigned long long)sector);
566c09c5
SL
535retry:
536 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 537 sh->generation = conf->generation - previous;
b5663ba4 538 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 539 sh->sector = sector;
911d4ee8 540 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
541 sh->state = 0;
542
7ecaa1e6 543 for (i = sh->disks; i--; ) {
1da177e4
LT
544 struct r5dev *dev = &sh->dev[i];
545
d84e0f10 546 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 547 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 548 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 549 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 550 dev->read, dev->towrite, dev->written,
1da177e4 551 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 552 WARN_ON(1);
1da177e4
LT
553 }
554 dev->flags = 0;
784052ec 555 raid5_build_block(sh, i, previous);
1da177e4 556 }
566c09c5
SL
557 if (read_seqcount_retry(&conf->gen_lock, seq))
558 goto retry;
7a87f434 559 sh->overwrite_disks = 0;
1da177e4 560 insert_hash(conf, sh);
851c30c9 561 sh->cpu = smp_processor_id();
da41ba65 562 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
563}
564
d1688a6d 565static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 566 short generation)
1da177e4
LT
567{
568 struct stripe_head *sh;
569
45b4233c 570 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 571 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 572 if (sh->sector == sector && sh->generation == generation)
1da177e4 573 return sh;
45b4233c 574 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
575 return NULL;
576}
577
674806d6
N
578/*
579 * Need to check if array has failed when deciding whether to:
580 * - start an array
581 * - remove non-faulty devices
582 * - add a spare
583 * - allow a reshape
584 * This determination is simple when no reshape is happening.
585 * However if there is a reshape, we need to carefully check
586 * both the before and after sections.
587 * This is because some failed devices may only affect one
588 * of the two sections, and some non-in_sync devices may
589 * be insync in the section most affected by failed devices.
590 */
908f4fbd 591static int calc_degraded(struct r5conf *conf)
674806d6 592{
908f4fbd 593 int degraded, degraded2;
674806d6 594 int i;
674806d6
N
595
596 rcu_read_lock();
597 degraded = 0;
598 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 599 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
600 if (rdev && test_bit(Faulty, &rdev->flags))
601 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
602 if (!rdev || test_bit(Faulty, &rdev->flags))
603 degraded++;
604 else if (test_bit(In_sync, &rdev->flags))
605 ;
606 else
607 /* not in-sync or faulty.
608 * If the reshape increases the number of devices,
609 * this is being recovered by the reshape, so
610 * this 'previous' section is not in_sync.
611 * If the number of devices is being reduced however,
612 * the device can only be part of the array if
613 * we are reverting a reshape, so this section will
614 * be in-sync.
615 */
616 if (conf->raid_disks >= conf->previous_raid_disks)
617 degraded++;
618 }
619 rcu_read_unlock();
908f4fbd
N
620 if (conf->raid_disks == conf->previous_raid_disks)
621 return degraded;
674806d6 622 rcu_read_lock();
908f4fbd 623 degraded2 = 0;
674806d6 624 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 625 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
626 if (rdev && test_bit(Faulty, &rdev->flags))
627 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 628 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 629 degraded2++;
674806d6
N
630 else if (test_bit(In_sync, &rdev->flags))
631 ;
632 else
633 /* not in-sync or faulty.
634 * If reshape increases the number of devices, this
635 * section has already been recovered, else it
636 * almost certainly hasn't.
637 */
638 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 639 degraded2++;
674806d6
N
640 }
641 rcu_read_unlock();
908f4fbd
N
642 if (degraded2 > degraded)
643 return degraded2;
644 return degraded;
645}
646
647static int has_failed(struct r5conf *conf)
648{
649 int degraded;
650
651 if (conf->mddev->reshape_position == MaxSector)
652 return conf->mddev->degraded > conf->max_degraded;
653
654 degraded = calc_degraded(conf);
674806d6
N
655 if (degraded > conf->max_degraded)
656 return 1;
657 return 0;
658}
659
b5663ba4 660static struct stripe_head *
d1688a6d 661get_active_stripe(struct r5conf *conf, sector_t sector,
a8c906ca 662 int previous, int noblock, int noquiesce)
1da177e4
LT
663{
664 struct stripe_head *sh;
566c09c5 665 int hash = stripe_hash_locks_hash(sector);
1da177e4 666
45b4233c 667 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 668
566c09c5 669 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
670
671 do {
b1b46486 672 wait_event_lock_irq(conf->wait_for_quiescent,
a8c906ca 673 conf->quiesce == 0 || noquiesce,
566c09c5 674 *(conf->hash_locks + hash));
86b42c71 675 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 676 if (!sh) {
edbe83ab 677 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 678 sh = get_free_stripe(conf, hash);
edbe83ab
N
679 if (!sh && llist_empty(&conf->released_stripes) &&
680 !test_bit(R5_DID_ALLOC, &conf->cache_state))
681 set_bit(R5_ALLOC_MORE,
682 &conf->cache_state);
683 }
1da177e4
LT
684 if (noblock && sh == NULL)
685 break;
686 if (!sh) {
5423399a
N
687 set_bit(R5_INACTIVE_BLOCKED,
688 &conf->cache_state);
566c09c5
SL
689 wait_event_lock_irq(
690 conf->wait_for_stripe,
691 !list_empty(conf->inactive_list + hash) &&
692 (atomic_read(&conf->active_stripes)
693 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
694 || !test_bit(R5_INACTIVE_BLOCKED,
695 &conf->cache_state)),
566c09c5 696 *(conf->hash_locks + hash));
5423399a
N
697 clear_bit(R5_INACTIVE_BLOCKED,
698 &conf->cache_state);
7da9d450 699 } else {
b5663ba4 700 init_stripe(sh, sector, previous);
7da9d450
N
701 atomic_inc(&sh->count);
702 }
e240c183 703 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 704 spin_lock(&conf->device_lock);
e240c183 705 if (!atomic_read(&sh->count)) {
1da177e4
LT
706 if (!test_bit(STRIPE_HANDLE, &sh->state))
707 atomic_inc(&conf->active_stripes);
5af9bef7
N
708 BUG_ON(list_empty(&sh->lru) &&
709 !test_bit(STRIPE_EXPANDING, &sh->state));
16a53ecc 710 list_del_init(&sh->lru);
bfc90cb0
SL
711 if (sh->group) {
712 sh->group->stripes_cnt--;
713 sh->group = NULL;
714 }
1da177e4 715 }
7da9d450 716 atomic_inc(&sh->count);
6d183de4 717 spin_unlock(&conf->device_lock);
1da177e4
LT
718 }
719 } while (sh == NULL);
720
566c09c5 721 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
722 return sh;
723}
724
7a87f434 725static bool is_full_stripe_write(struct stripe_head *sh)
726{
727 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
728 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
729}
730
59fc630b 731static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
732{
733 local_irq_disable();
734 if (sh1 > sh2) {
735 spin_lock(&sh2->stripe_lock);
736 spin_lock_nested(&sh1->stripe_lock, 1);
737 } else {
738 spin_lock(&sh1->stripe_lock);
739 spin_lock_nested(&sh2->stripe_lock, 1);
740 }
741}
742
743static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
744{
745 spin_unlock(&sh1->stripe_lock);
746 spin_unlock(&sh2->stripe_lock);
747 local_irq_enable();
748}
749
750/* Only freshly new full stripe normal write stripe can be added to a batch list */
751static bool stripe_can_batch(struct stripe_head *sh)
752{
753 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 754 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 755 is_full_stripe_write(sh);
756}
757
758/* we only do back search */
759static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
760{
761 struct stripe_head *head;
762 sector_t head_sector, tmp_sec;
763 int hash;
764 int dd_idx;
765
766 if (!stripe_can_batch(sh))
767 return;
768 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
769 tmp_sec = sh->sector;
770 if (!sector_div(tmp_sec, conf->chunk_sectors))
771 return;
772 head_sector = sh->sector - STRIPE_SECTORS;
773
774 hash = stripe_hash_locks_hash(head_sector);
775 spin_lock_irq(conf->hash_locks + hash);
776 head = __find_stripe(conf, head_sector, conf->generation);
777 if (head && !atomic_inc_not_zero(&head->count)) {
778 spin_lock(&conf->device_lock);
779 if (!atomic_read(&head->count)) {
780 if (!test_bit(STRIPE_HANDLE, &head->state))
781 atomic_inc(&conf->active_stripes);
782 BUG_ON(list_empty(&head->lru) &&
783 !test_bit(STRIPE_EXPANDING, &head->state));
784 list_del_init(&head->lru);
785 if (head->group) {
786 head->group->stripes_cnt--;
787 head->group = NULL;
788 }
789 }
790 atomic_inc(&head->count);
791 spin_unlock(&conf->device_lock);
792 }
793 spin_unlock_irq(conf->hash_locks + hash);
794
795 if (!head)
796 return;
797 if (!stripe_can_batch(head))
798 goto out;
799
800 lock_two_stripes(head, sh);
801 /* clear_batch_ready clear the flag */
802 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
803 goto unlock_out;
804
805 if (sh->batch_head)
806 goto unlock_out;
807
808 dd_idx = 0;
809 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
810 dd_idx++;
811 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
812 goto unlock_out;
813
814 if (head->batch_head) {
815 spin_lock(&head->batch_head->batch_lock);
816 /* This batch list is already running */
817 if (!stripe_can_batch(head)) {
818 spin_unlock(&head->batch_head->batch_lock);
819 goto unlock_out;
820 }
821
822 /*
823 * at this point, head's BATCH_READY could be cleared, but we
824 * can still add the stripe to batch list
825 */
826 list_add(&sh->batch_list, &head->batch_list);
827 spin_unlock(&head->batch_head->batch_lock);
828
829 sh->batch_head = head->batch_head;
830 } else {
831 head->batch_head = head;
832 sh->batch_head = head->batch_head;
833 spin_lock(&head->batch_lock);
834 list_add_tail(&sh->batch_list, &head->batch_list);
835 spin_unlock(&head->batch_lock);
836 }
837
838 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
839 if (atomic_dec_return(&conf->preread_active_stripes)
840 < IO_THRESHOLD)
841 md_wakeup_thread(conf->mddev->thread);
842
2b6b2457
N
843 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
844 int seq = sh->bm_seq;
845 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
846 sh->batch_head->bm_seq > seq)
847 seq = sh->batch_head->bm_seq;
848 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
849 sh->batch_head->bm_seq = seq;
850 }
851
59fc630b 852 atomic_inc(&sh->count);
853unlock_out:
854 unlock_two_stripes(head, sh);
855out:
856 release_stripe(head);
857}
858
05616be5
N
859/* Determine if 'data_offset' or 'new_data_offset' should be used
860 * in this stripe_head.
861 */
862static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
863{
864 sector_t progress = conf->reshape_progress;
865 /* Need a memory barrier to make sure we see the value
866 * of conf->generation, or ->data_offset that was set before
867 * reshape_progress was updated.
868 */
869 smp_rmb();
870 if (progress == MaxSector)
871 return 0;
872 if (sh->generation == conf->generation - 1)
873 return 0;
874 /* We are in a reshape, and this is a new-generation stripe,
875 * so use new_data_offset.
876 */
877 return 1;
878}
879
6712ecf8
N
880static void
881raid5_end_read_request(struct bio *bi, int error);
882static void
883raid5_end_write_request(struct bio *bi, int error);
91c00924 884
c4e5ac0a 885static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 886{
d1688a6d 887 struct r5conf *conf = sh->raid_conf;
91c00924 888 int i, disks = sh->disks;
59fc630b 889 struct stripe_head *head_sh = sh;
91c00924
DW
890
891 might_sleep();
892
893 for (i = disks; i--; ) {
894 int rw;
9a3e1101 895 int replace_only = 0;
977df362
N
896 struct bio *bi, *rbi;
897 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 898
899 sh = head_sh;
e9c7469b
TH
900 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
901 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
902 rw = WRITE_FUA;
903 else
904 rw = WRITE;
9e444768 905 if (test_bit(R5_Discard, &sh->dev[i].flags))
620125f2 906 rw |= REQ_DISCARD;
e9c7469b 907 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924 908 rw = READ;
9a3e1101
N
909 else if (test_and_clear_bit(R5_WantReplace,
910 &sh->dev[i].flags)) {
911 rw = WRITE;
912 replace_only = 1;
913 } else
91c00924 914 continue;
bc0934f0
SL
915 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
916 rw |= REQ_SYNC;
91c00924 917
59fc630b 918again:
91c00924 919 bi = &sh->dev[i].req;
977df362 920 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 921
91c00924 922 rcu_read_lock();
9a3e1101 923 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
924 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
925 rdev = rcu_dereference(conf->disks[i].rdev);
926 if (!rdev) {
927 rdev = rrdev;
928 rrdev = NULL;
929 }
9a3e1101
N
930 if (rw & WRITE) {
931 if (replace_only)
932 rdev = NULL;
dd054fce
N
933 if (rdev == rrdev)
934 /* We raced and saw duplicates */
935 rrdev = NULL;
9a3e1101 936 } else {
59fc630b 937 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
938 rdev = rrdev;
939 rrdev = NULL;
940 }
977df362 941
91c00924
DW
942 if (rdev && test_bit(Faulty, &rdev->flags))
943 rdev = NULL;
944 if (rdev)
945 atomic_inc(&rdev->nr_pending);
977df362
N
946 if (rrdev && test_bit(Faulty, &rrdev->flags))
947 rrdev = NULL;
948 if (rrdev)
949 atomic_inc(&rrdev->nr_pending);
91c00924
DW
950 rcu_read_unlock();
951
73e92e51 952 /* We have already checked bad blocks for reads. Now
977df362
N
953 * need to check for writes. We never accept write errors
954 * on the replacement, so we don't to check rrdev.
73e92e51
N
955 */
956 while ((rw & WRITE) && rdev &&
957 test_bit(WriteErrorSeen, &rdev->flags)) {
958 sector_t first_bad;
959 int bad_sectors;
960 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
961 &first_bad, &bad_sectors);
962 if (!bad)
963 break;
964
965 if (bad < 0) {
966 set_bit(BlockedBadBlocks, &rdev->flags);
967 if (!conf->mddev->external &&
968 conf->mddev->flags) {
969 /* It is very unlikely, but we might
970 * still need to write out the
971 * bad block log - better give it
972 * a chance*/
973 md_check_recovery(conf->mddev);
974 }
1850753d 975 /*
976 * Because md_wait_for_blocked_rdev
977 * will dec nr_pending, we must
978 * increment it first.
979 */
980 atomic_inc(&rdev->nr_pending);
73e92e51
N
981 md_wait_for_blocked_rdev(rdev, conf->mddev);
982 } else {
983 /* Acknowledged bad block - skip the write */
984 rdev_dec_pending(rdev, conf->mddev);
985 rdev = NULL;
986 }
987 }
988
91c00924 989 if (rdev) {
9a3e1101
N
990 if (s->syncing || s->expanding || s->expanded
991 || s->replacing)
91c00924
DW
992 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
993
2b7497f0
DW
994 set_bit(STRIPE_IO_STARTED, &sh->state);
995
2f6db2a7 996 bio_reset(bi);
91c00924 997 bi->bi_bdev = rdev->bdev;
2f6db2a7
KO
998 bi->bi_rw = rw;
999 bi->bi_end_io = (rw & WRITE)
1000 ? raid5_end_write_request
1001 : raid5_end_read_request;
1002 bi->bi_private = sh;
1003
91c00924 1004 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 1005 __func__, (unsigned long long)sh->sector,
91c00924
DW
1006 bi->bi_rw, i);
1007 atomic_inc(&sh->count);
59fc630b 1008 if (sh != head_sh)
1009 atomic_inc(&head_sh->count);
05616be5 1010 if (use_new_offset(conf, sh))
4f024f37 1011 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1012 + rdev->new_data_offset);
1013 else
4f024f37 1014 bi->bi_iter.bi_sector = (sh->sector
05616be5 1015 + rdev->data_offset);
59fc630b 1016 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
e59aa23f 1017 bi->bi_rw |= REQ_NOMERGE;
3f9e7c14 1018
d592a996
SL
1019 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1020 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1021 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1022 bi->bi_vcnt = 1;
91c00924
DW
1023 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1024 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1025 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1026 /*
1027 * If this is discard request, set bi_vcnt 0. We don't
1028 * want to confuse SCSI because SCSI will replace payload
1029 */
1030 if (rw & REQ_DISCARD)
1031 bi->bi_vcnt = 0;
977df362
N
1032 if (rrdev)
1033 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1034
1035 if (conf->mddev->gendisk)
1036 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1037 bi, disk_devt(conf->mddev->gendisk),
1038 sh->dev[i].sector);
91c00924 1039 generic_make_request(bi);
977df362
N
1040 }
1041 if (rrdev) {
9a3e1101
N
1042 if (s->syncing || s->expanding || s->expanded
1043 || s->replacing)
977df362
N
1044 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1045
1046 set_bit(STRIPE_IO_STARTED, &sh->state);
1047
2f6db2a7 1048 bio_reset(rbi);
977df362 1049 rbi->bi_bdev = rrdev->bdev;
2f6db2a7
KO
1050 rbi->bi_rw = rw;
1051 BUG_ON(!(rw & WRITE));
1052 rbi->bi_end_io = raid5_end_write_request;
1053 rbi->bi_private = sh;
1054
977df362
N
1055 pr_debug("%s: for %llu schedule op %ld on "
1056 "replacement disc %d\n",
1057 __func__, (unsigned long long)sh->sector,
1058 rbi->bi_rw, i);
1059 atomic_inc(&sh->count);
59fc630b 1060 if (sh != head_sh)
1061 atomic_inc(&head_sh->count);
05616be5 1062 if (use_new_offset(conf, sh))
4f024f37 1063 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1064 + rrdev->new_data_offset);
1065 else
4f024f37 1066 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1067 + rrdev->data_offset);
d592a996
SL
1068 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1069 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1070 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1071 rbi->bi_vcnt = 1;
977df362
N
1072 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1073 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1074 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1075 /*
1076 * If this is discard request, set bi_vcnt 0. We don't
1077 * want to confuse SCSI because SCSI will replace payload
1078 */
1079 if (rw & REQ_DISCARD)
1080 rbi->bi_vcnt = 0;
e3620a3a
JB
1081 if (conf->mddev->gendisk)
1082 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1083 rbi, disk_devt(conf->mddev->gendisk),
1084 sh->dev[i].sector);
977df362
N
1085 generic_make_request(rbi);
1086 }
1087 if (!rdev && !rrdev) {
b062962e 1088 if (rw & WRITE)
91c00924
DW
1089 set_bit(STRIPE_DEGRADED, &sh->state);
1090 pr_debug("skip op %ld on disc %d for sector %llu\n",
1091 bi->bi_rw, i, (unsigned long long)sh->sector);
1092 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1093 set_bit(STRIPE_HANDLE, &sh->state);
1094 }
59fc630b 1095
1096 if (!head_sh->batch_head)
1097 continue;
1098 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1099 batch_list);
1100 if (sh != head_sh)
1101 goto again;
91c00924
DW
1102 }
1103}
1104
1105static struct dma_async_tx_descriptor *
d592a996
SL
1106async_copy_data(int frombio, struct bio *bio, struct page **page,
1107 sector_t sector, struct dma_async_tx_descriptor *tx,
1108 struct stripe_head *sh)
91c00924 1109{
7988613b
KO
1110 struct bio_vec bvl;
1111 struct bvec_iter iter;
91c00924 1112 struct page *bio_page;
91c00924 1113 int page_offset;
a08abd8c 1114 struct async_submit_ctl submit;
0403e382 1115 enum async_tx_flags flags = 0;
91c00924 1116
4f024f37
KO
1117 if (bio->bi_iter.bi_sector >= sector)
1118 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1119 else
4f024f37 1120 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1121
0403e382
DW
1122 if (frombio)
1123 flags |= ASYNC_TX_FENCE;
1124 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1125
7988613b
KO
1126 bio_for_each_segment(bvl, bio, iter) {
1127 int len = bvl.bv_len;
91c00924
DW
1128 int clen;
1129 int b_offset = 0;
1130
1131 if (page_offset < 0) {
1132 b_offset = -page_offset;
1133 page_offset += b_offset;
1134 len -= b_offset;
1135 }
1136
1137 if (len > 0 && page_offset + len > STRIPE_SIZE)
1138 clen = STRIPE_SIZE - page_offset;
1139 else
1140 clen = len;
1141
1142 if (clen > 0) {
7988613b
KO
1143 b_offset += bvl.bv_offset;
1144 bio_page = bvl.bv_page;
d592a996
SL
1145 if (frombio) {
1146 if (sh->raid_conf->skip_copy &&
1147 b_offset == 0 && page_offset == 0 &&
1148 clen == STRIPE_SIZE)
1149 *page = bio_page;
1150 else
1151 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1152 b_offset, clen, &submit);
d592a996
SL
1153 } else
1154 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1155 page_offset, clen, &submit);
91c00924 1156 }
a08abd8c
DW
1157 /* chain the operations */
1158 submit.depend_tx = tx;
1159
91c00924
DW
1160 if (clen < len) /* hit end of page */
1161 break;
1162 page_offset += len;
1163 }
1164
1165 return tx;
1166}
1167
1168static void ops_complete_biofill(void *stripe_head_ref)
1169{
1170 struct stripe_head *sh = stripe_head_ref;
1171 struct bio *return_bi = NULL;
e4d84909 1172 int i;
91c00924 1173
e46b272b 1174 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1175 (unsigned long long)sh->sector);
1176
1177 /* clear completed biofills */
1178 for (i = sh->disks; i--; ) {
1179 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1180
1181 /* acknowledge completion of a biofill operation */
e4d84909
DW
1182 /* and check if we need to reply to a read request,
1183 * new R5_Wantfill requests are held off until
83de75cc 1184 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1185 */
1186 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1187 struct bio *rbi, *rbi2;
91c00924 1188
91c00924
DW
1189 BUG_ON(!dev->read);
1190 rbi = dev->read;
1191 dev->read = NULL;
4f024f37 1192 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1193 dev->sector + STRIPE_SECTORS) {
1194 rbi2 = r5_next_bio(rbi, dev->sector);
e7836bd6 1195 if (!raid5_dec_bi_active_stripes(rbi)) {
91c00924
DW
1196 rbi->bi_next = return_bi;
1197 return_bi = rbi;
1198 }
91c00924
DW
1199 rbi = rbi2;
1200 }
1201 }
1202 }
83de75cc 1203 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
1204
1205 return_io(return_bi);
1206
e4d84909 1207 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
1208 release_stripe(sh);
1209}
1210
1211static void ops_run_biofill(struct stripe_head *sh)
1212{
1213 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1214 struct async_submit_ctl submit;
91c00924
DW
1215 int i;
1216
59fc630b 1217 BUG_ON(sh->batch_head);
e46b272b 1218 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1219 (unsigned long long)sh->sector);
1220
1221 for (i = sh->disks; i--; ) {
1222 struct r5dev *dev = &sh->dev[i];
1223 if (test_bit(R5_Wantfill, &dev->flags)) {
1224 struct bio *rbi;
b17459c0 1225 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1226 dev->read = rbi = dev->toread;
1227 dev->toread = NULL;
b17459c0 1228 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1229 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1230 dev->sector + STRIPE_SECTORS) {
d592a996
SL
1231 tx = async_copy_data(0, rbi, &dev->page,
1232 dev->sector, tx, sh);
91c00924
DW
1233 rbi = r5_next_bio(rbi, dev->sector);
1234 }
1235 }
1236 }
1237
1238 atomic_inc(&sh->count);
a08abd8c
DW
1239 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1240 async_trigger_callback(&submit);
91c00924
DW
1241}
1242
4e7d2c0a 1243static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1244{
4e7d2c0a 1245 struct r5dev *tgt;
91c00924 1246
4e7d2c0a
DW
1247 if (target < 0)
1248 return;
91c00924 1249
4e7d2c0a 1250 tgt = &sh->dev[target];
91c00924
DW
1251 set_bit(R5_UPTODATE, &tgt->flags);
1252 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1253 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1254}
1255
ac6b53b6 1256static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1257{
1258 struct stripe_head *sh = stripe_head_ref;
91c00924 1259
e46b272b 1260 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1261 (unsigned long long)sh->sector);
1262
ac6b53b6 1263 /* mark the computed target(s) as uptodate */
4e7d2c0a 1264 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1265 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1266
ecc65c9b
DW
1267 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1268 if (sh->check_state == check_state_compute_run)
1269 sh->check_state = check_state_compute_result;
91c00924
DW
1270 set_bit(STRIPE_HANDLE, &sh->state);
1271 release_stripe(sh);
1272}
1273
d6f38f31
DW
1274/* return a pointer to the address conversion region of the scribble buffer */
1275static addr_conv_t *to_addr_conv(struct stripe_head *sh,
46d5b785 1276 struct raid5_percpu *percpu, int i)
d6f38f31 1277{
46d5b785 1278 void *addr;
1279
1280 addr = flex_array_get(percpu->scribble, i);
1281 return addr + sizeof(struct page *) * (sh->disks + 2);
1282}
1283
1284/* return a pointer to the address conversion region of the scribble buffer */
1285static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1286{
1287 void *addr;
1288
1289 addr = flex_array_get(percpu->scribble, i);
1290 return addr;
d6f38f31
DW
1291}
1292
1293static struct dma_async_tx_descriptor *
1294ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1295{
91c00924 1296 int disks = sh->disks;
46d5b785 1297 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1298 int target = sh->ops.target;
1299 struct r5dev *tgt = &sh->dev[target];
1300 struct page *xor_dest = tgt->page;
1301 int count = 0;
1302 struct dma_async_tx_descriptor *tx;
a08abd8c 1303 struct async_submit_ctl submit;
91c00924
DW
1304 int i;
1305
59fc630b 1306 BUG_ON(sh->batch_head);
1307
91c00924 1308 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1309 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1310 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1311
1312 for (i = disks; i--; )
1313 if (i != target)
1314 xor_srcs[count++] = sh->dev[i].page;
1315
1316 atomic_inc(&sh->count);
1317
0403e382 1318 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1319 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1320 if (unlikely(count == 1))
a08abd8c 1321 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1322 else
a08abd8c 1323 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1324
91c00924
DW
1325 return tx;
1326}
1327
ac6b53b6
DW
1328/* set_syndrome_sources - populate source buffers for gen_syndrome
1329 * @srcs - (struct page *) array of size sh->disks
1330 * @sh - stripe_head to parse
1331 *
1332 * Populates srcs in proper layout order for the stripe and returns the
1333 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1334 * destination buffer is recorded in srcs[count] and the Q destination
1335 * is recorded in srcs[count+1]].
