mfd: syscon: Add missing struct device_node declaration
[deliverable/linux.git] / drivers / mfd / db8500-prcmu.c
CommitLineData
e3726fcf 1/*
e0befb23
MP
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
e3726fcf
LW
4 *
5 * License Terms: GNU General Public License v2
e0befb23
MP
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
e3726fcf
LW
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9 *
e0befb23
MP
10 * U8500 PRCM Unit interface driver
11 *
e3726fcf 12 */
e3726fcf 13#include <linux/module.h>
3df57bcf
MN
14#include <linux/kernel.h>
15#include <linux/delay.h>
e3726fcf
LW
16#include <linux/errno.h>
17#include <linux/err.h>
3df57bcf 18#include <linux/spinlock.h>
e3726fcf 19#include <linux/io.h>
3df57bcf 20#include <linux/slab.h>
e3726fcf
LW
21#include <linux/mutex.h>
22#include <linux/completion.h>
3df57bcf 23#include <linux/irq.h>
e3726fcf
LW
24#include <linux/jiffies.h>
25#include <linux/bitops.h>
3df57bcf
MN
26#include <linux/fs.h>
27#include <linux/platform_device.h>
28#include <linux/uaccess.h>
29#include <linux/mfd/core.h>
73180f85 30#include <linux/mfd/dbx500-prcmu.h>
3a8e39c9 31#include <linux/mfd/abx500/ab8500.h>
1032fbfd
BJ
32#include <linux/regulator/db8500-prcmu.h>
33#include <linux/regulator/machine.h>
c280f45f 34#include <linux/cpufreq.h>
b3aac62b 35#include <linux/platform_data/ux500_wdt.h>
55b175d7 36#include <linux/platform_data/db8500_thermal.h>
73180f85 37#include "dbx500-prcmu-regs.h"
3df57bcf 38
3df57bcf
MN
39/* Index of different voltages to be used when accessing AVSData */
40#define PRCM_AVS_BASE 0x2FC
41#define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
42#define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
43#define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
44#define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
45#define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
46#define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
47#define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
48#define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
49#define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
50#define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
51#define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
52#define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
53#define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
54
55#define PRCM_AVS_VOLTAGE 0
56#define PRCM_AVS_VOLTAGE_MASK 0x3f
57#define PRCM_AVS_ISSLOWSTARTUP 6
58#define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
59#define PRCM_AVS_ISMODEENABLE 7
60#define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
61
62#define PRCM_BOOT_STATUS 0xFFF
63#define PRCM_ROMCODE_A2P 0xFFE
64#define PRCM_ROMCODE_P2A 0xFFD
65#define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
66
67#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
68
69#define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
70#define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
71#define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
72#define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
73#define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
74#define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
75#define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
76#define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
77
78/* Req Mailboxes */
79#define PRCM_REQ_MB0 0xFDC /* 12 bytes */
80#define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
81#define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
82#define PRCM_REQ_MB3 0xE4C /* 372 bytes */
83#define PRCM_REQ_MB4 0xE48 /* 4 bytes */
84#define PRCM_REQ_MB5 0xE44 /* 4 bytes */
85
86/* Ack Mailboxes */
87#define PRCM_ACK_MB0 0xE08 /* 52 bytes */
88#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
89#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
90#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
91#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
92#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
93
94/* Mailbox 0 headers */
95#define MB0H_POWER_STATE_TRANS 0
96#define MB0H_CONFIG_WAKEUPS_EXE 1
97#define MB0H_READ_WAKEUP_ACK 3
98#define MB0H_CONFIG_WAKEUPS_SLEEP 4
99
100#define MB0H_WAKEUP_EXE 2
101#define MB0H_WAKEUP_SLEEP 5
102
103/* Mailbox 0 REQs */
104#define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
105#define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
106#define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
107#define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
108#define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
109#define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
110
111/* Mailbox 0 ACKs */
112#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
113#define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
114#define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
115#define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
116#define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
117#define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
118#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
119
120/* Mailbox 1 headers */
121#define MB1H_ARM_APE_OPP 0x0
122#define MB1H_RESET_MODEM 0x2
123#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
124#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
125#define MB1H_RELEASE_USB_WAKEUP 0x5
a592c2e2 126#define MB1H_PLL_ON_OFF 0x6
3df57bcf
MN
127
128/* Mailbox 1 Requests */
129#define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
130#define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
a592c2e2 131#define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
6b6fae2b
MN
132#define PLL_SOC0_OFF 0x1
133#define PLL_SOC0_ON 0x2
a592c2e2
MN
134#define PLL_SOC1_OFF 0x4
135#define PLL_SOC1_ON 0x8
3df57bcf
MN
136
137/* Mailbox 1 ACKs */
138#define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
139#define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
140#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
141#define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
142
143/* Mailbox 2 headers */
144#define MB2H_DPS 0x0
145#define MB2H_AUTO_PWR 0x1
146
147/* Mailbox 2 REQs */
148#define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
149#define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
150#define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
151#define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
152#define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
153#define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
154#define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
155#define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
156#define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
157#define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
158
159/* Mailbox 2 ACKs */
160#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
161#define HWACC_PWR_ST_OK 0xFE
162
163/* Mailbox 3 headers */
164#define MB3H_ANC 0x0
165#define MB3H_SIDETONE 0x1
166#define MB3H_SYSCLK 0xE
167
168/* Mailbox 3 Requests */
169#define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
170#define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
171#define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
172#define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
173#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
174#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
175#define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
176
177/* Mailbox 4 headers */
178#define MB4H_DDR_INIT 0x0
179#define MB4H_MEM_ST 0x1
180#define MB4H_HOTDOG 0x12
181#define MB4H_HOTMON 0x13
182#define MB4H_HOT_PERIOD 0x14
a592c2e2
MN
183#define MB4H_A9WDOG_CONF 0x16
184#define MB4H_A9WDOG_EN 0x17
185#define MB4H_A9WDOG_DIS 0x18
186#define MB4H_A9WDOG_LOAD 0x19
187#define MB4H_A9WDOG_KICK 0x20
3df57bcf
MN
188
189/* Mailbox 4 Requests */
190#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
191#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
192#define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
193#define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
194#define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
195#define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
196#define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
197#define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
198#define HOTMON_CONFIG_LOW BIT(0)
199#define HOTMON_CONFIG_HIGH BIT(1)
a592c2e2
MN
200#define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
201#define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
202#define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
203#define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
204#define A9WDOG_AUTO_OFF_EN BIT(7)
205#define A9WDOG_AUTO_OFF_DIS 0
206#define A9WDOG_ID_MASK 0xf
3df57bcf
MN
207
208/* Mailbox 5 Requests */
209#define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
210#define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
211#define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
212#define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
7a4f2609
LW
213#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
214#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
3df57bcf
MN
215#define PRCMU_I2C_STOP_EN BIT(3)
216
217/* Mailbox 5 ACKs */
218#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
219#define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
220#define I2C_WR_OK 0x1
221#define I2C_RD_OK 0x2
222
223#define NUM_MB 8
224#define MBOX_BIT BIT
225#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
226
227/*
228 * Wakeups/IRQs
229 */
230
231#define WAKEUP_BIT_RTC BIT(0)
232#define WAKEUP_BIT_RTT0 BIT(1)
233#define WAKEUP_BIT_RTT1 BIT(2)
234#define WAKEUP_BIT_HSI0 BIT(3)
235#define WAKEUP_BIT_HSI1 BIT(4)
236#define WAKEUP_BIT_CA_WAKE BIT(5)
237#define WAKEUP_BIT_USB BIT(6)
238#define WAKEUP_BIT_ABB BIT(7)
239#define WAKEUP_BIT_ABB_FIFO BIT(8)
240#define WAKEUP_BIT_SYSCLK_OK BIT(9)
241#define WAKEUP_BIT_CA_SLEEP BIT(10)
242#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
243#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
244#define WAKEUP_BIT_ANC_OK BIT(13)
245#define WAKEUP_BIT_SW_ERROR BIT(14)
246#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
247#define WAKEUP_BIT_ARM BIT(17)
248#define WAKEUP_BIT_HOTMON_LOW BIT(18)
249#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
250#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
251#define WAKEUP_BIT_GPIO0 BIT(23)
252#define WAKEUP_BIT_GPIO1 BIT(24)
253#define WAKEUP_BIT_GPIO2 BIT(25)
254#define WAKEUP_BIT_GPIO3 BIT(26)
255#define WAKEUP_BIT_GPIO4 BIT(27)
256#define WAKEUP_BIT_GPIO5 BIT(28)
257#define WAKEUP_BIT_GPIO6 BIT(29)
258#define WAKEUP_BIT_GPIO7 BIT(30)
259#define WAKEUP_BIT_GPIO8 BIT(31)
260
b58d12fe
MN
261static struct {
262 bool valid;
263 struct prcmu_fw_version version;
264} fw_info;
265
f3f1f0a1
LJ
266static struct irq_domain *db8500_irq_domain;
267
3df57bcf
MN
268/*
269 * This vector maps irq numbers to the bits in the bit field used in
270 * communication with the PRCMU firmware.
271 *
272 * The reason for having this is to keep the irq numbers contiguous even though
273 * the bits in the bit field are not. (The bits also have a tendency to move
274 * around, to further complicate matters.)
275 */
55b175d7 276#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
3df57bcf 277#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
55b175d7
AB
278
279#define IRQ_PRCMU_RTC 0
280#define IRQ_PRCMU_RTT0 1
281#define IRQ_PRCMU_RTT1 2
282#define IRQ_PRCMU_HSI0 3
283#define IRQ_PRCMU_HSI1 4
284#define IRQ_PRCMU_CA_WAKE 5
285#define IRQ_PRCMU_USB 6
286#define IRQ_PRCMU_ABB 7
287#define IRQ_PRCMU_ABB_FIFO 8
288#define IRQ_PRCMU_ARM 9
289#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
290#define IRQ_PRCMU_GPIO0 11
291#define IRQ_PRCMU_GPIO1 12
292#define IRQ_PRCMU_GPIO2 13
293#define IRQ_PRCMU_GPIO3 14
294#define IRQ_PRCMU_GPIO4 15
295#define IRQ_PRCMU_GPIO5 16
296#define IRQ_PRCMU_GPIO6 17
297#define IRQ_PRCMU_GPIO7 18
298#define IRQ_PRCMU_GPIO8 19
299#define IRQ_PRCMU_CA_SLEEP 20
300#define IRQ_PRCMU_HOTMON_LOW 21
301#define IRQ_PRCMU_HOTMON_HIGH 22
302#define NUM_PRCMU_WAKEUPS 23
303
3df57bcf
MN
304static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
305 IRQ_ENTRY(RTC),
306 IRQ_ENTRY(RTT0),
307 IRQ_ENTRY(RTT1),
308 IRQ_ENTRY(HSI0),
309 IRQ_ENTRY(HSI1),
310 IRQ_ENTRY(CA_WAKE),
311 IRQ_ENTRY(USB),
312 IRQ_ENTRY(ABB),
313 IRQ_ENTRY(ABB_FIFO),
314 IRQ_ENTRY(CA_SLEEP),
315 IRQ_ENTRY(ARM),
316 IRQ_ENTRY(HOTMON_LOW),
317 IRQ_ENTRY(HOTMON_HIGH),
318 IRQ_ENTRY(MODEM_SW_RESET_REQ),
319 IRQ_ENTRY(GPIO0),
320 IRQ_ENTRY(GPIO1),
321 IRQ_ENTRY(GPIO2),
322 IRQ_ENTRY(GPIO3),
323 IRQ_ENTRY(GPIO4),
324 IRQ_ENTRY(GPIO5),
325 IRQ_ENTRY(GPIO6),
326 IRQ_ENTRY(GPIO7),
327 IRQ_ENTRY(GPIO8)
328};
329
330#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
331#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
332static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
333 WAKEUP_ENTRY(RTC),
334 WAKEUP_ENTRY(RTT0),
335 WAKEUP_ENTRY(RTT1),
336 WAKEUP_ENTRY(HSI0),
337 WAKEUP_ENTRY(HSI1),
338 WAKEUP_ENTRY(USB),
339 WAKEUP_ENTRY(ABB),
340 WAKEUP_ENTRY(ABB_FIFO),
341 WAKEUP_ENTRY(ARM)
342};
343
344/*
345 * mb0_transfer - state needed for mailbox 0 communication.
