[media] av7110: Fix driver name
[deliverable/linux.git] / drivers / media / video / ov7670.c
CommitLineData
111f3356
JC
1/*
2 * A V4L2 driver for OmniVision OV7670 cameras.
3 *
4 * Copyright 2006 One Laptop Per Child Association, Inc. Written
5 * by Jonathan Corbet with substantial inspiration from Mark
6 * McClelland's ovcamchip code.
7 *
77d5140f
JC
8 * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
9 *
111f3356
JC
10 * This file may be distributed under the terms of the GNU General
11 * Public License, version 2.
12 */
13#include <linux/init.h>
14#include <linux/module.h>
5a0e3ad6 15#include <linux/slab.h>
14386c2b 16#include <linux/i2c.h>
111f3356 17#include <linux/delay.h>
7e0a16f6 18#include <linux/videodev2.h>
14386c2b 19#include <media/v4l2-device.h>
3434eb7e 20#include <media/v4l2-chip-ident.h>
959f3bda 21#include <media/v4l2-mediabus.h>
111f3356
JC
22
23
5e614475 24MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
111f3356
JC
25MODULE_DESCRIPTION("A low-level driver for OmniVision ov7670 sensors");
26MODULE_LICENSE("GPL");
27
14386c2b
HV
28static int debug;
29module_param(debug, bool, 0644);
30MODULE_PARM_DESC(debug, "Debug level (0-1)");
31
111f3356
JC
32/*
33 * Basic window sizes. These probably belong somewhere more globally
34 * useful.
35 */
36#define VGA_WIDTH 640
37#define VGA_HEIGHT 480
38#define QVGA_WIDTH 320
39#define QVGA_HEIGHT 240
40#define CIF_WIDTH 352
41#define CIF_HEIGHT 288
42#define QCIF_WIDTH 176
43#define QCIF_HEIGHT 144
44
c8f5b2f5
JC
45/*
46 * Our nominal (default) frame rate.
47 */
48#define OV7670_FRAME_RATE 30
49
111f3356
JC
50/*
51 * The 7670 sits on i2c with ID 0x42
52 */
53#define OV7670_I2C_ADDR 0x42
54
55/* Registers */
56#define REG_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */
57#define REG_BLUE 0x01 /* blue gain */
58#define REG_RED 0x02 /* red gain */
59#define REG_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */
60#define REG_COM1 0x04 /* Control 1 */
61#define COM1_CCIR656 0x40 /* CCIR656 enable */
62#define REG_BAVE 0x05 /* U/B Average level */
63#define REG_GbAVE 0x06 /* Y/Gb Average level */
64#define REG_AECHH 0x07 /* AEC MS 5 bits */
65#define REG_RAVE 0x08 /* V/R Average level */
66#define REG_COM2 0x09 /* Control 2 */
67#define COM2_SSLEEP 0x10 /* Soft sleep mode */
68#define REG_PID 0x0a /* Product ID MSB */
69#define REG_VER 0x0b /* Product ID LSB */
70#define REG_COM3 0x0c /* Control 3 */
71#define COM3_SWAP 0x40 /* Byte swap */
72#define COM3_SCALEEN 0x08 /* Enable scaling */
73#define COM3_DCWEN 0x04 /* Enable downsamp/crop/window */
74#define REG_COM4 0x0d /* Control 4 */
75#define REG_COM5 0x0e /* All "reserved" */
76#define REG_COM6 0x0f /* Control 6 */
77#define REG_AECH 0x10 /* More bits of AEC value */
78#define REG_CLKRC 0x11 /* Clocl control */
79#define CLK_EXT 0x40 /* Use external clock directly */
80#define CLK_SCALE 0x3f /* Mask for internal clock scale */
81#define REG_COM7 0x12 /* Control 7 */
82#define COM7_RESET 0x80 /* Register reset */
83#define COM7_FMT_MASK 0x38
84#define COM7_FMT_VGA 0x00
85#define COM7_FMT_CIF 0x20 /* CIF format */
86#define COM7_FMT_QVGA 0x10 /* QVGA format */
87#define COM7_FMT_QCIF 0x08 /* QCIF format */
88#define COM7_RGB 0x04 /* bits 0 and 2 - RGB format */
89#define COM7_YUV 0x00 /* YUV */
90#define COM7_BAYER 0x01 /* Bayer format */
91#define COM7_PBAYER 0x05 /* "Processed bayer" */
92#define REG_COM8 0x13 /* Control 8 */
93#define COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
94#define COM8_AECSTEP 0x40 /* Unlimited AEC step size */
95#define COM8_BFILT 0x20 /* Band filter enable */
96#define COM8_AGC 0x04 /* Auto gain enable */
97#define COM8_AWB 0x02 /* White balance enable */
98#define COM8_AEC 0x01 /* Auto exposure enable */
99#define REG_COM9 0x14 /* Control 9 - gain ceiling */
100#define REG_COM10 0x15 /* Control 10 */
101#define COM10_HSYNC 0x40 /* HSYNC instead of HREF */
102#define COM10_PCLK_HB 0x20 /* Suppress PCLK on horiz blank */
103#define COM10_HREF_REV 0x08 /* Reverse HREF */
104#define COM10_VS_LEAD 0x04 /* VSYNC on clock leading edge */
105#define COM10_VS_NEG 0x02 /* VSYNC negative */
106#define COM10_HS_NEG 0x01 /* HSYNC negative */
107#define REG_HSTART 0x17 /* Horiz start high bits */
108#define REG_HSTOP 0x18 /* Horiz stop high bits */
109#define REG_VSTART 0x19 /* Vert start high bits */
110#define REG_VSTOP 0x1a /* Vert stop high bits */
111#define REG_PSHFT 0x1b /* Pixel delay after HREF */
112#define REG_MIDH 0x1c /* Manuf. ID high */
113#define REG_MIDL 0x1d /* Manuf. ID low */
114#define REG_MVFP 0x1e /* Mirror / vflip */
115#define MVFP_MIRROR 0x20 /* Mirror image */
116#define MVFP_FLIP 0x10 /* Vertical flip */
117
118#define REG_AEW 0x24 /* AGC upper limit */
119#define REG_AEB 0x25 /* AGC lower limit */
120#define REG_VPT 0x26 /* AGC/AEC fast mode op region */
121#define REG_HSYST 0x30 /* HSYNC rising edge delay */
122#define REG_HSYEN 0x31 /* HSYNC falling edge delay */
123#define REG_HREF 0x32 /* HREF pieces */
124#define REG_TSLB 0x3a /* lots of stuff */
125#define TSLB_YLAST 0x04 /* UYVY or VYUY - see com13 */
126#define REG_COM11 0x3b /* Control 11 */
127#define COM11_NIGHT 0x80 /* NIght mode enable */
128#define COM11_NMFR 0x60 /* Two bit NM frame rate */
129#define COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
130#define COM11_50HZ 0x08 /* Manual 50Hz select */
131#define COM11_EXP 0x02
132#define REG_COM12 0x3c /* Control 12 */
133#define COM12_HREF 0x80 /* HREF always */
134#define REG_COM13 0x3d /* Control 13 */
135#define COM13_GAMMA 0x80 /* Gamma enable */
136#define COM13_UVSAT 0x40 /* UV saturation auto adjustment */
137#define COM13_UVSWAP 0x01 /* V before U - w/TSLB */
138#define REG_COM14 0x3e /* Control 14 */
139#define COM14_DCWEN 0x10 /* DCW/PCLK-scale enable */
140#define REG_EDGE 0x3f /* Edge enhancement factor */
141#define REG_COM15 0x40 /* Control 15 */
142#define COM15_R10F0 0x00 /* Data range 10 to F0 */
143#define COM15_R01FE 0x80 /* 01 to FE */
144#define COM15_R00FF 0xc0 /* 00 to FF */
145#define COM15_RGB565 0x10 /* RGB565 output */
146#define COM15_RGB555 0x30 /* RGB555 output */
147#define REG_COM16 0x41 /* Control 16 */
148#define COM16_AWBGAIN 0x08 /* AWB gain enable */
149#define REG_COM17 0x42 /* Control 17 */
150#define COM17_AECWIN 0xc0 /* AEC window - must match COM4 */
151#define COM17_CBAR 0x08 /* DSP Color bar */
152
f9a76156
JC
153/*
154 * This matrix defines how the colors are generated, must be
155 * tweaked to adjust hue and saturation.
156 *
157 * Order: v-red, v-green, v-blue, u-red, u-green, u-blue
158 *
159 * They are nine-bit signed quantities, with the sign bit
160 * stored in 0x58. Sign for v-red is bit 0, and up from there.
