mfd: prcmu: pass a base and size with the early initcall
[deliverable/linux.git] / drivers / mfd / db8500-prcmu.c
CommitLineData
e3726fcf 1/*
e0befb23
MP
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
e3726fcf
LW
4 *
5 * License Terms: GNU General Public License v2
e0befb23
MP
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
e3726fcf
LW
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9 *
e0befb23
MP
10 * U8500 PRCM Unit interface driver
11 *
e3726fcf 12 */
e3726fcf 13#include <linux/module.h>
3df57bcf
MN
14#include <linux/kernel.h>
15#include <linux/delay.h>
e3726fcf
LW
16#include <linux/errno.h>
17#include <linux/err.h>
3df57bcf 18#include <linux/spinlock.h>
e3726fcf 19#include <linux/io.h>
3df57bcf 20#include <linux/slab.h>
e3726fcf
LW
21#include <linux/mutex.h>
22#include <linux/completion.h>
3df57bcf 23#include <linux/irq.h>
e3726fcf
LW
24#include <linux/jiffies.h>
25#include <linux/bitops.h>
3df57bcf
MN
26#include <linux/fs.h>
27#include <linux/platform_device.h>
28#include <linux/uaccess.h>
520f7bd7 29#include <linux/irqchip/arm-gic.h>
3df57bcf 30#include <linux/mfd/core.h>
73180f85 31#include <linux/mfd/dbx500-prcmu.h>
3a8e39c9 32#include <linux/mfd/abx500/ab8500.h>
1032fbfd
BJ
33#include <linux/regulator/db8500-prcmu.h>
34#include <linux/regulator/machine.h>
c280f45f 35#include <linux/cpufreq.h>
b3aac62b 36#include <linux/platform_data/ux500_wdt.h>
3df57bcf
MN
37#include <mach/hardware.h>
38#include <mach/irqs.h>
39#include <mach/db8500-regs.h>
73180f85 40#include "dbx500-prcmu-regs.h"
3df57bcf 41
3df57bcf
MN
42/* Index of different voltages to be used when accessing AVSData */
43#define PRCM_AVS_BASE 0x2FC
44#define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
45#define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
46#define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
47#define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
48#define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
49#define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
50#define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
51#define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
52#define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
53#define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
54#define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
55#define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
56#define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
57
58#define PRCM_AVS_VOLTAGE 0
59#define PRCM_AVS_VOLTAGE_MASK 0x3f
60#define PRCM_AVS_ISSLOWSTARTUP 6
61#define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
62#define PRCM_AVS_ISMODEENABLE 7
63#define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
64
65#define PRCM_BOOT_STATUS 0xFFF
66#define PRCM_ROMCODE_A2P 0xFFE
67#define PRCM_ROMCODE_P2A 0xFFD
68#define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
69
70#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
71
72#define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
73#define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
74#define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
75#define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
76#define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
77#define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
78#define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
79#define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
80
81/* Req Mailboxes */
82#define PRCM_REQ_MB0 0xFDC /* 12 bytes */
83#define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
84#define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
85#define PRCM_REQ_MB3 0xE4C /* 372 bytes */
86#define PRCM_REQ_MB4 0xE48 /* 4 bytes */
87#define PRCM_REQ_MB5 0xE44 /* 4 bytes */
88
89/* Ack Mailboxes */
90#define PRCM_ACK_MB0 0xE08 /* 52 bytes */
91#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
92#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
93#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
94#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
95#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
96
97/* Mailbox 0 headers */
98#define MB0H_POWER_STATE_TRANS 0
99#define MB0H_CONFIG_WAKEUPS_EXE 1
100#define MB0H_READ_WAKEUP_ACK 3
101#define MB0H_CONFIG_WAKEUPS_SLEEP 4
102
103#define MB0H_WAKEUP_EXE 2
104#define MB0H_WAKEUP_SLEEP 5
105
106/* Mailbox 0 REQs */
107#define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
108#define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
109#define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
110#define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
111#define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
112#define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
113
114/* Mailbox 0 ACKs */
115#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
116#define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
117#define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
118#define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
119#define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
120#define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
121#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
122
123/* Mailbox 1 headers */
124#define MB1H_ARM_APE_OPP 0x0
125#define MB1H_RESET_MODEM 0x2
126#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
127#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
128#define MB1H_RELEASE_USB_WAKEUP 0x5
a592c2e2 129#define MB1H_PLL_ON_OFF 0x6
3df57bcf
MN
130
131/* Mailbox 1 Requests */
132#define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
133#define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
a592c2e2 134#define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
6b6fae2b
MN
135#define PLL_SOC0_OFF 0x1
136#define PLL_SOC0_ON 0x2
a592c2e2
MN
137#define PLL_SOC1_OFF 0x4
138#define PLL_SOC1_ON 0x8
3df57bcf
MN
139
140/* Mailbox 1 ACKs */
141#define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
142#define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
143#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
144#define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
145
146/* Mailbox 2 headers */
147#define MB2H_DPS 0x0
148#define MB2H_AUTO_PWR 0x1
149
150/* Mailbox 2 REQs */
151#define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
152#define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
153#define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
154#define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
155#define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
156#define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
157#define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
158#define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
159#define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
160#define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
161
162/* Mailbox 2 ACKs */
163#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
164#define HWACC_PWR_ST_OK 0xFE
165
166/* Mailbox 3 headers */
167#define MB3H_ANC 0x0
168#define MB3H_SIDETONE 0x1
169#define MB3H_SYSCLK 0xE
170
171/* Mailbox 3 Requests */
172#define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
173#define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
174#define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
175#define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
176#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
177#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
178#define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
179
180/* Mailbox 4 headers */
181#define MB4H_DDR_INIT 0x0
182#define MB4H_MEM_ST 0x1
183#define MB4H_HOTDOG 0x12
184#define MB4H_HOTMON 0x13
185#define MB4H_HOT_PERIOD 0x14
a592c2e2
MN
186#define MB4H_A9WDOG_CONF 0x16
187#define MB4H_A9WDOG_EN 0x17
188#define MB4H_A9WDOG_DIS 0x18
189#define MB4H_A9WDOG_LOAD 0x19
190#define MB4H_A9WDOG_KICK 0x20
3df57bcf
MN
191
192/* Mailbox 4 Requests */
193#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
194#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
195#define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
196#define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
197#define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
198#define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
199#define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
200#define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
201#define HOTMON_CONFIG_LOW BIT(0)
202#define HOTMON_CONFIG_HIGH BIT(1)
a592c2e2
MN
203#define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
204#define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
205#define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
206#define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
207#define A9WDOG_AUTO_OFF_EN BIT(7)
208#define A9WDOG_AUTO_OFF_DIS 0
209#define A9WDOG_ID_MASK 0xf
3df57bcf
MN
210
211/* Mailbox 5 Requests */
212#define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
213#define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
214#define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
215#define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
7a4f2609
LW
216#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
217#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
3df57bcf
MN
218#define PRCMU_I2C_STOP_EN BIT(3)
219
220/* Mailbox 5 ACKs */
221#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
222#define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
223#define I2C_WR_OK 0x1
224#define I2C_RD_OK 0x2
225
226#define NUM_MB 8
227#define MBOX_BIT BIT
228#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
229
230/*
231 * Wakeups/IRQs
232 */
233
234#define WAKEUP_BIT_RTC BIT(0)
235#define WAKEUP_BIT_RTT0 BIT(1)
236#define WAKEUP_BIT_RTT1 BIT(2)
237#define WAKEUP_BIT_HSI0 BIT(3)
238#define WAKEUP_BIT_HSI1 BIT(4)
239#define WAKEUP_BIT_CA_WAKE BIT(5)
240#define WAKEUP_BIT_USB BIT(6)
241#define WAKEUP_BIT_ABB BIT(7)
242#define WAKEUP_BIT_ABB_FIFO BIT(8)
243#define WAKEUP_BIT_SYSCLK_OK BIT(9)
244#define WAKEUP_BIT_CA_SLEEP BIT(10)
245#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
246#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
247#define WAKEUP_BIT_ANC_OK BIT(13)
248#define WAKEUP_BIT_SW_ERROR BIT(14)
249#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
250#define WAKEUP_BIT_ARM BIT(17)
251#define WAKEUP_BIT_HOTMON_LOW BIT(18)
252#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
253#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
254#define WAKEUP_BIT_GPIO0 BIT(23)
255#define WAKEUP_BIT_GPIO1 BIT(24)
256#define WAKEUP_BIT_GPIO2 BIT(25)
257#define WAKEUP_BIT_GPIO3 BIT(26)
258#define WAKEUP_BIT_GPIO4 BIT(27)
259#define WAKEUP_BIT_GPIO5 BIT(28)
260#define WAKEUP_BIT_GPIO6 BIT(29)
261#define WAKEUP_BIT_GPIO7 BIT(30)
262#define WAKEUP_BIT_GPIO8 BIT(31)
263
b58d12fe
MN
264static struct {
265 bool valid;
266 struct prcmu_fw_version version;
267} fw_info;
268
f3f1f0a1
LJ
269static struct irq_domain *db8500_irq_domain;
270
3df57bcf
MN
271/*
272 * This vector maps irq numbers to the bits in the bit field used in
273 * communication with the PRCMU firmware.
274 *
275 * The reason for having this is to keep the irq numbers contiguous even though
276 * the bits in the bit field are not. (The bits also have a tendency to move
277 * around, to further complicate matters.)
278 */
279#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
280#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
281static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
282 IRQ_ENTRY(RTC),
283 IRQ_ENTRY(RTT0),
284 IRQ_ENTRY(RTT1),
285 IRQ_ENTRY(HSI0),
286 IRQ_ENTRY(HSI1),
287 IRQ_ENTRY(CA_WAKE),
288 IRQ_ENTRY(USB),
289 IRQ_ENTRY(ABB),
290 IRQ_ENTRY(ABB_FIFO),
291 IRQ_ENTRY(CA_SLEEP),
292 IRQ_ENTRY(ARM),
293 IRQ_ENTRY(HOTMON_LOW),
294 IRQ_ENTRY(HOTMON_HIGH),
295 IRQ_ENTRY(MODEM_SW_RESET_REQ),
296 IRQ_ENTRY(GPIO0),
297 IRQ_ENTRY(GPIO1),
298 IRQ_ENTRY(GPIO2),
299 IRQ_ENTRY(GPIO3),
300 IRQ_ENTRY(GPIO4),
301 IRQ_ENTRY(GPIO5),
302 IRQ_ENTRY(GPIO6),
303 IRQ_ENTRY(GPIO7),
304 IRQ_ENTRY(GPIO8)
305};
306
307#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
308#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
309static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
310 WAKEUP_ENTRY(RTC),
311 WAKEUP_ENTRY(RTT0),
312 WAKEUP_ENTRY(RTT1),
313 WAKEUP_ENTRY(HSI0),
314 WAKEUP_ENTRY(HSI1),
315 WAKEUP_ENTRY(USB),
316 WAKEUP_ENTRY(ABB),
317 WAKEUP_ENTRY(ABB_FIFO),
318 WAKEUP_ENTRY(ARM)
319};
320
321/*
322 * mb0_transfer - state needed for mailbox 0 communication.
323 * @lock: The transaction lock.
324 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
325 * the request data.
326 * @mask_work: Work structure used for (un)masking wakeup interrupts.
327 * @req: Request data that need to persist between requests.
328 */
329static struct {
330 spinlock_t lock;
331 spinlock_t dbb_irqs_lock;
332 struct work_struct mask_work;
333 struct mutex ac_wake_lock;
334 struct completion ac_wake_work;
335 struct {
336 u32 dbb_irqs;
337 u32 dbb_wakeups;
338 u32 abb_events;
339 } req;
340} mb0_transfer;
341
342/*
343 * mb1_transfer - state needed for mailbox 1 communication.
344 * @lock: The transaction lock.
345 * @work: The transaction completion structure.
4d64d2e3 346 * @ape_opp: The current APE OPP.
3df57bcf
MN
347 * @ack: Reply ("acknowledge") data.
