Merge tag 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck...
[deliverable/linux.git] / drivers / mfd / db8500-prcmu.c
CommitLineData
e3726fcf 1/*
e0befb23
MP
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
e3726fcf
LW
4 *
5 * License Terms: GNU General Public License v2
e0befb23
MP
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
e3726fcf
LW
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9 *
e0befb23
MP
10 * U8500 PRCM Unit interface driver
11 *
e3726fcf 12 */
e3726fcf 13#include <linux/module.h>
3df57bcf
MN
14#include <linux/kernel.h>
15#include <linux/delay.h>
e3726fcf
LW
16#include <linux/errno.h>
17#include <linux/err.h>
3df57bcf 18#include <linux/spinlock.h>
e3726fcf 19#include <linux/io.h>
3df57bcf 20#include <linux/slab.h>
e3726fcf
LW
21#include <linux/mutex.h>
22#include <linux/completion.h>
3df57bcf 23#include <linux/irq.h>
e3726fcf
LW
24#include <linux/jiffies.h>
25#include <linux/bitops.h>
3df57bcf 26#include <linux/fs.h>
d98a5384 27#include <linux/of.h>
3df57bcf
MN
28#include <linux/platform_device.h>
29#include <linux/uaccess.h>
30#include <linux/mfd/core.h>
73180f85 31#include <linux/mfd/dbx500-prcmu.h>
3a8e39c9 32#include <linux/mfd/abx500/ab8500.h>
1032fbfd
BJ
33#include <linux/regulator/db8500-prcmu.h>
34#include <linux/regulator/machine.h>
c280f45f 35#include <linux/cpufreq.h>
b3aac62b 36#include <linux/platform_data/ux500_wdt.h>
55b175d7 37#include <linux/platform_data/db8500_thermal.h>
73180f85 38#include "dbx500-prcmu-regs.h"
3df57bcf 39
3df57bcf
MN
40/* Index of different voltages to be used when accessing AVSData */
41#define PRCM_AVS_BASE 0x2FC
42#define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
43#define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
44#define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
45#define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
46#define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
47#define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
48#define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
49#define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
50#define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
51#define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
52#define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
53#define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
54#define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
55
56#define PRCM_AVS_VOLTAGE 0
57#define PRCM_AVS_VOLTAGE_MASK 0x3f
58#define PRCM_AVS_ISSLOWSTARTUP 6
59#define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
60#define PRCM_AVS_ISMODEENABLE 7
61#define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
62
63#define PRCM_BOOT_STATUS 0xFFF
64#define PRCM_ROMCODE_A2P 0xFFE
65#define PRCM_ROMCODE_P2A 0xFFD
66#define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
67
68#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
69
70#define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
71#define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
72#define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
73#define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
74#define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
75#define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
76#define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
77#define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
78
79/* Req Mailboxes */
80#define PRCM_REQ_MB0 0xFDC /* 12 bytes */
81#define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
82#define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
83#define PRCM_REQ_MB3 0xE4C /* 372 bytes */
84#define PRCM_REQ_MB4 0xE48 /* 4 bytes */
85#define PRCM_REQ_MB5 0xE44 /* 4 bytes */
86
87/* Ack Mailboxes */
88#define PRCM_ACK_MB0 0xE08 /* 52 bytes */
89#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
90#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
91#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
92#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
93#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
94
95/* Mailbox 0 headers */
96#define MB0H_POWER_STATE_TRANS 0
97#define MB0H_CONFIG_WAKEUPS_EXE 1
98#define MB0H_READ_WAKEUP_ACK 3
99#define MB0H_CONFIG_WAKEUPS_SLEEP 4
100
101#define MB0H_WAKEUP_EXE 2
102#define MB0H_WAKEUP_SLEEP 5
103
104/* Mailbox 0 REQs */
105#define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
106#define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
107#define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
108#define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
109#define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
110#define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
111
112/* Mailbox 0 ACKs */
113#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
114#define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
115#define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
116#define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
117#define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
118#define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
119#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
120
121/* Mailbox 1 headers */
122#define MB1H_ARM_APE_OPP 0x0
123#define MB1H_RESET_MODEM 0x2
124#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
125#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
126#define MB1H_RELEASE_USB_WAKEUP 0x5
a592c2e2 127#define MB1H_PLL_ON_OFF 0x6
3df57bcf
MN
128
129/* Mailbox 1 Requests */
130#define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
131#define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
a592c2e2 132#define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
6b6fae2b
MN
133#define PLL_SOC0_OFF 0x1
134#define PLL_SOC0_ON 0x2
a592c2e2
MN
135#define PLL_SOC1_OFF 0x4
136#define PLL_SOC1_ON 0x8
3df57bcf
MN
137
138/* Mailbox 1 ACKs */
139#define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
140#define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
141#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
142#define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
143
144/* Mailbox 2 headers */
145#define MB2H_DPS 0x0
146#define MB2H_AUTO_PWR 0x1
147
148/* Mailbox 2 REQs */
149#define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
150#define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
151#define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
152#define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
153#define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
154#define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
155#define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
156#define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
157#define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
158#define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
159
160/* Mailbox 2 ACKs */
161#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
162#define HWACC_PWR_ST_OK 0xFE
163
164/* Mailbox 3 headers */
165#define MB3H_ANC 0x0
166#define MB3H_SIDETONE 0x1
167#define MB3H_SYSCLK 0xE
168
169/* Mailbox 3 Requests */
170#define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
171#define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
172#define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
173#define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
174#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
175#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
176#define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
177
178/* Mailbox 4 headers */
179#define MB4H_DDR_INIT 0x0
180#define MB4H_MEM_ST 0x1
181#define MB4H_HOTDOG 0x12
182#define MB4H_HOTMON 0x13
183#define MB4H_HOT_PERIOD 0x14
a592c2e2
MN
184#define MB4H_A9WDOG_CONF 0x16
185#define MB4H_A9WDOG_EN 0x17
186#define MB4H_A9WDOG_DIS 0x18
187#define MB4H_A9WDOG_LOAD 0x19
188#define MB4H_A9WDOG_KICK 0x20
3df57bcf
MN
189
190/* Mailbox 4 Requests */
191#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
192#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
193#define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
194#define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
195#define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
196#define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
197#define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
198#define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
199#define HOTMON_CONFIG_LOW BIT(0)
200#define HOTMON_CONFIG_HIGH BIT(1)
a592c2e2
MN
201#define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
202#define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
203#define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
204#define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
205#define A9WDOG_AUTO_OFF_EN BIT(7)
206#define A9WDOG_AUTO_OFF_DIS 0
207#define A9WDOG_ID_MASK 0xf
3df57bcf
MN
208
209/* Mailbox 5 Requests */
210#define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
211#define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
212#define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
213#define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
7a4f2609
LW
214#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
215#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
3df57bcf
MN
216#define PRCMU_I2C_STOP_EN BIT(3)
217
218/* Mailbox 5 ACKs */
219#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
220#define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
221#define I2C_WR_OK 0x1
222#define I2C_RD_OK 0x2
223
224#define NUM_MB 8
225#define MBOX_BIT BIT
226#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
227
228/*
229 * Wakeups/IRQs
230 */
231
232#define WAKEUP_BIT_RTC BIT(0)
233#define WAKEUP_BIT_RTT0 BIT(1)
234#define WAKEUP_BIT_RTT1 BIT(2)
235#define WAKEUP_BIT_HSI0 BIT(3)
236#define WAKEUP_BIT_HSI1 BIT(4)
237#define WAKEUP_BIT_CA_WAKE BIT(5)
238#define WAKEUP_BIT_USB BIT(6)
239#define WAKEUP_BIT_ABB BIT(7)
240#define WAKEUP_BIT_ABB_FIFO BIT(8)
241#define WAKEUP_BIT_SYSCLK_OK BIT(9)
242#define WAKEUP_BIT_CA_SLEEP BIT(10)
243#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
244#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
245#define WAKEUP_BIT_ANC_OK BIT(13)
246#define WAKEUP_BIT_SW_ERROR BIT(14)
247#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
248#define WAKEUP_BIT_ARM BIT(17)
249#define WAKEUP_BIT_HOTMON_LOW BIT(18)
250#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
251#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
252#define WAKEUP_BIT_GPIO0 BIT(23)
253#define WAKEUP_BIT_GPIO1 BIT(24)
254#define WAKEUP_BIT_GPIO2 BIT(25)
255#define WAKEUP_BIT_GPIO3 BIT(26)
256#define WAKEUP_BIT_GPIO4 BIT(27)
257#define WAKEUP_BIT_GPIO5 BIT(28)
258#define WAKEUP_BIT_GPIO6 BIT(29)
259#define WAKEUP_BIT_GPIO7 BIT(30)
260#define WAKEUP_BIT_GPIO8 BIT(31)
261
b58d12fe
MN
262static struct {
263 bool valid;
264 struct prcmu_fw_version version;
265} fw_info;
266
f3f1f0a1
LJ
267static struct irq_domain *db8500_irq_domain;
268
3df57bcf
MN
269/*
270 * This vector maps irq numbers to the bits in the bit field used in
271 * communication with the PRCMU firmware.
272 *
273 * The reason for having this is to keep the irq numbers contiguous even though
274 * the bits in the bit field are not. (The bits also have a tendency to move
275 * around, to further complicate matters.)
276 */
55b175d7 277#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
3df57bcf 278#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
55b175d7
AB
279
280#define IRQ_PRCMU_RTC 0
281#define IRQ_PRCMU_RTT0 1
282#define IRQ_PRCMU_RTT1 2
283#define IRQ_PRCMU_HSI0 3
284#define IRQ_PRCMU_HSI1 4
285#define IRQ_PRCMU_CA_WAKE 5
286#define IRQ_PRCMU_USB 6
287#define IRQ_PRCMU_ABB 7
288#define IRQ_PRCMU_ABB_FIFO 8
289#define IRQ_PRCMU_ARM 9
290#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
291#define IRQ_PRCMU_GPIO0 11
292#define IRQ_PRCMU_GPIO1 12
293#define IRQ_PRCMU_GPIO2 13
294#define IRQ_PRCMU_GPIO3 14
295#define IRQ_PRCMU_GPIO4 15
296#define IRQ_PRCMU_GPIO5 16
297#define IRQ_PRCMU_GPIO6 17
298#define IRQ_PRCMU_GPIO7 18
299#define IRQ_PRCMU_GPIO8 19
300#define IRQ_PRCMU_CA_SLEEP 20
301#define IRQ_PRCMU_HOTMON_LOW 21
302#define IRQ_PRCMU_HOTMON_HIGH 22
303#define NUM_PRCMU_WAKEUPS 23
304
3df57bcf
MN
305static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
306 IRQ_ENTRY(RTC),
307 IRQ_ENTRY(RTT0),
308 IRQ_ENTRY(RTT1),
309 IRQ_ENTRY(HSI0),
310 IRQ_ENTRY(HSI1),
311 IRQ_ENTRY(CA_WAKE),
312 IRQ_ENTRY(USB),
313 IRQ_ENTRY(ABB),
314 IRQ_ENTRY(ABB_FIFO),
315 IRQ_ENTRY(CA_SLEEP),
316 IRQ_ENTRY(ARM),
317 IRQ_ENTRY(HOTMON_LOW),
318 IRQ_ENTRY(HOTMON_HIGH),
319 IRQ_ENTRY(MODEM_SW_RESET_REQ),
320 IRQ_ENTRY(GPIO0),
321 IRQ_ENTRY(GPIO1),
322 IRQ_ENTRY(GPIO2),
323 IRQ_ENTRY(GPIO3),
324 IRQ_ENTRY(GPIO4),
325 IRQ_ENTRY(GPIO5),
326 IRQ_ENTRY(GPIO6),
327 IRQ_ENTRY(GPIO7),
328 IRQ_ENTRY(GPIO8)
329};
330
331#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
332#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
333static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
334 WAKEUP_ENTRY(RTC),
335 WAKEUP_ENTRY(RTT0),
336 WAKEUP_ENTRY(RTT1),
337 WAKEUP_ENTRY(HSI0),
338 WAKEUP_ENTRY(HSI1),
339 WAKEUP_ENTRY(USB),
340 WAKEUP_ENTRY(ABB),
341 WAKEUP_ENTRY(ABB_FIFO),
342 WAKEUP_ENTRY(ARM)
343};
344
345/*
346 * mb0_transfer - state needed for mailbox 0 communication.