161 */
162#define REG_CMATRIX_BASE 0x4f
163#define CMATRIX_LEN 6
164#define REG_CMATRIX_SIGN 0x58
165
166
111f3356
JC
167#define REG_BRIGHT 0x55 /* Brightness */
168#define REG_CONTRAS 0x56 /* Contrast control */
169
170#define REG_GFIX 0x69 /* Fix gain control */
171
585553ec
JC
172#define REG_REG76 0x76 /* OV's name */
173#define R76_BLKPCOR 0x80 /* Black pixel correction enable */
174#define R76_WHTPCOR 0x40 /* White pixel correction enable */
175
111f3356
JC
176#define REG_RGB444 0x8c /* RGB 444 control */
177#define R444_ENABLE 0x02 /* Turn on RGB444, overrides 5x5 */
178#define R444_RGBX 0x01 /* Empty nibble at end */
179
180#define REG_HAECC1 0x9f /* Hist AEC/AGC control 1 */
181#define REG_HAECC2 0xa0 /* Hist AEC/AGC control 2 */
182
183#define REG_BD50MAX 0xa5 /* 50hz banding step limit */
184#define REG_HAECC3 0xa6 /* Hist AEC/AGC control 3 */
185#define REG_HAECC4 0xa7 /* Hist AEC/AGC control 4 */
186#define REG_HAECC5 0xa8 /* Hist AEC/AGC control 5 */
187#define REG_HAECC6 0xa9 /* Hist AEC/AGC control 6 */
188#define REG_HAECC7 0xaa /* Hist AEC/AGC control 7 */
189#define REG_BD60MAX 0xab /* 60hz banding step limit */
190
191
f9a76156
JC
192/*
193 * Information we maintain about a known sensor.
194 */
195struct ov7670_format_struct; /* coming later */
196struct ov7670_info {
14386c2b 197 struct v4l2_subdev sd;
f9a76156
JC
198 struct ov7670_format_struct *fmt; /* Current format */
199 unsigned char sat; /* Saturation value */
200 int hue; /* Hue value */
d8d20155 201 u8 clkrc; /* Clock divider value */
f9a76156
JC
202};
203
14386c2b
HV
204static inline struct ov7670_info *to_state(struct v4l2_subdev *sd)
205{
206 return container_of(sd, struct ov7670_info, sd);
207}
f9a76156
JC
208
209
210
111f3356
JC
211/*
212 * The default register settings, as obtained from OmniVision. There
213 * is really no making sense of most of these - lots of "reserved" values
214 * and such.
215 *
216 * These settings give VGA YUYV.
217 */
218
219struct regval_list {
220 unsigned char reg_num;
221 unsigned char value;
222};
223
224static struct regval_list ov7670_default_regs[] = {
225 { REG_COM7, COM7_RESET },
226/*
227 * Clock scale: 3 = 15fps
228 * 2 = 20fps
229 * 1 = 30fps
230 */
f9a76156 231 { REG_CLKRC, 0x1 }, /* OV: clock scale (30 fps) */
111f3356
JC
232 { REG_TSLB, 0x04 }, /* OV */
233 { REG_COM7, 0 }, /* VGA */
234 /*
235 * Set the hardware window. These values from OV don't entirely
236 * make sense - hstop is less than hstart. But they work...
237 */
238 { REG_HSTART, 0x13 }, { REG_HSTOP, 0x01 },
239 { REG_HREF, 0xb6 }, { REG_VSTART, 0x02 },
240 { REG_VSTOP, 0x7a }, { REG_VREF, 0x0a },
241
242 { REG_COM3, 0 }, { REG_COM14, 0 },
243 /* Mystery scaling numbers */
244 { 0x70, 0x3a }, { 0x71, 0x35 },
245 { 0x72, 0x11 }, { 0x73, 0xf0 },
246 { 0xa2, 0x02 }, { REG_COM10, 0x0 },
247
248 /* Gamma curve values */
249 { 0x7a, 0x20 }, { 0x7b, 0x10 },
250 { 0x7c, 0x1e }, { 0x7d, 0x35 },
251 { 0x7e, 0x5a }, { 0x7f, 0x69 },
252 { 0x80, 0x76 }, { 0x81, 0x80 },
253 { 0x82, 0x88 }, { 0x83, 0x8f },
254 { 0x84, 0x96 }, { 0x85, 0xa3 },
255 { 0x86, 0xaf }, { 0x87, 0xc4 },
256 { 0x88, 0xd7 }, { 0x89, 0xe8 },
257
258 /* AGC and AEC parameters. Note we start by disabling those features,
259 then turn them only after tweaking the values. */
260 { REG_COM8, COM8_FASTAEC | COM8_AECSTEP | COM8_BFILT },
261 { REG_GAIN, 0 }, { REG_AECH, 0 },
262 { REG_COM4, 0x40 }, /* magic reserved bit */
263 { REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
264 { REG_BD50MAX, 0x05 }, { REG_BD60MAX, 0x07 },
265 { REG_AEW, 0x95 }, { REG_AEB, 0x33 },
266 { REG_VPT, 0xe3 }, { REG_HAECC1, 0x78 },
267 { REG_HAECC2, 0x68 }, { 0xa1, 0x03 }, /* magic */
268 { REG_HAECC3, 0xd8 }, { REG_HAECC4, 0xd8 },
269 { REG_HAECC5, 0xf0 }, { REG_HAECC6, 0x90 },
270 { REG_HAECC7, 0x94 },
271 { REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC },
272
273 /* Almost all of these are magic "reserved" values. */
274 { REG_COM5, 0x61 }, { REG_COM6, 0x4b },
7f7b12f0 275 { 0x16, 0x02 }, { REG_MVFP, 0x07 },
111f3356
JC
276 { 0x21, 0x02 }, { 0x22, 0x91 },
277 { 0x29, 0x07 }, { 0x33, 0x0b },
278 { 0x35, 0x0b }, { 0x37, 0x1d },
279 { 0x38, 0x71 }, { 0x39, 0x2a },
280 { REG_COM12, 0x78 }, { 0x4d, 0x40 },
281 { 0x4e, 0x20 }, { REG_GFIX, 0 },
282 { 0x6b, 0x4a }, { 0x74, 0x10 },
283 { 0x8d, 0x4f }, { 0x8e, 0 },
284 { 0x8f, 0 }, { 0x90, 0 },
285 { 0x91, 0 }, { 0x96, 0 },
286 { 0x9a, 0 }, { 0xb0, 0x84 },
287 { 0xb1, 0x0c }, { 0xb2, 0x0e },
288 { 0xb3, 0x82 }, { 0xb8, 0x0a },
289
290 /* More reserved magic, some of which tweaks white balance */
291 { 0x43, 0x0a }, { 0x44, 0xf0 },
292 { 0x45, 0x34 }, { 0x46, 0x58 },
293 { 0x47, 0x28 }, { 0x48, 0x3a },
294 { 0x59, 0x88 }, { 0x5a, 0x88 },
295 { 0x5b, 0x44 }, { 0x5c, 0x67 },
296 { 0x5d, 0x49 }, { 0x5e, 0x0e },
297 { 0x6c, 0x0a }, { 0x6d, 0x55 },
298 { 0x6e, 0x11 }, { 0x6f, 0x9f }, /* "9e for advance AWB" */
299 { 0x6a, 0x40 }, { REG_BLUE, 0x40 },
300 { REG_RED, 0x60 },
301 { REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC|COM8_AWB },
302
303 /* Matrix coefficients */
304 { 0x4f, 0x80 }, { 0x50, 0x80 },
305 { 0x51, 0 }, { 0x52, 0x22 },
306 { 0x53, 0x5e }, { 0x54, 0x80 },
307 { 0x58, 0x9e },
308
309 { REG_COM16, COM16_AWBGAIN }, { REG_EDGE, 0 },
310 { 0x75, 0x05 }, { 0x76, 0xe1 },
311 { 0x4c, 0 }, { 0x77, 0x01 },
312 { REG_COM13, 0xc3 }, { 0x4b, 0x09 },
313 { 0xc9, 0x60 }, { REG_COM16, 0x38 },
314 { 0x56, 0x40 },
315
c8f5b2f5 316 { 0x34, 0x11 }, { REG_COM11, COM11_EXP|COM11_HZAUTO },
111f3356
JC
317 { 0xa4, 0x88 }, { 0x96, 0 },
318 { 0x97, 0x30 }, { 0x98, 0x20 },
319 { 0x99, 0x30 }, { 0x9a, 0x84 },
320 { 0x9b, 0x29 }, { 0x9c, 0x03 },
321 { 0x9d, 0x4c }, { 0x9e, 0x3f },
322 { 0x78, 0x04 },
323
324 /* Extra-weird stuff. Some sort of multiplexor register */
325 { 0x79, 0x01 }, { 0xc8, 0xf0 },
326 { 0x79, 0x0f }, { 0xc8, 0x00 },
327 { 0x79, 0x10 }, { 0xc8, 0x7e },
328 { 0x79, 0x0a }, { 0xc8, 0x80 },
329 { 0x79, 0x0b }, { 0xc8, 0x01 },
330 { 0x79, 0x0c }, { 0xc8, 0x0f },
331 { 0x79, 0x0d }, { 0xc8, 0x20 },
332 { 0x79, 0x09 }, { 0xc8, 0x80 },
333 { 0x79, 0x02 }, { 0xc8, 0xc0 },
334 { 0x79, 0x03 }, { 0xc8, 0x40 },
335 { 0x79, 0x05 }, { 0xc8, 0x30 },
336 { 0x79, 0x26 },
337
111f3356
JC
338 { 0xff, 0xff }, /* END MARKER */
339};
340
341
342/*
343 * Here we'll try to encapsulate the changes for just the output
344 * video format.