1336 */
584acdd4
MS
1337static int set_syndrome_sources(struct page **srcs,
1338 struct stripe_head *sh,
1339 int srctype)
ac6b53b6
DW
1340{
1341 int disks = sh->disks;
1342 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1343 int d0_idx = raid6_d0(sh);
1344 int count;
1345 int i;
1346
1347 for (i = 0; i < disks; i++)
5dd33c9a 1348 srcs[i] = NULL;
ac6b53b6
DW
1349
1350 count = 0;
1351 i = d0_idx;
1352 do {
1353 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1354 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1355
584acdd4
MS
1356 if (i == sh->qd_idx || i == sh->pd_idx ||
1357 (srctype == SYNDROME_SRC_ALL) ||
1358 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1359 test_bit(R5_Wantdrain, &dev->flags)) ||
1360 (srctype == SYNDROME_SRC_WRITTEN &&
1361 dev->written))
1362 srcs[slot] = sh->dev[i].page;
ac6b53b6
DW
1363 i = raid6_next_disk(i, disks);
1364 } while (i != d0_idx);
ac6b53b6 1365
e4424fee 1366 return syndrome_disks;
ac6b53b6
DW
1367}
1368
1369static struct dma_async_tx_descriptor *
1370ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1371{
1372 int disks = sh->disks;
46d5b785 1373 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1374 int target;
1375 int qd_idx = sh->qd_idx;
1376 struct dma_async_tx_descriptor *tx;
1377 struct async_submit_ctl submit;
1378 struct r5dev *tgt;
1379 struct page *dest;
1380 int i;
1381 int count;
1382
59fc630b 1383 BUG_ON(sh->batch_head);
ac6b53b6
DW
1384 if (sh->ops.target < 0)
1385 target = sh->ops.target2;
1386 else if (sh->ops.target2 < 0)
1387 target = sh->ops.target;
91c00924 1388 else
ac6b53b6
DW
1389 /* we should only have one valid target */
1390 BUG();
1391 BUG_ON(target < 0);
1392 pr_debug("%s: stripe %llu block: %d\n",
1393 __func__, (unsigned long long)sh->sector, target);
1394
1395 tgt = &sh->dev[target];
1396 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1397 dest = tgt->page;
1398
1399 atomic_inc(&sh->count);
1400
1401 if (target == qd_idx) {
584acdd4 1402 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1403 blocks[count] = NULL; /* regenerating p is not necessary */
1404 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1405 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1406 ops_complete_compute, sh,
46d5b785 1407 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1408 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1409 } else {
1410 /* Compute any data- or p-drive using XOR */
1411 count = 0;
1412 for (i = disks; i-- ; ) {
1413 if (i == target || i == qd_idx)
1414 continue;
1415 blocks[count++] = sh->dev[i].page;
1416 }
1417
0403e382
DW
1418 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1419 NULL, ops_complete_compute, sh,
46d5b785 1420 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1421 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1422 }
91c00924 1423
91c00924
DW
1424 return tx;
1425}
1426
ac6b53b6
DW
1427static struct dma_async_tx_descriptor *
1428ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1429{
1430 int i, count, disks = sh->disks;
1431 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1432 int d0_idx = raid6_d0(sh);
1433 int faila = -1, failb = -1;
1434 int target = sh->ops.target;
1435 int target2 = sh->ops.target2;
1436 struct r5dev *tgt = &sh->dev[target];
1437 struct r5dev *tgt2 = &sh->dev[target2];
1438 struct dma_async_tx_descriptor *tx;
46d5b785 1439 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1440 struct async_submit_ctl submit;
1441
59fc630b 1442 BUG_ON(sh->batch_head);
ac6b53b6
DW
1443 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1444 __func__, (unsigned long long)sh->sector, target, target2);
1445 BUG_ON(target < 0 || target2 < 0);
1446 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1447 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1448
6c910a78 1449 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1450 * slot number conversion for 'faila' and 'failb'
1451 */
1452 for (i = 0; i < disks ; i++)
5dd33c9a 1453 blocks[i] = NULL;
ac6b53b6
DW
1454 count = 0;
1455 i = d0_idx;
1456 do {
1457 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1458
1459 blocks[slot] = sh->dev[i].page;
1460
1461 if (i == target)
1462 faila = slot;
1463 if (i == target2)
1464 failb = slot;
1465 i = raid6_next_disk(i, disks);
1466 } while (i != d0_idx);
ac6b53b6
DW
1467
1468 BUG_ON(faila == failb);
1469 if (failb < faila)
1470 swap(faila, failb);
1471 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1472 __func__, (unsigned long long)sh->sector, faila, failb);
1473
1474 atomic_inc(&sh->count);
1475
1476 if (failb == syndrome_disks+1) {
1477 /* Q disk is one of the missing disks */
1478 if (faila == syndrome_disks) {
1479 /* Missing P+Q, just recompute */
0403e382
DW
1480 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1481 ops_complete_compute, sh,
46d5b785 1482 to_addr_conv(sh, percpu, 0));
e4424fee 1483 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1484 STRIPE_SIZE, &submit);
1485 } else {
1486 struct page *dest;
1487 int data_target;
1488 int qd_idx = sh->qd_idx;
1489
1490 /* Missing D+Q: recompute D from P, then recompute Q */
1491 if (target == qd_idx)
1492 data_target = target2;
1493 else
1494 data_target = target;
1495
1496 count = 0;
1497 for (i = disks; i-- ; ) {
1498 if (i == data_target || i == qd_idx)
1499 continue;
1500 blocks[count++] = sh->dev[i].page;
1501 }
1502 dest = sh->dev[data_target].page;
0403e382
DW
1503 init_async_submit(&submit,
1504 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1505 NULL, NULL, NULL,
46d5b785 1506 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1507 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1508 &submit);
1509
584acdd4 1510 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1511 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1512 ops_complete_compute, sh,
46d5b785 1513 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1514 return async_gen_syndrome(blocks, 0, count+2,
1515 STRIPE_SIZE, &submit);
1516 }
ac6b53b6 1517 } else {
6c910a78
DW
1518 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1519 ops_complete_compute, sh,
46d5b785 1520 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1521 if (failb == syndrome_disks) {
1522 /* We're missing D+P. */
1523 return async_raid6_datap_recov(syndrome_disks+2,
1524 STRIPE_SIZE, faila,
1525 blocks, &submit);
1526 } else {
1527 /* We're missing D+D. */
1528 return async_raid6_2data_recov(syndrome_disks+2,
1529 STRIPE_SIZE, faila, failb,
1530 blocks, &submit);
1531 }
ac6b53b6
DW
1532 }
1533}
1534
91c00924
DW
1535static void ops_complete_prexor(void *stripe_head_ref)
1536{
1537 struct stripe_head *sh = stripe_head_ref;
1538
e46b272b 1539 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1540 (unsigned long long)sh->sector);
91c00924
DW
1541}
1542
1543static struct dma_async_tx_descriptor *
584acdd4
MS
1544ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1545 struct dma_async_tx_descriptor *tx)
91c00924 1546{
91c00924 1547 int disks = sh->disks;
46d5b785 1548 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1549 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1550 struct async_submit_ctl submit;
91c00924
DW
1551
1552 /* existing parity data subtracted */
1553 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1554
59fc630b 1555 BUG_ON(sh->batch_head);
e46b272b 1556 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1557 (unsigned long long)sh->sector);
1558
1559 for (i = disks; i--; ) {
1560 struct r5dev *dev = &sh->dev[i];
1561 /* Only process blocks that are known to be uptodate */
d8ee0728 1562 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1563 xor_srcs[count++] = dev->page;
1564 }
1565
0403e382 1566 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1567 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1568 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1569
1570 return tx;
1571}
1572
584acdd4
MS
1573static struct dma_async_tx_descriptor *
1574ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1575 struct dma_async_tx_descriptor *tx)
1576{
1577 struct page **blocks = to_addr_page(percpu, 0);
1578 int count;
1579 struct async_submit_ctl submit;
1580
1581 pr_debug("%s: stripe %llu\n", __func__,
1582 (unsigned long long)sh->sector);
1583
1584 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1585
1586 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1587 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1588 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1589
1590 return tx;
1591}
1592
91c00924 1593static struct dma_async_tx_descriptor *
d8ee0728 1594ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1595{
1596 int disks = sh->disks;
d8ee0728 1597 int i;
59fc630b 1598 struct stripe_head *head_sh = sh;
91c00924 1599
e46b272b 1600 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1601 (unsigned long long)sh->sector);
1602
1603 for (i = disks; i--; ) {
59fc630b 1604 struct r5dev *dev;
91c00924 1605 struct bio *chosen;
91c00924 1606
59fc630b 1607 sh = head_sh;
1608 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1609 struct bio *wbi;
1610
59fc630b 1611again:
1612 dev = &sh->dev[i];
b17459c0 1613 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1614 chosen = dev->towrite;
1615 dev->towrite = NULL;
7a87f434 1616 sh->overwrite_disks = 0;
91c00924
DW
1617 BUG_ON(dev->written);
1618 wbi = dev->written = chosen;
b17459c0 1619 spin_unlock_irq(&sh->stripe_lock);
d592a996 1620 WARN_ON(dev->page != dev->orig_page);
91c00924 1621
4f024f37 1622 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1623 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1624 if (wbi->bi_rw & REQ_FUA)
1625 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1626 if (wbi->bi_rw & REQ_SYNC)
1627 set_bit(R5_SyncIO, &dev->flags);
9e444768 1628 if (wbi->bi_rw & REQ_DISCARD)
620125f2 1629 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1630 else {
1631 tx = async_copy_data(1, wbi, &dev->page,
1632 dev->sector, tx, sh);
1633 if (dev->page != dev->orig_page) {
1634 set_bit(R5_SkipCopy, &dev->flags);
1635 clear_bit(R5_UPTODATE, &dev->flags);
1636 clear_bit(R5_OVERWRITE, &dev->flags);
1637 }
1638 }
91c00924
DW
1639 wbi = r5_next_bio(wbi, dev->sector);
1640 }
59fc630b 1641
1642 if (head_sh->batch_head) {
1643 sh = list_first_entry(&sh->batch_list,
1644 struct stripe_head,
1645 batch_list);
1646 if (sh == head_sh)
1647 continue;
1648 goto again;
1649 }
91c00924
DW
1650 }
1651 }
1652
1653 return tx;
1654}
1655
ac6b53b6 1656static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1657{
1658 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1659 int disks = sh->disks;
1660 int pd_idx = sh->pd_idx;
1661 int qd_idx = sh->qd_idx;
1662 int i;
9e444768 1663 bool fua = false, sync = false, discard = false;
91c00924 1664
e46b272b 1665 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1666 (unsigned long long)sh->sector);
1667
bc0934f0 1668 for (i = disks; i--; ) {
e9c7469b 1669 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1670 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1671 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1672 }
e9c7469b 1673
91c00924
DW
1674 for (i = disks; i--; ) {
1675 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1676
e9c7469b 1677 if (dev->written || i == pd_idx || i == qd_idx) {
d592a996 1678 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
9e444768 1679 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1680 if (fua)
1681 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1682 if (sync)
1683 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1684 }
91c00924
DW
1685 }
1686
d8ee0728
DW
1687 if (sh->reconstruct_state == reconstruct_state_drain_run)
1688 sh->reconstruct_state = reconstruct_state_drain_result;
1689 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1690 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1691 else {
1692 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1693 sh->reconstruct_state = reconstruct_state_result;
1694 }
91c00924
DW
1695
1696 set_bit(STRIPE_HANDLE, &sh->state);
1697 release_stripe(sh);
1698}
1699
1700static void
ac6b53b6
DW
1701ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1702 struct dma_async_tx_descriptor *tx)
91c00924 1703{
91c00924 1704 int disks = sh->disks;
59fc630b 1705 struct page **xor_srcs;
a08abd8c 1706 struct async_submit_ctl submit;
59fc630b 1707 int count, pd_idx = sh->pd_idx, i;
91c00924 1708 struct page *xor_dest;
d8ee0728 1709 int prexor = 0;
91c00924 1710 unsigned long flags;
59fc630b 1711 int j = 0;
1712 struct stripe_head *head_sh = sh;
1713 int last_stripe;
91c00924 1714
e46b272b 1715 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1716 (unsigned long long)sh->sector);
1717
620125f2
SL
1718 for (i = 0; i < sh->disks; i++) {
1719 if (pd_idx == i)
1720 continue;
1721 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1722 break;
1723 }
1724 if (i >= sh->disks) {
1725 atomic_inc(&sh->count);
620125f2
SL
1726 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1727 ops_complete_reconstruct(sh);
1728 return;
1729 }
59fc630b 1730again:
1731 count = 0;
1732 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1733 /* check if prexor is active which means only process blocks
1734 * that are part of a read-modify-write (written)
1735 */
59fc630b 1736 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1737 prexor = 1;
91c00924
DW
1738 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1739 for (i = disks; i--; ) {
1740 struct r5dev *dev = &sh->dev[i];
59fc630b 1741 if (head_sh->dev[i].written)
91c00924
DW
1742 xor_srcs[count++] = dev->page;
1743 }
1744 } else {
1745 xor_dest = sh->dev[pd_idx].page;
1746 for (i = disks; i--; ) {
1747 struct r5dev *dev = &sh->dev[i];
1748 if (i != pd_idx)
1749 xor_srcs[count++] = dev->page;
1750 }
1751 }
1752
91c00924
DW
1753 /* 1/ if we prexor'd then the dest is reused as a source
1754 * 2/ if we did not prexor then we are redoing the parity
1755 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1756 * for the synchronous xor case
1757 */
59fc630b 1758 last_stripe = !head_sh->batch_head ||
1759 list_first_entry(&sh->batch_list,
1760 struct stripe_head, batch_list) == head_sh;
1761 if (last_stripe) {
1762 flags = ASYNC_TX_ACK |
1763 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1764
1765 atomic_inc(&head_sh->count);
1766 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1767 to_addr_conv(sh, percpu, j));
1768 } else {
1769 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1770 init_async_submit(&submit, flags, tx, NULL, NULL,
1771 to_addr_conv(sh, percpu, j));
1772 }
91c00924 1773
a08abd8c
DW
1774 if (unlikely(count == 1))
1775 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1776 else
1777 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1778 if (!last_stripe) {
1779 j++;
1780 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1781 batch_list);
1782 goto again;
1783 }
91c00924
DW
1784}
1785
ac6b53b6
DW
1786static void
1787ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1788 struct dma_async_tx_descriptor *tx)
1789{
1790 struct async_submit_ctl submit;
59fc630b 1791 struct page **blocks;
1792 int count, i, j = 0;
1793 struct stripe_head *head_sh = sh;
1794 int last_stripe;
584acdd4
MS
1795 int synflags;
1796 unsigned long txflags;
ac6b53b6
DW
1797
1798 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1799
620125f2
SL
1800 for (i = 0; i < sh->disks; i++) {
1801 if (sh->pd_idx == i || sh->qd_idx == i)
1802 continue;
1803 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1804 break;
1805 }
1806 if (i >= sh->disks) {
1807 atomic_inc(&sh->count);
620125f2
SL
1808 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1809 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1810 ops_complete_reconstruct(sh);
1811 return;
1812 }
1813
59fc630b 1814again:
1815 blocks = to_addr_page(percpu, j);
584acdd4
MS
1816
1817 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1818 synflags = SYNDROME_SRC_WRITTEN;
1819 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1820 } else {
1821 synflags = SYNDROME_SRC_ALL;
1822 txflags = ASYNC_TX_ACK;
1823 }
1824
1825 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1826 last_stripe = !head_sh->batch_head ||
1827 list_first_entry(&sh->batch_list,
1828 struct stripe_head, batch_list) == head_sh;
1829
1830 if (last_stripe) {
1831 atomic_inc(&head_sh->count);
584acdd4 1832 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1833 head_sh, to_addr_conv(sh, percpu, j));
1834 } else
1835 init_async_submit(&submit, 0, tx, NULL, NULL,
1836 to_addr_conv(sh, percpu, j));
48769695 1837 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1838 if (!last_stripe) {
1839 j++;
1840 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1841 batch_list);
1842 goto again;
1843 }
91c00924
DW
1844}
1845
1846static void ops_complete_check(void *stripe_head_ref)
1847{
1848 struct stripe_head *sh = stripe_head_ref;
91c00924 1849
e46b272b 1850 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1851 (unsigned long long)sh->sector);
1852
ecc65c9b 1853 sh->check_state = check_state_check_result;
91c00924
DW
1854 set_bit(STRIPE_HANDLE, &sh->state);
1855 release_stripe(sh);
1856}
1857
ac6b53b6 1858static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1859{
91c00924 1860 int disks = sh->disks;
ac6b53b6
DW
1861 int pd_idx = sh->pd_idx;
1862 int qd_idx = sh->qd_idx;
1863 struct page *xor_dest;
46d5b785 1864 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1865 struct dma_async_tx_descriptor *tx;
a08abd8c 1866 struct async_submit_ctl submit;
ac6b53b6
DW
1867 int count;
1868 int i;
91c00924 1869
e46b272b 1870 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1871 (unsigned long long)sh->sector);
1872
59fc630b 1873 BUG_ON(sh->batch_head);
ac6b53b6
DW
1874 count = 0;
1875 xor_dest = sh->dev[pd_idx].page;
1876 xor_srcs[count++] = xor_dest;
91c00924 1877 for (i = disks; i--; ) {
ac6b53b6
DW
1878 if (i == pd_idx || i == qd_idx)
1879 continue;
1880 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1881 }
1882
d6f38f31 1883 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 1884 to_addr_conv(sh, percpu, 0));
099f53cb 1885 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1886 &sh->ops.zero_sum_result, &submit);
91c00924 1887
91c00924 1888 atomic_inc(&sh->count);
a08abd8c
DW
1889 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1890 tx = async_trigger_callback(&submit);
91c00924
DW
1891}
1892
ac6b53b6
DW
1893static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1894{
46d5b785 1895 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
1896 struct async_submit_ctl submit;
1897 int count;
1898
1899 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1900 (unsigned long long)sh->sector, checkp);
1901
59fc630b 1902 BUG_ON(sh->batch_head);
584acdd4 1903 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1904 if (!checkp)
1905 srcs[count] = NULL;
91c00924 1906
91c00924 1907 atomic_inc(&sh->count);
ac6b53b6 1908 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 1909 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1910 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1911 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1912}
1913
51acbcec 1914static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1915{
1916 int overlap_clear = 0, i, disks = sh->disks;
1917 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1918 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1919 int level = conf->level;
d6f38f31
DW
1920 struct raid5_percpu *percpu;
1921 unsigned long cpu;
91c00924 1922
d6f38f31
DW
1923 cpu = get_cpu();
1924 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1925 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1926 ops_run_biofill(sh);
1927 overlap_clear++;
1928 }
1929
7b3a871e 1930 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1931 if (level < 6)
1932 tx = ops_run_compute5(sh, percpu);
1933 else {
1934 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1935 tx = ops_run_compute6_1(sh, percpu);
1936 else
1937 tx = ops_run_compute6_2(sh, percpu);
1938 }
1939 /* terminate the chain if reconstruct is not set to be run */
1940 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1941 async_tx_ack(tx);
1942 }
91c00924 1943
584acdd4
MS
1944 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1945 if (level < 6)
1946 tx = ops_run_prexor5(sh, percpu, tx);
1947 else
1948 tx = ops_run_prexor6(sh, percpu, tx);
1949 }
91c00924 1950
600aa109 1951 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1952 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1953 overlap_clear++;
1954 }
1955
ac6b53b6
DW
1956 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1957 if (level < 6)
1958 ops_run_reconstruct5(sh, percpu, tx);
1959 else
1960 ops_run_reconstruct6(sh, percpu, tx);
1961 }
91c00924 1962
ac6b53b6
DW
1963 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1964 if (sh->check_state == check_state_run)
1965 ops_run_check_p(sh, percpu);
1966 else if (sh->check_state == check_state_run_q)
1967 ops_run_check_pq(sh, percpu, 0);
1968 else if (sh->check_state == check_state_run_pq)
1969 ops_run_check_pq(sh, percpu, 1);
1970 else
1971 BUG();
1972 }
91c00924 1973
59fc630b 1974 if (overlap_clear && !sh->batch_head)
91c00924
DW
1975 for (i = disks; i--; ) {
1976 struct r5dev *dev = &sh->dev[i];
1977 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1978 wake_up(&sh->raid_conf->wait_for_overlap);
1979 }
d6f38f31 1980 put_cpu();
91c00924
DW
1981}
1982
f18c1a35
N
1983static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1984{
1985 struct stripe_head *sh;
1986
1987 sh = kmem_cache_zalloc(sc, gfp);
1988 if (sh) {
1989 spin_lock_init(&sh->stripe_lock);
1990 spin_lock_init(&sh->batch_lock);
1991 INIT_LIST_HEAD(&sh->batch_list);
1992 INIT_LIST_HEAD(&sh->lru);
1993 atomic_set(&sh->count, 1);
1994 }
1995 return sh;
1996}
486f0644 1997static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
1998{
1999 struct stripe_head *sh;
f18c1a35
N
2000
2001 sh = alloc_stripe(conf->slab_cache, gfp);
3f294f4f
N
2002 if (!sh)
2003 return 0;
6ce32846 2004
3f294f4f 2005 sh->raid_conf = conf;
3f294f4f 2006
a9683a79 2007 if (grow_buffers(sh, gfp)) {
e4e11e38 2008 shrink_buffers(sh);
3f294f4f
N
2009 kmem_cache_free(conf->slab_cache, sh);
2010 return 0;
2011 }
486f0644
N
2012 sh->hash_lock_index =
2013 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2014 /* we just created an active stripe so... */
3f294f4f 2015 atomic_inc(&conf->active_stripes);
59fc630b 2016
3f294f4f 2017 release_stripe(sh);
486f0644 2018 conf->max_nr_stripes++;
3f294f4f
N
2019 return 1;
2020}
2021
d1688a6d 2022static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2023{
e18b890b 2024 struct kmem_cache *sc;
5e5e3e78 2025 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2026
f4be6b43
N
2027 if (conf->mddev->gendisk)
2028 sprintf(conf->cache_name[0],
2029 "raid%d-%s", conf->level, mdname(conf->mddev));
2030 else
2031 sprintf(conf->cache_name[0],
2032 "raid%d-%p", conf->level, conf->mddev);
2033 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2034
ad01c9e3
N
2035 conf->active_name = 0;
2036 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2037 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2038 0, 0, NULL);
1da177e4
LT
2039 if (!sc)
2040 return 1;
2041 conf->slab_cache = sc;
ad01c9e3 2042 conf->pool_size = devs;
486f0644
N
2043 while (num--)
2044 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2045 return 1;
486f0644 2046
1da177e4
LT
2047 return 0;
2048}
29269553 2049
d6f38f31
DW
2050/**
2051 * scribble_len - return the required size of the scribble region
2052 * @num - total number of disks in the array
2053 *
2054 * The size must be enough to contain:
2055 * 1/ a struct page pointer for each device in the array +2
2056 * 2/ room to convert each entry in (1) to its corresponding dma
2057 * (dma_map_page()) or page (page_address()) address.
2058 *
2059 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2060 * calculate over all devices (not just the data blocks), using zeros in place
2061 * of the P and Q blocks.
2062 */
46d5b785 2063static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
d6f38f31 2064{
46d5b785 2065 struct flex_array *ret;
d6f38f31
DW
2066 size_t len;
2067
2068 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
46d5b785 2069 ret = flex_array_alloc(len, cnt, flags);
2070 if (!ret)
2071 return NULL;
2072 /* always prealloc all elements, so no locking is required */
2073 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2074 flex_array_free(ret);
2075 return NULL;
2076 }
2077 return ret;
d6f38f31
DW
2078}
2079
738a2738
N
2080static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2081{
2082 unsigned long cpu;
2083 int err = 0;
2084
2085 mddev_suspend(conf->mddev);
2086 get_online_cpus();
2087 for_each_present_cpu(cpu) {
2088 struct raid5_percpu *percpu;
2089 struct flex_array *scribble;
2090
2091 percpu = per_cpu_ptr(conf->percpu, cpu);
2092 scribble = scribble_alloc(new_disks,
2093 new_sectors / STRIPE_SECTORS,
2094 GFP_NOIO);
2095
2096 if (scribble) {
2097 flex_array_free(percpu->scribble);
2098 percpu->scribble = scribble;
2099 } else {
2100 err = -ENOMEM;
2101 break;
2102 }
2103 }
2104 put_online_cpus();
2105 mddev_resume(conf->mddev);
2106 return err;
2107}
2108
d1688a6d 2109static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2110{
2111 /* Make all the stripes able to hold 'newsize' devices.
2112 * New slots in each stripe get 'page' set to a new page.
2113 *
2114 * This happens in stages:
2115 * 1/ create a new kmem_cache and allocate the required number of
2116 * stripe_heads.
83f0d77a 2117 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2118 * to the new stripe_heads. This will have the side effect of
2119 * freezing the array as once all stripe_heads have been collected,
2120 * no IO will be possible. Old stripe heads are freed once their
2121 * pages have been transferred over, and the old kmem_cache is
2122 * freed when all stripes are done.
2123 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2124 * we simple return a failre status - no need to clean anything up.
2125 * 4/ allocate new pages for the new slots in the new stripe_heads.
2126 * If this fails, we don't bother trying the shrink the
2127 * stripe_heads down again, we just leave them as they are.
2128 * As each stripe_head is processed the new one is released into
2129 * active service.
2130 *
2131 * Once step2 is started, we cannot afford to wait for a write,
2132 * so we use GFP_NOIO allocations.
2133 */
2134 struct stripe_head *osh, *nsh;
2135 LIST_HEAD(newstripes);
2136 struct disk_info *ndisks;
b5470dc5 2137 int err;
e18b890b 2138 struct kmem_cache *sc;
ad01c9e3 2139 int i;
566c09c5 2140 int hash, cnt;
ad01c9e3
N
2141
2142 if (newsize <= conf->pool_size)
2143 return 0; /* never bother to shrink */
2144
b5470dc5
DW
2145 err = md_allow_write(conf->mddev);
2146 if (err)
2147 return err;
2a2275d6 2148
ad01c9e3
N
2149 /* Step 1 */
2150 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2151 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2152 0, 0, NULL);
ad01c9e3
N
2153 if (!sc)
2154 return -ENOMEM;
2155
2156 for (i = conf->max_nr_stripes; i; i--) {
f18c1a35 2157 nsh = alloc_stripe(sc, GFP_KERNEL);
ad01c9e3
N
2158 if (!nsh)
2159 break;
2160
ad01c9e3 2161 nsh->raid_conf = conf;
ad01c9e3
N
2162 list_add(&nsh->lru, &newstripes);
2163 }
2164 if (i) {
2165 /* didn't get enough, give up */
2166 while (!list_empty(&newstripes)) {
2167 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2168 list_del(&nsh->lru);
2169 kmem_cache_free(sc, nsh);
2170 }
2171 kmem_cache_destroy(sc);
2172 return -ENOMEM;
2173 }
2174 /* Step 2 - Must use GFP_NOIO now.
2175 * OK, we have enough stripes, start collecting inactive
2176 * stripes and copying them over
2177 */
566c09c5
SL
2178 hash = 0;
2179 cnt = 0;
ad01c9e3 2180 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5
SL
2181 lock_device_hash_lock(conf, hash);
2182 wait_event_cmd(conf->wait_for_stripe,
2183 !list_empty(conf->inactive_list + hash),
2184 unlock_device_hash_lock(conf, hash),
2185 lock_device_hash_lock(conf, hash));
2186 osh = get_free_stripe(conf, hash);
2187 unlock_device_hash_lock(conf, hash);
f18c1a35 2188
d592a996 2189 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2190 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2191 nsh->dev[i].orig_page = osh->dev[i].page;
2192 }
566c09c5 2193 nsh->hash_lock_index = hash;
ad01c9e3 2194 kmem_cache_free(conf->slab_cache, osh);
566c09c5
SL
2195 cnt++;
2196 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2197 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2198 hash++;
2199 cnt = 0;
2200 }
ad01c9e3
N
2201 }
2202 kmem_cache_destroy(conf->slab_cache);
2203
2204 /* Step 3.
2205 * At this point, we are holding all the stripes so the array
2206 * is completely stalled, so now is a good time to resize
d6f38f31 2207 * conf->disks and the scribble region
ad01c9e3
N
2208 */
2209 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2210 if (ndisks) {
2211 for (i=0; i<conf->raid_disks; i++)
2212 ndisks[i] = conf->disks[i];
2213 kfree(conf->disks);
2214 conf->disks = ndisks;
2215 } else
2216 err = -ENOMEM;
2217
2218 /* Step 4, return new stripes to service */
2219 while(!list_empty(&newstripes)) {
2220 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2221 list_del_init(&nsh->lru);
d6f38f31 2222
ad01c9e3
N
2223 for (i=conf->raid_disks; i < newsize; i++)
2224 if (nsh->dev[i].page == NULL) {
2225 struct page *p = alloc_page(GFP_NOIO);
2226 nsh->dev[i].page = p;
d592a996 2227 nsh->dev[i].orig_page = p;
ad01c9e3
N
2228 if (!p)
2229 err = -ENOMEM;
2230 }
2231 release_stripe(nsh);
2232 }
2233 /* critical section pass, GFP_NOIO no longer needed */
2234
2235 conf->slab_cache = sc;
2236 conf->active_name = 1-conf->active_name;
6e9eac2d
N
2237 if (!err)
2238 conf->pool_size = newsize;
ad01c9e3
N
2239 return err;
2240}
1da177e4 2241
486f0644 2242static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2243{
2244 struct stripe_head *sh;
486f0644 2245 int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
1da177e4 2246
566c09c5
SL
2247 spin_lock_irq(conf->hash_locks + hash);
2248 sh = get_free_stripe(conf, hash);
2249 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2250 if (!sh)
2251 return 0;
78bafebd 2252 BUG_ON(atomic_read(&sh->count));
e4e11e38 2253 shrink_buffers(sh);
3f294f4f
N
2254 kmem_cache_free(conf->slab_cache, sh);
2255 atomic_dec(&conf->active_stripes);
486f0644 2256 conf->max_nr_stripes--;
3f294f4f
N
2257 return 1;
2258}
2259
d1688a6d 2260static void shrink_stripes(struct r5conf *conf)
3f294f4f 2261{
486f0644
N
2262 while (conf->max_nr_stripes &&
2263 drop_one_stripe(conf))
2264 ;
3f294f4f 2265
29fc7e3e
N
2266 if (conf->slab_cache)
2267 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2268 conf->slab_cache = NULL;
2269}
2270
6712ecf8 2271static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 2272{
99c0fb5f 2273 struct stripe_head *sh = bi->bi_private;
d1688a6d 2274 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2275 int disks = sh->disks, i;
1da177e4 2276 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432 2277 char b[BDEVNAME_SIZE];
dd054fce 2278 struct md_rdev *rdev = NULL;
05616be5 2279 sector_t s;
1da177e4
LT
2280
2281 for (i=0 ; i<disks; i++)
2282 if (bi == &sh->dev[i].req)
2283 break;
2284
45b4233c
DW
2285 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2286 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
2287 uptodate);
2288 if (i == disks) {
2289 BUG();
6712ecf8 2290 return;
1da177e4 2291 }
14a75d3e 2292 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2293 /* If replacement finished while this request was outstanding,
2294 * 'replacement' might be NULL already.
2295 * In that case it moved down to 'rdev'.
2296 * rdev is not removed until all requests are finished.
2297 */
14a75d3e 2298 rdev = conf->disks[i].replacement;
dd054fce 2299 if (!rdev)
14a75d3e 2300 rdev = conf->disks[i].rdev;
1da177e4 2301
05616be5
N
2302 if (use_new_offset(conf, sh))
2303 s = sh->sector + rdev->new_data_offset;
2304 else
2305 s = sh->sector + rdev->data_offset;
1da177e4 2306 if (uptodate) {
1da177e4 2307 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2308 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2309 /* Note that this cannot happen on a
2310 * replacement device. We just fail those on
2311 * any error
2312 */
8bda470e
CD
2313 printk_ratelimited(
2314 KERN_INFO
2315 "md/raid:%s: read error corrected"
2316 " (%lu sectors at %llu on %s)\n",
2317 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2318 (unsigned long long)s,
8bda470e 2319 bdevname(rdev->bdev, b));
ddd5115f 2320 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2321 clear_bit(R5_ReadError, &sh->dev[i].flags);
2322 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2323 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2324 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2325
14a75d3e
N
2326 if (atomic_read(&rdev->read_errors))
2327 atomic_set(&rdev->read_errors, 0);
1da177e4 2328 } else {
14a75d3e 2329 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2330 int retry = 0;
2e8ac303 2331 int set_bad = 0;
d6950432 2332
1da177e4 2333 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2334 atomic_inc(&rdev->read_errors);
14a75d3e
N
2335 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2336 printk_ratelimited(
2337 KERN_WARNING
2338 "md/raid:%s: read error on replacement device "
2339 "(sector %llu on %s).\n",
2340 mdname(conf->mddev),
05616be5 2341 (unsigned long long)s,
14a75d3e 2342 bdn);
2e8ac303 2343 else if (conf->mddev->degraded >= conf->max_degraded) {
2344 set_bad = 1;
8bda470e
CD
2345 printk_ratelimited(
2346 KERN_WARNING
2347 "md/raid:%s: read error not correctable "
2348 "(sector %llu on %s).\n",
2349 mdname(conf->mddev),
05616be5 2350 (unsigned long long)s,
8bda470e 2351 bdn);
2e8ac303 2352 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2353 /* Oh, no!!! */
2e8ac303 2354 set_bad = 1;
8bda470e
CD
2355 printk_ratelimited(
2356 KERN_WARNING
2357 "md/raid:%s: read error NOT corrected!! "
2358 "(sector %llu on %s).\n",
2359 mdname(conf->mddev),
05616be5 2360 (unsigned long long)s,
8bda470e 2361 bdn);
2e8ac303 2362 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2363 > conf->max_nr_stripes)
14f8d26b 2364 printk(KERN_WARNING
0c55e022 2365 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2366 mdname(conf->mddev), bdn);
ba22dcbf
N
2367 else
2368 retry = 1;
edfa1f65
BY
2369 if (set_bad && test_bit(In_sync, &rdev->flags)
2370 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2371 retry = 1;
ba22dcbf 2372 if (retry)
3f9e7c14 2373 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2374 set_bit(R5_ReadError, &sh->dev[i].flags);
2375 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2376 } else
2377 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2378 else {
4e5314b5
N
2379 clear_bit(R5_ReadError, &sh->dev[i].flags);
2380 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2381 if (!(set_bad
2382 && test_bit(In_sync, &rdev->flags)
2383 && rdev_set_badblocks(
2384 rdev, sh->sector, STRIPE_SECTORS, 0)))
2385 md_error(conf->mddev, rdev);
ba22dcbf 2386 }
1da177e4 2387 }
14a75d3e 2388 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
2389 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2390 set_bit(STRIPE_HANDLE, &sh->state);
2391 release_stripe(sh);
1da177e4
LT
2392}
2393
d710e138 2394static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 2395{
99c0fb5f 2396 struct stripe_head *sh = bi->bi_private;
d1688a6d 2397 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2398 int disks = sh->disks, i;
977df362 2399 struct md_rdev *uninitialized_var(rdev);
1da177e4 2400 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
b84db560
N
2401 sector_t first_bad;
2402 int bad_sectors;
977df362 2403 int replacement = 0;
1da177e4 2404
977df362
N
2405 for (i = 0 ; i < disks; i++) {
2406 if (bi == &sh->dev[i].req) {
2407 rdev = conf->disks[i].rdev;
1da177e4 2408 break;
977df362
N
2409 }
2410 if (bi == &sh->dev[i].rreq) {
2411 rdev = conf->disks[i].replacement;
dd054fce
N
2412 if (rdev)
2413 replacement = 1;
2414 else
2415 /* rdev was removed and 'replacement'
2416 * replaced it. rdev is not removed
2417 * until all requests are finished.
2418 */
2419 rdev = conf->disks[i].rdev;
977df362
N
2420 break;
2421 }
2422 }
45b4233c 2423 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
2424 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2425 uptodate);
2426 if (i == disks) {
2427 BUG();
6712ecf8 2428 return;
1da177e4
LT
2429 }
2430
977df362
N
2431 if (replacement) {
2432 if (!uptodate)
2433 md_error(conf->mddev, rdev);
2434 else if (is_badblock(rdev, sh->sector,
2435 STRIPE_SECTORS,
2436 &first_bad, &bad_sectors))
2437 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2438 } else {
2439 if (!uptodate) {
9f97e4b1 2440 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2441 set_bit(WriteErrorSeen, &rdev->flags);
2442 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2443 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2444 set_bit(MD_RECOVERY_NEEDED,
2445 &rdev->mddev->recovery);
977df362
N
2446 } else if (is_badblock(rdev, sh->sector,
2447 STRIPE_SECTORS,
c0b32972 2448 &first_bad, &bad_sectors)) {
977df362 2449 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2450 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2451 /* That was a successful write so make
2452 * sure it looks like we already did
2453 * a re-write.