346 * @lock: The transaction lock.
347 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
348 * the request data.
349 * @mask_work: Work structure used for (un)masking wakeup interrupts.
350 * @req: Request data that need to persist between requests.
351 */
352static struct {
353 spinlock_t lock;
354 spinlock_t dbb_irqs_lock;
355 struct work_struct mask_work;
356 struct mutex ac_wake_lock;
357 struct completion ac_wake_work;
358 struct {
359 u32 dbb_irqs;
360 u32 dbb_wakeups;
361 u32 abb_events;
362 } req;
363} mb0_transfer;
364
365/*
366 * mb1_transfer - state needed for mailbox 1 communication.
367 * @lock: The transaction lock.
368 * @work: The transaction completion structure.
4d64d2e3 369 * @ape_opp: The current APE OPP.
3df57bcf
MN
370 * @ack: Reply ("acknowledge") data.
371 */
372static struct {
373 struct mutex lock;
374 struct completion work;
4d64d2e3 375 u8 ape_opp;
3df57bcf
MN
376 struct {
377 u8 header;
378 u8 arm_opp;
379 u8 ape_opp;
380 u8 ape_voltage_status;
381 } ack;
382} mb1_transfer;
383
384/*
385 * mb2_transfer - state needed for mailbox 2 communication.
386 * @lock: The transaction lock.
387 * @work: The transaction completion structure.
388 * @auto_pm_lock: The autonomous power management configuration lock.
389 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
390 * @req: Request data that need to persist between requests.
391 * @ack: Reply ("acknowledge") data.
392 */
393static struct {
394 struct mutex lock;
395 struct completion work;
396 spinlock_t auto_pm_lock;
397 bool auto_pm_enabled;
398 struct {
399 u8 status;
400 } ack;
401} mb2_transfer;
402
403/*
404 * mb3_transfer - state needed for mailbox 3 communication.
405 * @lock: The request lock.
406 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
407 * @sysclk_work: Work structure used for sysclk requests.
408 */
409static struct {
410 spinlock_t lock;
411 struct mutex sysclk_lock;
412 struct completion sysclk_work;
413} mb3_transfer;
414
415/*
416 * mb4_transfer - state needed for mailbox 4 communication.
417 * @lock: The transaction lock.
418 * @work: The transaction completion structure.
419 */
420static struct {
421 struct mutex lock;
422 struct completion work;
423} mb4_transfer;
424
425/*
426 * mb5_transfer - state needed for mailbox 5 communication.
427 * @lock: The transaction lock.
428 * @work: The transaction completion structure.
429 * @ack: Reply ("acknowledge") data.
430 */
431static struct {
432 struct mutex lock;
433 struct completion work;
434 struct {
435 u8 status;
436 u8 value;
437 } ack;
438} mb5_transfer;
439
440static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
441
442/* Spinlocks */
b4a6dbd5 443static DEFINE_SPINLOCK(prcmu_lock);
3df57bcf 444static DEFINE_SPINLOCK(clkout_lock);
3df57bcf
MN
445
446/* Global var to runtime determine TCDM base for v2 or v1 */
447static __iomem void *tcdm_base;
b047d981 448static __iomem void *prcmu_base;
3df57bcf
MN
449
450struct clk_mgt {
b047d981 451 u32 offset;
3df57bcf 452 u32 pllsw;
6b6fae2b
MN
453 int branch;
454 bool clk38div;
455};
456
457enum {
458 PLL_RAW,
459 PLL_FIX,
460 PLL_DIV
3df57bcf
MN
461};
462
463static DEFINE_SPINLOCK(clk_mgt_lock);
464
6b6fae2b
MN
465#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
466 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
3df57bcf 467struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
6b6fae2b
MN
468 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
469 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
470 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
471 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
472 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
473 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
474 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
475 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
476 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
477 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
478 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
479 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
480 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
481 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
482 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
483 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
484 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
485 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
486 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
487 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
488 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
489 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
490 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
491 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
492 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
493 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
494 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
495 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
496 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
497};
498
499struct dsiclk {
500 u32 divsel_mask;
501 u32 divsel_shift;
502 u32 divsel;
503};
504
505static struct dsiclk dsiclk[2] = {
506 {
507 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
508 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
509 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
510 },
511 {
512 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
513 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
514 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
515 }
516};
517
518struct dsiescclk {
519 u32 en;
520 u32 div_mask;
521 u32 div_shift;
522};
523
524static struct dsiescclk dsiescclk[3] = {
525 {
526 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
527 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
528 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
529 },
530 {
531 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
532 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
533 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
534 },
535 {
536 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
537 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
538 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
539 }
3df57bcf
MN
540};
541
20aee5b6 542
3df57bcf
MN
543/*
544* Used by MCDE to setup all necessary PRCMU registers
545*/
546#define PRCMU_RESET_DSIPLL 0x00004000
547#define PRCMU_UNCLAMP_DSIPLL 0x00400800
548
549#define PRCMU_CLK_PLL_DIV_SHIFT 0
550#define PRCMU_CLK_PLL_SW_SHIFT 5
551#define PRCMU_CLK_38 (1 << 9)
552#define PRCMU_CLK_38_SRC (1 << 10)
553#define PRCMU_CLK_38_DIV (1 << 11)
554
555/* PLLDIV=12, PLLSW=4 (PLLDDR) */
556#define PRCMU_DSI_CLOCK_SETTING 0x0000008C
557
3df57bcf
MN
558/* DPI 50000000 Hz */
559#define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
560 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
561#define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
562
563/* D=101, N=1, R=4, SELDIV2=0 */
564#define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
565
3df57bcf
MN
566#define PRCMU_ENABLE_PLLDSI 0x00000001
567#define PRCMU_DISABLE_PLLDSI 0x00000000
568#define PRCMU_RELEASE_RESET_DSS 0x0000400C
569#define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
570/* ESC clk, div0=1, div1=1, div2=3 */
571#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
572#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
573#define PRCMU_DSI_RESET_SW 0x00000007
574
575#define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
576
73180f85 577int db8500_prcmu_enable_dsipll(void)
3df57bcf
MN
578{
579 int i;
3df57bcf
MN
580
581 /* Clear DSIPLL_RESETN */
c553b3ca 582 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
3df57bcf 583 /* Unclamp DSIPLL in/out */
c553b3ca 584 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
3df57bcf 585
3df57bcf 586 /* Set DSI PLL FREQ */
c72fe851 587 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
c553b3ca 588 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
3df57bcf 589 /* Enable Escape clocks */
c553b3ca 590 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
591
592 /* Start DSI PLL */
c553b3ca 593 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 594 /* Reset DSI PLL */
c553b3ca 595 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
3df57bcf 596 for (i = 0; i < 10; i++) {
c553b3ca 597 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
3df57bcf
MN
598 == PRCMU_PLLDSI_LOCKP_LOCKED)
599 break;
600 udelay(100);
601 }
602 /* Set DSIPLL_RESETN */
c553b3ca 603 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
3df57bcf
MN
604 return 0;
605}
606
73180f85 607int db8500_prcmu_disable_dsipll(void)
3df57bcf
MN
608{
609 /* Disable dsi pll */
c553b3ca 610 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 611 /* Disable escapeclock */
c553b3ca 612 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
613 return 0;
614}
615
73180f85 616int db8500_prcmu_set_display_clocks(void)
3df57bcf
MN
617{
618 unsigned long flags;
3df57bcf
MN
619
620 spin_lock_irqsave(&clk_mgt_lock, flags);
621
622 /* Grab the HW semaphore. */
c553b3ca 623 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
624 cpu_relax();
625
b047d981
LW
626 writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
627 writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
628 writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
3df57bcf
MN
629
630 /* Release the HW semaphore. */
c553b3ca 631 writel(0, PRCM_SEM);
3df57bcf
MN
632
633 spin_unlock_irqrestore(&clk_mgt_lock, flags);
634
635 return 0;
636}
637
b4a6dbd5
MN
638u32 db8500_prcmu_read(unsigned int reg)
639{
b047d981 640 return readl(prcmu_base + reg);
b4a6dbd5
MN
641}
642
643void db8500_prcmu_write(unsigned int reg, u32 value)
3df57bcf 644{
3df57bcf
MN
645 unsigned long flags;
646
b4a6dbd5 647 spin_lock_irqsave(&prcmu_lock, flags);
b047d981 648 writel(value, (prcmu_base + reg));
b4a6dbd5 649 spin_unlock_irqrestore(&prcmu_lock, flags);
3df57bcf
MN
650}
651
b4a6dbd5 652void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
3df57bcf 653{
b4a6dbd5 654 u32 val;
3df57bcf
MN
655 unsigned long flags;
656
b4a6dbd5 657 spin_lock_irqsave(&prcmu_lock, flags);
b047d981 658 val = readl(prcmu_base + reg);
b4a6dbd5 659 val = ((val & ~mask) | (value & mask));
b047d981 660 writel(val, (prcmu_base + reg));
b4a6dbd5 661 spin_unlock_irqrestore(&prcmu_lock, flags);
3df57bcf
MN
662}
663
b58d12fe
MN
664struct prcmu_fw_version *prcmu_get_fw_version(void)
665{
666 return fw_info.valid ? &fw_info.version : NULL;
667}
668
3df57bcf
MN
669bool prcmu_has_arm_maxopp(void)
670{
671 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
672 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
673}
674
3df57bcf
MN
675/**
676 * prcmu_get_boot_status - PRCMU boot status checking
677 * Returns: the current PRCMU boot status
678 */
679int prcmu_get_boot_status(void)
680{
681 return readb(tcdm_base + PRCM_BOOT_STATUS);
682}
683
684/**
685 * prcmu_set_rc_a2p - This function is used to run few power state sequences
686 * @val: Value to be set, i.e. transition requested
687 * Returns: 0 on success, -EINVAL on invalid argument
688 *
689 * This function is used to run the following power state sequences -
690 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
691 */
692int prcmu_set_rc_a2p(enum romcode_write val)
693{
694 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
695 return -EINVAL;
696 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
697 return 0;
698}
699
700/**
701 * prcmu_get_rc_p2a - This function is used to get power state sequences
702 * Returns: the power transition that has last happened
703 *
704 * This function can return the following transitions-
705 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
706 */
707enum romcode_read prcmu_get_rc_p2a(void)
708{
709 return readb(tcdm_base + PRCM_ROMCODE_P2A);
710}
711
712/**
713 * prcmu_get_current_mode - Return the current XP70 power mode
714 * Returns: Returns the current AP(ARM) power mode: init,
715 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
716 */
717enum ap_pwrst prcmu_get_xp70_current_state(void)
718{
719 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
720}
721
722/**
723 * prcmu_config_clkout - Configure one of the programmable clock outputs.
724 * @clkout: The CLKOUT number (0 or 1).
725 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
726 * @div: The divider to be applied.
727 *
728 * Configures one of the programmable clock outputs (CLKOUTs).
729 * @div should be in the range [1,63] to request a configuration, or 0 to
730 * inform that the configuration is no longer requested.