345 *
346 * RGB656 and YUV422 come from OV; RGB444 is homebrewed.
347 *
348 * IMPORTANT RULE: the first entry must be for COM7, see ov7670_s_fmt for why.
349 */
350
351
352static struct regval_list ov7670_fmt_yuv422[] = {
353 { REG_COM7, 0x0 }, /* Selects YUV mode */
354 { REG_RGB444, 0 }, /* No RGB444 please */
97693f91 355 { REG_COM1, 0 }, /* CCIR601 */
111f3356
JC
356 { REG_COM15, COM15_R00FF },
357 { REG_COM9, 0x18 }, /* 4x gain ceiling; 0x8 is reserved bit */
358 { 0x4f, 0x80 }, /* "matrix coefficient 1" */
359 { 0x50, 0x80 }, /* "matrix coefficient 2" */
f9a76156 360 { 0x51, 0 }, /* vb */
111f3356
JC
361 { 0x52, 0x22 }, /* "matrix coefficient 4" */
362 { 0x53, 0x5e }, /* "matrix coefficient 5" */
363 { 0x54, 0x80 }, /* "matrix coefficient 6" */
364 { REG_COM13, COM13_GAMMA|COM13_UVSAT },
365 { 0xff, 0xff },
366};
367
368static struct regval_list ov7670_fmt_rgb565[] = {
369 { REG_COM7, COM7_RGB }, /* Selects RGB mode */
370 { REG_RGB444, 0 }, /* No RGB444 please */
97693f91 371 { REG_COM1, 0x0 }, /* CCIR601 */
111f3356
JC
372 { REG_COM15, COM15_RGB565 },
373 { REG_COM9, 0x38 }, /* 16x gain ceiling; 0x8 is reserved bit */
374 { 0x4f, 0xb3 }, /* "matrix coefficient 1" */
375 { 0x50, 0xb3 }, /* "matrix coefficient 2" */
f9a76156 376 { 0x51, 0 }, /* vb */
111f3356
JC
377 { 0x52, 0x3d }, /* "matrix coefficient 4" */
378 { 0x53, 0xa7 }, /* "matrix coefficient 5" */
379 { 0x54, 0xe4 }, /* "matrix coefficient 6" */
380 { REG_COM13, COM13_GAMMA|COM13_UVSAT },
381 { 0xff, 0xff },
382};
383
384static struct regval_list ov7670_fmt_rgb444[] = {
385 { REG_COM7, COM7_RGB }, /* Selects RGB mode */
386 { REG_RGB444, R444_ENABLE }, /* Enable xxxxrrrr ggggbbbb */
97693f91 387 { REG_COM1, 0x0 }, /* CCIR601 */
111f3356
JC
388 { REG_COM15, COM15_R01FE|COM15_RGB565 }, /* Data range needed? */
389 { REG_COM9, 0x38 }, /* 16x gain ceiling; 0x8 is reserved bit */
390 { 0x4f, 0xb3 }, /* "matrix coefficient 1" */
391 { 0x50, 0xb3 }, /* "matrix coefficient 2" */
f9a76156 392 { 0x51, 0 }, /* vb */
111f3356
JC
393 { 0x52, 0x3d }, /* "matrix coefficient 4" */
394 { 0x53, 0xa7 }, /* "matrix coefficient 5" */
395 { 0x54, 0xe4 }, /* "matrix coefficient 6" */
396 { REG_COM13, COM13_GAMMA|COM13_UVSAT|0x2 }, /* Magic rsvd bit */
397 { 0xff, 0xff },
398};
399
585553ec
JC
400static struct regval_list ov7670_fmt_raw[] = {
401 { REG_COM7, COM7_BAYER },
402 { REG_COM13, 0x08 }, /* No gamma, magic rsvd bit */
403 { REG_COM16, 0x3d }, /* Edge enhancement, denoise */
404 { REG_REG76, 0xe1 }, /* Pix correction, magic rsvd */
405 { 0xff, 0xff },
406};
111f3356
JC
407
408
409
410/*
411 * Low-level register I/O.
46714209
JC
412 *
413 * Note that there are two versions of these. On the XO 1, the
414 * i2c controller only does SMBUS, so that's what we use. The
415 * ov7670 is not really an SMBUS device, though, so the communication
416 * is not always entirely reliable.
417 */
418#ifdef CONFIG_OLPC_XO_1
419static int ov7670_read(struct v4l2_subdev *sd, unsigned char reg,
420 unsigned char *value)
421{
422 struct i2c_client *client = v4l2_get_subdevdata(sd);
423 int ret;
424
425 ret = i2c_smbus_read_byte_data(client, reg);
426 if (ret >= 0) {
427 *value = (unsigned char)ret;
428 ret = 0;
429 }
430 return ret;
431}
432
433
434static int ov7670_write(struct v4l2_subdev *sd, unsigned char reg,
435 unsigned char value)
436{
437 struct i2c_client *client = v4l2_get_subdevdata(sd);
438 int ret = i2c_smbus_write_byte_data(client, reg, value);
439
440 if (reg == REG_COM7 && (value & COM7_RESET))
441 msleep(5); /* Wait for reset to run */
442 return ret;
443}
444
445#else /* ! CONFIG_OLPC_XO_1 */
446/*
447 * On most platforms, we'd rather do straight i2c I/O.
111f3356 448 */
14386c2b 449static int ov7670_read(struct v4l2_subdev *sd, unsigned char reg,
111f3356
JC
450 unsigned char *value)
451{
14386c2b 452 struct i2c_client *client = v4l2_get_subdevdata(sd);
2bf7de48
JC
453 u8 data = reg;
454 struct i2c_msg msg;
111f3356
JC
455 int ret;
456
2bf7de48
JC
457 /*
458 * Send out the register address...
459 */
460 msg.addr = client->addr;
461 msg.flags = 0;
462 msg.len = 1;
463 msg.buf = &data;
464 ret = i2c_transfer(client->adapter, &msg, 1);
465 if (ret < 0) {
466 printk(KERN_ERR "Error %d on register write\n", ret);
467 return ret;
468 }
469 /*
470 * ...then read back the result.
471 */
472 msg.flags = I2C_M_RD;
473 ret = i2c_transfer(client->adapter, &msg, 1);
bca5c2c5 474 if (ret >= 0) {
2bf7de48 475 *value = data;
bca5c2c5
AS
476 ret = 0;
477 }
111f3356
JC
478 return ret;
479}
480
481
14386c2b 482static int ov7670_write(struct v4l2_subdev *sd, unsigned char reg,
111f3356
JC
483 unsigned char value)
484{
14386c2b 485 struct i2c_client *client = v4l2_get_subdevdata(sd);
2bf7de48
JC
486 struct i2c_msg msg;
487 unsigned char data[2] = { reg, value };
488 int ret;
14386c2b 489
2bf7de48
JC
490 msg.addr = client->addr;
491 msg.flags = 0;
492 msg.len = 2;
493 msg.buf = data;
494 ret = i2c_transfer(client->adapter, &msg, 1);
495 if (ret > 0)
496 ret = 0;
6d77444a 497 if (reg == REG_COM7 && (value & COM7_RESET))
97693f91 498 msleep(5); /* Wait for reset to run */
6d77444a 499 return ret;
111f3356 500}
46714209 501#endif /* CONFIG_OLPC_XO_1 */
111f3356
JC
502
503
504/*
505 * Write a list of register settings; ff/ff stops the process.