348 */
349static struct {
350 struct mutex lock;
351 struct completion work;
4d64d2e3 352 u8 ape_opp;
3df57bcf
MN
353 struct {
354 u8 header;
355 u8 arm_opp;
356 u8 ape_opp;
357 u8 ape_voltage_status;
358 } ack;
359} mb1_transfer;
360
361/*
362 * mb2_transfer - state needed for mailbox 2 communication.
363 * @lock: The transaction lock.
364 * @work: The transaction completion structure.
365 * @auto_pm_lock: The autonomous power management configuration lock.
366 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
367 * @req: Request data that need to persist between requests.
368 * @ack: Reply ("acknowledge") data.
369 */
370static struct {
371 struct mutex lock;
372 struct completion work;
373 spinlock_t auto_pm_lock;
374 bool auto_pm_enabled;
375 struct {
376 u8 status;
377 } ack;
378} mb2_transfer;
379
380/*
381 * mb3_transfer - state needed for mailbox 3 communication.
382 * @lock: The request lock.
383 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
384 * @sysclk_work: Work structure used for sysclk requests.
385 */
386static struct {
387 spinlock_t lock;
388 struct mutex sysclk_lock;
389 struct completion sysclk_work;
390} mb3_transfer;
391
392/*
393 * mb4_transfer - state needed for mailbox 4 communication.
394 * @lock: The transaction lock.
395 * @work: The transaction completion structure.
396 */
397static struct {
398 struct mutex lock;
399 struct completion work;
400} mb4_transfer;
401
402/*
403 * mb5_transfer - state needed for mailbox 5 communication.
404 * @lock: The transaction lock.
405 * @work: The transaction completion structure.
406 * @ack: Reply ("acknowledge") data.
407 */
408static struct {
409 struct mutex lock;
410 struct completion work;
411 struct {
412 u8 status;
413 u8 value;
414 } ack;
415} mb5_transfer;
416
417static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
418
419/* Spinlocks */
b4a6dbd5 420static DEFINE_SPINLOCK(prcmu_lock);
3df57bcf 421static DEFINE_SPINLOCK(clkout_lock);
3df57bcf
MN
422
423/* Global var to runtime determine TCDM base for v2 or v1 */
424static __iomem void *tcdm_base;
425
426struct clk_mgt {
6b6fae2b 427 void __iomem *reg;
3df57bcf 428 u32 pllsw;
6b6fae2b
MN
429 int branch;
430 bool clk38div;
431};
432
433enum {
434 PLL_RAW,
435 PLL_FIX,
436 PLL_DIV
3df57bcf
MN
437};
438
439static DEFINE_SPINLOCK(clk_mgt_lock);
440
6b6fae2b
MN
441#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
442 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
3df57bcf 443struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
6b6fae2b
MN
444 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
445 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
446 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
447 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
448 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
449 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
450 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
451 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
452 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
453 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
454 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
455 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
456 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
457 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
458 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
459 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
460 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
461 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
462 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
463 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
464 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
465 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
466 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
467 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
468 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
469 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
470 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
471 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
472 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
473};
474
475struct dsiclk {
476 u32 divsel_mask;
477 u32 divsel_shift;
478 u32 divsel;
479};
480
481static struct dsiclk dsiclk[2] = {
482 {
483 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
484 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
485 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
486 },
487 {
488 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
489 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
490 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
491 }
492};
493
494struct dsiescclk {
495 u32 en;
496 u32 div_mask;
497 u32 div_shift;
498};
499
500static struct dsiescclk dsiescclk[3] = {
501 {
502 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
503 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
504 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
505 },
506 {
507 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
508 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
509 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
510 },
511 {
512 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
513 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
514 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
515 }
3df57bcf
MN
516};
517
20aee5b6 518
3df57bcf
MN
519/*
520* Used by MCDE to setup all necessary PRCMU registers
521*/
522#define PRCMU_RESET_DSIPLL 0x00004000
523#define PRCMU_UNCLAMP_DSIPLL 0x00400800
524
525#define PRCMU_CLK_PLL_DIV_SHIFT 0
526#define PRCMU_CLK_PLL_SW_SHIFT 5
527#define PRCMU_CLK_38 (1 << 9)
528#define PRCMU_CLK_38_SRC (1 << 10)
529#define PRCMU_CLK_38_DIV (1 << 11)
530
531/* PLLDIV=12, PLLSW=4 (PLLDDR) */
532#define PRCMU_DSI_CLOCK_SETTING 0x0000008C
533
3df57bcf
MN
534/* DPI 50000000 Hz */
535#define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
536 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
537#define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
538
539/* D=101, N=1, R=4, SELDIV2=0 */
540#define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
541
3df57bcf
MN
542#define PRCMU_ENABLE_PLLDSI 0x00000001
543#define PRCMU_DISABLE_PLLDSI 0x00000000
544#define PRCMU_RELEASE_RESET_DSS 0x0000400C
545#define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
546/* ESC clk, div0=1, div1=1, div2=3 */
547#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
548#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
549#define PRCMU_DSI_RESET_SW 0x00000007
550
551#define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
552
73180f85 553int db8500_prcmu_enable_dsipll(void)
3df57bcf
MN
554{
555 int i;
3df57bcf
MN
556
557 /* Clear DSIPLL_RESETN */
c553b3ca 558 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
3df57bcf 559 /* Unclamp DSIPLL in/out */
c553b3ca 560 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
3df57bcf 561
3df57bcf 562 /* Set DSI PLL FREQ */
c72fe851 563 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
c553b3ca 564 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
3df57bcf 565 /* Enable Escape clocks */
c553b3ca 566 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
567
568 /* Start DSI PLL */
c553b3ca 569 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 570 /* Reset DSI PLL */
c553b3ca 571 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
3df57bcf 572 for (i = 0; i < 10; i++) {
c553b3ca 573 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
3df57bcf
MN
574 == PRCMU_PLLDSI_LOCKP_LOCKED)
575 break;
576 udelay(100);
577 }
578 /* Set DSIPLL_RESETN */
c553b3ca 579 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
3df57bcf
MN
580 return 0;
581}
582
73180f85 583int db8500_prcmu_disable_dsipll(void)
3df57bcf
MN
584{
585 /* Disable dsi pll */
c553b3ca 586 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 587 /* Disable escapeclock */
c553b3ca 588 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
589 return 0;
590}
591
73180f85 592int db8500_prcmu_set_display_clocks(void)
3df57bcf
MN
593{
594 unsigned long flags;
3df57bcf
MN
595
596 spin_lock_irqsave(&clk_mgt_lock, flags);
597
598 /* Grab the HW semaphore. */
c553b3ca 599 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
600 cpu_relax();
601
c72fe851 602 writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
c553b3ca
MN
603 writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
604 writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
3df57bcf
MN
605
606 /* Release the HW semaphore. */
c553b3ca 607 writel(0, PRCM_SEM);
3df57bcf
MN
608
609 spin_unlock_irqrestore(&clk_mgt_lock, flags);
610
611 return 0;
612}
613
b4a6dbd5
MN
614u32 db8500_prcmu_read(unsigned int reg)
615{
616 return readl(_PRCMU_BASE + reg);
617}
618
619void db8500_prcmu_write(unsigned int reg, u32 value)
3df57bcf 620{
3df57bcf
MN
621 unsigned long flags;
622
b4a6dbd5
MN
623 spin_lock_irqsave(&prcmu_lock, flags);
624 writel(value, (_PRCMU_BASE + reg));
625 spin_unlock_irqrestore(&prcmu_lock, flags);
3df57bcf
MN
626}
627
b4a6dbd5 628void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
3df57bcf 629{
b4a6dbd5 630 u32 val;
3df57bcf
MN
631 unsigned long flags;
632
b4a6dbd5
MN
633 spin_lock_irqsave(&prcmu_lock, flags);
634 val = readl(_PRCMU_BASE + reg);
635 val = ((val & ~mask) | (value & mask));
636 writel(val, (_PRCMU_BASE + reg));
637 spin_unlock_irqrestore(&prcmu_lock, flags);
3df57bcf
MN
638}
639
b58d12fe
MN
640struct prcmu_fw_version *prcmu_get_fw_version(void)
641{
642 return fw_info.valid ? &fw_info.version : NULL;
643}
644
3df57bcf
MN
645bool prcmu_has_arm_maxopp(void)
646{
647 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
648 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
649}
650
3df57bcf
MN
651/**
652 * prcmu_get_boot_status - PRCMU boot status checking
653 * Returns: the current PRCMU boot status
654 */
655int prcmu_get_boot_status(void)
656{
657 return readb(tcdm_base + PRCM_BOOT_STATUS);
658}
659
660/**
661 * prcmu_set_rc_a2p - This function is used to run few power state sequences
662 * @val: Value to be set, i.e. transition requested
663 * Returns: 0 on success, -EINVAL on invalid argument
664 *
665 * This function is used to run the following power state sequences -
666 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
667 */
668int prcmu_set_rc_a2p(enum romcode_write val)
669{
670 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
671 return -EINVAL;
672 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
673 return 0;
674}
675
676/**
677 * prcmu_get_rc_p2a - This function is used to get power state sequences
678 * Returns: the power transition that has last happened
679 *
680 * This function can return the following transitions-
681 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
682 */
683enum romcode_read prcmu_get_rc_p2a(void)
684{
685 return readb(tcdm_base + PRCM_ROMCODE_P2A);
686}
687
688/**
689 * prcmu_get_current_mode - Return the current XP70 power mode
690 * Returns: Returns the current AP(ARM) power mode: init,
691 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
692 */
693enum ap_pwrst prcmu_get_xp70_current_state(void)
694{
695 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
696}
697
698/**
699 * prcmu_config_clkout - Configure one of the programmable clock outputs.
700 * @clkout: The CLKOUT number (0 or 1).
701 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
702 * @div: The divider to be applied.
703 *
704 * Configures one of the programmable clock outputs (CLKOUTs).
705 * @div should be in the range [1,63] to request a configuration, or 0 to
706 * inform that the configuration is no longer requested.
707 */
708int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
709{
710 static int requests[2];
711 int r = 0;
712 unsigned long flags;
713 u32 val;
714 u32 bits;
715 u32 mask;
716 u32 div_mask;
717
718 BUG_ON(clkout > 1);
719 BUG_ON(div > 63);
720 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
721
722 if (!div && !requests[clkout])
723 return -EINVAL;
724
725 switch (clkout) {
726 case 0:
727 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
728 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
729 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
730 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
731 break;
732 case 1:
733 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
734 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
735 PRCM_CLKOCR_CLK1TYPE);
736 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
737 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
738 break;
739 }
740 bits &= mask;
741
742 spin_lock_irqsave(&clkout_lock, flags);
743
c553b3ca 744 val = readl(PRCM_CLKOCR);
3df57bcf
MN
745 if (val & div_mask) {
746 if (div) {
747 if ((val & mask) != bits) {
748 r = -EBUSY;
749 goto unlock_and_return;
750 }
751 } else {
752 if ((val & mask & ~div_mask) != bits) {
753 r = -EINVAL;
754 goto unlock_and_return;
755 }
756 }
757 }
c553b3ca 758 writel((bits | (val & ~mask)), PRCM_CLKOCR);
3df57bcf
MN
759 requests[clkout] += (div ? 1 : -1);
760
761unlock_and_return:
762 spin_unlock_irqrestore(&clkout_lock, flags);
763
764 return r;
765}
766
73180f85 767int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
3df57bcf
MN
768{
769 unsigned long flags;
770
771 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
772
773 spin_lock_irqsave(&mb0_transfer.lock, flags);
774
c553b3ca 775 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
776 cpu_relax();
777
778 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
779 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
780 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
781 writeb((keep_ulp_clk ? 1 : 0),
782 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
783 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
c553b3ca 784 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
785
786 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
787
788 return 0;
789}
790
4d64d2e3
MN
791u8 db8500_prcmu_get_power_state_result(void)
792{
793 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
794}
795
485540dc
DL
796/* This function decouple the gic from the prcmu */
797int db8500_prcmu_gic_decouple(void)
798{
801448e0 799 u32 val = readl(PRCM_A9_MASK_REQ);
485540dc
DL
800
801 /* Set bit 0 register value to 1 */
801448e0
DL
802 writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
803 PRCM_A9_MASK_REQ);
485540dc
DL
804
805 /* Make sure the register is updated */
801448e0 806 readl(PRCM_A9_MASK_REQ);
485540dc
DL
807
808 /* Wait a few cycles for the gic mask completion */
801448e0 809 udelay(1);
485540dc
DL
810
811 return 0;
812}
813
814/* This function recouple the gic with the prcmu */
815int db8500_prcmu_gic_recouple(void)
816{
801448e0 817 u32 val = readl(PRCM_A9_MASK_REQ);
485540dc
DL
818
819 /* Set bit 0 register value to 0 */
801448e0 820 writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
485540dc
DL
821
822 return 0;
823}
824
cc9a0f68
DL
825#define PRCMU_GIC_NUMBER_REGS 5
826
827/*
828 * This function checks if there are pending irq on the gic. It only
829 * makes sense if the gic has been decoupled before with the
830 * db8500_prcmu_gic_decouple function. Disabling an interrupt only
831 * disables the forwarding of the interrupt to any CPU interface. It
832 * does not prevent the interrupt from changing state, for example
833 * becoming pending, or active and pending if it is already
834 * active. Hence, we have to check the interrupt is pending *and* is
835 * active.