347 * @lock: The transaction lock.
348 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
349 * the request data.
350 * @mask_work: Work structure used for (un)masking wakeup interrupts.
351 * @req: Request data that need to persist between requests.
352 */
353static struct {
354 spinlock_t lock;
355 spinlock_t dbb_irqs_lock;
356 struct work_struct mask_work;
357 struct mutex ac_wake_lock;
358 struct completion ac_wake_work;
359 struct {
360 u32 dbb_irqs;
361 u32 dbb_wakeups;
362 u32 abb_events;
363 } req;
364} mb0_transfer;
365
366/*
367 * mb1_transfer - state needed for mailbox 1 communication.
368 * @lock: The transaction lock.
369 * @work: The transaction completion structure.
4d64d2e3 370 * @ape_opp: The current APE OPP.
3df57bcf
MN
371 * @ack: Reply ("acknowledge") data.
372 */
373static struct {
374 struct mutex lock;
375 struct completion work;
4d64d2e3 376 u8 ape_opp;
3df57bcf
MN
377 struct {
378 u8 header;
379 u8 arm_opp;
380 u8 ape_opp;
381 u8 ape_voltage_status;
382 } ack;
383} mb1_transfer;
384
385/*
386 * mb2_transfer - state needed for mailbox 2 communication.
387 * @lock: The transaction lock.
388 * @work: The transaction completion structure.
389 * @auto_pm_lock: The autonomous power management configuration lock.
390 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
391 * @req: Request data that need to persist between requests.
392 * @ack: Reply ("acknowledge") data.
393 */
394static struct {
395 struct mutex lock;
396 struct completion work;
397 spinlock_t auto_pm_lock;
398 bool auto_pm_enabled;
399 struct {
400 u8 status;
401 } ack;
402} mb2_transfer;
403
404/*
405 * mb3_transfer - state needed for mailbox 3 communication.
406 * @lock: The request lock.
407 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
408 * @sysclk_work: Work structure used for sysclk requests.
409 */
410static struct {
411 spinlock_t lock;
412 struct mutex sysclk_lock;
413 struct completion sysclk_work;
414} mb3_transfer;
415
416/*
417 * mb4_transfer - state needed for mailbox 4 communication.
418 * @lock: The transaction lock.
419 * @work: The transaction completion structure.
420 */
421static struct {
422 struct mutex lock;
423 struct completion work;
424} mb4_transfer;
425
426/*
427 * mb5_transfer - state needed for mailbox 5 communication.
428 * @lock: The transaction lock.
429 * @work: The transaction completion structure.
430 * @ack: Reply ("acknowledge") data.
431 */
432static struct {
433 struct mutex lock;
434 struct completion work;
435 struct {
436 u8 status;
437 u8 value;
438 } ack;
439} mb5_transfer;
440
441static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
442
443/* Spinlocks */
b4a6dbd5 444static DEFINE_SPINLOCK(prcmu_lock);
3df57bcf 445static DEFINE_SPINLOCK(clkout_lock);
3df57bcf
MN
446
447/* Global var to runtime determine TCDM base for v2 or v1 */
448static __iomem void *tcdm_base;
b047d981 449static __iomem void *prcmu_base;
3df57bcf
MN
450
451struct clk_mgt {
b047d981 452 u32 offset;
3df57bcf 453 u32 pllsw;
6b6fae2b
MN
454 int branch;
455 bool clk38div;
456};
457
458enum {
459 PLL_RAW,
460 PLL_FIX,
461 PLL_DIV
3df57bcf
MN
462};
463
464static DEFINE_SPINLOCK(clk_mgt_lock);
465
6b6fae2b
MN
466#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
467 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
6746f232 468static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
6b6fae2b
MN
469 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
470 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
471 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
472 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
473 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
474 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
475 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
476 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
477 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
478 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
479 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
480 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
481 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
482 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
54e30033 483 CLK_MGT_ENTRY(BML8580CLK, PLL_DIV, true),
6b6fae2b
MN
484 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
485 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
486 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
487 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
488 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
489 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
490 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
491 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
492 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
493 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
494 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
495 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
496 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
497 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
498 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
499};
500
501struct dsiclk {
502 u32 divsel_mask;
503 u32 divsel_shift;
504 u32 divsel;
505};
506
507static struct dsiclk dsiclk[2] = {
508 {
509 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
510 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
511 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
512 },
513 {
514 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
515 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
516 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
517 }
518};
519
520struct dsiescclk {
521 u32 en;
522 u32 div_mask;
523 u32 div_shift;
524};
525
526static struct dsiescclk dsiescclk[3] = {
527 {
528 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
529 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
530 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
531 },
532 {
533 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
534 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
535 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
536 },
537 {
538 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
539 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
540 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
541 }
3df57bcf
MN
542};
543
20aee5b6 544
3df57bcf
MN
545/*
546* Used by MCDE to setup all necessary PRCMU registers
547*/
548#define PRCMU_RESET_DSIPLL 0x00004000
549#define PRCMU_UNCLAMP_DSIPLL 0x00400800
550
551#define PRCMU_CLK_PLL_DIV_SHIFT 0
552#define PRCMU_CLK_PLL_SW_SHIFT 5
553#define PRCMU_CLK_38 (1 << 9)
554#define PRCMU_CLK_38_SRC (1 << 10)
555#define PRCMU_CLK_38_DIV (1 << 11)
556
557/* PLLDIV=12, PLLSW=4 (PLLDDR) */
558#define PRCMU_DSI_CLOCK_SETTING 0x0000008C
559
3df57bcf
MN
560/* DPI 50000000 Hz */
561#define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
562 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
563#define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
564
565/* D=101, N=1, R=4, SELDIV2=0 */
566#define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
567
3df57bcf
MN
568#define PRCMU_ENABLE_PLLDSI 0x00000001
569#define PRCMU_DISABLE_PLLDSI 0x00000000
570#define PRCMU_RELEASE_RESET_DSS 0x0000400C
571#define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
572/* ESC clk, div0=1, div1=1, div2=3 */
573#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
574#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
575#define PRCMU_DSI_RESET_SW 0x00000007
576
577#define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
578
73180f85 579int db8500_prcmu_enable_dsipll(void)
3df57bcf
MN
580{
581 int i;
3df57bcf
MN
582
583 /* Clear DSIPLL_RESETN */
c553b3ca 584 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
3df57bcf 585 /* Unclamp DSIPLL in/out */
c553b3ca 586 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
3df57bcf 587
3df57bcf 588 /* Set DSI PLL FREQ */
c72fe851 589 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
c553b3ca 590 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
3df57bcf 591 /* Enable Escape clocks */
c553b3ca 592 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
593
594 /* Start DSI PLL */
c553b3ca 595 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 596 /* Reset DSI PLL */
c553b3ca 597 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
3df57bcf 598 for (i = 0; i < 10; i++) {
c553b3ca 599 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
3df57bcf
MN
600 == PRCMU_PLLDSI_LOCKP_LOCKED)
601 break;
602 udelay(100);
603 }
604 /* Set DSIPLL_RESETN */
c553b3ca 605 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
3df57bcf
MN
606 return 0;
607}
608
73180f85 609int db8500_prcmu_disable_dsipll(void)
3df57bcf
MN
610{
611 /* Disable dsi pll */
c553b3ca 612 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 613 /* Disable escapeclock */
c553b3ca 614 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
615 return 0;
616}
617
73180f85 618int db8500_prcmu_set_display_clocks(void)
3df57bcf
MN
619{
620 unsigned long flags;
3df57bcf
MN
621
622 spin_lock_irqsave(&clk_mgt_lock, flags);
623
624 /* Grab the HW semaphore. */
c553b3ca 625 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
626 cpu_relax();
627
b047d981
LW
628 writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
629 writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
630 writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
3df57bcf
MN
631
632 /* Release the HW semaphore. */
c553b3ca 633 writel(0, PRCM_SEM);
3df57bcf
MN
634
635 spin_unlock_irqrestore(&clk_mgt_lock, flags);
636
637 return 0;
638}
639
b4a6dbd5
MN
640u32 db8500_prcmu_read(unsigned int reg)
641{
b047d981 642 return readl(prcmu_base + reg);
b4a6dbd5
MN
643}
644
645void db8500_prcmu_write(unsigned int reg, u32 value)
3df57bcf 646{
3df57bcf
MN
647 unsigned long flags;
648
b4a6dbd5 649 spin_lock_irqsave(&prcmu_lock, flags);
b047d981 650 writel(value, (prcmu_base + reg));
b4a6dbd5 651 spin_unlock_irqrestore(&prcmu_lock, flags);
3df57bcf
MN
652}
653
b4a6dbd5 654void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
3df57bcf 655{
b4a6dbd5 656 u32 val;
3df57bcf
MN
657 unsigned long flags;
658
b4a6dbd5 659 spin_lock_irqsave(&prcmu_lock, flags);
b047d981 660 val = readl(prcmu_base + reg);
b4a6dbd5 661 val = ((val & ~mask) | (value & mask));
b047d981 662 writel(val, (prcmu_base + reg));
b4a6dbd5 663 spin_unlock_irqrestore(&prcmu_lock, flags);
3df57bcf
MN
664}
665
b58d12fe
MN
666struct prcmu_fw_version *prcmu_get_fw_version(void)
667{
668 return fw_info.valid ? &fw_info.version : NULL;
669}
670
3df57bcf
MN
671bool prcmu_has_arm_maxopp(void)
672{
673 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
674 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
675}
676
3df57bcf
MN
677/**
678 * prcmu_get_boot_status - PRCMU boot status checking
679 * Returns: the current PRCMU boot status
680 */
681int prcmu_get_boot_status(void)
682{
683 return readb(tcdm_base + PRCM_BOOT_STATUS);
684}
685
686/**
687 * prcmu_set_rc_a2p - This function is used to run few power state sequences
688 * @val: Value to be set, i.e. transition requested
689 * Returns: 0 on success, -EINVAL on invalid argument
690 *
691 * This function is used to run the following power state sequences -
692 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
693 */
694int prcmu_set_rc_a2p(enum romcode_write val)
695{
696 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
697 return -EINVAL;
698 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
699 return 0;
700}
701
702/**
703 * prcmu_get_rc_p2a - This function is used to get power state sequences
704 * Returns: the power transition that has last happened
705 *
706 * This function can return the following transitions-
707 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
708 */
709enum romcode_read prcmu_get_rc_p2a(void)
710{
711 return readb(tcdm_base + PRCM_ROMCODE_P2A);
712}
713
714/**
715 * prcmu_get_current_mode - Return the current XP70 power mode
716 * Returns: Returns the current AP(ARM) power mode: init,
717 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
718 */
719enum ap_pwrst prcmu_get_xp70_current_state(void)
720{
721 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
722}
723
724/**
725 * prcmu_config_clkout - Configure one of the programmable clock outputs.
726 * @clkout: The CLKOUT number (0 or 1).
727 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
728 * @div: The divider to be applied.
729 *
730 * Configures one of the programmable clock outputs (CLKOUTs).
731 * @div should be in the range [1,63] to request a configuration, or 0 to
732 * inform that the configuration is no longer requested.