2454 */
2455 set_bit(R5_ReWrite, &sh->dev[i].flags);
2456 }
977df362
N
2457 }
2458 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2459
bb27051f 2460 if (sh->batch_head && !uptodate && !replacement)
72ac7330 2461 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2462
977df362
N
2463 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2464 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2465 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 2466 release_stripe(sh);
59fc630b 2467
2468 if (sh->batch_head && sh != sh->batch_head)
2469 release_stripe(sh->batch_head);
1da177e4
LT
2470}
2471
784052ec 2472static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
d592a996 2473
784052ec 2474static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2475{
2476 struct r5dev *dev = &sh->dev[i];
2477
2478 bio_init(&dev->req);
2479 dev->req.bi_io_vec = &dev->vec;
d592a996 2480 dev->req.bi_max_vecs = 1;
1da177e4
LT
2481 dev->req.bi_private = sh;
2482
977df362
N
2483 bio_init(&dev->rreq);
2484 dev->rreq.bi_io_vec = &dev->rvec;
d592a996 2485 dev->rreq.bi_max_vecs = 1;
977df362 2486 dev->rreq.bi_private = sh;
977df362 2487
1da177e4 2488 dev->flags = 0;
784052ec 2489 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
2490}
2491
fd01b88c 2492static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2493{
2494 char b[BDEVNAME_SIZE];
d1688a6d 2495 struct r5conf *conf = mddev->private;
908f4fbd 2496 unsigned long flags;
0c55e022 2497 pr_debug("raid456: error called\n");
1da177e4 2498
908f4fbd
N
2499 spin_lock_irqsave(&conf->device_lock, flags);
2500 clear_bit(In_sync, &rdev->flags);
2501 mddev->degraded = calc_degraded(conf);
2502 spin_unlock_irqrestore(&conf->device_lock, flags);
2503 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2504
de393cde 2505 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
2506 set_bit(Faulty, &rdev->flags);
2507 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2508 printk(KERN_ALERT
2509 "md/raid:%s: Disk failure on %s, disabling device.\n"
2510 "md/raid:%s: Operation continuing on %d devices.\n",
2511 mdname(mddev),
2512 bdevname(rdev->bdev, b),
2513 mdname(mddev),
2514 conf->raid_disks - mddev->degraded);
16a53ecc 2515}
1da177e4
LT
2516
2517/*
2518 * Input: a 'big' sector number,
2519 * Output: index of the data and parity disk, and the sector # in them.
2520 */
d1688a6d 2521static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
911d4ee8
N
2522 int previous, int *dd_idx,
2523 struct stripe_head *sh)
1da177e4 2524{
6e3b96ed 2525 sector_t stripe, stripe2;
35f2a591 2526 sector_t chunk_number;
1da177e4 2527 unsigned int chunk_offset;
911d4ee8 2528 int pd_idx, qd_idx;
67cc2b81 2529 int ddf_layout = 0;
1da177e4 2530 sector_t new_sector;
e183eaed
N
2531 int algorithm = previous ? conf->prev_algo
2532 : conf->algorithm;
09c9e5fa
AN
2533 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2534 : conf->chunk_sectors;
112bf897
N
2535 int raid_disks = previous ? conf->previous_raid_disks
2536 : conf->raid_disks;
2537 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2538
2539 /* First compute the information on this sector */
2540
2541 /*
2542 * Compute the chunk number and the sector offset inside the chunk
2543 */
2544 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2545 chunk_number = r_sector;
1da177e4
LT
2546
2547 /*
2548 * Compute the stripe number
2549 */
35f2a591
N
2550 stripe = chunk_number;
2551 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2552 stripe2 = stripe;
1da177e4
LT
2553 /*
2554 * Select the parity disk based on the user selected algorithm.
2555 */
84789554 2556 pd_idx = qd_idx = -1;
16a53ecc
N
2557 switch(conf->level) {
2558 case 4:
911d4ee8 2559 pd_idx = data_disks;
16a53ecc
N
2560 break;
2561 case 5:
e183eaed 2562 switch (algorithm) {
1da177e4 2563 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2564 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2565 if (*dd_idx >= pd_idx)
1da177e4
LT
2566 (*dd_idx)++;
2567 break;
2568 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2569 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2570 if (*dd_idx >= pd_idx)
1da177e4
LT
2571 (*dd_idx)++;
2572 break;
2573 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2574 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2575 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2576 break;
2577 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2578 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2579 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2580 break;
99c0fb5f
N
2581 case ALGORITHM_PARITY_0:
2582 pd_idx = 0;
2583 (*dd_idx)++;
2584 break;
2585 case ALGORITHM_PARITY_N:
2586 pd_idx = data_disks;
2587 break;
1da177e4 2588 default:
99c0fb5f 2589 BUG();
16a53ecc
N
2590 }
2591 break;
2592 case 6:
2593
e183eaed 2594 switch (algorithm) {
16a53ecc 2595 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2596 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2597 qd_idx = pd_idx + 1;
2598 if (pd_idx == raid_disks-1) {
99c0fb5f 2599 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2600 qd_idx = 0;
2601 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2602 (*dd_idx) += 2; /* D D P Q D */
2603 break;
2604 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2605 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2606 qd_idx = pd_idx + 1;
2607 if (pd_idx == raid_disks-1) {
99c0fb5f 2608 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2609 qd_idx = 0;
2610 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2611 (*dd_idx) += 2; /* D D P Q D */
2612 break;
2613 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2614 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2615 qd_idx = (pd_idx + 1) % raid_disks;
2616 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2617 break;
2618 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2619 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2620 qd_idx = (pd_idx + 1) % raid_disks;
2621 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2622 break;
99c0fb5f
N
2623
2624 case ALGORITHM_PARITY_0:
2625 pd_idx = 0;
2626 qd_idx = 1;
2627 (*dd_idx) += 2;
2628 break;
2629 case ALGORITHM_PARITY_N:
2630 pd_idx = data_disks;
2631 qd_idx = data_disks + 1;
2632 break;
2633
2634 case ALGORITHM_ROTATING_ZERO_RESTART:
2635 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2636 * of blocks for computing Q is different.
2637 */
6e3b96ed 2638 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2639 qd_idx = pd_idx + 1;
2640 if (pd_idx == raid_disks-1) {
2641 (*dd_idx)++; /* Q D D D P */
2642 qd_idx = 0;
2643 } else if (*dd_idx >= pd_idx)
2644 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2645 ddf_layout = 1;
99c0fb5f
N
2646 break;
2647
2648 case ALGORITHM_ROTATING_N_RESTART:
2649 /* Same a left_asymmetric, by first stripe is
2650 * D D D P Q rather than
2651 * Q D D D P
2652 */
6e3b96ed
N
2653 stripe2 += 1;
2654 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2655 qd_idx = pd_idx + 1;
2656 if (pd_idx == raid_disks-1) {
2657 (*dd_idx)++; /* Q D D D P */
2658 qd_idx = 0;
2659 } else if (*dd_idx >= pd_idx)
2660 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2661 ddf_layout = 1;
99c0fb5f
N
2662 break;
2663
2664 case ALGORITHM_ROTATING_N_CONTINUE:
2665 /* Same as left_symmetric but Q is before P */
6e3b96ed 2666 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2667 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2668 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2669 ddf_layout = 1;
99c0fb5f
N
2670 break;
2671
2672 case ALGORITHM_LEFT_ASYMMETRIC_6:
2673 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2674 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2675 if (*dd_idx >= pd_idx)
2676 (*dd_idx)++;
2677 qd_idx = raid_disks - 1;
2678 break;
2679
2680 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2681 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2682 if (*dd_idx >= pd_idx)
2683 (*dd_idx)++;
2684 qd_idx = raid_disks - 1;
2685 break;
2686
2687 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2688 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2689 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2690 qd_idx = raid_disks - 1;
2691 break;
2692
2693 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2694 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2695 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2696 qd_idx = raid_disks - 1;
2697 break;
2698
2699 case ALGORITHM_PARITY_0_6:
2700 pd_idx = 0;
2701 (*dd_idx)++;
2702 qd_idx = raid_disks - 1;
2703 break;
2704
16a53ecc 2705 default:
99c0fb5f 2706 BUG();
16a53ecc
N
2707 }
2708 break;
1da177e4
LT
2709 }
2710
911d4ee8
N
2711 if (sh) {
2712 sh->pd_idx = pd_idx;
2713 sh->qd_idx = qd_idx;
67cc2b81 2714 sh->ddf_layout = ddf_layout;
911d4ee8 2715 }
1da177e4
LT
2716 /*
2717 * Finally, compute the new sector number
2718 */
2719 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2720 return new_sector;
2721}
2722
784052ec 2723static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2724{
d1688a6d 2725 struct r5conf *conf = sh->raid_conf;
b875e531
N
2726 int raid_disks = sh->disks;
2727 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2728 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2729 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2730 : conf->chunk_sectors;
e183eaed
N
2731 int algorithm = previous ? conf->prev_algo
2732 : conf->algorithm;
1da177e4
LT
2733 sector_t stripe;
2734 int chunk_offset;
35f2a591
N
2735 sector_t chunk_number;
2736 int dummy1, dd_idx = i;
1da177e4 2737 sector_t r_sector;
911d4ee8 2738 struct stripe_head sh2;
1da177e4
LT
2739
2740 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2741 stripe = new_sector;
1da177e4 2742
16a53ecc
N
2743 if (i == sh->pd_idx)
2744 return 0;
2745 switch(conf->level) {
2746 case 4: break;
2747 case 5:
e183eaed 2748 switch (algorithm) {
1da177e4
LT
2749 case ALGORITHM_LEFT_ASYMMETRIC:
2750 case ALGORITHM_RIGHT_ASYMMETRIC:
2751 if (i > sh->pd_idx)
2752 i--;
2753 break;
2754 case ALGORITHM_LEFT_SYMMETRIC:
2755 case ALGORITHM_RIGHT_SYMMETRIC:
2756 if (i < sh->pd_idx)
2757 i += raid_disks;
2758 i -= (sh->pd_idx + 1);
2759 break;
99c0fb5f
N
2760 case ALGORITHM_PARITY_0:
2761 i -= 1;
2762 break;
2763 case ALGORITHM_PARITY_N:
2764 break;
1da177e4 2765 default:
99c0fb5f 2766 BUG();
16a53ecc
N
2767 }
2768 break;
2769 case 6:
d0dabf7e 2770 if (i == sh->qd_idx)
16a53ecc 2771 return 0; /* It is the Q disk */
e183eaed 2772 switch (algorithm) {
16a53ecc
N
2773 case ALGORITHM_LEFT_ASYMMETRIC:
2774 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2775 case ALGORITHM_ROTATING_ZERO_RESTART:
2776 case ALGORITHM_ROTATING_N_RESTART:
2777 if (sh->pd_idx == raid_disks-1)
2778 i--; /* Q D D D P */
16a53ecc
N
2779 else if (i > sh->pd_idx)
2780 i -= 2; /* D D P Q D */
2781 break;
2782 case ALGORITHM_LEFT_SYMMETRIC:
2783 case ALGORITHM_RIGHT_SYMMETRIC:
2784 if (sh->pd_idx == raid_disks-1)
2785 i--; /* Q D D D P */
2786 else {
2787 /* D D P Q D */
2788 if (i < sh->pd_idx)
2789 i += raid_disks;
2790 i -= (sh->pd_idx + 2);
2791 }
2792 break;
99c0fb5f
N
2793 case ALGORITHM_PARITY_0:
2794 i -= 2;
2795 break;
2796 case ALGORITHM_PARITY_N:
2797 break;
2798 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2799 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2800 if (sh->pd_idx == 0)
2801 i--; /* P D D D Q */
e4424fee
N
2802 else {
2803 /* D D Q P D */
2804 if (i < sh->pd_idx)
2805 i += raid_disks;
2806 i -= (sh->pd_idx + 1);
2807 }
99c0fb5f
N
2808 break;
2809 case ALGORITHM_LEFT_ASYMMETRIC_6:
2810 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2811 if (i > sh->pd_idx)
2812 i--;
2813 break;
2814 case ALGORITHM_LEFT_SYMMETRIC_6:
2815 case ALGORITHM_RIGHT_SYMMETRIC_6:
2816 if (i < sh->pd_idx)
2817 i += data_disks + 1;
2818 i -= (sh->pd_idx + 1);
2819 break;
2820 case ALGORITHM_PARITY_0_6:
2821 i -= 1;
2822 break;
16a53ecc 2823 default:
99c0fb5f 2824 BUG();
16a53ecc
N
2825 }
2826 break;
1da177e4
LT
2827 }
2828
2829 chunk_number = stripe * data_disks + i;
35f2a591 2830 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2831
112bf897 2832 check = raid5_compute_sector(conf, r_sector,
784052ec 2833 previous, &dummy1, &sh2);
911d4ee8
N
2834 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2835 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2836 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2837 mdname(conf->mddev));
1da177e4
LT
2838 return 0;
2839 }
2840 return r_sector;
2841}
2842
600aa109 2843static void
c0f7bddb 2844schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2845 int rcw, int expand)
e33129d8 2846{
584acdd4 2847 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 2848 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2849 int level = conf->level;
e33129d8
DW
2850
2851 if (rcw) {
e33129d8
DW
2852
2853 for (i = disks; i--; ) {
2854 struct r5dev *dev = &sh->dev[i];
2855
2856 if (dev->towrite) {
2857 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2858 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2859 if (!expand)
2860 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2861 s->locked++;
e33129d8
DW
2862 }
2863 }
ce7d363a
N
2864 /* if we are not expanding this is a proper write request, and
2865 * there will be bios with new data to be drained into the
2866 * stripe cache
2867 */
2868 if (!expand) {
2869 if (!s->locked)
2870 /* False alarm, nothing to do */
2871 return;
2872 sh->reconstruct_state = reconstruct_state_drain_run;
2873 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2874 } else
2875 sh->reconstruct_state = reconstruct_state_run;
2876
2877 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2878
c0f7bddb 2879 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2880 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2881 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
2882 } else {
2883 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2884 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
2885 BUG_ON(level == 6 &&
2886 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2887 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 2888
e33129d8
DW
2889 for (i = disks; i--; ) {
2890 struct r5dev *dev = &sh->dev[i];
584acdd4 2891 if (i == pd_idx || i == qd_idx)
e33129d8
DW
2892 continue;
2893
e33129d8
DW
2894 if (dev->towrite &&
2895 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2896 test_bit(R5_Wantcompute, &dev->flags))) {
2897 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2898 set_bit(R5_LOCKED, &dev->flags);
2899 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2900 s->locked++;
e33129d8
DW
2901 }
2902 }
ce7d363a
N
2903 if (!s->locked)
2904 /* False alarm - nothing to do */
2905 return;
2906 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2907 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2908 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2909 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2910 }
2911
c0f7bddb 2912 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2913 * are in flight
2914 */
2915 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2916 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2917 s->locked++;
e33129d8 2918
c0f7bddb
YT
2919 if (level == 6) {
2920 int qd_idx = sh->qd_idx;
2921 struct r5dev *dev = &sh->dev[qd_idx];
2922
2923 set_bit(R5_LOCKED, &dev->flags);
2924 clear_bit(R5_UPTODATE, &dev->flags);
2925 s->locked++;
2926 }
2927
600aa109 2928 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2929 __func__, (unsigned long long)sh->sector,
600aa109 2930 s->locked, s->ops_request);
e33129d8 2931}
16a53ecc 2932
1da177e4
LT
2933/*
2934 * Each stripe/dev can have one or more bion attached.
16a53ecc 2935 * toread/towrite point to the first in a chain.
1da177e4
LT
2936 * The bi_next chain must be in order.
2937 */
da41ba65 2938static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2939 int forwrite, int previous)
1da177e4
LT
2940{
2941 struct bio **bip;
d1688a6d 2942 struct r5conf *conf = sh->raid_conf;
72626685 2943 int firstwrite=0;
1da177e4 2944
cbe47ec5 2945 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 2946 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
2947 (unsigned long long)sh->sector);
2948
b17459c0
SL
2949 /*
2950 * If several bio share a stripe. The bio bi_phys_segments acts as a
2951 * reference count to avoid race. The reference count should already be
2952 * increased before this function is called (for example, in
2953 * make_request()), so other bio sharing this stripe will not free the
2954 * stripe. If a stripe is owned by one stripe, the stripe lock will
2955 * protect it.
2956 */
2957 spin_lock_irq(&sh->stripe_lock);
59fc630b 2958 /* Don't allow new IO added to stripes in batch list */
2959 if (sh->batch_head)
2960 goto overlap;
72626685 2961 if (forwrite) {
1da177e4 2962 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 2963 if (*bip == NULL)
72626685
N
2964 firstwrite = 1;
2965 } else
1da177e4 2966 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
2967 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2968 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
2969 goto overlap;
2970 bip = & (*bip)->bi_next;
2971 }
4f024f37 2972 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
2973 goto overlap;
2974
da41ba65 2975 if (!forwrite || previous)
2976 clear_bit(STRIPE_BATCH_READY, &sh->state);
2977
78bafebd 2978 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2979 if (*bip)
2980 bi->bi_next = *bip;
2981 *bip = bi;
e7836bd6 2982 raid5_inc_bi_active_stripes(bi);
72626685 2983
1da177e4
LT
2984 if (forwrite) {
2985 /* check if page is covered */
2986 sector_t sector = sh->dev[dd_idx].sector;
2987 for (bi=sh->dev[dd_idx].towrite;
2988 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 2989 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 2990 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
2991 if (bio_end_sector(bi) >= sector)
2992 sector = bio_end_sector(bi);
1da177e4
LT
2993 }
2994 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 2995 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
2996 sh->overwrite_disks++;
1da177e4 2997 }
cbe47ec5
N
2998
2999 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 3000 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5
N
3001 (unsigned long long)sh->sector, dd_idx);
3002
3003 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3004 /* Cannot hold spinlock over bitmap_startwrite,
3005 * but must ensure this isn't added to a batch until
3006 * we have added to the bitmap and set bm_seq.
3007 * So set STRIPE_BITMAP_PENDING to prevent
3008 * batching.
3009 * If multiple add_stripe_bio() calls race here they
3010 * much all set STRIPE_BITMAP_PENDING. So only the first one
3011 * to complete "bitmap_startwrite" gets to set
3012 * STRIPE_BIT_DELAY. This is important as once a stripe
3013 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3014 * any more.
3015 */
3016 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3017 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
3018 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3019 STRIPE_SECTORS, 0);
d0852df5
N
3020 spin_lock_irq(&sh->stripe_lock);
3021 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3022 if (!sh->batch_head) {
3023 sh->bm_seq = conf->seq_flush+1;
3024 set_bit(STRIPE_BIT_DELAY, &sh->state);
3025 }
cbe47ec5 3026 }
d0852df5 3027 spin_unlock_irq(&sh->stripe_lock);
59fc630b 3028
3029 if (stripe_can_batch(sh))
3030 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
3031 return 1;
3032
3033 overlap:
3034 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 3035 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3036 return 0;
3037}
3038
d1688a6d 3039static void end_reshape(struct r5conf *conf);
29269553 3040
d1688a6d 3041static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3042 struct stripe_head *sh)
ccfcc3c1 3043{
784052ec 3044 int sectors_per_chunk =
09c9e5fa 3045 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3046 int dd_idx;
2d2063ce 3047 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3048 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3049
112bf897
N
3050 raid5_compute_sector(conf,
3051 stripe * (disks - conf->max_degraded)
b875e531 3052 *sectors_per_chunk + chunk_offset,
112bf897 3053 previous,
911d4ee8 3054 &dd_idx, sh);
ccfcc3c1
N
3055}
3056
a4456856 3057static void
d1688a6d 3058handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3059 struct stripe_head_state *s, int disks,
3060 struct bio **return_bi)
3061{
3062 int i;
59fc630b 3063 BUG_ON(sh->batch_head);
a4456856
DW
3064 for (i = disks; i--; ) {
3065 struct bio *bi;
3066 int bitmap_end = 0;
3067
3068 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3069 struct md_rdev *rdev;
a4456856
DW
3070 rcu_read_lock();
3071 rdev = rcu_dereference(conf->disks[i].rdev);
3072 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
3073 atomic_inc(&rdev->nr_pending);
3074 else
3075 rdev = NULL;
a4456856 3076 rcu_read_unlock();
7f0da59b
N
3077 if (rdev) {
3078 if (!rdev_set_badblocks(
3079 rdev,
3080 sh->sector,
3081 STRIPE_SECTORS, 0))
3082 md_error(conf->mddev, rdev);
3083 rdev_dec_pending(rdev, conf->mddev);
3084 }
a4456856 3085 }
b17459c0 3086 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3087 /* fail all writes first */
3088 bi = sh->dev[i].towrite;
3089 sh->dev[i].towrite = NULL;
7a87f434 3090 sh->overwrite_disks = 0;
b17459c0 3091 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3092 if (bi)
a4456856 3093 bitmap_end = 1;
a4456856
DW
3094
3095 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3096 wake_up(&conf->wait_for_overlap);
3097
4f024f37 3098 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3099 sh->dev[i].sector + STRIPE_SECTORS) {
3100 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3101 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 3102 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
3103 md_write_end(conf->mddev);
3104 bi->bi_next = *return_bi;
3105 *return_bi = bi;
3106 }
3107 bi = nextbi;
3108 }
7eaf7e8e
SL
3109 if (bitmap_end)
3110 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3111 STRIPE_SECTORS, 0, 0);
3112 bitmap_end = 0;
a4456856
DW
3113 /* and fail all 'written' */
3114 bi = sh->dev[i].written;
3115 sh->dev[i].written = NULL;
d592a996
SL
3116 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3117 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3118 sh->dev[i].page = sh->dev[i].orig_page;
3119 }
3120
a4456856 3121 if (bi) bitmap_end = 1;
4f024f37 3122 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3123 sh->dev[i].sector + STRIPE_SECTORS) {
3124 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3125 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 3126 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
3127 md_write_end(conf->mddev);
3128 bi->bi_next = *return_bi;
3129 *return_bi = bi;
3130 }
3131 bi = bi2;
3132 }
3133
b5e98d65
DW
3134 /* fail any reads if this device is non-operational and
3135 * the data has not reached the cache yet.
3136 */
3137 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3138 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3139 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3140 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3141 bi = sh->dev[i].toread;
3142 sh->dev[i].toread = NULL;
143c4d05 3143 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3144 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3145 wake_up(&conf->wait_for_overlap);
4f024f37 3146 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3147 sh->dev[i].sector + STRIPE_SECTORS) {
3148 struct bio *nextbi =
3149 r5_next_bio(bi, sh->dev[i].sector);
3150 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 3151 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
3152 bi->bi_next = *return_bi;
3153 *return_bi = bi;
3154 }
3155 bi = nextbi;
3156 }
3157 }
a4456856
DW
3158 if (bitmap_end)
3159 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3160 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3161 /* If we were in the middle of a write the parity block might
3162 * still be locked - so just clear all R5_LOCKED flags
3163 */
3164 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856
DW
3165 }
3166
8b3e6cdc
DW
3167 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3168 if (atomic_dec_and_test(&conf->pending_full_writes))
3169 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3170}
3171
7f0da59b 3172static void
d1688a6d 3173handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3174 struct stripe_head_state *s)
3175{
3176 int abort = 0;
3177 int i;
3178
59fc630b 3179 BUG_ON(sh->batch_head);
7f0da59b 3180 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3181 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3182 wake_up(&conf->wait_for_overlap);
7f0da59b 3183 s->syncing = 0;
9a3e1101 3184 s->replacing = 0;
7f0da59b 3185 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3186 * Don't even need to abort as that is handled elsewhere
3187 * if needed, and not always wanted e.g. if there is a known
3188 * bad block here.
9a3e1101 3189 * For recover/replace we need to record a bad block on all
7f0da59b
N
3190 * non-sync devices, or abort the recovery
3191 */
18b9837e
N
3192 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3193 /* During recovery devices cannot be removed, so
3194 * locking and refcounting of rdevs is not needed
3195 */
3196 for (i = 0; i < conf->raid_disks; i++) {
3197 struct md_rdev *rdev = conf->disks[i].rdev;
3198 if (rdev
3199 && !test_bit(Faulty, &rdev->flags)
3200 && !test_bit(In_sync, &rdev->flags)
3201 && !rdev_set_badblocks(rdev, sh->sector,
3202 STRIPE_SECTORS, 0))
3203 abort = 1;
3204 rdev = conf->disks[i].replacement;
3205 if (rdev
3206 && !test_bit(Faulty, &rdev->flags)
3207 && !test_bit(In_sync, &rdev->flags)
3208 && !rdev_set_badblocks(rdev, sh->sector,
3209 STRIPE_SECTORS, 0))
3210 abort = 1;
3211 }
3212 if (abort)
3213 conf->recovery_disabled =
3214 conf->mddev->recovery_disabled;
7f0da59b 3215 }
18b9837e 3216 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3217}
3218
9a3e1101
N
3219static int want_replace(struct stripe_head *sh, int disk_idx)
3220{
3221 struct md_rdev *rdev;
3222 int rv = 0;
3223 /* Doing recovery so rcu locking not required */
3224 rdev = sh->raid_conf->disks[disk_idx].replacement;
3225 if (rdev
3226 && !test_bit(Faulty, &rdev->flags)
3227 && !test_bit(In_sync, &rdev->flags)
3228 && (rdev->recovery_offset <= sh->sector
3229 || rdev->mddev->recovery_cp <= sh->sector))
3230 rv = 1;
3231
3232 return rv;
3233}
3234
93b3dbce 3235/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
3236 * to be read or computed to satisfy a request.
3237 *
3238 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 3239 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 3240 */
2c58f06e
N
3241
3242static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3243 int disk_idx, int disks)
a4456856 3244{
5599becc 3245 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3246 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3247 &sh->dev[s->failed_num[1]] };
ea664c82 3248 int i;
5599becc 3249
a79cfe12
N
3250
3251 if (test_bit(R5_LOCKED, &dev->flags) ||
3252 test_bit(R5_UPTODATE, &dev->flags))
3253 /* No point reading this as we already have it or have
3254 * decided to get it.
3255 */
3256 return 0;
3257
3258 if (dev->toread ||
3259 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3260 /* We need this block to directly satisfy a request */
3261 return 1;
3262
3263 if (s->syncing || s->expanding ||
3264 (s->replacing && want_replace(sh, disk_idx)))
3265 /* When syncing, or expanding we read everything.
3266 * When replacing, we need the replaced block.
3267 */
3268 return 1;
3269
3270 if ((s->failed >= 1 && fdev[0]->toread) ||
3271 (s->failed >= 2 && fdev[1]->toread))
3272 /* If we want to read from a failed device, then
3273 * we need to actually read every other device.
3274 */
3275 return 1;
3276
a9d56950
N
3277 /* Sometimes neither read-modify-write nor reconstruct-write
3278 * cycles can work. In those cases we read every block we
3279 * can. Then the parity-update is certain to have enough to
3280 * work with.
3281 * This can only be a problem when we need to write something,
3282 * and some device has failed. If either of those tests
3283 * fail we need look no further.
3284 */
3285 if (!s->failed || !s->to_write)
3286 return 0;
3287
3288 if (test_bit(R5_Insync, &dev->flags) &&
3289 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3290 /* Pre-reads at not permitted until after short delay
3291 * to gather multiple requests. However if this
3292 * device is no Insync, the block could only be be computed
3293 * and there is no need to delay that.
3294 */
3295 return 0;
ea664c82
N
3296
3297 for (i = 0; i < s->failed; i++) {
3298 if (fdev[i]->towrite &&
3299 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3300 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3301 /* If we have a partial write to a failed
3302 * device, then we will need to reconstruct
3303 * the content of that device, so all other
3304 * devices must be read.
3305 */
3306 return 1;
3307 }
3308
3309 /* If we are forced to do a reconstruct-write, either because
3310 * the current RAID6 implementation only supports that, or
3311 * or because parity cannot be trusted and we are currently
3312 * recovering it, there is extra need to be careful.
3313 * If one of the devices that we would need to read, because
3314 * it is not being overwritten (and maybe not written at all)
3315 * is missing/faulty, then we need to read everything we can.
3316 */
3317 if (sh->raid_conf->level != 6 &&
3318 sh->sector < sh->raid_conf->mddev->recovery_cp)
3319 /* reconstruct-write isn't being forced */
3320 return 0;
3321 for (i = 0; i < s->failed; i++) {
10d82c5f
N
3322 if (s->failed_num[i] != sh->pd_idx &&
3323 s->failed_num[i] != sh->qd_idx &&
3324 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3325 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3326 return 1;
3327 }
3328
2c58f06e
N
3329 return 0;
3330}
3331
3332static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3333 int disk_idx, int disks)
3334{
3335 struct r5dev *dev = &sh->dev[disk_idx];
3336
3337 /* is the data in this block needed, and can we get it? */
3338 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3339 /* we would like to get this block, possibly by computing it,
3340 * otherwise read it if the backing disk is insync
3341 */
3342 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3343 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3344 BUG_ON(sh->batch_head);
5599becc 3345 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
3346 (s->failed && (disk_idx == s->failed_num[0] ||
3347 disk_idx == s->failed_num[1]))) {
5599becc
YT
3348 /* have disk failed, and we're requested to fetch it;
3349 * do compute it
a4456856 3350 */
5599becc
YT
3351 pr_debug("Computing stripe %llu block %d\n",
3352 (unsigned long long)sh->sector, disk_idx);
3353 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3354 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3355 set_bit(R5_Wantcompute, &dev->flags);
3356 sh->ops.target = disk_idx;
3357 sh->ops.target2 = -1; /* no 2nd target */
3358 s->req_compute = 1;
93b3dbce
N
3359 /* Careful: from this point on 'uptodate' is in the eye
3360 * of raid_run_ops which services 'compute' operations
3361 * before writes. R5_Wantcompute flags a block that will
3362 * be R5_UPTODATE by the time it is needed for a
3363 * subsequent operation.
3364 */
5599becc
YT
3365 s->uptodate++;
3366 return 1;
3367 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3368 /* Computing 2-failure is *very* expensive; only
3369 * do it if failed >= 2
3370 */
3371 int other;
3372 for (other = disks; other--; ) {
3373 if (other == disk_idx)
3374 continue;
3375 if (!test_bit(R5_UPTODATE,
3376 &sh->dev[other].flags))
3377 break;
a4456856 3378 }
5599becc
YT
3379 BUG_ON(other < 0);
3380 pr_debug("Computing stripe %llu blocks %d,%d\n",
3381 (unsigned long long)sh->sector,
3382 disk_idx, other);
3383 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3384 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3385 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3386 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3387 sh->ops.target = disk_idx;
3388 sh->ops.target2 = other;
3389 s->uptodate += 2;
3390 s->req_compute = 1;
3391 return 1;
3392 } else if (test_bit(R5_Insync, &dev->flags)) {
3393 set_bit(R5_LOCKED, &dev->flags);
3394 set_bit(R5_Wantread, &dev->flags);
3395 s->locked++;
3396 pr_debug("Reading block %d (sync=%d)\n",
3397 disk_idx, s->syncing);
a4456856
DW
3398 }
3399 }
5599becc
YT
3400
3401 return 0;
3402}
3403
3404/**
93b3dbce 3405 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3406 */
93b3dbce
N
3407static void handle_stripe_fill(struct stripe_head *sh,
3408 struct stripe_head_state *s,
3409 int disks)
5599becc
YT
3410{
3411 int i;
3412
3413 /* look for blocks to read/compute, skip this if a compute
3414 * is already in flight, or if the stripe contents are in the
3415 * midst of changing due to a write
3416 */
3417 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3418 !sh->reconstruct_state)
3419 for (i = disks; i--; )
93b3dbce 3420 if (fetch_block(sh, s, i, disks))
5599becc 3421 break;
a4456856
DW
3422 set_bit(STRIPE_HANDLE, &sh->state);
3423}
3424
787b76fa
N
3425static void break_stripe_batch_list(struct stripe_head *head_sh,
3426 unsigned long handle_flags);
1fe797e6 3427/* handle_stripe_clean_event
a4456856
DW
3428 * any written block on an uptodate or failed drive can be returned.