731 */
732int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
733{
734 static int requests[2];
735 int r = 0;
736 unsigned long flags;
737 u32 val;
738 u32 bits;
739 u32 mask;
740 u32 div_mask;
741
742 BUG_ON(clkout > 1);
743 BUG_ON(div > 63);
744 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
745
746 if (!div && !requests[clkout])
747 return -EINVAL;
748
749 switch (clkout) {
750 case 0:
751 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
752 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
753 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
754 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
755 break;
756 case 1:
757 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
758 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
759 PRCM_CLKOCR_CLK1TYPE);
760 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
761 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
762 break;
763 }
764 bits &= mask;
765
766 spin_lock_irqsave(&clkout_lock, flags);
767
c553b3ca 768 val = readl(PRCM_CLKOCR);
3df57bcf
MN
769 if (val & div_mask) {
770 if (div) {
771 if ((val & mask) != bits) {
772 r = -EBUSY;
773 goto unlock_and_return;
774 }
775 } else {
776 if ((val & mask & ~div_mask) != bits) {
777 r = -EINVAL;
778 goto unlock_and_return;
779 }
780 }
781 }
c553b3ca 782 writel((bits | (val & ~mask)), PRCM_CLKOCR);
3df57bcf
MN
783 requests[clkout] += (div ? 1 : -1);
784
785unlock_and_return:
786 spin_unlock_irqrestore(&clkout_lock, flags);
787
788 return r;
789}
790
73180f85 791int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
3df57bcf
MN
792{
793 unsigned long flags;
794
795 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
796
797 spin_lock_irqsave(&mb0_transfer.lock, flags);
798
c553b3ca 799 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
800 cpu_relax();
801
802 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
803 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
804 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
805 writeb((keep_ulp_clk ? 1 : 0),
806 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
807 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
c553b3ca 808 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
809
810 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
811
812 return 0;
813}
814
4d64d2e3
MN
815u8 db8500_prcmu_get_power_state_result(void)
816{
817 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
818}
819
3df57bcf
MN
820/* This function should only be called while mb0_transfer.lock is held. */
821static void config_wakeups(void)
822{
823 const u8 header[2] = {
824 MB0H_CONFIG_WAKEUPS_EXE,
825 MB0H_CONFIG_WAKEUPS_SLEEP
826 };
827 static u32 last_dbb_events;
828 static u32 last_abb_events;
829 u32 dbb_events;
830 u32 abb_events;
831 unsigned int i;
832
833 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
834 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
835
836 abb_events = mb0_transfer.req.abb_events;
837
838 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
839 return;
840
841 for (i = 0; i < 2; i++) {
c553b3ca 842 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
843 cpu_relax();
844 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
845 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
846 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 847 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
848 }
849 last_dbb_events = dbb_events;
850 last_abb_events = abb_events;
851}
852
73180f85 853void db8500_prcmu_enable_wakeups(u32 wakeups)
3df57bcf
MN
854{
855 unsigned long flags;
856 u32 bits;
857 int i;
858
859 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
860
861 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
862 if (wakeups & BIT(i))
863 bits |= prcmu_wakeup_bit[i];
864 }
865
866 spin_lock_irqsave(&mb0_transfer.lock, flags);
867
868 mb0_transfer.req.dbb_wakeups = bits;
869 config_wakeups();
870
871 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
872}
873
73180f85 874void db8500_prcmu_config_abb_event_readout(u32 abb_events)
3df57bcf
MN
875{
876 unsigned long flags;
877
878 spin_lock_irqsave(&mb0_transfer.lock, flags);
879
880 mb0_transfer.req.abb_events = abb_events;
881 config_wakeups();
882
883 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
884}
885
73180f85 886void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
3df57bcf
MN
887{
888 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
889 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
890 else
891 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
892}
893
894/**
73180f85 895 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
3df57bcf
MN
896 * @opp: The new ARM operating point to which transition is to be made
897 * Returns: 0 on success, non-zero on failure
898 *
899 * This function sets the the operating point of the ARM.
900 */
73180f85 901int db8500_prcmu_set_arm_opp(u8 opp)
3df57bcf
MN
902{
903 int r;
904
905 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
906 return -EINVAL;
907
908 r = 0;
909
910 mutex_lock(&mb1_transfer.lock);
911
c553b3ca 912 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
913 cpu_relax();
914
915 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
916 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
917 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
918
c553b3ca 919 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
920 wait_for_completion(&mb1_transfer.work);
921
922 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
923 (mb1_transfer.ack.arm_opp != opp))
924 r = -EIO;
925
926 mutex_unlock(&mb1_transfer.lock);
927
928 return r;
929}
930
931/**
73180f85 932 * db8500_prcmu_get_arm_opp - get the current ARM OPP
3df57bcf
MN
933 *
934 * Returns: the current ARM OPP
935 */
73180f85 936int db8500_prcmu_get_arm_opp(void)
3df57bcf
MN
937{
938 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
939}
940
941/**
0508901c 942 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
3df57bcf
MN
943 *
944 * Returns: the current DDR OPP
945 */
0508901c 946int db8500_prcmu_get_ddr_opp(void)
3df57bcf 947{
c553b3ca 948 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
949}
950
951/**
0508901c 952 * db8500_set_ddr_opp - set the appropriate DDR OPP
3df57bcf
MN
953 * @opp: The new DDR operating point to which transition is to be made
954 * Returns: 0 on success, non-zero on failure
955 *
956 * This function sets the operating point of the DDR.
957 */
7a4f2609 958static bool enable_set_ddr_opp;
0508901c 959int db8500_prcmu_set_ddr_opp(u8 opp)
3df57bcf
MN
960{
961 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
962 return -EINVAL;
963 /* Changing the DDR OPP can hang the hardware pre-v21 */
7a4f2609 964 if (enable_set_ddr_opp)
c553b3ca 965 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
966
967 return 0;
968}
6b6fae2b 969
4d64d2e3
MN
970/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
971static void request_even_slower_clocks(bool enable)
972{
b047d981 973 u32 clock_reg[] = {
4d64d2e3
MN
974 PRCM_ACLK_MGT,
975 PRCM_DMACLK_MGT
976 };
977 unsigned long flags;
978 unsigned int i;
979
980 spin_lock_irqsave(&clk_mgt_lock, flags);
981
982 /* Grab the HW semaphore. */
983 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
984 cpu_relax();
985
986 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
987 u32 val;
988 u32 div;
989
b047d981 990 val = readl(prcmu_base + clock_reg[i]);
4d64d2e3
MN
991 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
992 if (enable) {
993 if ((div <= 1) || (div > 15)) {
994 pr_err("prcmu: Bad clock divider %d in %s\n",
995 div, __func__);
996 goto unlock_and_return;
997 }
998 div <<= 1;
999 } else {
1000 if (div <= 2)
1001 goto unlock_and_return;
1002 div >>= 1;
1003 }
1004 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1005 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
b047d981 1006 writel(val, prcmu_base + clock_reg[i]);
4d64d2e3
MN
1007 }
1008
1009unlock_and_return:
1010 /* Release the HW semaphore. */
1011 writel(0, PRCM_SEM);
1012
1013 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1014}
1015
3df57bcf 1016/**
0508901c 1017 * db8500_set_ape_opp - set the appropriate APE OPP
3df57bcf
MN
1018 * @opp: The new APE operating point to which transition is to be made
1019 * Returns: 0 on success, non-zero on failure
1020 *
1021 * This function sets the operating point of the APE.
1022 */
0508901c 1023int db8500_prcmu_set_ape_opp(u8 opp)
3df57bcf
MN
1024{
1025 int r = 0;
1026
4d64d2e3
MN
1027 if (opp == mb1_transfer.ape_opp)
1028 return 0;
1029
3df57bcf
MN
1030 mutex_lock(&mb1_transfer.lock);
1031
4d64d2e3
MN
1032 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1033 request_even_slower_clocks(false);
1034
1035 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1036 goto skip_message;
1037
c553b3ca 1038 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1039 cpu_relax();
1040
1041 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1042 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
4d64d2e3
MN
1043 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1044 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
3df57bcf 1045
c553b3ca 1046 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1047 wait_for_completion(&mb1_transfer.work);
1048
1049 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1050 (mb1_transfer.ack.ape_opp != opp))
1051 r = -EIO;
1052
4d64d2e3
MN
1053skip_message:
1054 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1055 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1056 request_even_slower_clocks(true);
1057 if (!r)
1058 mb1_transfer.ape_opp = opp;
1059
3df57bcf
MN
1060 mutex_unlock(&mb1_transfer.lock);
1061
1062 return r;
1063}
1064
1065/**
0508901c 1066 * db8500_prcmu_get_ape_opp - get the current APE OPP
3df57bcf
MN
1067 *
1068 * Returns: the current APE OPP
1069 */
0508901c 1070int db8500_prcmu_get_ape_opp(void)
3df57bcf
MN
1071{
1072 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1073}
1074
1075/**
686f871b 1076 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
3df57bcf
MN
1077 * @enable: true to request the higher voltage, false to drop a request.
1078 *
1079 * Calls to this function to enable and disable requests must be balanced.
1080 */
686f871b 1081int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
3df57bcf
MN
1082{
1083 int r = 0;
1084 u8 header;
1085 static unsigned int requests;
1086
1087 mutex_lock(&mb1_transfer.lock);
1088
1089 if (enable) {
1090 if (0 != requests++)
1091 goto unlock_and_return;
1092 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1093 } else {
1094 if (requests == 0) {
1095 r = -EIO;
1096 goto unlock_and_return;
1097 } else if (1 != requests--) {
1098 goto unlock_and_return;
1099 }
1100 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1101 }
1102
c553b3ca 1103 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1104 cpu_relax();
1105
1106 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1107
c553b3ca 1108 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1109 wait_for_completion(&mb1_transfer.work);
1110
1111 if ((mb1_transfer.ack.header != header) ||
1112 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1113 r = -EIO;
1114
1115unlock_and_return:
1116 mutex_unlock(&mb1_transfer.lock);
1117
1118 return r;
1119}
1120
1121/**
1122 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1123 *
1124 * This function releases the power state requirements of a USB wakeup.
1125 */
1126int prcmu_release_usb_wakeup_state(void)
1127{
1128 int r = 0;
1129
1130 mutex_lock(&mb1_transfer.lock);
1131
c553b3ca 1132 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1133 cpu_relax();
1134
1135 writeb(MB1H_RELEASE_USB_WAKEUP,
1136 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1137
c553b3ca 1138 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1139 wait_for_completion(&mb1_transfer.work);
1140
1141 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1142 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1143 r = -EIO;
1144
1145 mutex_unlock(&mb1_transfer.lock);
1146
1147 return r;
1148}
1149
0837bb72
MN
1150static int request_pll(u8 clock, bool enable)
1151{
1152 int r = 0;
1153
6b6fae2b
MN
1154 if (clock == PRCMU_PLLSOC0)
1155 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1156 else if (clock == PRCMU_PLLSOC1)
0837bb72
MN
1157 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1158 else
1159 return -EINVAL;
1160
1161 mutex_lock(&mb1_transfer.lock);
1162
1163 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1164 cpu_relax();
1165
1166 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1167 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1168
1169 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1170 wait_for_completion(&mb1_transfer.work);
1171
1172 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1173 r = -EIO;
1174
1175 mutex_unlock(&mb1_transfer.lock);
1176
1177 return r;
1178}
1179
3df57bcf 1180/**
73180f85 1181 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
3df57bcf
MN
1182 * @epod_id: The EPOD to set
1183 * @epod_state: The new EPOD state
1184 *
1185 * This function sets the state of a EPOD (power domain). It may not be called
1186 * from interrupt context.
1187 */
73180f85 1188int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
3df57bcf
MN
1189{
1190 int r = 0;
1191 bool ram_retention = false;
1192 int i;
1193
1194 /* check argument */
1195 BUG_ON(epod_id >= NUM_EPOD_ID);
1196
1197 /* set flag if retention is possible */
1198 switch (epod_id) {
1199 case EPOD_ID_SVAMMDSP:
1200 case EPOD_ID_SIAMMDSP:
1201 case EPOD_ID_ESRAM12:
1202 case EPOD_ID_ESRAM34:
1203 ram_retention = true;
1204 break;
1205 }
1206
1207 /* check argument */
1208 BUG_ON(epod_state > EPOD_STATE_ON);
1209 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1210
1211 /* get lock */
1212 mutex_lock(&mb2_transfer.lock);
1213
1214 /* wait for mailbox */
c553b3ca 1215 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
3df57bcf
MN
1216 cpu_relax();
1217
1218 /* fill in mailbox */
1219 for (i = 0; i < NUM_EPOD_ID; i++)
1220 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1221 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1222
1223 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1224
c553b3ca 1225 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1226
1227 /*
1228 * The current firmware version does not handle errors correctly,
1229 * and we cannot recover if there is an error.
1230 * This is expected to change when the firmware is updated.