836 */
837bool db8500_prcmu_gic_pending_irq(void)
838{
839 u32 pr; /* Pending register */
840 u32 er; /* Enable register */
841 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
842 int i;
843
844 /* 5 registers. STI & PPI not skipped */
845 for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
846
847 pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
848 er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
849
850 if (pr & er)
851 return true; /* There is a pending interrupt */
852 }
853
854 return false;
855}
856
9ab492e1
DL
857/*
858 * This function checks if there are pending interrupt on the
859 * prcmu which has been delegated to monitor the irqs with the
860 * db8500_prcmu_copy_gic_settings function.
861 */
862bool db8500_prcmu_pending_irq(void)
863{
864 u32 it, im;
865 int i;
866
867 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
868 it = readl(PRCM_ARMITVAL31TO0 + i * 4);
869 im = readl(PRCM_ARMITMSK31TO0 + i * 4);
870 if (it & im)
871 return true; /* There is a pending interrupt */
872 }
873
874 return false;
875}
876
34fe6f10
DL
877/*
878 * This function checks if the specified cpu is in in WFI. It's usage
879 * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
880 * function. Of course passing smp_processor_id() to this function will
881 * always return false...
882 */
883bool db8500_prcmu_is_cpu_in_wfi(int cpu)
884{
885 return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
886 PRCM_ARM_WFI_STANDBY_WFI0;
887}
888
9f60d33e
DL
889/*
890 * This function copies the gic SPI settings to the prcmu in order to
891 * monitor them and abort/finish the retention/off sequence or state.
892 */
893int db8500_prcmu_copy_gic_settings(void)
894{
895 u32 er; /* Enable register */
896 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
897 int i;
898
899 /* We skip the STI and PPI */
900 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
901 er = readl_relaxed(dist_base +
902 GIC_DIST_ENABLE_SET + (i + 1) * 4);
903 writel(er, PRCM_ARMITMSK31TO0 + i * 4);
904 }
905
906 return 0;
907}
908
3df57bcf
MN
909/* This function should only be called while mb0_transfer.lock is held. */
910static void config_wakeups(void)
911{
912 const u8 header[2] = {
913 MB0H_CONFIG_WAKEUPS_EXE,
914 MB0H_CONFIG_WAKEUPS_SLEEP
915 };
916 static u32 last_dbb_events;
917 static u32 last_abb_events;
918 u32 dbb_events;
919 u32 abb_events;
920 unsigned int i;
921
922 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
923 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
924
925 abb_events = mb0_transfer.req.abb_events;
926
927 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
928 return;
929
930 for (i = 0; i < 2; i++) {
c553b3ca 931 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
932 cpu_relax();
933 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
934 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
935 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 936 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
937 }
938 last_dbb_events = dbb_events;
939 last_abb_events = abb_events;
940}
941
73180f85 942void db8500_prcmu_enable_wakeups(u32 wakeups)
3df57bcf
MN
943{
944 unsigned long flags;
945 u32 bits;
946 int i;
947
948 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
949
950 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
951 if (wakeups & BIT(i))
952 bits |= prcmu_wakeup_bit[i];
953 }
954
955 spin_lock_irqsave(&mb0_transfer.lock, flags);
956
957 mb0_transfer.req.dbb_wakeups = bits;
958 config_wakeups();
959
960 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
961}
962
73180f85 963void db8500_prcmu_config_abb_event_readout(u32 abb_events)
3df57bcf
MN
964{
965 unsigned long flags;
966
967 spin_lock_irqsave(&mb0_transfer.lock, flags);
968
969 mb0_transfer.req.abb_events = abb_events;
970 config_wakeups();
971
972 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
973}
974
73180f85 975void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
3df57bcf
MN
976{
977 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
978 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
979 else
980 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
981}
982
983/**
73180f85 984 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
3df57bcf
MN
985 * @opp: The new ARM operating point to which transition is to be made
986 * Returns: 0 on success, non-zero on failure
987 *
988 * This function sets the the operating point of the ARM.
989 */
73180f85 990int db8500_prcmu_set_arm_opp(u8 opp)
3df57bcf
MN
991{
992 int r;
993
994 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
995 return -EINVAL;
996
997 r = 0;
998
999 mutex_lock(&mb1_transfer.lock);
1000
c553b3ca 1001 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1002 cpu_relax();
1003
1004 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1005 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1006 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1007
c553b3ca 1008 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1009 wait_for_completion(&mb1_transfer.work);
1010
1011 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1012 (mb1_transfer.ack.arm_opp != opp))
1013 r = -EIO;
1014
1015 mutex_unlock(&mb1_transfer.lock);
1016
1017 return r;
1018}
1019
1020/**
73180f85 1021 * db8500_prcmu_get_arm_opp - get the current ARM OPP
3df57bcf
MN
1022 *
1023 * Returns: the current ARM OPP
1024 */
73180f85 1025int db8500_prcmu_get_arm_opp(void)
3df57bcf
MN
1026{
1027 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1028}
1029
1030/**
0508901c 1031 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
3df57bcf
MN
1032 *
1033 * Returns: the current DDR OPP
1034 */
0508901c 1035int db8500_prcmu_get_ddr_opp(void)
3df57bcf 1036{
c553b3ca 1037 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
1038}
1039
1040/**
0508901c 1041 * db8500_set_ddr_opp - set the appropriate DDR OPP
3df57bcf
MN
1042 * @opp: The new DDR operating point to which transition is to be made
1043 * Returns: 0 on success, non-zero on failure
1044 *
1045 * This function sets the operating point of the DDR.
1046 */
7a4f2609 1047static bool enable_set_ddr_opp;
0508901c 1048int db8500_prcmu_set_ddr_opp(u8 opp)
3df57bcf
MN
1049{
1050 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1051 return -EINVAL;
1052 /* Changing the DDR OPP can hang the hardware pre-v21 */
7a4f2609 1053 if (enable_set_ddr_opp)
c553b3ca 1054 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
1055
1056 return 0;
1057}
6b6fae2b 1058
4d64d2e3
MN
1059/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1060static void request_even_slower_clocks(bool enable)
1061{
1062 void __iomem *clock_reg[] = {
1063 PRCM_ACLK_MGT,
1064 PRCM_DMACLK_MGT
1065 };
1066 unsigned long flags;
1067 unsigned int i;
1068
1069 spin_lock_irqsave(&clk_mgt_lock, flags);
1070
1071 /* Grab the HW semaphore. */
1072 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1073 cpu_relax();
1074
1075 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1076 u32 val;
1077 u32 div;
1078
1079 val = readl(clock_reg[i]);
1080 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1081 if (enable) {
1082 if ((div <= 1) || (div > 15)) {
1083 pr_err("prcmu: Bad clock divider %d in %s\n",
1084 div, __func__);
1085 goto unlock_and_return;
1086 }
1087 div <<= 1;
1088 } else {
1089 if (div <= 2)
1090 goto unlock_and_return;
1091 div >>= 1;
1092 }
1093 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1094 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1095 writel(val, clock_reg[i]);
1096 }
1097
1098unlock_and_return:
1099 /* Release the HW semaphore. */
1100 writel(0, PRCM_SEM);
1101
1102 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1103}
1104
3df57bcf 1105/**
0508901c 1106 * db8500_set_ape_opp - set the appropriate APE OPP
3df57bcf
MN
1107 * @opp: The new APE operating point to which transition is to be made
1108 * Returns: 0 on success, non-zero on failure
1109 *
1110 * This function sets the operating point of the APE.
1111 */
0508901c 1112int db8500_prcmu_set_ape_opp(u8 opp)
3df57bcf
MN
1113{
1114 int r = 0;
1115
4d64d2e3
MN
1116 if (opp == mb1_transfer.ape_opp)
1117 return 0;
1118
3df57bcf
MN
1119 mutex_lock(&mb1_transfer.lock);
1120
4d64d2e3
MN
1121 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1122 request_even_slower_clocks(false);
1123
1124 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1125 goto skip_message;
1126
c553b3ca 1127 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1128 cpu_relax();
1129
1130 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1131 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
4d64d2e3
MN
1132 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1133 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
3df57bcf 1134
c553b3ca 1135 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1136 wait_for_completion(&mb1_transfer.work);
1137
1138 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1139 (mb1_transfer.ack.ape_opp != opp))
1140 r = -EIO;
1141
4d64d2e3
MN
1142skip_message:
1143 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1144 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1145 request_even_slower_clocks(true);
1146 if (!r)
1147 mb1_transfer.ape_opp = opp;
1148
3df57bcf
MN
1149 mutex_unlock(&mb1_transfer.lock);
1150
1151 return r;
1152}
1153
1154/**
0508901c 1155 * db8500_prcmu_get_ape_opp - get the current APE OPP
3df57bcf
MN
1156 *
1157 * Returns: the current APE OPP
1158 */
0508901c 1159int db8500_prcmu_get_ape_opp(void)
3df57bcf
MN
1160{
1161 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1162}
1163
1164/**
686f871b 1165 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
3df57bcf
MN
1166 * @enable: true to request the higher voltage, false to drop a request.
1167 *
1168 * Calls to this function to enable and disable requests must be balanced.
1169 */
686f871b 1170int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
3df57bcf
MN
1171{
1172 int r = 0;
1173 u8 header;
1174 static unsigned int requests;
1175
1176 mutex_lock(&mb1_transfer.lock);
1177
1178 if (enable) {
1179 if (0 != requests++)
1180 goto unlock_and_return;
1181 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1182 } else {
1183 if (requests == 0) {
1184 r = -EIO;
1185 goto unlock_and_return;
1186 } else if (1 != requests--) {
1187 goto unlock_and_return;
1188 }
1189 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1190 }
1191
c553b3ca 1192 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1193 cpu_relax();
1194
1195 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1196
c553b3ca 1197 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1198 wait_for_completion(&mb1_transfer.work);
1199
1200 if ((mb1_transfer.ack.header != header) ||
1201 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1202 r = -EIO;
1203
1204unlock_and_return:
1205 mutex_unlock(&mb1_transfer.lock);
1206
1207 return r;
1208}
1209
1210/**
1211 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1212 *
1213 * This function releases the power state requirements of a USB wakeup.
