mei: move fw_status back to hw ops handlers
[deliverable/linux.git] / drivers / misc / mei / hw-txe.c
CommitLineData
32e2b59f
TW
1/*
2 *
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2013-2014, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 */
16
17#include <linux/pci.h>
18#include <linux/jiffies.h>
19#include <linux/delay.h>
20#include <linux/kthread.h>
4a22176a 21#include <linux/irqreturn.h>
32e2b59f
TW
22
23#include <linux/mei.h>
24
25#include "mei_dev.h"
26#include "hw-txe.h"
27#include "client.h"
28#include "hbm.h"
29
30/**
31 * mei_txe_reg_read - Reads 32bit data from the device
32 *
33 * @base_addr: registers base address
34 * @offset: register offset
35 *
36 */
37static inline u32 mei_txe_reg_read(void __iomem *base_addr,
38 unsigned long offset)
39{
40 return ioread32(base_addr + offset);
41}
42
43/**
44 * mei_txe_reg_write - Writes 32bit data to the device
45 *
46 * @base_addr: registers base address
47 * @offset: register offset
48 * @value: the value to write
49 */
50static inline void mei_txe_reg_write(void __iomem *base_addr,
51 unsigned long offset, u32 value)
52{
53 iowrite32(value, base_addr + offset);
54}
55
56/**
57 * mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
58 *
59 * @dev: the device structure
60 * @offset: register offset
61 *
62 * Doesn't check for aliveness while Reads 32bit data from the SeC BAR
63 */
64static inline u32 mei_txe_sec_reg_read_silent(struct mei_txe_hw *hw,
65 unsigned long offset)
66{
67 return mei_txe_reg_read(hw->mem_addr[SEC_BAR], offset);
68}
69
70/**
71 * mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
72 *
73 * @dev: the device structure
74 * @offset: register offset
75 *
76 * Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
77 */
78static inline u32 mei_txe_sec_reg_read(struct mei_txe_hw *hw,
79 unsigned long offset)
80{
81 WARN(!hw->aliveness, "sec read: aliveness not asserted\n");
82 return mei_txe_sec_reg_read_silent(hw, offset);
83}
84/**
85 * mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
86 * doesn't check for aliveness
87 *
88 * @dev: the device structure
89 * @offset: register offset
90 * @value: value to write
91 *
92 * Doesn't check for aliveness while writes 32bit data from to the SeC BAR
93 */
94static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw *hw,
95 unsigned long offset, u32 value)
96{
97 mei_txe_reg_write(hw->mem_addr[SEC_BAR], offset, value);
98}
99
100/**
101 * mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
102 *
103 * @dev: the device structure
104 * @offset: register offset
105 * @value: value to write
106 *
107 * Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
108 */
109static inline void mei_txe_sec_reg_write(struct mei_txe_hw *hw,
110 unsigned long offset, u32 value)
111{
112 WARN(!hw->aliveness, "sec write: aliveness not asserted\n");
113 mei_txe_sec_reg_write_silent(hw, offset, value);
114}
115/**
116 * mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
117 *
118 * @hw: the device structure
119 * @offset: offset from which to read the data
120 *
121 */
122static inline u32 mei_txe_br_reg_read(struct mei_txe_hw *hw,
123 unsigned long offset)
124{
125 return mei_txe_reg_read(hw->mem_addr[BRIDGE_BAR], offset);
126}
127
128/**
129 * mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
130 *
131 * @hw: the device structure
132 * @offset: offset from which to write the data
133 * @value: the byte to write
134 */
135static inline void mei_txe_br_reg_write(struct mei_txe_hw *hw,
136 unsigned long offset, u32 value)
137{
138 mei_txe_reg_write(hw->mem_addr[BRIDGE_BAR], offset, value);
139}
140
141/**
142 * mei_txe_aliveness_set - request for aliveness change
143 *
144 * @dev: the device structure
145 * @req: requested aliveness value
146 *
147 * Request for aliveness change and returns true if the change is
148 * really needed and false if aliveness is already
149 * in the requested state
150 * Requires device lock to be held
151 */
152static bool mei_txe_aliveness_set(struct mei_device *dev, u32 req)
153{
154
155 struct mei_txe_hw *hw = to_txe_hw(dev);
156 bool do_req = hw->aliveness != req;
157
2bf94cab 158 dev_dbg(dev->dev, "Aliveness current=%d request=%d\n",
32e2b59f
TW
159 hw->aliveness, req);
160 if (do_req) {
964a2331 161 dev->pg_event = MEI_PG_EVENT_WAIT;
32e2b59f
TW
162 mei_txe_br_reg_write(hw, SICR_HOST_ALIVENESS_REQ_REG, req);
163 }
164 return do_req;
165}
166
167
168/**
169 * mei_txe_aliveness_req_get - get aliveness requested register value
170 *