1231 */
1232 if (!wait_for_completion_timeout(&mb2_transfer.work,
1233 msecs_to_jiffies(20000))) {
1234 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1235 __func__);
1236 r = -EIO;
1237 goto unlock_and_return;
1238 }
1239
1240 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1241 r = -EIO;
1242
1243unlock_and_return:
1244 mutex_unlock(&mb2_transfer.lock);
1245 return r;
1246}
1247
1248/**
1249 * prcmu_configure_auto_pm - Configure autonomous power management.
1250 * @sleep: Configuration for ApSleep.
1251 * @idle: Configuration for ApIdle.
1252 */
1253void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1254 struct prcmu_auto_pm_config *idle)
1255{
1256 u32 sleep_cfg;
1257 u32 idle_cfg;
1258 unsigned long flags;
e3726fcf 1259
3df57bcf 1260 BUG_ON((sleep == NULL) || (idle == NULL));
650c2a21 1261
3df57bcf
MN
1262 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1263 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1264 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1265 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1266 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1267 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
e3726fcf 1268
3df57bcf
MN
1269 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1270 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1271 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1272 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1273 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1274 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
e3726fcf 1275
3df57bcf 1276 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
e0befb23 1277
3df57bcf
MN
1278 /*
1279 * The autonomous power management configuration is done through
1280 * fields in mailbox 2, but these fields are only used as shared
1281 * variables - i.e. there is no need to send a message.
1282 */
1283 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1284 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
e0befb23 1285
3df57bcf
MN
1286 mb2_transfer.auto_pm_enabled =
1287 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1288 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1289 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1290 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
e0befb23 1291
3df57bcf
MN
1292 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1293}
1294EXPORT_SYMBOL(prcmu_configure_auto_pm);
e3726fcf 1295
3df57bcf
MN
1296bool prcmu_is_auto_pm_enabled(void)
1297{
1298 return mb2_transfer.auto_pm_enabled;
1299}
e0befb23 1300
3df57bcf
MN
1301static int request_sysclk(bool enable)
1302{
1303 int r;
1304 unsigned long flags;
e3726fcf 1305
3df57bcf 1306 r = 0;
e3726fcf 1307
3df57bcf 1308 mutex_lock(&mb3_transfer.sysclk_lock);
e0befb23 1309
3df57bcf 1310 spin_lock_irqsave(&mb3_transfer.lock, flags);
e0befb23 1311
c553b3ca 1312 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
3df57bcf 1313 cpu_relax();
e0befb23 1314
3df57bcf 1315 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
e3726fcf 1316
3df57bcf 1317 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
c553b3ca 1318 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
e3726fcf 1319
3df57bcf
MN
1320 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1321
1322 /*
1323 * The firmware only sends an ACK if we want to enable the
1324 * SysClk, and it succeeds.
1325 */
1326 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1327 msecs_to_jiffies(20000))) {
1328 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1329 __func__);
1330 r = -EIO;
1331 }
1332
1333 mutex_unlock(&mb3_transfer.sysclk_lock);
1334
1335 return r;
1336}
1337
1338static int request_timclk(bool enable)
1339{
1340 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1341
1342 if (!enable)
1343 val |= PRCM_TCR_STOP_TIMERS;
c553b3ca 1344 writel(val, PRCM_TCR);
3df57bcf
MN
1345
1346 return 0;
1347}
1348
6b6fae2b 1349static int request_clock(u8 clock, bool enable)
3df57bcf
MN
1350{
1351 u32 val;
1352 unsigned long flags;
1353
1354 spin_lock_irqsave(&clk_mgt_lock, flags);
1355
1356 /* Grab the HW semaphore. */
c553b3ca 1357 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
1358 cpu_relax();
1359
b047d981 1360 val = readl(prcmu_base + clk_mgt[clock].offset);
3df57bcf
MN
1361 if (enable) {
1362 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1363 } else {
1364 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1365 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1366 }
b047d981 1367 writel(val, prcmu_base + clk_mgt[clock].offset);
3df57bcf
MN
1368
1369 /* Release the HW semaphore. */
c553b3ca 1370 writel(0, PRCM_SEM);
3df57bcf
MN
1371
1372 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1373
1374 return 0;
1375}
1376
0837bb72
MN
1377static int request_sga_clock(u8 clock, bool enable)
1378{
1379 u32 val;
1380 int ret;
1381
1382 if (enable) {
1383 val = readl(PRCM_CGATING_BYPASS);
1384 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1385 }
1386
6b6fae2b 1387 ret = request_clock(clock, enable);
0837bb72
MN
1388
1389 if (!ret && !enable) {
1390 val = readl(PRCM_CGATING_BYPASS);
1391 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1392 }
1393
1394 return ret;
1395}
1396
6b6fae2b
MN
1397static inline bool plldsi_locked(void)
1398{
1399 return (readl(PRCM_PLLDSI_LOCKP) &
1400 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1401 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1402 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1403 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1404}
1405
1406static int request_plldsi(bool enable)
1407{
1408 int r = 0;
1409 u32 val;
1410
1411 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1412 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1413 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1414
1415 val = readl(PRCM_PLLDSI_ENABLE);
1416 if (enable)
1417 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1418 else
1419 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1420 writel(val, PRCM_PLLDSI_ENABLE);
1421
1422 if (enable) {
1423 unsigned int i;
1424 bool locked = plldsi_locked();
1425
1426 for (i = 10; !locked && (i > 0); --i) {
1427 udelay(100);
1428 locked = plldsi_locked();
1429 }
1430 if (locked) {
1431 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1432 PRCM_APE_RESETN_SET);
1433 } else {
1434 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1435 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1436 PRCM_MMIP_LS_CLAMP_SET);
1437 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1438 writel(val, PRCM_PLLDSI_ENABLE);
1439 r = -EAGAIN;
1440 }
1441 } else {
1442 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1443 }
1444 return r;
1445}
1446
1447static int request_dsiclk(u8 n, bool enable)
1448{
1449 u32 val;
1450
1451 val = readl(PRCM_DSI_PLLOUT_SEL);
1452 val &= ~dsiclk[n].divsel_mask;
1453 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1454 dsiclk[n].divsel_shift);
1455 writel(val, PRCM_DSI_PLLOUT_SEL);
1456 return 0;
1457}
1458
1459static int request_dsiescclk(u8 n, bool enable)
1460{
1461 u32 val;
1462
1463 val = readl(PRCM_DSITVCLK_DIV);
1464 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1465 writel(val, PRCM_DSITVCLK_DIV);
1466 return 0;
1467}
1468
3df57bcf 1469/**
73180f85 1470 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
3df57bcf
MN
1471 * @clock: The clock for which the request is made.
1472 * @enable: Whether the clock should be enabled (true) or disabled (false).
1473 *
1474 * This function should only be used by the clock implementation.
1475 * Do not use it from any other place!
1476 */
73180f85 1477int db8500_prcmu_request_clock(u8 clock, bool enable)
3df57bcf 1478{
6b6fae2b 1479 if (clock == PRCMU_SGACLK)
0837bb72 1480 return request_sga_clock(clock, enable);
6b6fae2b
MN
1481 else if (clock < PRCMU_NUM_REG_CLOCKS)
1482 return request_clock(clock, enable);
1483 else if (clock == PRCMU_TIMCLK)
3df57bcf 1484 return request_timclk(enable);
6b6fae2b
MN
1485 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1486 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1487 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1488 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1489 else if (clock == PRCMU_PLLDSI)
1490 return request_plldsi(enable);
1491 else if (clock == PRCMU_SYSCLK)
3df57bcf 1492 return request_sysclk(enable);
6b6fae2b 1493 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
0837bb72 1494 return request_pll(clock, enable);
6b6fae2b
MN
1495 else
1496 return -EINVAL;
1497}
1498
1499static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1500 int branch)
1501{
1502 u64 rate;
1503 u32 val;
1504 u32 d;
1505 u32 div = 1;
1506
1507 val = readl(reg);
1508
1509 rate = src_rate;
1510 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1511
1512 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1513 if (d > 1)
1514 div *= d;
1515
1516 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1517 if (d > 1)
1518 div *= d;
1519
1520 if (val & PRCM_PLL_FREQ_SELDIV2)
1521 div *= 2;
1522
1523 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1524 (val & PRCM_PLL_FREQ_DIV2EN) &&
1525 ((reg == PRCM_PLLSOC0_FREQ) ||
20aee5b6 1526 (reg == PRCM_PLLARM_FREQ) ||
6b6fae2b
MN
1527 (reg == PRCM_PLLDDR_FREQ))))
1528 div *= 2;
1529
1530 (void)do_div(rate, div);
1531
1532 return (unsigned long)rate;
1533}
1534
1535#define ROOT_CLOCK_RATE 38400000
1536
1537static unsigned long clock_rate(u8 clock)
1538{
1539 u32 val;
1540 u32 pllsw;
1541 unsigned long rate = ROOT_CLOCK_RATE;
1542
b047d981 1543 val = readl(prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1544
1545 if (val & PRCM_CLK_MGT_CLK38) {
1546 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1547 rate /= 2;
1548 return rate;
1549 }
1550
1551 val |= clk_mgt[clock].pllsw;
1552 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1553
1554 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1555 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1556 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1557 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1558 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1559 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1560 else
1561 return 0;
1562
1563 if ((clock == PRCMU_SGACLK) &&
1564 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1565 u64 r = (rate * 10);
1566
1567 (void)do_div(r, 25);
1568 return (unsigned long)r;
1569 }
1570 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1571 if (val)
1572 return rate / val;
1573 else
1574 return 0;
1575}
20aee5b6 1576
b2302c87 1577static unsigned long armss_rate(void)
20aee5b6
MJ
1578{
1579 u32 r;
1580 unsigned long rate;
1581
1582 r = readl(PRCM_ARM_CHGCLKREQ);
1583
1584 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1585 /* External ARMCLKFIX clock */
1586
1587 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1588
1589 /* Check PRCM_ARM_CHGCLKREQ divider */
1590 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1591 rate /= 2;
1592
1593 /* Check PRCM_ARMCLKFIX_MGT divider */
1594 r = readl(PRCM_ARMCLKFIX_MGT);
1595 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1596 rate /= r;
1597
1598 } else {/* ARM PLL */
1599 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1600 }
1601
b2302c87 1602 return rate;
20aee5b6 1603}
6b6fae2b
MN
1604
1605static unsigned long dsiclk_rate(u8 n)
1606{
1607 u32 divsel;
1608 u32 div = 1;
1609
1610 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1611 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1612
1613 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1614 divsel = dsiclk[n].divsel;
1615
1616 switch (divsel) {
1617 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1618 div *= 2;
1619 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1620 div *= 2;
1621 case PRCM_DSI_PLLOUT_SEL_PHI:
1622 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1623 PLL_RAW) / div;
e62ccf3a 1624 default:
6b6fae2b 1625 return 0;
e62ccf3a 1626 }
6b6fae2b
MN
1627}
1628
1629static unsigned long dsiescclk_rate(u8 n)
1630{
1631 u32 div;
1632
1633 div = readl(PRCM_DSITVCLK_DIV);
1634 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1635 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1636}
1637
1638unsigned long prcmu_clock_rate(u8 clock)
1639{
e62ccf3a 1640 if (clock < PRCMU_NUM_REG_CLOCKS)
6b6fae2b
MN
1641 return clock_rate(clock);
1642 else if (clock == PRCMU_TIMCLK)
1643 return ROOT_CLOCK_RATE / 16;
1644 else if (clock == PRCMU_SYSCLK)
1645 return ROOT_CLOCK_RATE;
1646 else if (clock == PRCMU_PLLSOC0)
1647 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1648 else if (clock == PRCMU_PLLSOC1)
1649 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
20aee5b6
MJ
1650 else if (clock == PRCMU_ARMSS)
1651 return armss_rate();
6b6fae2b
MN
1652 else if (clock == PRCMU_PLLDDR)
1653 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1654 else if (clock == PRCMU_PLLDSI)
1655 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1656 PLL_RAW);
1657 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1658 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1659 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1660 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1661 else
1662 return 0;
1663}
1664
1665static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1666{
1667 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1668 return ROOT_CLOCK_RATE;