1214 */
1215int prcmu_release_usb_wakeup_state(void)
1216{
1217 int r = 0;
1218
1219 mutex_lock(&mb1_transfer.lock);
1220
c553b3ca 1221 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1222 cpu_relax();
1223
1224 writeb(MB1H_RELEASE_USB_WAKEUP,
1225 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1226
c553b3ca 1227 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1228 wait_for_completion(&mb1_transfer.work);
1229
1230 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1231 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1232 r = -EIO;
1233
1234 mutex_unlock(&mb1_transfer.lock);
1235
1236 return r;
1237}
1238
0837bb72
MN
1239static int request_pll(u8 clock, bool enable)
1240{
1241 int r = 0;
1242
6b6fae2b
MN
1243 if (clock == PRCMU_PLLSOC0)
1244 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1245 else if (clock == PRCMU_PLLSOC1)
0837bb72
MN
1246 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1247 else
1248 return -EINVAL;
1249
1250 mutex_lock(&mb1_transfer.lock);
1251
1252 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1253 cpu_relax();
1254
1255 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1256 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1257
1258 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1259 wait_for_completion(&mb1_transfer.work);
1260
1261 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1262 r = -EIO;
1263
1264 mutex_unlock(&mb1_transfer.lock);
1265
1266 return r;
1267}
1268
3df57bcf 1269/**
73180f85 1270 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
3df57bcf
MN
1271 * @epod_id: The EPOD to set
1272 * @epod_state: The new EPOD state
1273 *
1274 * This function sets the state of a EPOD (power domain). It may not be called
1275 * from interrupt context.
1276 */
73180f85 1277int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
3df57bcf
MN
1278{
1279 int r = 0;
1280 bool ram_retention = false;
1281 int i;
1282
1283 /* check argument */
1284 BUG_ON(epod_id >= NUM_EPOD_ID);
1285
1286 /* set flag if retention is possible */
1287 switch (epod_id) {
1288 case EPOD_ID_SVAMMDSP:
1289 case EPOD_ID_SIAMMDSP:
1290 case EPOD_ID_ESRAM12:
1291 case EPOD_ID_ESRAM34:
1292 ram_retention = true;
1293 break;
1294 }
1295
1296 /* check argument */
1297 BUG_ON(epod_state > EPOD_STATE_ON);
1298 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1299
1300 /* get lock */
1301 mutex_lock(&mb2_transfer.lock);
1302
1303 /* wait for mailbox */
c553b3ca 1304 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
3df57bcf
MN
1305 cpu_relax();
1306
1307 /* fill in mailbox */
1308 for (i = 0; i < NUM_EPOD_ID; i++)
1309 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1310 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1311
1312 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1313
c553b3ca 1314 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1315
1316 /*
1317 * The current firmware version does not handle errors correctly,
1318 * and we cannot recover if there is an error.
1319 * This is expected to change when the firmware is updated.
1320 */
1321 if (!wait_for_completion_timeout(&mb2_transfer.work,
1322 msecs_to_jiffies(20000))) {
1323 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1324 __func__);
1325 r = -EIO;
1326 goto unlock_and_return;
1327 }
1328
1329 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1330 r = -EIO;
1331
1332unlock_and_return:
1333 mutex_unlock(&mb2_transfer.lock);
1334 return r;
1335}
1336
1337/**
1338 * prcmu_configure_auto_pm - Configure autonomous power management.
1339 * @sleep: Configuration for ApSleep.
1340 * @idle: Configuration for ApIdle.
1341 */
1342void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1343 struct prcmu_auto_pm_config *idle)
1344{
1345 u32 sleep_cfg;
1346 u32 idle_cfg;
1347 unsigned long flags;
e3726fcf 1348
3df57bcf 1349 BUG_ON((sleep == NULL) || (idle == NULL));
650c2a21 1350
3df57bcf
MN
1351 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1352 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1353 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1354 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1355 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1356 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
e3726fcf 1357
3df57bcf
MN
1358 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1359 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1360 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1361 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1362 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1363 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
e3726fcf 1364
3df57bcf 1365 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
e0befb23 1366
3df57bcf
MN
1367 /*
1368 * The autonomous power management configuration is done through
1369 * fields in mailbox 2, but these fields are only used as shared
1370 * variables - i.e. there is no need to send a message.
1371 */
1372 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1373 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
e0befb23 1374
3df57bcf
MN
1375 mb2_transfer.auto_pm_enabled =
1376 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1377 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1378 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1379 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
e0befb23 1380
3df57bcf
MN
1381 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1382}
1383EXPORT_SYMBOL(prcmu_configure_auto_pm);
e3726fcf 1384
3df57bcf
MN
1385bool prcmu_is_auto_pm_enabled(void)
1386{
1387 return mb2_transfer.auto_pm_enabled;
1388}
e0befb23 1389
3df57bcf
MN
1390static int request_sysclk(bool enable)
1391{
1392 int r;
1393 unsigned long flags;
e3726fcf 1394
3df57bcf 1395 r = 0;
e3726fcf 1396
3df57bcf 1397 mutex_lock(&mb3_transfer.sysclk_lock);
e0befb23 1398
3df57bcf 1399 spin_lock_irqsave(&mb3_transfer.lock, flags);
e0befb23 1400
c553b3ca 1401 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
3df57bcf 1402 cpu_relax();
e0befb23 1403
3df57bcf 1404 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
e3726fcf 1405
3df57bcf 1406 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
c553b3ca 1407 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
e3726fcf 1408
3df57bcf
MN
1409 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1410
1411 /*
1412 * The firmware only sends an ACK if we want to enable the
1413 * SysClk, and it succeeds.
1414 */
1415 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1416 msecs_to_jiffies(20000))) {
1417 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1418 __func__);
1419 r = -EIO;
1420 }
1421
1422 mutex_unlock(&mb3_transfer.sysclk_lock);
1423
1424 return r;
1425}
1426
1427static int request_timclk(bool enable)
1428{
1429 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1430
1431 if (!enable)
1432 val |= PRCM_TCR_STOP_TIMERS;
c553b3ca 1433 writel(val, PRCM_TCR);
3df57bcf
MN
1434
1435 return 0;
1436}
1437
6b6fae2b 1438static int request_clock(u8 clock, bool enable)
3df57bcf
MN
1439{
1440 u32 val;
1441 unsigned long flags;
1442
1443 spin_lock_irqsave(&clk_mgt_lock, flags);
1444
1445 /* Grab the HW semaphore. */
c553b3ca 1446 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
1447 cpu_relax();
1448
6b6fae2b 1449 val = readl(clk_mgt[clock].reg);
3df57bcf
MN
1450 if (enable) {
1451 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1452 } else {
1453 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1454 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1455 }
6b6fae2b 1456 writel(val, clk_mgt[clock].reg);
3df57bcf
MN
1457
1458 /* Release the HW semaphore. */
c553b3ca 1459 writel(0, PRCM_SEM);
3df57bcf
MN
1460
1461 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1462
1463 return 0;
1464}
1465
0837bb72
MN
1466static int request_sga_clock(u8 clock, bool enable)
1467{
1468 u32 val;
1469 int ret;
1470
1471 if (enable) {
1472 val = readl(PRCM_CGATING_BYPASS);
1473 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1474 }
1475
6b6fae2b 1476 ret = request_clock(clock, enable);
0837bb72
MN
1477
1478 if (!ret && !enable) {
1479 val = readl(PRCM_CGATING_BYPASS);
1480 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1481 }
1482
1483 return ret;
1484}
1485
6b6fae2b
MN
1486static inline bool plldsi_locked(void)
1487{
1488 return (readl(PRCM_PLLDSI_LOCKP) &
1489 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1490 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1491 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1492 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1493}
1494
1495static int request_plldsi(bool enable)
1496{
1497 int r = 0;
1498 u32 val;
1499
1500 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1501 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1502 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1503
1504 val = readl(PRCM_PLLDSI_ENABLE);
1505 if (enable)
1506 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1507 else
1508 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1509 writel(val, PRCM_PLLDSI_ENABLE);
1510
1511 if (enable) {
1512 unsigned int i;
1513 bool locked = plldsi_locked();
1514
1515 for (i = 10; !locked && (i > 0); --i) {
1516 udelay(100);
1517 locked = plldsi_locked();
1518 }
1519 if (locked) {
1520 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1521 PRCM_APE_RESETN_SET);
1522 } else {
1523 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1524 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1525 PRCM_MMIP_LS_CLAMP_SET);
1526 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1527 writel(val, PRCM_PLLDSI_ENABLE);
1528 r = -EAGAIN;
1529 }
1530 } else {
1531 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1532 }
1533 return r;
1534}
1535
1536static int request_dsiclk(u8 n, bool enable)
1537{
1538 u32 val;
1539
1540 val = readl(PRCM_DSI_PLLOUT_SEL);
1541 val &= ~dsiclk[n].divsel_mask;
1542 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1543 dsiclk[n].divsel_shift);
1544 writel(val, PRCM_DSI_PLLOUT_SEL);
1545 return 0;
1546}
1547
1548static int request_dsiescclk(u8 n, bool enable)
1549{
1550 u32 val;
1551
1552 val = readl(PRCM_DSITVCLK_DIV);
1553 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1554 writel(val, PRCM_DSITVCLK_DIV);
1555 return 0;
1556}
1557
3df57bcf 1558/**
73180f85 1559 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
3df57bcf
MN
1560 * @clock: The clock for which the request is made.
1561 * @enable: Whether the clock should be enabled (true) or disabled (false).
1562 *
1563 * This function should only be used by the clock implementation.
1564 * Do not use it from any other place!