171 * @dev: the device structure
172 *
173 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
174 * from HICR_HOST_ALIVENESS_REQ register value
175 */
176static u32 mei_txe_aliveness_req_get(struct mei_device *dev)
177{
178 struct mei_txe_hw *hw = to_txe_hw(dev);
179 u32 reg;
92db1555 180
32e2b59f
TW
181 reg = mei_txe_br_reg_read(hw, SICR_HOST_ALIVENESS_REQ_REG);
182 return reg & SICR_HOST_ALIVENESS_REQ_REQUESTED;
183}
184
185/**
186 * mei_txe_aliveness_get - get aliveness response register value
187 * @dev: the device structure
188 *
189 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit
190 * from HICR_HOST_ALIVENESS_RESP register value
191 */
192static u32 mei_txe_aliveness_get(struct mei_device *dev)
193{
194 struct mei_txe_hw *hw = to_txe_hw(dev);
195 u32 reg;
92db1555 196
32e2b59f
TW
197 reg = mei_txe_br_reg_read(hw, HICR_HOST_ALIVENESS_RESP_REG);
198 return reg & HICR_HOST_ALIVENESS_RESP_ACK;
199}
200
201/**
202 * mei_txe_aliveness_poll - waits for aliveness to settle
203 *
204 * @dev: the device structure
205 * @expected: expected aliveness value
206 *
207 * Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
208 * returns > 0 if the expected value was received, -ETIME otherwise
209 */
210static int mei_txe_aliveness_poll(struct mei_device *dev, u32 expected)
211{
212 struct mei_txe_hw *hw = to_txe_hw(dev);
213 int t = 0;
214
215 do {
216 hw->aliveness = mei_txe_aliveness_get(dev);
217 if (hw->aliveness == expected) {
964a2331 218 dev->pg_event = MEI_PG_EVENT_IDLE;
2bf94cab 219 dev_dbg(dev->dev,
32e2b59f
TW
220 "aliveness settled after %d msecs\n", t);
221 return t;
222 }
223 mutex_unlock(&dev->device_lock);
224 msleep(MSEC_PER_SEC / 5);
225 mutex_lock(&dev->device_lock);
226 t += MSEC_PER_SEC / 5;
227 } while (t < SEC_ALIVENESS_WAIT_TIMEOUT);
228
964a2331 229 dev->pg_event = MEI_PG_EVENT_IDLE;
2bf94cab 230 dev_err(dev->dev, "aliveness timed out\n");
32e2b59f
TW
231 return -ETIME;
232}
233
234/**
235 * mei_txe_aliveness_wait - waits for aliveness to settle
236 *
237 * @dev: the device structure
238 * @expected: expected aliveness value
239 *
240 * Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
241 * returns returns 0 on success and < 0 otherwise
242 */
243static int mei_txe_aliveness_wait(struct mei_device *dev, u32 expected)
244{
245 struct mei_txe_hw *hw = to_txe_hw(dev);
246 const unsigned long timeout =
247 msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT);
248 long err;
249 int ret;
250
251 hw->aliveness = mei_txe_aliveness_get(dev);
252 if (hw->aliveness == expected)
253 return 0;
254
255 mutex_unlock(&dev->device_lock);
964a2331
TW
256 err = wait_event_timeout(hw->wait_aliveness_resp,
257 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
32e2b59f
TW
258 mutex_lock(&dev->device_lock);
259
260 hw->aliveness = mei_txe_aliveness_get(dev);
261 ret = hw->aliveness == expected ? 0 : -ETIME;
262
263 if (ret)
2bf94cab 264 dev_warn(dev->dev, "aliveness timed out = %ld aliveness = %d event = %d\n",
964a2331 265 err, hw->aliveness, dev->pg_event);
32e2b59f 266 else
2bf94cab 267 dev_dbg(dev->dev, "aliveness settled after = %d msec aliveness = %d event = %d\n",
964a2331
TW
268 jiffies_to_msecs(timeout - err),
269 hw->aliveness, dev->pg_event);
270
271 dev->pg_event = MEI_PG_EVENT_IDLE;
32e2b59f
TW
272 return ret;
273}
274
275/**
276 * mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
277 *
278 * @dev: the device structure
279 *
280 * returns returns 0 on success and < 0 otherwise
281 */
282int mei_txe_aliveness_set_sync(struct mei_device *dev, u32 req)
283{
284 if (mei_txe_aliveness_set(dev, req))
285 return mei_txe_aliveness_wait(dev, req);
286 return 0;
287}
288
ee7e5afd
TW
289/**
290 * mei_txe_pg_is_enabled - detect if PG is supported by HW
291 *
292 * @dev: the device structure
293 *
294 * returns: true is pg supported, false otherwise
295 */
296static bool mei_txe_pg_is_enabled(struct mei_device *dev)
297{
298 return true;
299}
300
964a2331
TW
301/**
302 * mei_txe_pg_state - translate aliveness register value
303 * to the mei power gating state
304 *
305 * @dev: the device structure
306 *
307 * returns: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
308 */
309static inline enum mei_pg_state mei_txe_pg_state(struct mei_device *dev)
310{
311 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 312
964a2331
TW
313 return hw->aliveness ? MEI_PG_OFF : MEI_PG_ON;
314}
315
32e2b59f
TW
316/**
317 * mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
318 *
