drivers: clean-up prom.h implicit includes
[deliverable/linux.git] / drivers / misc / carma / carma-fpga.c
CommitLineData
c186f0e1
IS
1/*
2 * CARMA DATA-FPGA Access Driver
3 *
4 * Copyright (c) 2009-2011 Ira W. Snyder <iws@ovro.caltech.edu>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version.
10 */
11
12/*
13 * FPGA Memory Dump Format
14 *
15 * FPGA #0 control registers (32 x 32-bit words)
16 * FPGA #1 control registers (32 x 32-bit words)
17 * FPGA #2 control registers (32 x 32-bit words)
18 * FPGA #3 control registers (32 x 32-bit words)
19 * SYSFPGA control registers (32 x 32-bit words)
20 * FPGA #0 correlation array (NUM_CORL0 correlation blocks)
21 * FPGA #1 correlation array (NUM_CORL1 correlation blocks)
22 * FPGA #2 correlation array (NUM_CORL2 correlation blocks)
23 * FPGA #3 correlation array (NUM_CORL3 correlation blocks)
24 *
25 * Each correlation array consists of:
26 *
27 * Correlation Data (2 x NUM_LAGSn x 32-bit words)
28 * Pipeline Metadata (2 x NUM_METAn x 32-bit words)
29 * Quantization Counters (2 x NUM_QCNTn x 32-bit words)
30 *
31 * The NUM_CORLn, NUM_LAGSn, NUM_METAn, and NUM_QCNTn values come from
32 * the FPGA configuration registers. They do not change once the FPGA's
33 * have been programmed, they only change on re-programming.
34 */
35
36/*
37 * Basic Description:
38 *
39 * This driver is used to capture correlation spectra off of the four data
40 * processing FPGAs. The FPGAs are often reprogrammed at runtime, therefore
41 * this driver supports dynamic enable/disable of capture while the device
42 * remains open.
43 *
44 * The nominal capture rate is 64Hz (every 15.625ms). To facilitate this fast
45 * capture rate, all buffers are pre-allocated to avoid any potentially long
46 * running memory allocations while capturing.
47 *
48 * There are two lists and one pointer which are used to keep track of the
49 * different states of data buffers.
50 *
51 * 1) free list
52 * This list holds all empty data buffers which are ready to receive data.
53 *
54 * 2) inflight pointer
55 * This pointer holds the currently inflight data buffer. This buffer is having
56 * data copied into it by the DMA engine.
57 *
58 * 3) used list
59 * This list holds data buffers which have been filled, and are waiting to be
60 * read by userspace.
61 *
62 * All buffers start life on the free list, then move successively to the
63 * inflight pointer, and then to the used list. After they have been read by
64 * userspace, they are moved back to the free list. The cycle repeats as long
65 * as necessary.
66 *
67 * It should be noted that all buffers are mapped and ready for DMA when they
68 * are on any of the three lists. They are only unmapped when they are in the
69 * process of being read by userspace.
70 */
71
72/*
73 * Notes on the IRQ masking scheme:
74 *
75 * The IRQ masking scheme here is different than most other hardware. The only
76 * way for the DATA-FPGAs to detect if the kernel has taken too long to copy
77 * the data is if the status registers are not cleared before the next
78 * correlation data dump is ready.
79 *
80 * The interrupt line is connected to the status registers, such that when they
81 * are cleared, the interrupt is de-asserted. Therein lies our problem. We need
82 * to schedule a long-running DMA operation and return from the interrupt
83 * handler quickly, but we cannot clear the status registers.
84 *
85 * To handle this, the system controller FPGA has the capability to connect the
86 * interrupt line to a user-controlled GPIO pin. This pin is driven high
87 * (unasserted) and left that way. To mask the interrupt, we change the
88 * interrupt source to the GPIO pin. Tada, we hid the interrupt. :)
89 */
90
5af50730
RH
91#include <linux/of_address.h>
92#include <linux/of_irq.h>
c186f0e1
IS
93#include <linux/of_platform.h>
94#include <linux/dma-mapping.h>
95#include <linux/miscdevice.h>
96#include <linux/interrupt.h>
97#include <linux/dmaengine.h>
98#include <linux/seq_file.h>
99#include <linux/highmem.h>
100#include <linux/debugfs.h>
101#include <linux/kernel.h>
102#include <linux/module.h>
103#include <linux/poll.h>
104#include <linux/init.h>
105#include <linux/slab.h>
106#include <linux/kref.h>
107#include <linux/io.h>
108
109#include <media/videobuf-dma-sg.h>
110
111/* system controller registers */
112#define SYS_IRQ_SOURCE_CTL 0x24
113#define SYS_IRQ_OUTPUT_EN 0x28
114#define SYS_IRQ_OUTPUT_DATA 0x2C
115#define SYS_IRQ_INPUT_DATA 0x30
116#define SYS_FPGA_CONFIG_STATUS 0x44
117
118/* GPIO IRQ line assignment */
119#define IRQ_CORL_DONE 0x10
120
121/* FPGA registers */
122#define MMAP_REG_VERSION 0x00
123#define MMAP_REG_CORL_CONF1 0x08
124#define MMAP_REG_CORL_CONF2 0x0C
125#define MMAP_REG_STATUS 0x48
126
127#define SYS_FPGA_BLOCK 0xF0000000
128
129#define DATA_FPGA_START 0x400000
130#define DATA_FPGA_SIZE 0x80000
131
132static const char drv_name[] = "carma-fpga";
133
134#define NUM_FPGA 4
135
136#define MIN_DATA_BUFS 8
137#define MAX_DATA_BUFS 64
138
139struct fpga_info {
140 unsigned int num_lag_ram;
141 unsigned int blk_size;
142};
143
144struct data_buf {
145 struct list_head entry;
146 struct videobuf_dmabuf vb;
147 size_t size;
148};
149
150struct fpga_device {
151 /* character device */
152 struct miscdevice miscdev;
153 struct device *dev;
154 struct mutex mutex;
155
156 /* reference count */
157 struct kref ref;
158
159 /* FPGA registers and information */
160 struct fpga_info info[NUM_FPGA];
161 void __iomem *regs;
162 int irq;
163
164 /* FPGA Physical Address/Size Information */
165 resource_size_t phys_addr;
166 size_t phys_size;
167
168 /* DMA structures */
169 struct sg_table corl_table;
170 unsigned int corl_nents;
171 struct dma_chan *chan;
172
173 /* Protection for all members below */
174 spinlock_t lock;
175
176 /* Device enable/disable flag */
177 bool enabled;
178
179 /* Correlation data buffers */
180 wait_queue_head_t wait;
181 struct list_head free;
182 struct list_head used;
183 struct data_buf *inflight;
184
185 /* Information about data buffers */
186 unsigned int num_dropped;
187 unsigned int num_buffers;
188 size_t bufsize;
189 struct dentry *dbg_entry;
190};
191
192struct fpga_reader {
193 struct fpga_device *priv;
194 struct data_buf *buf;
195 off_t buf_start;
196};
197
198static void fpga_device_release(struct kref *ref)
199{
200 struct fpga_device *priv = container_of(ref, struct fpga_device, ref);
201
202 /* the last reader has exited, cleanup the last bits */
203 mutex_destroy(&priv->mutex);
204 kfree(priv);
205}
206
207/*
208 * Data Buffer Allocation Helpers
209 */
210
211/**
212 * data_free_buffer() - free a single data buffer and all allocated memory
213 * @buf: the buffer to free
214 *
215 * This will free all of the pages allocated to the given data buffer, and
216 * then free the structure itself
217 */
218static void data_free_buffer(struct data_buf *buf)
219{
220 /* It is ok to free a NULL buffer */
221 if (!buf)
222 return;
223
224 /* free all memory */
225 videobuf_dma_free(&buf->vb);
226 kfree(buf);
227}
228
229/**
230 * data_alloc_buffer() - allocate and fill a data buffer with pages
231 * @bytes: the number of bytes required
232 *
233 * This allocates all space needed for a data buffer. It must be mapped before
234 * use in a DMA transaction using videobuf_dma_map().