3429 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3430 * never LOCKED, so we don't need to test 'failed' directly.
3431 */
d1688a6d 3432static void handle_stripe_clean_event(struct r5conf *conf,
a4456856
DW
3433 struct stripe_head *sh, int disks, struct bio **return_bi)
3434{
3435 int i;
3436 struct r5dev *dev;
f8dfcffd 3437 int discard_pending = 0;
59fc630b 3438 struct stripe_head *head_sh = sh;
3439 bool do_endio = false;
a4456856
DW
3440
3441 for (i = disks; i--; )
3442 if (sh->dev[i].written) {
3443 dev = &sh->dev[i];
3444 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3445 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3446 test_bit(R5_Discard, &dev->flags) ||
3447 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3448 /* We can return any write requests */
3449 struct bio *wbi, *wbi2;
45b4233c 3450 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3451 if (test_and_clear_bit(R5_Discard, &dev->flags))
3452 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3453 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3454 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3455 }
59fc630b 3456 do_endio = true;
3457
3458returnbi:
3459 dev->page = dev->orig_page;
a4456856
DW
3460 wbi = dev->written;
3461 dev->written = NULL;
4f024f37 3462 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3463 dev->sector + STRIPE_SECTORS) {
3464 wbi2 = r5_next_bio(wbi, dev->sector);
e7836bd6 3465 if (!raid5_dec_bi_active_stripes(wbi)) {
a4456856
DW
3466 md_write_end(conf->mddev);
3467 wbi->bi_next = *return_bi;
3468 *return_bi = wbi;
3469 }
3470 wbi = wbi2;
3471 }
7eaf7e8e
SL
3472 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3473 STRIPE_SECTORS,
a4456856 3474 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3475 0);
59fc630b 3476 if (head_sh->batch_head) {
3477 sh = list_first_entry(&sh->batch_list,
3478 struct stripe_head,
3479 batch_list);
3480 if (sh != head_sh) {
3481 dev = &sh->dev[i];
3482 goto returnbi;
3483 }
3484 }
3485 sh = head_sh;
3486 dev = &sh->dev[i];
f8dfcffd
N
3487 } else if (test_bit(R5_Discard, &dev->flags))
3488 discard_pending = 1;
d592a996
SL
3489 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3490 WARN_ON(dev->page != dev->orig_page);
f8dfcffd
N
3491 }
3492 if (!discard_pending &&
3493 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3494 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3495 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3496 if (sh->qd_idx >= 0) {
3497 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3498 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3499 }
3500 /* now that discard is done we can proceed with any sync */
3501 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3502 /*
3503 * SCSI discard will change some bio fields and the stripe has
3504 * no updated data, so remove it from hash list and the stripe
3505 * will be reinitialized
3506 */
3507 spin_lock_irq(&conf->device_lock);
59fc630b 3508unhash:
d47648fc 3509 remove_hash(sh);
59fc630b 3510 if (head_sh->batch_head) {
3511 sh = list_first_entry(&sh->batch_list,
3512 struct stripe_head, batch_list);
3513 if (sh != head_sh)
3514 goto unhash;
3515 }
d47648fc 3516 spin_unlock_irq(&conf->device_lock);
59fc630b 3517 sh = head_sh;
3518
f8dfcffd
N
3519 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3520 set_bit(STRIPE_HANDLE, &sh->state);
3521
3522 }
8b3e6cdc
DW
3523
3524 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3525 if (atomic_dec_and_test(&conf->pending_full_writes))
3526 md_wakeup_thread(conf->mddev->thread);
59fc630b 3527
787b76fa
N
3528 if (head_sh->batch_head && do_endio)
3529 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
3530}
3531
d1688a6d 3532static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
3533 struct stripe_head *sh,
3534 struct stripe_head_state *s,
3535 int disks)
a4456856
DW
3536{
3537 int rmw = 0, rcw = 0, i;
a7854487
AL
3538 sector_t recovery_cp = conf->mddev->recovery_cp;
3539
584acdd4 3540 /* Check whether resync is now happening or should start.
a7854487
AL
3541 * If yes, then the array is dirty (after unclean shutdown or
3542 * initial creation), so parity in some stripes might be inconsistent.
3543 * In this case, we need to always do reconstruct-write, to ensure
3544 * that in case of drive failure or read-error correction, we
3545 * generate correct data from the parity.
3546 */
584acdd4 3547 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3548 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3549 s->failed == 0)) {
a7854487 3550 /* Calculate the real rcw later - for now make it
c8ac1803
N
3551 * look like rcw is cheaper
3552 */
3553 rcw = 1; rmw = 2;
584acdd4
MS
3554 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3555 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3556 (unsigned long long)sh->sector);
c8ac1803 3557 } else for (i = disks; i--; ) {
a4456856
DW
3558 /* would I have to read this buffer for read_modify_write */
3559 struct r5dev *dev = &sh->dev[i];
584acdd4 3560 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3561 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3562 !(test_bit(R5_UPTODATE, &dev->flags) ||
3563 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3564 if (test_bit(R5_Insync, &dev->flags))
3565 rmw++;
3566 else
3567 rmw += 2*disks; /* cannot read it */
3568 }
3569 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3570 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3571 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3572 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3573 !(test_bit(R5_UPTODATE, &dev->flags) ||
3574 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3575 if (test_bit(R5_Insync, &dev->flags))
3576 rcw++;
a4456856
DW
3577 else
3578 rcw += 2*disks;
3579 }
3580 }
45b4233c 3581 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
3582 (unsigned long long)sh->sector, rmw, rcw);
3583 set_bit(STRIPE_HANDLE, &sh->state);
584acdd4 3584 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
a4456856 3585 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3586 if (conf->mddev->queue)
3587 blk_add_trace_msg(conf->mddev->queue,
3588 "raid5 rmw %llu %d",
3589 (unsigned long long)sh->sector, rmw);
a4456856
DW
3590 for (i = disks; i--; ) {
3591 struct r5dev *dev = &sh->dev[i];
584acdd4 3592 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3593 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3594 !(test_bit(R5_UPTODATE, &dev->flags) ||
3595 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3596 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3597 if (test_bit(STRIPE_PREREAD_ACTIVE,
3598 &sh->state)) {
3599 pr_debug("Read_old block %d for r-m-w\n",
3600 i);
a4456856
DW
3601 set_bit(R5_LOCKED, &dev->flags);
3602 set_bit(R5_Wantread, &dev->flags);
3603 s->locked++;
3604 } else {
3605 set_bit(STRIPE_DELAYED, &sh->state);
3606 set_bit(STRIPE_HANDLE, &sh->state);
3607 }
3608 }
3609 }
a9add5d9 3610 }
584acdd4 3611 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
a4456856 3612 /* want reconstruct write, but need to get some data */
a9add5d9 3613 int qread =0;
c8ac1803 3614 rcw = 0;
a4456856
DW
3615 for (i = disks; i--; ) {
3616 struct r5dev *dev = &sh->dev[i];
3617 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3618 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3619 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3620 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3621 test_bit(R5_Wantcompute, &dev->flags))) {
3622 rcw++;
67f45548
N
3623 if (test_bit(R5_Insync, &dev->flags) &&
3624 test_bit(STRIPE_PREREAD_ACTIVE,
3625 &sh->state)) {
45b4233c 3626 pr_debug("Read_old block "
a4456856
DW
3627 "%d for Reconstruct\n", i);
3628 set_bit(R5_LOCKED, &dev->flags);
3629 set_bit(R5_Wantread, &dev->flags);
3630 s->locked++;
a9add5d9 3631 qread++;
a4456856
DW
3632 } else {
3633 set_bit(STRIPE_DELAYED, &sh->state);
3634 set_bit(STRIPE_HANDLE, &sh->state);
3635 }
3636 }
3637 }
e3620a3a 3638 if (rcw && conf->mddev->queue)
a9add5d9
N
3639 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3640 (unsigned long long)sh->sector,
3641 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3642 }
b1b02fe9
N
3643
3644 if (rcw > disks && rmw > disks &&
3645 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3646 set_bit(STRIPE_DELAYED, &sh->state);
3647
a4456856
DW
3648 /* now if nothing is locked, and if we have enough data,
3649 * we can start a write request
3650 */
f38e1219
DW
3651 /* since handle_stripe can be called at any time we need to handle the
3652 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
3653 * subsequent call wants to start a write request. raid_run_ops only
3654 * handles the case where compute block and reconstruct are requested
f38e1219
DW
3655 * simultaneously. If this is not the case then new writes need to be
3656 * held off until the compute completes.
3657 */
976ea8d4
DW
3658 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3659 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3660 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 3661 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
3662}
3663
d1688a6d 3664static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3665 struct stripe_head_state *s, int disks)
3666{
ecc65c9b 3667 struct r5dev *dev = NULL;
bd2ab670 3668
59fc630b 3669 BUG_ON(sh->batch_head);
a4456856 3670 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 3671
ecc65c9b
DW
3672 switch (sh->check_state) {
3673 case check_state_idle:
3674 /* start a new check operation if there are no failures */
bd2ab670 3675 if (s->failed == 0) {
bd2ab670 3676 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
3677 sh->check_state = check_state_run;
3678 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 3679 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 3680 s->uptodate--;
ecc65c9b 3681 break;
bd2ab670 3682 }
f2b3b44d 3683 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
3684 /* fall through */
3685 case check_state_compute_result:
3686 sh->check_state = check_state_idle;
3687 if (!dev)
3688 dev = &sh->dev[sh->pd_idx];
3689
3690 /* check that a write has not made the stripe insync */
3691 if (test_bit(STRIPE_INSYNC, &sh->state))
3692 break;
c8894419 3693
a4456856 3694 /* either failed parity check, or recovery is happening */
a4456856
DW
3695 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3696 BUG_ON(s->uptodate != disks);
3697
3698 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 3699 s->locked++;
a4456856 3700 set_bit(R5_Wantwrite, &dev->flags);
830ea016 3701
a4456856 3702 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 3703 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
3704 break;
3705 case check_state_run:
3706 break; /* we will be called again upon completion */
3707 case check_state_check_result:
3708 sh->check_state = check_state_idle;
3709
3710 /* if a failure occurred during the check operation, leave
3711 * STRIPE_INSYNC not set and let the stripe be handled again
3712 */
3713 if (s->failed)
3714 break;
3715
3716 /* handle a successful check operation, if parity is correct
3717 * we are done. Otherwise update the mismatch count and repair
3718 * parity if !MD_RECOVERY_CHECK
3719 */
ad283ea4 3720 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
3721 /* parity is correct (on disc,
3722 * not in buffer any more)
3723 */
3724 set_bit(STRIPE_INSYNC, &sh->state);
3725 else {
7f7583d4 3726 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
3727 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3728 /* don't try to repair!! */
3729 set_bit(STRIPE_INSYNC, &sh->state);
3730 else {
3731 sh->check_state = check_state_compute_run;
976ea8d4 3732 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
3733 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3734 set_bit(R5_Wantcompute,
3735 &sh->dev[sh->pd_idx].flags);
3736 sh->ops.target = sh->pd_idx;
ac6b53b6 3737 sh->ops.target2 = -1;
ecc65c9b
DW
3738 s->uptodate++;
3739 }
3740 }
3741 break;
3742 case check_state_compute_run:
3743 break;
3744 default:
3745 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3746 __func__, sh->check_state,
3747 (unsigned long long) sh->sector);
3748 BUG();
a4456856
DW
3749 }
3750}
3751
d1688a6d 3752static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 3753 struct stripe_head_state *s,
f2b3b44d 3754 int disks)
a4456856 3755{
a4456856 3756 int pd_idx = sh->pd_idx;
34e04e87 3757 int qd_idx = sh->qd_idx;
d82dfee0 3758 struct r5dev *dev;
a4456856 3759
59fc630b 3760 BUG_ON(sh->batch_head);
a4456856
DW
3761 set_bit(STRIPE_HANDLE, &sh->state);
3762
3763 BUG_ON(s->failed > 2);
d82dfee0 3764
a4456856
DW
3765 /* Want to check and possibly repair P and Q.
3766 * However there could be one 'failed' device, in which
3767 * case we can only check one of them, possibly using the
3768 * other to generate missing data
3769 */
3770
d82dfee0
DW
3771 switch (sh->check_state) {
3772 case check_state_idle:
3773 /* start a new check operation if there are < 2 failures */
f2b3b44d 3774 if (s->failed == s->q_failed) {
d82dfee0 3775 /* The only possible failed device holds Q, so it
a4456856
DW
3776 * makes sense to check P (If anything else were failed,
3777 * we would have used P to recreate it).
3778 */
d82dfee0 3779 sh->check_state = check_state_run;
a4456856 3780 }
f2b3b44d 3781 if (!s->q_failed && s->failed < 2) {
d82dfee0 3782 /* Q is not failed, and we didn't use it to generate
a4456856
DW
3783 * anything, so it makes sense to check it
3784 */
d82dfee0
DW
3785 if (sh->check_state == check_state_run)
3786 sh->check_state = check_state_run_pq;
3787 else
3788 sh->check_state = check_state_run_q;
a4456856 3789 }
a4456856 3790
d82dfee0
DW
3791 /* discard potentially stale zero_sum_result */
3792 sh->ops.zero_sum_result = 0;
a4456856 3793
d82dfee0
DW
3794 if (sh->check_state == check_state_run) {
3795 /* async_xor_zero_sum destroys the contents of P */
3796 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3797 s->uptodate--;
a4456856 3798 }
d82dfee0
DW
3799 if (sh->check_state >= check_state_run &&
3800 sh->check_state <= check_state_run_pq) {
3801 /* async_syndrome_zero_sum preserves P and Q, so
3802 * no need to mark them !uptodate here
3803 */
3804 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3805 break;
a4456856
DW
3806 }
3807
d82dfee0
DW
3808 /* we have 2-disk failure */
3809 BUG_ON(s->failed != 2);
3810 /* fall through */
3811 case check_state_compute_result:
3812 sh->check_state = check_state_idle;
a4456856 3813
d82dfee0
DW
3814 /* check that a write has not made the stripe insync */
3815 if (test_bit(STRIPE_INSYNC, &sh->state))
3816 break;
a4456856
DW
3817
3818 /* now write out any block on a failed drive,
d82dfee0 3819 * or P or Q if they were recomputed
a4456856 3820 */
d82dfee0 3821 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 3822 if (s->failed == 2) {
f2b3b44d 3823 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
3824 s->locked++;
3825 set_bit(R5_LOCKED, &dev->flags);
3826 set_bit(R5_Wantwrite, &dev->flags);
3827 }
3828 if (s->failed >= 1) {
f2b3b44d 3829 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
3830 s->locked++;
3831 set_bit(R5_LOCKED, &dev->flags);
3832 set_bit(R5_Wantwrite, &dev->flags);
3833 }
d82dfee0 3834 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
3835 dev = &sh->dev[pd_idx];
3836 s->locked++;
3837 set_bit(R5_LOCKED, &dev->flags);
3838 set_bit(R5_Wantwrite, &dev->flags);
3839 }
d82dfee0 3840 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
3841 dev = &sh->dev[qd_idx];
3842 s->locked++;
3843 set_bit(R5_LOCKED, &dev->flags);
3844 set_bit(R5_Wantwrite, &dev->flags);
3845 }
3846 clear_bit(STRIPE_DEGRADED, &sh->state);
3847
3848 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
3849 break;
3850 case check_state_run:
3851 case check_state_run_q:
3852 case check_state_run_pq:
3853 break; /* we will be called again upon completion */
3854 case check_state_check_result:
3855 sh->check_state = check_state_idle;
3856
3857 /* handle a successful check operation, if parity is correct
3858 * we are done. Otherwise update the mismatch count and repair
3859 * parity if !MD_RECOVERY_CHECK
3860 */
3861 if (sh->ops.zero_sum_result == 0) {
3862 /* both parities are correct */
3863 if (!s->failed)
3864 set_bit(STRIPE_INSYNC, &sh->state);
3865 else {
3866 /* in contrast to the raid5 case we can validate
3867 * parity, but still have a failure to write
3868 * back
3869 */
3870 sh->check_state = check_state_compute_result;
3871 /* Returning at this point means that we may go
3872 * off and bring p and/or q uptodate again so
3873 * we make sure to check zero_sum_result again
3874 * to verify if p or q need writeback
3875 */
3876 }
3877 } else {
7f7583d4 3878 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
3879 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3880 /* don't try to repair!! */
3881 set_bit(STRIPE_INSYNC, &sh->state);
3882 else {
3883 int *target = &sh->ops.target;
3884
3885 sh->ops.target = -1;
3886 sh->ops.target2 = -1;
3887 sh->check_state = check_state_compute_run;
3888 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3889 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3890 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3891 set_bit(R5_Wantcompute,
3892 &sh->dev[pd_idx].flags);
3893 *target = pd_idx;
3894 target = &sh->ops.target2;
3895 s->uptodate++;
3896 }
3897 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3898 set_bit(R5_Wantcompute,
3899 &sh->dev[qd_idx].flags);
3900 *target = qd_idx;
3901 s->uptodate++;
3902 }
3903 }
3904 }
3905 break;
3906 case check_state_compute_run:
3907 break;
3908 default:
3909 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3910 __func__, sh->check_state,
3911 (unsigned long long) sh->sector);
3912 BUG();
a4456856
DW
3913 }
3914}
3915
d1688a6d 3916static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3917{
3918 int i;
3919
3920 /* We have read all the blocks in this stripe and now we need to
3921 * copy some of them into a target stripe for expand.
3922 */
f0a50d37 3923 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 3924 BUG_ON(sh->batch_head);
a4456856
DW
3925 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3926 for (i = 0; i < sh->disks; i++)
34e04e87 3927 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3928 int dd_idx, j;
a4456856 3929 struct stripe_head *sh2;
a08abd8c 3930 struct async_submit_ctl submit;
a4456856 3931
784052ec 3932 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
3933 sector_t s = raid5_compute_sector(conf, bn, 0,
3934 &dd_idx, NULL);
a8c906ca 3935 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3936 if (sh2 == NULL)
3937 /* so far only the early blocks of this stripe
3938 * have been requested. When later blocks
3939 * get requested, we will try again
3940 */
3941 continue;
3942 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3943 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3944 /* must have already done this block */
3945 release_stripe(sh2);
3946 continue;
3947 }
f0a50d37
DW
3948
3949 /* place all the copies on one channel */
a08abd8c 3950 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3951 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3952 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3953 &submit);
f0a50d37 3954
a4456856
DW
3955 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3956 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3957 for (j = 0; j < conf->raid_disks; j++)
3958 if (j != sh2->pd_idx &&
86c374ba 3959 j != sh2->qd_idx &&
a4456856
DW
3960 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3961 break;
3962 if (j == conf->raid_disks) {
3963 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3964 set_bit(STRIPE_HANDLE, &sh2->state);
3965 }
3966 release_stripe(sh2);
f0a50d37 3967
a4456856 3968 }
a2e08551 3969 /* done submitting copies, wait for them to complete */
749586b7 3970 async_tx_quiesce(&tx);
a4456856 3971}
1da177e4
LT
3972
3973/*
3974 * handle_stripe - do things to a stripe.
3975 *
9a3e1101
N
3976 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3977 * state of various bits to see what needs to be done.
1da177e4 3978 * Possible results:
9a3e1101
N
3979 * return some read requests which now have data
3980 * return some write requests which are safely on storage
1da177e4
LT
3981 * schedule a read on some buffers
3982 * schedule a write of some buffers
3983 * return confirmation of parity correctness
3984 *
1da177e4 3985 */
a4456856 3986
acfe726b 3987static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 3988{
d1688a6d 3989 struct r5conf *conf = sh->raid_conf;
f416885e 3990 int disks = sh->disks;
474af965
N
3991 struct r5dev *dev;
3992 int i;
9a3e1101 3993 int do_recovery = 0;
1da177e4 3994
acfe726b
N
3995 memset(s, 0, sizeof(*s));
3996
dabc4ec6 3997 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
3998 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
3999 s->failed_num[0] = -1;
4000 s->failed_num[1] = -1;
1da177e4 4001
acfe726b 4002 /* Now to look around and see what can be done */
1da177e4 4003 rcu_read_lock();
16a53ecc 4004 for (i=disks; i--; ) {
3cb03002 4005 struct md_rdev *rdev;
31c176ec
N
4006 sector_t first_bad;
4007 int bad_sectors;
4008 int is_bad = 0;
acfe726b 4009
16a53ecc 4010 dev = &sh->dev[i];
1da177e4 4011
45b4233c 4012 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4013 i, dev->flags,
4014 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4015 /* maybe we can reply to a read
4016 *
4017 * new wantfill requests are only permitted while
4018 * ops_complete_biofill is guaranteed to be inactive
4019 */
4020 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4021 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4022 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4023
16a53ecc 4024 /* now count some things */
cc94015a
N
4025 if (test_bit(R5_LOCKED, &dev->flags))
4026 s->locked++;
4027 if (test_bit(R5_UPTODATE, &dev->flags))
4028 s->uptodate++;
2d6e4ecc 4029 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4030 s->compute++;
4031 BUG_ON(s->compute > 2);
2d6e4ecc 4032 }
1da177e4 4033
acfe726b 4034 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4035 s->to_fill++;
acfe726b 4036 else if (dev->toread)
cc94015a 4037 s->to_read++;
16a53ecc 4038 if (dev->towrite) {
cc94015a 4039 s->to_write++;
16a53ecc 4040 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4041 s->non_overwrite++;
16a53ecc 4042 }
a4456856 4043 if (dev->written)
cc94015a 4044 s->written++;
14a75d3e
N
4045 /* Prefer to use the replacement for reads, but only
4046 * if it is recovered enough and has no bad blocks.
4047 */
4048 rdev = rcu_dereference(conf->disks[i].replacement);
4049 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4050 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4051 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4052 &first_bad, &bad_sectors))
4053 set_bit(R5_ReadRepl, &dev->flags);
4054 else {
9a3e1101
N
4055 if (rdev)
4056 set_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4057 rdev = rcu_dereference(conf->disks[i].rdev);
4058 clear_bit(R5_ReadRepl, &dev->flags);
4059 }
9283d8c5
N
4060 if (rdev && test_bit(Faulty, &rdev->flags))
4061 rdev = NULL;
31c176ec
N
4062 if (rdev) {
4063 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4064 &first_bad, &bad_sectors);
4065 if (s->blocked_rdev == NULL
4066 && (test_bit(Blocked, &rdev->flags)
4067 || is_bad < 0)) {
4068 if (is_bad < 0)
4069 set_bit(BlockedBadBlocks,
4070 &rdev->flags);
4071 s->blocked_rdev = rdev;
4072 atomic_inc(&rdev->nr_pending);
4073 }
6bfe0b49 4074 }
415e72d0
N
4075 clear_bit(R5_Insync, &dev->flags);
4076 if (!rdev)
4077 /* Not in-sync */;
31c176ec
N
4078 else if (is_bad) {
4079 /* also not in-sync */
18b9837e
N
4080 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4081 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4082 /* treat as in-sync, but with a read error
4083 * which we can now try to correct
4084 */
4085 set_bit(R5_Insync, &dev->flags);
4086 set_bit(R5_ReadError, &dev->flags);
4087 }
4088 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4089 set_bit(R5_Insync, &dev->flags);
30d7a483 4090 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4091 /* in sync if before recovery_offset */
30d7a483
N
4092 set_bit(R5_Insync, &dev->flags);
4093 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4094 test_bit(R5_Expanded, &dev->flags))
4095 /* If we've reshaped into here, we assume it is Insync.
4096 * We will shortly update recovery_offset to make
4097 * it official.
4098 */
4099 set_bit(R5_Insync, &dev->flags);
4100
1cc03eb9 4101 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4102 /* This flag does not apply to '.replacement'
4103 * only to .rdev, so make sure to check that*/
4104 struct md_rdev *rdev2 = rcu_dereference(
4105 conf->disks[i].rdev);
4106 if (rdev2 == rdev)
4107 clear_bit(R5_Insync, &dev->flags);
4108 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4109 s->handle_bad_blocks = 1;
14a75d3e 4110 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4111 } else
4112 clear_bit(R5_WriteError, &dev->flags);
4113 }
1cc03eb9 4114 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4115 /* This flag does not apply to '.replacement'
4116 * only to .rdev, so make sure to check that*/
4117 struct md_rdev *rdev2 = rcu_dereference(
4118 conf->disks[i].rdev);
4119 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4120 s->handle_bad_blocks = 1;
14a75d3e 4121 atomic_inc(&rdev2->nr_pending);
b84db560
N
4122 } else
4123 clear_bit(R5_MadeGood, &dev->flags);
4124 }
977df362
N
4125 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4126 struct md_rdev *rdev2 = rcu_dereference(
4127 conf->disks[i].replacement);
4128 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4129 s->handle_bad_blocks = 1;
4130 atomic_inc(&rdev2->nr_pending);
4131 } else
4132 clear_bit(R5_MadeGoodRepl, &dev->flags);
4133 }
415e72d0 4134 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4135 /* The ReadError flag will just be confusing now */
4136 clear_bit(R5_ReadError, &dev->flags);
4137 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4138 }
415e72d0
N
4139 if (test_bit(R5_ReadError, &dev->flags))
4140 clear_bit(R5_Insync, &dev->flags);
4141 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4142 if (s->failed < 2)
4143 s->failed_num[s->failed] = i;
4144 s->failed++;
9a3e1101
N
4145 if (rdev && !test_bit(Faulty, &rdev->flags))
4146 do_recovery = 1;
415e72d0 4147 }
1da177e4 4148 }
9a3e1101
N
4149 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4150 /* If there is a failed device being replaced,
4151 * we must be recovering.
4152 * else if we are after recovery_cp, we must be syncing
c6d2e084 4153 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4154 * else we can only be replacing
4155 * sync and recovery both need to read all devices, and so
4156 * use the same flag.
4157 */
4158 if (do_recovery ||
c6d2e084 4159 sh->sector >= conf->mddev->recovery_cp ||
4160 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4161 s->syncing = 1;
4162 else
4163 s->replacing = 1;
4164 }
1da177e4 4165 rcu_read_unlock();
cc94015a
N
4166}
4167
59fc630b 4168static int clear_batch_ready(struct stripe_head *sh)
4169{
b15a9dbd
N
4170 /* Return '1' if this is a member of batch, or
4171 * '0' if it is a lone stripe or a head which can now be
4172 * handled.
4173 */
59fc630b 4174 struct stripe_head *tmp;
4175 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4176 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4177 spin_lock(&sh->stripe_lock);
4178 if (!sh->batch_head) {
4179 spin_unlock(&sh->stripe_lock);
4180 return 0;
4181 }
4182
4183 /*
4184 * this stripe could be added to a batch list before we check
4185 * BATCH_READY, skips it
4186 */
4187 if (sh->batch_head != sh) {
4188 spin_unlock(&sh->stripe_lock);
4189 return 1;
4190 }
4191 spin_lock(&sh->batch_lock);
4192 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4193 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4194 spin_unlock(&sh->batch_lock);
4195 spin_unlock(&sh->stripe_lock);
4196
4197 /*
4198 * BATCH_READY is cleared, no new stripes can be added.
4199 * batch_list can be accessed without lock
4200 */
4201 return 0;
4202}
4203
3960ce79
N
4204static void break_stripe_batch_list(struct stripe_head *head_sh,
4205 unsigned long handle_flags)
72ac7330 4206{
4e3d62ff 4207 struct stripe_head *sh, *next;
72ac7330 4208 int i;
fb642b92 4209 int do_wakeup = 0;
72ac7330 4210
bb27051f
N
4211 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4212
72ac7330 4213 list_del_init(&sh->batch_list);
4214
1b956f7a
N
4215 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4216 (1 << STRIPE_SYNCING) |
4217 (1 << STRIPE_REPLACED) |
4218 (1 << STRIPE_PREREAD_ACTIVE) |
4219 (1 << STRIPE_DELAYED) |
4220 (1 << STRIPE_BIT_DELAY) |
4221 (1 << STRIPE_FULL_WRITE) |
4222 (1 << STRIPE_BIOFILL_RUN) |
4223 (1 << STRIPE_COMPUTE_RUN) |
4224 (1 << STRIPE_OPS_REQ_PENDING) |
4225 (1 << STRIPE_DISCARD) |
4226 (1 << STRIPE_BATCH_READY) |
4227 (1 << STRIPE_BATCH_ERR) |
4228 (1 << STRIPE_BITMAP_PENDING)));
4229 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4230 (1 << STRIPE_REPLACED)));
4231
4232 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4233 (1 << STRIPE_DEGRADED)),
4234 head_sh->state & (1 << STRIPE_INSYNC));
4235
72ac7330 4236 sh->check_state = head_sh->check_state;
4237 sh->reconstruct_state = head_sh->reconstruct_state;
fb642b92
N
4238 for (i = 0; i < sh->disks; i++) {
4239 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4240 do_wakeup = 1;
72ac7330 4241 sh->dev[i].flags = head_sh->dev[i].flags &
4242 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4243 }
72ac7330 4244 spin_lock_irq(&sh->stripe_lock);
4245 sh->batch_head = NULL;
4246 spin_unlock_irq(&sh->stripe_lock);
3960ce79
N
4247 if (handle_flags == 0 ||
4248 sh->state & handle_flags)
4249 set_bit(STRIPE_HANDLE, &sh->state);
72ac7330 4250 release_stripe(sh);
72ac7330 4251 }
fb642b92
N
4252 spin_lock_irq(&head_sh->stripe_lock);
4253 head_sh->batch_head = NULL;
4254 spin_unlock_irq(&head_sh->stripe_lock);
4255 for (i = 0; i < head_sh->disks; i++)
4256 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4257 do_wakeup = 1;
3960ce79
N
4258 if (head_sh->state & handle_flags)
4259 set_bit(STRIPE_HANDLE, &head_sh->state);
fb642b92
N
4260
4261 if (do_wakeup)
4262 wake_up(&head_sh->raid_conf->wait_for_overlap);
72ac7330 4263}
4264
cc94015a
N
4265static void handle_stripe(struct stripe_head *sh)
4266{
4267 struct stripe_head_state s;
d1688a6d 4268 struct r5conf *conf = sh->raid_conf;
3687c061 4269 int i;
84789554
N
4270 int prexor;
4271 int disks = sh->disks;
474af965 4272 struct r5dev *pdev, *qdev;
cc94015a
N
4273
4274 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 4275 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4276 /* already being handled, ensure it gets handled
4277 * again when current action finishes */
4278 set_bit(STRIPE_HANDLE, &sh->state);
4279 return;
4280 }
4281
59fc630b 4282 if (clear_batch_ready(sh) ) {
4283 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4284 return;
4285 }
4286
4e3d62ff 4287 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 4288 break_stripe_batch_list(sh, 0);
72ac7330 4289
dabc4ec6 4290 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd
N
4291 spin_lock(&sh->stripe_lock);
4292 /* Cannot process 'sync' concurrently with 'discard' */
4293 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4294 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4295 set_bit(STRIPE_SYNCING, &sh->state);
4296 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4297 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4298 }
4299 spin_unlock(&sh->stripe_lock);
cc94015a
N
4300 }
4301 clear_bit(STRIPE_DELAYED, &sh->state);
4302
4303 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4304 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4305 (unsigned long long)sh->sector, sh->state,
4306 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4307 sh->check_state, sh->reconstruct_state);
3687c061 4308
acfe726b 4309 analyse_stripe(sh, &s);
c5a31000 4310
bc2607f3
N
4311 if (s.handle_bad_blocks) {
4312 set_bit(STRIPE_HANDLE, &sh->state);
4313 goto finish;
4314 }
4315
474af965
N
4316 if (unlikely(s.blocked_rdev)) {
4317 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4318 s.replacing || s.to_write || s.written) {
474af965
N
4319 set_bit(STRIPE_HANDLE, &sh->state);
4320 goto finish;
4321 }
4322 /* There is nothing for the blocked_rdev to block */
4323 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4324 s.blocked_rdev = NULL;
4325 }
4326
4327 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4328 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4329 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4330 }
4331
4332 pr_debug("locked=%d uptodate=%d to_read=%d"
4333 " to_write=%d failed=%d failed_num=%d,%d\n",
4334 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4335 s.failed_num[0], s.failed_num[1]);
4336 /* check if the array has lost more than max_degraded devices and,
4337 * if so, some requests might need to be failed.