319 * @dev: the device structure
320 */
321static void mei_txe_input_ready_interrupt_enable(struct mei_device *dev)
322{
323 struct mei_txe_hw *hw = to_txe_hw(dev);
324 u32 hintmsk;
325 /* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
326 hintmsk = mei_txe_sec_reg_read(hw, SEC_IPC_HOST_INT_MASK_REG);
327 hintmsk |= SEC_IPC_HOST_INT_MASK_IN_RDY;
328 mei_txe_sec_reg_write(hw, SEC_IPC_HOST_INT_MASK_REG, hintmsk);
329}
330
331/**
332 * mei_txe_input_doorbell_set
333 * - Sets bit 0 in SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
334 * @dev: the device structure
335 */
336static void mei_txe_input_doorbell_set(struct mei_txe_hw *hw)
337{
338 /* Clear the interrupt cause */
339 clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause);
340 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_DOORBELL_REG, 1);
341}
342
343/**
344 * mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
345 *
346 * @dev: the device structure
347 */
348static void mei_txe_output_ready_set(struct mei_txe_hw *hw)
349{
350 mei_txe_br_reg_write(hw,
351 SICR_SEC_IPC_OUTPUT_STATUS_REG,
352 SEC_IPC_OUTPUT_STATUS_RDY);
353}
354
355/**
356 * mei_txe_is_input_ready - check if TXE is ready for receiving data
357 *
358 * @dev: the device structure
359 */
360static bool mei_txe_is_input_ready(struct mei_device *dev)
361{
362 struct mei_txe_hw *hw = to_txe_hw(dev);
363 u32 status;
92db1555 364
32e2b59f
TW
365 status = mei_txe_sec_reg_read(hw, SEC_IPC_INPUT_STATUS_REG);
366 return !!(SEC_IPC_INPUT_STATUS_RDY & status);
367}
368
369/**
370 * mei_txe_intr_clear - clear all interrupts
371 *
372 * @dev: the device structure
373 */
374static inline void mei_txe_intr_clear(struct mei_device *dev)
375{
376 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 377
32e2b59f
TW
378 mei_txe_sec_reg_write_silent(hw, SEC_IPC_HOST_INT_STATUS_REG,
379 SEC_IPC_HOST_INT_STATUS_PENDING);
380 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_STS_MSK);
381 mei_txe_br_reg_write(hw, HHISR_REG, IPC_HHIER_MSK);
382}
383
384/**
385 * mei_txe_intr_disable - disable all interrupts
386 *
387 * @dev: the device structure
388 */
389static void mei_txe_intr_disable(struct mei_device *dev)
390{
391 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 392
32e2b59f
TW
393 mei_txe_br_reg_write(hw, HHIER_REG, 0);
394 mei_txe_br_reg_write(hw, HIER_REG, 0);
395}
396/**
397 * mei_txe_intr_disable - enable all interrupts
398 *
399 * @dev: the device structure
400 */
401static void mei_txe_intr_enable(struct mei_device *dev)
402{
403 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 404
32e2b59f
TW
405 mei_txe_br_reg_write(hw, HHIER_REG, IPC_HHIER_MSK);
406 mei_txe_br_reg_write(hw, HIER_REG, HIER_INT_EN_MSK);
407}
408
409/**
410 * mei_txe_pending_interrupts - check if there are pending interrupts
411 * only Aliveness, Input ready, and output doorbell are of relevance
412 *
413 * @dev: the device structure
414 *
415 * Checks if there are pending interrupts
416 * only Aliveness, Readiness, Input ready, and Output doorbell are relevant
417 */
418static bool mei_txe_pending_interrupts(struct mei_device *dev)
419{
420
421 struct mei_txe_hw *hw = to_txe_hw(dev);
422 bool ret = (hw->intr_cause & (TXE_INTR_READINESS |
423 TXE_INTR_ALIVENESS |
424 TXE_INTR_IN_READY |
425 TXE_INTR_OUT_DB));
426
427 if (ret) {
2bf94cab 428 dev_dbg(dev->dev,
32e2b59f
TW
429 "Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
430 !!(hw->intr_cause & TXE_INTR_IN_READY),
431 !!(hw->intr_cause & TXE_INTR_READINESS),
432 !!(hw->intr_cause & TXE_INTR_ALIVENESS),
433 !!(hw->intr_cause & TXE_INTR_OUT_DB));
434 }
435 return ret;
436}
437
438/**
439 * mei_txe_input_payload_write - write a dword to the host buffer
440 * at offset idx
441 *
442 * @dev: the device structure
443 * @idx: index in the host buffer
444 * @value: value
445 */
446static void mei_txe_input_payload_write(struct mei_device *dev,
447 unsigned long idx, u32 value)
448{
449 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 450
32e2b59f
TW
451 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_PAYLOAD_REG +
452 (idx * sizeof(u32)), value);
453}
454
455/**
456 * mei_txe_out_data_read - read dword from the device buffer
457 * at offset idx
458 *
459 * @dev: the device structure
460 * @idx: index in the device buffer
461 *
462 * returns register value at index
463 */
464static u32 mei_txe_out_data_read(const struct mei_device *dev,
465 unsigned long idx)
466{
467 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 468