235 *
236 * Returns NULL on failure
237 */
238static struct data_buf *data_alloc_buffer(const size_t bytes)
239{
240 unsigned int nr_pages;
241 struct data_buf *buf;
242 int ret;
243
244 /* calculate the number of pages necessary */
245 nr_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
246
247 /* allocate the buffer structure */
248 buf = kzalloc(sizeof(*buf), GFP_KERNEL);
249 if (!buf)
250 goto out_return;
251
252 /* initialize internal fields */
253 INIT_LIST_HEAD(&buf->entry);
254 buf->size = bytes;
255
256 /* allocate the videobuf */
257 videobuf_dma_init(&buf->vb);
258 ret = videobuf_dma_init_kernel(&buf->vb, DMA_FROM_DEVICE, nr_pages);
259 if (ret)
260 goto out_free_buf;
261
262 return buf;
263
264out_free_buf:
265 kfree(buf);
266out_return:
267 return NULL;
268}
269
270/**
271 * data_free_buffers() - free all allocated buffers
272 * @priv: the driver's private data structure
273 *
274 * Free all buffers allocated by the driver (except those currently in the
275 * process of being read by userspace).
276 *
277 * LOCKING: must hold dev->mutex
278 * CONTEXT: user
279 */
280static void data_free_buffers(struct fpga_device *priv)
281{
282 struct data_buf *buf, *tmp;
283
284 /* the device should be stopped, no DMA in progress */
285 BUG_ON(priv->inflight != NULL);
286
287 list_for_each_entry_safe(buf, tmp, &priv->free, entry) {
288 list_del_init(&buf->entry);
289 videobuf_dma_unmap(priv->dev, &buf->vb);
290 data_free_buffer(buf);
291 }
292
293 list_for_each_entry_safe(buf, tmp, &priv->used, entry) {
294 list_del_init(&buf->entry);
295 videobuf_dma_unmap(priv->dev, &buf->vb);
296 data_free_buffer(buf);
297 }
298
299 priv->num_buffers = 0;
300 priv->bufsize = 0;
301}
302
303/**
304 * data_alloc_buffers() - allocate 1 seconds worth of data buffers
305 * @priv: the driver's private data structure
306 *
307 * Allocate enough buffers for a whole second worth of data
308 *
309 * This routine will attempt to degrade nicely by succeeding even if a full
310 * second worth of data buffers could not be allocated, as long as a minimum
311 * number were allocated. In this case, it will print a message to the kernel
312 * log.
313 *
314 * The device must not be modifying any lists when this is called.
315 *
316 * CONTEXT: user
317 * LOCKING: must hold dev->mutex
318 *
319 * Returns 0 on success, -ERRNO otherwise
320 */
321static int data_alloc_buffers(struct fpga_device *priv)
322{
323 struct data_buf *buf;
324 int i, ret;
325
326 for (i = 0; i < MAX_DATA_BUFS; i++) {
327
328 /* allocate a buffer */
329 buf = data_alloc_buffer(priv->bufsize);
330 if (!buf)
331 break;
332
333 /* map it for DMA */
334 ret = videobuf_dma_map(priv->dev, &buf->vb);
335 if (ret) {
336 data_free_buffer(buf);
337 break;
338 }
339
340 /* add it to the list of free buffers */
341 list_add_tail(&buf->entry, &priv->free);
342 priv->num_buffers++;
343 }
344
345 /* Make sure we allocated the minimum required number of buffers */
346 if (priv->num_buffers < MIN_DATA_BUFS) {
347 dev_err(priv->dev, "Unable to allocate enough data buffers\n");
348 data_free_buffers(priv);
349 return -ENOMEM;
350 }
351
352 /* Warn if we are running in a degraded state, but do not fail */
353 if (priv->num_buffers < MAX_DATA_BUFS) {
354 dev_warn(priv->dev,
355 "Unable to allocate %d buffers, using %d buffers instead\n",
356 MAX_DATA_BUFS, i);
357 }
358
359 return 0;
360}
361
362/*
363 * DMA Operations Helpers
364 */
365
366/**
367 * fpga_start_addr() - get the physical address a DATA-FPGA
368 * @priv: the driver's private data structure
369 * @fpga: the DATA-FPGA number (zero based)
370 */
371static dma_addr_t fpga_start_addr(struct fpga_device *priv, unsigned int fpga)
372{
373 return priv->phys_addr + 0x400000 + (0x80000 * fpga);
374}
375
376/**
377 * fpga_block_addr() - get the physical address of a correlation data block
378 * @priv: the driver's private data structure
379 * @fpga: the DATA-FPGA number (zero based)
380 * @blknum: the correlation block number (zero based)
381 */
382static dma_addr_t fpga_block_addr(struct fpga_device *priv, unsigned int fpga,
383 unsigned int blknum)
384{
385 return fpga_start_addr(priv, fpga) + (0x10000 * (1 + blknum));
386}
387
388#define REG_BLOCK_SIZE (32 * 4)
389
390/**
391 * data_setup_corl_table() - create the scatterlist for correlation dumps
392 * @priv: the driver's private data structure
393 *
394 * Create the scatterlist for transferring a correlation dump from the
395 * DATA FPGAs. This structure will be reused for each buffer than needs
396 * to be filled with correlation data.