506 */
14386c2b 507static int ov7670_write_array(struct v4l2_subdev *sd, struct regval_list *vals)
111f3356
JC
508{
509 while (vals->reg_num != 0xff || vals->value != 0xff) {
14386c2b 510 int ret = ov7670_write(sd, vals->reg_num, vals->value);
111f3356
JC
511 if (ret < 0)
512 return ret;
513 vals++;
514 }
515 return 0;
516}
517
518
519/*
520 * Stuff that knows about the sensor.
521 */
14386c2b 522static int ov7670_reset(struct v4l2_subdev *sd, u32 val)
111f3356 523{
14386c2b 524 ov7670_write(sd, REG_COM7, COM7_RESET);
111f3356 525 msleep(1);
14386c2b 526 return 0;
111f3356
JC
527}
528
529
14386c2b 530static int ov7670_init(struct v4l2_subdev *sd, u32 val)
111f3356 531{
14386c2b 532 return ov7670_write_array(sd, ov7670_default_regs);
111f3356
JC
533}
534
535
536
14386c2b 537static int ov7670_detect(struct v4l2_subdev *sd)
111f3356
JC
538{
539 unsigned char v;
540 int ret;
541
14386c2b 542 ret = ov7670_init(sd, 0);
111f3356
JC
543 if (ret < 0)
544 return ret;
14386c2b 545 ret = ov7670_read(sd, REG_MIDH, &v);
111f3356
JC
546 if (ret < 0)
547 return ret;
548 if (v != 0x7f) /* OV manuf. id. */
549 return -ENODEV;
14386c2b 550 ret = ov7670_read(sd, REG_MIDL, &v);
111f3356
JC
551 if (ret < 0)
552 return ret;
553 if (v != 0xa2)
554 return -ENODEV;
555 /*
556 * OK, we know we have an OmniVision chip...but which one?
557 */
14386c2b 558 ret = ov7670_read(sd, REG_PID, &v);
111f3356
JC
559 if (ret < 0)
560 return ret;
561 if (v != 0x76) /* PID + VER = 0x76 / 0x73 */
562 return -ENODEV;
14386c2b 563 ret = ov7670_read(sd, REG_VER, &v);
111f3356
JC
564 if (ret < 0)
565 return ret;
566 if (v != 0x73) /* PID + VER = 0x76 / 0x73 */
567 return -ENODEV;
568 return 0;
569}
570
571
f9a76156
JC
572/*
573 * Store information about the video data format. The color matrix
574 * is deeply tied into the format, so keep the relevant values here.
959f3bda 575 * The magic matrix numbers come from OmniVision.
f9a76156 576 */
111f3356 577static struct ov7670_format_struct {
959f3bda
HV
578 enum v4l2_mbus_pixelcode mbus_code;
579 enum v4l2_colorspace colorspace;
111f3356 580 struct regval_list *regs;
f9a76156 581 int cmatrix[CMATRIX_LEN];
111f3356
JC
582} ov7670_formats[] = {
583 {
959f3bda
HV
584 .mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,
585 .colorspace = V4L2_COLORSPACE_JPEG,
111f3356 586 .regs = ov7670_fmt_yuv422,
f9a76156 587 .cmatrix = { 128, -128, 0, -34, -94, 128 },
111f3356
JC
588 },
589 {
959f3bda
HV
590 .mbus_code = V4L2_MBUS_FMT_RGB444_2X8_PADHI_LE,
591 .colorspace = V4L2_COLORSPACE_SRGB,
111f3356 592 .regs = ov7670_fmt_rgb444,
f9a76156 593 .cmatrix = { 179, -179, 0, -61, -176, 228 },
111f3356
JC
594 },
595 {
959f3bda
HV
596 .mbus_code = V4L2_MBUS_FMT_RGB565_2X8_LE,
597 .colorspace = V4L2_COLORSPACE_SRGB,
111f3356 598 .regs = ov7670_fmt_rgb565,
f9a76156 599 .cmatrix = { 179, -179, 0, -61, -176, 228 },
585553ec
JC
600 },
601 {
959f3bda
HV
602 .mbus_code = V4L2_MBUS_FMT_SBGGR8_1X8,
603 .colorspace = V4L2_COLORSPACE_SRGB,
585553ec
JC
604 .regs = ov7670_fmt_raw,
605 .cmatrix = { 0, 0, 0, 0, 0, 0 },
111f3356 606 },
111f3356 607};
585553ec 608#define N_OV7670_FMTS ARRAY_SIZE(ov7670_formats)
111f3356 609
111f3356
JC
610
611/*
612 * Then there is the issue of window sizes. Try to capture the info here.
613 */
f9a76156
JC
614
615/*
616 * QCIF mode is done (by OV) in a very strange way - it actually looks like
617 * VGA with weird scaling options - they do *not* use the canned QCIF mode
618 * which is allegedly provided by the sensor. So here's the weird register
619 * settings.
620 */
621static struct regval_list ov7670_qcif_regs[] = {
622 { REG_COM3, COM3_SCALEEN|COM3_DCWEN },
623 { REG_COM3, COM3_DCWEN },
624 { REG_COM14, COM14_DCWEN | 0x01},
625 { 0x73, 0xf1 },
626 { 0xa2, 0x52 },
627 { 0x7b, 0x1c },
628 { 0x7c, 0x28 },
629 { 0x7d, 0x3c },
630 { 0x7f, 0x69 },
631 { REG_COM9, 0x38 },
632 { 0xa1, 0x0b },
633 { 0x74, 0x19 },
634 { 0x9a, 0x80 },
635 { 0x43, 0x14 },
636 { REG_COM13, 0xc0 },
637 { 0xff, 0xff },
638};
639
111f3356
JC
640static struct ov7670_win_size {
641 int width;
642 int height;
643 unsigned char com7_bit;
644 int hstart; /* Start/stop values for the camera. Note */
645 int hstop; /* that they do not always make complete */
646 int vstart; /* sense to humans, but evidently the sensor */
647 int vstop; /* will do the right thing... */
f9a76156 648 struct regval_list *regs; /* Regs to tweak */
111f3356
JC
649/* h/vref stuff */
650} ov7670_win_sizes[] = {
651 /* VGA */
652 {
653 .width = VGA_WIDTH,
654 .height = VGA_HEIGHT,
655 .com7_bit = COM7_FMT_VGA,
656 .hstart = 158, /* These values from */
657 .hstop = 14, /* Omnivision */
658 .vstart = 10,
659 .vstop = 490,
f9a76156 660 .regs = NULL,
111f3356
JC
661 },
662 /* CIF */
663 {
664 .width = CIF_WIDTH,
665 .height = CIF_HEIGHT,
666 .com7_bit = COM7_FMT_CIF,
667 .hstart = 170, /* Empirically determined */
668 .hstop = 90,
669 .vstart = 14,
670 .vstop = 494,
f9a76156 671 .regs = NULL,
111f3356
JC
672 },
673 /* QVGA */
674 {
675 .width = QVGA_WIDTH,
676 .height = QVGA_HEIGHT,
677 .com7_bit = COM7_FMT_QVGA,
678 .hstart = 164, /* Empirically determined */
679 .hstop = 20,
680 .vstart = 14,
681 .vstop = 494,
f9a76156
JC
682 .regs = NULL,
683 },
684 /* QCIF */
685 {
686 .width = QCIF_WIDTH,
687 .height = QCIF_HEIGHT,
688 .com7_bit = COM7_FMT_VGA, /* see comment above */
689 .hstart = 456, /* Empirically determined */
690 .hstop = 24,
691 .vstart = 14,
692 .vstop = 494,
693 .regs = ov7670_qcif_regs,
111f3356
JC
694 },
695};
696
0c71bf1c 697#define N_WIN_SIZES (ARRAY_SIZE(ov7670_win_sizes))
111f3356
JC
698
699
700/*
701 * Store a set of start/stop values into the camera.
702 */
14386c2b 703static int ov7670_set_hw(struct v4l2_subdev *sd, int hstart, int hstop,
111f3356
JC
704 int vstart, int vstop)
705{
706 int ret;
707 unsigned char v;
708/*
709 * Horizontal: 11 bits, top 8 live in hstart and hstop. Bottom 3 of
710 * hstart are in href[2:0], bottom 3 of hstop in href[5:3]. There is
711 * a mystery "edge offset" value in the top two bits of href.
712 */
14386c2b
HV
713 ret = ov7670_write(sd, REG_HSTART, (hstart >> 3) & 0xff);
714 ret += ov7670_write(sd, REG_HSTOP, (hstop >> 3) & 0xff);
715 ret += ov7670_read(sd, REG_HREF, &v);
111f3356
JC
716 v = (v & 0xc0) | ((hstop & 0x7) << 3) | (hstart & 0x7);
717 msleep(10);
14386c2b 718 ret += ov7670_write(sd, REG_HREF, v);
111f3356
JC
719/*
720 * Vertical: similar arrangement, but only 10 bits.