1669 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1670 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1671 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1672 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1673 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1674 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1675 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1676 else
1677 return 0;
1678}
1679
1680static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1681{
1682 u32 div;
1683
1684 div = (src_rate / rate);
1685 if (div == 0)
1686 return 1;
1687 if (rate < (src_rate / div))
1688 div++;
1689 return div;
1690}
1691
1692static long round_clock_rate(u8 clock, unsigned long rate)
1693{
1694 u32 val;
1695 u32 div;
1696 unsigned long src_rate;
1697 long rounded_rate;
1698
b047d981 1699 val = readl(prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1700 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1701 clk_mgt[clock].branch);
1702 div = clock_divider(src_rate, rate);
1703 if (val & PRCM_CLK_MGT_CLK38) {
1704 if (clk_mgt[clock].clk38div) {
1705 if (div > 2)
1706 div = 2;
1707 } else {
1708 div = 1;
1709 }
1710 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1711 u64 r = (src_rate * 10);
1712
1713 (void)do_div(r, 25);
1714 if (r <= rate)
1715 return (unsigned long)r;
1716 }
1717 rounded_rate = (src_rate / min(div, (u32)31));
1718
1719 return rounded_rate;
1720}
1721
b2302c87
UH
1722/* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1723static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1724 { .frequency = 200000, .index = ARM_EXTCLK,},
1725 { .frequency = 400000, .index = ARM_50_OPP,},
1726 { .frequency = 800000, .index = ARM_100_OPP,},
1727 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1728 { .frequency = CPUFREQ_TABLE_END,},
1729};
1730
1731static long round_armss_rate(unsigned long rate)
1732{
1733 long freq = 0;
1734 int i = 0;
1735
1736 /* cpufreq table frequencies is in KHz. */
1737 rate = rate / 1000;
1738
1739 /* Find the corresponding arm opp from the cpufreq table. */
1740 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1741 freq = db8500_cpufreq_table[i].frequency;
1742 if (freq == rate)
1743 break;
1744 i++;
1745 }
1746
1747 /* Return the last valid value, even if a match was not found. */
1748 return freq * 1000;
1749}
1750
6b6fae2b
MN
1751#define MIN_PLL_VCO_RATE 600000000ULL
1752#define MAX_PLL_VCO_RATE 1680640000ULL
1753
1754static long round_plldsi_rate(unsigned long rate)
1755{
1756 long rounded_rate = 0;
1757 unsigned long src_rate;
1758 unsigned long rem;
1759 u32 r;
1760
1761 src_rate = clock_rate(PRCMU_HDMICLK);
1762 rem = rate;
1763
1764 for (r = 7; (rem > 0) && (r > 0); r--) {
1765 u64 d;
1766
1767 d = (r * rate);
1768 (void)do_div(d, src_rate);
1769 if (d < 6)
1770 d = 6;
1771 else if (d > 255)
1772 d = 255;
1773 d *= src_rate;
1774 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1775 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1776 continue;
1777 (void)do_div(d, r);
1778 if (rate < d) {
1779 if (rounded_rate == 0)
1780 rounded_rate = (long)d;
1781 break;
1782 }
1783 if ((rate - d) < rem) {
1784 rem = (rate - d);
1785 rounded_rate = (long)d;
1786 }
1787 }
1788 return rounded_rate;
1789}
1790
1791static long round_dsiclk_rate(unsigned long rate)
1792{
1793 u32 div;
1794 unsigned long src_rate;
1795 long rounded_rate;
1796
1797 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1798 PLL_RAW);
1799 div = clock_divider(src_rate, rate);
1800 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1801
1802 return rounded_rate;
1803}
1804
1805static long round_dsiescclk_rate(unsigned long rate)
1806{
1807 u32 div;
1808 unsigned long src_rate;
1809 long rounded_rate;
1810
1811 src_rate = clock_rate(PRCMU_TVCLK);
1812 div = clock_divider(src_rate, rate);
1813 rounded_rate = (src_rate / min(div, (u32)255));
1814
1815 return rounded_rate;
1816}
1817
1818long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1819{
1820 if (clock < PRCMU_NUM_REG_CLOCKS)
1821 return round_clock_rate(clock, rate);
b2302c87
UH
1822 else if (clock == PRCMU_ARMSS)
1823 return round_armss_rate(rate);
6b6fae2b
MN
1824 else if (clock == PRCMU_PLLDSI)
1825 return round_plldsi_rate(rate);
1826 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1827 return round_dsiclk_rate(rate);
1828 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1829 return round_dsiescclk_rate(rate);
1830 else
1831 return (long)prcmu_clock_rate(clock);
1832}
1833
1834static void set_clock_rate(u8 clock, unsigned long rate)
1835{
1836 u32 val;
1837 u32 div;
1838 unsigned long src_rate;
1839 unsigned long flags;
1840
1841 spin_lock_irqsave(&clk_mgt_lock, flags);
1842
1843 /* Grab the HW semaphore. */
1844 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1845 cpu_relax();
1846
b047d981 1847 val = readl(prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1848 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1849 clk_mgt[clock].branch);
1850 div = clock_divider(src_rate, rate);
1851 if (val & PRCM_CLK_MGT_CLK38) {
1852 if (clk_mgt[clock].clk38div) {
1853 if (div > 1)
1854 val |= PRCM_CLK_MGT_CLK38DIV;
1855 else
1856 val &= ~PRCM_CLK_MGT_CLK38DIV;
1857 }
1858 } else if (clock == PRCMU_SGACLK) {
1859 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1860 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1861 if (div == 3) {
1862 u64 r = (src_rate * 10);
1863
1864 (void)do_div(r, 25);
1865 if (r <= rate) {
1866 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1867 div = 0;
1868 }
1869 }
1870 val |= min(div, (u32)31);
1871 } else {
1872 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1873 val |= min(div, (u32)31);
1874 }
b047d981 1875 writel(val, prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1876
1877 /* Release the HW semaphore. */
1878 writel(0, PRCM_SEM);
1879
1880 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1881}
1882
b2302c87
UH
1883static int set_armss_rate(unsigned long rate)
1884{
1885 int i = 0;
1886
1887 /* cpufreq table frequencies is in KHz. */
1888 rate = rate / 1000;
1889
1890 /* Find the corresponding arm opp from the cpufreq table. */
1891 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1892 if (db8500_cpufreq_table[i].frequency == rate)
1893 break;
1894 i++;
1895 }
1896
1897 if (db8500_cpufreq_table[i].frequency != rate)
1898 return -EINVAL;
1899
1900 /* Set the new arm opp. */
1901 return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].index);
1902}
1903
6b6fae2b
MN
1904static int set_plldsi_rate(unsigned long rate)
1905{
1906 unsigned long src_rate;
1907 unsigned long rem;
1908 u32 pll_freq = 0;
1909 u32 r;
1910
1911 src_rate = clock_rate(PRCMU_HDMICLK);
1912 rem = rate;
1913
1914 for (r = 7; (rem > 0) && (r > 0); r--) {
1915 u64 d;
1916 u64 hwrate;
1917
1918 d = (r * rate);
1919 (void)do_div(d, src_rate);
1920 if (d < 6)
1921 d = 6;
1922 else if (d > 255)
1923 d = 255;
1924 hwrate = (d * src_rate);
1925 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1926 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1927 continue;
1928 (void)do_div(hwrate, r);
1929 if (rate < hwrate) {
1930 if (pll_freq == 0)
1931 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1932 (r << PRCM_PLL_FREQ_R_SHIFT));
1933 break;
1934 }
1935 if ((rate - hwrate) < rem) {
1936 rem = (rate - hwrate);
1937 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1938 (r << PRCM_PLL_FREQ_R_SHIFT));
1939 }
1940 }
1941 if (pll_freq == 0)
1942 return -EINVAL;
1943
1944 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1945 writel(pll_freq, PRCM_PLLDSI_FREQ);
1946
1947 return 0;
1948}
1949
1950static void set_dsiclk_rate(u8 n, unsigned long rate)
1951{
1952 u32 val;
1953 u32 div;
1954
1955 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1956 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1957
1958 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1959 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1960 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
1961
1962 val = readl(PRCM_DSI_PLLOUT_SEL);
1963 val &= ~dsiclk[n].divsel_mask;
1964 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1965 writel(val, PRCM_DSI_PLLOUT_SEL);
1966}
1967
1968static void set_dsiescclk_rate(u8 n, unsigned long rate)
1969{
1970 u32 val;
1971 u32 div;
1972
1973 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1974 val = readl(PRCM_DSITVCLK_DIV);
1975 val &= ~dsiescclk[n].div_mask;
1976 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1977 writel(val, PRCM_DSITVCLK_DIV);
1978}
1979
1980int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1981{
1982 if (clock < PRCMU_NUM_REG_CLOCKS)
1983 set_clock_rate(clock, rate);
b2302c87
UH
1984 else if (clock == PRCMU_ARMSS)
1985 return set_armss_rate(rate);
6b6fae2b
MN
1986 else if (clock == PRCMU_PLLDSI)
1987 return set_plldsi_rate(rate);
1988 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1989 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1990 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1991 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1992 return 0;
3df57bcf
MN
1993}
1994
73180f85 1995int db8500_prcmu_config_esram0_deep_sleep(u8 state)
3df57bcf
MN
1996{
1997 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1998 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1999 return -EINVAL;
2000
2001 mutex_lock(&mb4_transfer.lock);
2002
c553b3ca 2003 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2004 cpu_relax();
2005
2006 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2007 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2008 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2009 writeb(DDR_PWR_STATE_ON,
2010 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2011 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2012
c553b3ca 2013 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2014 wait_for_completion(&mb4_transfer.work);
2015
2016 mutex_unlock(&mb4_transfer.lock);
2017
2018 return 0;
2019}
2020
0508901c 2021int db8500_prcmu_config_hotdog(u8 threshold)
3df57bcf
MN
2022{
2023 mutex_lock(&mb4_transfer.lock);
2024
c553b3ca 2025 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2026 cpu_relax();
2027
2028 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2029 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2030
c553b3ca 2031 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2032 wait_for_completion(&mb4_transfer.work);
2033
2034 mutex_unlock(&mb4_transfer.lock);
2035
2036 return 0;
2037}
2038
0508901c 2039int db8500_prcmu_config_hotmon(u8 low, u8 high)
3df57bcf
MN
2040{
2041 mutex_lock(&mb4_transfer.lock);
2042
c553b3ca 2043 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2044 cpu_relax();
2045
2046 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2047 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2048 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2049 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2050 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2051
c553b3ca 2052 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2053 wait_for_completion(&mb4_transfer.work);
2054
2055 mutex_unlock(&mb4_transfer.lock);
2056
2057 return 0;
2058}
2059
2060static int config_hot_period(u16 val)
2061{
2062 mutex_lock(&mb4_transfer.lock);
2063
c553b3ca 2064 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2065 cpu_relax();
2066
2067 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2068 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2069
c553b3ca 2070 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2071 wait_for_completion(&mb4_transfer.work);
2072
2073 mutex_unlock(&mb4_transfer.lock);
2074
2075 return 0;
2076}
2077
0508901c 2078int db8500_prcmu_start_temp_sense(u16 cycles32k)
3df57bcf
MN
2079{
2080 if (cycles32k == 0xFFFF)
2081 return -EINVAL;
2082
2083 return config_hot_period(cycles32k);
2084}
2085
0508901c 2086int db8500_prcmu_stop_temp_sense(void)
3df57bcf
MN
2087{
2088 return config_hot_period(0xFFFF);
2089}
2090
84165b80
JA
2091static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2092{
2093
2094 mutex_lock(&mb4_transfer.lock);
2095
2096 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2097 cpu_relax();
2098
2099 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2100 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2101 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2102 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2103
2104 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2105
2106 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2107 wait_for_completion(&mb4_transfer.work);
2108
2109 mutex_unlock(&mb4_transfer.lock);
2110
2111 return 0;
2112
2113}
2114
0508901c 2115int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
84165b80
JA
2116{
2117 BUG_ON(num == 0 || num > 0xf);
2118 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2119 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2120 A9WDOG_AUTO_OFF_DIS);
2121}
6f8cfa99 2122EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
84165b80 2123
0508901c 2124int db8500_prcmu_enable_a9wdog(u8 id)
84165b80
JA
2125{
2126 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2127}
6f8cfa99 2128EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
84165b80 2129
0508901c 2130int db8500_prcmu_disable_a9wdog(u8 id)
84165b80
JA
2131{
2132 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2133}
6f8cfa99 2134EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
84165b80 2135
0508901c 2136int db8500_prcmu_kick_a9wdog(u8 id)
84165b80
JA
2137{
2138 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2139}
6f8cfa99 2140EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
84165b80
JA
2141
2142/*
2143 * timeout is 28 bit, in ms.