397 *
398 * Returns 0 on success, -ERRNO otherwise
399 */
400static int data_setup_corl_table(struct fpga_device *priv)
401{
402 struct sg_table *table = &priv->corl_table;
403 struct scatterlist *sg;
404 struct fpga_info *info;
405 int i, j, ret;
406
407 /* Calculate the number of entries needed */
408 priv->corl_nents = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
409 for (i = 0; i < NUM_FPGA; i++)
410 priv->corl_nents += priv->info[i].num_lag_ram;
411
412 /* Allocate the scatterlist table */
413 ret = sg_alloc_table(table, priv->corl_nents, GFP_KERNEL);
414 if (ret) {
415 dev_err(priv->dev, "unable to allocate DMA table\n");
416 return ret;
417 }
418
419 /* Add the DATA FPGA registers to the scatterlist */
420 sg = table->sgl;
421 for (i = 0; i < NUM_FPGA; i++) {
422 sg_dma_address(sg) = fpga_start_addr(priv, i);
423 sg_dma_len(sg) = REG_BLOCK_SIZE;
424 sg = sg_next(sg);
425 }
426
427 /* Add the SYS-FPGA registers to the scatterlist */
428 sg_dma_address(sg) = SYS_FPGA_BLOCK;
429 sg_dma_len(sg) = REG_BLOCK_SIZE;
430 sg = sg_next(sg);
431
432 /* Add the FPGA correlation data blocks to the scatterlist */
433 for (i = 0; i < NUM_FPGA; i++) {
434 info = &priv->info[i];
435 for (j = 0; j < info->num_lag_ram; j++) {
436 sg_dma_address(sg) = fpga_block_addr(priv, i, j);
437 sg_dma_len(sg) = info->blk_size;
438 sg = sg_next(sg);
439 }
440 }
441
442 /*
443 * All physical addresses and lengths are present in the structure
444 * now. It can be reused for every FPGA DATA interrupt
445 */
446 return 0;
447}
448
449/*
450 * FPGA Register Access Helpers
451 */
452
453static void fpga_write_reg(struct fpga_device *priv, unsigned int fpga,
454 unsigned int reg, u32 val)
455{
456 const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
457 iowrite32be(val, priv->regs + fpga_start + reg);
458}
459
460static u32 fpga_read_reg(struct fpga_device *priv, unsigned int fpga,
461 unsigned int reg)
462{
463 const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
464 return ioread32be(priv->regs + fpga_start + reg);
465}
466
467/**
468 * data_calculate_bufsize() - calculate the data buffer size required
469 * @priv: the driver's private data structure
470 *
471 * Calculate the total buffer size needed to hold a single block
472 * of correlation data
473 *
474 * CONTEXT: user
475 *
476 * Returns 0 on success, -ERRNO otherwise
477 */
478static int data_calculate_bufsize(struct fpga_device *priv)
479{
480 u32 num_corl, num_lags, num_meta, num_qcnt, num_pack;
481 u32 conf1, conf2, version;
482 u32 num_lag_ram, blk_size;
483 int i;
484
485 /* Each buffer starts with the 5 FPGA register areas */
486 priv->bufsize = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
487
488 /* Read and store the configuration data for each FPGA */
489 for (i = 0; i < NUM_FPGA; i++) {
490 version = fpga_read_reg(priv, i, MMAP_REG_VERSION);
491 conf1 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF1);
492 conf2 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF2);
493
494 /* minor version 2 and later */
495 if ((version & 0x000000FF) >= 2) {
496 num_corl = (conf1 & 0x000000F0) >> 4;
497 num_pack = (conf1 & 0x00000F00) >> 8;
498 num_lags = (conf1 & 0x00FFF000) >> 12;
499 num_meta = (conf1 & 0x7F000000) >> 24;
500 num_qcnt = (conf2 & 0x00000FFF) >> 0;
501 } else {
502 num_corl = (conf1 & 0x000000F0) >> 4;
503 num_pack = 1; /* implied */
504 num_lags = (conf1 & 0x000FFF00) >> 8;
505 num_meta = (conf1 & 0x7FF00000) >> 20;
506 num_qcnt = (conf2 & 0x00000FFF) >> 0;
507 }
508
509 num_lag_ram = (num_corl + num_pack - 1) / num_pack;
510 blk_size = ((num_pack * num_lags) + num_meta + num_qcnt) * 8;
511
512 priv->info[i].num_lag_ram = num_lag_ram;
513 priv->info[i].blk_size = blk_size;
514 priv->bufsize += num_lag_ram * blk_size;
515
516 dev_dbg(priv->dev, "FPGA %d NUM_CORL: %d\n", i, num_corl);
517 dev_dbg(priv->dev, "FPGA %d NUM_PACK: %d\n", i, num_pack);
518 dev_dbg(priv->dev, "FPGA %d NUM_LAGS: %d\n", i, num_lags);
519 dev_dbg(priv->dev, "FPGA %d NUM_META: %d\n", i, num_meta);
520 dev_dbg(priv->dev, "FPGA %d NUM_QCNT: %d\n", i, num_qcnt);
521 dev_dbg(priv->dev, "FPGA %d BLK_SIZE: %d\n", i, blk_size);
522 }
523
524 dev_dbg(priv->dev, "TOTAL BUFFER SIZE: %zu bytes\n", priv->bufsize);
525 return 0;
526}
527
528/*
529 * Interrupt Handling
530 */
531
532/**
533 * data_disable_interrupts() - stop the device from generating interrupts
534 * @priv: the driver's private data structure
535 *
536 * Hide interrupts by switching to GPIO interrupt source
537 *
538 * LOCKING: must hold dev->lock
539 */
540static void data_disable_interrupts(struct fpga_device *priv)
541{
542 /* hide the interrupt by switching the IRQ driver to GPIO */
543 iowrite32be(0x2F, priv->regs + SYS_IRQ_SOURCE_CTL);
544}
545
546/**
547 * data_enable_interrupts() - allow the device to generate interrupts
548 * @priv: the driver's private data structure
549 *
550 * Unhide interrupts by switching to the FPGA interrupt source. At the
551 * same time, clear the DATA-FPGA status registers.