32e2b59f
TW
469 return mei_txe_br_reg_read(hw,
470 BRIDGE_IPC_OUTPUT_PAYLOAD_REG + (idx * sizeof(u32)));
471}
472
473/* Readiness */
474
475/**
476 * mei_txe_readiness_set_host_rdy
477 *
478 * @dev: the device structure
479 */
480static void mei_txe_readiness_set_host_rdy(struct mei_device *dev)
481{
482 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 483
32e2b59f
TW
484 mei_txe_br_reg_write(hw,
485 SICR_HOST_IPC_READINESS_REQ_REG,
486 SICR_HOST_IPC_READINESS_HOST_RDY);
487}
488
489/**
490 * mei_txe_readiness_clear
491 *
492 * @dev: the device structure
493 */
494static void mei_txe_readiness_clear(struct mei_device *dev)
495{
496 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 497
32e2b59f
TW
498 mei_txe_br_reg_write(hw, SICR_HOST_IPC_READINESS_REQ_REG,
499 SICR_HOST_IPC_READINESS_RDY_CLR);
500}
501/**
502 * mei_txe_readiness_get - Reads and returns
503 * the HICR_SEC_IPC_READINESS register value
504 *
505 * @dev: the device structure
506 */
507static u32 mei_txe_readiness_get(struct mei_device *dev)
508{
509 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 510
32e2b59f
TW
511 return mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
512}
513
514
515/**
516 * mei_txe_readiness_is_sec_rdy - check readiness
517 * for HICR_SEC_IPC_READINESS_SEC_RDY
518 *
519 * @readiness - cached readiness state
520 */
521static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness)
522{
523 return !!(readiness & HICR_SEC_IPC_READINESS_SEC_RDY);
524}
525
526/**
527 * mei_txe_hw_is_ready - check if the hw is ready
528 *
529 * @dev: the device structure
530 */
531static bool mei_txe_hw_is_ready(struct mei_device *dev)
532{
533 u32 readiness = mei_txe_readiness_get(dev);
92db1555 534
32e2b59f
TW
535 return mei_txe_readiness_is_sec_rdy(readiness);
536}
537
538/**
539 * mei_txe_host_is_ready - check if the host is ready
540 *
541 * @dev: the device structure
542 */
543static inline bool mei_txe_host_is_ready(struct mei_device *dev)
544{
545 struct mei_txe_hw *hw = to_txe_hw(dev);
546 u32 reg = mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
92db1555 547
32e2b59f
TW
548 return !!(reg & HICR_SEC_IPC_READINESS_HOST_RDY);
549}
550
551/**
552 * mei_txe_readiness_wait - wait till readiness settles
553 *
554 * @dev: the device structure
555 *
556 * returns 0 on success and -ETIME on timeout
557 */
558static int mei_txe_readiness_wait(struct mei_device *dev)
559{
560 if (mei_txe_hw_is_ready(dev))
561 return 0;
562
563 mutex_unlock(&dev->device_lock);
564 wait_event_timeout(dev->wait_hw_ready, dev->recvd_hw_ready,
565 msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT));
566 mutex_lock(&dev->device_lock);
567 if (!dev->recvd_hw_ready) {
2bf94cab 568 dev_err(dev->dev, "wait for readiness failed\n");
32e2b59f
TW
569 return -ETIME;
570 }
571
572 dev->recvd_hw_ready = false;
573 return 0;
574}
575
1bd30b6a
TW
576
577/**
578 * mei_txe_fw_status - read fw status register from pci config space
579 *
580 * @dev: mei device
581 * @fw_status: fw status register values
582 */
583static int mei_txe_fw_status(struct mei_device *dev,
584 struct mei_fw_status *fw_status)
585{
586 const struct mei_fw_status *fw_src = &dev->cfg->fw_status;
587 struct pci_dev *pdev = to_pci_dev(dev->dev);
588 int ret;
589 int i;
590
591 if (!fw_status)
592 return -EINVAL;
593
594 fw_status->count = fw_src->count;
595 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
596 ret = pci_read_config_dword(pdev,
597 fw_src->status[i], &fw_status->status[i]);
598 if (ret)
599 return ret;
600 }
601
602 return 0;
603}
604
32e2b59f
TW
605/**
606 * mei_txe_hw_config - configure hardware at the start of the devices
607 *
608 * @dev: the device structure
609 *
610 * Configure hardware at the start of the device should be done only
611 * once at the device probe time
612 */
613static void mei_txe_hw_config(struct mei_device *dev)
614{
615
616 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 617
32e2b59f
TW
618 /* Doesn't change in runtime */
619 dev->hbuf_depth = PAYLOAD_SIZE / 4;
620
621 hw->aliveness = mei_txe_aliveness_get(dev);
622 hw->readiness = mei_txe_readiness_get(dev);
623
2bf94cab 624 dev_dbg(dev->dev, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
32e2b59f
TW
625 hw->aliveness, hw->readiness);
626}
627
628
629/**
630 * mei_txe_write - writes a message to device.
631 *
632 * @dev: the device structure
633 * @header: header of message
634 * @buf: message buffer will be written
635 * returns 1 if success, 0 - otherwise.