4338 */
9a3f530f
N
4339 if (s.failed > conf->max_degraded) {
4340 sh->check_state = 0;
4341 sh->reconstruct_state = 0;
626f2092 4342 break_stripe_batch_list(sh, 0);
9a3f530f
N
4343 if (s.to_read+s.to_write+s.written)
4344 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 4345 if (s.syncing + s.replacing)
9a3f530f
N
4346 handle_failed_sync(conf, sh, &s);
4347 }
474af965 4348
84789554
N
4349 /* Now we check to see if any write operations have recently
4350 * completed
4351 */
4352 prexor = 0;
4353 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4354 prexor = 1;
4355 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4356 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4357 sh->reconstruct_state = reconstruct_state_idle;
4358
4359 /* All the 'written' buffers and the parity block are ready to
4360 * be written back to disk
4361 */
9e444768
SL
4362 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4363 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4364 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4365 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4366 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4367 for (i = disks; i--; ) {
4368 struct r5dev *dev = &sh->dev[i];
4369 if (test_bit(R5_LOCKED, &dev->flags) &&
4370 (i == sh->pd_idx || i == sh->qd_idx ||
4371 dev->written)) {
4372 pr_debug("Writing block %d\n", i);
4373 set_bit(R5_Wantwrite, &dev->flags);
4374 if (prexor)
4375 continue;
9c4bdf69
N
4376 if (s.failed > 1)
4377 continue;
84789554
N
4378 if (!test_bit(R5_Insync, &dev->flags) ||
4379 ((i == sh->pd_idx || i == sh->qd_idx) &&
4380 s.failed == 0))
4381 set_bit(STRIPE_INSYNC, &sh->state);
4382 }
4383 }
4384 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4385 s.dec_preread_active = 1;
4386 }
4387
ef5b7c69
N
4388 /*
4389 * might be able to return some write requests if the parity blocks
4390 * are safe, or on a failed drive
4391 */
4392 pdev = &sh->dev[sh->pd_idx];
4393 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4394 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4395 qdev = &sh->dev[sh->qd_idx];
4396 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4397 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4398 || conf->level < 6;
4399
4400 if (s.written &&
4401 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4402 && !test_bit(R5_LOCKED, &pdev->flags)
4403 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4404 test_bit(R5_Discard, &pdev->flags))))) &&
4405 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4406 && !test_bit(R5_LOCKED, &qdev->flags)
4407 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4408 test_bit(R5_Discard, &qdev->flags))))))
4409 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4410
4411 /* Now we might consider reading some blocks, either to check/generate
4412 * parity, or to satisfy requests
4413 * or to load a block that is being partially written.
4414 */
4415 if (s.to_read || s.non_overwrite
4416 || (conf->level == 6 && s.to_write && s.failed)
4417 || (s.syncing && (s.uptodate + s.compute < disks))
4418 || s.replacing
4419 || s.expanding)
4420 handle_stripe_fill(sh, &s, disks);
4421
84789554
N
4422 /* Now to consider new write requests and what else, if anything
4423 * should be read. We do not handle new writes when:
4424 * 1/ A 'write' operation (copy+xor) is already in flight.
4425 * 2/ A 'check' operation is in flight, as it may clobber the parity
4426 * block.
4427 */
4428 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4429 handle_stripe_dirtying(conf, sh, &s, disks);
4430
4431 /* maybe we need to check and possibly fix the parity for this stripe
4432 * Any reads will already have been scheduled, so we just see if enough
4433 * data is available. The parity check is held off while parity
4434 * dependent operations are in flight.
4435 */
4436 if (sh->check_state ||
4437 (s.syncing && s.locked == 0 &&
4438 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4439 !test_bit(STRIPE_INSYNC, &sh->state))) {
4440 if (conf->level == 6)
4441 handle_parity_checks6(conf, sh, &s, disks);
4442 else
4443 handle_parity_checks5(conf, sh, &s, disks);
4444 }
c5a31000 4445
f94c0b66
N
4446 if ((s.replacing || s.syncing) && s.locked == 0
4447 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4448 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4449 /* Write out to replacement devices where possible */
4450 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4451 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4452 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4453 set_bit(R5_WantReplace, &sh->dev[i].flags);
4454 set_bit(R5_LOCKED, &sh->dev[i].flags);
4455 s.locked++;
4456 }
f94c0b66
N
4457 if (s.replacing)
4458 set_bit(STRIPE_INSYNC, &sh->state);
4459 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4460 }
4461 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4462 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4463 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4464 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4465 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4466 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4467 wake_up(&conf->wait_for_overlap);
c5a31000
N
4468 }
4469
4470 /* If the failed drives are just a ReadError, then we might need
4471 * to progress the repair/check process
4472 */
4473 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4474 for (i = 0; i < s.failed; i++) {
4475 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4476 if (test_bit(R5_ReadError, &dev->flags)
4477 && !test_bit(R5_LOCKED, &dev->flags)
4478 && test_bit(R5_UPTODATE, &dev->flags)
4479 ) {
4480 if (!test_bit(R5_ReWrite, &dev->flags)) {
4481 set_bit(R5_Wantwrite, &dev->flags);
4482 set_bit(R5_ReWrite, &dev->flags);
4483 set_bit(R5_LOCKED, &dev->flags);
4484 s.locked++;
4485 } else {
4486 /* let's read it back */
4487 set_bit(R5_Wantread, &dev->flags);
4488 set_bit(R5_LOCKED, &dev->flags);
4489 s.locked++;
4490 }
4491 }
4492 }
4493
3687c061
N
4494 /* Finish reconstruct operations initiated by the expansion process */
4495 if (sh->reconstruct_state == reconstruct_state_result) {
4496 struct stripe_head *sh_src
4497 = get_active_stripe(conf, sh->sector, 1, 1, 1);
4498 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4499 /* sh cannot be written until sh_src has been read.
4500 * so arrange for sh to be delayed a little
4501 */
4502 set_bit(STRIPE_DELAYED, &sh->state);
4503 set_bit(STRIPE_HANDLE, &sh->state);
4504 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4505 &sh_src->state))
4506 atomic_inc(&conf->preread_active_stripes);
4507 release_stripe(sh_src);
4508 goto finish;
4509 }
4510 if (sh_src)
4511 release_stripe(sh_src);
4512
4513 sh->reconstruct_state = reconstruct_state_idle;
4514 clear_bit(STRIPE_EXPANDING, &sh->state);
4515 for (i = conf->raid_disks; i--; ) {
4516 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4517 set_bit(R5_LOCKED, &sh->dev[i].flags);
4518 s.locked++;
4519 }
4520 }
f416885e 4521
3687c061
N
4522 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4523 !sh->reconstruct_state) {
4524 /* Need to write out all blocks after computing parity */
4525 sh->disks = conf->raid_disks;
4526 stripe_set_idx(sh->sector, conf, 0, sh);
4527 schedule_reconstruction(sh, &s, 1, 1);
4528 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4529 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4530 atomic_dec(&conf->reshape_stripes);
4531 wake_up(&conf->wait_for_overlap);
4532 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4533 }
4534
4535 if (s.expanding && s.locked == 0 &&
4536 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4537 handle_stripe_expansion(conf, sh);
16a53ecc 4538
3687c061 4539finish:
6bfe0b49 4540 /* wait for this device to become unblocked */
5f066c63
N
4541 if (unlikely(s.blocked_rdev)) {
4542 if (conf->mddev->external)
4543 md_wait_for_blocked_rdev(s.blocked_rdev,
4544 conf->mddev);
4545 else
4546 /* Internal metadata will immediately
4547 * be written by raid5d, so we don't
4548 * need to wait here.
4549 */
4550 rdev_dec_pending(s.blocked_rdev,
4551 conf->mddev);
4552 }
6bfe0b49 4553
bc2607f3
N
4554 if (s.handle_bad_blocks)
4555 for (i = disks; i--; ) {
3cb03002 4556 struct md_rdev *rdev;
bc2607f3
N
4557 struct r5dev *dev = &sh->dev[i];
4558 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4559 /* We own a safe reference to the rdev */
4560 rdev = conf->disks[i].rdev;
4561 if (!rdev_set_badblocks(rdev, sh->sector,
4562 STRIPE_SECTORS, 0))
4563 md_error(conf->mddev, rdev);
4564 rdev_dec_pending(rdev, conf->mddev);
4565 }
b84db560
N
4566 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4567 rdev = conf->disks[i].rdev;
4568 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4569 STRIPE_SECTORS, 0);
b84db560
N
4570 rdev_dec_pending(rdev, conf->mddev);
4571 }
977df362
N
4572 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4573 rdev = conf->disks[i].replacement;
dd054fce
N
4574 if (!rdev)
4575 /* rdev have been moved down */
4576 rdev = conf->disks[i].rdev;
977df362 4577 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4578 STRIPE_SECTORS, 0);
977df362
N
4579 rdev_dec_pending(rdev, conf->mddev);
4580 }
bc2607f3
N
4581 }
4582
6c0069c0
YT
4583 if (s.ops_request)
4584 raid_run_ops(sh, s.ops_request);
4585
f0e43bcd 4586 ops_run_io(sh, &s);
16a53ecc 4587
c5709ef6 4588 if (s.dec_preread_active) {
729a1866 4589 /* We delay this until after ops_run_io so that if make_request
e9c7469b 4590 * is waiting on a flush, it won't continue until the writes
729a1866
N
4591 * have actually been submitted.
4592 */
4593 atomic_dec(&conf->preread_active_stripes);
4594 if (atomic_read(&conf->preread_active_stripes) <
4595 IO_THRESHOLD)
4596 md_wakeup_thread(conf->mddev->thread);
4597 }
4598
c5709ef6 4599 return_io(s.return_bi);
16a53ecc 4600
257a4b42 4601 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
4602}
4603
d1688a6d 4604static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
4605{
4606 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4607 while (!list_empty(&conf->delayed_list)) {
4608 struct list_head *l = conf->delayed_list.next;
4609 struct stripe_head *sh;
4610 sh = list_entry(l, struct stripe_head, lru);
4611 list_del_init(l);
4612 clear_bit(STRIPE_DELAYED, &sh->state);
4613 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4614 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 4615 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 4616 raid5_wakeup_stripe_thread(sh);
16a53ecc 4617 }
482c0834 4618 }
16a53ecc
N
4619}
4620
566c09c5
SL
4621static void activate_bit_delay(struct r5conf *conf,
4622 struct list_head *temp_inactive_list)
16a53ecc
N
4623{
4624 /* device_lock is held */
4625 struct list_head head;
4626 list_add(&head, &conf->bitmap_list);
4627 list_del_init(&conf->bitmap_list);
4628 while (!list_empty(&head)) {
4629 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 4630 int hash;
16a53ecc
N
4631 list_del_init(&sh->lru);
4632 atomic_inc(&sh->count);
566c09c5
SL
4633 hash = sh->hash_lock_index;
4634 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
4635 }
4636}
4637
5c675f83 4638static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 4639{
d1688a6d 4640 struct r5conf *conf = mddev->private;
f022b2fd
N
4641
4642 /* No difference between reads and writes. Just check
4643 * how busy the stripe_cache is
4644 */
3fa841d7 4645
5423399a 4646 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
f022b2fd
N
4647 return 1;
4648 if (conf->quiesce)
4649 return 1;
4bda556a 4650 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
4651 return 1;
4652
4653 return 0;
4654}
4655
23032a0e
RBJ
4656/* We want read requests to align with chunks where possible,
4657 * but write requests don't need to.
4658 */
64590f45 4659static int raid5_mergeable_bvec(struct mddev *mddev,
cc371e66
AK
4660 struct bvec_merge_data *bvm,
4661 struct bio_vec *biovec)
23032a0e 4662{
cc371e66 4663 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 4664 int max;
9d8f0363 4665 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 4666 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 4667
9ffc8f7c
EM
4668 /*
4669 * always allow writes to be mergeable, read as well if array
4670 * is degraded as we'll go through stripe cache anyway.
4671 */
4672 if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4673 return biovec->bv_len;
23032a0e 4674
664e7c41
AN
4675 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4676 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
4677 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4678 if (max < 0) max = 0;
4679 if (max <= biovec->bv_len && bio_sectors == 0)
4680 return biovec->bv_len;
4681 else
4682 return max;
4683}
4684
fd01b88c 4685static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 4686{
4f024f37 4687 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 4688 unsigned int chunk_sectors = mddev->chunk_sectors;
aa8b57aa 4689 unsigned int bio_sectors = bio_sectors(bio);
f679623f 4690
664e7c41
AN
4691 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4692 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
4693 return chunk_sectors >=
4694 ((sector & (chunk_sectors - 1)) + bio_sectors);
4695}
4696
46031f9a
RBJ
4697/*
4698 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4699 * later sampled by raid5d.
4700 */
d1688a6d 4701static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
4702{
4703 unsigned long flags;
4704
4705 spin_lock_irqsave(&conf->device_lock, flags);
4706
4707 bi->bi_next = conf->retry_read_aligned_list;
4708 conf->retry_read_aligned_list = bi;
4709
4710 spin_unlock_irqrestore(&conf->device_lock, flags);
4711 md_wakeup_thread(conf->mddev->thread);
4712}
4713
d1688a6d 4714static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
4715{
4716 struct bio *bi;
4717
4718 bi = conf->retry_read_aligned;
4719 if (bi) {
4720 conf->retry_read_aligned = NULL;
4721 return bi;
4722 }
4723 bi = conf->retry_read_aligned_list;
4724 if(bi) {
387bb173 4725 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 4726 bi->bi_next = NULL;
960e739d
JA
4727 /*
4728 * this sets the active strip count to 1 and the processed
4729 * strip count to zero (upper 8 bits)
4730 */
e7836bd6 4731 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
46031f9a
RBJ
4732 }
4733
4734 return bi;
4735}
4736
f679623f
RBJ
4737/*
4738 * The "raid5_align_endio" should check if the read succeeded and if it
4739 * did, call bio_endio on the original bio (having bio_put the new bio
4740 * first).
4741 * If the read failed..
4742 */
6712ecf8 4743static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
4744{
4745 struct bio* raid_bi = bi->bi_private;
fd01b88c 4746 struct mddev *mddev;
d1688a6d 4747 struct r5conf *conf;
46031f9a 4748 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3cb03002 4749 struct md_rdev *rdev;
46031f9a 4750
f679623f 4751 bio_put(bi);
46031f9a 4752
46031f9a
RBJ
4753 rdev = (void*)raid_bi->bi_next;
4754 raid_bi->bi_next = NULL;
2b7f2228
N
4755 mddev = rdev->mddev;
4756 conf = mddev->private;
46031f9a
RBJ
4757
4758 rdev_dec_pending(rdev, conf->mddev);
4759
4760 if (!error && uptodate) {
0a82a8d1
LT
4761 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4762 raid_bi, 0);
6712ecf8 4763 bio_endio(raid_bi, 0);
46031f9a 4764 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 4765 wake_up(&conf->wait_for_quiescent);
6712ecf8 4766 return;
46031f9a
RBJ
4767 }
4768
45b4233c 4769 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
4770
4771 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
4772}
4773
387bb173
NB
4774static int bio_fits_rdev(struct bio *bi)
4775{
165125e1 4776 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 4777
aa8b57aa 4778 if (bio_sectors(bi) > queue_max_sectors(q))
387bb173
NB
4779 return 0;
4780 blk_recount_segments(q, bi);
8a78362c 4781 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
4782 return 0;
4783
4784 if (q->merge_bvec_fn)
4785 /* it's too hard to apply the merge_bvec_fn at this stage,
4786 * just just give up
4787 */
4788 return 0;
4789
4790 return 1;
4791}
4792
fd01b88c 4793static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
f679623f 4794{
d1688a6d 4795 struct r5conf *conf = mddev->private;
8553fe7e 4796 int dd_idx;
f679623f 4797 struct bio* align_bi;
3cb03002 4798 struct md_rdev *rdev;
671488cc 4799 sector_t end_sector;
f679623f
RBJ
4800
4801 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 4802 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
4803 return 0;
4804 }
4805 /*
a167f663 4806 * use bio_clone_mddev to make a copy of the bio
f679623f 4807 */
a167f663 4808 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
4809 if (!align_bi)
4810 return 0;
4811 /*
4812 * set bi_end_io to a new function, and set bi_private to the
4813 * original bio.
4814 */
4815 align_bi->bi_end_io = raid5_align_endio;
4816 align_bi->bi_private = raid_bio;
4817 /*
4818 * compute position
4819 */
4f024f37
KO
4820 align_bi->bi_iter.bi_sector =
4821 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4822 0, &dd_idx, NULL);
f679623f 4823
f73a1c7d 4824 end_sector = bio_end_sector(align_bi);
f679623f 4825 rcu_read_lock();
671488cc
N
4826 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4827 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4828 rdev->recovery_offset < end_sector) {
4829 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4830 if (rdev &&
4831 (test_bit(Faulty, &rdev->flags) ||
4832 !(test_bit(In_sync, &rdev->flags) ||
4833 rdev->recovery_offset >= end_sector)))
4834 rdev = NULL;
4835 }
4836 if (rdev) {
31c176ec
N
4837 sector_t first_bad;
4838 int bad_sectors;
4839
f679623f
RBJ
4840 atomic_inc(&rdev->nr_pending);
4841 rcu_read_unlock();
46031f9a
RBJ
4842 raid_bio->bi_next = (void*)rdev;
4843 align_bi->bi_bdev = rdev->bdev;
3fd83717 4844 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
46031f9a 4845
31c176ec 4846 if (!bio_fits_rdev(align_bi) ||
4f024f37
KO
4847 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4848 bio_sectors(align_bi),
31c176ec
N
4849 &first_bad, &bad_sectors)) {
4850 /* too big in some way, or has a known bad block */
387bb173
NB
4851 bio_put(align_bi);
4852 rdev_dec_pending(rdev, mddev);
4853 return 0;
4854 }
4855
6c0544e2 4856 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 4857 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 4858
46031f9a 4859 spin_lock_irq(&conf->device_lock);
b1b46486 4860 wait_event_lock_irq(conf->wait_for_quiescent,
46031f9a 4861 conf->quiesce == 0,
eed8c02e 4862 conf->device_lock);
46031f9a
RBJ
4863 atomic_inc(&conf->active_aligned_reads);
4864 spin_unlock_irq(&conf->device_lock);
4865
e3620a3a
JB
4866 if (mddev->gendisk)
4867 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4868 align_bi, disk_devt(mddev->gendisk),
4f024f37 4869 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
4870 generic_make_request(align_bi);
4871 return 1;
4872 } else {
4873 rcu_read_unlock();
46031f9a 4874 bio_put(align_bi);
f679623f
RBJ
4875 return 0;
4876 }
4877}
4878
8b3e6cdc
DW
4879/* __get_priority_stripe - get the next stripe to process
4880 *
4881 * Full stripe writes are allowed to pass preread active stripes up until
4882 * the bypass_threshold is exceeded. In general the bypass_count
4883 * increments when the handle_list is handled before the hold_list; however, it
4884 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4885 * stripe with in flight i/o. The bypass_count will be reset when the
4886 * head of the hold_list has changed, i.e. the head was promoted to the
4887 * handle_list.
4888 */
851c30c9 4889static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 4890{
851c30c9
SL
4891 struct stripe_head *sh = NULL, *tmp;
4892 struct list_head *handle_list = NULL;
bfc90cb0 4893 struct r5worker_group *wg = NULL;
851c30c9
SL
4894
4895 if (conf->worker_cnt_per_group == 0) {
4896 handle_list = &conf->handle_list;
4897 } else if (group != ANY_GROUP) {
4898 handle_list = &conf->worker_groups[group].handle_list;
bfc90cb0 4899 wg = &conf->worker_groups[group];
851c30c9
SL
4900 } else {
4901 int i;
4902 for (i = 0; i < conf->group_cnt; i++) {
4903 handle_list = &conf->worker_groups[i].handle_list;
bfc90cb0 4904 wg = &conf->worker_groups[i];
851c30c9
SL
4905 if (!list_empty(handle_list))
4906 break;
4907 }
4908 }
8b3e6cdc
DW
4909
4910 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4911 __func__,
851c30c9 4912 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
4913 list_empty(&conf->hold_list) ? "empty" : "busy",
4914 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4915
851c30c9
SL
4916 if (!list_empty(handle_list)) {
4917 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
4918
4919 if (list_empty(&conf->hold_list))
4920 conf->bypass_count = 0;
4921 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4922 if (conf->hold_list.next == conf->last_hold)
4923 conf->bypass_count++;
4924 else {
4925 conf->last_hold = conf->hold_list.next;
4926 conf->bypass_count -= conf->bypass_threshold;
4927 if (conf->bypass_count < 0)
4928 conf->bypass_count = 0;
4929 }
4930 }
4931 } else if (!list_empty(&conf->hold_list) &&
4932 ((conf->bypass_threshold &&
4933 conf->bypass_count > conf->bypass_threshold) ||
4934 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
4935
4936 list_for_each_entry(tmp, &conf->hold_list, lru) {
4937 if (conf->worker_cnt_per_group == 0 ||
4938 group == ANY_GROUP ||
4939 !cpu_online(tmp->cpu) ||
4940 cpu_to_group(tmp->cpu) == group) {
4941 sh = tmp;
4942 break;
4943 }
4944 }
4945
4946 if (sh) {
4947 conf->bypass_count -= conf->bypass_threshold;
4948 if (conf->bypass_count < 0)
4949 conf->bypass_count = 0;
4950 }
bfc90cb0 4951 wg = NULL;
851c30c9
SL
4952 }
4953
4954 if (!sh)
8b3e6cdc
DW
4955 return NULL;
4956
bfc90cb0
SL
4957 if (wg) {
4958 wg->stripes_cnt--;
4959 sh->group = NULL;
4960 }
8b3e6cdc 4961 list_del_init(&sh->lru);
c7a6d35e 4962 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
4963 return sh;
4964}
f679623f 4965
8811b596
SL
4966struct raid5_plug_cb {
4967 struct blk_plug_cb cb;
4968 struct list_head list;
566c09c5 4969 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
4970};
4971
4972static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4973{
4974 struct raid5_plug_cb *cb = container_of(
4975 blk_cb, struct raid5_plug_cb, cb);
4976 struct stripe_head *sh;
4977 struct mddev *mddev = cb->cb.data;
4978 struct r5conf *conf = mddev->private;
a9add5d9 4979 int cnt = 0;
566c09c5 4980 int hash;
8811b596
SL
4981
4982 if (cb->list.next && !list_empty(&cb->list)) {
4983 spin_lock_irq(&conf->device_lock);
4984 while (!list_empty(&cb->list)) {
4985 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4986 list_del_init(&sh->lru);
4987 /*
4988 * avoid race release_stripe_plug() sees
4989 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4990 * is still in our list
4991 */
4e857c58 4992 smp_mb__before_atomic();
8811b596 4993 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
4994 /*
4995 * STRIPE_ON_RELEASE_LIST could be set here. In that
4996 * case, the count is always > 1 here
4997 */
566c09c5
SL
4998 hash = sh->hash_lock_index;
4999 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 5000 cnt++;
8811b596
SL
5001 }
5002 spin_unlock_irq(&conf->device_lock);
5003 }
566c09c5
SL
5004 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5005 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
5006 if (mddev->queue)
5007 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
5008 kfree(cb);
5009}
5010
5011static void release_stripe_plug(struct mddev *mddev,
5012 struct stripe_head *sh)
5013{
5014 struct blk_plug_cb *blk_cb = blk_check_plugged(
5015 raid5_unplug, mddev,
5016 sizeof(struct raid5_plug_cb));
5017 struct raid5_plug_cb *cb;
5018
5019 if (!blk_cb) {
5020 release_stripe(sh);
5021 return;
5022 }
5023
5024 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5025
566c09c5
SL
5026 if (cb->list.next == NULL) {
5027 int i;
8811b596 5028 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5029 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5030 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5031 }
8811b596
SL
5032
5033 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5034 list_add_tail(&sh->lru, &cb->list);
5035 else
5036 release_stripe(sh);
5037}
5038
620125f2
SL
5039static void make_discard_request(struct mddev *mddev, struct bio *bi)
5040{
5041 struct r5conf *conf = mddev->private;
5042 sector_t logical_sector, last_sector;
5043 struct stripe_head *sh;
5044 int remaining;
5045 int stripe_sectors;
5046
5047 if (mddev->reshape_position != MaxSector)
5048 /* Skip discard while reshape is happening */
5049 return;
5050
4f024f37
KO
5051 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5052 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
5053
5054 bi->bi_next = NULL;
5055 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5056
5057 stripe_sectors = conf->chunk_sectors *
5058 (conf->raid_disks - conf->max_degraded);
5059 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5060 stripe_sectors);
5061 sector_div(last_sector, stripe_sectors);
5062
5063 logical_sector *= conf->chunk_sectors;
5064 last_sector *= conf->chunk_sectors;
5065
5066 for (; logical_sector < last_sector;
5067 logical_sector += STRIPE_SECTORS) {
5068 DEFINE_WAIT(w);
5069 int d;
5070 again:
5071 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5072 prepare_to_wait(&conf->wait_for_overlap, &w,
5073 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5074 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5075 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5076 release_stripe(sh);
5077 schedule();
5078 goto again;
5079 }
5080 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5081 spin_lock_irq(&sh->stripe_lock);
5082 for (d = 0; d < conf->raid_disks; d++) {
5083 if (d == sh->pd_idx || d == sh->qd_idx)
5084 continue;
5085 if (sh->dev[d].towrite || sh->dev[d].toread) {
5086 set_bit(R5_Overlap, &sh->dev[d].flags);
5087 spin_unlock_irq(&sh->stripe_lock);
5088 release_stripe(sh);
5089 schedule();
5090 goto again;
5091 }
5092 }
f8dfcffd 5093 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5094 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5095 sh->overwrite_disks = 0;
620125f2
SL
5096 for (d = 0; d < conf->raid_disks; d++) {
5097 if (d == sh->pd_idx || d == sh->qd_idx)
5098 continue;
5099 sh->dev[d].towrite = bi;
5100 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5101 raid5_inc_bi_active_stripes(bi);
7a87f434 5102 sh->overwrite_disks++;
620125f2
SL
5103 }
5104 spin_unlock_irq(&sh->stripe_lock);
5105 if (conf->mddev->bitmap) {
5106 for (d = 0;
5107 d < conf->raid_disks - conf->max_degraded;
5108 d++)
5109 bitmap_startwrite(mddev->bitmap,
5110 sh->sector,
5111 STRIPE_SECTORS,
5112 0);
5113 sh->bm_seq = conf->seq_flush + 1;
5114 set_bit(STRIPE_BIT_DELAY, &sh->state);
5115 }
5116
5117 set_bit(STRIPE_HANDLE, &sh->state);
5118 clear_bit(STRIPE_DELAYED, &sh->state);
5119 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5120 atomic_inc(&conf->preread_active_stripes);
5121 release_stripe_plug(mddev, sh);
5122 }
5123
5124 remaining = raid5_dec_bi_active_stripes(bi);
5125 if (remaining == 0) {
5126 md_write_end(mddev);
5127 bio_endio(bi, 0);
5128 }
5129}
5130
b4fdcb02 5131static void make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5132{
d1688a6d 5133 struct r5conf *conf = mddev->private;
911d4ee8 5134 int dd_idx;
1da177e4
LT
5135 sector_t new_sector;
5136 sector_t logical_sector, last_sector;
5137 struct stripe_head *sh;
a362357b 5138 const int rw = bio_data_dir(bi);
49077326 5139 int remaining;
27c0f68f
SL
5140 DEFINE_WAIT(w);
5141 bool do_prepare;
1da177e4 5142
e9c7469b
TH
5143 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5144 md_flush_request(mddev, bi);
5a7bbad2 5145 return;
e5dcdd80
N
5146 }
5147
3d310eb7 5148 md_write_start(mddev, bi);
06d91a5f 5149
9ffc8f7c
EM
5150 /*
5151 * If array is degraded, better not do chunk aligned read because
5152 * later we might have to read it again in order to reconstruct
5153 * data on failed drives.
5154 */
5155 if (rw == READ && mddev->degraded == 0 &&
52488615 5156 mddev->reshape_position == MaxSector &&
21a52c6d 5157 chunk_aligned_read(mddev,bi))
5a7bbad2 5158 return;
52488615 5159
620125f2
SL
5160 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5161 make_discard_request(mddev, bi);
5162 return;
5163 }
5164
4f024f37 5165 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5166 last_sector = bio_end_sector(bi);
1da177e4
LT
5167 bi->bi_next = NULL;
5168 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 5169
27c0f68f 5170 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5171 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5172 int previous;
c46501b2 5173 int seq;
b578d55f 5174
27c0f68f 5175 do_prepare = false;
7ecaa1e6 5176 retry:
c46501b2 5177 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5178 previous = 0;
27c0f68f
SL
5179 if (do_prepare)
5180 prepare_to_wait(&conf->wait_for_overlap, &w,
5181 TASK_UNINTERRUPTIBLE);
b0f9ec04 5182 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5183 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5184 * 64bit on a 32bit platform, and so it might be
5185 * possible to see a half-updated value
aeb878b0 5186 * Of course reshape_progress could change after
df8e7f76
N
5187 * the lock is dropped, so once we get a reference
5188 * to the stripe that we think it is, we will have
5189 * to check again.
5190 */
7ecaa1e6 5191 spin_lock_irq(&conf->device_lock);
2c810cdd 5192 if (mddev->reshape_backwards
fef9c61f
N
5193 ? logical_sector < conf->reshape_progress
5194 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5195 previous = 1;
5196 } else {
2c810cdd 5197 if (mddev->reshape_backwards
fef9c61f
N
5198 ? logical_sector < conf->reshape_safe
5199 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5200 spin_unlock_irq(&conf->device_lock);
5201 schedule();
27c0f68f 5202 do_prepare = true;
b578d55f
N
5203 goto retry;
5204 }
5205 }
7ecaa1e6
N
5206 spin_unlock_irq(&conf->device_lock);
5207 }
16a53ecc 5208
112bf897
N
5209 new_sector = raid5_compute_sector(conf, logical_sector,
5210 previous,
911d4ee8 5211 &dd_idx, NULL);
0c55e022 5212 pr_debug("raid456: make_request, sector %llu logical %llu\n",
c46501b2 5213 (unsigned long long)new_sector,
1da177e4
LT
5214 (unsigned long long)logical_sector);
5215
b5663ba4 5216 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 5217 (bi->bi_rw&RWA_MASK), 0);
1da177e4 5218 if (sh) {
b0f9ec04 5219 if (unlikely(previous)) {
7ecaa1e6 5220 /* expansion might have moved on while waiting for a
df8e7f76
N
5221 * stripe, so we must do the range check again.