733 */
734int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
735{
736 static int requests[2];
737 int r = 0;
738 unsigned long flags;
739 u32 val;
740 u32 bits;
741 u32 mask;
742 u32 div_mask;
743
744 BUG_ON(clkout > 1);
745 BUG_ON(div > 63);
746 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
747
748 if (!div && !requests[clkout])
749 return -EINVAL;
750
751 switch (clkout) {
752 case 0:
753 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
754 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
755 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
756 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
757 break;
758 case 1:
759 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
760 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
761 PRCM_CLKOCR_CLK1TYPE);
762 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
763 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
764 break;
765 }
766 bits &= mask;
767
768 spin_lock_irqsave(&clkout_lock, flags);
769
c553b3ca 770 val = readl(PRCM_CLKOCR);
3df57bcf
MN
771 if (val & div_mask) {
772 if (div) {
773 if ((val & mask) != bits) {
774 r = -EBUSY;
775 goto unlock_and_return;
776 }
777 } else {
778 if ((val & mask & ~div_mask) != bits) {
779 r = -EINVAL;
780 goto unlock_and_return;
781 }
782 }
783 }
c553b3ca 784 writel((bits | (val & ~mask)), PRCM_CLKOCR);
3df57bcf
MN
785 requests[clkout] += (div ? 1 : -1);
786
787unlock_and_return:
788 spin_unlock_irqrestore(&clkout_lock, flags);
789
790 return r;
791}
792
73180f85 793int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
3df57bcf
MN
794{
795 unsigned long flags;
796
797 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
798
799 spin_lock_irqsave(&mb0_transfer.lock, flags);
800
c553b3ca 801 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
802 cpu_relax();
803
804 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
805 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
806 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
807 writeb((keep_ulp_clk ? 1 : 0),
808 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
809 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
c553b3ca 810 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
811
812 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
813
814 return 0;
815}
816
4d64d2e3
MN
817u8 db8500_prcmu_get_power_state_result(void)
818{
819 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
820}
821
3df57bcf
MN
822/* This function should only be called while mb0_transfer.lock is held. */
823static void config_wakeups(void)
824{
825 const u8 header[2] = {
826 MB0H_CONFIG_WAKEUPS_EXE,
827 MB0H_CONFIG_WAKEUPS_SLEEP
828 };
829 static u32 last_dbb_events;
830 static u32 last_abb_events;
831 u32 dbb_events;
832 u32 abb_events;
833 unsigned int i;
834
835 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
836 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
837
838 abb_events = mb0_transfer.req.abb_events;
839
840 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
841 return;
842
843 for (i = 0; i < 2; i++) {
c553b3ca 844 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
845 cpu_relax();
846 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
847 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
848 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 849 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
850 }
851 last_dbb_events = dbb_events;
852 last_abb_events = abb_events;
853}
854
73180f85 855void db8500_prcmu_enable_wakeups(u32 wakeups)
3df57bcf
MN
856{
857 unsigned long flags;
858 u32 bits;
859 int i;
860
861 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
862
863 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
864 if (wakeups & BIT(i))
865 bits |= prcmu_wakeup_bit[i];
866 }
867
868 spin_lock_irqsave(&mb0_transfer.lock, flags);
869
870 mb0_transfer.req.dbb_wakeups = bits;
871 config_wakeups();
872
873 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
874}
875
73180f85 876void db8500_prcmu_config_abb_event_readout(u32 abb_events)
3df57bcf
MN
877{
878 unsigned long flags;
879
880 spin_lock_irqsave(&mb0_transfer.lock, flags);
881
882 mb0_transfer.req.abb_events = abb_events;
883 config_wakeups();
884
885 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
886}
887
73180f85 888void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
3df57bcf
MN
889{
890 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
891 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
892 else
893 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
894}
895
896/**
73180f85 897 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
3df57bcf
MN
898 * @opp: The new ARM operating point to which transition is to be made
899 * Returns: 0 on success, non-zero on failure
900 *
901 * This function sets the the operating point of the ARM.
902 */
73180f85 903int db8500_prcmu_set_arm_opp(u8 opp)
3df57bcf
MN
904{
905 int r;
906
907 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
908 return -EINVAL;
909
910 r = 0;
911
912 mutex_lock(&mb1_transfer.lock);
913
c553b3ca 914 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
915 cpu_relax();
916
917 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
918 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
919 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
920
c553b3ca 921 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
922 wait_for_completion(&mb1_transfer.work);
923
924 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
925 (mb1_transfer.ack.arm_opp != opp))
926 r = -EIO;
927
928 mutex_unlock(&mb1_transfer.lock);
929
930 return r;
931}
932
933/**
73180f85 934 * db8500_prcmu_get_arm_opp - get the current ARM OPP
3df57bcf
MN
935 *
936 * Returns: the current ARM OPP
937 */
73180f85 938int db8500_prcmu_get_arm_opp(void)
3df57bcf
MN
939{
940 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
941}
942
943/**
0508901c 944 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
3df57bcf
MN
945 *
946 * Returns: the current DDR OPP
947 */
0508901c 948int db8500_prcmu_get_ddr_opp(void)
3df57bcf 949{
c553b3ca 950 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
951}
952
953/**
0508901c 954 * db8500_set_ddr_opp - set the appropriate DDR OPP
3df57bcf
MN
955 * @opp: The new DDR operating point to which transition is to be made
956 * Returns: 0 on success, non-zero on failure
957 *
958 * This function sets the operating point of the DDR.
959 */
7a4f2609 960static bool enable_set_ddr_opp;
0508901c 961int db8500_prcmu_set_ddr_opp(u8 opp)
3df57bcf
MN
962{
963 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
964 return -EINVAL;
965 /* Changing the DDR OPP can hang the hardware pre-v21 */
7a4f2609 966 if (enable_set_ddr_opp)
c553b3ca 967 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
968
969 return 0;
970}
6b6fae2b 971
4d64d2e3
MN
972/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
973static void request_even_slower_clocks(bool enable)
974{
b047d981 975 u32 clock_reg[] = {
4d64d2e3
MN
976 PRCM_ACLK_MGT,
977 PRCM_DMACLK_MGT
978 };
979 unsigned long flags;
980 unsigned int i;
981
982 spin_lock_irqsave(&clk_mgt_lock, flags);
983
984 /* Grab the HW semaphore. */
985 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
986 cpu_relax();
987
988 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
989 u32 val;
990 u32 div;
991
b047d981 992 val = readl(prcmu_base + clock_reg[i]);
4d64d2e3
MN
993 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
994 if (enable) {
995 if ((div <= 1) || (div > 15)) {
996 pr_err("prcmu: Bad clock divider %d in %s\n",
997 div, __func__);
998 goto unlock_and_return;
999 }
1000 div <<= 1;
1001 } else {
1002 if (div <= 2)
1003 goto unlock_and_return;
1004 div >>= 1;
1005 }
1006 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1007 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
b047d981 1008 writel(val, prcmu_base + clock_reg[i]);
4d64d2e3
MN
1009 }
1010
1011unlock_and_return:
1012 /* Release the HW semaphore. */
1013 writel(0, PRCM_SEM);
1014
1015 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1016}
1017
3df57bcf 1018/**
0508901c 1019 * db8500_set_ape_opp - set the appropriate APE OPP
3df57bcf
MN
1020 * @opp: The new APE operating point to which transition is to be made
1021 * Returns: 0 on success, non-zero on failure
1022 *
1023 * This function sets the operating point of the APE.
1024 */
0508901c 1025int db8500_prcmu_set_ape_opp(u8 opp)
3df57bcf
MN
1026{
1027 int r = 0;
1028
4d64d2e3
MN
1029 if (opp == mb1_transfer.ape_opp)
1030 return 0;
1031
3df57bcf
MN
1032 mutex_lock(&mb1_transfer.lock);
1033
4d64d2e3
MN
1034 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1035 request_even_slower_clocks(false);
1036
1037 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1038 goto skip_message;
1039
c553b3ca 1040 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1041 cpu_relax();
1042
1043 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1044 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
4d64d2e3
MN
1045 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1046 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
3df57bcf 1047
c553b3ca 1048 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1049 wait_for_completion(&mb1_transfer.work);
1050
1051 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1052 (mb1_transfer.ack.ape_opp != opp))
1053 r = -EIO;
1054
4d64d2e3
MN
1055skip_message:
1056 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1057 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1058 request_even_slower_clocks(true);
1059 if (!r)
1060 mb1_transfer.ape_opp = opp;
1061
3df57bcf
MN
1062 mutex_unlock(&mb1_transfer.lock);
1063
1064 return r;
1065}
1066
1067/**
0508901c 1068 * db8500_prcmu_get_ape_opp - get the current APE OPP
3df57bcf
MN
1069 *
1070 * Returns: the current APE OPP
1071 */
0508901c 1072int db8500_prcmu_get_ape_opp(void)
3df57bcf
MN
1073{
1074 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1075}
1076
1077/**
686f871b 1078 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
3df57bcf
MN
1079 * @enable: true to request the higher voltage, false to drop a request.
1080 *
1081 * Calls to this function to enable and disable requests must be balanced.
1082 */
686f871b 1083int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
3df57bcf
MN
1084{
1085 int r = 0;
1086 u8 header;
1087 static unsigned int requests;
1088
1089 mutex_lock(&mb1_transfer.lock);
1090
1091 if (enable) {
1092 if (0 != requests++)
1093 goto unlock_and_return;
1094 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1095 } else {
1096 if (requests == 0) {
1097 r = -EIO;
1098 goto unlock_and_return;
1099 } else if (1 != requests--) {
1100 goto unlock_and_return;
1101 }
1102 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1103 }
1104
c553b3ca 1105 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1106 cpu_relax();
1107
1108 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1109
c553b3ca 1110 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1111 wait_for_completion(&mb1_transfer.work);
1112
1113 if ((mb1_transfer.ack.header != header) ||
1114 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1115 r = -EIO;
1116
1117unlock_and_return:
1118 mutex_unlock(&mb1_transfer.lock);
1119
1120 return r;
1121}
1122
1123/**
1124 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1125 *
1126 * This function releases the power state requirements of a USB wakeup.
1127 */
1128int prcmu_release_usb_wakeup_state(void)
1129{
1130 int r = 0;
1131
1132 mutex_lock(&mb1_transfer.lock);
1133
c553b3ca 1134 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1135 cpu_relax();
1136
1137 writeb(MB1H_RELEASE_USB_WAKEUP,
1138 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1139
c553b3ca 1140 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1141 wait_for_completion(&mb1_transfer.work);
1142
1143 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1144 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1145 r = -EIO;
1146
1147 mutex_unlock(&mb1_transfer.lock);
1148
1149 return r;
1150}
1151
0837bb72
MN
1152static int request_pll(u8 clock, bool enable)
1153{
1154 int r = 0;
1155
6b6fae2b
MN
1156 if (clock == PRCMU_PLLSOC0)
1157 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1158 else if (clock == PRCMU_PLLSOC1)
0837bb72
MN
1159 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1160 else
1161 return -EINVAL;
1162
1163 mutex_lock(&mb1_transfer.lock);
1164
1165 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1166 cpu_relax();
1167
1168 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1169 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1170
1171 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1172 wait_for_completion(&mb1_transfer.work);
1173
1174 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1175 r = -EIO;
1176
1177 mutex_unlock(&mb1_transfer.lock);
1178
1179 return r;
1180}
1181
3df57bcf 1182/**
73180f85 1183 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
3df57bcf
MN
1184 * @epod_id: The EPOD to set
1185 * @epod_state: The new EPOD state
1186 *
1187 * This function sets the state of a EPOD (power domain). It may not be called
1188 * from interrupt context.
1189 */
73180f85 1190int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
3df57bcf
MN
1191{
1192 int r = 0;
1193 bool ram_retention = false;
1194 int i;
1195
1196 /* check argument */
1197 BUG_ON(epod_id >= NUM_EPOD_ID);
1198
1199 /* set flag if retention is possible */
1200 switch (epod_id) {
1201 case EPOD_ID_SVAMMDSP:
1202 case EPOD_ID_SIAMMDSP:
1203 case EPOD_ID_ESRAM12:
1204 case EPOD_ID_ESRAM34:
1205 ram_retention = true;
1206 break;
1207 }
1208
1209 /* check argument */
1210 BUG_ON(epod_state > EPOD_STATE_ON);
1211 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1212
1213 /* get lock */
1214 mutex_lock(&mb2_transfer.lock);
1215
1216 /* wait for mailbox */
c553b3ca 1217 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
3df57bcf
MN
1218 cpu_relax();
1219
1220 /* fill in mailbox */
1221 for (i = 0; i < NUM_EPOD_ID; i++)
1222 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1223 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1224
1225 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1226
c553b3ca 1227 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1228
1229 /*
1230 * The current firmware version does not handle errors correctly,
1231 * and we cannot recover if there is an error.
1232 * This is expected to change when the firmware is updated.
1233 */
1234 if (!wait_for_completion_timeout(&mb2_transfer.work,
1235 msecs_to_jiffies(20000))) {
1236 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1237 __func__);
1238 r = -EIO;
1239 goto unlock_and_return;
1240 }
1241
1242 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1243 r = -EIO;
1244
1245unlock_and_return:
1246 mutex_unlock(&mb2_transfer.lock);
1247 return r;
1248}
1249
1250/**
1251 * prcmu_configure_auto_pm - Configure autonomous power management.