552 *
553 * LOCKING: must hold dev->lock
554 */
555static void data_enable_interrupts(struct fpga_device *priv)
556{
557 /* clear the actual FPGA corl_done interrupt */
558 fpga_write_reg(priv, 0, MMAP_REG_STATUS, 0x0);
559 fpga_write_reg(priv, 1, MMAP_REG_STATUS, 0x0);
560 fpga_write_reg(priv, 2, MMAP_REG_STATUS, 0x0);
561 fpga_write_reg(priv, 3, MMAP_REG_STATUS, 0x0);
562
563 /* flush the writes */
564 fpga_read_reg(priv, 0, MMAP_REG_STATUS);
6c15d7af
IS
565 fpga_read_reg(priv, 1, MMAP_REG_STATUS);
566 fpga_read_reg(priv, 2, MMAP_REG_STATUS);
567 fpga_read_reg(priv, 3, MMAP_REG_STATUS);
c186f0e1
IS
568
569 /* switch back to the external interrupt source */
570 iowrite32be(0x3F, priv->regs + SYS_IRQ_SOURCE_CTL);
571}
572
573/**
574 * data_dma_cb() - DMAEngine callback for DMA completion
575 * @data: the driver's private data structure
576 *
577 * Complete a DMA transfer from the DATA-FPGA's
578 *
579 * This is called via the DMA callback mechanism, and will handle moving the
580 * completed DMA transaction to the used list, and then wake any processes
581 * waiting for new data
582 *
583 * CONTEXT: any, softirq expected
584 */
585static void data_dma_cb(void *data)
586{
587 struct fpga_device *priv = data;
588 unsigned long flags;
589
590 spin_lock_irqsave(&priv->lock, flags);
591
592 /* If there is no inflight buffer, we've got a bug */
593 BUG_ON(priv->inflight == NULL);
594
595 /* Move the inflight buffer onto the used list */
596 list_move_tail(&priv->inflight->entry, &priv->used);
597 priv->inflight = NULL;
598
6c15d7af
IS
599 /*
600 * If data dumping is still enabled, then clear the FPGA
601 * status registers and re-enable FPGA interrupts
602 */
603 if (priv->enabled)
604 data_enable_interrupts(priv);
c186f0e1
IS
605
606 spin_unlock_irqrestore(&priv->lock, flags);
607
608 /*
609 * We've changed both the inflight and used lists, so we need
610 * to wake up any processes that are blocking for those events
611 */
612 wake_up(&priv->wait);
613}
614
615/**
616 * data_submit_dma() - prepare and submit the required DMA to fill a buffer
617 * @priv: the driver's private data structure
618 * @buf: the data buffer
619 *
620 * Prepare and submit the necessary DMA transactions to fill a correlation
621 * data buffer.
622 *
623 * LOCKING: must hold dev->lock
624 * CONTEXT: hardirq only
625 *
626 * Returns 0 on success, -ERRNO otherwise
627 */
628static int data_submit_dma(struct fpga_device *priv, struct data_buf *buf)
629{
630 struct scatterlist *dst_sg, *src_sg;
631 unsigned int dst_nents, src_nents;
632 struct dma_chan *chan = priv->chan;
633 struct dma_async_tx_descriptor *tx;
634 dma_cookie_t cookie;
635 dma_addr_t dst, src;
bfc191ea
BZ
636 unsigned long dma_flags = DMA_COMPL_SKIP_DEST_UNMAP |
637 DMA_COMPL_SKIP_SRC_UNMAP;
c186f0e1
IS
638
639 dst_sg = buf->vb.sglist;
640 dst_nents = buf->vb.sglen;
641
642 src_sg = priv->corl_table.sgl;
643 src_nents = priv->corl_nents;
644
645 /*
646 * All buffers passed to this function should be ready and mapped
647 * for DMA already. Therefore, we don't need to do anything except
648 * submit it to the Freescale DMA Engine for processing
649 */
650
651 /* setup the scatterlist to scatterlist transfer */
652 tx = chan->device->device_prep_dma_sg(chan,
653 dst_sg, dst_nents,
654 src_sg, src_nents,
655 0);
656 if (!tx) {
657 dev_err(priv->dev, "unable to prep scatterlist DMA\n");
658 return -ENOMEM;
659 }
660
661 /* submit the transaction to the DMA controller */
662 cookie = tx->tx_submit(tx);
663 if (dma_submit_error(cookie)) {
664 dev_err(priv->dev, "unable to submit scatterlist DMA\n");
665 return -ENOMEM;
666 }
667
668 /* Prepare the re-read of the SYS-FPGA block */
669 dst = sg_dma_address(dst_sg) + (NUM_FPGA * REG_BLOCK_SIZE);
670 src = SYS_FPGA_BLOCK;
671 tx = chan->device->device_prep_dma_memcpy(chan, dst, src,
672 REG_BLOCK_SIZE,
bfc191ea 673 dma_flags);
c186f0e1
IS
674 if (!tx) {
675 dev_err(priv->dev, "unable to prep SYS-FPGA DMA\n");
676 return -ENOMEM;
677 }
678
679 /* Setup the callback */
680 tx->callback = data_dma_cb;
681 tx->callback_param = priv;
682
683 /* submit the transaction to the DMA controller */
684 cookie = tx->tx_submit(tx);
685 if (dma_submit_error(cookie)) {
686 dev_err(priv->dev, "unable to submit SYS-FPGA DMA\n");
687 return -ENOMEM;
688 }
689
690 return 0;
691}
692
693#define CORL_DONE 0x1
694#define CORL_ERR 0x2
695
696static irqreturn_t data_irq(int irq, void *dev_id)
697{
698 struct fpga_device *priv = dev_id;
699 bool submitted = false;
700 struct data_buf *buf;
701 u32 status;
702 int i;
703
704 /* detect spurious interrupts via FPGA status */
705 for (i = 0; i < 4; i++) {
706 status = fpga_read_reg(priv, i, MMAP_REG_STATUS);
707 if (!(status & (CORL_DONE | CORL_ERR))) {
708 dev_err(priv->dev, "spurious irq detected (FPGA)\n");
709 return IRQ_NONE;
710 }
711 }
712
713 /* detect spurious interrupts via raw IRQ pin readback */
714 status = ioread32be(priv->regs + SYS_IRQ_INPUT_DATA);
715 if (status & IRQ_CORL_DONE) {
716 dev_err(priv->dev, "spurious irq detected (IRQ)\n");
717 return IRQ_NONE;
718 }
719
720 spin_lock(&priv->lock);
721
6c15d7af
IS
722 /*
723 * This is an error case that should never happen.