721 */
14386c2b
HV
722 ret += ov7670_write(sd, REG_VSTART, (vstart >> 2) & 0xff);
723 ret += ov7670_write(sd, REG_VSTOP, (vstop >> 2) & 0xff);
724 ret += ov7670_read(sd, REG_VREF, &v);
111f3356
JC
725 v = (v & 0xf0) | ((vstop & 0x3) << 2) | (vstart & 0x3);
726 msleep(10);
14386c2b 727 ret += ov7670_write(sd, REG_VREF, v);
111f3356
JC
728 return ret;
729}
730
731
959f3bda
HV
732static int ov7670_enum_mbus_fmt(struct v4l2_subdev *sd, unsigned index,
733 enum v4l2_mbus_pixelcode *code)
734{
735 if (index >= N_OV7670_FMTS)
736 return -EINVAL;
737
738 *code = ov7670_formats[index].mbus_code;
739 return 0;
740}
111f3356 741
14386c2b 742static int ov7670_try_fmt_internal(struct v4l2_subdev *sd,
959f3bda 743 struct v4l2_mbus_framefmt *fmt,
111f3356
JC
744 struct ov7670_format_struct **ret_fmt,
745 struct ov7670_win_size **ret_wsize)
746{
747 int index;
748 struct ov7670_win_size *wsize;
111f3356
JC
749
750 for (index = 0; index < N_OV7670_FMTS; index++)
959f3bda 751 if (ov7670_formats[index].mbus_code == fmt->code)
111f3356 752 break;
cd257a6f
DD
753 if (index >= N_OV7670_FMTS) {
754 /* default to first format */
755 index = 0;
959f3bda 756 fmt->code = ov7670_formats[0].mbus_code;
cd257a6f 757 }
111f3356
JC
758 if (ret_fmt != NULL)
759 *ret_fmt = ov7670_formats + index;
760 /*
761 * Fields: the OV devices claim to be progressive.
762 */
959f3bda 763 fmt->field = V4L2_FIELD_NONE;
111f3356
JC
764 /*
765 * Round requested image size down to the nearest
766 * we support, but not below the smallest.
767 */
768 for (wsize = ov7670_win_sizes; wsize < ov7670_win_sizes + N_WIN_SIZES;
769 wsize++)
959f3bda 770 if (fmt->width >= wsize->width && fmt->height >= wsize->height)
111f3356 771 break;
f9a76156 772 if (wsize >= ov7670_win_sizes + N_WIN_SIZES)
111f3356
JC
773 wsize--; /* Take the smallest one */
774 if (ret_wsize != NULL)
775 *ret_wsize = wsize;
776 /*
777 * Note the size we'll actually handle.
778 */
959f3bda
HV
779 fmt->width = wsize->width;
780 fmt->height = wsize->height;
781 fmt->colorspace = ov7670_formats[index].colorspace;
111f3356 782 return 0;
111f3356
JC
783}
784
959f3bda
HV
785static int ov7670_try_mbus_fmt(struct v4l2_subdev *sd,
786 struct v4l2_mbus_framefmt *fmt)
14386c2b
HV
787{
788 return ov7670_try_fmt_internal(sd, fmt, NULL, NULL);
789}
790
111f3356
JC
791/*
792 * Set a format.
793 */
959f3bda
HV
794static int ov7670_s_mbus_fmt(struct v4l2_subdev *sd,
795 struct v4l2_mbus_framefmt *fmt)
111f3356 796{
111f3356
JC
797 struct ov7670_format_struct *ovfmt;
798 struct ov7670_win_size *wsize;
14386c2b 799 struct ov7670_info *info = to_state(sd);
d8d20155 800 unsigned char com7;
959f3bda 801 int ret;
111f3356 802
14386c2b 803 ret = ov7670_try_fmt_internal(sd, fmt, &ovfmt, &wsize);
959f3bda 804
111f3356
JC
805 if (ret)
806 return ret;
807 /*
808 * COM7 is a pain in the ass, it doesn't like to be read then
809 * quickly written afterward. But we have everything we need
810 * to set it absolutely here, as long as the format-specific
811 * register sets list it first.
812 */
813 com7 = ovfmt->regs[0].value;
814 com7 |= wsize->com7_bit;
14386c2b 815 ov7670_write(sd, REG_COM7, com7);
111f3356
JC
816 /*
817 * Now write the rest of the array. Also store start/stops
818 */
14386c2b
HV
819 ov7670_write_array(sd, ovfmt->regs + 1);
820 ov7670_set_hw(sd, wsize->hstart, wsize->hstop, wsize->vstart,
111f3356 821 wsize->vstop);
f9a76156
JC
822 ret = 0;
823 if (wsize->regs)
14386c2b 824 ret = ov7670_write_array(sd, wsize->regs);
f9a76156 825 info->fmt = ovfmt;
edd75ede 826
d8d20155
JC
827 /*
828 * If we're running RGB565, we must rewrite clkrc after setting
829 * the other parameters or the image looks poor. If we're *not*
830 * doing RGB565, we must not rewrite clkrc or the image looks
831 * *really* poor.
a8e68c37
JC
832 *
833 * (Update) Now that we retain clkrc state, we should be able
834 * to write it unconditionally, and that will make the frame
835 * rate persistent too.
d8d20155 836 */
a8e68c37 837 if (ret == 0)
d8d20155 838 ret = ov7670_write(sd, REG_CLKRC, info->clkrc);
959f3bda
HV
839 return 0;
840}
841
c8f5b2f5
JC
842/*
843 * Implement G/S_PARM. There is a "high quality" mode we could try
844 * to do someday; for now, we just do the frame rate tweak.
845 */
14386c2b 846static int ov7670_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
c8f5b2f5
JC
847{
848 struct v4l2_captureparm *cp = &parms->parm.capture;
d8d20155 849 struct ov7670_info *info = to_state(sd);
c8f5b2f5
JC
850
851 if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
852 return -EINVAL;
d8d20155 853
c8f5b2f5
JC
854 memset(cp, 0, sizeof(struct v4l2_captureparm));
855 cp->capability = V4L2_CAP_TIMEPERFRAME;
856 cp->timeperframe.numerator = 1;
857 cp->timeperframe.denominator = OV7670_FRAME_RATE;
d8d20155
JC
858 if ((info->clkrc & CLK_EXT) == 0 && (info->clkrc & CLK_SCALE) > 1)
859 cp->timeperframe.denominator /= (info->clkrc & CLK_SCALE);
c8f5b2f5
JC
860 return 0;
861}
862
14386c2b 863static int ov7670_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
c8f5b2f5
JC
864{
865 struct v4l2_captureparm *cp = &parms->parm.capture;
866 struct v4l2_fract *tpf = &cp->timeperframe;
d8d20155 867 struct ov7670_info *info = to_state(sd);
380de498 868 int div;
c8f5b2f5
JC
869
870 if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
871 return -EINVAL;
872 if (cp->extendedmode != 0)
873 return -EINVAL;
d8d20155 874
c8f5b2f5
JC
875 if (tpf->numerator == 0 || tpf->denominator == 0)
876 div = 1; /* Reset to full rate */
877 else
878 div = (tpf->numerator*OV7670_FRAME_RATE)/tpf->denominator;
879 if (div == 0)
880 div = 1;
881 else if (div > CLK_SCALE)
882 div = CLK_SCALE;
d8d20155 883 info->clkrc = (info->clkrc & 0x80) | div;
c8f5b2f5
JC
884 tpf->numerator = 1;
885 tpf->denominator = OV7670_FRAME_RATE/div;
d8d20155 886 return ov7670_write(sd, REG_CLKRC, info->clkrc);
c8f5b2f5
JC
887}
888
889
111f3356 890/*
e99dfcf7
JC
891 * Frame intervals. Since frame rates are controlled with the clock
892 * divider, we can only do 30/n for integer n values. So no continuous
893 * or stepwise options. Here we just pick a handful of logical values.
111f3356
JC
894 */
895
e99dfcf7 896static int ov7670_frame_rates[] = { 30, 15, 10, 5, 1 };
f9a76156 897
e99dfcf7
JC
898static int ov7670_enum_frameintervals(struct v4l2_subdev *sd,
899 struct v4l2_frmivalenum *interval)
900{
901 if (interval->index >= ARRAY_SIZE(ov7670_frame_rates))
902 return -EINVAL;
903 interval->type = V4L2_FRMIVAL_TYPE_DISCRETE;
904 interval->discrete.numerator = 1;
905 interval->discrete.denominator = ov7670_frame_rates[interval->index];
906 return 0;
907}
f9a76156 908
b0326b7f
DD
909/*
910 * Frame size enumeration
911 */
912static int ov7670_enum_framesizes(struct v4l2_subdev *sd,
913 struct v4l2_frmsizeenum *fsize)
914{
915 __u32 index = fsize->index;
916 if (index >= N_WIN_SIZES)
917 return -EINVAL;
918
919 fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
920 fsize->discrete.width = ov7670_win_sizes[index].width;
921 fsize->discrete.height = ov7670_win_sizes[index].height;
922 return 0;
923}
924
e99dfcf7
JC
925/*
926 * Code for dealing with controls.