1252 * @sleep: Configuration for ApSleep.
1253 * @idle: Configuration for ApIdle.
1254 */
1255void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1256 struct prcmu_auto_pm_config *idle)
1257{
1258 u32 sleep_cfg;
1259 u32 idle_cfg;
1260 unsigned long flags;
e3726fcf 1261
3df57bcf 1262 BUG_ON((sleep == NULL) || (idle == NULL));
650c2a21 1263
3df57bcf
MN
1264 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1265 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1266 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1267 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1268 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1269 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
e3726fcf 1270
3df57bcf
MN
1271 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1272 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1273 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1274 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1275 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1276 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
e3726fcf 1277
3df57bcf 1278 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
e0befb23 1279
3df57bcf
MN
1280 /*
1281 * The autonomous power management configuration is done through
1282 * fields in mailbox 2, but these fields are only used as shared
1283 * variables - i.e. there is no need to send a message.
1284 */
1285 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1286 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
e0befb23 1287
3df57bcf
MN
1288 mb2_transfer.auto_pm_enabled =
1289 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1290 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1291 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1292 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
e0befb23 1293
3df57bcf
MN
1294 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1295}
1296EXPORT_SYMBOL(prcmu_configure_auto_pm);
e3726fcf 1297
3df57bcf
MN
1298bool prcmu_is_auto_pm_enabled(void)
1299{
1300 return mb2_transfer.auto_pm_enabled;
1301}
e0befb23 1302
3df57bcf
MN
1303static int request_sysclk(bool enable)
1304{
1305 int r;
1306 unsigned long flags;
e3726fcf 1307
3df57bcf 1308 r = 0;
e3726fcf 1309
3df57bcf 1310 mutex_lock(&mb3_transfer.sysclk_lock);
e0befb23 1311
3df57bcf 1312 spin_lock_irqsave(&mb3_transfer.lock, flags);
e0befb23 1313
c553b3ca 1314 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
3df57bcf 1315 cpu_relax();
e0befb23 1316
3df57bcf 1317 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
e3726fcf 1318
3df57bcf 1319 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
c553b3ca 1320 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
e3726fcf 1321
3df57bcf
MN
1322 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1323
1324 /*
1325 * The firmware only sends an ACK if we want to enable the
1326 * SysClk, and it succeeds.
1327 */
1328 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1329 msecs_to_jiffies(20000))) {
1330 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1331 __func__);
1332 r = -EIO;
1333 }
1334
1335 mutex_unlock(&mb3_transfer.sysclk_lock);
1336
1337 return r;
1338}
1339
1340static int request_timclk(bool enable)
1341{
1342 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1343
1344 if (!enable)
1345 val |= PRCM_TCR_STOP_TIMERS;
c553b3ca 1346 writel(val, PRCM_TCR);
3df57bcf
MN
1347
1348 return 0;
1349}
1350
6b6fae2b 1351static int request_clock(u8 clock, bool enable)
3df57bcf
MN
1352{
1353 u32 val;
1354 unsigned long flags;
1355
1356 spin_lock_irqsave(&clk_mgt_lock, flags);
1357
1358 /* Grab the HW semaphore. */
c553b3ca 1359 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
1360 cpu_relax();
1361
b047d981 1362 val = readl(prcmu_base + clk_mgt[clock].offset);
3df57bcf
MN
1363 if (enable) {
1364 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1365 } else {
1366 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1367 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1368 }
b047d981 1369 writel(val, prcmu_base + clk_mgt[clock].offset);
3df57bcf
MN
1370
1371 /* Release the HW semaphore. */
c553b3ca 1372 writel(0, PRCM_SEM);
3df57bcf
MN
1373
1374 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1375
1376 return 0;
1377}
1378
0837bb72
MN
1379static int request_sga_clock(u8 clock, bool enable)
1380{
1381 u32 val;
1382 int ret;
1383
1384 if (enable) {
1385 val = readl(PRCM_CGATING_BYPASS);
1386 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1387 }
1388
6b6fae2b 1389 ret = request_clock(clock, enable);
0837bb72
MN
1390
1391 if (!ret && !enable) {
1392 val = readl(PRCM_CGATING_BYPASS);
1393 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1394 }
1395
1396 return ret;
1397}
1398
6b6fae2b
MN
1399static inline bool plldsi_locked(void)
1400{
1401 return (readl(PRCM_PLLDSI_LOCKP) &
1402 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1403 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1404 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1405 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1406}
1407
1408static int request_plldsi(bool enable)
1409{
1410 int r = 0;
1411 u32 val;
1412
1413 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1414 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1415 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1416
1417 val = readl(PRCM_PLLDSI_ENABLE);
1418 if (enable)
1419 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1420 else
1421 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1422 writel(val, PRCM_PLLDSI_ENABLE);
1423
1424 if (enable) {
1425 unsigned int i;
1426 bool locked = plldsi_locked();
1427
1428 for (i = 10; !locked && (i > 0); --i) {
1429 udelay(100);
1430 locked = plldsi_locked();
1431 }
1432 if (locked) {
1433 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1434 PRCM_APE_RESETN_SET);
1435 } else {
1436 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1437 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1438 PRCM_MMIP_LS_CLAMP_SET);
1439 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1440 writel(val, PRCM_PLLDSI_ENABLE);
1441 r = -EAGAIN;
1442 }
1443 } else {
1444 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1445 }
1446 return r;
1447}
1448
1449static int request_dsiclk(u8 n, bool enable)
1450{
1451 u32 val;
1452
1453 val = readl(PRCM_DSI_PLLOUT_SEL);
1454 val &= ~dsiclk[n].divsel_mask;
1455 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1456 dsiclk[n].divsel_shift);
1457 writel(val, PRCM_DSI_PLLOUT_SEL);
1458 return 0;
1459}
1460
1461static int request_dsiescclk(u8 n, bool enable)
1462{
1463 u32 val;
1464
1465 val = readl(PRCM_DSITVCLK_DIV);
1466 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1467 writel(val, PRCM_DSITVCLK_DIV);
1468 return 0;
1469}
1470
3df57bcf 1471/**
73180f85 1472 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
3df57bcf
MN
1473 * @clock: The clock for which the request is made.
1474 * @enable: Whether the clock should be enabled (true) or disabled (false).
1475 *
1476 * This function should only be used by the clock implementation.
1477 * Do not use it from any other place!
1478 */
73180f85 1479int db8500_prcmu_request_clock(u8 clock, bool enable)
3df57bcf 1480{
6b6fae2b 1481 if (clock == PRCMU_SGACLK)
0837bb72 1482 return request_sga_clock(clock, enable);
6b6fae2b
MN
1483 else if (clock < PRCMU_NUM_REG_CLOCKS)
1484 return request_clock(clock, enable);
1485 else if (clock == PRCMU_TIMCLK)
3df57bcf 1486 return request_timclk(enable);
6b6fae2b
MN
1487 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1488 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1489 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1490 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1491 else if (clock == PRCMU_PLLDSI)
1492 return request_plldsi(enable);
1493 else if (clock == PRCMU_SYSCLK)
3df57bcf 1494 return request_sysclk(enable);
6b6fae2b 1495 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
0837bb72 1496 return request_pll(clock, enable);
6b6fae2b
MN
1497 else
1498 return -EINVAL;
1499}
1500
1501static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1502 int branch)
1503{
1504 u64 rate;
1505 u32 val;
1506 u32 d;
1507 u32 div = 1;
1508
1509 val = readl(reg);
1510
1511 rate = src_rate;
1512 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1513
1514 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1515 if (d > 1)
1516 div *= d;
1517
1518 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1519 if (d > 1)
1520 div *= d;
1521
1522 if (val & PRCM_PLL_FREQ_SELDIV2)
1523 div *= 2;
1524
1525 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1526 (val & PRCM_PLL_FREQ_DIV2EN) &&
1527 ((reg == PRCM_PLLSOC0_FREQ) ||
20aee5b6 1528 (reg == PRCM_PLLARM_FREQ) ||
6b6fae2b
MN
1529 (reg == PRCM_PLLDDR_FREQ))))
1530 div *= 2;
1531
1532 (void)do_div(rate, div);
1533
1534 return (unsigned long)rate;
1535}
1536
1537#define ROOT_CLOCK_RATE 38400000
1538
1539static unsigned long clock_rate(u8 clock)
1540{
1541 u32 val;
1542 u32 pllsw;
1543 unsigned long rate = ROOT_CLOCK_RATE;
1544
b047d981 1545 val = readl(prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1546
1547 if (val & PRCM_CLK_MGT_CLK38) {
1548 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1549 rate /= 2;
1550 return rate;
1551 }
1552
1553 val |= clk_mgt[clock].pllsw;
1554 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1555
1556 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1557 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1558 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1559 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1560 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1561 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1562 else
1563 return 0;
1564
1565 if ((clock == PRCMU_SGACLK) &&
1566 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1567 u64 r = (rate * 10);
1568
1569 (void)do_div(r, 25);
1570 return (unsigned long)r;
1571 }
1572 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1573 if (val)
1574 return rate / val;
1575 else
1576 return 0;
1577}
20aee5b6 1578
b2302c87 1579static unsigned long armss_rate(void)
20aee5b6
MJ
1580{
1581 u32 r;
1582 unsigned long rate;
1583
1584 r = readl(PRCM_ARM_CHGCLKREQ);
1585
1586 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1587 /* External ARMCLKFIX clock */
1588
1589 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1590
1591 /* Check PRCM_ARM_CHGCLKREQ divider */
1592 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1593 rate /= 2;
1594
1595 /* Check PRCM_ARMCLKFIX_MGT divider */
1596 r = readl(PRCM_ARMCLKFIX_MGT);
1597 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1598 rate /= r;
1599
1600 } else {/* ARM PLL */
1601 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1602 }
1603
b2302c87 1604 return rate;
20aee5b6 1605}
6b6fae2b
MN
1606
1607static unsigned long dsiclk_rate(u8 n)
1608{
1609 u32 divsel;
1610 u32 div = 1;
1611
1612 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1613 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1614
1615 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1616 divsel = dsiclk[n].divsel;
e9d7b4b5
UH
1617 else
1618 dsiclk[n].divsel = divsel;
6b6fae2b
MN
1619
1620 switch (divsel) {
1621 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1622 div *= 2;
1623 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1624 div *= 2;
1625 case PRCM_DSI_PLLOUT_SEL_PHI:
1626 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1627 PLL_RAW) / div;
e62ccf3a 1628 default:
6b6fae2b 1629 return 0;
e62ccf3a 1630 }
6b6fae2b
MN
1631}
1632
1633static unsigned long dsiescclk_rate(u8 n)
1634{
1635 u32 div;
1636
1637 div = readl(PRCM_DSITVCLK_DIV);
1638 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1639 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1640}
1641
1642unsigned long prcmu_clock_rate(u8 clock)
1643{
e62ccf3a 1644 if (clock < PRCMU_NUM_REG_CLOCKS)
6b6fae2b
MN
1645 return clock_rate(clock);
1646 else if (clock == PRCMU_TIMCLK)
1647 return ROOT_CLOCK_RATE / 16;
1648 else if (clock == PRCMU_SYSCLK)
1649 return ROOT_CLOCK_RATE;
1650 else if (clock == PRCMU_PLLSOC0)
1651 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1652 else if (clock == PRCMU_PLLSOC1)
1653 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
20aee5b6
MJ
1654 else if (clock == PRCMU_ARMSS)
1655 return armss_rate();
6b6fae2b
MN
1656 else if (clock == PRCMU_PLLDDR)
1657 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1658 else if (clock == PRCMU_PLLDSI)
1659 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1660 PLL_RAW);
1661 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1662 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1663 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1664 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1665 else
1666 return 0;
1667}
1668
1669static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1670{
1671 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1672 return ROOT_CLOCK_RATE;
1673 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1674 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1675 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1676 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1677 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1678 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1679 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1680 else