724 *
725 * If this driver has a bug and manages to re-enable interrupts while
726 * a DMA is in progress, then we will hit this statement and should
727 * start paying attention immediately.
728 */
729 BUG_ON(priv->inflight != NULL);
730
c186f0e1
IS
731 /* hide the interrupt by switching the IRQ driver to GPIO */
732 data_disable_interrupts(priv);
733
734 /* If there are no free buffers, drop this data */
735 if (list_empty(&priv->free)) {
736 priv->num_dropped++;
737 goto out;
738 }
739
740 buf = list_first_entry(&priv->free, struct data_buf, entry);
741 list_del_init(&buf->entry);
742 BUG_ON(buf->size != priv->bufsize);
743
744 /* Submit a DMA transfer to get the correlation data */
745 if (data_submit_dma(priv, buf)) {
746 dev_err(priv->dev, "Unable to setup DMA transfer\n");
747 list_move_tail(&buf->entry, &priv->free);
748 goto out;
749 }
750
751 /* Save the buffer for the DMA callback */
752 priv->inflight = buf;
753 submitted = true;
754
755 /* Start the DMA Engine */
b9ee8683 756 dma_async_issue_pending(priv->chan);
c186f0e1
IS
757
758out:
759 /* If no DMA was submitted, re-enable interrupts */
760 if (!submitted)
761 data_enable_interrupts(priv);
762
763 spin_unlock(&priv->lock);
764 return IRQ_HANDLED;
765}
766
767/*
768 * Realtime Device Enable Helpers
769 */
770
771/**
772 * data_device_enable() - enable the device for buffered dumping
773 * @priv: the driver's private data structure
774 *
775 * Enable the device for buffered dumping. Allocates buffers and hooks up
776 * the interrupt handler. When this finishes, data will come pouring in.
777 *
778 * LOCKING: must hold dev->mutex
779 * CONTEXT: user context only
780 *
781 * Returns 0 on success, -ERRNO otherwise
782 */
783static int data_device_enable(struct fpga_device *priv)
784{
6c15d7af 785 bool enabled;
c186f0e1
IS
786 u32 val;
787 int ret;
788
789 /* multiple enables are safe: they do nothing */
6c15d7af
IS
790 spin_lock_irq(&priv->lock);
791 enabled = priv->enabled;
792 spin_unlock_irq(&priv->lock);
793 if (enabled)
c186f0e1
IS
794 return 0;
795
796 /* check that the FPGAs are programmed */
797 val = ioread32be(priv->regs + SYS_FPGA_CONFIG_STATUS);
798 if (!(val & (1 << 18))) {
799 dev_err(priv->dev, "DATA-FPGAs are not enabled\n");
800 return -ENODATA;
801 }
802
803 /* read the FPGAs to calculate the buffer size */
804 ret = data_calculate_bufsize(priv);
805 if (ret) {
806 dev_err(priv->dev, "unable to calculate buffer size\n");
807 goto out_error;
808 }
809
810 /* allocate the correlation data buffers */
811 ret = data_alloc_buffers(priv);
812 if (ret) {
813 dev_err(priv->dev, "unable to allocate buffers\n");
814 goto out_error;
815 }
816
817 /* setup the source scatterlist for dumping correlation data */
818 ret = data_setup_corl_table(priv);
819 if (ret) {
820 dev_err(priv->dev, "unable to setup correlation DMA table\n");
821 goto out_error;
822 }
823
6c15d7af
IS
824 /* prevent the FPGAs from generating interrupts */
825 data_disable_interrupts(priv);
826
c186f0e1
IS
827 /* hookup the irq handler */
828 ret = request_irq(priv->irq, data_irq, IRQF_SHARED, drv_name, priv);
829 if (ret) {
830 dev_err(priv->dev, "unable to request IRQ handler\n");
831 goto out_error;
832 }
833
6c15d7af
IS
834 /* allow the DMA callback to re-enable FPGA interrupts */
835 spin_lock_irq(&priv->lock);
c186f0e1 836 priv->enabled = true;
6c15d7af
IS
837 spin_unlock_irq(&priv->lock);
838
839 /* allow the FPGAs to generate interrupts */
840 data_enable_interrupts(priv);
c186f0e1
IS
841 return 0;
842
843out_error:
844 sg_free_table(&priv->corl_table);
845 priv->corl_nents = 0;
846
847 data_free_buffers(priv);
848 return ret;
849}
850
851/**
852 * data_device_disable() - disable the device for buffered dumping
853 * @priv: the driver's private data structure
854 *
855 * Disable the device for buffered dumping. Stops new DMA transactions from
856 * being generated, waits for all outstanding DMA to complete, and then frees
857 * all buffers.