927 */
f9a76156 928
14386c2b 929static int ov7670_store_cmatrix(struct v4l2_subdev *sd,
f9a76156
JC
930 int matrix[CMATRIX_LEN])
931{
932 int i, ret;
e3bf20de 933 unsigned char signbits = 0;
f9a76156
JC
934
935 /*
936 * Weird crap seems to exist in the upper part of
937 * the sign bits register, so let's preserve it.
938 */
14386c2b 939 ret = ov7670_read(sd, REG_CMATRIX_SIGN, &signbits);
f9a76156
JC
940 signbits &= 0xc0;
941
942 for (i = 0; i < CMATRIX_LEN; i++) {
943 unsigned char raw;
944
945 if (matrix[i] < 0) {
946 signbits |= (1 << i);
947 if (matrix[i] < -255)
948 raw = 0xff;
949 else
950 raw = (-1 * matrix[i]) & 0xff;
951 }
952 else {
953 if (matrix[i] > 255)
954 raw = 0xff;
955 else
956 raw = matrix[i] & 0xff;
957 }
14386c2b 958 ret += ov7670_write(sd, REG_CMATRIX_BASE + i, raw);
f9a76156 959 }
14386c2b 960 ret += ov7670_write(sd, REG_CMATRIX_SIGN, signbits);
f9a76156
JC
961 return ret;
962}
963
964
965/*
966 * Hue also requires messing with the color matrix. It also requires
967 * trig functions, which tend not to be well supported in the kernel.
968 * So here is a simple table of sine values, 0-90 degrees, in steps
969 * of five degrees. Values are multiplied by 1000.
970 *
971 * The following naive approximate trig functions require an argument
972 * carefully limited to -180 <= theta <= 180.
973 */
974#define SIN_STEP 5
975static const int ov7670_sin_table[] = {
976 0, 87, 173, 258, 342, 422,
977 499, 573, 642, 707, 766, 819,
978 866, 906, 939, 965, 984, 996,
979 1000
980};
981
982static int ov7670_sine(int theta)
983{
984 int chs = 1;
985 int sine;
986
987 if (theta < 0) {
988 theta = -theta;
989 chs = -1;
990 }
991 if (theta <= 90)
992 sine = ov7670_sin_table[theta/SIN_STEP];
993 else {
994 theta -= 90;
995 sine = 1000 - ov7670_sin_table[theta/SIN_STEP];
996 }
997 return sine*chs;
998}
999
1000static int ov7670_cosine(int theta)
1001{
1002 theta = 90 - theta;
1003 if (theta > 180)
1004 theta -= 360;
1005 else if (theta < -180)
1006 theta += 360;
1007 return ov7670_sine(theta);
1008}
1009
1010
1011
1012
1013static void ov7670_calc_cmatrix(struct ov7670_info *info,
1014 int matrix[CMATRIX_LEN])
1015{
1016 int i;
1017 /*
1018 * Apply the current saturation setting first.
1019 */
1020 for (i = 0; i < CMATRIX_LEN; i++)
1021 matrix[i] = (info->fmt->cmatrix[i]*info->sat) >> 7;
1022 /*
1023 * Then, if need be, rotate the hue value.
1024 */
1025 if (info->hue != 0) {
1026 int sinth, costh, tmpmatrix[CMATRIX_LEN];
1027
1028 memcpy(tmpmatrix, matrix, CMATRIX_LEN*sizeof(int));
1029 sinth = ov7670_sine(info->hue);
1030 costh = ov7670_cosine(info->hue);
1031
1032 matrix[0] = (matrix[3]*sinth + matrix[0]*costh)/1000;
1033 matrix[1] = (matrix[4]*sinth + matrix[1]*costh)/1000;
1034 matrix[2] = (matrix[5]*sinth + matrix[2]*costh)/1000;
1035 matrix[3] = (matrix[3]*costh - matrix[0]*sinth)/1000;
1036 matrix[4] = (matrix[4]*costh - matrix[1]*sinth)/1000;
1037 matrix[5] = (matrix[5]*costh - matrix[2]*sinth)/1000;
1038 }
1039}
1040
1041
1042
ca07561a 1043static int ov7670_s_sat(struct v4l2_subdev *sd, int value)
f9a76156 1044{
14386c2b 1045 struct ov7670_info *info = to_state(sd);
f9a76156
JC
1046 int matrix[CMATRIX_LEN];
1047 int ret;
1048
1049 info->sat = value;
1050 ov7670_calc_cmatrix(info, matrix);
14386c2b 1051 ret = ov7670_store_cmatrix(sd, matrix);
f9a76156
JC
1052 return ret;
1053}
1054
ca07561a 1055static int ov7670_g_sat(struct v4l2_subdev *sd, __s32 *value)
f9a76156 1056{
14386c2b 1057 struct ov7670_info *info = to_state(sd);
f9a76156
JC
1058
1059 *value = info->sat;
1060 return 0;
1061}
1062
ca07561a 1063static int ov7670_s_hue(struct v4l2_subdev *sd, int value)
f9a76156 1064{
14386c2b 1065 struct ov7670_info *info = to_state(sd);
f9a76156
JC
1066 int matrix[CMATRIX_LEN];
1067 int ret;
1068
1069 if (value < -180 || value > 180)
1070 return -EINVAL;
1071 info->hue = value;
1072 ov7670_calc_cmatrix(info, matrix);
14386c2b 1073 ret = ov7670_store_cmatrix(sd, matrix);
f9a76156
JC
1074 return ret;
1075}
1076
1077
ca07561a 1078static int ov7670_g_hue(struct v4l2_subdev *sd, __s32 *value)
f9a76156 1079{
14386c2b 1080 struct ov7670_info *info = to_state(sd);
f9a76156
JC
1081
1082 *value = info->hue;
1083 return 0;
1084}
1085
1086
111f3356
JC
1087/*
1088 * Some weird registers seem to store values in a sign/magnitude format!