5222 * Expansion could still move past after this
5223 * test, but as we are holding a reference to
5224 * 'sh', we know that if that happens,
5225 * STRIPE_EXPANDING will get set and the expansion
5226 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5227 */
5228 int must_retry = 0;
5229 spin_lock_irq(&conf->device_lock);
2c810cdd 5230 if (mddev->reshape_backwards
b0f9ec04
N
5231 ? logical_sector >= conf->reshape_progress
5232 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5233 /* mismatch, need to try again */
5234 must_retry = 1;
5235 spin_unlock_irq(&conf->device_lock);
5236 if (must_retry) {
5237 release_stripe(sh);
7a3ab908 5238 schedule();
27c0f68f 5239 do_prepare = true;
7ecaa1e6
N
5240 goto retry;
5241 }
5242 }
c46501b2
N
5243 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5244 /* Might have got the wrong stripe_head
5245 * by accident
5246 */
5247 release_stripe(sh);
5248 goto retry;
5249 }
e62e58a5 5250
ffd96e35 5251 if (rw == WRITE &&
a5c308d4 5252 logical_sector >= mddev->suspend_lo &&
e464eafd
N
5253 logical_sector < mddev->suspend_hi) {
5254 release_stripe(sh);
e62e58a5
N
5255 /* As the suspend_* range is controlled by
5256 * userspace, we want an interruptible
5257 * wait.
5258 */
5259 flush_signals(current);
5260 prepare_to_wait(&conf->wait_for_overlap,
5261 &w, TASK_INTERRUPTIBLE);
5262 if (logical_sector >= mddev->suspend_lo &&
27c0f68f 5263 logical_sector < mddev->suspend_hi) {
e62e58a5 5264 schedule();
27c0f68f
SL
5265 do_prepare = true;
5266 }
e464eafd
N
5267 goto retry;
5268 }
7ecaa1e6
N
5269
5270 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5271 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5272 /* Stripe is busy expanding or
5273 * add failed due to overlap. Flush everything
1da177e4
LT
5274 * and wait a while
5275 */
482c0834 5276 md_wakeup_thread(mddev->thread);
1da177e4
LT
5277 release_stripe(sh);
5278 schedule();
27c0f68f 5279 do_prepare = true;
1da177e4
LT
5280 goto retry;
5281 }
6ed3003c
N
5282 set_bit(STRIPE_HANDLE, &sh->state);
5283 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5284 if ((!sh->batch_head || sh == sh->batch_head) &&
5285 (bi->bi_rw & REQ_SYNC) &&
729a1866
N
5286 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5287 atomic_inc(&conf->preread_active_stripes);
8811b596 5288 release_stripe_plug(mddev, sh);
1da177e4
LT
5289 } else {
5290 /* cannot get stripe for read-ahead, just give-up */
5291 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1da177e4
LT
5292 break;
5293 }
1da177e4 5294 }
27c0f68f 5295 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5296
e7836bd6 5297 remaining = raid5_dec_bi_active_stripes(bi);
f6344757 5298 if (remaining == 0) {
1da177e4 5299
16a53ecc 5300 if ( rw == WRITE )
1da177e4 5301 md_write_end(mddev);
6712ecf8 5302
0a82a8d1
LT
5303 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5304 bi, 0);
0e13fe23 5305 bio_endio(bi, 0);
1da177e4 5306 }
1da177e4
LT
5307}
5308
fd01b88c 5309static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5310
fd01b88c 5311static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5312{
52c03291
N
5313 /* reshaping is quite different to recovery/resync so it is
5314 * handled quite separately ... here.
5315 *
5316 * On each call to sync_request, we gather one chunk worth of
5317 * destination stripes and flag them as expanding.
5318 * Then we find all the source stripes and request reads.
5319 * As the reads complete, handle_stripe will copy the data
5320 * into the destination stripe and release that stripe.
5321 */
d1688a6d 5322 struct r5conf *conf = mddev->private;
1da177e4 5323 struct stripe_head *sh;
ccfcc3c1 5324 sector_t first_sector, last_sector;
f416885e
N
5325 int raid_disks = conf->previous_raid_disks;
5326 int data_disks = raid_disks - conf->max_degraded;
5327 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5328 int i;
5329 int dd_idx;
c8f517c4 5330 sector_t writepos, readpos, safepos;
ec32a2bd 5331 sector_t stripe_addr;
7a661381 5332 int reshape_sectors;
ab69ae12 5333 struct list_head stripes;
52c03291 5334
fef9c61f
N
5335 if (sector_nr == 0) {
5336 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5337 if (mddev->reshape_backwards &&
fef9c61f
N
5338 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5339 sector_nr = raid5_size(mddev, 0, 0)
5340 - conf->reshape_progress;
2c810cdd 5341 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5342 conf->reshape_progress > 0)
5343 sector_nr = conf->reshape_progress;
f416885e 5344 sector_div(sector_nr, new_data_disks);
fef9c61f 5345 if (sector_nr) {
8dee7211
N
5346 mddev->curr_resync_completed = sector_nr;
5347 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
5348 *skipped = 1;
5349 return sector_nr;
5350 }
52c03291
N
5351 }
5352
7a661381
N
5353 /* We need to process a full chunk at a time.
5354 * If old and new chunk sizes differ, we need to process the
5355 * largest of these
5356 */
664e7c41
AN
5357 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5358 reshape_sectors = mddev->new_chunk_sectors;
7a661381 5359 else
9d8f0363 5360 reshape_sectors = mddev->chunk_sectors;
7a661381 5361
b5254dd5
N
5362 /* We update the metadata at least every 10 seconds, or when
5363 * the data about to be copied would over-write the source of
5364 * the data at the front of the range. i.e. one new_stripe
5365 * along from reshape_progress new_maps to after where
5366 * reshape_safe old_maps to
52c03291 5367 */
fef9c61f 5368 writepos = conf->reshape_progress;
f416885e 5369 sector_div(writepos, new_data_disks);
c8f517c4
N
5370 readpos = conf->reshape_progress;
5371 sector_div(readpos, data_disks);
fef9c61f 5372 safepos = conf->reshape_safe;
f416885e 5373 sector_div(safepos, data_disks);
2c810cdd 5374 if (mddev->reshape_backwards) {
ed37d83e 5375 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 5376 readpos += reshape_sectors;
7a661381 5377 safepos += reshape_sectors;
fef9c61f 5378 } else {
7a661381 5379 writepos += reshape_sectors;
ed37d83e
N
5380 readpos -= min_t(sector_t, reshape_sectors, readpos);
5381 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5382 }
52c03291 5383
b5254dd5
N
5384 /* Having calculated the 'writepos' possibly use it
5385 * to set 'stripe_addr' which is where we will write to.
5386 */
5387 if (mddev->reshape_backwards) {
5388 BUG_ON(conf->reshape_progress == 0);
5389 stripe_addr = writepos;
5390 BUG_ON((mddev->dev_sectors &
5391 ~((sector_t)reshape_sectors - 1))
5392 - reshape_sectors - stripe_addr
5393 != sector_nr);
5394 } else {
5395 BUG_ON(writepos != sector_nr + reshape_sectors);
5396 stripe_addr = sector_nr;
5397 }
5398
c8f517c4
N
5399 /* 'writepos' is the most advanced device address we might write.
5400 * 'readpos' is the least advanced device address we might read.
5401 * 'safepos' is the least address recorded in the metadata as having
5402 * been reshaped.
b5254dd5
N
5403 * If there is a min_offset_diff, these are adjusted either by
5404 * increasing the safepos/readpos if diff is negative, or
5405 * increasing writepos if diff is positive.
5406 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5407 * ensure safety in the face of a crash - that must be done by userspace
5408 * making a backup of the data. So in that case there is no particular
5409 * rush to update metadata.
5410 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5411 * update the metadata to advance 'safepos' to match 'readpos' so that
5412 * we can be safe in the event of a crash.
5413 * So we insist on updating metadata if safepos is behind writepos and
5414 * readpos is beyond writepos.
5415 * In any case, update the metadata every 10 seconds.
5416 * Maybe that number should be configurable, but I'm not sure it is
5417 * worth it.... maybe it could be a multiple of safemode_delay???
5418 */
b5254dd5
N
5419 if (conf->min_offset_diff < 0) {
5420 safepos += -conf->min_offset_diff;
5421 readpos += -conf->min_offset_diff;
5422 } else
5423 writepos += conf->min_offset_diff;
5424
2c810cdd 5425 if ((mddev->reshape_backwards
c8f517c4
N
5426 ? (safepos > writepos && readpos < writepos)
5427 : (safepos < writepos && readpos > writepos)) ||
5428 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5429 /* Cannot proceed until we've updated the superblock... */
5430 wait_event(conf->wait_for_overlap,
c91abf5a
N
5431 atomic_read(&conf->reshape_stripes)==0
5432 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5433 if (atomic_read(&conf->reshape_stripes) != 0)
5434 return 0;
fef9c61f 5435 mddev->reshape_position = conf->reshape_progress;
75d3da43 5436 mddev->curr_resync_completed = sector_nr;
c8f517c4 5437 conf->reshape_checkpoint = jiffies;
850b2b42 5438 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 5439 md_wakeup_thread(mddev->thread);
850b2b42 5440 wait_event(mddev->sb_wait, mddev->flags == 0 ||
c91abf5a
N
5441 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5442 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5443 return 0;
52c03291 5444 spin_lock_irq(&conf->device_lock);
fef9c61f 5445 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5446 spin_unlock_irq(&conf->device_lock);
5447 wake_up(&conf->wait_for_overlap);
acb180b0 5448 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
5449 }
5450
ab69ae12 5451 INIT_LIST_HEAD(&stripes);
7a661381 5452 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5453 int j;
a9f326eb 5454 int skipped_disk = 0;
a8c906ca 5455 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5456 set_bit(STRIPE_EXPANDING, &sh->state);
5457 atomic_inc(&conf->reshape_stripes);
5458 /* If any of this stripe is beyond the end of the old
5459 * array, then we need to zero those blocks
5460 */
5461 for (j=sh->disks; j--;) {
5462 sector_t s;
5463 if (j == sh->pd_idx)
5464 continue;
f416885e 5465 if (conf->level == 6 &&
d0dabf7e 5466 j == sh->qd_idx)
f416885e 5467 continue;
784052ec 5468 s = compute_blocknr(sh, j, 0);
b522adcd 5469 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5470 skipped_disk = 1;
52c03291
N
5471 continue;
5472 }
5473 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5474 set_bit(R5_Expanded, &sh->dev[j].flags);
5475 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5476 }
a9f326eb 5477 if (!skipped_disk) {
52c03291
N
5478 set_bit(STRIPE_EXPAND_READY, &sh->state);
5479 set_bit(STRIPE_HANDLE, &sh->state);
5480 }
ab69ae12 5481 list_add(&sh->lru, &stripes);
52c03291
N
5482 }
5483 spin_lock_irq(&conf->device_lock);
2c810cdd 5484 if (mddev->reshape_backwards)
7a661381 5485 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5486 else
7a661381 5487 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5488 spin_unlock_irq(&conf->device_lock);
5489 /* Ok, those stripe are ready. We can start scheduling
5490 * reads on the source stripes.
5491 * The source stripes are determined by mapping the first and last
5492 * block on the destination stripes.
5493 */
52c03291 5494 first_sector =
ec32a2bd 5495 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5496 1, &dd_idx, NULL);
52c03291 5497 last_sector =
0e6e0271 5498 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5499 * new_data_disks - 1),
911d4ee8 5500 1, &dd_idx, NULL);
58c0fed4
AN
5501 if (last_sector >= mddev->dev_sectors)
5502 last_sector = mddev->dev_sectors - 1;
52c03291 5503 while (first_sector <= last_sector) {
a8c906ca 5504 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5505 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5506 set_bit(STRIPE_HANDLE, &sh->state);
5507 release_stripe(sh);
5508 first_sector += STRIPE_SECTORS;
5509 }
ab69ae12
N
5510 /* Now that the sources are clearly marked, we can release
5511 * the destination stripes
5512 */
5513 while (!list_empty(&stripes)) {
5514 sh = list_entry(stripes.next, struct stripe_head, lru);
5515 list_del_init(&sh->lru);
5516 release_stripe(sh);
5517 }
c6207277
N
5518 /* If this takes us to the resync_max point where we have to pause,
5519 * then we need to write out the superblock.
5520 */
7a661381 5521 sector_nr += reshape_sectors;
c03f6a19
N
5522 if ((sector_nr - mddev->curr_resync_completed) * 2
5523 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5524 /* Cannot proceed until we've updated the superblock... */
5525 wait_event(conf->wait_for_overlap,
c91abf5a
N
5526 atomic_read(&conf->reshape_stripes) == 0
5527 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5528 if (atomic_read(&conf->reshape_stripes) != 0)
5529 goto ret;
fef9c61f 5530 mddev->reshape_position = conf->reshape_progress;
75d3da43 5531 mddev->curr_resync_completed = sector_nr;
c8f517c4 5532 conf->reshape_checkpoint = jiffies;
c6207277
N
5533 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5534 md_wakeup_thread(mddev->thread);
5535 wait_event(mddev->sb_wait,
5536 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
c91abf5a
N
5537 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5538 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5539 goto ret;
c6207277 5540 spin_lock_irq(&conf->device_lock);
fef9c61f 5541 conf->reshape_safe = mddev->reshape_position;
c6207277
N
5542 spin_unlock_irq(&conf->device_lock);
5543 wake_up(&conf->wait_for_overlap);
acb180b0 5544 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 5545 }
c91abf5a 5546ret:
7a661381 5547 return reshape_sectors;
52c03291
N
5548}
5549
09314799 5550static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
52c03291 5551{
d1688a6d 5552 struct r5conf *conf = mddev->private;
52c03291 5553 struct stripe_head *sh;
58c0fed4 5554 sector_t max_sector = mddev->dev_sectors;
57dab0bd 5555 sector_t sync_blocks;
16a53ecc
N
5556 int still_degraded = 0;
5557 int i;
1da177e4 5558
72626685 5559 if (sector_nr >= max_sector) {
1da177e4 5560 /* just being told to finish up .. nothing much to do */
cea9c228 5561
29269553
N
5562 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5563 end_reshape(conf);
5564 return 0;
5565 }
72626685
N
5566
5567 if (mddev->curr_resync < max_sector) /* aborted */
5568 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5569 &sync_blocks, 1);
16a53ecc 5570 else /* completed sync */
72626685
N
5571 conf->fullsync = 0;
5572 bitmap_close_sync(mddev->bitmap);
5573
1da177e4
LT
5574 return 0;
5575 }
ccfcc3c1 5576
64bd660b
N
5577 /* Allow raid5_quiesce to complete */
5578 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5579
52c03291
N
5580 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5581 return reshape_request(mddev, sector_nr, skipped);
f6705578 5582
c6207277
N
5583 /* No need to check resync_max as we never do more than one
5584 * stripe, and as resync_max will always be on a chunk boundary,
5585 * if the check in md_do_sync didn't fire, there is no chance
5586 * of overstepping resync_max here
5587 */
5588
16a53ecc 5589 /* if there is too many failed drives and we are trying
1da177e4
LT
5590 * to resync, then assert that we are finished, because there is
5591 * nothing we can do.
5592 */
3285edf1 5593 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 5594 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 5595 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 5596 *skipped = 1;
1da177e4
LT
5597 return rv;
5598 }
6f608040 5599 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5600 !conf->fullsync &&
5601 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5602 sync_blocks >= STRIPE_SECTORS) {
72626685
N
5603 /* we can skip this block, and probably more */
5604 sync_blocks /= STRIPE_SECTORS;
5605 *skipped = 1;
5606 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5607 }
1da177e4 5608
b47490c9
N
5609 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5610
a8c906ca 5611 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 5612 if (sh == NULL) {
a8c906ca 5613 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 5614 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 5615 * is trying to get access
1da177e4 5616 */
66c006a5 5617 schedule_timeout_uninterruptible(1);
1da177e4 5618 }
16a53ecc 5619 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
5620 * Note in case of > 1 drive failures it's possible we're rebuilding
5621 * one drive while leaving another faulty drive in array.
16a53ecc 5622 */
16d9cfab
EM
5623 rcu_read_lock();
5624 for (i = 0; i < conf->raid_disks; i++) {
5625 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5626
5627 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 5628 still_degraded = 1;
16d9cfab
EM
5629 }
5630 rcu_read_unlock();
16a53ecc
N
5631
5632 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5633
83206d66 5634 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 5635 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 5636
1da177e4
LT
5637 release_stripe(sh);
5638
5639 return STRIPE_SECTORS;
5640}
5641
d1688a6d 5642static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
5643{
5644 /* We may not be able to submit a whole bio at once as there
5645 * may not be enough stripe_heads available.
5646 * We cannot pre-allocate enough stripe_heads as we may need
5647 * more than exist in the cache (if we allow ever large chunks).
5648 * So we do one stripe head at a time and record in
5649 * ->bi_hw_segments how many have been done.
5650 *
5651 * We *know* that this entire raid_bio is in one chunk, so
5652 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5653 */
5654 struct stripe_head *sh;
911d4ee8 5655 int dd_idx;
46031f9a
RBJ
5656 sector_t sector, logical_sector, last_sector;
5657 int scnt = 0;
5658 int remaining;
5659 int handled = 0;
5660
4f024f37
KO
5661 logical_sector = raid_bio->bi_iter.bi_sector &
5662 ~((sector_t)STRIPE_SECTORS-1);
112bf897 5663 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 5664 0, &dd_idx, NULL);
f73a1c7d 5665 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
5666
5667 for (; logical_sector < last_sector;
387bb173
NB
5668 logical_sector += STRIPE_SECTORS,
5669 sector += STRIPE_SECTORS,
5670 scnt++) {
46031f9a 5671
e7836bd6 5672 if (scnt < raid5_bi_processed_stripes(raid_bio))
46031f9a
RBJ
5673 /* already done this stripe */
5674 continue;
5675
2844dc32 5676 sh = get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
5677
5678 if (!sh) {
5679 /* failed to get a stripe - must wait */
e7836bd6 5680 raid5_set_bi_processed_stripes(raid_bio, scnt);
46031f9a
RBJ
5681 conf->retry_read_aligned = raid_bio;
5682 return handled;
5683 }
5684
da41ba65 5685 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
387bb173 5686 release_stripe(sh);
e7836bd6 5687 raid5_set_bi_processed_stripes(raid_bio, scnt);
387bb173
NB
5688 conf->retry_read_aligned = raid_bio;
5689 return handled;
5690 }
5691
3f9e7c14 5692 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 5693 handle_stripe(sh);
46031f9a
RBJ
5694 release_stripe(sh);
5695 handled++;
5696 }
e7836bd6 5697 remaining = raid5_dec_bi_active_stripes(raid_bio);
0a82a8d1
LT
5698 if (remaining == 0) {
5699 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5700 raid_bio, 0);
0e13fe23 5701 bio_endio(raid_bio, 0);
0a82a8d1 5702 }
46031f9a 5703 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5704 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
5705 return handled;
5706}
5707
bfc90cb0 5708static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
5709 struct r5worker *worker,
5710 struct list_head *temp_inactive_list)
46a06401
SL
5711{
5712 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
5713 int i, batch_size = 0, hash;
5714 bool release_inactive = false;
46a06401
SL
5715
5716 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 5717 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
5718 batch[batch_size++] = sh;
5719
566c09c5
SL
5720 if (batch_size == 0) {
5721 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5722 if (!list_empty(temp_inactive_list + i))
5723 break;
5724 if (i == NR_STRIPE_HASH_LOCKS)
5725 return batch_size;
5726 release_inactive = true;
5727 }
46a06401
SL
5728 spin_unlock_irq(&conf->device_lock);
5729
566c09c5
SL
5730 release_inactive_stripe_list(conf, temp_inactive_list,
5731 NR_STRIPE_HASH_LOCKS);
5732
5733 if (release_inactive) {
5734 spin_lock_irq(&conf->device_lock);
5735 return 0;
5736 }
5737
46a06401
SL
5738 for (i = 0; i < batch_size; i++)
5739 handle_stripe(batch[i]);
5740
5741 cond_resched();
5742
5743 spin_lock_irq(&conf->device_lock);
566c09c5
SL
5744 for (i = 0; i < batch_size; i++) {
5745 hash = batch[i]->hash_lock_index;
5746 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5747 }
46a06401
SL
5748 return batch_size;
5749}
46031f9a 5750
851c30c9
SL
5751static void raid5_do_work(struct work_struct *work)
5752{
5753 struct r5worker *worker = container_of(work, struct r5worker, work);
5754 struct r5worker_group *group = worker->group;
5755 struct r5conf *conf = group->conf;
5756 int group_id = group - conf->worker_groups;
5757 int handled;
5758 struct blk_plug plug;
5759
5760 pr_debug("+++ raid5worker active\n");
5761
5762 blk_start_plug(&plug);
5763 handled = 0;
5764 spin_lock_irq(&conf->device_lock);
5765 while (1) {
5766 int batch_size, released;
5767
566c09c5 5768 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 5769
566c09c5
SL
5770 batch_size = handle_active_stripes(conf, group_id, worker,
5771 worker->temp_inactive_list);
bfc90cb0 5772 worker->working = false;
851c30c9
SL
5773 if (!batch_size && !released)
5774 break;
5775 handled += batch_size;
5776 }
5777 pr_debug("%d stripes handled\n", handled);
5778
5779 spin_unlock_irq(&conf->device_lock);
5780 blk_finish_plug(&plug);
5781
5782 pr_debug("--- raid5worker inactive\n");
5783}
5784
1da177e4
LT
5785/*
5786 * This is our raid5 kernel thread.
5787 *
5788 * We scan the hash table for stripes which can be handled now.
5789 * During the scan, completed stripes are saved for us by the interrupt
5790 * handler, so that they will not have to wait for our next wakeup.
5791 */
4ed8731d 5792static void raid5d(struct md_thread *thread)
1da177e4 5793{
4ed8731d 5794 struct mddev *mddev = thread->mddev;
d1688a6d 5795 struct r5conf *conf = mddev->private;
1da177e4 5796 int handled;
e1dfa0a2 5797 struct blk_plug plug;
1da177e4 5798
45b4233c 5799 pr_debug("+++ raid5d active\n");
1da177e4
LT
5800
5801 md_check_recovery(mddev);
1da177e4 5802
e1dfa0a2 5803 blk_start_plug(&plug);
1da177e4
LT
5804 handled = 0;
5805 spin_lock_irq(&conf->device_lock);
5806 while (1) {
46031f9a 5807 struct bio *bio;
773ca82f
SL
5808 int batch_size, released;
5809
566c09c5 5810 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
5811 if (released)
5812 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 5813
0021b7bc 5814 if (
7c13edc8
N
5815 !list_empty(&conf->bitmap_list)) {
5816 /* Now is a good time to flush some bitmap updates */
5817 conf->seq_flush++;
700e432d 5818 spin_unlock_irq(&conf->device_lock);
72626685 5819 bitmap_unplug(mddev->bitmap);
700e432d 5820 spin_lock_irq(&conf->device_lock);
7c13edc8 5821 conf->seq_write = conf->seq_flush;
566c09c5 5822 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 5823 }
0021b7bc 5824 raid5_activate_delayed(conf);
72626685 5825
46031f9a
RBJ
5826 while ((bio = remove_bio_from_retry(conf))) {
5827 int ok;
5828 spin_unlock_irq(&conf->device_lock);
5829 ok = retry_aligned_read(conf, bio);
5830 spin_lock_irq(&conf->device_lock);
5831 if (!ok)
5832 break;
5833 handled++;
5834 }
5835
566c09c5
SL
5836 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5837 conf->temp_inactive_list);
773ca82f 5838 if (!batch_size && !released)
1da177e4 5839 break;
46a06401 5840 handled += batch_size;
1da177e4 5841
46a06401
SL
5842 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5843 spin_unlock_irq(&conf->device_lock);
de393cde 5844 md_check_recovery(mddev);
46a06401
SL
5845 spin_lock_irq(&conf->device_lock);
5846 }
1da177e4 5847 }
45b4233c 5848 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
5849
5850 spin_unlock_irq(&conf->device_lock);
edbe83ab
N
5851 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state)) {
5852 grow_one_stripe(conf, __GFP_NOWARN);
5853 /* Set flag even if allocation failed. This helps
5854 * slow down allocation requests when mem is short
5855 */
5856 set_bit(R5_DID_ALLOC, &conf->cache_state);
5857 }
1da177e4 5858
c9f21aaf 5859 async_tx_issue_pending_all();
e1dfa0a2 5860 blk_finish_plug(&plug);
1da177e4 5861
45b4233c 5862 pr_debug("--- raid5d inactive\n");
1da177e4
LT
5863}
5864
3f294f4f 5865static ssize_t
fd01b88c 5866raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 5867{
7b1485ba
N
5868 struct r5conf *conf;
5869 int ret = 0;
5870 spin_lock(&mddev->lock);
5871 conf = mddev->private;
96de1e66 5872 if (conf)
edbe83ab 5873 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
5874 spin_unlock(&mddev->lock);
5875 return ret;
3f294f4f
N
5876}
5877
c41d4ac4 5878int
fd01b88c 5879raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 5880{
d1688a6d 5881 struct r5conf *conf = mddev->private;
b5470dc5
DW
5882 int err;
5883
c41d4ac4 5884 if (size <= 16 || size > 32768)
3f294f4f 5885 return -EINVAL;
486f0644 5886
edbe83ab 5887 conf->min_nr_stripes = size;
486f0644
N
5888 while (size < conf->max_nr_stripes &&
5889 drop_one_stripe(conf))
5890 ;
5891
edbe83ab 5892
b5470dc5
DW
5893 err = md_allow_write(mddev);
5894 if (err)
5895 return err;
486f0644
N
5896
5897 while (size > conf->max_nr_stripes)
5898 if (!grow_one_stripe(conf, GFP_KERNEL))
5899 break;
5900
c41d4ac4
N
5901 return 0;
5902}
5903EXPORT_SYMBOL(raid5_set_cache_size);
5904
5905static ssize_t
fd01b88c 5906raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 5907{
6791875e 5908 struct r5conf *conf;
c41d4ac4
N
5909 unsigned long new;
5910 int err;
5911
5912 if (len >= PAGE_SIZE)
5913 return -EINVAL;
b29bebd6 5914 if (kstrtoul(page, 10, &new))
c41d4ac4 5915 return -EINVAL;
6791875e 5916 err = mddev_lock(mddev);
c41d4ac4
N
5917 if (err)
5918 return err;
6791875e
N
5919 conf = mddev->private;
5920 if (!conf)
5921 err = -ENODEV;
5922 else
5923 err = raid5_set_cache_size(mddev, new);
5924 mddev_unlock(mddev);
5925
5926 return err ?: len;
3f294f4f 5927}
007583c9 5928
96de1e66
N
5929static struct md_sysfs_entry
5930raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5931 raid5_show_stripe_cache_size,
5932 raid5_store_stripe_cache_size);
3f294f4f 5933
d06f191f
MS
5934static ssize_t
5935raid5_show_rmw_level(struct mddev *mddev, char *page)
5936{
5937 struct r5conf *conf = mddev->private;
5938 if (conf)
5939 return sprintf(page, "%d\n", conf->rmw_level);
5940 else
5941 return 0;
5942}
5943
5944static ssize_t
5945raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
5946{
5947 struct r5conf *conf = mddev->private;
5948 unsigned long new;
5949
5950 if (!conf)
5951 return -ENODEV;
5952
5953 if (len >= PAGE_SIZE)
5954 return -EINVAL;
5955
5956 if (kstrtoul(page, 10, &new))
5957 return -EINVAL;
5958
5959 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5960 return -EINVAL;
5961
5962 if (new != PARITY_DISABLE_RMW &&
5963 new != PARITY_ENABLE_RMW &&
5964 new != PARITY_PREFER_RMW)
5965 return -EINVAL;
5966
5967 conf->rmw_level = new;
5968 return len;
5969}
5970
5971static struct md_sysfs_entry
5972raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5973 raid5_show_rmw_level,
5974 raid5_store_rmw_level);
5975
5976
8b3e6cdc 5977static ssize_t
fd01b88c 5978raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 5979{
7b1485ba
N
5980 struct r5conf *conf;
5981 int ret = 0;
5982 spin_lock(&mddev->lock);
5983 conf = mddev->private;
8b3e6cdc 5984 if (conf)
7b1485ba
N
5985 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5986 spin_unlock(&mddev->lock);
5987 return ret;
8b3e6cdc
DW
5988}
5989
5990static ssize_t
fd01b88c 5991raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 5992{
6791875e 5993 struct r5conf *conf;
4ef197d8 5994 unsigned long new;
6791875e
N
5995 int err;
5996
8b3e6cdc
DW
5997 if (len >= PAGE_SIZE)
5998 return -EINVAL;
b29bebd6 5999 if (kstrtoul(page, 10, &new))
8b3e6cdc 6000 return -EINVAL;
6791875e
N
6001
6002 err = mddev_lock(mddev);
6003 if (err)
6004 return err;
6005 conf = mddev->private;
6006 if (!conf)
6007 err = -ENODEV;
edbe83ab 6008 else if (new > conf->min_nr_stripes)
6791875e
N
6009 err = -EINVAL;
6010 else
6011 conf->bypass_threshold = new;
6012 mddev_unlock(mddev);
6013 return err ?: len;
8b3e6cdc
DW
6014}
6015
6016static struct md_sysfs_entry
6017raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6018 S_IRUGO | S_IWUSR,
6019 raid5_show_preread_threshold,
6020 raid5_store_preread_threshold);
6021
d592a996
SL
6022static ssize_t
6023raid5_show_skip_copy(struct mddev *mddev, char *page)
6024{
7b1485ba
N
6025 struct r5conf *conf;
6026 int ret = 0;
6027 spin_lock(&mddev->lock);
6028 conf = mddev->private;
d592a996 6029 if (conf)
7b1485ba
N
6030 ret = sprintf(page, "%d\n", conf->skip_copy);
6031 spin_unlock(&mddev->lock);
6032 return ret;
d592a996
SL
6033}
6034
6035static ssize_t
6036raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6037{
6791875e 6038 struct r5conf *conf;
d592a996 6039 unsigned long new;
6791875e
N
6040 int err;
6041
d592a996
SL
6042 if (len >= PAGE_SIZE)
6043 return -EINVAL;
d592a996
SL
6044 if (kstrtoul(page, 10, &new))
6045 return -EINVAL;
6046 new = !!new;
6791875e
N
6047
6048 err = mddev_lock(mddev);
6049 if (err)
6050 return err;
6051 conf = mddev->private;
6052 if (!conf)
6053 err = -ENODEV;
6054 else if (new != conf->skip_copy) {
6055 mddev_suspend(mddev);
6056 conf->skip_copy = new;
6057 if (new)
6058 mddev->queue->backing_dev_info.capabilities |=
6059 BDI_CAP_STABLE_WRITES;
6060 else
6061 mddev->queue->backing_dev_info.capabilities &=
6062 ~BDI_CAP_STABLE_WRITES;
6063 mddev_resume(mddev);
6064 }
6065 mddev_unlock(mddev);
6066 return err ?: len;
d592a996
SL
6067}
6068
6069static struct md_sysfs_entry
6070raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6071 raid5_show_skip_copy,
6072 raid5_store_skip_copy);
6073
3f294f4f 6074static ssize_t
fd01b88c 6075stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6076{
d1688a6d 6077 struct r5conf *conf = mddev->private;
96de1e66
N
6078 if (conf)
6079 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6080 else
6081 return 0;
3f294f4f
N
6082}
6083
96de1e66
N
6084static struct md_sysfs_entry
6085raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6086
b721420e
SL
6087static ssize_t
6088raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6089{
7b1485ba
N
6090 struct r5conf *conf;
6091 int ret = 0;
6092 spin_lock(&mddev->lock);
6093 conf = mddev->private;
b721420e 6094 if (conf)
7b1485ba
N
6095 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6096 spin_unlock(&mddev->lock);
6097 return ret;
b721420e
SL
6098}
6099
60aaf933 6100static int alloc_thread_groups(struct r5conf *conf, int cnt,
6101 int *group_cnt,
6102 int *worker_cnt_per_group,
6103 struct r5worker_group **worker_groups);
b721420e
SL
6104static ssize_t
6105raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6106{
6791875e 6107 struct r5conf *conf;
b721420e
SL
6108 unsigned long new;
6109 int err;
60aaf933 6110 struct r5worker_group *new_groups, *old_groups;
6111 int group_cnt, worker_cnt_per_group;
b721420e
SL
6112
6113 if (len >= PAGE_SIZE)
6114 return -EINVAL;
b721420e
SL
6115 if (kstrtoul(page, 10, &new))
6116 return -EINVAL;
6117
6791875e
N
6118 err = mddev_lock(mddev);
6119 if (err)
6120 return err;
6121 conf = mddev->private;
6122 if (!conf)
6123 err = -ENODEV;