858 *
859 * LOCKING: must hold dev->mutex
860 * CONTEXT: user only
861 *
862 * Returns 0 on success, -ERRNO otherwise
863 */
864static int data_device_disable(struct fpga_device *priv)
865{
6c15d7af 866 spin_lock_irq(&priv->lock);
c186f0e1
IS
867
868 /* allow multiple disable */
6c15d7af
IS
869 if (!priv->enabled) {
870 spin_unlock_irq(&priv->lock);
c186f0e1 871 return 0;
6c15d7af
IS
872 }
873
874 /*
875 * Mark the device disabled
876 *
877 * This stops DMA callbacks from re-enabling interrupts
878 */
879 priv->enabled = false;
c186f0e1 880
6c15d7af 881 /* prevent the FPGAs from generating interrupts */
c186f0e1
IS
882 data_disable_interrupts(priv);
883
6c15d7af
IS
884 /* wait until all ongoing DMA has finished */
885 while (priv->inflight != NULL) {
886 spin_unlock_irq(&priv->lock);
887 wait_event(priv->wait, priv->inflight == NULL);
888 spin_lock_irq(&priv->lock);
889 }
890
891 spin_unlock_irq(&priv->lock);
892
c186f0e1
IS
893 /* unhook the irq handler */
894 free_irq(priv->irq, priv);
895
c186f0e1
IS
896 /* free the correlation table */
897 sg_free_table(&priv->corl_table);
898 priv->corl_nents = 0;
899
c186f0e1
IS
900 /* free all buffers: the free and used lists are not being changed */
901 data_free_buffers(priv);
902 return 0;
903}
904
905/*
906 * DEBUGFS Interface
907 */
908#ifdef CONFIG_DEBUG_FS
909
910/*
911 * Count the number of entries in the given list
912 */
913static unsigned int list_num_entries(struct list_head *list)
914{
915 struct list_head *entry;
916 unsigned int ret = 0;
917
918 list_for_each(entry, list)
919 ret++;
920
921 return ret;
922}
923
924static int data_debug_show(struct seq_file *f, void *offset)
925{
926 struct fpga_device *priv = f->private;
c186f0e1
IS
927
928 spin_lock_irq(&priv->lock);
929
930 seq_printf(f, "enabled: %d\n", priv->enabled);
931 seq_printf(f, "bufsize: %d\n", priv->bufsize);
932 seq_printf(f, "num_buffers: %d\n", priv->num_buffers);
933 seq_printf(f, "num_free: %d\n", list_num_entries(&priv->free));
934 seq_printf(f, "inflight: %d\n", priv->inflight != NULL);
935 seq_printf(f, "num_used: %d\n", list_num_entries(&priv->used));
936 seq_printf(f, "num_dropped: %d\n", priv->num_dropped);
937
938 spin_unlock_irq(&priv->lock);
c186f0e1
IS
939 return 0;
940}
941
942static int data_debug_open(struct inode *inode, struct file *file)
943{
944 return single_open(file, data_debug_show, inode->i_private);
945}
946
947static const struct file_operations data_debug_fops = {
948 .owner = THIS_MODULE,
949 .open = data_debug_open,
950 .read = seq_read,
951 .llseek = seq_lseek,
952 .release = single_release,
953};
954
955static int data_debugfs_init(struct fpga_device *priv)
956{
957 priv->dbg_entry = debugfs_create_file(drv_name, S_IRUGO, NULL, priv,
958 &data_debug_fops);
959 if (IS_ERR(priv->dbg_entry))
960 return PTR_ERR(priv->dbg_entry);
961
962 return 0;
963}
964
965static void data_debugfs_exit(struct fpga_device *priv)
966{
967 debugfs_remove(priv->dbg_entry);
968}
969
970#else
971
972static inline int data_debugfs_init(struct fpga_device *priv)
973{
974 return 0;
975}
976
977static inline void data_debugfs_exit(struct fpga_device *priv)
978{
979}
980
981#endif /* CONFIG_DEBUG_FS */
982
983/*
984 * SYSFS Attributes
985 */
986
987static ssize_t data_en_show(struct device *dev, struct device_attribute *attr,
988 char *buf)
989{
990 struct fpga_device *priv = dev_get_drvdata(dev);
6c15d7af
IS
991 int ret;
992
993 spin_lock_irq(&priv->lock);
994 ret = snprintf(buf, PAGE_SIZE, "%u\n", priv->enabled);
995 spin_unlock_irq(&priv->lock);
996
997 return ret;
c186f0e1
IS
998}
999
1000static ssize_t data_en_set(struct device *dev, struct device_attribute *attr,
1001 const char *buf, size_t count)
1002{
1003 struct fpga_device *priv = dev_get_drvdata(dev);
1004 unsigned long enable;
1005 int ret;
1006
f7b41276 1007 ret = kstrtoul(buf, 0, &enable);
c186f0e1
IS
1008 if (ret) {
1009 dev_err(priv->dev, "unable to parse enable input\n");
f7b41276 1010 return ret;
c186f0e1
IS
1011 }
1012
6c15d7af 1013 /* protect against concurrent enable/disable */
c186f0e1
IS
1014 ret = mutex_lock_interruptible(&priv->mutex);
1015 if (ret)
1016 return ret;
1017
1018 if (enable)
1019 ret = data_device_enable(priv);
1020 else
1021 ret = data_device_disable(priv);
1022
1023 if (ret) {
1024 dev_err(priv->dev, "device %s failed\n",
1025 enable ? "enable" : "disable");
1026 count = ret;
1027 goto out_unlock;
1028 }
1029
1030out_unlock:
1031 mutex_unlock(&priv->mutex);
1032 return count;
1033}
1034
1035static DEVICE_ATTR(enable, S_IWUSR | S_IRUGO, data_en_show, data_en_set);
1036
1037static struct attribute *data_sysfs_attrs[] = {
1038 &dev_attr_enable.attr,
1039 NULL,
1040};
1041
1042static const struct attribute_group rt_sysfs_attr_group = {
1043 .attrs = data_sysfs_attrs,
1044};
1045
1046/*
1047 * FPGA Realtime Data Character Device
1048 */
1049
1050static int data_open(struct inode *inode, struct file *filp)
1051{
1052 /*
1053 * The miscdevice layer puts our struct miscdevice into the
1054 * filp->private_data field. We use this to find our private
1055 * data and then overwrite it with our own private structure.