1565 */
73180f85 1566int db8500_prcmu_request_clock(u8 clock, bool enable)
3df57bcf 1567{
6b6fae2b 1568 if (clock == PRCMU_SGACLK)
0837bb72 1569 return request_sga_clock(clock, enable);
6b6fae2b
MN
1570 else if (clock < PRCMU_NUM_REG_CLOCKS)
1571 return request_clock(clock, enable);
1572 else if (clock == PRCMU_TIMCLK)
3df57bcf 1573 return request_timclk(enable);
6b6fae2b
MN
1574 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1575 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1576 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1577 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1578 else if (clock == PRCMU_PLLDSI)
1579 return request_plldsi(enable);
1580 else if (clock == PRCMU_SYSCLK)
3df57bcf 1581 return request_sysclk(enable);
6b6fae2b 1582 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
0837bb72 1583 return request_pll(clock, enable);
6b6fae2b
MN
1584 else
1585 return -EINVAL;
1586}
1587
1588static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1589 int branch)
1590{
1591 u64 rate;
1592 u32 val;
1593 u32 d;
1594 u32 div = 1;
1595
1596 val = readl(reg);
1597
1598 rate = src_rate;
1599 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1600
1601 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1602 if (d > 1)
1603 div *= d;
1604
1605 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1606 if (d > 1)
1607 div *= d;
1608
1609 if (val & PRCM_PLL_FREQ_SELDIV2)
1610 div *= 2;
1611
1612 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1613 (val & PRCM_PLL_FREQ_DIV2EN) &&
1614 ((reg == PRCM_PLLSOC0_FREQ) ||
20aee5b6 1615 (reg == PRCM_PLLARM_FREQ) ||
6b6fae2b
MN
1616 (reg == PRCM_PLLDDR_FREQ))))
1617 div *= 2;
1618
1619 (void)do_div(rate, div);
1620
1621 return (unsigned long)rate;
1622}
1623
1624#define ROOT_CLOCK_RATE 38400000
1625
1626static unsigned long clock_rate(u8 clock)
1627{
1628 u32 val;
1629 u32 pllsw;
1630 unsigned long rate = ROOT_CLOCK_RATE;
1631
1632 val = readl(clk_mgt[clock].reg);
1633
1634 if (val & PRCM_CLK_MGT_CLK38) {
1635 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1636 rate /= 2;
1637 return rate;
1638 }
1639
1640 val |= clk_mgt[clock].pllsw;
1641 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1642
1643 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1644 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1645 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1646 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1647 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1648 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1649 else
1650 return 0;
1651
1652 if ((clock == PRCMU_SGACLK) &&
1653 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1654 u64 r = (rate * 10);
1655
1656 (void)do_div(r, 25);
1657 return (unsigned long)r;
1658 }
1659 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1660 if (val)
1661 return rate / val;
1662 else
1663 return 0;
1664}
20aee5b6 1665
b2302c87 1666static unsigned long armss_rate(void)
20aee5b6
MJ
1667{
1668 u32 r;
1669 unsigned long rate;
1670
1671 r = readl(PRCM_ARM_CHGCLKREQ);
1672
1673 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1674 /* External ARMCLKFIX clock */
1675
1676 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1677
1678 /* Check PRCM_ARM_CHGCLKREQ divider */
1679 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1680 rate /= 2;
1681
1682 /* Check PRCM_ARMCLKFIX_MGT divider */
1683 r = readl(PRCM_ARMCLKFIX_MGT);
1684 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1685 rate /= r;
1686
1687 } else {/* ARM PLL */
1688 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1689 }
1690
b2302c87 1691 return rate;
20aee5b6 1692}
6b6fae2b
MN
1693
1694static unsigned long dsiclk_rate(u8 n)
1695{
1696 u32 divsel;
1697 u32 div = 1;
1698
1699 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1700 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1701
1702 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1703 divsel = dsiclk[n].divsel;
1704
1705 switch (divsel) {
1706 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1707 div *= 2;
1708 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1709 div *= 2;
1710 case PRCM_DSI_PLLOUT_SEL_PHI:
1711 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1712 PLL_RAW) / div;
e62ccf3a 1713 default:
6b6fae2b 1714 return 0;
e62ccf3a 1715 }
6b6fae2b
MN
1716}
1717
1718static unsigned long dsiescclk_rate(u8 n)
1719{
1720 u32 div;
1721
1722 div = readl(PRCM_DSITVCLK_DIV);
1723 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1724 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1725}
1726
1727unsigned long prcmu_clock_rate(u8 clock)
1728{
e62ccf3a 1729 if (clock < PRCMU_NUM_REG_CLOCKS)
6b6fae2b
MN
1730 return clock_rate(clock);
1731 else if (clock == PRCMU_TIMCLK)
1732 return ROOT_CLOCK_RATE / 16;
1733 else if (clock == PRCMU_SYSCLK)
1734 return ROOT_CLOCK_RATE;
1735 else if (clock == PRCMU_PLLSOC0)
1736 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1737 else if (clock == PRCMU_PLLSOC1)
1738 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
20aee5b6
MJ
1739 else if (clock == PRCMU_ARMSS)
1740 return armss_rate();
6b6fae2b
MN
1741 else if (clock == PRCMU_PLLDDR)
1742 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1743 else if (clock == PRCMU_PLLDSI)
1744 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1745 PLL_RAW);
1746 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1747 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1748 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1749 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1750 else
1751 return 0;
1752}
1753
1754static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1755{
1756 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1757 return ROOT_CLOCK_RATE;
1758 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1759 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1760 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1761 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1762 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1763 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1764 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1765 else
1766 return 0;
1767}
1768
1769static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1770{
1771 u32 div;
1772
1773 div = (src_rate / rate);
1774 if (div == 0)
1775 return 1;
1776 if (rate < (src_rate / div))
1777 div++;
1778 return div;
1779}
1780
1781static long round_clock_rate(u8 clock, unsigned long rate)
1782{
1783 u32 val;
1784 u32 div;
1785 unsigned long src_rate;
1786 long rounded_rate;
1787
1788 val = readl(clk_mgt[clock].reg);
1789 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1790 clk_mgt[clock].branch);
1791 div = clock_divider(src_rate, rate);
1792 if (val & PRCM_CLK_MGT_CLK38) {
1793 if (clk_mgt[clock].clk38div) {
1794 if (div > 2)
1795 div = 2;
1796 } else {
1797 div = 1;
1798 }
1799 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1800 u64 r = (src_rate * 10);
1801
1802 (void)do_div(r, 25);
1803 if (r <= rate)
1804 return (unsigned long)r;
1805 }
1806 rounded_rate = (src_rate / min(div, (u32)31));
1807
1808 return rounded_rate;
1809}
1810
b2302c87
UH
1811/* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1812static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1813 { .frequency = 200000, .index = ARM_EXTCLK,},
1814 { .frequency = 400000, .index = ARM_50_OPP,},
1815 { .frequency = 800000, .index = ARM_100_OPP,},
1816 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1817 { .frequency = CPUFREQ_TABLE_END,},
1818};
1819
1820static long round_armss_rate(unsigned long rate)
1821{
1822 long freq = 0;
1823 int i = 0;
1824
1825 /* cpufreq table frequencies is in KHz. */
1826 rate = rate / 1000;
1827
1828 /* Find the corresponding arm opp from the cpufreq table. */
1829 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1830 freq = db8500_cpufreq_table[i].frequency;
1831 if (freq == rate)
1832 break;
1833 i++;
1834 }
1835
1836 /* Return the last valid value, even if a match was not found. */
1837 return freq * 1000;
1838}
1839
6b6fae2b
MN
1840#define MIN_PLL_VCO_RATE 600000000ULL
1841#define MAX_PLL_VCO_RATE 1680640000ULL
1842
1843static long round_plldsi_rate(unsigned long rate)
1844{
1845 long rounded_rate = 0;
1846 unsigned long src_rate;
1847 unsigned long rem;
1848 u32 r;
1849
1850 src_rate = clock_rate(PRCMU_HDMICLK);
1851 rem = rate;
1852
1853 for (r = 7; (rem > 0) && (r > 0); r--) {
1854 u64 d;
1855
1856 d = (r * rate);
1857 (void)do_div(d, src_rate);
1858 if (d < 6)
1859 d = 6;
1860 else if (d > 255)
1861 d = 255;
1862 d *= src_rate;
1863 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1864 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1865 continue;
1866 (void)do_div(d, r);
1867 if (rate < d) {
1868 if (rounded_rate == 0)
1869 rounded_rate = (long)d;
1870 break;
1871 }
1872 if ((rate - d) < rem) {
1873 rem = (rate - d);
1874 rounded_rate = (long)d;
1875 }
1876 }
1877 return rounded_rate;
1878}
1879
1880static long round_dsiclk_rate(unsigned long rate)
1881{
1882 u32 div;
1883 unsigned long src_rate;
1884 long rounded_rate;
1885
1886 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1887 PLL_RAW);
1888 div = clock_divider(src_rate, rate);
1889 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1890
1891 return rounded_rate;
1892}
1893
1894static long round_dsiescclk_rate(unsigned long rate)
1895{
1896 u32 div;
1897 unsigned long src_rate;
1898 long rounded_rate;
1899
1900 src_rate = clock_rate(PRCMU_TVCLK);
1901 div = clock_divider(src_rate, rate);
1902 rounded_rate = (src_rate / min(div, (u32)255));
1903
1904 return rounded_rate;
1905}
1906
1907long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1908{
1909 if (clock < PRCMU_NUM_REG_CLOCKS)
1910 return round_clock_rate(clock, rate);
b2302c87
UH
1911 else if (clock == PRCMU_ARMSS)
1912 return round_armss_rate(rate);
6b6fae2b
MN
1913 else if (clock == PRCMU_PLLDSI)
1914 return round_plldsi_rate(rate);
1915 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1916 return round_dsiclk_rate(rate);
1917 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1918 return round_dsiescclk_rate(rate);
1919 else
1920 return (long)prcmu_clock_rate(clock);
1921}
1922
1923static void set_clock_rate(u8 clock, unsigned long rate)
1924{
1925 u32 val;
1926 u32 div;
1927 unsigned long src_rate;
1928 unsigned long flags;
1929
1930 spin_lock_irqsave(&clk_mgt_lock, flags);
1931
1932 /* Grab the HW semaphore. */
1933 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1934 cpu_relax();
1935
1936 val = readl(clk_mgt[clock].reg);
1937 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1938 clk_mgt[clock].branch);
1939 div = clock_divider(src_rate, rate);
1940 if (val & PRCM_CLK_MGT_CLK38) {
1941 if (clk_mgt[clock].clk38div) {
1942 if (div > 1)
1943 val |= PRCM_CLK_MGT_CLK38DIV;
1944 else
1945 val &= ~PRCM_CLK_MGT_CLK38DIV;
1946 }
1947 } else if (clock == PRCMU_SGACLK) {
1948 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1949 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1950 if (div == 3) {
1951 u64 r = (src_rate * 10);
1952
1953 (void)do_div(r, 25);
1954 if (r <= rate) {
1955 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1956 div = 0;
1957 }
1958 }
1959 val |= min(div, (u32)31);
1960 } else {
1961 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1962 val |= min(div, (u32)31);
1963 }
1964 writel(val, clk_mgt[clock].reg);
1965
1966 /* Release the HW semaphore. */
1967 writel(0, PRCM_SEM);
1968
1969 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1970}
1971
b2302c87
UH
1972static int set_armss_rate(unsigned long rate)
1973{
1974 int i = 0;
1975
1976 /* cpufreq table frequencies is in KHz. */
1977 rate = rate / 1000;
1978
1979 /* Find the corresponding arm opp from the cpufreq table. */
1980 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1981 if (db8500_cpufreq_table[i].frequency == rate)
1982 break;
1983 i++;
1984 }
1985
1986 if (db8500_cpufreq_table[i].frequency != rate)
1987 return -EINVAL;
1988
1989 /* Set the new arm opp. */
1990 return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].index);
1991}
1992
6b6fae2b
MN
1993static int set_plldsi_rate(unsigned long rate)
1994{
1995 unsigned long src_rate;
1996 unsigned long rem;
1997 u32 pll_freq = 0;
1998 u32 r;
1999
2000 src_rate = clock_rate(PRCMU_HDMICLK);
2001 rem = rate;
2002
2003 for (r = 7; (rem > 0) && (r > 0); r--) {
2004 u64 d;
2005 u64 hwrate;
2006
2007 d = (r * rate);
2008 (void)do_div(d, src_rate);
2009 if (d < 6)
2010 d = 6;
2011 else if (d > 255)
2012 d = 255;
2013 hwrate = (d * src_rate);
2014 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
2015 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
2016 continue;
2017 (void)do_div(hwrate, r);
2018 if (rate < hwrate) {
2019 if (pll_freq == 0)
2020 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2021 (r << PRCM_PLL_FREQ_R_SHIFT));
2022 break;
2023 }
2024 if ((rate - hwrate) < rem) {
2025 rem = (rate - hwrate);
2026 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2027 (r << PRCM_PLL_FREQ_R_SHIFT));
2028 }
2029 }
2030 if (pll_freq == 0)
2031 return -EINVAL;
2032
2033 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
2034 writel(pll_freq, PRCM_PLLDSI_FREQ);
2035
2036 return 0;
2037}
2038
2039static void set_dsiclk_rate(u8 n, unsigned long rate)
2040{
2041 u32 val;
2042 u32 div;
2043
2044 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
2045 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
2046
2047 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
2048 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
2049 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
2050
2051 val = readl(PRCM_DSI_PLLOUT_SEL);
2052 val &= ~dsiclk[n].divsel_mask;
2053 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
2054 writel(val, PRCM_DSI_PLLOUT_SEL);
2055}
2056
2057static void set_dsiescclk_rate(u8 n, unsigned long rate)
2058{
2059 u32 val;
2060 u32 div;
2061
2062 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
2063 val = readl(PRCM_DSITVCLK_DIV);
2064 val &= ~dsiescclk[n].div_mask;
2065 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
2066 writel(val, PRCM_DSITVCLK_DIV);
2067}
2068
2069int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2070{
2071 if (clock < PRCMU_NUM_REG_CLOCKS)
2072 set_clock_rate(clock, rate);
b2302c87
UH
2073 else if (clock == PRCMU_ARMSS)
2074 return set_armss_rate(rate);
6b6fae2b
MN
2075 else if (clock == PRCMU_PLLDSI)
2076 return set_plldsi_rate(rate);
2077 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2078 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2079 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2080 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2081 return 0;
3df57bcf
MN
2082}
2083
73180f85 2084int db8500_prcmu_config_esram0_deep_sleep(u8 state)
3df57bcf
MN
2085{
2086 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2087 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2088 return -EINVAL;
2089
2090 mutex_lock(&mb4_transfer.lock);
2091
c553b3ca 2092 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2093 cpu_relax();
2094
2095 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2096 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2097 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2098 writeb(DDR_PWR_STATE_ON,
2099 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2100 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2101
c553b3ca 2102 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2103 wait_for_completion(&mb4_transfer.work);
2104
2105 mutex_unlock(&mb4_transfer.lock);
2106
2107 return 0;
2108}
2109
0508901c 2110int db8500_prcmu_config_hotdog(u8 threshold)
3df57bcf
MN
2111{
2112 mutex_lock(&mb4_transfer.lock);
2113
c553b3ca 2114 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2115 cpu_relax();
2116
2117 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2118 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2119
c553b3ca 2120 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2121 wait_for_completion(&mb4_transfer.work);
2122
2123 mutex_unlock(&mb4_transfer.lock);
2124
2125 return 0;
2126}
2127
0508901c 2128int db8500_prcmu_config_hotmon(u8 low, u8 high)
3df57bcf
MN
2129{
2130 mutex_lock(&mb4_transfer.lock);
2131
c553b3ca 2132 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2133 cpu_relax();
2134
2135 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2136 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2137 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2138 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2139 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2140
c553b3ca 2141 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2142 wait_for_completion(&mb4_transfer.work);
2143
2144 mutex_unlock(&mb4_transfer.lock);
2145
2146 return 0;
2147}
2148
2149static int config_hot_period(u16 val)
2150{
2151 mutex_lock(&mb4_transfer.lock);
2152
c553b3ca 2153 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2154 cpu_relax();
2155
2156 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2157 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2158
c553b3ca 2159 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2160 wait_for_completion(&mb4_transfer.work);
2161
2162 mutex_unlock(&mb4_transfer.lock);
2163
2164 return 0;
2165}
2166
0508901c 2167int db8500_prcmu_start_temp_sense(u16 cycles32k)
3df57bcf
MN
2168{
2169 if (cycles32k == 0xFFFF)
2170 return -EINVAL;
2171
2172 return config_hot_period(cycles32k);
2173}
2174
0508901c 2175int db8500_prcmu_stop_temp_sense(void)
3df57bcf
MN
2176{
2177 return config_hot_period(0xFFFF);
2178}
2179
84165b80
JA
2180static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2181{
2182
2183 mutex_lock(&mb4_transfer.lock);
2184
2185 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2186 cpu_relax();
2187
2188 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2189 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2190 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2191 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2192
2193 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2194
2195 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2196 wait_for_completion(&mb4_transfer.work);
2197
2198 mutex_unlock(&mb4_transfer.lock);
2199
2200 return 0;
2201
2202}
2203
0508901c 2204int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
84165b80
JA
2205{
2206 BUG_ON(num == 0 || num > 0xf);
2207 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2208 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2209 A9WDOG_AUTO_OFF_DIS);
2210}
6f8cfa99 2211EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
84165b80 2212
0508901c 2213int db8500_prcmu_enable_a9wdog(u8 id)
84165b80
JA
2214{
2215 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2216}
6f8cfa99 2217EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
84165b80 2218
0508901c 2219int db8500_prcmu_disable_a9wdog(u8 id)
84165b80
JA
2220{
2221 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2222}
6f8cfa99 2223EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
84165b80 2224
0508901c 2225int db8500_prcmu_kick_a9wdog(u8 id)
84165b80
JA
2226{
2227 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2228}
6f8cfa99 2229EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
84165b80
JA
2230
2231/*
2232 * timeout is 28 bit, in ms.