636 */
637
638static int mei_txe_write(struct mei_device *dev,
639 struct mei_msg_hdr *header, unsigned char *buf)
640{
641 struct mei_txe_hw *hw = to_txe_hw(dev);
642 unsigned long rem;
643 unsigned long length;
9d098192 644 int slots = dev->hbuf_depth;
32e2b59f 645 u32 *reg_buf = (u32 *)buf;
9d098192 646 u32 dw_cnt;
32e2b59f
TW
647 int i;
648
649 if (WARN_ON(!header || !buf))
650 return -EINVAL;
651
652 length = header->length;
653
2bf94cab 654 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
32e2b59f 655
9d098192
TW
656 dw_cnt = mei_data2slots(length);
657 if (dw_cnt > slots)
658 return -EMSGSIZE;
32e2b59f
TW
659
660 if (WARN(!hw->aliveness, "txe write: aliveness not asserted\n"))
661 return -EAGAIN;
662
663 /* Enable Input Ready Interrupt. */
664 mei_txe_input_ready_interrupt_enable(dev);
665
666 if (!mei_txe_is_input_ready(dev)) {
04dd3661 667 struct mei_fw_status fw_status;
92db1555 668
04dd3661 669 mei_fw_status(dev, &fw_status);
2bf94cab 670 dev_err(dev->dev, "Input is not ready " FW_STS_FMT "\n",
04dd3661 671 FW_STS_PRM(fw_status));
32e2b59f
TW
672 return -EAGAIN;
673 }
674
675 mei_txe_input_payload_write(dev, 0, *((u32 *)header));
676
677 for (i = 0; i < length / 4; i++)
678 mei_txe_input_payload_write(dev, i + 1, reg_buf[i]);
679
680 rem = length & 0x3;
681 if (rem > 0) {
682 u32 reg = 0;
92db1555 683
32e2b59f
TW
684 memcpy(&reg, &buf[length - rem], rem);
685 mei_txe_input_payload_write(dev, i + 1, reg);
686 }
687
9d098192
TW
688 /* after each write the whole buffer is consumed */
689 hw->slots = 0;
690
32e2b59f
TW
691 /* Set Input-Doorbell */
692 mei_txe_input_doorbell_set(hw);
693
694 return 0;
695}
696
697/**
698 * mei_txe_hbuf_max_len - mimics the me hbuf circular buffer
699 *
700 * @dev: the device structure
701 *
702 * returns the PAYLOAD_SIZE - 4
703 */
704static size_t mei_txe_hbuf_max_len(const struct mei_device *dev)
705{
706 return PAYLOAD_SIZE - sizeof(struct mei_msg_hdr);
707}
708
709/**
710 * mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
711 *
712 * @dev: the device structure
713 *
714 * returns always hbuf_depth
715 */
716static int mei_txe_hbuf_empty_slots(struct mei_device *dev)
717{
9d098192 718 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 719
9d098192 720 return hw->slots;
32e2b59f
TW
721}
722
723/**
724 * mei_txe_count_full_read_slots - mimics the me device circular buffer
725 *
726 * @dev: the device structure
727 *
728 * returns always buffer size in dwords count
729 */
730static int mei_txe_count_full_read_slots(struct mei_device *dev)
731{
732 /* read buffers has static size */
733 return PAYLOAD_SIZE / 4;
734}
735
736/**
737 * mei_txe_read_hdr - read message header which is always in 4 first bytes
738 *
739 * @dev: the device structure
740 *
741 * returns mei message header
742 */
743
744static u32 mei_txe_read_hdr(const struct mei_device *dev)
745{
746 return mei_txe_out_data_read(dev, 0);
747}
748/**
749 * mei_txe_read - reads a message from the txe device.
750 *
751 * @dev: the device structure
752 * @buf: message buffer will be written
753 * @len: message size will be read
754 *
755 * returns -EINVAL on error wrong argument and 0 on success
756 */
757static int mei_txe_read(struct mei_device *dev,
758 unsigned char *buf, unsigned long len)
759{
760
761 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555
TW
762 u32 *reg_buf, reg;
763 u32 rem;
32e2b59f 764 u32 i;
32e2b59f
TW
765
766 if (WARN_ON(!buf || !len))
767 return -EINVAL;
768
92db1555
TW
769 reg_buf = (u32 *)buf;
770 rem = len & 0x3;
771
2bf94cab 772 dev_dbg(dev->dev, "buffer-length = %lu buf[0]0x%08X\n",
32e2b59f
TW
773 len, mei_txe_out_data_read(dev, 0));
774
775 for (i = 0; i < len / 4; i++) {
776 /* skip header: index starts from 1 */
92db1555 777 reg = mei_txe_out_data_read(dev, i + 1);
2bf94cab 778 dev_dbg(dev->dev, "buf[%d] = 0x%08X\n", i, reg);
32e2b59f
TW
779 *reg_buf++ = reg;
780 }
781
782 if (rem) {
92db1555 783 reg = mei_txe_out_data_read(dev, i + 1);
32e2b59f
TW
784 memcpy(reg_buf, &reg, rem);
785 }
786
787 mei_txe_output_ready_set(hw);
788 return 0;
789}
790
791/**
792 * mei_txe_hw_reset - resets host and fw.
793 *
794 * @dev: the device structure
795 * @intr_enable: if interrupt should be enabled after reset.