1056 */
1057 struct fpga_device *priv = container_of(filp->private_data,
1058 struct fpga_device, miscdev);
1059 struct fpga_reader *reader;
1060 int ret;
1061
1062 /* allocate private data */
1063 reader = kzalloc(sizeof(*reader), GFP_KERNEL);
1064 if (!reader)
1065 return -ENOMEM;
1066
1067 reader->priv = priv;
1068 reader->buf = NULL;
1069
1070 filp->private_data = reader;
1071 ret = nonseekable_open(inode, filp);
1072 if (ret) {
1073 dev_err(priv->dev, "nonseekable-open failed\n");
1074 kfree(reader);
1075 return ret;
1076 }
1077
1078 /*
1079 * success, increase the reference count of the private data structure
1080 * so that it doesn't disappear if the device is unbound
1081 */
1082 kref_get(&priv->ref);
1083 return 0;
1084}
1085
1086static int data_release(struct inode *inode, struct file *filp)
1087{
1088 struct fpga_reader *reader = filp->private_data;
1089 struct fpga_device *priv = reader->priv;
1090
1091 /* free the per-reader structure */
1092 data_free_buffer(reader->buf);
1093 kfree(reader);
1094 filp->private_data = NULL;
1095
1096 /* decrement our reference count to the private data */
1097 kref_put(&priv->ref, fpga_device_release);
1098 return 0;
1099}
1100
1101static ssize_t data_read(struct file *filp, char __user *ubuf, size_t count,
1102 loff_t *f_pos)
1103{
1104 struct fpga_reader *reader = filp->private_data;
1105 struct fpga_device *priv = reader->priv;
1106 struct list_head *used = &priv->used;
75ff85a8 1107 bool drop_buffer = false;
c186f0e1
IS
1108 struct data_buf *dbuf;
1109 size_t avail;
1110 void *data;
1111 int ret;
1112
1113 /* check if we already have a partial buffer */
1114 if (reader->buf) {
1115 dbuf = reader->buf;
1116 goto have_buffer;
1117 }
1118
1119 spin_lock_irq(&priv->lock);
1120
1121 /* Block until there is at least one buffer on the used list */
1122 while (list_empty(used)) {
1123 spin_unlock_irq(&priv->lock);
1124
1125 if (filp->f_flags & O_NONBLOCK)
1126 return -EAGAIN;
1127
1128 ret = wait_event_interruptible(priv->wait, !list_empty(used));
1129 if (ret)
1130 return ret;
1131
1132 spin_lock_irq(&priv->lock);
1133 }
1134
1135 /* Grab the first buffer off of the used list */
1136 dbuf = list_first_entry(used, struct data_buf, entry);
1137 list_del_init(&dbuf->entry);
1138
1139 spin_unlock_irq(&priv->lock);
1140
1141 /* Buffers are always mapped: unmap it */
1142 videobuf_dma_unmap(priv->dev, &dbuf->vb);
1143
1144 /* save the buffer for later */
1145 reader->buf = dbuf;
1146 reader->buf_start = 0;
1147
1148have_buffer:
1149 /* Get the number of bytes available */
1150 avail = dbuf->size - reader->buf_start;
1151 data = dbuf->vb.vaddr + reader->buf_start;
1152
1153 /* Get the number of bytes we can transfer */
1154 count = min(count, avail);
1155
1156 /* Copy the data to the userspace buffer */
1157 if (copy_to_user(ubuf, data, count))
1158 return -EFAULT;
1159
1160 /* Update the amount of available space */
1161 avail -= count;
1162
1163 /*
1164 * If there is still some data available, save the buffer for the
1165 * next userspace call to read() and return
1166 */
1167 if (avail > 0) {
1168 reader->buf_start += count;
1169 reader->buf = dbuf;
1170 return count;
1171 }
1172
1173 /*
1174 * Get the buffer ready to be reused for DMA
1175 *
1176 * If it fails, we pretend that the read never happed and return
1177 * -EFAULT to userspace. The read will be retried.
1178 */
1179 ret = videobuf_dma_map(priv->dev, &dbuf->vb);
1180 if (ret) {
1181 dev_err(priv->dev, "unable to remap buffer for DMA\n");
1182 return -EFAULT;
1183 }
1184
1185 /* Lock against concurrent enable/disable */
1186 spin_lock_irq(&priv->lock);
1187
1188 /* the reader is finished with this buffer */
1189 reader->buf = NULL;
1190
1191 /*
1192 * One of two things has happened, the device is disabled, or the
1193 * device has been reconfigured underneath us. In either case, we
1194 * should just throw away the buffer.
75ff85a8
IS
1195 *
1196 * Lockdep complains if this is done under the spinlock, so we
1197 * handle it during the unlock path.
c186f0e1
IS
1198 */
1199 if (!priv->enabled || dbuf->size != priv->bufsize) {
75ff85a8 1200 drop_buffer = true;
c186f0e1
IS
1201 goto out_unlock;
1202 }
1203
1204 /* The buffer is safe to reuse, so add it back to the free list */
1205 list_add_tail(&dbuf->entry, &priv->free);
1206
1207out_unlock:
1208 spin_unlock_irq(&priv->lock);
75ff85a8
IS
1209
1210 if (drop_buffer) {
1211 videobuf_dma_unmap(priv->dev, &dbuf->vb);
1212 data_free_buffer(dbuf);
1213 }
1214
c186f0e1
IS
1215 return count;
1216}
1217
1218static unsigned int data_poll(struct file *filp, struct poll_table_struct *tbl)
1219{
1220 struct fpga_reader *reader = filp->private_data;
1221 struct fpga_device *priv = reader->priv;
1222 unsigned int mask = 0;
1223
1224 poll_wait(filp, &priv->wait, tbl);
1225
1226 if (!list_empty(&priv->used))
1227 mask |= POLLIN | POLLRDNORM;
1228
1229 return mask;
1230}
1231
1232static int data_mmap(struct file *filp, struct vm_area_struct *vma)
1233{
1234 struct fpga_reader *reader = filp->private_data;
1235 struct fpga_device *priv = reader->priv;
1236 unsigned long offset, vsize, psize, addr;
1237
1238 /* VMA properties */
1239 offset = vma->vm_pgoff << PAGE_SHIFT;
1240 vsize = vma->vm_end - vma->vm_start;
1241 psize = priv->phys_size - offset;
1242 addr = (priv->phys_addr + offset) >> PAGE_SHIFT;
1243
1244 /* Check against the FPGA region's physical memory size */
1245 if (vsize > psize) {
1246 dev_err(priv->dev, "requested mmap mapping too large\n");
1247 return -EINVAL;
1248 }
1249
c186f0e1
IS
1250 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1251
1252 return io_remap_pfn_range(vma, vma->vm_start, addr, vsize,
1253 vma->vm_page_prot);
1254}
1255
1256static const struct file_operations data_fops = {