2144 */
0508901c 2145int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
84165b80 2146{
84165b80
JA
2147 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2148 (id & A9WDOG_ID_MASK) |
2149 /*
2150 * Put the lowest 28 bits of timeout at
2151 * offset 4. Four first bits are used for id.
2152 */
2153 (u8)((timeout << 4) & 0xf0),
2154 (u8)((timeout >> 4) & 0xff),
2155 (u8)((timeout >> 12) & 0xff),
2156 (u8)((timeout >> 20) & 0xff));
2157}
6f8cfa99 2158EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
84165b80 2159
e3726fcf
LW
2160/**
2161 * prcmu_abb_read() - Read register value(s) from the ABB.
2162 * @slave: The I2C slave address.
2163 * @reg: The (start) register address.
2164 * @value: The read out value(s).
2165 * @size: The number of registers to read.
2166 *
2167 * Reads register value(s) from the ABB.
2168 * @size has to be 1 for the current firmware version.
2169 */
2170int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2171{
2172 int r;
2173
2174 if (size != 1)
2175 return -EINVAL;
2176
3df57bcf 2177 mutex_lock(&mb5_transfer.lock);
e3726fcf 2178
c553b3ca 2179 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2180 cpu_relax();
2181
3c3e4898 2182 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
3df57bcf
MN
2183 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2184 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2185 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2186 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2187
c553b3ca 2188 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2189
e3726fcf 2190 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2191 msecs_to_jiffies(20000))) {
2192 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2193 __func__);
e3726fcf 2194 r = -EIO;
3df57bcf
MN
2195 } else {
2196 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
e3726fcf 2197 }
3df57bcf 2198
e3726fcf
LW
2199 if (!r)
2200 *value = mb5_transfer.ack.value;
2201
e3726fcf 2202 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2203
e3726fcf
LW
2204 return r;
2205}
e3726fcf
LW
2206
2207/**
3c3e4898 2208 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
e3726fcf
LW
2209 * @slave: The I2C slave address.
2210 * @reg: The (start) register address.
2211 * @value: The value(s) to write.
3c3e4898 2212 * @mask: The mask(s) to use.
e3726fcf
LW
2213 * @size: The number of registers to write.
2214 *
3c3e4898
MN
2215 * Writes masked register value(s) to the ABB.
2216 * For each @value, only the bits set to 1 in the corresponding @mask
2217 * will be written. The other bits are not changed.
e3726fcf
LW
2218 * @size has to be 1 for the current firmware version.
2219 */
3c3e4898 2220int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
e3726fcf
LW
2221{
2222 int r;
2223
2224 if (size != 1)
2225 return -EINVAL;
2226
3df57bcf 2227 mutex_lock(&mb5_transfer.lock);
e3726fcf 2228
c553b3ca 2229 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2230 cpu_relax();
2231
3c3e4898 2232 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
3df57bcf
MN
2233 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2234 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2235 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2236 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2237
c553b3ca 2238 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2239
e3726fcf 2240 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2241 msecs_to_jiffies(20000))) {
2242 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2243 __func__);
e3726fcf 2244 r = -EIO;
3df57bcf
MN
2245 } else {
2246 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
e3726fcf 2247 }
e3726fcf 2248
e3726fcf 2249 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2250
e3726fcf
LW
2251 return r;
2252}
e3726fcf 2253
3c3e4898
MN
2254/**
2255 * prcmu_abb_write() - Write register value(s) to the ABB.
2256 * @slave: The I2C slave address.
2257 * @reg: The (start) register address.
2258 * @value: The value(s) to write.
2259 * @size: The number of registers to write.
2260 *
2261 * Writes register value(s) to the ABB.
2262 * @size has to be 1 for the current firmware version.
2263 */
2264int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2265{
2266 u8 mask = ~0;
2267
2268 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2269}
2270
3df57bcf
MN
2271/**
2272 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2273 */
5261e101 2274int prcmu_ac_wake_req(void)
e0befb23 2275{
3df57bcf 2276 u32 val;
5261e101 2277 int ret = 0;
e0befb23 2278
3df57bcf 2279 mutex_lock(&mb0_transfer.ac_wake_lock);
e0befb23 2280
c553b3ca 2281 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2282 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2283 goto unlock_and_return;
e0befb23 2284
3df57bcf 2285 atomic_set(&ac_wake_req_state, 1);
e0befb23 2286
5261e101
AM
2287 /*
2288 * Force Modem Wake-up before hostaccess_req ping-pong.
2289 * It prevents Modem to enter in Sleep while acking the hostaccess
2290 * request. The 31us delay has been calculated by HWI.
2291 */
2292 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2293 writel(val, PRCM_HOSTACCESS_REQ);
2294
2295 udelay(31);
2296
2297 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2298 writel(val, PRCM_HOSTACCESS_REQ);
e0befb23 2299
3df57bcf 2300 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2301 msecs_to_jiffies(5000))) {
5261e101
AM
2302#if defined(CONFIG_DBX500_PRCMU_DEBUG)
2303 db8500_prcmu_debug_dump(__func__, true, true);
2304#endif
57265bc1 2305 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
d6e3002e 2306 __func__);
5261e101 2307 ret = -EFAULT;
3df57bcf 2308 }
e0befb23 2309
3df57bcf
MN
2310unlock_and_return:
2311 mutex_unlock(&mb0_transfer.ac_wake_lock);
5261e101 2312 return ret;
e0befb23
MP
2313}
2314
2315/**
3df57bcf 2316 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
e0befb23 2317 */
3df57bcf 2318void prcmu_ac_sleep_req()
e0befb23 2319{
3df57bcf
MN
2320 u32 val;
2321
2322 mutex_lock(&mb0_transfer.ac_wake_lock);
2323
c553b3ca 2324 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2325 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2326 goto unlock_and_return;
2327
2328 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
c553b3ca 2329 PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2330
2331 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2332 msecs_to_jiffies(5000))) {
57265bc1 2333 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
3df57bcf
MN
2334 __func__);
2335 }
2336
2337 atomic_set(&ac_wake_req_state, 0);
2338
2339unlock_and_return:
2340 mutex_unlock(&mb0_transfer.ac_wake_lock);
e0befb23 2341}
e0befb23 2342
73180f85 2343bool db8500_prcmu_is_ac_wake_requested(void)
e0befb23 2344{
3df57bcf 2345 return (atomic_read(&ac_wake_req_state) != 0);
e0befb23 2346}
e0befb23
MP
2347
2348/**
73180f85 2349 * db8500_prcmu_system_reset - System reset
e0befb23 2350 *
73180f85 2351 * Saves the reset reason code and then sets the APE_SOFTRST register which
3df57bcf 2352 * fires interrupt to fw
e0befb23 2353 */
73180f85 2354void db8500_prcmu_system_reset(u16 reset_code)
e0befb23 2355{
3df57bcf 2356 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
c553b3ca 2357 writel(1, PRCM_APE_SOFTRST);
e0befb23 2358}
e0befb23 2359
597045de
SR
2360/**
2361 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2362 *
2363 * Retrieves the reset reason code stored by prcmu_system_reset() before
2364 * last restart.
2365 */
2366u16 db8500_prcmu_get_reset_code(void)
2367{
2368 return readw(tcdm_base + PRCM_SW_RST_REASON);
2369}
2370
e0befb23 2371/**
0508901c 2372 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
e0befb23 2373 */
0508901c 2374void db8500_prcmu_modem_reset(void)
e0befb23 2375{
3df57bcf
MN
2376 mutex_lock(&mb1_transfer.lock);
2377
c553b3ca 2378 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
2379 cpu_relax();
2380
2381 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
c553b3ca 2382 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2383 wait_for_completion(&mb1_transfer.work);
2384
2385 /*
2386 * No need to check return from PRCMU as modem should go in reset state
2387 * This state is already managed by upper layer
2388 */
2389
2390 mutex_unlock(&mb1_transfer.lock);
e0befb23 2391}
e0befb23 2392
3df57bcf 2393static void ack_dbb_wakeup(void)
e0befb23 2394{
3df57bcf
MN
2395 unsigned long flags;
2396
2397 spin_lock_irqsave(&mb0_transfer.lock, flags);
2398
c553b3ca 2399 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
2400 cpu_relax();
2401
2402 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 2403 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2404
2405 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
e0befb23 2406}
e0befb23 2407
3df57bcf 2408static inline void print_unknown_header_warning(u8 n, u8 header)
e0befb23 2409{
3df57bcf
MN
2410 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2411 header, n);
e0befb23
MP
2412}
2413
3df57bcf 2414static bool read_mailbox_0(void)
e3726fcf 2415{
3df57bcf
MN
2416 bool r;
2417 u32 ev;
2418 unsigned int n;
2419 u8 header;
2420
2421 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2422 switch (header) {
2423 case MB0H_WAKEUP_EXE:
2424 case MB0H_WAKEUP_SLEEP:
2425 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2426 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2427 else
2428 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2429
2430 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2431 complete(&mb0_transfer.ac_wake_work);
2432 if (ev & WAKEUP_BIT_SYSCLK_OK)
2433 complete(&mb3_transfer.sysclk_work);
2434
2435 ev &= mb0_transfer.req.dbb_irqs;
2436
2437 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2438 if (ev & prcmu_irq_bit[n])
89d9b1c9 2439 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
3df57bcf
MN
2440 }
2441 r = true;
2442 break;
2443 default:
2444 print_unknown_header_warning(0, header);
2445 r = false;
2446 break;
2447 }
c553b3ca 2448 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
3df57bcf 2449 return r;
e3726fcf
LW
2450}
2451
3df57bcf 2452static bool read_mailbox_1(void)
e3726fcf 2453{
3df57bcf
MN
2454 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2455 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2456 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2457 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2458 PRCM_ACK_MB1_CURRENT_APE_OPP);
2459 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2460 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
c553b3ca 2461 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
e0befb23 2462 complete(&mb1_transfer.work);
3df57bcf 2463 return false;
e3726fcf
LW
2464}
2465
3df57bcf 2466static bool read_mailbox_2(void)
e3726fcf 2467{
3df57bcf 2468 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
c553b3ca 2469 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2470 complete(&mb2_transfer.work);
2471 return false;
e3726fcf
LW
2472}
2473
3df57bcf 2474static bool read_mailbox_3(void)
e3726fcf 2475{
c553b3ca 2476 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
3df57bcf 2477 return false;
e3726fcf
LW
2478}
2479
3df57bcf 2480static bool read_mailbox_4(void)
e3726fcf 2481{
3df57bcf
MN
2482 u8 header;
2483 bool do_complete = true;
2484
2485 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2486 switch (header) {
2487 case MB4H_MEM_ST:
2488 case MB4H_HOTDOG:
2489 case MB4H_HOTMON:
2490 case MB4H_HOT_PERIOD:
a592c2e2
MN
2491 case MB4H_A9WDOG_CONF:
2492 case MB4H_A9WDOG_EN:
2493 case MB4H_A9WDOG_DIS:
2494 case MB4H_A9WDOG_LOAD:
2495 case MB4H_A9WDOG_KICK:
3df57bcf
MN
2496 break;
2497 default:
2498 print_unknown_header_warning(4, header);
2499 do_complete = false;
2500 break;
2501 }
2502