1681 return 0;
1682}
1683
1684static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1685{
1686 u32 div;
1687
1688 div = (src_rate / rate);
1689 if (div == 0)
1690 return 1;
1691 if (rate < (src_rate / div))
1692 div++;
1693 return div;
1694}
1695
1696static long round_clock_rate(u8 clock, unsigned long rate)
1697{
1698 u32 val;
1699 u32 div;
1700 unsigned long src_rate;
1701 long rounded_rate;
1702
b047d981 1703 val = readl(prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1704 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1705 clk_mgt[clock].branch);
1706 div = clock_divider(src_rate, rate);
1707 if (val & PRCM_CLK_MGT_CLK38) {
1708 if (clk_mgt[clock].clk38div) {
1709 if (div > 2)
1710 div = 2;
1711 } else {
1712 div = 1;
1713 }
1714 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1715 u64 r = (src_rate * 10);
1716
1717 (void)do_div(r, 25);
1718 if (r <= rate)
1719 return (unsigned long)r;
1720 }
1721 rounded_rate = (src_rate / min(div, (u32)31));
1722
1723 return rounded_rate;
1724}
1725
b2302c87
UH
1726/* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1727static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
50701588
VK
1728 { .frequency = 200000, .driver_data = ARM_EXTCLK,},
1729 { .frequency = 400000, .driver_data = ARM_50_OPP,},
1730 { .frequency = 800000, .driver_data = ARM_100_OPP,},
b2302c87
UH
1731 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1732 { .frequency = CPUFREQ_TABLE_END,},
1733};
1734
1735static long round_armss_rate(unsigned long rate)
1736{
1737 long freq = 0;
1738 int i = 0;
1739
1740 /* cpufreq table frequencies is in KHz. */
1741 rate = rate / 1000;
1742
1743 /* Find the corresponding arm opp from the cpufreq table. */
1744 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1745 freq = db8500_cpufreq_table[i].frequency;
1746 if (freq == rate)
1747 break;
1748 i++;
1749 }
1750
1751 /* Return the last valid value, even if a match was not found. */
1752 return freq * 1000;
1753}
1754
6b6fae2b
MN
1755#define MIN_PLL_VCO_RATE 600000000ULL
1756#define MAX_PLL_VCO_RATE 1680640000ULL
1757
1758static long round_plldsi_rate(unsigned long rate)
1759{
1760 long rounded_rate = 0;
1761 unsigned long src_rate;
1762 unsigned long rem;
1763 u32 r;
1764
1765 src_rate = clock_rate(PRCMU_HDMICLK);
1766 rem = rate;
1767
1768 for (r = 7; (rem > 0) && (r > 0); r--) {
1769 u64 d;
1770
1771 d = (r * rate);
1772 (void)do_div(d, src_rate);
1773 if (d < 6)
1774 d = 6;
1775 else if (d > 255)
1776 d = 255;
1777 d *= src_rate;
1778 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1779 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1780 continue;
1781 (void)do_div(d, r);
1782 if (rate < d) {
1783 if (rounded_rate == 0)
1784 rounded_rate = (long)d;
1785 break;
1786 }
1787 if ((rate - d) < rem) {
1788 rem = (rate - d);
1789 rounded_rate = (long)d;
1790 }
1791 }
1792 return rounded_rate;
1793}
1794
1795static long round_dsiclk_rate(unsigned long rate)
1796{
1797 u32 div;
1798 unsigned long src_rate;
1799 long rounded_rate;
1800
1801 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1802 PLL_RAW);
1803 div = clock_divider(src_rate, rate);
1804 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1805
1806 return rounded_rate;
1807}
1808
1809static long round_dsiescclk_rate(unsigned long rate)
1810{
1811 u32 div;
1812 unsigned long src_rate;
1813 long rounded_rate;
1814
1815 src_rate = clock_rate(PRCMU_TVCLK);
1816 div = clock_divider(src_rate, rate);
1817 rounded_rate = (src_rate / min(div, (u32)255));
1818
1819 return rounded_rate;
1820}
1821
1822long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1823{
1824 if (clock < PRCMU_NUM_REG_CLOCKS)
1825 return round_clock_rate(clock, rate);
b2302c87
UH
1826 else if (clock == PRCMU_ARMSS)
1827 return round_armss_rate(rate);
6b6fae2b
MN
1828 else if (clock == PRCMU_PLLDSI)
1829 return round_plldsi_rate(rate);
1830 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1831 return round_dsiclk_rate(rate);
1832 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1833 return round_dsiescclk_rate(rate);
1834 else
1835 return (long)prcmu_clock_rate(clock);
1836}
1837
1838static void set_clock_rate(u8 clock, unsigned long rate)
1839{
1840 u32 val;
1841 u32 div;
1842 unsigned long src_rate;
1843 unsigned long flags;
1844
1845 spin_lock_irqsave(&clk_mgt_lock, flags);
1846
1847 /* Grab the HW semaphore. */
1848 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1849 cpu_relax();
1850
b047d981 1851 val = readl(prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1852 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1853 clk_mgt[clock].branch);
1854 div = clock_divider(src_rate, rate);
1855 if (val & PRCM_CLK_MGT_CLK38) {
1856 if (clk_mgt[clock].clk38div) {
1857 if (div > 1)
1858 val |= PRCM_CLK_MGT_CLK38DIV;
1859 else
1860 val &= ~PRCM_CLK_MGT_CLK38DIV;
1861 }
1862 } else if (clock == PRCMU_SGACLK) {
1863 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1864 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1865 if (div == 3) {
1866 u64 r = (src_rate * 10);
1867
1868 (void)do_div(r, 25);
1869 if (r <= rate) {
1870 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1871 div = 0;
1872 }
1873 }
1874 val |= min(div, (u32)31);
1875 } else {
1876 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1877 val |= min(div, (u32)31);
1878 }
b047d981 1879 writel(val, prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1880
1881 /* Release the HW semaphore. */
1882 writel(0, PRCM_SEM);
1883
1884 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1885}
1886
b2302c87
UH
1887static int set_armss_rate(unsigned long rate)
1888{
1889 int i = 0;
1890
1891 /* cpufreq table frequencies is in KHz. */
1892 rate = rate / 1000;
1893
1894 /* Find the corresponding arm opp from the cpufreq table. */
1895 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1896 if (db8500_cpufreq_table[i].frequency == rate)
1897 break;
1898 i++;
1899 }
1900
1901 if (db8500_cpufreq_table[i].frequency != rate)
1902 return -EINVAL;
1903
1904 /* Set the new arm opp. */
50701588 1905 return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].driver_data);
b2302c87
UH
1906}
1907
6b6fae2b
MN
1908static int set_plldsi_rate(unsigned long rate)
1909{
1910 unsigned long src_rate;
1911 unsigned long rem;
1912 u32 pll_freq = 0;
1913 u32 r;
1914
1915 src_rate = clock_rate(PRCMU_HDMICLK);
1916 rem = rate;
1917
1918 for (r = 7; (rem > 0) && (r > 0); r--) {
1919 u64 d;
1920 u64 hwrate;
1921
1922 d = (r * rate);
1923 (void)do_div(d, src_rate);
1924 if (d < 6)
1925 d = 6;
1926 else if (d > 255)
1927 d = 255;
1928 hwrate = (d * src_rate);
1929 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1930 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1931 continue;
1932 (void)do_div(hwrate, r);
1933 if (rate < hwrate) {
1934 if (pll_freq == 0)
1935 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1936 (r << PRCM_PLL_FREQ_R_SHIFT));
1937 break;
1938 }
1939 if ((rate - hwrate) < rem) {
1940 rem = (rate - hwrate);
1941 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1942 (r << PRCM_PLL_FREQ_R_SHIFT));
1943 }
1944 }
1945 if (pll_freq == 0)
1946 return -EINVAL;
1947
1948 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1949 writel(pll_freq, PRCM_PLLDSI_FREQ);
1950
1951 return 0;
1952}
1953
1954static void set_dsiclk_rate(u8 n, unsigned long rate)
1955{
1956 u32 val;
1957 u32 div;
1958
1959 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1960 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1961
1962 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1963 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1964 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
1965
1966 val = readl(PRCM_DSI_PLLOUT_SEL);
1967 val &= ~dsiclk[n].divsel_mask;
1968 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1969 writel(val, PRCM_DSI_PLLOUT_SEL);
1970}
1971
1972static void set_dsiescclk_rate(u8 n, unsigned long rate)
1973{
1974 u32 val;
1975 u32 div;
1976
1977 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1978 val = readl(PRCM_DSITVCLK_DIV);
1979 val &= ~dsiescclk[n].div_mask;
1980 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1981 writel(val, PRCM_DSITVCLK_DIV);
1982}
1983
1984int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1985{
1986 if (clock < PRCMU_NUM_REG_CLOCKS)
1987 set_clock_rate(clock, rate);
b2302c87
UH
1988 else if (clock == PRCMU_ARMSS)
1989 return set_armss_rate(rate);
6b6fae2b
MN
1990 else if (clock == PRCMU_PLLDSI)
1991 return set_plldsi_rate(rate);
1992 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1993 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1994 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1995 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1996 return 0;
3df57bcf
MN
1997}
1998
73180f85 1999int db8500_prcmu_config_esram0_deep_sleep(u8 state)
3df57bcf
MN
2000{
2001 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2002 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2003 return -EINVAL;
2004
2005 mutex_lock(&mb4_transfer.lock);
2006
c553b3ca 2007 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2008 cpu_relax();
2009
2010 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2011 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2012 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2013 writeb(DDR_PWR_STATE_ON,
2014 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2015 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2016
c553b3ca 2017 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2018 wait_for_completion(&mb4_transfer.work);
2019
2020 mutex_unlock(&mb4_transfer.lock);
2021
2022 return 0;
2023}
2024
0508901c 2025int db8500_prcmu_config_hotdog(u8 threshold)
3df57bcf
MN
2026{
2027 mutex_lock(&mb4_transfer.lock);
2028
c553b3ca 2029 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2030 cpu_relax();
2031
2032 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2033 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2034
c553b3ca 2035 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2036 wait_for_completion(&mb4_transfer.work);
2037
2038 mutex_unlock(&mb4_transfer.lock);
2039
2040 return 0;
2041}
2042
0508901c 2043int db8500_prcmu_config_hotmon(u8 low, u8 high)
3df57bcf
MN
2044{
2045 mutex_lock(&mb4_transfer.lock);
2046
c553b3ca 2047 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2048 cpu_relax();
2049
2050 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2051 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2052 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2053 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2054 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2055
c553b3ca 2056 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2057 wait_for_completion(&mb4_transfer.work);
2058
2059 mutex_unlock(&mb4_transfer.lock);
2060
2061 return 0;
2062}
2063
2064static int config_hot_period(u16 val)
2065{
2066 mutex_lock(&mb4_transfer.lock);
2067
c553b3ca 2068 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2069 cpu_relax();
2070
2071 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2072 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2073
c553b3ca 2074 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2075 wait_for_completion(&mb4_transfer.work);
2076
2077 mutex_unlock(&mb4_transfer.lock);
2078
2079 return 0;
2080}
2081
0508901c 2082int db8500_prcmu_start_temp_sense(u16 cycles32k)
3df57bcf
MN
2083{
2084 if (cycles32k == 0xFFFF)
2085 return -EINVAL;
2086
2087 return config_hot_period(cycles32k);
2088}
2089
0508901c 2090int db8500_prcmu_stop_temp_sense(void)
3df57bcf
MN
2091{
2092 return config_hot_period(0xFFFF);
2093}
2094
84165b80
JA
2095static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2096{
2097
2098 mutex_lock(&mb4_transfer.lock);
2099
2100 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2101 cpu_relax();
2102
2103 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2104 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2105 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2106 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2107
2108 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2109
2110 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2111 wait_for_completion(&mb4_transfer.work);
2112
2113 mutex_unlock(&mb4_transfer.lock);
2114
2115 return 0;
2116
2117}
2118
0508901c 2119int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
84165b80
JA
2120{
2121 BUG_ON(num == 0 || num > 0xf);
2122 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2123 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2124 A9WDOG_AUTO_OFF_DIS);
2125}
6f8cfa99 2126EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
84165b80 2127
0508901c 2128int db8500_prcmu_enable_a9wdog(u8 id)
84165b80
JA
2129{
2130 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2131}
6f8cfa99 2132EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
84165b80 2133
0508901c 2134int db8500_prcmu_disable_a9wdog(u8 id)
84165b80
JA
2135{
2136 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2137}
6f8cfa99 2138EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
84165b80 2139
0508901c 2140int db8500_prcmu_kick_a9wdog(u8 id)
84165b80
JA
2141{
2142 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2143}
6f8cfa99 2144EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
84165b80
JA
2145
2146/*
2147 * timeout is 28 bit, in ms.