6124 else if (new != conf->worker_cnt_per_group) {
6125 mddev_suspend(mddev);
b721420e 6126
6791875e
N
6127 old_groups = conf->worker_groups;
6128 if (old_groups)
6129 flush_workqueue(raid5_wq);
d206dcfa 6130
6791875e
N
6131 err = alloc_thread_groups(conf, new,
6132 &group_cnt, &worker_cnt_per_group,
6133 &new_groups);
6134 if (!err) {
6135 spin_lock_irq(&conf->device_lock);
6136 conf->group_cnt = group_cnt;
6137 conf->worker_cnt_per_group = worker_cnt_per_group;
6138 conf->worker_groups = new_groups;
6139 spin_unlock_irq(&conf->device_lock);
b721420e 6140
6791875e
N
6141 if (old_groups)
6142 kfree(old_groups[0].workers);
6143 kfree(old_groups);
6144 }
6145 mddev_resume(mddev);
b721420e 6146 }
6791875e 6147 mddev_unlock(mddev);
b721420e 6148
6791875e 6149 return err ?: len;
b721420e
SL
6150}
6151
6152static struct md_sysfs_entry
6153raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6154 raid5_show_group_thread_cnt,
6155 raid5_store_group_thread_cnt);
6156
007583c9 6157static struct attribute *raid5_attrs[] = {
3f294f4f
N
6158 &raid5_stripecache_size.attr,
6159 &raid5_stripecache_active.attr,
8b3e6cdc 6160 &raid5_preread_bypass_threshold.attr,
b721420e 6161 &raid5_group_thread_cnt.attr,
d592a996 6162 &raid5_skip_copy.attr,
d06f191f 6163 &raid5_rmw_level.attr,
3f294f4f
N
6164 NULL,
6165};
007583c9
N
6166static struct attribute_group raid5_attrs_group = {
6167 .name = NULL,
6168 .attrs = raid5_attrs,
3f294f4f
N
6169};
6170
60aaf933 6171static int alloc_thread_groups(struct r5conf *conf, int cnt,
6172 int *group_cnt,
6173 int *worker_cnt_per_group,
6174 struct r5worker_group **worker_groups)
851c30c9 6175{
566c09c5 6176 int i, j, k;
851c30c9
SL
6177 ssize_t size;
6178 struct r5worker *workers;
6179
60aaf933 6180 *worker_cnt_per_group = cnt;
851c30c9 6181 if (cnt == 0) {
60aaf933 6182 *group_cnt = 0;
6183 *worker_groups = NULL;
851c30c9
SL
6184 return 0;
6185 }
60aaf933 6186 *group_cnt = num_possible_nodes();
851c30c9 6187 size = sizeof(struct r5worker) * cnt;
60aaf933 6188 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6189 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6190 *group_cnt, GFP_NOIO);
6191 if (!*worker_groups || !workers) {
851c30c9 6192 kfree(workers);
60aaf933 6193 kfree(*worker_groups);
851c30c9
SL
6194 return -ENOMEM;
6195 }
6196
60aaf933 6197 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6198 struct r5worker_group *group;
6199
0c775d52 6200 group = &(*worker_groups)[i];
851c30c9
SL
6201 INIT_LIST_HEAD(&group->handle_list);
6202 group->conf = conf;
6203 group->workers = workers + i * cnt;
6204
6205 for (j = 0; j < cnt; j++) {
566c09c5
SL
6206 struct r5worker *worker = group->workers + j;
6207 worker->group = group;
6208 INIT_WORK(&worker->work, raid5_do_work);
6209
6210 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6211 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6212 }
6213 }
6214
6215 return 0;
6216}
6217
6218static void free_thread_groups(struct r5conf *conf)
6219{
6220 if (conf->worker_groups)
6221 kfree(conf->worker_groups[0].workers);
6222 kfree(conf->worker_groups);
6223 conf->worker_groups = NULL;
6224}
6225
80c3a6ce 6226static sector_t
fd01b88c 6227raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6228{
d1688a6d 6229 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6230
6231 if (!sectors)
6232 sectors = mddev->dev_sectors;
5e5e3e78 6233 if (!raid_disks)
7ec05478 6234 /* size is defined by the smallest of previous and new size */
5e5e3e78 6235 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6236
9d8f0363 6237 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 6238 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
6239 return sectors * (raid_disks - conf->max_degraded);
6240}
6241
789b5e03
ON
6242static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6243{
6244 safe_put_page(percpu->spare_page);
46d5b785 6245 if (percpu->scribble)
6246 flex_array_free(percpu->scribble);
789b5e03
ON
6247 percpu->spare_page = NULL;
6248 percpu->scribble = NULL;
6249}
6250
6251static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6252{
6253 if (conf->level == 6 && !percpu->spare_page)
6254 percpu->spare_page = alloc_page(GFP_KERNEL);
6255 if (!percpu->scribble)
46d5b785 6256 percpu->scribble = scribble_alloc(max(conf->raid_disks,
738a2738
N
6257 conf->previous_raid_disks),
6258 max(conf->chunk_sectors,
6259 conf->prev_chunk_sectors)
6260 / STRIPE_SECTORS,
6261 GFP_KERNEL);
789b5e03
ON
6262
6263 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6264 free_scratch_buffer(conf, percpu);
6265 return -ENOMEM;
6266 }
6267
6268 return 0;
6269}
6270
d1688a6d 6271static void raid5_free_percpu(struct r5conf *conf)
36d1c647 6272{
36d1c647
DW
6273 unsigned long cpu;
6274
6275 if (!conf->percpu)
6276 return;
6277
36d1c647
DW
6278#ifdef CONFIG_HOTPLUG_CPU
6279 unregister_cpu_notifier(&conf->cpu_notify);
6280#endif
789b5e03
ON
6281
6282 get_online_cpus();
6283 for_each_possible_cpu(cpu)
6284 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6285 put_online_cpus();
6286
6287 free_percpu(conf->percpu);
6288}
6289
d1688a6d 6290static void free_conf(struct r5conf *conf)
95fc17aa 6291{
edbe83ab
N
6292 if (conf->shrinker.seeks)
6293 unregister_shrinker(&conf->shrinker);
851c30c9 6294 free_thread_groups(conf);
95fc17aa 6295 shrink_stripes(conf);
36d1c647 6296 raid5_free_percpu(conf);
95fc17aa
DW
6297 kfree(conf->disks);
6298 kfree(conf->stripe_hashtbl);
6299 kfree(conf);
6300}
6301
36d1c647
DW
6302#ifdef CONFIG_HOTPLUG_CPU
6303static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6304 void *hcpu)
6305{
d1688a6d 6306 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
6307 long cpu = (long)hcpu;
6308 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6309
6310 switch (action) {
6311 case CPU_UP_PREPARE:
6312 case CPU_UP_PREPARE_FROZEN:
789b5e03 6313 if (alloc_scratch_buffer(conf, percpu)) {
36d1c647
DW
6314 pr_err("%s: failed memory allocation for cpu%ld\n",
6315 __func__, cpu);
55af6bb5 6316 return notifier_from_errno(-ENOMEM);
36d1c647
DW
6317 }
6318 break;
6319 case CPU_DEAD:
6320 case CPU_DEAD_FROZEN:
789b5e03 6321 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6322 break;
6323 default:
6324 break;
6325 }
6326 return NOTIFY_OK;
6327}
6328#endif
6329
d1688a6d 6330static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
6331{
6332 unsigned long cpu;
789b5e03 6333 int err = 0;
36d1c647 6334
789b5e03
ON
6335 conf->percpu = alloc_percpu(struct raid5_percpu);
6336 if (!conf->percpu)
36d1c647 6337 return -ENOMEM;
789b5e03
ON
6338
6339#ifdef CONFIG_HOTPLUG_CPU
6340 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6341 conf->cpu_notify.priority = 0;
6342 err = register_cpu_notifier(&conf->cpu_notify);
6343 if (err)
6344 return err;
6345#endif
36d1c647
DW
6346
6347 get_online_cpus();
36d1c647 6348 for_each_present_cpu(cpu) {
789b5e03
ON
6349 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6350 if (err) {
6351 pr_err("%s: failed memory allocation for cpu%ld\n",
6352 __func__, cpu);
36d1c647
DW
6353 break;
6354 }
36d1c647 6355 }
36d1c647
DW
6356 put_online_cpus();
6357
6358 return err;
6359}
6360
edbe83ab
N
6361static unsigned long raid5_cache_scan(struct shrinker *shrink,
6362 struct shrink_control *sc)
6363{
6364 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6365 int ret = 0;
6366 while (ret < sc->nr_to_scan) {
6367 if (drop_one_stripe(conf) == 0)
6368 return SHRINK_STOP;
6369 ret++;
6370 }
6371 return ret;
6372}
6373
6374static unsigned long raid5_cache_count(struct shrinker *shrink,
6375 struct shrink_control *sc)
6376{
6377 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6378
6379 if (conf->max_nr_stripes < conf->min_nr_stripes)
6380 /* unlikely, but not impossible */
6381 return 0;
6382 return conf->max_nr_stripes - conf->min_nr_stripes;
6383}
6384
d1688a6d 6385static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6386{
d1688a6d 6387 struct r5conf *conf;
5e5e3e78 6388 int raid_disk, memory, max_disks;
3cb03002 6389 struct md_rdev *rdev;
1da177e4 6390 struct disk_info *disk;
0232605d 6391 char pers_name[6];
566c09c5 6392 int i;
60aaf933 6393 int group_cnt, worker_cnt_per_group;
6394 struct r5worker_group *new_group;
1da177e4 6395
91adb564
N
6396 if (mddev->new_level != 5
6397 && mddev->new_level != 4
6398 && mddev->new_level != 6) {
0c55e022 6399 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
6400 mdname(mddev), mddev->new_level);
6401 return ERR_PTR(-EIO);
1da177e4 6402 }
91adb564
N
6403 if ((mddev->new_level == 5
6404 && !algorithm_valid_raid5(mddev->new_layout)) ||
6405 (mddev->new_level == 6
6406 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 6407 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
6408 mdname(mddev), mddev->new_layout);
6409 return ERR_PTR(-EIO);
99c0fb5f 6410 }
91adb564 6411 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 6412 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
6413 mdname(mddev), mddev->raid_disks);
6414 return ERR_PTR(-EINVAL);
4bbf3771
N
6415 }
6416
664e7c41
AN
6417 if (!mddev->new_chunk_sectors ||
6418 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6419 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
6420 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6421 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6422 return ERR_PTR(-EINVAL);
f6705578
N
6423 }
6424
d1688a6d 6425 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6426 if (conf == NULL)
1da177e4 6427 goto abort;
851c30c9 6428 /* Don't enable multi-threading by default*/
60aaf933 6429 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6430 &new_group)) {
6431 conf->group_cnt = group_cnt;
6432 conf->worker_cnt_per_group = worker_cnt_per_group;
6433 conf->worker_groups = new_group;
6434 } else
851c30c9 6435 goto abort;
f5efd45a 6436 spin_lock_init(&conf->device_lock);
c46501b2 6437 seqcount_init(&conf->gen_lock);
b1b46486 6438 init_waitqueue_head(&conf->wait_for_quiescent);
f5efd45a
DW
6439 init_waitqueue_head(&conf->wait_for_stripe);
6440 init_waitqueue_head(&conf->wait_for_overlap);
6441 INIT_LIST_HEAD(&conf->handle_list);
6442 INIT_LIST_HEAD(&conf->hold_list);
6443 INIT_LIST_HEAD(&conf->delayed_list);
6444 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 6445 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6446 atomic_set(&conf->active_stripes, 0);
6447 atomic_set(&conf->preread_active_stripes, 0);
6448 atomic_set(&conf->active_aligned_reads, 0);
6449 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6450 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6451
6452 conf->raid_disks = mddev->raid_disks;
6453 if (mddev->reshape_position == MaxSector)
6454 conf->previous_raid_disks = mddev->raid_disks;
6455 else
f6705578 6456 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6457 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6458
5e5e3e78 6459 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
6460 GFP_KERNEL);
6461 if (!conf->disks)
6462 goto abort;
9ffae0cf 6463
1da177e4
LT
6464 conf->mddev = mddev;
6465
fccddba0 6466 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6467 goto abort;
1da177e4 6468
566c09c5
SL
6469 /* We init hash_locks[0] separately to that it can be used
6470 * as the reference lock in the spin_lock_nest_lock() call
6471 * in lock_all_device_hash_locks_irq in order to convince
6472 * lockdep that we know what we are doing.
6473 */
6474 spin_lock_init(conf->hash_locks);
6475 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6476 spin_lock_init(conf->hash_locks + i);
6477
6478 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6479 INIT_LIST_HEAD(conf->inactive_list + i);
6480
6481 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6482 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6483
36d1c647 6484 conf->level = mddev->new_level;
46d5b785 6485 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
6486 if (raid5_alloc_percpu(conf) != 0)
6487 goto abort;
6488
0c55e022 6489 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 6490
dafb20fa 6491 rdev_for_each(rdev, mddev) {
1da177e4 6492 raid_disk = rdev->raid_disk;
5e5e3e78 6493 if (raid_disk >= max_disks
1da177e4
LT
6494 || raid_disk < 0)
6495 continue;
6496 disk = conf->disks + raid_disk;
6497
17045f52
N
6498 if (test_bit(Replacement, &rdev->flags)) {
6499 if (disk->replacement)
6500 goto abort;
6501 disk->replacement = rdev;
6502 } else {
6503 if (disk->rdev)
6504 goto abort;
6505 disk->rdev = rdev;
6506 }
1da177e4 6507
b2d444d7 6508 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 6509 char b[BDEVNAME_SIZE];
0c55e022
N
6510 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6511 " disk %d\n",
6512 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 6513 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
6514 /* Cannot rely on bitmap to complete recovery */
6515 conf->fullsync = 1;
1da177e4
LT
6516 }
6517
91adb564 6518 conf->level = mddev->new_level;
584acdd4 6519 if (conf->level == 6) {
16a53ecc 6520 conf->max_degraded = 2;
584acdd4
MS
6521 if (raid6_call.xor_syndrome)
6522 conf->rmw_level = PARITY_ENABLE_RMW;
6523 else
6524 conf->rmw_level = PARITY_DISABLE_RMW;
6525 } else {
16a53ecc 6526 conf->max_degraded = 1;
584acdd4
MS
6527 conf->rmw_level = PARITY_ENABLE_RMW;
6528 }
91adb564 6529 conf->algorithm = mddev->new_layout;
fef9c61f 6530 conf->reshape_progress = mddev->reshape_position;
e183eaed 6531 if (conf->reshape_progress != MaxSector) {
09c9e5fa 6532 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
6533 conf->prev_algo = mddev->layout;
6534 }
1da177e4 6535
edbe83ab
N
6536 conf->min_nr_stripes = NR_STRIPES;
6537 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 6538 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 6539 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 6540 if (grow_stripes(conf, conf->min_nr_stripes)) {
91adb564 6541 printk(KERN_ERR
0c55e022
N
6542 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6543 mdname(mddev), memory);
91adb564
N
6544 goto abort;
6545 } else
0c55e022
N
6546 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6547 mdname(mddev), memory);
edbe83ab
N
6548 /*
6549 * Losing a stripe head costs more than the time to refill it,
6550 * it reduces the queue depth and so can hurt throughput.
6551 * So set it rather large, scaled by number of devices.
6552 */
6553 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6554 conf->shrinker.scan_objects = raid5_cache_scan;
6555 conf->shrinker.count_objects = raid5_cache_count;
6556 conf->shrinker.batch = 128;
6557 conf->shrinker.flags = 0;
6558 register_shrinker(&conf->shrinker);
1da177e4 6559
0232605d
N
6560 sprintf(pers_name, "raid%d", mddev->new_level);
6561 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564
N
6562 if (!conf->thread) {
6563 printk(KERN_ERR
0c55e022 6564 "md/raid:%s: couldn't allocate thread.\n",
91adb564 6565 mdname(mddev));
16a53ecc
N
6566 goto abort;
6567 }
91adb564
N
6568
6569 return conf;
6570
6571 abort:
6572 if (conf) {
95fc17aa 6573 free_conf(conf);
91adb564
N
6574 return ERR_PTR(-EIO);
6575 } else
6576 return ERR_PTR(-ENOMEM);
6577}
6578
c148ffdc
N
6579static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6580{
6581 switch (algo) {
6582 case ALGORITHM_PARITY_0:
6583 if (raid_disk < max_degraded)
6584 return 1;
6585 break;
6586 case ALGORITHM_PARITY_N:
6587 if (raid_disk >= raid_disks - max_degraded)
6588 return 1;
6589 break;
6590 case ALGORITHM_PARITY_0_6:
f72ffdd6 6591 if (raid_disk == 0 ||
c148ffdc
N
6592 raid_disk == raid_disks - 1)
6593 return 1;
6594 break;
6595 case ALGORITHM_LEFT_ASYMMETRIC_6:
6596 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6597 case ALGORITHM_LEFT_SYMMETRIC_6:
6598 case ALGORITHM_RIGHT_SYMMETRIC_6:
6599 if (raid_disk == raid_disks - 1)
6600 return 1;
6601 }
6602 return 0;
6603}
6604
fd01b88c 6605static int run(struct mddev *mddev)
91adb564 6606{
d1688a6d 6607 struct r5conf *conf;
9f7c2220 6608 int working_disks = 0;
c148ffdc 6609 int dirty_parity_disks = 0;
3cb03002 6610 struct md_rdev *rdev;
c148ffdc 6611 sector_t reshape_offset = 0;
17045f52 6612 int i;
b5254dd5
N
6613 long long min_offset_diff = 0;
6614 int first = 1;
91adb564 6615
8c6ac868 6616 if (mddev->recovery_cp != MaxSector)
0c55e022 6617 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
6618 " -- starting background reconstruction\n",
6619 mdname(mddev));
b5254dd5
N
6620
6621 rdev_for_each(rdev, mddev) {
6622 long long diff;
6623 if (rdev->raid_disk < 0)
6624 continue;
6625 diff = (rdev->new_data_offset - rdev->data_offset);
6626 if (first) {
6627 min_offset_diff = diff;
6628 first = 0;
6629 } else if (mddev->reshape_backwards &&
6630 diff < min_offset_diff)
6631 min_offset_diff = diff;
6632 else if (!mddev->reshape_backwards &&
6633 diff > min_offset_diff)
6634 min_offset_diff = diff;
6635 }
6636
91adb564
N
6637 if (mddev->reshape_position != MaxSector) {
6638 /* Check that we can continue the reshape.
b5254dd5
N
6639 * Difficulties arise if the stripe we would write to
6640 * next is at or after the stripe we would read from next.
6641 * For a reshape that changes the number of devices, this
6642 * is only possible for a very short time, and mdadm makes
6643 * sure that time appears to have past before assembling
6644 * the array. So we fail if that time hasn't passed.
6645 * For a reshape that keeps the number of devices the same
6646 * mdadm must be monitoring the reshape can keeping the
6647 * critical areas read-only and backed up. It will start
6648 * the array in read-only mode, so we check for that.
91adb564
N
6649 */
6650 sector_t here_new, here_old;
6651 int old_disks;
18b00334 6652 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 6653
88ce4930 6654 if (mddev->new_level != mddev->level) {
0c55e022 6655 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
6656 "required - aborting.\n",
6657 mdname(mddev));
6658 return -EINVAL;
6659 }
91adb564
N
6660 old_disks = mddev->raid_disks - mddev->delta_disks;
6661 /* reshape_position must be on a new-stripe boundary, and one
6662 * further up in new geometry must map after here in old
6663 * geometry.
6664 */
6665 here_new = mddev->reshape_position;
664e7c41 6666 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 6667 (mddev->raid_disks - max_degraded))) {
0c55e022
N
6668 printk(KERN_ERR "md/raid:%s: reshape_position not "
6669 "on a stripe boundary\n", mdname(mddev));
91adb564
N
6670 return -EINVAL;
6671 }
c148ffdc 6672 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
6673 /* here_new is the stripe we will write to */
6674 here_old = mddev->reshape_position;
9d8f0363 6675 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
6676 (old_disks-max_degraded));
6677 /* here_old is the first stripe that we might need to read
6678 * from */
67ac6011 6679 if (mddev->delta_disks == 0) {
b5254dd5
N
6680 if ((here_new * mddev->new_chunk_sectors !=
6681 here_old * mddev->chunk_sectors)) {
6682 printk(KERN_ERR "md/raid:%s: reshape position is"
6683 " confused - aborting\n", mdname(mddev));
6684 return -EINVAL;
6685 }
67ac6011 6686 /* We cannot be sure it is safe to start an in-place
b5254dd5 6687 * reshape. It is only safe if user-space is monitoring
67ac6011
N
6688 * and taking constant backups.
6689 * mdadm always starts a situation like this in
6690 * readonly mode so it can take control before
6691 * allowing any writes. So just check for that.
6692 */
b5254dd5
N
6693 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6694 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6695 /* not really in-place - so OK */;
6696 else if (mddev->ro == 0) {
6697 printk(KERN_ERR "md/raid:%s: in-place reshape "
6698 "must be started in read-only mode "
6699 "- aborting\n",
0c55e022 6700 mdname(mddev));
67ac6011
N
6701 return -EINVAL;
6702 }
2c810cdd 6703 } else if (mddev->reshape_backwards
b5254dd5 6704 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
67ac6011
N
6705 here_old * mddev->chunk_sectors)
6706 : (here_new * mddev->new_chunk_sectors >=
b5254dd5 6707 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
91adb564 6708 /* Reading from the same stripe as writing to - bad */
0c55e022
N
6709 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6710 "auto-recovery - aborting.\n",
6711 mdname(mddev));
91adb564
N
6712 return -EINVAL;
6713 }
0c55e022
N
6714 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6715 mdname(mddev));
91adb564
N
6716 /* OK, we should be able to continue; */
6717 } else {
6718 BUG_ON(mddev->level != mddev->new_level);
6719 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 6720 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 6721 BUG_ON(mddev->delta_disks != 0);
1da177e4 6722 }
91adb564 6723
245f46c2
N
6724 if (mddev->private == NULL)
6725 conf = setup_conf(mddev);
6726 else
6727 conf = mddev->private;
6728
91adb564
N
6729 if (IS_ERR(conf))
6730 return PTR_ERR(conf);
6731
b5254dd5 6732 conf->min_offset_diff = min_offset_diff;
91adb564
N
6733 mddev->thread = conf->thread;
6734 conf->thread = NULL;
6735 mddev->private = conf;
6736
17045f52
N
6737 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6738 i++) {
6739 rdev = conf->disks[i].rdev;
6740 if (!rdev && conf->disks[i].replacement) {
6741 /* The replacement is all we have yet */
6742 rdev = conf->disks[i].replacement;
6743 conf->disks[i].replacement = NULL;
6744 clear_bit(Replacement, &rdev->flags);
6745 conf->disks[i].rdev = rdev;
6746 }
6747 if (!rdev)
c148ffdc 6748 continue;
17045f52
N
6749 if (conf->disks[i].replacement &&
6750 conf->reshape_progress != MaxSector) {
6751 /* replacements and reshape simply do not mix. */
6752 printk(KERN_ERR "md: cannot handle concurrent "
6753 "replacement and reshape.\n");
6754 goto abort;
6755 }
2f115882 6756 if (test_bit(In_sync, &rdev->flags)) {
91adb564 6757 working_disks++;
2f115882
N
6758 continue;
6759 }
c148ffdc
N
6760 /* This disc is not fully in-sync. However if it
6761 * just stored parity (beyond the recovery_offset),
6762 * when we don't need to be concerned about the
6763 * array being dirty.
6764 * When reshape goes 'backwards', we never have
6765 * partially completed devices, so we only need
6766 * to worry about reshape going forwards.
6767 */
6768 /* Hack because v0.91 doesn't store recovery_offset properly. */
6769 if (mddev->major_version == 0 &&
6770 mddev->minor_version > 90)
6771 rdev->recovery_offset = reshape_offset;
5026d7a9 6772
c148ffdc
N
6773 if (rdev->recovery_offset < reshape_offset) {
6774 /* We need to check old and new layout */
6775 if (!only_parity(rdev->raid_disk,
6776 conf->algorithm,
6777 conf->raid_disks,
6778 conf->max_degraded))
6779 continue;
6780 }
6781 if (!only_parity(rdev->raid_disk,
6782 conf->prev_algo,
6783 conf->previous_raid_disks,
6784 conf->max_degraded))
6785 continue;
6786 dirty_parity_disks++;
6787 }
91adb564 6788
17045f52
N
6789 /*
6790 * 0 for a fully functional array, 1 or 2 for a degraded array.
6791 */
908f4fbd 6792 mddev->degraded = calc_degraded(conf);
91adb564 6793
674806d6 6794 if (has_failed(conf)) {
0c55e022 6795 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 6796 " (%d/%d failed)\n",
02c2de8c 6797 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
6798 goto abort;
6799 }
6800
91adb564 6801 /* device size must be a multiple of chunk size */
9d8f0363 6802 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
6803 mddev->resync_max_sectors = mddev->dev_sectors;
6804
c148ffdc 6805 if (mddev->degraded > dirty_parity_disks &&
1da177e4 6806 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
6807 if (mddev->ok_start_degraded)
6808 printk(KERN_WARNING
0c55e022
N
6809 "md/raid:%s: starting dirty degraded array"
6810 " - data corruption possible.\n",
6ff8d8ec
N
6811 mdname(mddev));
6812 else {
6813 printk(KERN_ERR
0c55e022 6814 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
6815 mdname(mddev));
6816 goto abort;
6817 }
1da177e4
LT
6818 }
6819
1da177e4 6820 if (mddev->degraded == 0)
0c55e022
N
6821 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6822 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
6823 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6824 mddev->new_layout);
1da177e4 6825 else
0c55e022
N
6826 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6827 " out of %d devices, algorithm %d\n",
6828 mdname(mddev), conf->level,
6829 mddev->raid_disks - mddev->degraded,
6830 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
6831
6832 print_raid5_conf(conf);
6833
fef9c61f 6834 if (conf->reshape_progress != MaxSector) {
fef9c61f 6835 conf->reshape_safe = conf->reshape_progress;
f6705578
N
6836 atomic_set(&conf->reshape_stripes, 0);
6837 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6838 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6839 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6840 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6841 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 6842 "reshape");
f6705578
N
6843 }
6844
1da177e4 6845 /* Ok, everything is just fine now */
a64c876f
N
6846 if (mddev->to_remove == &raid5_attrs_group)
6847 mddev->to_remove = NULL;
00bcb4ac
N
6848 else if (mddev->kobj.sd &&
6849 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 6850 printk(KERN_WARNING
4a5add49 6851 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 6852 mdname(mddev));
4a5add49 6853 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 6854
4a5add49 6855 if (mddev->queue) {
9f7c2220 6856 int chunk_size;
620125f2 6857 bool discard_supported = true;
4a5add49
N
6858 /* read-ahead size must cover two whole stripes, which
6859 * is 2 * (datadisks) * chunksize where 'n' is the
6860 * number of raid devices
6861 */
6862 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6863 int stripe = data_disks *
6864 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6865 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6866 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 6867
9f7c2220
N
6868 chunk_size = mddev->chunk_sectors << 9;
6869 blk_queue_io_min(mddev->queue, chunk_size);
6870 blk_queue_io_opt(mddev->queue, chunk_size *
6871 (conf->raid_disks - conf->max_degraded));
c78afc62 6872 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
6873 /*
6874 * We can only discard a whole stripe. It doesn't make sense to
6875 * discard data disk but write parity disk
6876 */
6877 stripe = stripe * PAGE_SIZE;
4ac6875e
N
6878 /* Round up to power of 2, as discard handling
6879 * currently assumes that */
6880 while ((stripe-1) & stripe)
6881 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
6882 mddev->queue->limits.discard_alignment = stripe;
6883 mddev->queue->limits.discard_granularity = stripe;
6884 /*
6885 * unaligned part of discard request will be ignored, so can't
8e0e99ba 6886 * guarantee discard_zeroes_data
620125f2
SL
6887 */
6888 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 6889
5026d7a9
PA
6890 blk_queue_max_write_same_sectors(mddev->queue, 0);
6891
05616be5 6892 rdev_for_each(rdev, mddev) {
9f7c2220
N
6893 disk_stack_limits(mddev->gendisk, rdev->bdev,
6894 rdev->data_offset << 9);
05616be5
N
6895 disk_stack_limits(mddev->gendisk, rdev->bdev,
6896 rdev->new_data_offset << 9);
620125f2
SL
6897 /*
6898 * discard_zeroes_data is required, otherwise data
6899 * could be lost. Consider a scenario: discard a stripe
6900 * (the stripe could be inconsistent if
6901 * discard_zeroes_data is 0); write one disk of the
6902 * stripe (the stripe could be inconsistent again
6903 * depending on which disks are used to calculate
6904 * parity); the disk is broken; The stripe data of this
6905 * disk is lost.
6906 */
6907 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6908 !bdev_get_queue(rdev->bdev)->
6909 limits.discard_zeroes_data)
6910 discard_supported = false;
8e0e99ba
N
6911 /* Unfortunately, discard_zeroes_data is not currently
6912 * a guarantee - just a hint. So we only allow DISCARD
6913 * if the sysadmin has confirmed that only safe devices
6914 * are in use by setting a module parameter.
6915 */
6916 if (!devices_handle_discard_safely) {
6917 if (discard_supported) {
6918 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6919 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6920 }
6921 discard_supported = false;
6922 }
05616be5 6923 }
620125f2
SL
6924
6925 if (discard_supported &&
6926 mddev->queue->limits.max_discard_sectors >= stripe &&
6927 mddev->queue->limits.discard_granularity >= stripe)
6928 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6929 mddev->queue);
6930 else
6931 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6932 mddev->queue);
9f7c2220 6933 }
23032a0e 6934
1da177e4
LT
6935 return 0;
6936abort:
01f96c0a 6937 md_unregister_thread(&mddev->thread);
e4f869d9
N
6938 print_raid5_conf(conf);
6939 free_conf(conf);
1da177e4 6940 mddev->private = NULL;
0c55e022 6941 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
6942 return -EIO;
6943}
6944
afa0f557 6945static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 6946{
afa0f557 6947 struct r5conf *conf = priv;
1da177e4 6948
95fc17aa 6949 free_conf(conf);
a64c876f 6950 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
6951}
6952
fd01b88c 6953static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 6954{
d1688a6d 6955 struct r5conf *conf = mddev->private;
1da177e4
LT
6956 int i;
6957
9d8f0363
AN
6958 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6959 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 6960 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
6961 for (i = 0; i < conf->raid_disks; i++)
6962 seq_printf (seq, "%s",
6963 conf->disks[i].rdev &&
b2d444d7 6964 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 6965 seq_printf (seq, "]");
1da177e4
LT
6966}
6967
d1688a6d 6968static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
6969{
6970 int i;
6971 struct disk_info *tmp;
6972
0c55e022 6973 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
6974 if (!conf) {
6975 printk("(conf==NULL)\n");
6976 return;
6977 }
0c55e022
N
6978 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6979 conf->raid_disks,
6980 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
6981
6982 for (i = 0; i < conf->raid_disks; i++) {
6983 char b[BDEVNAME_SIZE];
6984 tmp = conf->disks + i;
6985 if (tmp->rdev)
0c55e022
N
6986 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6987 i, !test_bit(Faulty, &tmp->rdev->flags),
6988 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
6989 }
6990}
6991
fd01b88c 6992static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
6993{
6994 int i;
d1688a6d 6995 struct r5conf *conf = mddev->private;
1da177e4 6996 struct disk_info *tmp;
6b965620
N
6997 int count = 0;
6998 unsigned long flags;
1da177e4
LT
6999
7000 for (i = 0; i < conf->raid_disks; i++) {
7001 tmp = conf->disks + i;
dd054fce
N
7002 if (tmp->replacement
7003 && tmp->replacement->recovery_offset == MaxSector
7004 && !test_bit(Faulty, &tmp->replacement->flags)
7005 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7006 /* Replacement has just become active. */
7007 if (!tmp->rdev
7008 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7009 count++;
7010 if (tmp->rdev) {
7011 /* Replaced device not technically faulty,
7012 * but we need to be sure it gets removed
7013 * and never re-added.