c553b3ca 2503 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2504
2505 if (do_complete)
2506 complete(&mb4_transfer.work);
2507
2508 return false;
e3726fcf
LW
2509}
2510
3df57bcf 2511static bool read_mailbox_5(void)
e3726fcf 2512{
3df57bcf
MN
2513 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2514 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
c553b3ca 2515 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
e3726fcf 2516 complete(&mb5_transfer.work);
3df57bcf 2517 return false;
e3726fcf
LW
2518}
2519
3df57bcf 2520static bool read_mailbox_6(void)
e3726fcf 2521{
c553b3ca 2522 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
3df57bcf 2523 return false;
e3726fcf
LW
2524}
2525
3df57bcf 2526static bool read_mailbox_7(void)
e3726fcf 2527{
c553b3ca 2528 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
3df57bcf 2529 return false;
e3726fcf
LW
2530}
2531
3df57bcf 2532static bool (* const read_mailbox[NUM_MB])(void) = {
e3726fcf
LW
2533 read_mailbox_0,
2534 read_mailbox_1,
2535 read_mailbox_2,
2536 read_mailbox_3,
2537 read_mailbox_4,
2538 read_mailbox_5,
2539 read_mailbox_6,
2540 read_mailbox_7
2541};
2542
2543static irqreturn_t prcmu_irq_handler(int irq, void *data)
2544{
2545 u32 bits;
2546 u8 n;
3df57bcf 2547 irqreturn_t r;
e3726fcf 2548
c553b3ca 2549 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
e3726fcf
LW
2550 if (unlikely(!bits))
2551 return IRQ_NONE;
2552
3df57bcf 2553 r = IRQ_HANDLED;
e3726fcf
LW
2554 for (n = 0; bits; n++) {
2555 if (bits & MBOX_BIT(n)) {
2556 bits -= MBOX_BIT(n);
3df57bcf
MN
2557 if (read_mailbox[n]())
2558 r = IRQ_WAKE_THREAD;
e3726fcf
LW
2559 }
2560 }
3df57bcf
MN
2561 return r;
2562}
2563
2564static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2565{
2566 ack_dbb_wakeup();
e3726fcf
LW
2567 return IRQ_HANDLED;
2568}
2569
3df57bcf
MN
2570static void prcmu_mask_work(struct work_struct *work)
2571{
2572 unsigned long flags;
2573
2574 spin_lock_irqsave(&mb0_transfer.lock, flags);
2575
2576 config_wakeups();
2577
2578 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2579}
2580
2581static void prcmu_irq_mask(struct irq_data *d)
2582{
2583 unsigned long flags;
2584
2585 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2586
f3f1f0a1 2587 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
3df57bcf
MN
2588
2589 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2590
2591 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2592 schedule_work(&mb0_transfer.mask_work);
2593}
2594
2595static void prcmu_irq_unmask(struct irq_data *d)
2596{
2597 unsigned long flags;
2598
2599 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2600
f3f1f0a1 2601 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
3df57bcf
MN
2602
2603 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2604
2605 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2606 schedule_work(&mb0_transfer.mask_work);
2607}
2608
2609static void noop(struct irq_data *d)
2610{
2611}
2612
2613static struct irq_chip prcmu_irq_chip = {
2614 .name = "prcmu",
2615 .irq_disable = prcmu_irq_mask,
2616 .irq_ack = noop,
2617 .irq_mask = prcmu_irq_mask,
2618 .irq_unmask = prcmu_irq_unmask,
2619};
2620
05ec260e 2621static __init char *fw_project_name(u32 project)
b58d12fe
MN
2622{
2623 switch (project) {
2624 case PRCMU_FW_PROJECT_U8500:
2625 return "U8500";
05ec260e
LW
2626 case PRCMU_FW_PROJECT_U8400:
2627 return "U8400";
b58d12fe
MN
2628 case PRCMU_FW_PROJECT_U9500:
2629 return "U9500";
05ec260e
LW
2630 case PRCMU_FW_PROJECT_U8500_MBB:
2631 return "U8500 MBB";
2632 case PRCMU_FW_PROJECT_U8500_C1:
2633 return "U8500 C1";
2634 case PRCMU_FW_PROJECT_U8500_C2:
2635 return "U8500 C2";
2636 case PRCMU_FW_PROJECT_U8500_C3:
2637 return "U8500 C3";
2638 case PRCMU_FW_PROJECT_U8500_C4:
2639 return "U8500 C4";
2640 case PRCMU_FW_PROJECT_U9500_MBL:
2641 return "U9500 MBL";
2642 case PRCMU_FW_PROJECT_U8500_MBL:
2643 return "U8500 MBL";
2644 case PRCMU_FW_PROJECT_U8500_MBL2:
2645 return "U8500 MBL2";
5f96a1a6 2646 case PRCMU_FW_PROJECT_U8520:
05ec260e 2647 return "U8520 MBL";
1927ddf6
BJ
2648 case PRCMU_FW_PROJECT_U8420:
2649 return "U8420";
05ec260e
LW
2650 case PRCMU_FW_PROJECT_U9540:
2651 return "U9540";
2652 case PRCMU_FW_PROJECT_A9420:
2653 return "A9420";
2654 case PRCMU_FW_PROJECT_L8540:
2655 return "L8540";
2656 case PRCMU_FW_PROJECT_L8580:
2657 return "L8580";
b58d12fe
MN
2658 default:
2659 return "Unknown";
2660 }
2661}
2662
f3f1f0a1
LJ
2663static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2664 irq_hw_number_t hwirq)
2665{
2666 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2667 handle_simple_irq);
2668 set_irq_flags(virq, IRQF_VALID);
2669
2670 return 0;
2671}
2672
2673static struct irq_domain_ops db8500_irq_ops = {
89d9b1c9
LW
2674 .map = db8500_irq_map,
2675 .xlate = irq_domain_xlate_twocell,
f3f1f0a1
LJ
2676};
2677
55b175d7 2678static int db8500_irq_init(struct device_node *np, int irq_base)
f3f1f0a1 2679{
89d9b1c9 2680 int i;
a7238e43
LW
2681
2682 /* In the device tree case, just take some IRQs */
55b175d7
AB
2683 if (np)
2684 irq_base = 0;
a7238e43
LW
2685
2686 db8500_irq_domain = irq_domain_add_simple(
2687 np, NUM_PRCMU_WAKEUPS, irq_base,
2688 &db8500_irq_ops, NULL);
f3f1f0a1
LJ
2689
2690 if (!db8500_irq_domain) {
2691 pr_err("Failed to create irqdomain\n");
2692 return -ENOSYS;
2693 }
2694
89d9b1c9
LW
2695 /* All wakeups will be used, so create mappings for all */
2696 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2697 irq_create_mapping(db8500_irq_domain, i);
2698
f3f1f0a1
LJ
2699 return 0;
2700}
2701
05ec260e
LW
2702static void dbx500_fw_version_init(struct platform_device *pdev,
2703 u32 version_offset)
fcbd458e 2704{
05ec260e
LW
2705 struct resource *res;
2706 void __iomem *tcpm_base;
3df57bcf 2707
05ec260e
LW
2708 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2709 "prcmu-tcpm");
2710 if (!res) {
2711 dev_err(&pdev->dev,
2712 "Error: no prcmu tcpm memory region provided\n");
2713 return;
2714 }
2715 tcpm_base = ioremap(res->start, resource_size(res));
2716 if (tcpm_base != NULL) {
2717 u32 version;
2718
2719 version = readl(tcpm_base + version_offset);
2720 fw_info.version.project = (version & 0xFF);
2721 fw_info.version.api_version = (version >> 8) & 0xFF;
2722 fw_info.version.func_version = (version >> 16) & 0xFF;
2723 fw_info.version.errata = (version >> 24) & 0xFF;
2724 strncpy(fw_info.version.project_name,
2725 fw_project_name(fw_info.version.project),
2726 PRCMU_FW_PROJECT_NAME_LEN);
2727 fw_info.valid = true;
2728 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2729 fw_info.version.project_name,
2730 fw_info.version.project,
2731 fw_info.version.api_version,
2732 fw_info.version.func_version,
2733 fw_info.version.errata);
2734 iounmap(tcpm_base);
fcbd458e 2735 }
05ec260e 2736}
e0befb23 2737
9a47a8dc 2738void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
05ec260e 2739{
9a47a8dc
LW
2740 /*
2741 * This is a temporary remap to bring up the clocks. It is
2742 * subsequently replaces with a real remap. After the merge of
2743 * the mailbox subsystem all of this early code goes away, and the
2744 * clock driver can probe independently. An early initcall will
2745 * still be needed, but it can be diverted into drivers/clk/ux500.
2746 */
2747 prcmu_base = ioremap(phy_base, size);
2748 if (!prcmu_base)
2749 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2750
3df57bcf
MN
2751 spin_lock_init(&mb0_transfer.lock);
2752 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2753 mutex_init(&mb0_transfer.ac_wake_lock);
2754 init_completion(&mb0_transfer.ac_wake_work);
e0befb23
MP
2755 mutex_init(&mb1_transfer.lock);
2756 init_completion(&mb1_transfer.work);
4d64d2e3 2757 mb1_transfer.ape_opp = APE_NO_CHANGE;
3df57bcf
MN
2758 mutex_init(&mb2_transfer.lock);
2759 init_completion(&mb2_transfer.work);
2760 spin_lock_init(&mb2_transfer.auto_pm_lock);
2761 spin_lock_init(&mb3_transfer.lock);
2762 mutex_init(&mb3_transfer.sysclk_lock);
2763 init_completion(&mb3_transfer.sysclk_work);
2764 mutex_init(&mb4_transfer.lock);
2765 init_completion(&mb4_transfer.work);
e3726fcf
LW
2766 mutex_init(&mb5_transfer.lock);
2767 init_completion(&mb5_transfer.work);
2768
3df57bcf 2769 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
3df57bcf
MN
2770}
2771
0508901c 2772static void __init init_prcm_registers(void)
d65e12d7
MN
2773{
2774 u32 val;
2775
2776 val = readl(PRCM_A9PL_FORCE_CLKEN);
2777 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2778 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2779 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2780}
2781
1032fbfd
BJ
2782/*
2783 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2784 */
2785static struct regulator_consumer_supply db8500_vape_consumers[] = {
2786 REGULATOR_SUPPLY("v-ape", NULL),
2787 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2788 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2789 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2790 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
ae840635 2791 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
1032fbfd
BJ
2792 /* "v-mmc" changed to "vcore" in the mainline kernel */
2793 REGULATOR_SUPPLY("vcore", "sdi0"),
2794 REGULATOR_SUPPLY("vcore", "sdi1"),
2795 REGULATOR_SUPPLY("vcore", "sdi2"),
2796 REGULATOR_SUPPLY("vcore", "sdi3"),
2797 REGULATOR_SUPPLY("vcore", "sdi4"),
2798 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2799 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2800 /* "v-uart" changed to "vcore" in the mainline kernel */
2801 REGULATOR_SUPPLY("vcore", "uart0"),
2802 REGULATOR_SUPPLY("vcore", "uart1"),
2803 REGULATOR_SUPPLY("vcore", "uart2"),
2804 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
992b133a 2805 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
bc367481 2806 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
1032fbfd
BJ
2807};
2808
2809static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
1032fbfd
BJ
2810 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2811 /* AV8100 regulator */
2812 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2813};
2814
2815static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
992b133a 2816 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
624e87c2
BJ
2817 REGULATOR_SUPPLY("vsupply", "mcde"),
2818};
2819
2820/* SVA MMDSP regulator switch */
2821static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2822 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2823};
2824
2825/* SVA pipe regulator switch */
2826static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2827 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2828};
2829
2830/* SIA MMDSP regulator switch */
2831static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2832 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2833};
2834
2835/* SIA pipe regulator switch */
2836static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2837 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2838};
2839
2840static struct regulator_consumer_supply db8500_sga_consumers[] = {
2841 REGULATOR_SUPPLY("v-mali", NULL),
2842};
2843
2844/* ESRAM1 and 2 regulator switch */
2845static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2846 REGULATOR_SUPPLY("esram12", "cm_control"),
2847};
2848
2849/* ESRAM3 and 4 regulator switch */
2850static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2851 REGULATOR_SUPPLY("v-esram34", "mcde"),
2852 REGULATOR_SUPPLY("esram34", "cm_control"),
992b133a 2853 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
1032fbfd
BJ
2854};
2855
2856static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2857 [DB8500_REGULATOR_VAPE] = {
2858 .constraints = {
2859 .name = "db8500-vape",