2148 */
0508901c 2149int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
84165b80 2150{
84165b80
JA
2151 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2152 (id & A9WDOG_ID_MASK) |
2153 /*
2154 * Put the lowest 28 bits of timeout at
2155 * offset 4. Four first bits are used for id.
2156 */
2157 (u8)((timeout << 4) & 0xf0),
2158 (u8)((timeout >> 4) & 0xff),
2159 (u8)((timeout >> 12) & 0xff),
2160 (u8)((timeout >> 20) & 0xff));
2161}
6f8cfa99 2162EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
84165b80 2163
e3726fcf
LW
2164/**
2165 * prcmu_abb_read() - Read register value(s) from the ABB.
2166 * @slave: The I2C slave address.
2167 * @reg: The (start) register address.
2168 * @value: The read out value(s).
2169 * @size: The number of registers to read.
2170 *
2171 * Reads register value(s) from the ABB.
2172 * @size has to be 1 for the current firmware version.
2173 */
2174int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2175{
2176 int r;
2177
2178 if (size != 1)
2179 return -EINVAL;
2180
3df57bcf 2181 mutex_lock(&mb5_transfer.lock);
e3726fcf 2182
c553b3ca 2183 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2184 cpu_relax();
2185
3c3e4898 2186 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
3df57bcf
MN
2187 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2188 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2189 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2190 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2191
c553b3ca 2192 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2193
e3726fcf 2194 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2195 msecs_to_jiffies(20000))) {
2196 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2197 __func__);
e3726fcf 2198 r = -EIO;
3df57bcf
MN
2199 } else {
2200 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
e3726fcf 2201 }
3df57bcf 2202
e3726fcf
LW
2203 if (!r)
2204 *value = mb5_transfer.ack.value;
2205
e3726fcf 2206 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2207
e3726fcf
LW
2208 return r;
2209}
e3726fcf
LW
2210
2211/**
3c3e4898 2212 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
e3726fcf
LW
2213 * @slave: The I2C slave address.
2214 * @reg: The (start) register address.
2215 * @value: The value(s) to write.
3c3e4898 2216 * @mask: The mask(s) to use.
e3726fcf
LW
2217 * @size: The number of registers to write.
2218 *
3c3e4898
MN
2219 * Writes masked register value(s) to the ABB.
2220 * For each @value, only the bits set to 1 in the corresponding @mask
2221 * will be written. The other bits are not changed.
e3726fcf
LW
2222 * @size has to be 1 for the current firmware version.
2223 */
3c3e4898 2224int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
e3726fcf
LW
2225{
2226 int r;
2227
2228 if (size != 1)
2229 return -EINVAL;
2230
3df57bcf 2231 mutex_lock(&mb5_transfer.lock);
e3726fcf 2232
c553b3ca 2233 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2234 cpu_relax();
2235
3c3e4898 2236 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
3df57bcf
MN
2237 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2238 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2239 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2240 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2241
c553b3ca 2242 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2243
e3726fcf 2244 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2245 msecs_to_jiffies(20000))) {
2246 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2247 __func__);
e3726fcf 2248 r = -EIO;
3df57bcf
MN
2249 } else {
2250 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
e3726fcf 2251 }
e3726fcf 2252
e3726fcf 2253 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2254
e3726fcf
LW
2255 return r;
2256}
e3726fcf 2257
3c3e4898
MN
2258/**
2259 * prcmu_abb_write() - Write register value(s) to the ABB.
2260 * @slave: The I2C slave address.
2261 * @reg: The (start) register address.
2262 * @value: The value(s) to write.
2263 * @size: The number of registers to write.
2264 *
2265 * Writes register value(s) to the ABB.
2266 * @size has to be 1 for the current firmware version.
2267 */
2268int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2269{
2270 u8 mask = ~0;
2271
2272 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2273}
2274
3df57bcf
MN
2275/**
2276 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2277 */
5261e101 2278int prcmu_ac_wake_req(void)
e0befb23 2279{
3df57bcf 2280 u32 val;
5261e101 2281 int ret = 0;
e0befb23 2282
3df57bcf 2283 mutex_lock(&mb0_transfer.ac_wake_lock);
e0befb23 2284
c553b3ca 2285 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2286 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2287 goto unlock_and_return;
e0befb23 2288
3df57bcf 2289 atomic_set(&ac_wake_req_state, 1);
e0befb23 2290
5261e101
AM
2291 /*
2292 * Force Modem Wake-up before hostaccess_req ping-pong.
2293 * It prevents Modem to enter in Sleep while acking the hostaccess
2294 * request. The 31us delay has been calculated by HWI.
2295 */
2296 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2297 writel(val, PRCM_HOSTACCESS_REQ);
2298
2299 udelay(31);
2300
2301 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2302 writel(val, PRCM_HOSTACCESS_REQ);
e0befb23 2303
3df57bcf 2304 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2305 msecs_to_jiffies(5000))) {
5261e101
AM
2306#if defined(CONFIG_DBX500_PRCMU_DEBUG)
2307 db8500_prcmu_debug_dump(__func__, true, true);
2308#endif
57265bc1 2309 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
d6e3002e 2310 __func__);
5261e101 2311 ret = -EFAULT;
3df57bcf 2312 }
e0befb23 2313
3df57bcf
MN
2314unlock_and_return:
2315 mutex_unlock(&mb0_transfer.ac_wake_lock);
5261e101 2316 return ret;
e0befb23
MP
2317}
2318
2319/**
3df57bcf 2320 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
e0befb23 2321 */
ffb01160 2322void prcmu_ac_sleep_req(void)
e0befb23 2323{
3df57bcf
MN
2324 u32 val;
2325
2326 mutex_lock(&mb0_transfer.ac_wake_lock);
2327
c553b3ca 2328 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2329 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2330 goto unlock_and_return;
2331
2332 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
c553b3ca 2333 PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2334
2335 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2336 msecs_to_jiffies(5000))) {
57265bc1 2337 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
3df57bcf
MN
2338 __func__);
2339 }
2340
2341 atomic_set(&ac_wake_req_state, 0);
2342
2343unlock_and_return:
2344 mutex_unlock(&mb0_transfer.ac_wake_lock);
e0befb23 2345}
e0befb23 2346
73180f85 2347bool db8500_prcmu_is_ac_wake_requested(void)
e0befb23 2348{
3df57bcf 2349 return (atomic_read(&ac_wake_req_state) != 0);
e0befb23 2350}
e0befb23
MP
2351
2352/**
73180f85 2353 * db8500_prcmu_system_reset - System reset
e0befb23 2354 *
73180f85 2355 * Saves the reset reason code and then sets the APE_SOFTRST register which
3df57bcf 2356 * fires interrupt to fw
e0befb23 2357 */
73180f85 2358void db8500_prcmu_system_reset(u16 reset_code)
e0befb23 2359{
3df57bcf 2360 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
c553b3ca 2361 writel(1, PRCM_APE_SOFTRST);
e0befb23 2362}
e0befb23 2363
597045de
SR
2364/**
2365 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2366 *
2367 * Retrieves the reset reason code stored by prcmu_system_reset() before
2368 * last restart.
2369 */
2370u16 db8500_prcmu_get_reset_code(void)
2371{
2372 return readw(tcdm_base + PRCM_SW_RST_REASON);
2373}
2374
e0befb23 2375/**
0508901c 2376 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
e0befb23 2377 */
0508901c 2378void db8500_prcmu_modem_reset(void)
e0befb23 2379{
3df57bcf
MN
2380 mutex_lock(&mb1_transfer.lock);
2381
c553b3ca 2382 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
2383 cpu_relax();
2384
2385 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
c553b3ca 2386 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2387 wait_for_completion(&mb1_transfer.work);
2388
2389 /*
2390 * No need to check return from PRCMU as modem should go in reset state
2391 * This state is already managed by upper layer
2392 */
2393
2394 mutex_unlock(&mb1_transfer.lock);
e0befb23 2395}
e0befb23 2396
3df57bcf 2397static void ack_dbb_wakeup(void)
e0befb23 2398{
3df57bcf
MN
2399 unsigned long flags;
2400
2401 spin_lock_irqsave(&mb0_transfer.lock, flags);
2402
c553b3ca 2403 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
2404 cpu_relax();
2405
2406 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 2407 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2408
2409 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
e0befb23 2410}
e0befb23 2411
3df57bcf 2412static inline void print_unknown_header_warning(u8 n, u8 header)
e0befb23 2413{
3df57bcf
MN
2414 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2415 header, n);
e0befb23
MP
2416}
2417
3df57bcf 2418static bool read_mailbox_0(void)
e3726fcf 2419{
3df57bcf
MN
2420 bool r;
2421 u32 ev;
2422 unsigned int n;
2423 u8 header;
2424
2425 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2426 switch (header) {
2427 case MB0H_WAKEUP_EXE:
2428 case MB0H_WAKEUP_SLEEP:
2429 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2430 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2431 else
2432 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2433
2434 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2435 complete(&mb0_transfer.ac_wake_work);
2436 if (ev & WAKEUP_BIT_SYSCLK_OK)
2437 complete(&mb3_transfer.sysclk_work);
2438
2439 ev &= mb0_transfer.req.dbb_irqs;
2440
2441 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2442 if (ev & prcmu_irq_bit[n])
89d9b1c9 2443 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
3df57bcf
MN
2444 }
2445 r = true;
2446 break;
2447 default:
2448 print_unknown_header_warning(0, header);
2449 r = false;
2450 break;
2451 }
c553b3ca 2452 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
3df57bcf 2453 return r;
e3726fcf
LW
2454}
2455
3df57bcf 2456static bool read_mailbox_1(void)
e3726fcf 2457{
3df57bcf
MN
2458 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2459 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2460 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2461 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2462 PRCM_ACK_MB1_CURRENT_APE_OPP);
2463 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2464 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
c553b3ca 2465 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
e0befb23 2466 complete(&mb1_transfer.work);
3df57bcf 2467 return false;
e3726fcf
LW
2468}
2469
3df57bcf 2470static bool read_mailbox_2(void)
e3726fcf 2471{
3df57bcf 2472 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
c553b3ca 2473 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2474 complete(&mb2_transfer.work);
2475 return false;
e3726fcf
LW
2476}
2477
3df57bcf 2478static bool read_mailbox_3(void)
e3726fcf 2479{
c553b3ca 2480 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
3df57bcf 2481 return false;
e3726fcf
LW
2482}
2483
3df57bcf 2484static bool read_mailbox_4(void)
e3726fcf 2485{
3df57bcf
MN
2486 u8 header;
2487 bool do_complete = true;
2488
2489 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2490 switch (header) {
2491 case MB4H_MEM_ST:
2492 case MB4H_HOTDOG:
2493 case MB4H_HOTMON:
2494 case MB4H_HOT_PERIOD:
a592c2e2
MN
2495 case MB4H_A9WDOG_CONF:
2496 case MB4H_A9WDOG_EN:
2497 case MB4H_A9WDOG_DIS:
2498 case MB4H_A9WDOG_LOAD:
2499 case MB4H_A9WDOG_KICK:
3df57bcf
MN
2500 break;
2501 default:
2502 print_unknown_header_warning(4, header);
2503 do_complete = false;
2504 break;
2505 }
2506
c553b3ca 2507 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2508
2509 if (do_complete)
2510 complete(&mb4_transfer.work);
2511
2512 return false;
e3726fcf
LW
2513}
2514
3df57bcf 2515static bool read_mailbox_5(void)
e3726fcf 2516{
3df57bcf
MN