2233 */
0508901c 2234int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
84165b80 2235{
84165b80
JA
2236 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2237 (id & A9WDOG_ID_MASK) |
2238 /*
2239 * Put the lowest 28 bits of timeout at
2240 * offset 4. Four first bits are used for id.
2241 */
2242 (u8)((timeout << 4) & 0xf0),
2243 (u8)((timeout >> 4) & 0xff),
2244 (u8)((timeout >> 12) & 0xff),
2245 (u8)((timeout >> 20) & 0xff));
2246}
6f8cfa99 2247EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
84165b80 2248
e3726fcf
LW
2249/**
2250 * prcmu_abb_read() - Read register value(s) from the ABB.
2251 * @slave: The I2C slave address.
2252 * @reg: The (start) register address.
2253 * @value: The read out value(s).
2254 * @size: The number of registers to read.
2255 *
2256 * Reads register value(s) from the ABB.
2257 * @size has to be 1 for the current firmware version.
2258 */
2259int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2260{
2261 int r;
2262
2263 if (size != 1)
2264 return -EINVAL;
2265
3df57bcf 2266 mutex_lock(&mb5_transfer.lock);
e3726fcf 2267
c553b3ca 2268 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2269 cpu_relax();
2270
3c3e4898 2271 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
3df57bcf
MN
2272 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2273 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2274 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2275 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2276
c553b3ca 2277 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2278
e3726fcf 2279 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2280 msecs_to_jiffies(20000))) {
2281 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2282 __func__);
e3726fcf 2283 r = -EIO;
3df57bcf
MN
2284 } else {
2285 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
e3726fcf 2286 }
3df57bcf 2287
e3726fcf
LW
2288 if (!r)
2289 *value = mb5_transfer.ack.value;
2290
e3726fcf 2291 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2292
e3726fcf
LW
2293 return r;
2294}
e3726fcf
LW
2295
2296/**
3c3e4898 2297 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
e3726fcf
LW
2298 * @slave: The I2C slave address.
2299 * @reg: The (start) register address.
2300 * @value: The value(s) to write.
3c3e4898 2301 * @mask: The mask(s) to use.
e3726fcf
LW
2302 * @size: The number of registers to write.
2303 *
3c3e4898
MN
2304 * Writes masked register value(s) to the ABB.
2305 * For each @value, only the bits set to 1 in the corresponding @mask
2306 * will be written. The other bits are not changed.
e3726fcf
LW
2307 * @size has to be 1 for the current firmware version.
2308 */
3c3e4898 2309int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
e3726fcf
LW
2310{
2311 int r;
2312
2313 if (size != 1)
2314 return -EINVAL;
2315
3df57bcf 2316 mutex_lock(&mb5_transfer.lock);
e3726fcf 2317
c553b3ca 2318 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2319 cpu_relax();
2320
3c3e4898 2321 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
3df57bcf
MN
2322 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2323 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2324 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2325 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2326
c553b3ca 2327 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2328
e3726fcf 2329 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2330 msecs_to_jiffies(20000))) {
2331 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2332 __func__);
e3726fcf 2333 r = -EIO;
3df57bcf
MN
2334 } else {
2335 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
e3726fcf 2336 }
e3726fcf 2337
e3726fcf 2338 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2339
e3726fcf
LW
2340 return r;
2341}
e3726fcf 2342
3c3e4898
MN
2343/**
2344 * prcmu_abb_write() - Write register value(s) to the ABB.
2345 * @slave: The I2C slave address.
2346 * @reg: The (start) register address.
2347 * @value: The value(s) to write.
2348 * @size: The number of registers to write.
2349 *
2350 * Writes register value(s) to the ABB.
2351 * @size has to be 1 for the current firmware version.
2352 */
2353int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2354{
2355 u8 mask = ~0;
2356
2357 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2358}
2359
3df57bcf
MN
2360/**
2361 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2362 */
5261e101 2363int prcmu_ac_wake_req(void)
e0befb23 2364{
3df57bcf 2365 u32 val;
5261e101 2366 int ret = 0;
e0befb23 2367
3df57bcf 2368 mutex_lock(&mb0_transfer.ac_wake_lock);
e0befb23 2369
c553b3ca 2370 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2371 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2372 goto unlock_and_return;
e0befb23 2373
3df57bcf 2374 atomic_set(&ac_wake_req_state, 1);
e0befb23 2375
5261e101
AM
2376 /*
2377 * Force Modem Wake-up before hostaccess_req ping-pong.
2378 * It prevents Modem to enter in Sleep while acking the hostaccess
2379 * request. The 31us delay has been calculated by HWI.
2380 */
2381 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2382 writel(val, PRCM_HOSTACCESS_REQ);
2383
2384 udelay(31);
2385
2386 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2387 writel(val, PRCM_HOSTACCESS_REQ);
e0befb23 2388
3df57bcf 2389 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2390 msecs_to_jiffies(5000))) {
5261e101
AM
2391#if defined(CONFIG_DBX500_PRCMU_DEBUG)
2392 db8500_prcmu_debug_dump(__func__, true, true);
2393#endif
57265bc1 2394 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
d6e3002e 2395 __func__);
5261e101 2396 ret = -EFAULT;
3df57bcf 2397 }
e0befb23 2398
3df57bcf
MN
2399unlock_and_return:
2400 mutex_unlock(&mb0_transfer.ac_wake_lock);
5261e101 2401 return ret;
e0befb23
MP
2402}
2403
2404/**
3df57bcf 2405 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
e0befb23 2406 */
3df57bcf 2407void prcmu_ac_sleep_req()
e0befb23 2408{
3df57bcf
MN
2409 u32 val;
2410
2411 mutex_lock(&mb0_transfer.ac_wake_lock);
2412
c553b3ca 2413 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2414 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2415 goto unlock_and_return;
2416
2417 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
c553b3ca 2418 PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2419
2420 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2421 msecs_to_jiffies(5000))) {
57265bc1 2422 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
3df57bcf
MN
2423 __func__);
2424 }
2425
2426 atomic_set(&ac_wake_req_state, 0);
2427
2428unlock_and_return:
2429 mutex_unlock(&mb0_transfer.ac_wake_lock);
e0befb23 2430}
e0befb23 2431
73180f85 2432bool db8500_prcmu_is_ac_wake_requested(void)
e0befb23 2433{
3df57bcf 2434 return (atomic_read(&ac_wake_req_state) != 0);
e0befb23 2435}
e0befb23
MP
2436
2437/**
73180f85 2438 * db8500_prcmu_system_reset - System reset
e0befb23 2439 *
73180f85 2440 * Saves the reset reason code and then sets the APE_SOFTRST register which
3df57bcf 2441 * fires interrupt to fw
e0befb23 2442 */
73180f85 2443void db8500_prcmu_system_reset(u16 reset_code)
e0befb23 2444{
3df57bcf 2445 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
c553b3ca 2446 writel(1, PRCM_APE_SOFTRST);
e0befb23 2447}
e0befb23 2448
597045de
SR
2449/**
2450 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2451 *
2452 * Retrieves the reset reason code stored by prcmu_system_reset() before
2453 * last restart.