1089 */
1090static unsigned char ov7670_sm_to_abs(unsigned char v)
1091{
1092 if ((v & 0x80) == 0)
1093 return v + 128;
14386c2b 1094 return 128 - (v & 0x7f);
111f3356
JC
1095}
1096
1097
1098static unsigned char ov7670_abs_to_sm(unsigned char v)
1099{
1100 if (v > 127)
1101 return v & 0x7f;
14386c2b 1102 return (128 - v) | 0x80;
111f3356
JC
1103}
1104
ca07561a 1105static int ov7670_s_brightness(struct v4l2_subdev *sd, int value)
111f3356 1106{
e3bf20de 1107 unsigned char com8 = 0, v;
111f3356
JC
1108 int ret;
1109
14386c2b 1110 ov7670_read(sd, REG_COM8, &com8);
111f3356 1111 com8 &= ~COM8_AEC;
14386c2b 1112 ov7670_write(sd, REG_COM8, com8);
f9a76156 1113 v = ov7670_abs_to_sm(value);
14386c2b 1114 ret = ov7670_write(sd, REG_BRIGHT, v);
111f3356
JC
1115 return ret;
1116}
1117
ca07561a 1118static int ov7670_g_brightness(struct v4l2_subdev *sd, __s32 *value)
111f3356 1119{
e3bf20de 1120 unsigned char v = 0;
14386c2b 1121 int ret = ov7670_read(sd, REG_BRIGHT, &v);
f9a76156
JC
1122
1123 *value = ov7670_sm_to_abs(v);
111f3356
JC
1124 return ret;
1125}
1126
ca07561a 1127static int ov7670_s_contrast(struct v4l2_subdev *sd, int value)
111f3356 1128{
14386c2b 1129 return ov7670_write(sd, REG_CONTRAS, (unsigned char) value);
111f3356
JC
1130}
1131
ca07561a 1132static int ov7670_g_contrast(struct v4l2_subdev *sd, __s32 *value)
111f3356 1133{
e3bf20de 1134 unsigned char v = 0;
14386c2b 1135 int ret = ov7670_read(sd, REG_CONTRAS, &v);
f9a76156
JC
1136
1137 *value = v;
1138 return ret;
111f3356
JC
1139}
1140
ca07561a 1141static int ov7670_g_hflip(struct v4l2_subdev *sd, __s32 *value)
111f3356
JC
1142{
1143 int ret;
e3bf20de 1144 unsigned char v = 0;
111f3356 1145
14386c2b 1146 ret = ov7670_read(sd, REG_MVFP, &v);
111f3356
JC
1147 *value = (v & MVFP_MIRROR) == MVFP_MIRROR;
1148 return ret;
1149}
1150
1151
ca07561a 1152static int ov7670_s_hflip(struct v4l2_subdev *sd, int value)
111f3356 1153{
e3bf20de 1154 unsigned char v = 0;
111f3356
JC
1155 int ret;
1156
14386c2b 1157 ret = ov7670_read(sd, REG_MVFP, &v);
111f3356
JC
1158 if (value)
1159 v |= MVFP_MIRROR;
1160 else
1161 v &= ~MVFP_MIRROR;
1162 msleep(10); /* FIXME */
14386c2b 1163 ret += ov7670_write(sd, REG_MVFP, v);
111f3356
JC
1164 return ret;
1165}
1166
1167
1168
ca07561a 1169static int ov7670_g_vflip(struct v4l2_subdev *sd, __s32 *value)
111f3356
JC
1170{
1171 int ret;
e3bf20de 1172 unsigned char v = 0;
111f3356 1173
14386c2b 1174 ret = ov7670_read(sd, REG_MVFP, &v);
111f3356
JC
1175 *value = (v & MVFP_FLIP) == MVFP_FLIP;
1176 return ret;
1177}
1178
1179
ca07561a 1180static int ov7670_s_vflip(struct v4l2_subdev *sd, int value)
111f3356 1181{
e3bf20de 1182 unsigned char v = 0;
111f3356
JC
1183 int ret;
1184
14386c2b 1185 ret = ov7670_read(sd, REG_MVFP, &v);
111f3356
JC
1186 if (value)
1187 v |= MVFP_FLIP;
1188 else
1189 v &= ~MVFP_FLIP;
1190 msleep(10); /* FIXME */
14386c2b 1191 ret += ov7670_write(sd, REG_MVFP, v);
111f3356
JC
1192 return ret;
1193}
1194
81898671
JC
1195/*
1196 * GAIN is split between REG_GAIN and REG_VREF[7:6]. If one believes
1197 * the data sheet, the VREF parts should be the most significant, but
1198 * experience shows otherwise. There seems to be little value in
1199 * messing with the VREF bits, so we leave them alone.
1200 */
1201static int ov7670_g_gain(struct v4l2_subdev *sd, __s32 *value)
1202{
1203 int ret;
1204 unsigned char gain;
1205
1206 ret = ov7670_read(sd, REG_GAIN, &gain);
1207 *value = gain;
1208 return ret;
1209}
1210
1211static int ov7670_s_gain(struct v4l2_subdev *sd, int value)
1212{
1213 int ret;
1214 unsigned char com8;
1215
1216 ret = ov7670_write(sd, REG_GAIN, value & 0xff);
1217 /* Have to turn off AGC as well */
1218 if (ret == 0) {
1219 ret = ov7670_read(sd, REG_COM8, &com8);
1220 ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AGC);
1221 }
1222 return ret;
1223}
1224
1225/*
1226 * Tweak autogain.
1227 */
1228static int ov7670_g_autogain(struct v4l2_subdev *sd, __s32 *value)
1229{
1230 int ret;
1231 unsigned char com8;
1232
1233 ret = ov7670_read(sd, REG_COM8, &com8);
1234 *value = (com8 & COM8_AGC) != 0;
1235 return ret;
1236}
1237
1238static int ov7670_s_autogain(struct v4l2_subdev *sd, int value)
1239{
1240 int ret;
1241 unsigned char com8;
1242
1243 ret = ov7670_read(sd, REG_COM8, &com8);
1244 if (ret == 0) {
1245 if (value)
1246 com8 |= COM8_AGC;
1247 else
1248 com8 &= ~COM8_AGC;
1249 ret = ov7670_write(sd, REG_COM8, com8);
1250 }
1251 return ret;
1252}
1253
364e9337
JC
1254/*
1255 * Exposure is spread all over the place: top 6 bits in AECHH, middle
1256 * 8 in AECH, and two stashed in COM1 just for the hell of it.
1257 */
1258static int ov7670_g_exp(struct v4l2_subdev *sd, __s32 *value)
1259{
1260 int ret;
1261 unsigned char com1, aech, aechh;
1262
1263 ret = ov7670_read(sd, REG_COM1, &com1) +
1264 ov7670_read(sd, REG_AECH, &aech) +
1265 ov7670_read(sd, REG_AECHH, &aechh);
1266 *value = ((aechh & 0x3f) << 10) | (aech << 2) | (com1 & 0x03);
1267 return ret;
1268}
1269
1270static int ov7670_s_exp(struct v4l2_subdev *sd, int value)
1271{
1272 int ret;
1273 unsigned char com1, com8, aech, aechh;
1274
1275 ret = ov7670_read(sd, REG_COM1, &com1) +
1276 ov7670_read(sd, REG_COM8, &com8);
1277 ov7670_read(sd, REG_AECHH, &aechh);
1278 if (ret)
1279 return ret;
1280
1281 com1 = (com1 & 0xfc) | (value & 0x03);
1282 aech = (value >> 2) & 0xff;
1283 aechh = (aechh & 0xc0) | ((value >> 10) & 0x3f);
1284 ret = ov7670_write(sd, REG_COM1, com1) +
1285 ov7670_write(sd, REG_AECH, aech) +
1286 ov7670_write(sd, REG_AECHH, aechh);
1287 /* Have to turn off AEC as well */
1288 if (ret == 0)
1289 ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AEC);
1290 return ret;
1291}
1292
1293/*
1294 * Tweak autoexposure.
1295 */
1296static int ov7670_g_autoexp(struct v4l2_subdev *sd, __s32 *value)
1297{
1298 int ret;
1299 unsigned char com8;
1300 enum v4l2_exposure_auto_type *atype = (enum v4l2_exposure_auto_type *) value;
1301
1302 ret = ov7670_read(sd, REG_COM8, &com8);
1303 if (com8 & COM8_AEC)
380de498 1304 *atype = V4L2_EXPOSURE_AUTO;
364e9337 1305 else
380de498 1306 *atype = V4L2_EXPOSURE_MANUAL;
364e9337
JC
1307 return ret;
1308}
1309
1310static int ov7670_s_autoexp(struct v4l2_subdev *sd,
1311 enum v4l2_exposure_auto_type value)
1312{
1313 int ret;
1314 unsigned char com8;
1315
1316 ret = ov7670_read(sd, REG_COM8, &com8);
1317 if (ret == 0) {
1318 if (value == V4L2_EXPOSURE_AUTO)
1319 com8 |= COM8_AEC;
1320 else
1321 com8 &= ~COM8_AEC;
1322 ret = ov7670_write(sd, REG_COM8, com8);
1323 }
1324 return ret;
1325}
1326
81898671
JC
1327
1328
14386c2b 1329static int ov7670_queryctrl(struct v4l2_subdev *sd,
111f3356
JC
1330 struct v4l2_queryctrl *qc)
1331{
ca07561a
HV
1332 /* Fill in min, max, step and default value for these controls. */
1333 switch (qc->id) {
1334 case V4L2_CID_BRIGHTNESS:
1335 return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128);
1336 case V4L2_CID_CONTRAST:
1337 return v4l2_ctrl_query_fill(qc, 0, 127, 1, 64);
1338 case V4L2_CID_VFLIP:
1339 case V4L2_CID_HFLIP:
1340 return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0);
1341 case V4L2_CID_SATURATION:
1342 return v4l2_ctrl_query_fill(qc, 0, 256, 1, 128);
1343 case V4L2_CID_HUE:
1344 return v4l2_ctrl_query_fill(qc, -180, 180, 5, 0);
81898671
JC
1345 case V4L2_CID_GAIN:
1346 return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128);
1347 case V4L2_CID_AUTOGAIN:
1348 return v4l2_ctrl_query_fill(qc, 0, 1, 1, 1);
364e9337
JC
1349 case V4L2_CID_EXPOSURE:
1350 return v4l2_ctrl_query_fill(qc, 0, 65535, 1, 500);
1351 case V4L2_CID_EXPOSURE_AUTO:
1352 return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0);
ca07561a
HV
1353 }
1354 return -EINVAL;
111f3356
JC
1355}
1356
14386c2b 1357static int ov7670_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
111f3356 1358{
ca07561a
HV
1359 switch (ctrl->id) {
1360 case V4L2_CID_BRIGHTNESS:
1361 return ov7670_g_brightness(sd, &ctrl->value);
1362 case V4L2_CID_CONTRAST:
1363 return ov7670_g_contrast(sd, &ctrl->value);
1364 case V4L2_CID_SATURATION:
1365 return ov7670_g_sat(sd, &ctrl->value);
1366 case V4L2_CID_HUE:
1367 return ov7670_g_hue(sd, &ctrl->value);
1368 case V4L2_CID_VFLIP:
1369 return ov7670_g_vflip(sd, &ctrl->value);
1370 case V4L2_CID_HFLIP:
1371 return ov7670_g_hflip(sd, &ctrl->value);
81898671
JC
1372 case V4L2_CID_GAIN:
1373 return ov7670_g_gain(sd, &ctrl->value);
1374 case V4L2_CID_AUTOGAIN:
1375 return ov7670_g_autogain(sd, &ctrl->value);
364e9337
JC
1376 case V4L2_CID_EXPOSURE:
1377 return ov7670_g_exp(sd, &ctrl->value);
1378 case V4L2_CID_EXPOSURE_AUTO:
1379 return ov7670_g_autoexp(sd, &ctrl->value);
ca07561a
HV
1380 }
1381 return -EINVAL;
111f3356
JC
1382}
1383
14386c2b 1384static int ov7670_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
111f3356 1385{
ca07561a
HV
1386 switch (ctrl->id) {
1387 case V4L2_CID_BRIGHTNESS:
1388 return ov7670_s_brightness(sd, ctrl->value);
1389 case V4L2_CID_CONTRAST:
1390 return ov7670_s_contrast(sd, ctrl->value);
1391 case V4L2_CID_SATURATION:
1392 return ov7670_s_sat(sd, ctrl->value);
1393 case V4L2_CID_HUE:
1394 return ov7670_s_hue(sd, ctrl->value);
1395 case V4L2_CID_VFLIP:
1396 return ov7670_s_vflip(sd, ctrl->value);
1397 case V4L2_CID_HFLIP:
1398 return ov7670_s_hflip(sd, ctrl->value);
81898671
JC
1399 case V4L2_CID_GAIN:
1400 return ov7670_s_gain(sd, ctrl->value);
1401 case V4L2_CID_AUTOGAIN:
1402 return ov7670_s_autogain(sd, ctrl->value);
364e9337
JC
1403 case V4L2_CID_EXPOSURE:
1404 return ov7670_s_exp(sd, ctrl->value);
1405 case V4L2_CID_EXPOSURE_AUTO:
1406 return ov7670_s_autoexp(sd,
1407 (enum v4l2_exposure_auto_type) ctrl->value);
ca07561a
HV
1408 }
1409 return -EINVAL;
111f3356
JC
1410}
1411
14386c2b
HV
1412static int ov7670_g_chip_ident(struct v4l2_subdev *sd,
1413 struct v4l2_dbg_chip_ident *chip)
1414{
1415 struct i2c_client *client = v4l2_get_subdevdata(sd);
1416
1417 return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_OV7670, 0);
1418}
1419
b794aabf
HV
1420#ifdef CONFIG_VIDEO_ADV_DEBUG
1421static int ov7670_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg)
1422{
1423 struct i2c_client *client = v4l2_get_subdevdata(sd);
1424 unsigned char val = 0;
1425 int ret;
1426
1427 if (!v4l2_chip_match_i2c_client(client, &reg->match))
1428 return -EINVAL;
1429 if (!capable(CAP_SYS_ADMIN))
1430 return -EPERM;
1431 ret = ov7670_read(sd, reg->reg & 0xff, &val);
1432 reg->val = val;
1433 reg->size = 1;
1434 return ret;
1435}
1436
1437static int ov7670_s_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg)
1438{
1439 struct i2c_client *client = v4l2_get_subdevdata(sd);
1440
1441 if (!v4l2_chip_match_i2c_client(client, &reg->match))
1442 return -EINVAL;
1443 if (!capable(CAP_SYS_ADMIN))
1444 return -EPERM;
1445 ov7670_write(sd, reg->reg & 0xff, reg->val & 0xff);
1446 return 0;
1447}
1448#endif
1449
14386c2b 1450/* ----------------------------------------------------------------------- */
111f3356 1451
14386c2b
HV
1452static const struct v4l2_subdev_core_ops ov7670_core_ops = {
1453 .g_chip_ident = ov7670_g_chip_ident,
1454 .g_ctrl = ov7670_g_ctrl,
1455 .s_ctrl = ov7670_s_ctrl,
1456 .queryctrl = ov7670_queryctrl,
1457 .reset = ov7670_reset,
1458 .init = ov7670_init,
b794aabf
HV
1459#ifdef CONFIG_VIDEO_ADV_DEBUG
1460 .g_register = ov7670_g_register,
1461 .s_register = ov7670_s_register,
1462#endif
14386c2b 1463};
111f3356 1464
14386c2b 1465static const struct v4l2_subdev_video_ops ov7670_video_ops = {
959f3bda
HV
1466 .enum_mbus_fmt = ov7670_enum_mbus_fmt,
1467 .try_mbus_fmt = ov7670_try_mbus_fmt,
1468 .s_mbus_fmt = ov7670_s_mbus_fmt,
14386c2b
HV
1469 .s_parm = ov7670_s_parm,
1470 .g_parm = ov7670_g_parm,
e99dfcf7 1471 .enum_frameintervals = ov7670_enum_frameintervals,
b0326b7f 1472 .enum_framesizes = ov7670_enum_framesizes,
14386c2b 1473};
111f3356 1474
14386c2b
HV
1475static const struct v4l2_subdev_ops ov7670_ops = {
1476 .core = &ov7670_core_ops,
1477 .video = &ov7670_video_ops,
1478};
111f3356 1479
14386c2b 1480/* ----------------------------------------------------------------------- */
111f3356 1481
14386c2b
HV
1482static int ov7670_probe(struct i2c_client *client,
1483 const struct i2c_device_id *id)
111f3356 1484{
14386c2b 1485 struct v4l2_subdev *sd;
f9a76156 1486 struct ov7670_info *info;
14386c2b 1487 int ret;
111f3356 1488
14386c2b
HV
1489 info = kzalloc(sizeof(struct ov7670_info), GFP_KERNEL);
1490 if (info == NULL)
111f3356 1491 return -ENOMEM;
14386c2b
HV
1492 sd = &info->sd;
1493 v4l2_i2c_subdev_init(sd, client, &ov7670_ops);
1494
1495 /* Make sure it's an ov7670 */
1496 ret = ov7670_detect(sd);
1497 if (ret) {
1498 v4l_dbg(1, debug, client,
1499 "chip found @ 0x%x (%s) is not an ov7670 chip.\n",
1500 client->addr << 1, client->adapter->name);
1501 kfree(info);
1502 return ret;
f9a76156 1503 }
14386c2b
HV
1504 v4l_info(client, "chip found @ 0x%02x (%s)\n",
1505 client->addr << 1, client->adapter->name);
1506
f9a76156
JC
1507 info->fmt = &ov7670_formats[0];
1508 info->sat = 128; /* Review this */
d8d20155 1509 info->clkrc = 1; /* 30fps */
111f3356 1510
111f3356 1511 return 0;
111f3356
JC
1512}
1513
1514
14386c2b 1515static int ov7670_remove(struct i2c_client *client)
111f3356 1516{
14386c2b 1517 struct v4l2_subdev *sd = i2c_get_clientdata(client);
111f3356 1518
14386c2b
HV
1519 v4l2_device_unregister_subdev(sd);
1520 kfree(to_state(sd));
1521 return 0;
111f3356
JC
1522}
1523
14386c2b
HV
1524static const struct i2c_device_id ov7670_id[] = {
1525 { "ov7670", 0 },
1526 { }
1527};
1528MODULE_DEVICE_TABLE(i2c, ov7670_id);
1529
ef2ac770
HV
1530static struct i2c_driver ov7670_driver = {
1531 .driver = {
1532 .owner = THIS_MODULE,
1533 .name = "ov7670",
1534 },
1535 .probe = ov7670_probe,
1536 .remove = ov7670_remove,
1537 .id_table = ov7670_id,
111f3356 1538};
ef2ac770
HV
1539
1540static __init int init_ov7670(void)
1541{
1542 return i2c_add_driver(&ov7670_driver);
1543}
1544
1545static __exit void exit_ov7670(void)
1546{
1547 i2c_del_driver(&ov7670_driver);
1548}
1549
1550module_init(init_ov7670);
1551module_exit(exit_ov7670);
This page took 0.493084 seconds and 5 git commands to generate.