2517 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2518 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
c553b3ca 2519 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
e3726fcf 2520 complete(&mb5_transfer.work);
3df57bcf 2521 return false;
e3726fcf
LW
2522}
2523
3df57bcf 2524static bool read_mailbox_6(void)
e3726fcf 2525{
c553b3ca 2526 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
3df57bcf 2527 return false;
e3726fcf
LW
2528}
2529
3df57bcf 2530static bool read_mailbox_7(void)
e3726fcf 2531{
c553b3ca 2532 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
3df57bcf 2533 return false;
e3726fcf
LW
2534}
2535
3df57bcf 2536static bool (* const read_mailbox[NUM_MB])(void) = {
e3726fcf
LW
2537 read_mailbox_0,
2538 read_mailbox_1,
2539 read_mailbox_2,
2540 read_mailbox_3,
2541 read_mailbox_4,
2542 read_mailbox_5,
2543 read_mailbox_6,
2544 read_mailbox_7
2545};
2546
2547static irqreturn_t prcmu_irq_handler(int irq, void *data)
2548{
2549 u32 bits;
2550 u8 n;
3df57bcf 2551 irqreturn_t r;
e3726fcf 2552
c553b3ca 2553 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
e3726fcf
LW
2554 if (unlikely(!bits))
2555 return IRQ_NONE;
2556
3df57bcf 2557 r = IRQ_HANDLED;
e3726fcf
LW
2558 for (n = 0; bits; n++) {
2559 if (bits & MBOX_BIT(n)) {
2560 bits -= MBOX_BIT(n);
3df57bcf
MN
2561 if (read_mailbox[n]())
2562 r = IRQ_WAKE_THREAD;
e3726fcf
LW
2563 }
2564 }
3df57bcf
MN
2565 return r;
2566}
2567
2568static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2569{
2570 ack_dbb_wakeup();
e3726fcf
LW
2571 return IRQ_HANDLED;
2572}
2573
3df57bcf
MN
2574static void prcmu_mask_work(struct work_struct *work)
2575{
2576 unsigned long flags;
2577
2578 spin_lock_irqsave(&mb0_transfer.lock, flags);
2579
2580 config_wakeups();
2581
2582 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2583}
2584
2585static void prcmu_irq_mask(struct irq_data *d)
2586{
2587 unsigned long flags;
2588
2589 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2590
f3f1f0a1 2591 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
3df57bcf
MN
2592
2593 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2594
2595 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2596 schedule_work(&mb0_transfer.mask_work);
2597}
2598
2599static void prcmu_irq_unmask(struct irq_data *d)
2600{
2601 unsigned long flags;
2602
2603 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2604
f3f1f0a1 2605 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
3df57bcf
MN
2606
2607 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2608
2609 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2610 schedule_work(&mb0_transfer.mask_work);
2611}
2612
2613static void noop(struct irq_data *d)
2614{
2615}
2616
2617static struct irq_chip prcmu_irq_chip = {
2618 .name = "prcmu",
2619 .irq_disable = prcmu_irq_mask,
2620 .irq_ack = noop,
2621 .irq_mask = prcmu_irq_mask,
2622 .irq_unmask = prcmu_irq_unmask,
2623};
2624
05ec260e 2625static __init char *fw_project_name(u32 project)
b58d12fe
MN
2626{
2627 switch (project) {
2628 case PRCMU_FW_PROJECT_U8500:
2629 return "U8500";
05ec260e
LW
2630 case PRCMU_FW_PROJECT_U8400:
2631 return "U8400";
b58d12fe
MN
2632 case PRCMU_FW_PROJECT_U9500:
2633 return "U9500";
05ec260e
LW
2634 case PRCMU_FW_PROJECT_U8500_MBB:
2635 return "U8500 MBB";
2636 case PRCMU_FW_PROJECT_U8500_C1:
2637 return "U8500 C1";
2638 case PRCMU_FW_PROJECT_U8500_C2:
2639 return "U8500 C2";
2640 case PRCMU_FW_PROJECT_U8500_C3:
2641 return "U8500 C3";
2642 case PRCMU_FW_PROJECT_U8500_C4:
2643 return "U8500 C4";
2644 case PRCMU_FW_PROJECT_U9500_MBL:
2645 return "U9500 MBL";
2646 case PRCMU_FW_PROJECT_U8500_MBL:
2647 return "U8500 MBL";
2648 case PRCMU_FW_PROJECT_U8500_MBL2:
2649 return "U8500 MBL2";
5f96a1a6 2650 case PRCMU_FW_PROJECT_U8520:
05ec260e 2651 return "U8520 MBL";
1927ddf6
BJ
2652 case PRCMU_FW_PROJECT_U8420:
2653 return "U8420";
05ec260e
LW
2654 case PRCMU_FW_PROJECT_U9540:
2655 return "U9540";
2656 case PRCMU_FW_PROJECT_A9420:
2657 return "A9420";
2658 case PRCMU_FW_PROJECT_L8540:
2659 return "L8540";
2660 case PRCMU_FW_PROJECT_L8580:
2661 return "L8580";
b58d12fe
MN
2662 default:
2663 return "Unknown";
2664 }
2665}
2666
f3f1f0a1
LJ
2667static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2668 irq_hw_number_t hwirq)
2669{
2670 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2671 handle_simple_irq);
2672 set_irq_flags(virq, IRQF_VALID);
2673
2674 return 0;
2675}
2676
2677static struct irq_domain_ops db8500_irq_ops = {
89d9b1c9
LW
2678 .map = db8500_irq_map,
2679 .xlate = irq_domain_xlate_twocell,
f3f1f0a1
LJ
2680};
2681
55b175d7 2682static int db8500_irq_init(struct device_node *np, int irq_base)
f3f1f0a1 2683{
89d9b1c9 2684 int i;
a7238e43
LW
2685
2686 /* In the device tree case, just take some IRQs */
55b175d7
AB
2687 if (np)
2688 irq_base = 0;
a7238e43
LW
2689
2690 db8500_irq_domain = irq_domain_add_simple(
2691 np, NUM_PRCMU_WAKEUPS, irq_base,
2692 &db8500_irq_ops, NULL);
f3f1f0a1
LJ
2693
2694 if (!db8500_irq_domain) {
2695 pr_err("Failed to create irqdomain\n");
2696 return -ENOSYS;
2697 }
2698
89d9b1c9
LW
2699 /* All wakeups will be used, so create mappings for all */
2700 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2701 irq_create_mapping(db8500_irq_domain, i);
2702
f3f1f0a1
LJ
2703 return 0;
2704}
2705
05ec260e
LW
2706static void dbx500_fw_version_init(struct platform_device *pdev,
2707 u32 version_offset)
fcbd458e 2708{
05ec260e
LW
2709 struct resource *res;
2710 void __iomem *tcpm_base;
741cdecf 2711 u32 version;
3df57bcf 2712
05ec260e
LW
2713 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2714 "prcmu-tcpm");
2715 if (!res) {
2716 dev_err(&pdev->dev,
2717 "Error: no prcmu tcpm memory region provided\n");
2718 return;
2719 }
2720 tcpm_base = ioremap(res->start, resource_size(res));
741cdecf
LJ
2721 if (!tcpm_base) {
2722 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2723 return;
fcbd458e 2724 }
741cdecf
LJ
2725
2726 version = readl(tcpm_base + version_offset);
2727 fw_info.version.project = (version & 0xFF);
2728 fw_info.version.api_version = (version >> 8) & 0xFF;
2729 fw_info.version.func_version = (version >> 16) & 0xFF;
2730 fw_info.version.errata = (version >> 24) & 0xFF;
2731 strncpy(fw_info.version.project_name,
2732 fw_project_name(fw_info.version.project),
2733 PRCMU_FW_PROJECT_NAME_LEN);
2734 fw_info.valid = true;
2735 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2736 fw_info.version.project_name,
2737 fw_info.version.project,
2738 fw_info.version.api_version,
2739 fw_info.version.func_version,
2740 fw_info.version.errata);
2741 iounmap(tcpm_base);
05ec260e 2742}
e0befb23 2743
9a47a8dc 2744void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
05ec260e 2745{
9a47a8dc
LW
2746 /*
2747 * This is a temporary remap to bring up the clocks. It is
2748 * subsequently replaces with a real remap. After the merge of
2749 * the mailbox subsystem all of this early code goes away, and the
2750 * clock driver can probe independently. An early initcall will
2751 * still be needed, but it can be diverted into drivers/clk/ux500.
2752 */
2753 prcmu_base = ioremap(phy_base, size);
2754 if (!prcmu_base)
2755 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2756
3df57bcf
MN
2757 spin_lock_init(&mb0_transfer.lock);
2758 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2759 mutex_init(&mb0_transfer.ac_wake_lock);
2760 init_completion(&mb0_transfer.ac_wake_work);
e0befb23
MP
2761 mutex_init(&mb1_transfer.lock);
2762 init_completion(&mb1_transfer.work);
4d64d2e3 2763 mb1_transfer.ape_opp = APE_NO_CHANGE;
3df57bcf
MN
2764 mutex_init(&mb2_transfer.lock);
2765 init_completion(&mb2_transfer.work);
2766 spin_lock_init(&mb2_transfer.auto_pm_lock);
2767 spin_lock_init(&mb3_transfer.lock);
2768 mutex_init(&mb3_transfer.sysclk_lock);
2769 init_completion(&mb3_transfer.sysclk_work);
2770 mutex_init(&mb4_transfer.lock);
2771 init_completion(&mb4_transfer.work);
e3726fcf
LW
2772 mutex_init(&mb5_transfer.lock);
2773 init_completion(&mb5_transfer.work);
2774
3df57bcf 2775 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
3df57bcf
MN
2776}
2777
0508901c 2778static void __init init_prcm_registers(void)
d65e12d7
MN
2779{
2780 u32 val;
2781
2782 val = readl(PRCM_A9PL_FORCE_CLKEN);
2783 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2784 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2785 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2786}
2787
1032fbfd
BJ
2788/*
2789 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2790 */
2791static struct regulator_consumer_supply db8500_vape_consumers[] = {
2792 REGULATOR_SUPPLY("v-ape", NULL),
2793 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2794 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2795 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2796 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
ae840635 2797 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
1032fbfd
BJ
2798 /* "v-mmc" changed to "vcore" in the mainline kernel */
2799 REGULATOR_SUPPLY("vcore", "sdi0"),
2800 REGULATOR_SUPPLY("vcore", "sdi1"),
2801 REGULATOR_SUPPLY("vcore", "sdi2"),
2802 REGULATOR_SUPPLY("vcore", "sdi3"),
2803 REGULATOR_SUPPLY("vcore", "sdi4"),
2804 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2805 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2806 /* "v-uart" changed to "vcore" in the mainline kernel */
2807 REGULATOR_SUPPLY("vcore", "uart0"),
2808 REGULATOR_SUPPLY("vcore", "uart1"),
2809 REGULATOR_SUPPLY("vcore", "uart2"),
2810 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
992b133a 2811 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
bc367481 2812 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
1032fbfd
BJ
2813};
2814
2815static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
1032fbfd
BJ
2816 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2817 /* AV8100 regulator */
2818 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2819};
2820
2821static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
992b133a 2822 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
624e87c2
BJ
2823 REGULATOR_SUPPLY("vsupply", "mcde"),
2824};
2825
2826/* SVA MMDSP regulator switch */
2827static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2828 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2829};
2830
2831/* SVA pipe regulator switch */
2832static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2833 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2834};
2835
2836/* SIA MMDSP regulator switch */
2837static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2838 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2839};
2840
2841/* SIA pipe regulator switch */
2842static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2843 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2844};
2845
2846static struct regulator_consumer_supply db8500_sga_consumers[] = {
2847 REGULATOR_SUPPLY("v-mali", NULL),
2848};
2849
2850/* ESRAM1 and 2 regulator switch */
2851static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2852 REGULATOR_SUPPLY("esram12", "cm_control"),
2853};
2854
2855/* ESRAM3 and 4 regulator switch */
2856static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2857 REGULATOR_SUPPLY("v-esram34", "mcde"),
2858 REGULATOR_SUPPLY("esram34", "cm_control"),
992b133a 2859 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
1032fbfd
BJ
2860};
2861
2862static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2863 [DB8500_REGULATOR_VAPE] = {
2864 .constraints = {
2865 .name = "db8500-vape",
2866 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1e45860f 2867 .always_on = true,
1032fbfd
BJ
2868 },
2869 .consumer_supplies = db8500_vape_consumers,
2870 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2871 },
2872 [DB8500_REGULATOR_VARM] = {
2873 .constraints = {
2874 .name = "db8500-varm",
2875 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2876 },
2877 },
2878 [DB8500_REGULATOR_VMODEM] = {