2454 */
2455u16 db8500_prcmu_get_reset_code(void)
2456{
2457 return readw(tcdm_base + PRCM_SW_RST_REASON);
2458}
2459
e0befb23 2460/**
0508901c 2461 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
e0befb23 2462 */
0508901c 2463void db8500_prcmu_modem_reset(void)
e0befb23 2464{
3df57bcf
MN
2465 mutex_lock(&mb1_transfer.lock);
2466
c553b3ca 2467 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
2468 cpu_relax();
2469
2470 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
c553b3ca 2471 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2472 wait_for_completion(&mb1_transfer.work);
2473
2474 /*
2475 * No need to check return from PRCMU as modem should go in reset state
2476 * This state is already managed by upper layer
2477 */
2478
2479 mutex_unlock(&mb1_transfer.lock);
e0befb23 2480}
e0befb23 2481
3df57bcf 2482static void ack_dbb_wakeup(void)
e0befb23 2483{
3df57bcf
MN
2484 unsigned long flags;
2485
2486 spin_lock_irqsave(&mb0_transfer.lock, flags);
2487
c553b3ca 2488 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
2489 cpu_relax();
2490
2491 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 2492 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2493
2494 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
e0befb23 2495}
e0befb23 2496
3df57bcf 2497static inline void print_unknown_header_warning(u8 n, u8 header)
e0befb23 2498{
3df57bcf
MN
2499 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2500 header, n);
e0befb23
MP
2501}
2502
3df57bcf 2503static bool read_mailbox_0(void)
e3726fcf 2504{
3df57bcf
MN
2505 bool r;
2506 u32 ev;
2507 unsigned int n;
2508 u8 header;
2509
2510 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2511 switch (header) {
2512 case MB0H_WAKEUP_EXE:
2513 case MB0H_WAKEUP_SLEEP:
2514 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2515 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2516 else
2517 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2518
2519 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2520 complete(&mb0_transfer.ac_wake_work);
2521 if (ev & WAKEUP_BIT_SYSCLK_OK)
2522 complete(&mb3_transfer.sysclk_work);
2523
2524 ev &= mb0_transfer.req.dbb_irqs;
2525
2526 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2527 if (ev & prcmu_irq_bit[n])
89d9b1c9 2528 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
3df57bcf
MN
2529 }
2530 r = true;
2531 break;
2532 default:
2533 print_unknown_header_warning(0, header);
2534 r = false;
2535 break;
2536 }
c553b3ca 2537 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
3df57bcf 2538 return r;
e3726fcf
LW
2539}
2540
3df57bcf 2541static bool read_mailbox_1(void)
e3726fcf 2542{
3df57bcf
MN
2543 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2544 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2545 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2546 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2547 PRCM_ACK_MB1_CURRENT_APE_OPP);
2548 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2549 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
c553b3ca 2550 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
e0befb23 2551 complete(&mb1_transfer.work);
3df57bcf 2552 return false;
e3726fcf
LW
2553}
2554
3df57bcf 2555static bool read_mailbox_2(void)
e3726fcf 2556{
3df57bcf 2557 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
c553b3ca 2558 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2559 complete(&mb2_transfer.work);
2560 return false;
e3726fcf
LW
2561}
2562
3df57bcf 2563static bool read_mailbox_3(void)
e3726fcf 2564{
c553b3ca 2565 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
3df57bcf 2566 return false;
e3726fcf
LW
2567}
2568
3df57bcf 2569static bool read_mailbox_4(void)
e3726fcf 2570{
3df57bcf
MN
2571 u8 header;
2572 bool do_complete = true;
2573
2574 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2575 switch (header) {
2576 case MB4H_MEM_ST:
2577 case MB4H_HOTDOG:
2578 case MB4H_HOTMON:
2579 case MB4H_HOT_PERIOD:
a592c2e2
MN
2580 case MB4H_A9WDOG_CONF:
2581 case MB4H_A9WDOG_EN:
2582 case MB4H_A9WDOG_DIS:
2583 case MB4H_A9WDOG_LOAD:
2584 case MB4H_A9WDOG_KICK:
3df57bcf
MN
2585 break;
2586 default:
2587 print_unknown_header_warning(4, header);
2588 do_complete = false;
2589 break;
2590 }
2591
c553b3ca 2592 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2593
2594 if (do_complete)
2595 complete(&mb4_transfer.work);
2596
2597 return false;
e3726fcf
LW
2598}
2599
3df57bcf 2600static bool read_mailbox_5(void)
e3726fcf 2601{
3df57bcf
MN
2602 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2603 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
c553b3ca 2604 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
e3726fcf 2605 complete(&mb5_transfer.work);
3df57bcf 2606 return false;
e3726fcf
LW
2607}
2608
3df57bcf 2609static bool read_mailbox_6(void)
e3726fcf 2610{
c553b3ca 2611 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
3df57bcf 2612 return false;
e3726fcf
LW
2613}
2614
3df57bcf 2615static bool read_mailbox_7(void)
e3726fcf 2616{
c553b3ca 2617 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
3df57bcf 2618 return false;
e3726fcf
LW
2619}
2620
3df57bcf 2621static bool (* const read_mailbox[NUM_MB])(void) = {
e3726fcf
LW
2622 read_mailbox_0,
2623 read_mailbox_1,
2624 read_mailbox_2,
2625 read_mailbox_3,
2626 read_mailbox_4,
2627 read_mailbox_5,
2628 read_mailbox_6,
2629 read_mailbox_7
2630};
2631
2632static irqreturn_t prcmu_irq_handler(int irq, void *data)
2633{
2634 u32 bits;
2635 u8 n;
3df57bcf 2636 irqreturn_t r;
e3726fcf 2637
c553b3ca 2638 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
e3726fcf
LW
2639 if (unlikely(!bits))
2640 return IRQ_NONE;
2641
3df57bcf 2642 r = IRQ_HANDLED;
e3726fcf
LW
2643 for (n = 0; bits; n++) {
2644 if (bits & MBOX_BIT(n)) {
2645 bits -= MBOX_BIT(n);
3df57bcf
MN
2646 if (read_mailbox[n]())
2647 r = IRQ_WAKE_THREAD;
e3726fcf
LW
2648 }
2649 }
3df57bcf
MN
2650 return r;
2651}
2652
2653static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2654{
2655 ack_dbb_wakeup();
e3726fcf
LW
2656 return IRQ_HANDLED;
2657}
2658
3df57bcf
MN
2659static void prcmu_mask_work(struct work_struct *work)
2660{
2661 unsigned long flags;
2662
2663 spin_lock_irqsave(&mb0_transfer.lock, flags);
2664
2665 config_wakeups();
2666
2667 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2668}
2669
2670static void prcmu_irq_mask(struct irq_data *d)
2671{
2672 unsigned long flags;
2673
2674 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2675
f3f1f0a1 2676 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
3df57bcf
MN
2677
2678 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2679
2680 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2681 schedule_work(&mb0_transfer.mask_work);
2682}
2683
2684static void prcmu_irq_unmask(struct irq_data *d)
2685{
2686 unsigned long flags;
2687
2688 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2689
f3f1f0a1 2690 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
3df57bcf
MN
2691
2692 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2693
2694 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2695 schedule_work(&mb0_transfer.mask_work);
2696}
2697
2698static void noop(struct irq_data *d)
2699{
2700}
2701
2702static struct irq_chip prcmu_irq_chip = {
2703 .name = "prcmu",
2704 .irq_disable = prcmu_irq_mask,
2705 .irq_ack = noop,
2706 .irq_mask = prcmu_irq_mask,
2707 .irq_unmask = prcmu_irq_unmask,
2708};
2709
05ec260e 2710static __init char *fw_project_name(u32 project)
b58d12fe
MN
2711{
2712 switch (project) {
2713 case PRCMU_FW_PROJECT_U8500:
2714 return "U8500";
05ec260e
LW
2715 case PRCMU_FW_PROJECT_U8400:
2716 return "U8400";
b58d12fe
MN
2717 case PRCMU_FW_PROJECT_U9500:
2718 return "U9500";
05ec260e
LW
2719 case PRCMU_FW_PROJECT_U8500_MBB:
2720 return "U8500 MBB";
2721 case PRCMU_FW_PROJECT_U8500_C1:
2722 return "U8500 C1";
2723 case PRCMU_FW_PROJECT_U8500_C2:
2724 return "U8500 C2";
2725 case PRCMU_FW_PROJECT_U8500_C3:
2726 return "U8500 C3";
2727 case PRCMU_FW_PROJECT_U8500_C4:
2728 return "U8500 C4";
2729 case PRCMU_FW_PROJECT_U9500_MBL:
2730 return "U9500 MBL";
2731 case PRCMU_FW_PROJECT_U8500_MBL:
2732 return "U8500 MBL";
2733 case PRCMU_FW_PROJECT_U8500_MBL2:
2734 return "U8500 MBL2";
5f96a1a6 2735 case PRCMU_FW_PROJECT_U8520:
05ec260e 2736 return "U8520 MBL";
1927ddf6
BJ
2737 case PRCMU_FW_PROJECT_U8420:
2738 return "U8420";
05ec260e
LW
2739 case PRCMU_FW_PROJECT_U9540:
2740 return "U9540";
2741 case PRCMU_FW_PROJECT_A9420:
2742 return "A9420";
2743 case PRCMU_FW_PROJECT_L8540:
2744 return "L8540";
2745 case PRCMU_FW_PROJECT_L8580:
2746 return "L8580";
b58d12fe
MN
2747 default:
2748 return "Unknown";
2749 }
2750}
2751
f3f1f0a1
LJ
2752static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2753 irq_hw_number_t hwirq)
2754{
2755 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2756 handle_simple_irq);
2757 set_irq_flags(virq, IRQF_VALID);
2758
2759 return 0;
2760}
2761
2762static struct irq_domain_ops db8500_irq_ops = {
89d9b1c9
LW
2763 .map = db8500_irq_map,
2764 .xlate = irq_domain_xlate_twocell,
f3f1f0a1
LJ
2765};
2766
2767static int db8500_irq_init(struct device_node *np)
2768{
89d9b1c9
LW
2769 int irq_base = 0;
2770 int i;
a7238e43
LW
2771
2772 /* In the device tree case, just take some IRQs */
2773 if (!np)
2774 irq_base = IRQ_PRCMU_BASE;
2775
2776 db8500_irq_domain = irq_domain_add_simple(
2777 np, NUM_PRCMU_WAKEUPS, irq_base,
2778 &db8500_irq_ops, NULL);
f3f1f0a1
LJ
2779
2780 if (!db8500_irq_domain) {
2781 pr_err("Failed to create irqdomain\n");
2782 return -ENOSYS;
2783 }
2784
89d9b1c9
LW
2785 /* All wakeups will be used, so create mappings for all */
2786 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2787 irq_create_mapping(db8500_irq_domain, i);
2788
f3f1f0a1
LJ
2789 return 0;
2790}
2791
05ec260e
LW
2792static void dbx500_fw_version_init(struct platform_device *pdev,
2793 u32 version_offset)
fcbd458e 2794{
05ec260e
LW
2795 struct resource *res;
2796 void __iomem *tcpm_base;
3df57bcf 2797
05ec260e
LW
2798 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2799 "prcmu-tcpm");
2800 if (!res) {
2801 dev_err(&pdev->dev,
2802 "Error: no prcmu tcpm memory region provided\n");
2803 return;
2804 }
2805 tcpm_base = ioremap(res->start, resource_size(res));
2806 if (tcpm_base != NULL) {
2807 u32 version;
2808
2809 version = readl(tcpm_base + version_offset);
2810 fw_info.version.project = (version & 0xFF);
2811 fw_info.version.api_version = (version >> 8) & 0xFF;
2812 fw_info.version.func_version = (version >> 16) & 0xFF;
2813 fw_info.version.errata = (version >> 24) & 0xFF;
2814 strncpy(fw_info.version.project_name,
2815 fw_project_name(fw_info.version.project),
2816 PRCMU_FW_PROJECT_NAME_LEN);
2817 fw_info.valid = true;
2818 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2819 fw_info.version.project_name,
2820 fw_info.version.project,
2821 fw_info.version.api_version,
2822 fw_info.version.func_version,
2823 fw_info.version.errata);
2824 iounmap(tcpm_base);
fcbd458e 2825 }
05ec260e 2826}
e0befb23 2827
9a47a8dc 2828void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
05ec260e 2829{
9a47a8dc
LW
2830 /*
2831 * This is a temporary remap to bring up the clocks. It is
2832 * subsequently replaces with a real remap. After the merge of
2833 * the mailbox subsystem all of this early code goes away, and the
2834 * clock driver can probe independently. An early initcall will
2835 * still be needed, but it can be diverted into drivers/clk/ux500.