1257 .owner = THIS_MODULE,
1258 .open = data_open,
1259 .release = data_release,
1260 .read = data_read,
1261 .poll = data_poll,
1262 .mmap = data_mmap,
1263 .llseek = no_llseek,
1264};
1265
1266/*
1267 * OpenFirmware Device Subsystem
1268 */
1269
1270static bool dma_filter(struct dma_chan *chan, void *data)
1271{
1272 /*
1273 * DMA Channel #0 is used for the FPGA Programmer, so ignore it
1274 *
1275 * This probably won't survive an unload/load cycle of the Freescale
1276 * DMAEngine driver, but that won't be a problem
1277 */
1278 if (chan->chan_id == 0 && chan->device->dev_id == 0)
1279 return false;
1280
1281 return true;
1282}
1283
49334020 1284static int data_of_probe(struct platform_device *op)
c186f0e1
IS
1285{
1286 struct device_node *of_node = op->dev.of_node;
1287 struct device *this_device;
1288 struct fpga_device *priv;
1289 struct resource res;
1290 dma_cap_mask_t mask;
1291 int ret;
1292
1293 /* Allocate private data */
1294 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1295 if (!priv) {
1296 dev_err(&op->dev, "Unable to allocate device private data\n");
1297 ret = -ENOMEM;
1298 goto out_return;
1299 }
1300
9093ca88 1301 platform_set_drvdata(op, priv);
c186f0e1
IS
1302 priv->dev = &op->dev;
1303 kref_init(&priv->ref);
1304 mutex_init(&priv->mutex);
1305
1306 dev_set_drvdata(priv->dev, priv);
1307 spin_lock_init(&priv->lock);
1308 INIT_LIST_HEAD(&priv->free);
1309 INIT_LIST_HEAD(&priv->used);
1310 init_waitqueue_head(&priv->wait);
1311
1312 /* Setup the misc device */
1313 priv->miscdev.minor = MISC_DYNAMIC_MINOR;
1314 priv->miscdev.name = drv_name;
1315 priv->miscdev.fops = &data_fops;
1316
1317 /* Get the physical address of the FPGA registers */
1318 ret = of_address_to_resource(of_node, 0, &res);
1319 if (ret) {
1320 dev_err(&op->dev, "Unable to find FPGA physical address\n");
1321 ret = -ENODEV;
1322 goto out_free_priv;
1323 }
1324
1325 priv->phys_addr = res.start;
1326 priv->phys_size = resource_size(&res);
1327
1328 /* ioremap the registers for use */
1329 priv->regs = of_iomap(of_node, 0);
1330 if (!priv->regs) {
1331 dev_err(&op->dev, "Unable to ioremap registers\n");
1332 ret = -ENOMEM;
1333 goto out_free_priv;
1334 }
1335
1336 dma_cap_zero(mask);
1337 dma_cap_set(DMA_MEMCPY, mask);
1338 dma_cap_set(DMA_INTERRUPT, mask);
1339 dma_cap_set(DMA_SLAVE, mask);
1340 dma_cap_set(DMA_SG, mask);
1341
1342 /* Request a DMA channel */
1343 priv->chan = dma_request_channel(mask, dma_filter, NULL);
1344 if (!priv->chan) {
1345 dev_err(&op->dev, "Unable to request DMA channel\n");
1346 ret = -ENODEV;
1347 goto out_unmap_regs;
1348 }
1349
1350 /* Find the correct IRQ number */
1351 priv->irq = irq_of_parse_and_map(of_node, 0);
1352 if (priv->irq == NO_IRQ) {
1353 dev_err(&op->dev, "Unable to find IRQ line\n");
1354 ret = -ENODEV;
1355 goto out_release_dma;
1356 }
1357
1358 /* Drive the GPIO for FPGA IRQ high (no interrupt) */
1359 iowrite32be(IRQ_CORL_DONE, priv->regs + SYS_IRQ_OUTPUT_DATA);
1360
1361 /* Register the miscdevice */
1362 ret = misc_register(&priv->miscdev);
1363 if (ret) {
1364 dev_err(&op->dev, "Unable to register miscdevice\n");
1365 goto out_irq_dispose_mapping;
1366 }
1367
1368 /* Create the debugfs files */
1369 ret = data_debugfs_init(priv);
1370 if (ret) {
1371 dev_err(&op->dev, "Unable to create debugfs files\n");
1372 goto out_misc_deregister;
1373 }
1374
1375 /* Create the sysfs files */
1376 this_device = priv->miscdev.this_device;
1377 dev_set_drvdata(this_device, priv);
1378 ret = sysfs_create_group(&this_device->kobj, &rt_sysfs_attr_group);
1379 if (ret) {
1380 dev_err(&op->dev, "Unable to create sysfs files\n");
1381 goto out_data_debugfs_exit;
1382 }
1383
1384 dev_info(&op->dev, "CARMA FPGA Realtime Data Driver Loaded\n");
1385 return 0;
1386
1387out_data_debugfs_exit:
1388 data_debugfs_exit(priv);
1389out_misc_deregister:
1390 misc_deregister(&priv->miscdev);
1391out_irq_dispose_mapping:
1392 irq_dispose_mapping(priv->irq);
1393out_release_dma:
1394 dma_release_channel(priv->chan);
1395out_unmap_regs:
1396 iounmap(priv->regs);
1397out_free_priv:
1398 kref_put(&priv->ref, fpga_device_release);
1399out_return:
1400 return ret;
1401}
1402
1403static int data_of_remove(struct platform_device *op)
1404{
9093ca88 1405 struct fpga_device *priv = platform_get_drvdata(op);
c186f0e1
IS
1406 struct device *this_device = priv->miscdev.this_device;
1407
1408 /* remove all sysfs files, now the device cannot be re-enabled */
1409 sysfs_remove_group(&this_device->kobj, &rt_sysfs_attr_group);
1410
1411 /* remove all debugfs files */
1412 data_debugfs_exit(priv);
1413
1414 /* disable the device from generating data */
1415 data_device_disable(priv);
1416
1417 /* remove the character device to stop new readers from appearing */
1418 misc_deregister(&priv->miscdev);
1419
1420 /* cleanup everything not needed by readers */
1421 irq_dispose_mapping(priv->irq);
1422 dma_release_channel(priv->chan);
1423 iounmap(priv->regs);
1424
1425 /* release our reference */
1426 kref_put(&priv->ref, fpga_device_release);
1427 return 0;
1428}
1429
1430static struct of_device_id data_of_match[] = {
1431 { .compatible = "carma,carma-fpga", },
1432 {},
1433};
1434
49334020 1435static struct platform_driver data_of_driver = {
c186f0e1
IS
1436 .probe = data_of_probe,
1437 .remove = data_of_remove,
1438 .driver = {
1439 .name = drv_name,
1440 .of_match_table = data_of_match,
1441 .owner = THIS_MODULE,
1442 },
1443};
1444
b00e126f 1445module_platform_driver(data_of_driver);
c186f0e1
IS
1446
1447MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>");
1448MODULE_DESCRIPTION("CARMA DATA-FPGA Access Driver");
1449MODULE_LICENSE("GPL");
This page took 0.201695 seconds and 5 git commands to generate.