796 *
797 * returns 0 on success and < 0 in case of error
798 */
799static int mei_txe_hw_reset(struct mei_device *dev, bool intr_enable)
800{
801 struct mei_txe_hw *hw = to_txe_hw(dev);
802
803 u32 aliveness_req;
804 /*
805 * read input doorbell to ensure consistency between Bridge and SeC
806 * return value might be garbage return
807 */
808 (void)mei_txe_sec_reg_read_silent(hw, SEC_IPC_INPUT_DOORBELL_REG);
809
810 aliveness_req = mei_txe_aliveness_req_get(dev);
811 hw->aliveness = mei_txe_aliveness_get(dev);
812
813 /* Disable interrupts in this stage we will poll */
814 mei_txe_intr_disable(dev);
815
816 /*
817 * If Aliveness Request and Aliveness Response are not equal then
818 * wait for them to be equal
819 * Since we might have interrupts disabled - poll for it
820 */
821 if (aliveness_req != hw->aliveness)
822 if (mei_txe_aliveness_poll(dev, aliveness_req) < 0) {
2bf94cab 823 dev_err(dev->dev, "wait for aliveness settle failed ... bailing out\n");
32e2b59f
TW
824 return -EIO;
825 }
826
827 /*
828 * If Aliveness Request and Aliveness Response are set then clear them
829 */
830 if (aliveness_req) {
831 mei_txe_aliveness_set(dev, 0);
832 if (mei_txe_aliveness_poll(dev, 0) < 0) {
2bf94cab 833 dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
32e2b59f
TW
834 return -EIO;
835 }
836 }
837
838 /*
839 * Set rediness RDY_CLR bit
840 */
841 mei_txe_readiness_clear(dev);
842
843 return 0;
844}
845
846/**
847 * mei_txe_hw_start - start the hardware after reset
848 *
849 * @dev: the device structure
850 *
851 * returns 0 on success and < 0 in case of error
852 */
853static int mei_txe_hw_start(struct mei_device *dev)
854{
855 struct mei_txe_hw *hw = to_txe_hw(dev);
856 int ret;
857
858 u32 hisr;
859
860 /* bring back interrupts */
861 mei_txe_intr_enable(dev);
862
863 ret = mei_txe_readiness_wait(dev);
864 if (ret < 0) {
2bf94cab 865 dev_err(dev->dev, "wating for readiness failed\n");
32e2b59f
TW
866 return ret;
867 }
868
869 /*
870 * If HISR.INT2_STS interrupt status bit is set then clear it.
871 */
872 hisr = mei_txe_br_reg_read(hw, HISR_REG);
873 if (hisr & HISR_INT_2_STS)
874 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_2_STS);
875
876 /* Clear the interrupt cause of OutputDoorbell */
877 clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause);
878
879 ret = mei_txe_aliveness_set_sync(dev, 1);
880 if (ret < 0) {
2bf94cab 881 dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
32e2b59f
TW
882 return ret;
883 }
884
885 /* enable input ready interrupts:
886 * SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
887 */
888 mei_txe_input_ready_interrupt_enable(dev);
889
890
891 /* Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
892 mei_txe_output_ready_set(hw);
893
894 /* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
895 */
896 mei_txe_readiness_set_host_rdy(dev);
897
898 return 0;
899}
900
901/**
902 * mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
903 * single bit mask and acknowledge the interrupts
904 *
905 * @dev: the device structure
906 * @do_ack: acknowledge interrupts
907 */
908static bool mei_txe_check_and_ack_intrs(struct mei_device *dev, bool do_ack)
909{
910 struct mei_txe_hw *hw = to_txe_hw(dev);
911 u32 hisr;
912 u32 hhisr;
913 u32 ipc_isr;
914 u32 aliveness;
915 bool generated;
916
917 /* read interrupt registers */
918 hhisr = mei_txe_br_reg_read(hw, HHISR_REG);
919 generated = (hhisr & IPC_HHIER_MSK);
920 if (!generated)
921 goto out;
922
923 hisr = mei_txe_br_reg_read(hw, HISR_REG);
924
925 aliveness = mei_txe_aliveness_get(dev);
926 if (hhisr & IPC_HHIER_SEC && aliveness)
927 ipc_isr = mei_txe_sec_reg_read_silent(hw,
928 SEC_IPC_HOST_INT_STATUS_REG);
929 else
930 ipc_isr = 0;
931
932 generated = generated ||
933 (hisr & HISR_INT_STS_MSK) ||
934 (ipc_isr & SEC_IPC_HOST_INT_STATUS_PENDING);
935
936 if (generated && do_ack) {
937 /* Save the interrupt causes */
938 hw->intr_cause |= hisr & HISR_INT_STS_MSK;
939 if (ipc_isr & SEC_IPC_HOST_INT_STATUS_IN_RDY)
940 hw->intr_cause |= TXE_INTR_IN_READY;
941
942