2836 */
2837 prcmu_base = ioremap(phy_base, size);
2838 if (!prcmu_base)
2839 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2840
3df57bcf
MN
2841 spin_lock_init(&mb0_transfer.lock);
2842 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2843 mutex_init(&mb0_transfer.ac_wake_lock);
2844 init_completion(&mb0_transfer.ac_wake_work);
e0befb23
MP
2845 mutex_init(&mb1_transfer.lock);
2846 init_completion(&mb1_transfer.work);
4d64d2e3 2847 mb1_transfer.ape_opp = APE_NO_CHANGE;
3df57bcf
MN
2848 mutex_init(&mb2_transfer.lock);
2849 init_completion(&mb2_transfer.work);
2850 spin_lock_init(&mb2_transfer.auto_pm_lock);
2851 spin_lock_init(&mb3_transfer.lock);
2852 mutex_init(&mb3_transfer.sysclk_lock);
2853 init_completion(&mb3_transfer.sysclk_work);
2854 mutex_init(&mb4_transfer.lock);
2855 init_completion(&mb4_transfer.work);
e3726fcf
LW
2856 mutex_init(&mb5_transfer.lock);
2857 init_completion(&mb5_transfer.work);
2858
3df57bcf 2859 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
3df57bcf
MN
2860}
2861
0508901c 2862static void __init init_prcm_registers(void)
d65e12d7
MN
2863{
2864 u32 val;
2865
2866 val = readl(PRCM_A9PL_FORCE_CLKEN);
2867 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2868 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2869 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2870}
2871
1032fbfd
BJ
2872/*
2873 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2874 */
2875static struct regulator_consumer_supply db8500_vape_consumers[] = {
2876 REGULATOR_SUPPLY("v-ape", NULL),
2877 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2878 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2879 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2880 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
ae840635 2881 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
1032fbfd
BJ
2882 /* "v-mmc" changed to "vcore" in the mainline kernel */
2883 REGULATOR_SUPPLY("vcore", "sdi0"),
2884 REGULATOR_SUPPLY("vcore", "sdi1"),
2885 REGULATOR_SUPPLY("vcore", "sdi2"),
2886 REGULATOR_SUPPLY("vcore", "sdi3"),
2887 REGULATOR_SUPPLY("vcore", "sdi4"),
2888 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2889 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2890 /* "v-uart" changed to "vcore" in the mainline kernel */
2891 REGULATOR_SUPPLY("vcore", "uart0"),
2892 REGULATOR_SUPPLY("vcore", "uart1"),
2893 REGULATOR_SUPPLY("vcore", "uart2"),
2894 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
992b133a 2895 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
bc367481 2896 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
1032fbfd
BJ
2897};
2898
2899static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
1032fbfd
BJ
2900 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2901 /* AV8100 regulator */
2902 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2903};
2904
2905static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
992b133a 2906 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
624e87c2
BJ
2907 REGULATOR_SUPPLY("vsupply", "mcde"),
2908};
2909
2910/* SVA MMDSP regulator switch */
2911static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2912 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2913};
2914
2915/* SVA pipe regulator switch */
2916static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2917 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2918};
2919
2920/* SIA MMDSP regulator switch */
2921static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2922 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2923};
2924
2925/* SIA pipe regulator switch */
2926static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2927 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2928};
2929
2930static struct regulator_consumer_supply db8500_sga_consumers[] = {
2931 REGULATOR_SUPPLY("v-mali", NULL),
2932};
2933
2934/* ESRAM1 and 2 regulator switch */
2935static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2936 REGULATOR_SUPPLY("esram12", "cm_control"),
2937};
2938
2939/* ESRAM3 and 4 regulator switch */
2940static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2941 REGULATOR_SUPPLY("v-esram34", "mcde"),
2942 REGULATOR_SUPPLY("esram34", "cm_control"),
992b133a 2943 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
1032fbfd
BJ
2944};
2945
2946static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2947 [DB8500_REGULATOR_VAPE] = {
2948 .constraints = {
2949 .name = "db8500-vape",
2950 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1e45860f 2951 .always_on = true,
1032fbfd
BJ
2952 },
2953 .consumer_supplies = db8500_vape_consumers,
2954 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2955 },
2956 [DB8500_REGULATOR_VARM] = {
2957 .constraints = {
2958 .name = "db8500-varm",
2959 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2960 },
2961 },
2962 [DB8500_REGULATOR_VMODEM] = {
2963 .constraints = {
2964 .name = "db8500-vmodem",
2965 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2966 },
2967 },
2968 [DB8500_REGULATOR_VPLL] = {
2969 .constraints = {
2970 .name = "db8500-vpll",
2971 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2972 },
2973 },
2974 [DB8500_REGULATOR_VSMPS1] = {
2975 .constraints = {
2976 .name = "db8500-vsmps1",
2977 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2978 },
2979 },
2980 [DB8500_REGULATOR_VSMPS2] = {
2981 .constraints = {
2982 .name = "db8500-vsmps2",
2983 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2984 },
2985 .consumer_supplies = db8500_vsmps2_consumers,
2986 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2987 },
2988 [DB8500_REGULATOR_VSMPS3] = {
2989 .constraints = {
2990 .name = "db8500-vsmps3",
2991 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2992 },
2993 },
2994 [DB8500_REGULATOR_VRF1] = {
2995 .constraints = {
2996 .name = "db8500-vrf1",
2997 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2998 },
2999 },
3000 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
992b133a 3001 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
3002 .constraints = {
3003 .name = "db8500-sva-mmdsp",
3004 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3005 },
624e87c2
BJ
3006 .consumer_supplies = db8500_svammdsp_consumers,
3007 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
1032fbfd
BJ
3008 },
3009 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
3010 .constraints = {
3011 /* "ret" means "retention" */
3012 .name = "db8500-sva-mmdsp-ret",
3013 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3014 },
3015 },
3016 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
992b133a 3017 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
3018 .constraints = {
3019 .name = "db8500-sva-pipe",
3020 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3021 },
624e87c2
BJ
3022 .consumer_supplies = db8500_svapipe_consumers,
3023 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
1032fbfd
BJ
3024 },
3025 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
992b133a 3026 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
3027 .constraints = {
3028 .name = "db8500-sia-mmdsp",
3029 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3030 },
624e87c2
BJ
3031 .consumer_supplies = db8500_siammdsp_consumers,
3032 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
1032fbfd
BJ
3033 },
3034 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
3035 .constraints = {
3036 .name = "db8500-sia-mmdsp-ret",
3037 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3038 },
3039 },
3040 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
992b133a 3041 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
3042 .constraints = {
3043 .name = "db8500-sia-pipe",
3044 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3045 },
624e87c2
BJ
3046 .consumer_supplies = db8500_siapipe_consumers,
3047 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
1032fbfd
BJ
3048 },
3049 [DB8500_REGULATOR_SWITCH_SGA] = {
3050 .supply_regulator = "db8500-vape",
3051 .constraints = {
3052 .name = "db8500-sga",
3053 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3054 },
624e87c2
BJ
3055 .consumer_supplies = db8500_sga_consumers,
3056 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
3057
1032fbfd
BJ
3058 },
3059 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
3060 .supply_regulator = "db8500-vape",
3061 .constraints = {
3062 .name = "db8500-b2r2-mcde",
3063 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3064 },
3065 .consumer_supplies = db8500_b2r2_mcde_consumers,
3066 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
3067 },
3068 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
992b133a
BJ
3069 /*
3070 * esram12 is set in retention and supplied by Vsafe when Vape is off,
3071 * no need to hold Vape
3072 */
1032fbfd
BJ
3073 .constraints = {
3074 .name = "db8500-esram12",
3075 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3076 },
624e87c2
BJ
3077 .consumer_supplies = db8500_esram12_consumers,
3078 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
1032fbfd
BJ
3079 },
3080 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
3081 .constraints = {
3082 .name = "db8500-esram12-ret",
3083 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3084 },
3085 },
3086 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
992b133a
BJ
3087 /*
3088 * esram34 is set in retention and supplied by Vsafe when Vape is off,
3089 * no need to hold Vape
3090 */
1032fbfd
BJ
3091 .constraints = {
3092 .name = "db8500-esram34",
3093 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3094 },
624e87c2
BJ
3095 .consumer_supplies = db8500_esram34_consumers,
3096 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
1032fbfd
BJ
3097 },
3098 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3099 .constraints = {
3100 .name = "db8500-esram34-ret",
3101 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3102 },
3103 },
3104};
3105
6d11d135
LJ
3106static struct resource ab8500_resources[] = {
3107 [0] = {
3108 .start = IRQ_DB8500_AB8500,
3109 .end = IRQ_DB8500_AB8500,
3110 .flags = IORESOURCE_IRQ
3111 }
3112};
3113
b3aac62b
FB
3114static struct ux500_wdt_data db8500_wdt_pdata = {
3115 .timeout = 600, /* 10 minutes */
3116 .has_28_bits_resolution = true,
3117};
3118
3df57bcf
MN
3119static struct mfd_cell db8500_prcmu_devs[] = {
3120 {
3121 .name = "db8500-prcmu-regulators",
5d90322b 3122 .of_compatible = "stericsson,db8500-prcmu-regulator",
1ed7891f
MW
3123 .platform_data = &db8500_regulators,
3124 .pdata_size = sizeof(db8500_regulators),
3df57bcf
MN
3125 },
3126 {
84c7c20f
LJ
3127 .name = "cpufreq-ux500",
3128 .of_compatible = "stericsson,cpufreq-ux500",
c280f45f
UH
3129 .platform_data = &db8500_cpufreq_table,
3130 .pdata_size = sizeof(db8500_cpufreq_table),
3df57bcf 3131 },
b3aac62b
FB
3132 {
3133 .name = "ux500_wdt",
3134 .platform_data = &db8500_wdt_pdata,
3135 .pdata_size = sizeof(db8500_wdt_pdata),
3136 .id = -1,
3137 },
6d11d135
LJ
3138 {
3139 .name = "ab8500-core",
3140 .of_compatible = "stericsson,ab8500",
3141 .num_resources = ARRAY_SIZE(ab8500_resources),
3142 .resources = ab8500_resources,
3143 .id = AB8500_VERSION_AB8500,
3144 },
3df57bcf
MN
3145};
3146
c280f45f
UH
3147static void db8500_prcmu_update_cpufreq(void)
3148{
3149 if (prcmu_has_arm_maxopp()) {
3150 db8500_cpufreq_table[3].frequency = 1000000;
3151 db8500_cpufreq_table[3].index = ARM_MAX_OPP;
3152 }
3153}
3154
3df57bcf
MN
3155/**
3156 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3157 *
3158 */
f791be49 3159static int db8500_prcmu_probe(struct platform_device *pdev)
3df57bcf 3160{
ca7edd16 3161 struct device_node *np = pdev->dev.of_node;
05ec260e 3162 struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
3a8e39c9 3163 int irq = 0, err = 0, i;
05ec260e 3164 struct resource *res;
3df57bcf 3165
0508901c 3166 init_prcm_registers();
d65e12d7 3167
05ec260e
LW
3168 dbx500_fw_version_init(pdev, pdata->version_offset);
3169 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3170 if (!res) {
3171 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3172 return -ENOENT;
3173 }
3174 tcdm_base = devm_ioremap(&pdev->dev, res->start,
3175 resource_size(res));
3176
e3726fcf 3177 /* Clean up the mailbox interrupts after pre-kernel code. */
c553b3ca 3178 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3df57bcf 3179
05ec260e
LW
3180 irq = platform_get_irq(pdev, 0);
3181 if (irq <= 0) {
3182 dev_err(&pdev->dev, "no prcmu irq provided\n");
3183 return -ENOENT;
3184 }
ca7edd16
LJ
3185
3186 err = request_threaded_irq(irq, prcmu_irq_handler,
3187 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3df57bcf
MN
3188 if (err < 0) {
3189 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3190 err = -EBUSY;
3191 goto no_irq_return;
3192 }
3193
f3f1f0a1
LJ
3194 db8500_irq_init(np);
3195
3a8e39c9
LJ
3196 for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3197 if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
05ec260e 3198 db8500_prcmu_devs[i].platform_data = pdata->ab_platdata;
3c1534c7 3199 db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3a8e39c9
LJ
3200 }
3201 }
3202
7a4f2609 3203 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3df57bcf 3204
c280f45f
UH
3205 db8500_prcmu_update_cpufreq();
3206
5d90322b 3207 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
0848c94f 3208 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
5d90322b
LJ
3209 if (err) {
3210 pr_err("prcmu: Failed to add subdevices\n");
3211 return err;
ca7edd16 3212 }
e3726fcf 3213
ca7edd16 3214 pr_info("DB8500 PRCMU initialized\n");
3df57bcf
MN
3215
3216no_irq_return:
3217 return err;
3218}
3c144762
LJ
3219static const struct of_device_id db8500_prcmu_match[] = {
3220 { .compatible = "stericsson,db8500-prcmu"},
3221 { },
3222};
3df57bcf
MN
3223
3224static struct platform_driver db8500_prcmu_driver = {
3225 .driver = {
3226 .name = "db8500-prcmu",
3227 .owner = THIS_MODULE,
3c144762 3228 .of_match_table = db8500_prcmu_match,
3df57bcf 3229 },
9fc63f67 3230 .probe = db8500_prcmu_probe,
3df57bcf
MN
3231};
3232
3233static int __init db8500_prcmu_init(void)
3234{
9fc63f67 3235 return platform_driver_register(&db8500_prcmu_driver);
e3726fcf
LW
3236}
3237
a661aca4 3238core_initcall(db8500_prcmu_init);
3df57bcf
MN
3239
3240MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3241MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3242MODULE_LICENSE("GPL v2");
This page took 0.308089 seconds and 5 git commands to generate.