2879 .constraints = {
2880 .name = "db8500-vmodem",
2881 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2882 },
2883 },
2884 [DB8500_REGULATOR_VPLL] = {
2885 .constraints = {
2886 .name = "db8500-vpll",
2887 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2888 },
2889 },
2890 [DB8500_REGULATOR_VSMPS1] = {
2891 .constraints = {
2892 .name = "db8500-vsmps1",
2893 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2894 },
2895 },
2896 [DB8500_REGULATOR_VSMPS2] = {
2897 .constraints = {
2898 .name = "db8500-vsmps2",
2899 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2900 },
2901 .consumer_supplies = db8500_vsmps2_consumers,
2902 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2903 },
2904 [DB8500_REGULATOR_VSMPS3] = {
2905 .constraints = {
2906 .name = "db8500-vsmps3",
2907 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2908 },
2909 },
2910 [DB8500_REGULATOR_VRF1] = {
2911 .constraints = {
2912 .name = "db8500-vrf1",
2913 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2914 },
2915 },
2916 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
992b133a 2917 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2918 .constraints = {
2919 .name = "db8500-sva-mmdsp",
2920 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2921 },
624e87c2
BJ
2922 .consumer_supplies = db8500_svammdsp_consumers,
2923 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
1032fbfd
BJ
2924 },
2925 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2926 .constraints = {
2927 /* "ret" means "retention" */
2928 .name = "db8500-sva-mmdsp-ret",
2929 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2930 },
2931 },
2932 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
992b133a 2933 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2934 .constraints = {
2935 .name = "db8500-sva-pipe",
2936 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937 },
624e87c2
BJ
2938 .consumer_supplies = db8500_svapipe_consumers,
2939 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
1032fbfd
BJ
2940 },
2941 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
992b133a 2942 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2943 .constraints = {
2944 .name = "db8500-sia-mmdsp",
2945 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2946 },
624e87c2
BJ
2947 .consumer_supplies = db8500_siammdsp_consumers,
2948 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
1032fbfd
BJ
2949 },
2950 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2951 .constraints = {
2952 .name = "db8500-sia-mmdsp-ret",
2953 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2954 },
2955 },
2956 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
992b133a 2957 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2958 .constraints = {
2959 .name = "db8500-sia-pipe",
2960 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2961 },
624e87c2
BJ
2962 .consumer_supplies = db8500_siapipe_consumers,
2963 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
1032fbfd
BJ
2964 },
2965 [DB8500_REGULATOR_SWITCH_SGA] = {
2966 .supply_regulator = "db8500-vape",
2967 .constraints = {
2968 .name = "db8500-sga",
2969 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2970 },
624e87c2
BJ
2971 .consumer_supplies = db8500_sga_consumers,
2972 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2973
1032fbfd
BJ
2974 },
2975 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2976 .supply_regulator = "db8500-vape",
2977 .constraints = {
2978 .name = "db8500-b2r2-mcde",
2979 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2980 },
2981 .consumer_supplies = db8500_b2r2_mcde_consumers,
2982 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2983 },
2984 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
992b133a
BJ
2985 /*
2986 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2987 * no need to hold Vape
2988 */
1032fbfd
BJ
2989 .constraints = {
2990 .name = "db8500-esram12",
2991 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2992 },
624e87c2
BJ
2993 .consumer_supplies = db8500_esram12_consumers,
2994 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
1032fbfd
BJ
2995 },
2996 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2997 .constraints = {
2998 .name = "db8500-esram12-ret",
2999 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3000 },
3001 },
3002 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
992b133a
BJ
3003 /*
3004 * esram34 is set in retention and supplied by Vsafe when Vape is off,
3005 * no need to hold Vape
3006 */
1032fbfd
BJ
3007 .constraints = {
3008 .name = "db8500-esram34",
3009 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3010 },
624e87c2
BJ
3011 .consumer_supplies = db8500_esram34_consumers,
3012 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
1032fbfd
BJ
3013 },
3014 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3015 .constraints = {
3016 .name = "db8500-esram34-ret",
3017 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3018 },
3019 },
3020};
3021
b3aac62b
FB
3022static struct ux500_wdt_data db8500_wdt_pdata = {
3023 .timeout = 600, /* 10 minutes */
3024 .has_28_bits_resolution = true,
3025};
55b175d7
AB
3026/*
3027 * Thermal Sensor
3028 */
3029
3030static struct resource db8500_thsens_resources[] = {
3031 {
3032 .name = "IRQ_HOTMON_LOW",
3033 .start = IRQ_PRCMU_HOTMON_LOW,
3034 .end = IRQ_PRCMU_HOTMON_LOW,
3035 .flags = IORESOURCE_IRQ,
3036 },
3037 {
3038 .name = "IRQ_HOTMON_HIGH",
3039 .start = IRQ_PRCMU_HOTMON_HIGH,
3040 .end = IRQ_PRCMU_HOTMON_HIGH,
3041 .flags = IORESOURCE_IRQ,
3042 },
3043};
3044
3045static struct db8500_thsens_platform_data db8500_thsens_data = {
3046 .trip_points[0] = {
3047 .temp = 70000,
3048 .type = THERMAL_TRIP_ACTIVE,
3049 .cdev_name = {
3050 [0] = "thermal-cpufreq-0",
3051 },
3052 },
3053 .trip_points[1] = {
3054 .temp = 75000,
3055 .type = THERMAL_TRIP_ACTIVE,
3056 .cdev_name = {
3057 [0] = "thermal-cpufreq-0",
3058 },
3059 },
3060 .trip_points[2] = {
3061 .temp = 80000,
3062 .type = THERMAL_TRIP_ACTIVE,
3063 .cdev_name = {
3064 [0] = "thermal-cpufreq-0",
3065 },
3066 },
3067 .trip_points[3] = {
3068 .temp = 85000,
3069 .type = THERMAL_TRIP_CRITICAL,
3070 },
3071 .num_trips = 4,
3072};
b3aac62b 3073
d98a5384
LJ
3074static struct mfd_cell common_prcmu_devs[] = {
3075 {
3076 .name = "ux500_wdt",
3077 .platform_data = &db8500_wdt_pdata,
3078 .pdata_size = sizeof(db8500_wdt_pdata),
3079 .id = -1,
3080 },
3081};
3082
3df57bcf
MN
3083static struct mfd_cell db8500_prcmu_devs[] = {
3084 {
3085 .name = "db8500-prcmu-regulators",
5d90322b 3086 .of_compatible = "stericsson,db8500-prcmu-regulator",
1ed7891f
MW
3087 .platform_data = &db8500_regulators,
3088 .pdata_size = sizeof(db8500_regulators),
3df57bcf
MN
3089 },
3090 {
84c7c20f
LJ
3091 .name = "cpufreq-ux500",
3092 .of_compatible = "stericsson,cpufreq-ux500",
c280f45f
UH
3093 .platform_data = &db8500_cpufreq_table,
3094 .pdata_size = sizeof(db8500_cpufreq_table),
3df57bcf 3095 },
8025395f
LW
3096 {
3097 .name = "cpuidle-dbx500",
3098 .of_compatible = "stericsson,cpuidle-dbx500",
3099 },
6d11d135 3100 {
55b175d7
AB
3101 .name = "db8500-thermal",
3102 .num_resources = ARRAY_SIZE(db8500_thsens_resources),
3103 .resources = db8500_thsens_resources,
3104 .platform_data = &db8500_thsens_data,
a3ef0deb 3105 .pdata_size = sizeof(db8500_thsens_data),
6d11d135 3106 },
3df57bcf
MN
3107};
3108
c280f45f
UH
3109static void db8500_prcmu_update_cpufreq(void)
3110{
3111 if (prcmu_has_arm_maxopp()) {
3112 db8500_cpufreq_table[3].frequency = 1000000;
50701588 3113 db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
c280f45f
UH
3114 }
3115}
3116
55b175d7
AB
3117static int db8500_prcmu_register_ab8500(struct device *parent,
3118 struct ab8500_platform_data *pdata,
3119 int irq)
3120{
3121 struct resource ab8500_resource = DEFINE_RES_IRQ(irq);
3122 struct mfd_cell ab8500_cell = {
3123 .name = "ab8500-core",
3124 .of_compatible = "stericsson,ab8500",
3125 .id = AB8500_VERSION_AB8500,
3126 .platform_data = pdata,
3127 .pdata_size = sizeof(struct ab8500_platform_data),
3128 .resources = &ab8500_resource,
3129 .num_resources = 1,
3130 };
3131
3132 return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3133}
3134
3df57bcf
MN
3135/**
3136 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3137 *
3138 */
f791be49 3139static int db8500_prcmu_probe(struct platform_device *pdev)
3df57bcf 3140{
ca7edd16 3141 struct device_node *np = pdev->dev.of_node;
05ec260e 3142 struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
55b175d7 3143 int irq = 0, err = 0;
05ec260e 3144 struct resource *res;
3df57bcf 3145
b047d981
LW
3146 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3147 if (!res) {
3148 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3149 return -ENOENT;
3150 }
3151 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3152 if (!prcmu_base) {
3153 dev_err(&pdev->dev,
3154 "failed to ioremap prcmu register memory\n");
3155 return -ENOENT;
3156 }
0508901c 3157 init_prcm_registers();
05ec260e
LW
3158 dbx500_fw_version_init(pdev, pdata->version_offset);
3159 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3160 if (!res) {
3161 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3162 return -ENOENT;
3163 }
3164 tcdm_base = devm_ioremap(&pdev->dev, res->start,
3165 resource_size(res));
3166
e3726fcf 3167 /* Clean up the mailbox interrupts after pre-kernel code. */
c553b3ca 3168 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3df57bcf 3169
05ec260e
LW
3170 irq = platform_get_irq(pdev, 0);
3171 if (irq <= 0) {
3172 dev_err(&pdev->dev, "no prcmu irq provided\n");
3173 return -ENOENT;
3174 }
ca7edd16
LJ
3175
3176 err = request_threaded_irq(irq, prcmu_irq_handler,
3177 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3df57bcf
MN
3178 if (err < 0) {
3179 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3180 err = -EBUSY;
3181 goto no_irq_return;
3182 }
3183
55b175d7 3184 db8500_irq_init(np, pdata->irq_base);
3a8e39c9 3185
7a4f2609 3186 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3df57bcf 3187
c280f45f
UH
3188 db8500_prcmu_update_cpufreq();
3189
d98a5384
LJ
3190 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3191 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
5d90322b
LJ
3192 if (err) {
3193 pr_err("prcmu: Failed to add subdevices\n");
3194 return err;
ca7edd16 3195 }
e3726fcf 3196
d98a5384
LJ
3197 /* TODO: Remove restriction when clk definitions are available. */
3198 if (!of_machine_is_compatible("st-ericsson,u8540")) {
3199 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3200 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3201 db8500_irq_domain);
3202 if (err) {
3203 mfd_remove_devices(&pdev->dev);
3204 pr_err("prcmu: Failed to add subdevices\n");
3205 goto no_irq_return;
3206 }
3207 }
3208
55b175d7
AB
3209 err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata,
3210 pdata->ab_irq);
3211 if (err) {
3212 mfd_remove_devices(&pdev->dev);
3213 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3214 goto no_irq_return;
3215 }
3216
ca7edd16 3217 pr_info("DB8500 PRCMU initialized\n");
3df57bcf
MN
3218
3219no_irq_return:
3220 return err;
3221}
3c144762
LJ
3222static const struct of_device_id db8500_prcmu_match[] = {
3223 { .compatible = "stericsson,db8500-prcmu"},
3224 { },
3225};
3df57bcf
MN
3226
3227static struct platform_driver db8500_prcmu_driver = {
3228 .driver = {
3229 .name = "db8500-prcmu",
3230 .owner = THIS_MODULE,
3c144762 3231 .of_match_table = db8500_prcmu_match,
3df57bcf 3232 },
9fc63f67 3233 .probe = db8500_prcmu_probe,
3df57bcf
MN
3234};
3235
3236static int __init db8500_prcmu_init(void)
3237{
9fc63f67 3238 return platform_driver_register(&db8500_prcmu_driver);
e3726fcf
LW
3239}
3240
a661aca4 3241core_initcall(db8500_prcmu_init);
3df57bcf
MN
3242
3243MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3244MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3245MODULE_LICENSE("GPL v2");
This page took 1.079803 seconds and 5 git commands to generate.