2860 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1e45860f 2861 .always_on = true,
1032fbfd
BJ
2862 },
2863 .consumer_supplies = db8500_vape_consumers,
2864 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2865 },
2866 [DB8500_REGULATOR_VARM] = {
2867 .constraints = {
2868 .name = "db8500-varm",
2869 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2870 },
2871 },
2872 [DB8500_REGULATOR_VMODEM] = {
2873 .constraints = {
2874 .name = "db8500-vmodem",
2875 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2876 },
2877 },
2878 [DB8500_REGULATOR_VPLL] = {
2879 .constraints = {
2880 .name = "db8500-vpll",
2881 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2882 },
2883 },
2884 [DB8500_REGULATOR_VSMPS1] = {
2885 .constraints = {
2886 .name = "db8500-vsmps1",
2887 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2888 },
2889 },
2890 [DB8500_REGULATOR_VSMPS2] = {
2891 .constraints = {
2892 .name = "db8500-vsmps2",
2893 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2894 },
2895 .consumer_supplies = db8500_vsmps2_consumers,
2896 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2897 },
2898 [DB8500_REGULATOR_VSMPS3] = {
2899 .constraints = {
2900 .name = "db8500-vsmps3",
2901 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2902 },
2903 },
2904 [DB8500_REGULATOR_VRF1] = {
2905 .constraints = {
2906 .name = "db8500-vrf1",
2907 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2908 },
2909 },
2910 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
992b133a 2911 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2912 .constraints = {
2913 .name = "db8500-sva-mmdsp",
2914 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2915 },
624e87c2
BJ
2916 .consumer_supplies = db8500_svammdsp_consumers,
2917 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
1032fbfd
BJ
2918 },
2919 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2920 .constraints = {
2921 /* "ret" means "retention" */
2922 .name = "db8500-sva-mmdsp-ret",
2923 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2924 },
2925 },
2926 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
992b133a 2927 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2928 .constraints = {
2929 .name = "db8500-sva-pipe",
2930 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2931 },
624e87c2
BJ
2932 .consumer_supplies = db8500_svapipe_consumers,
2933 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
1032fbfd
BJ
2934 },
2935 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
992b133a 2936 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2937 .constraints = {
2938 .name = "db8500-sia-mmdsp",
2939 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2940 },
624e87c2
BJ
2941 .consumer_supplies = db8500_siammdsp_consumers,
2942 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
1032fbfd
BJ
2943 },
2944 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2945 .constraints = {
2946 .name = "db8500-sia-mmdsp-ret",
2947 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2948 },
2949 },
2950 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
992b133a 2951 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2952 .constraints = {
2953 .name = "db8500-sia-pipe",
2954 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2955 },
624e87c2
BJ
2956 .consumer_supplies = db8500_siapipe_consumers,
2957 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
1032fbfd
BJ
2958 },
2959 [DB8500_REGULATOR_SWITCH_SGA] = {
2960 .supply_regulator = "db8500-vape",
2961 .constraints = {
2962 .name = "db8500-sga",
2963 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2964 },
624e87c2
BJ
2965 .consumer_supplies = db8500_sga_consumers,
2966 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2967
1032fbfd
BJ
2968 },
2969 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2970 .supply_regulator = "db8500-vape",
2971 .constraints = {
2972 .name = "db8500-b2r2-mcde",
2973 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2974 },
2975 .consumer_supplies = db8500_b2r2_mcde_consumers,
2976 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2977 },
2978 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
992b133a
BJ
2979 /*
2980 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2981 * no need to hold Vape
2982 */
1032fbfd
BJ
2983 .constraints = {
2984 .name = "db8500-esram12",
2985 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2986 },
624e87c2
BJ
2987 .consumer_supplies = db8500_esram12_consumers,
2988 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
1032fbfd
BJ
2989 },
2990 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2991 .constraints = {
2992 .name = "db8500-esram12-ret",
2993 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2994 },
2995 },
2996 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
992b133a
BJ
2997 /*
2998 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2999 * no need to hold Vape
3000 */
1032fbfd
BJ
3001 .constraints = {
3002 .name = "db8500-esram34",
3003 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3004 },
624e87c2
BJ
3005 .consumer_supplies = db8500_esram34_consumers,
3006 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
1032fbfd
BJ
3007 },
3008 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3009 .constraints = {
3010 .name = "db8500-esram34-ret",
3011 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3012 },
3013 },
3014};
3015
b3aac62b
FB
3016static struct ux500_wdt_data db8500_wdt_pdata = {
3017 .timeout = 600, /* 10 minutes */
3018 .has_28_bits_resolution = true,
3019};
55b175d7
AB
3020/*
3021 * Thermal Sensor
3022 */
3023
3024static struct resource db8500_thsens_resources[] = {
3025 {
3026 .name = "IRQ_HOTMON_LOW",
3027 .start = IRQ_PRCMU_HOTMON_LOW,
3028 .end = IRQ_PRCMU_HOTMON_LOW,
3029 .flags = IORESOURCE_IRQ,
3030 },
3031 {
3032 .name = "IRQ_HOTMON_HIGH",
3033 .start = IRQ_PRCMU_HOTMON_HIGH,
3034 .end = IRQ_PRCMU_HOTMON_HIGH,
3035 .flags = IORESOURCE_IRQ,
3036 },
3037};
3038
3039static struct db8500_thsens_platform_data db8500_thsens_data = {
3040 .trip_points[0] = {
3041 .temp = 70000,
3042 .type = THERMAL_TRIP_ACTIVE,
3043 .cdev_name = {
3044 [0] = "thermal-cpufreq-0",
3045 },
3046 },
3047 .trip_points[1] = {
3048 .temp = 75000,
3049 .type = THERMAL_TRIP_ACTIVE,
3050 .cdev_name = {
3051 [0] = "thermal-cpufreq-0",
3052 },
3053 },
3054 .trip_points[2] = {
3055 .temp = 80000,
3056 .type = THERMAL_TRIP_ACTIVE,
3057 .cdev_name = {
3058 [0] = "thermal-cpufreq-0",
3059 },
3060 },
3061 .trip_points[3] = {
3062 .temp = 85000,
3063 .type = THERMAL_TRIP_CRITICAL,
3064 },
3065 .num_trips = 4,
3066};
b3aac62b 3067
3df57bcf
MN
3068static struct mfd_cell db8500_prcmu_devs[] = {
3069 {
3070 .name = "db8500-prcmu-regulators",
5d90322b 3071 .of_compatible = "stericsson,db8500-prcmu-regulator",
1ed7891f
MW
3072 .platform_data = &db8500_regulators,
3073 .pdata_size = sizeof(db8500_regulators),
3df57bcf
MN
3074 },
3075 {
84c7c20f
LJ
3076 .name = "cpufreq-ux500",
3077 .of_compatible = "stericsson,cpufreq-ux500",
c280f45f
UH
3078 .platform_data = &db8500_cpufreq_table,
3079 .pdata_size = sizeof(db8500_cpufreq_table),
3df57bcf 3080 },
b3aac62b
FB
3081 {
3082 .name = "ux500_wdt",
3083 .platform_data = &db8500_wdt_pdata,
3084 .pdata_size = sizeof(db8500_wdt_pdata),
3085 .id = -1,
3086 },
6d11d135 3087 {
55b175d7
AB
3088 .name = "db8500-thermal",
3089 .num_resources = ARRAY_SIZE(db8500_thsens_resources),
3090 .resources = db8500_thsens_resources,
3091 .platform_data = &db8500_thsens_data,
6d11d135 3092 },
3df57bcf
MN
3093};
3094
c280f45f
UH
3095static void db8500_prcmu_update_cpufreq(void)
3096{
3097 if (prcmu_has_arm_maxopp()) {
3098 db8500_cpufreq_table[3].frequency = 1000000;
3099 db8500_cpufreq_table[3].index = ARM_MAX_OPP;
3100 }
3101}
3102
55b175d7
AB
3103static int db8500_prcmu_register_ab8500(struct device *parent,
3104 struct ab8500_platform_data *pdata,
3105 int irq)
3106{
3107 struct resource ab8500_resource = DEFINE_RES_IRQ(irq);
3108 struct mfd_cell ab8500_cell = {
3109 .name = "ab8500-core",
3110 .of_compatible = "stericsson,ab8500",
3111 .id = AB8500_VERSION_AB8500,
3112 .platform_data = pdata,
3113 .pdata_size = sizeof(struct ab8500_platform_data),
3114 .resources = &ab8500_resource,
3115 .num_resources = 1,
3116 };
3117
3118 return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3119}
3120
3df57bcf
MN
3121/**
3122 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3123 *
3124 */
f791be49 3125static int db8500_prcmu_probe(struct platform_device *pdev)
3df57bcf 3126{
ca7edd16 3127 struct device_node *np = pdev->dev.of_node;
05ec260e 3128 struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
55b175d7 3129 int irq = 0, err = 0;
05ec260e 3130 struct resource *res;
3df57bcf 3131
b047d981
LW
3132 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3133 if (!res) {
3134 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3135 return -ENOENT;
3136 }
3137 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3138 if (!prcmu_base) {
3139 dev_err(&pdev->dev,
3140 "failed to ioremap prcmu register memory\n");
3141 return -ENOENT;
3142 }
0508901c 3143 init_prcm_registers();
05ec260e
LW
3144 dbx500_fw_version_init(pdev, pdata->version_offset);
3145 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3146 if (!res) {
3147 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3148 return -ENOENT;
3149 }
3150 tcdm_base = devm_ioremap(&pdev->dev, res->start,
3151 resource_size(res));
3152
e3726fcf 3153 /* Clean up the mailbox interrupts after pre-kernel code. */
c553b3ca 3154 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3df57bcf 3155
05ec260e
LW
3156 irq = platform_get_irq(pdev, 0);
3157 if (irq <= 0) {
3158 dev_err(&pdev->dev, "no prcmu irq provided\n");
3159 return -ENOENT;
3160 }
ca7edd16
LJ
3161
3162 err = request_threaded_irq(irq, prcmu_irq_handler,
3163 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3df57bcf
MN
3164 if (err < 0) {
3165 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3166 err = -EBUSY;
3167 goto no_irq_return;
3168 }
3169
55b175d7 3170 db8500_irq_init(np, pdata->irq_base);
3a8e39c9 3171
7a4f2609 3172 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3df57bcf 3173
c280f45f
UH
3174 db8500_prcmu_update_cpufreq();
3175
5d90322b 3176 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
55b175d7 3177 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, db8500_irq_domain);
5d90322b
LJ
3178 if (err) {
3179 pr_err("prcmu: Failed to add subdevices\n");
3180 return err;
ca7edd16 3181 }
e3726fcf 3182
55b175d7
AB
3183 err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata,
3184 pdata->ab_irq);
3185 if (err) {
3186 mfd_remove_devices(&pdev->dev);
3187 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3188 goto no_irq_return;
3189 }
3190
ca7edd16 3191 pr_info("DB8500 PRCMU initialized\n");
3df57bcf
MN
3192
3193no_irq_return:
3194 return err;
3195}
3c144762
LJ
3196static const struct of_device_id db8500_prcmu_match[] = {
3197 { .compatible = "stericsson,db8500-prcmu"},
3198 { },
3199};
3df57bcf
MN
3200
3201static struct platform_driver db8500_prcmu_driver = {
3202 .driver = {
3203 .name = "db8500-prcmu",
3204 .owner = THIS_MODULE,
3c144762 3205 .of_match_table = db8500_prcmu_match,
3df57bcf 3206 },
9fc63f67 3207 .probe = db8500_prcmu_probe,
3df57bcf
MN
3208};
3209
3210static int __init db8500_prcmu_init(void)
3211{
9fc63f67 3212 return platform_driver_register(&db8500_prcmu_driver);
e3726fcf
LW
3213}
3214
a661aca4 3215core_initcall(db8500_prcmu_init);
3df57bcf
MN
3216
3217MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3218MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3219MODULE_LICENSE("GPL v2");
This page took 0.369251 seconds and 5 git commands to generate.