943 mei_txe_intr_disable(dev);
944 /* Clear the interrupts in hierarchy:
945 * IPC and Bridge, than the High Level */
946 mei_txe_sec_reg_write_silent(hw,
947 SEC_IPC_HOST_INT_STATUS_REG, ipc_isr);
948 mei_txe_br_reg_write(hw, HISR_REG, hisr);
949 mei_txe_br_reg_write(hw, HHISR_REG, hhisr);
950 }
951
952out:
953 return generated;
954}
955
956/**
957 * mei_txe_irq_quick_handler - The ISR of the MEI device
958 *
959 * @irq: The irq number
960 * @dev_id: pointer to the device structure
961 *
962 * returns irqreturn_t
963 */
964irqreturn_t mei_txe_irq_quick_handler(int irq, void *dev_id)
965{
966 struct mei_device *dev = dev_id;
967
968 if (mei_txe_check_and_ack_intrs(dev, true))
969 return IRQ_WAKE_THREAD;
970 return IRQ_NONE;
971}
972
973
974/**
975 * mei_txe_irq_thread_handler - txe interrupt thread
976 *
977 * @irq: The irq number
978 * @dev_id: pointer to the device structure
979 *
980 * returns irqreturn_t
981 *
982 */
983irqreturn_t mei_txe_irq_thread_handler(int irq, void *dev_id)
984{
985 struct mei_device *dev = (struct mei_device *) dev_id;
986 struct mei_txe_hw *hw = to_txe_hw(dev);
987 struct mei_cl_cb complete_list;
988 s32 slots;
989 int rets = 0;
990
2bf94cab 991 dev_dbg(dev->dev, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
32e2b59f
TW
992 mei_txe_br_reg_read(hw, HHISR_REG),
993 mei_txe_br_reg_read(hw, HISR_REG),
994 mei_txe_sec_reg_read_silent(hw, SEC_IPC_HOST_INT_STATUS_REG));
995
996
997 /* initialize our complete list */
998 mutex_lock(&dev->device_lock);
999 mei_io_list_init(&complete_list);
1000
1001 if (pci_dev_msi_enabled(dev->pdev))
1002 mei_txe_check_and_ack_intrs(dev, true);
1003
1004 /* show irq events */
1005 mei_txe_pending_interrupts(dev);
1006
1007 hw->aliveness = mei_txe_aliveness_get(dev);
1008 hw->readiness = mei_txe_readiness_get(dev);
1009
1010 /* Readiness:
1011 * Detection of TXE driver going through reset
1012 * or TXE driver resetting the HECI interface.
1013 */
1014 if (test_and_clear_bit(TXE_INTR_READINESS_BIT, &hw->intr_cause)) {
2bf94cab 1015 dev_dbg(dev->dev, "Readiness Interrupt was received...\n");
32e2b59f
TW
1016
1017 /* Check if SeC is going through reset */
1018 if (mei_txe_readiness_is_sec_rdy(hw->readiness)) {
2bf94cab 1019 dev_dbg(dev->dev, "we need to start the dev.\n");
32e2b59f
TW
1020 dev->recvd_hw_ready = true;
1021 } else {
1022 dev->recvd_hw_ready = false;
1023 if (dev->dev_state != MEI_DEV_RESETTING) {
1024
2bf94cab 1025 dev_warn(dev->dev, "FW not ready: resetting.\n");
32e2b59f
TW
1026 schedule_work(&dev->reset_work);
1027 goto end;
1028
1029 }
1030 }
1031 wake_up(&dev->wait_hw_ready);
1032 }
1033
1034 /************************************************************/
1035 /* Check interrupt cause:
1036 * Aliveness: Detection of SeC acknowledge of host request that
1037 * it remain alive or host cancellation of that request.
1038 */
1039
1040 if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT, &hw->intr_cause)) {
1041 /* Clear the interrupt cause */
2bf94cab 1042 dev_dbg(dev->dev,
32e2b59f 1043 "Aliveness Interrupt: Status: %d\n", hw->aliveness);
964a2331
TW
1044 dev->pg_event = MEI_PG_EVENT_RECEIVED;
1045 if (waitqueue_active(&hw->wait_aliveness_resp))
1046 wake_up(&hw->wait_aliveness_resp);
32e2b59f
TW
1047 }
1048
1049
1050 /* Output Doorbell:
1051 * Detection of SeC having sent output to host
1052 */
1053 slots = mei_count_full_read_slots(dev);
1054 if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause)) {
1055 /* Read from TXE */
1056 rets = mei_irq_read_handler(dev, &complete_list, &slots);
1057 if (rets && dev->dev_state != MEI_DEV_RESETTING) {
2bf94cab 1058 dev_err(dev->dev,
32e2b59f
TW
1059 "mei_irq_read_handler ret = %d.\n", rets);
1060
1061 schedule_work(&dev->reset_work);
1062 goto end;
1063 }
1064 }
1065 /* Input Ready: Detection if host can write to SeC */
9d098192 1066 if (test_and_clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause)) {
32e2b59f 1067 dev->hbuf_is_ready = true;
9d098192
TW
1068 hw->slots = dev->hbuf_depth;
1069 }
32e2b59f
TW
1070