7014 */
7015 set_bit(Faulty, &tmp->rdev->flags);
7016 sysfs_notify_dirent_safe(
7017 tmp->rdev->sysfs_state);
7018 }
7019 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7020 } else if (tmp->rdev
70fffd0b 7021 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 7022 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 7023 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 7024 count++;
43c73ca4 7025 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
7026 }
7027 }
6b965620 7028 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7029 mddev->degraded = calc_degraded(conf);
6b965620 7030 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7031 print_raid5_conf(conf);
6b965620 7032 return count;
1da177e4
LT
7033}
7034
b8321b68 7035static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7036{
d1688a6d 7037 struct r5conf *conf = mddev->private;
1da177e4 7038 int err = 0;
b8321b68 7039 int number = rdev->raid_disk;
657e3e4d 7040 struct md_rdev **rdevp;
1da177e4
LT
7041 struct disk_info *p = conf->disks + number;
7042
7043 print_raid5_conf(conf);
657e3e4d
N
7044 if (rdev == p->rdev)
7045 rdevp = &p->rdev;
7046 else if (rdev == p->replacement)
7047 rdevp = &p->replacement;
7048 else
7049 return 0;
7050
7051 if (number >= conf->raid_disks &&
7052 conf->reshape_progress == MaxSector)
7053 clear_bit(In_sync, &rdev->flags);
7054
7055 if (test_bit(In_sync, &rdev->flags) ||
7056 atomic_read(&rdev->nr_pending)) {
7057 err = -EBUSY;
7058 goto abort;
7059 }
7060 /* Only remove non-faulty devices if recovery
7061 * isn't possible.
7062 */
7063 if (!test_bit(Faulty, &rdev->flags) &&
7064 mddev->recovery_disabled != conf->recovery_disabled &&
7065 !has_failed(conf) &&
dd054fce 7066 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7067 number < conf->raid_disks) {
7068 err = -EBUSY;
7069 goto abort;
7070 }
7071 *rdevp = NULL;
7072 synchronize_rcu();
7073 if (atomic_read(&rdev->nr_pending)) {
7074 /* lost the race, try later */
7075 err = -EBUSY;
7076 *rdevp = rdev;
dd054fce
N
7077 } else if (p->replacement) {
7078 /* We must have just cleared 'rdev' */
7079 p->rdev = p->replacement;
7080 clear_bit(Replacement, &p->replacement->flags);
7081 smp_mb(); /* Make sure other CPUs may see both as identical
7082 * but will never see neither - if they are careful
7083 */
7084 p->replacement = NULL;
7085 clear_bit(WantReplacement, &rdev->flags);
7086 } else
7087 /* We might have just removed the Replacement as faulty-
7088 * clear the bit just in case
7089 */
7090 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7091abort:
7092
7093 print_raid5_conf(conf);
7094 return err;
7095}
7096
fd01b88c 7097static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7098{
d1688a6d 7099 struct r5conf *conf = mddev->private;
199050ea 7100 int err = -EEXIST;
1da177e4
LT
7101 int disk;
7102 struct disk_info *p;
6c2fce2e
NB
7103 int first = 0;
7104 int last = conf->raid_disks - 1;
1da177e4 7105
7f0da59b
N
7106 if (mddev->recovery_disabled == conf->recovery_disabled)
7107 return -EBUSY;
7108
dc10c643 7109 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7110 /* no point adding a device */
199050ea 7111 return -EINVAL;
1da177e4 7112
6c2fce2e
NB
7113 if (rdev->raid_disk >= 0)
7114 first = last = rdev->raid_disk;
1da177e4
LT
7115
7116 /*
16a53ecc
N
7117 * find the disk ... but prefer rdev->saved_raid_disk
7118 * if possible.
1da177e4 7119 */
16a53ecc 7120 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7121 rdev->saved_raid_disk >= first &&
16a53ecc 7122 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7123 first = rdev->saved_raid_disk;
7124
7125 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7126 p = conf->disks + disk;
7127 if (p->rdev == NULL) {
b2d444d7 7128 clear_bit(In_sync, &rdev->flags);
1da177e4 7129 rdev->raid_disk = disk;
199050ea 7130 err = 0;
72626685
N
7131 if (rdev->saved_raid_disk != disk)
7132 conf->fullsync = 1;
d6065f7b 7133 rcu_assign_pointer(p->rdev, rdev);
5cfb22a1 7134 goto out;
1da177e4 7135 }
5cfb22a1
N
7136 }
7137 for (disk = first; disk <= last; disk++) {
7138 p = conf->disks + disk;
7bfec5f3
N
7139 if (test_bit(WantReplacement, &p->rdev->flags) &&
7140 p->replacement == NULL) {
7141 clear_bit(In_sync, &rdev->flags);
7142 set_bit(Replacement, &rdev->flags);
7143 rdev->raid_disk = disk;
7144 err = 0;
7145 conf->fullsync = 1;
7146 rcu_assign_pointer(p->replacement, rdev);
7147 break;
7148 }
7149 }
5cfb22a1 7150out:
1da177e4 7151 print_raid5_conf(conf);
199050ea 7152 return err;
1da177e4
LT
7153}
7154
fd01b88c 7155static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7156{
7157 /* no resync is happening, and there is enough space
7158 * on all devices, so we can resize.
7159 * We need to make sure resync covers any new space.
7160 * If the array is shrinking we should possibly wait until
7161 * any io in the removed space completes, but it hardly seems
7162 * worth it.
7163 */
a4a6125a 7164 sector_t newsize;
9d8f0363 7165 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
a4a6125a
N
7166 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7167 if (mddev->external_size &&
7168 mddev->array_sectors > newsize)
b522adcd 7169 return -EINVAL;
a4a6125a
N
7170 if (mddev->bitmap) {
7171 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7172 if (ret)
7173 return ret;
7174 }
7175 md_set_array_sectors(mddev, newsize);
f233ea5c 7176 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7177 revalidate_disk(mddev->gendisk);
b098636c
N
7178 if (sectors > mddev->dev_sectors &&
7179 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7180 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7181 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7182 }
58c0fed4 7183 mddev->dev_sectors = sectors;
4b5c7ae8 7184 mddev->resync_max_sectors = sectors;
1da177e4
LT
7185 return 0;
7186}
7187
fd01b88c 7188static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7189{
7190 /* Can only proceed if there are plenty of stripe_heads.
7191 * We need a minimum of one full stripe,, and for sensible progress
7192 * it is best to have about 4 times that.
7193 * If we require 4 times, then the default 256 4K stripe_heads will
7194 * allow for chunk sizes up to 256K, which is probably OK.
7195 * If the chunk size is greater, user-space should request more
7196 * stripe_heads first.
7197 */
d1688a6d 7198 struct r5conf *conf = mddev->private;
01ee22b4 7199 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7200 > conf->min_nr_stripes ||
01ee22b4 7201 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7202 > conf->min_nr_stripes) {
0c55e022
N
7203 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7204 mdname(mddev),
01ee22b4
N
7205 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7206 / STRIPE_SIZE)*4);
7207 return 0;
7208 }
7209 return 1;
7210}
7211
fd01b88c 7212static int check_reshape(struct mddev *mddev)
29269553 7213{
d1688a6d 7214 struct r5conf *conf = mddev->private;
29269553 7215
88ce4930
N
7216 if (mddev->delta_disks == 0 &&
7217 mddev->new_layout == mddev->layout &&
664e7c41 7218 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7219 return 0; /* nothing to do */
674806d6 7220 if (has_failed(conf))
ec32a2bd 7221 return -EINVAL;
fdcfbbb6 7222 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7223 /* We might be able to shrink, but the devices must
7224 * be made bigger first.
7225 * For raid6, 4 is the minimum size.
7226 * Otherwise 2 is the minimum
7227 */
7228 int min = 2;
7229 if (mddev->level == 6)
7230 min = 4;
7231 if (mddev->raid_disks + mddev->delta_disks < min)
7232 return -EINVAL;
7233 }
29269553 7234
01ee22b4 7235 if (!check_stripe_cache(mddev))
29269553 7236 return -ENOSPC;
29269553 7237
738a2738
N
7238 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7239 mddev->delta_disks > 0)
7240 if (resize_chunks(conf,
7241 conf->previous_raid_disks
7242 + max(0, mddev->delta_disks),
7243 max(mddev->new_chunk_sectors,
7244 mddev->chunk_sectors)
7245 ) < 0)
7246 return -ENOMEM;
e56108d6
N
7247 return resize_stripes(conf, (conf->previous_raid_disks
7248 + mddev->delta_disks));
63c70c4f
N
7249}
7250
fd01b88c 7251static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7252{
d1688a6d 7253 struct r5conf *conf = mddev->private;
3cb03002 7254 struct md_rdev *rdev;
63c70c4f 7255 int spares = 0;
c04be0aa 7256 unsigned long flags;
63c70c4f 7257
f416885e 7258 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7259 return -EBUSY;
7260
01ee22b4
N
7261 if (!check_stripe_cache(mddev))
7262 return -ENOSPC;
7263
30b67645
N
7264 if (has_failed(conf))
7265 return -EINVAL;
7266
c6563a8c 7267 rdev_for_each(rdev, mddev) {
469518a3
N
7268 if (!test_bit(In_sync, &rdev->flags)
7269 && !test_bit(Faulty, &rdev->flags))
29269553 7270 spares++;
c6563a8c 7271 }
63c70c4f 7272
f416885e 7273 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7274 /* Not enough devices even to make a degraded array
7275 * of that size
7276 */
7277 return -EINVAL;
7278
ec32a2bd
N
7279 /* Refuse to reduce size of the array. Any reductions in
7280 * array size must be through explicit setting of array_size
7281 * attribute.
7282 */
7283 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7284 < mddev->array_sectors) {
0c55e022 7285 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
7286 "before number of disks\n", mdname(mddev));
7287 return -EINVAL;
7288 }
7289
f6705578 7290 atomic_set(&conf->reshape_stripes, 0);
29269553 7291 spin_lock_irq(&conf->device_lock);
c46501b2 7292 write_seqcount_begin(&conf->gen_lock);
29269553 7293 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7294 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7295 conf->prev_chunk_sectors = conf->chunk_sectors;
7296 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7297 conf->prev_algo = conf->algorithm;
7298 conf->algorithm = mddev->new_layout;
05616be5
N
7299 conf->generation++;
7300 /* Code that selects data_offset needs to see the generation update
7301 * if reshape_progress has been set - so a memory barrier needed.
7302 */
7303 smp_mb();
2c810cdd 7304 if (mddev->reshape_backwards)
fef9c61f
N
7305 conf->reshape_progress = raid5_size(mddev, 0, 0);
7306 else
7307 conf->reshape_progress = 0;
7308 conf->reshape_safe = conf->reshape_progress;
c46501b2 7309 write_seqcount_end(&conf->gen_lock);
29269553
N
7310 spin_unlock_irq(&conf->device_lock);
7311
4d77e3ba
N
7312 /* Now make sure any requests that proceeded on the assumption
7313 * the reshape wasn't running - like Discard or Read - have
7314 * completed.
7315 */
7316 mddev_suspend(mddev);
7317 mddev_resume(mddev);
7318
29269553
N
7319 /* Add some new drives, as many as will fit.
7320 * We know there are enough to make the newly sized array work.
3424bf6a
N
7321 * Don't add devices if we are reducing the number of
7322 * devices in the array. This is because it is not possible
7323 * to correctly record the "partially reconstructed" state of
7324 * such devices during the reshape and confusion could result.
29269553 7325 */
87a8dec9 7326 if (mddev->delta_disks >= 0) {
dafb20fa 7327 rdev_for_each(rdev, mddev)
87a8dec9
N
7328 if (rdev->raid_disk < 0 &&
7329 !test_bit(Faulty, &rdev->flags)) {
7330 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7331 if (rdev->raid_disk
9d4c7d87 7332 >= conf->previous_raid_disks)
87a8dec9 7333 set_bit(In_sync, &rdev->flags);
9d4c7d87 7334 else
87a8dec9 7335 rdev->recovery_offset = 0;
36fad858
NK
7336
7337 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 7338 /* Failure here is OK */;
50da0840 7339 }
87a8dec9
N
7340 } else if (rdev->raid_disk >= conf->previous_raid_disks
7341 && !test_bit(Faulty, &rdev->flags)) {
7342 /* This is a spare that was manually added */
7343 set_bit(In_sync, &rdev->flags);
87a8dec9 7344 }
29269553 7345
87a8dec9
N
7346 /* When a reshape changes the number of devices,
7347 * ->degraded is measured against the larger of the
7348 * pre and post number of devices.
7349 */
ec32a2bd 7350 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7351 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
7352 spin_unlock_irqrestore(&conf->device_lock, flags);
7353 }
63c70c4f 7354 mddev->raid_disks = conf->raid_disks;
e516402c 7355 mddev->reshape_position = conf->reshape_progress;
850b2b42 7356 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 7357
29269553
N
7358 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7359 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 7360 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553
N
7361 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7362 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7363 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7364 "reshape");
29269553
N
7365 if (!mddev->sync_thread) {
7366 mddev->recovery = 0;
7367 spin_lock_irq(&conf->device_lock);
ba8805b9 7368 write_seqcount_begin(&conf->gen_lock);
29269553 7369 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7370 mddev->new_chunk_sectors =
7371 conf->chunk_sectors = conf->prev_chunk_sectors;
7372 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7373 rdev_for_each(rdev, mddev)
7374 rdev->new_data_offset = rdev->data_offset;
7375 smp_wmb();
ba8805b9 7376 conf->generation --;
fef9c61f 7377 conf->reshape_progress = MaxSector;
1e3fa9bd 7378 mddev->reshape_position = MaxSector;
ba8805b9 7379 write_seqcount_end(&conf->gen_lock);
29269553
N
7380 spin_unlock_irq(&conf->device_lock);
7381 return -EAGAIN;
7382 }
c8f517c4 7383 conf->reshape_checkpoint = jiffies;
29269553
N
7384 md_wakeup_thread(mddev->sync_thread);
7385 md_new_event(mddev);
7386 return 0;
7387}
29269553 7388
ec32a2bd
N
7389/* This is called from the reshape thread and should make any
7390 * changes needed in 'conf'
7391 */
d1688a6d 7392static void end_reshape(struct r5conf *conf)
29269553 7393{
29269553 7394
f6705578 7395 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 7396 struct md_rdev *rdev;
f6705578 7397
f6705578 7398 spin_lock_irq(&conf->device_lock);
cea9c228 7399 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
7400 rdev_for_each(rdev, conf->mddev)
7401 rdev->data_offset = rdev->new_data_offset;
7402 smp_wmb();
fef9c61f 7403 conf->reshape_progress = MaxSector;
f6705578 7404 spin_unlock_irq(&conf->device_lock);
b0f9ec04 7405 wake_up(&conf->wait_for_overlap);
16a53ecc
N
7406
7407 /* read-ahead size must cover two whole stripes, which is
7408 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7409 */
4a5add49 7410 if (conf->mddev->queue) {
cea9c228 7411 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 7412 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 7413 / PAGE_SIZE);
16a53ecc
N
7414 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7415 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7416 }
29269553 7417 }
29269553
N
7418}
7419
ec32a2bd
N
7420/* This is called from the raid5d thread with mddev_lock held.
7421 * It makes config changes to the device.
7422 */
fd01b88c 7423static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 7424{
d1688a6d 7425 struct r5conf *conf = mddev->private;
cea9c228
N
7426
7427 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7428
ec32a2bd
N
7429 if (mddev->delta_disks > 0) {
7430 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7431 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7432 revalidate_disk(mddev->gendisk);
ec32a2bd
N
7433 } else {
7434 int d;
908f4fbd
N
7435 spin_lock_irq(&conf->device_lock);
7436 mddev->degraded = calc_degraded(conf);
7437 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
7438 for (d = conf->raid_disks ;
7439 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 7440 d++) {
3cb03002 7441 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
7442 if (rdev)
7443 clear_bit(In_sync, &rdev->flags);
7444 rdev = conf->disks[d].replacement;
7445 if (rdev)
7446 clear_bit(In_sync, &rdev->flags);
1a67dde0 7447 }
cea9c228 7448 }
88ce4930 7449 mddev->layout = conf->algorithm;
09c9e5fa 7450 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
7451 mddev->reshape_position = MaxSector;
7452 mddev->delta_disks = 0;
2c810cdd 7453 mddev->reshape_backwards = 0;
cea9c228
N
7454 }
7455}
7456
fd01b88c 7457static void raid5_quiesce(struct mddev *mddev, int state)
72626685 7458{
d1688a6d 7459 struct r5conf *conf = mddev->private;
72626685
N
7460
7461 switch(state) {
e464eafd
N
7462 case 2: /* resume for a suspend */
7463 wake_up(&conf->wait_for_overlap);
7464 break;
7465
72626685 7466 case 1: /* stop all writes */
566c09c5 7467 lock_all_device_hash_locks_irq(conf);
64bd660b
N
7468 /* '2' tells resync/reshape to pause so that all
7469 * active stripes can drain
7470 */
7471 conf->quiesce = 2;
b1b46486 7472 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
7473 atomic_read(&conf->active_stripes) == 0 &&
7474 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
7475 unlock_all_device_hash_locks_irq(conf),
7476 lock_all_device_hash_locks_irq(conf));
64bd660b 7477 conf->quiesce = 1;
566c09c5 7478 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
7479 /* allow reshape to continue */
7480 wake_up(&conf->wait_for_overlap);
72626685
N
7481 break;
7482
7483 case 0: /* re-enable writes */
566c09c5 7484 lock_all_device_hash_locks_irq(conf);
72626685 7485 conf->quiesce = 0;
b1b46486 7486 wake_up(&conf->wait_for_quiescent);
e464eafd 7487 wake_up(&conf->wait_for_overlap);
566c09c5 7488 unlock_all_device_hash_locks_irq(conf);
72626685
N
7489 break;
7490 }
72626685 7491}
b15c2e57 7492
fd01b88c 7493static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 7494{
e373ab10 7495 struct r0conf *raid0_conf = mddev->private;
d76c8420 7496 sector_t sectors;
54071b38 7497
f1b29bca 7498 /* for raid0 takeover only one zone is supported */
e373ab10 7499 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
7500 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7501 mdname(mddev));
f1b29bca
DW
7502 return ERR_PTR(-EINVAL);
7503 }
7504
e373ab10
N
7505 sectors = raid0_conf->strip_zone[0].zone_end;
7506 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 7507 mddev->dev_sectors = sectors;
f1b29bca 7508 mddev->new_level = level;
54071b38
TM
7509 mddev->new_layout = ALGORITHM_PARITY_N;
7510 mddev->new_chunk_sectors = mddev->chunk_sectors;
7511 mddev->raid_disks += 1;
7512 mddev->delta_disks = 1;
7513 /* make sure it will be not marked as dirty */
7514 mddev->recovery_cp = MaxSector;
7515
7516 return setup_conf(mddev);
7517}
7518
fd01b88c 7519static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
7520{
7521 int chunksect;
7522
7523 if (mddev->raid_disks != 2 ||
7524 mddev->degraded > 1)
7525 return ERR_PTR(-EINVAL);
7526
7527 /* Should check if there are write-behind devices? */
7528
7529 chunksect = 64*2; /* 64K by default */
7530
7531 /* The array must be an exact multiple of chunksize */
7532 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7533 chunksect >>= 1;
7534
7535 if ((chunksect<<9) < STRIPE_SIZE)
7536 /* array size does not allow a suitable chunk size */
7537 return ERR_PTR(-EINVAL);
7538
7539 mddev->new_level = 5;
7540 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 7541 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
7542
7543 return setup_conf(mddev);
7544}
7545
fd01b88c 7546static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
7547{
7548 int new_layout;
7549
7550 switch (mddev->layout) {
7551 case ALGORITHM_LEFT_ASYMMETRIC_6:
7552 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7553 break;
7554 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7555 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7556 break;
7557 case ALGORITHM_LEFT_SYMMETRIC_6:
7558 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7559 break;
7560 case ALGORITHM_RIGHT_SYMMETRIC_6:
7561 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7562 break;
7563 case ALGORITHM_PARITY_0_6:
7564 new_layout = ALGORITHM_PARITY_0;
7565 break;
7566 case ALGORITHM_PARITY_N:
7567 new_layout = ALGORITHM_PARITY_N;
7568 break;
7569 default:
7570 return ERR_PTR(-EINVAL);
7571 }
7572 mddev->new_level = 5;
7573 mddev->new_layout = new_layout;
7574 mddev->delta_disks = -1;
7575 mddev->raid_disks -= 1;
7576 return setup_conf(mddev);
7577}
7578
fd01b88c 7579static int raid5_check_reshape(struct mddev *mddev)
b3546035 7580{
88ce4930
N
7581 /* For a 2-drive array, the layout and chunk size can be changed
7582 * immediately as not restriping is needed.
7583 * For larger arrays we record the new value - after validation
7584 * to be used by a reshape pass.
b3546035 7585 */
d1688a6d 7586 struct r5conf *conf = mddev->private;
597a711b 7587 int new_chunk = mddev->new_chunk_sectors;
b3546035 7588
597a711b 7589 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
7590 return -EINVAL;
7591 if (new_chunk > 0) {
0ba459d2 7592 if (!is_power_of_2(new_chunk))
b3546035 7593 return -EINVAL;
597a711b 7594 if (new_chunk < (PAGE_SIZE>>9))
b3546035 7595 return -EINVAL;
597a711b 7596 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
7597 /* not factor of array size */
7598 return -EINVAL;
7599 }
7600
7601 /* They look valid */
7602
88ce4930 7603 if (mddev->raid_disks == 2) {
597a711b
N
7604 /* can make the change immediately */
7605 if (mddev->new_layout >= 0) {
7606 conf->algorithm = mddev->new_layout;
7607 mddev->layout = mddev->new_layout;
88ce4930
N
7608 }
7609 if (new_chunk > 0) {
597a711b
N
7610 conf->chunk_sectors = new_chunk ;
7611 mddev->chunk_sectors = new_chunk;
88ce4930
N
7612 }
7613 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7614 md_wakeup_thread(mddev->thread);
b3546035 7615 }
50ac168a 7616 return check_reshape(mddev);
88ce4930
N
7617}
7618
fd01b88c 7619static int raid6_check_reshape(struct mddev *mddev)
88ce4930 7620{
597a711b 7621 int new_chunk = mddev->new_chunk_sectors;
50ac168a 7622
597a711b 7623 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 7624 return -EINVAL;
b3546035 7625 if (new_chunk > 0) {
0ba459d2 7626 if (!is_power_of_2(new_chunk))
88ce4930 7627 return -EINVAL;
597a711b 7628 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 7629 return -EINVAL;
597a711b 7630 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
7631 /* not factor of array size */
7632 return -EINVAL;
b3546035 7633 }
88ce4930
N
7634
7635 /* They look valid */
50ac168a 7636 return check_reshape(mddev);
b3546035
N
7637}
7638
fd01b88c 7639static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
7640{
7641 /* raid5 can take over:
f1b29bca 7642 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
7643 * raid1 - if there are two drives. We need to know the chunk size
7644 * raid4 - trivial - just use a raid4 layout.
7645 * raid6 - Providing it is a *_6 layout
d562b0c4 7646 */
f1b29bca
DW
7647 if (mddev->level == 0)
7648 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
7649 if (mddev->level == 1)
7650 return raid5_takeover_raid1(mddev);
e9d4758f
N
7651 if (mddev->level == 4) {
7652 mddev->new_layout = ALGORITHM_PARITY_N;
7653 mddev->new_level = 5;
7654 return setup_conf(mddev);
7655 }
fc9739c6
N
7656 if (mddev->level == 6)
7657 return raid5_takeover_raid6(mddev);
d562b0c4
N
7658
7659 return ERR_PTR(-EINVAL);
7660}
7661
fd01b88c 7662static void *raid4_takeover(struct mddev *mddev)
a78d38a1 7663{
f1b29bca
DW
7664 /* raid4 can take over:
7665 * raid0 - if there is only one strip zone
7666 * raid5 - if layout is right
a78d38a1 7667 */
f1b29bca
DW
7668 if (mddev->level == 0)
7669 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
7670 if (mddev->level == 5 &&
7671 mddev->layout == ALGORITHM_PARITY_N) {
7672 mddev->new_layout = 0;
7673 mddev->new_level = 4;
7674 return setup_conf(mddev);
7675 }
7676 return ERR_PTR(-EINVAL);
7677}
d562b0c4 7678
84fc4b56 7679static struct md_personality raid5_personality;
245f46c2 7680
fd01b88c 7681static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
7682{
7683 /* Currently can only take over a raid5. We map the
7684 * personality to an equivalent raid6 personality
7685 * with the Q block at the end.
7686 */
7687 int new_layout;
7688
7689 if (mddev->pers != &raid5_personality)
7690 return ERR_PTR(-EINVAL);
7691 if (mddev->degraded > 1)
7692 return ERR_PTR(-EINVAL);
7693 if (mddev->raid_disks > 253)
7694 return ERR_PTR(-EINVAL);
7695 if (mddev->raid_disks < 3)
7696 return ERR_PTR(-EINVAL);
7697
7698 switch (mddev->layout) {
7699 case ALGORITHM_LEFT_ASYMMETRIC:
7700 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7701 break;
7702 case ALGORITHM_RIGHT_ASYMMETRIC:
7703 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7704 break;
7705 case ALGORITHM_LEFT_SYMMETRIC:
7706 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7707 break;
7708 case ALGORITHM_RIGHT_SYMMETRIC:
7709 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7710 break;
7711 case ALGORITHM_PARITY_0:
7712 new_layout = ALGORITHM_PARITY_0_6;
7713 break;
7714 case ALGORITHM_PARITY_N:
7715 new_layout = ALGORITHM_PARITY_N;
7716 break;
7717 default:
7718 return ERR_PTR(-EINVAL);
7719 }
7720 mddev->new_level = 6;
7721 mddev->new_layout = new_layout;
7722 mddev->delta_disks = 1;
7723 mddev->raid_disks += 1;
7724 return setup_conf(mddev);
7725}
7726
84fc4b56 7727static struct md_personality raid6_personality =
16a53ecc
N
7728{
7729 .name = "raid6",
7730 .level = 6,
7731 .owner = THIS_MODULE,
7732 .make_request = make_request,
7733 .run = run,
afa0f557 7734 .free = raid5_free,
16a53ecc
N
7735 .status = status,
7736 .error_handler = error,
7737 .hot_add_disk = raid5_add_disk,
7738 .hot_remove_disk= raid5_remove_disk,
7739 .spare_active = raid5_spare_active,
7740 .sync_request = sync_request,
7741 .resize = raid5_resize,
80c3a6ce 7742 .size = raid5_size,
50ac168a 7743 .check_reshape = raid6_check_reshape,
f416885e 7744 .start_reshape = raid5_start_reshape,
cea9c228 7745 .finish_reshape = raid5_finish_reshape,
16a53ecc 7746 .quiesce = raid5_quiesce,
245f46c2 7747 .takeover = raid6_takeover,
5c675f83 7748 .congested = raid5_congested,
64590f45 7749 .mergeable_bvec = raid5_mergeable_bvec,
16a53ecc 7750};
84fc4b56 7751static struct md_personality raid5_personality =
1da177e4
LT
7752{
7753 .name = "raid5",
2604b703 7754 .level = 5,
1da177e4
LT
7755 .owner = THIS_MODULE,
7756 .make_request = make_request,
7757 .run = run,
afa0f557 7758 .free = raid5_free,
1da177e4
LT
7759 .status = status,
7760 .error_handler = error,
7761 .hot_add_disk = raid5_add_disk,
7762 .hot_remove_disk= raid5_remove_disk,
7763 .spare_active = raid5_spare_active,
7764 .sync_request = sync_request,
7765 .resize = raid5_resize,
80c3a6ce 7766 .size = raid5_size,
63c70c4f
N
7767 .check_reshape = raid5_check_reshape,
7768 .start_reshape = raid5_start_reshape,
cea9c228 7769 .finish_reshape = raid5_finish_reshape,
72626685 7770 .quiesce = raid5_quiesce,
d562b0c4 7771 .takeover = raid5_takeover,
5c675f83 7772 .congested = raid5_congested,
64590f45 7773 .mergeable_bvec = raid5_mergeable_bvec,
1da177e4
LT
7774};
7775
84fc4b56 7776static struct md_personality raid4_personality =
1da177e4 7777{
2604b703
N
7778 .name = "raid4",
7779 .level = 4,
7780 .owner = THIS_MODULE,
7781 .make_request = make_request,
7782 .run = run,
afa0f557 7783 .free = raid5_free,
2604b703
N
7784 .status = status,
7785 .error_handler = error,
7786 .hot_add_disk = raid5_add_disk,
7787 .hot_remove_disk= raid5_remove_disk,
7788 .spare_active = raid5_spare_active,
7789 .sync_request = sync_request,
7790 .resize = raid5_resize,
80c3a6ce 7791 .size = raid5_size,
3d37890b
N
7792 .check_reshape = raid5_check_reshape,
7793 .start_reshape = raid5_start_reshape,
cea9c228 7794 .finish_reshape = raid5_finish_reshape,
2604b703 7795 .quiesce = raid5_quiesce,
a78d38a1 7796 .takeover = raid4_takeover,
5c675f83 7797 .congested = raid5_congested,
64590f45 7798 .mergeable_bvec = raid5_mergeable_bvec,
2604b703
N
7799};
7800
7801static int __init raid5_init(void)
7802{
851c30c9
SL
7803 raid5_wq = alloc_workqueue("raid5wq",
7804 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7805 if (!raid5_wq)
7806 return -ENOMEM;
16a53ecc 7807 register_md_personality(&raid6_personality);
2604b703
N
7808 register_md_personality(&raid5_personality);
7809 register_md_personality(&raid4_personality);
7810 return 0;
1da177e4
LT
7811}
7812
2604b703 7813static void raid5_exit(void)
1da177e4 7814{
16a53ecc 7815 unregister_md_personality(&raid6_personality);
2604b703
N
7816 unregister_md_personality(&raid5_personality);
7817 unregister_md_personality(&raid4_personality);
851c30c9 7818 destroy_workqueue(raid5_wq);
1da177e4
LT
7819}
7820
7821module_init(raid5_init);
7822module_exit(raid5_exit);
7823MODULE_LICENSE("GPL");
0efb9e61 7824MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 7825MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
7826MODULE_ALIAS("md-raid5");
7827MODULE_ALIAS("md-raid4");
2604b703
N
7828MODULE_ALIAS("md-level-5");
7829MODULE_ALIAS("md-level-4");
16a53ecc
N
7830MODULE_ALIAS("md-personality-8"); /* RAID6 */
7831MODULE_ALIAS("md-raid6");
7832MODULE_ALIAS("md-level-6");
7833
7834/* This used to be two separate modules, they were: */
7835MODULE_ALIAS("raid5");
7836MODULE_ALIAS("raid6");
This page took 2.450566 seconds and 5 git commands to generate.