1071 if (hw->aliveness && dev->hbuf_is_ready) {
6aae48ff
TW
1072 /* get the real register value */
1073 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
32e2b59f 1074 rets = mei_irq_write_handler(dev, &complete_list);
6aae48ff 1075 if (rets && rets != -EMSGSIZE)
2bf94cab 1076 dev_err(dev->dev, "mei_irq_write_handler ret = %d.\n",
6aae48ff
TW
1077 rets);
1078 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
32e2b59f
TW
1079 }
1080
32e2b59f
TW
1081 mei_irq_compl_handler(dev, &complete_list);
1082
1083end:
2bf94cab 1084 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
32e2b59f
TW
1085
1086 mutex_unlock(&dev->device_lock);
1087
1088 mei_enable_interrupts(dev);
1089 return IRQ_HANDLED;
1090}
1091
1092static const struct mei_hw_ops mei_txe_hw_ops = {
1093
1094 .host_is_ready = mei_txe_host_is_ready,
1095
1bd30b6a 1096 .fw_status = mei_txe_fw_status,
964a2331
TW
1097 .pg_state = mei_txe_pg_state,
1098
32e2b59f
TW
1099 .hw_is_ready = mei_txe_hw_is_ready,
1100 .hw_reset = mei_txe_hw_reset,
1101 .hw_config = mei_txe_hw_config,
1102 .hw_start = mei_txe_hw_start,
1103
ee7e5afd
TW
1104 .pg_is_enabled = mei_txe_pg_is_enabled,
1105
32e2b59f
TW
1106 .intr_clear = mei_txe_intr_clear,
1107 .intr_enable = mei_txe_intr_enable,
1108 .intr_disable = mei_txe_intr_disable,
1109
1110 .hbuf_free_slots = mei_txe_hbuf_empty_slots,
1111 .hbuf_is_ready = mei_txe_is_input_ready,
1112 .hbuf_max_len = mei_txe_hbuf_max_len,
1113
1114 .write = mei_txe_write,
1115
1116 .rdbuf_full_slots = mei_txe_count_full_read_slots,
1117 .read_hdr = mei_txe_read_hdr,
1118
1119 .read = mei_txe_read,
1120
1121};
1122
8d929d48
AU
1123#define MEI_CFG_TXE_FW_STS \
1124 .fw_status.count = 2, \
1125 .fw_status.status[0] = PCI_CFG_TXE_FW_STS0, \
1126 .fw_status.status[1] = PCI_CFG_TXE_FW_STS1
1127
1128const struct mei_cfg mei_txe_cfg = {
1129 MEI_CFG_TXE_FW_STS,
1130};
1131
1132
32e2b59f
TW
1133/**
1134 * mei_txe_dev_init - allocates and initializes txe hardware specific structure
1135 *
1136 * @pdev - pci device
8d929d48
AU
1137 * @cfg - per device generation config
1138 *
32e2b59f
TW
1139 * returns struct mei_device * on success or NULL;
1140 *
1141 */
8d929d48
AU
1142struct mei_device *mei_txe_dev_init(struct pci_dev *pdev,
1143 const struct mei_cfg *cfg)
32e2b59f
TW
1144{
1145 struct mei_device *dev;
1146 struct mei_txe_hw *hw;
1147
1148 dev = kzalloc(sizeof(struct mei_device) +
1149 sizeof(struct mei_txe_hw), GFP_KERNEL);
1150 if (!dev)
1151 return NULL;
1152
3a7e9b6c 1153 mei_device_init(dev, &pdev->dev, &mei_txe_hw_ops);
32e2b59f
TW
1154
1155 hw = to_txe_hw(dev);
1156
964a2331 1157 init_waitqueue_head(&hw->wait_aliveness_resp);
32e2b59f 1158
3a7e9b6c 1159 dev->cfg = cfg;
32e2b59f
TW
1160 dev->pdev = pdev;
1161 return dev;
1162}
1163
1164/**
1165 * mei_txe_setup_satt2 - SATT2 configuration for DMA support.
1166 *
1167 * @dev: the device structure
1168 * @addr: physical address start of the range
1169 * @range: physical range size
1170 */
1171int mei_txe_setup_satt2(struct mei_device *dev, phys_addr_t addr, u32 range)
1172{
1173 struct mei_txe_hw *hw = to_txe_hw(dev);
1174
1175 u32 lo32 = lower_32_bits(addr);
1176 u32 hi32 = upper_32_bits(addr);
1177 u32 ctrl;
1178
1179 /* SATT is limited to 36 Bits */
1180 if (hi32 & ~0xF)
1181 return -EINVAL;
1182
1183 /* SATT has to be 16Byte aligned */
1184 if (lo32 & 0xF)
1185 return -EINVAL;
1186
1187 /* SATT range has to be 4Bytes aligned */
1188 if (range & 0x4)
1189 return -EINVAL;
1190
1191 /* SATT is limited to 32 MB range*/
1192 if (range > SATT_RANGE_MAX)
1193 return -EINVAL;
1194
1195 ctrl = SATT2_CTRL_VALID_MSK;
1196 ctrl |= hi32 << SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT;
1197
1198 mei_txe_br_reg_write(hw, SATT2_SAP_SIZE_REG, range);
1199 mei_txe_br_reg_write(hw, SATT2_BRG_BA_LSB_REG, lo32);
1200 mei_txe_br_reg_write(hw, SATT2_CTRL_REG, ctrl);
2bf94cab 1201 dev_dbg(dev->dev, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",
32e2b59f
TW
1202 range, lo32, ctrl);
1203
1204 return 0;
1205}
This page took 0.098707 seconds and 5 git commands to generate.