mmc: core: move ocr-bit to voltage translation into separate function
[deliverable/linux.git] / drivers / mmc / core / core.c
CommitLineData
1da177e4 1/*
aaac1b47 2 * linux/drivers/mmc/core/core.c
1da177e4
LT
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5b4fd9ae 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
ad3868b2 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
bce40a36 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
1da177e4
LT
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
1da177e4
LT
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
af8350c7 21#include <linux/leds.h>
b57c43ad 22#include <linux/scatterlist.h>
86e8286a 23#include <linux/log2.h>
5c13941a 24#include <linux/regulator/consumer.h>
e594573d 25#include <linux/pm_runtime.h>
bbd43682 26#include <linux/pm_wakeup.h>
35eb6db1 27#include <linux/suspend.h>
1b676f70
PF
28#include <linux/fault-inject.h>
29#include <linux/random.h>
950d56ac 30#include <linux/slab.h>
6e9e318b 31#include <linux/of.h>
1da177e4
LT
32
33#include <linux/mmc/card.h>
34#include <linux/mmc/host.h>
da7fbe58
PO
35#include <linux/mmc/mmc.h>
36#include <linux/mmc/sd.h>
740a221e 37#include <linux/mmc/slot-gpio.h>
1da177e4 38
aaac1b47 39#include "core.h"
ffce2e7e
PO
40#include "bus.h"
41#include "host.h"
e29a7d73 42#include "sdio_bus.h"
3aa8793f 43#include "pwrseq.h"
da7fbe58
PO
44
45#include "mmc_ops.h"
46#include "sd_ops.h"
5c4e6f13 47#include "sdio_ops.h"
1da177e4 48
8fee476b
TR
49/* If the device is not responding */
50#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
51
950d56ac
JC
52/*
53 * Background operations can take a long time, depending on the housekeeping
54 * operations the card has to perform.
55 */
56#define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
57
ffce2e7e 58static struct workqueue_struct *workqueue;
fa550189 59static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
ffce2e7e 60
af517150
DB
61/*
62 * Enabling software CRCs on the data blocks can be a significant (30%)
63 * performance cost, and for other reasons may not always be desired.
64 * So we allow it it to be disabled.
65 */
90ab5ee9 66bool use_spi_crc = 1;
af517150
DB
67module_param(use_spi_crc, bool, 0);
68
ffce2e7e
PO
69/*
70 * Internal function. Schedule delayed work in the MMC work queue.
71 */
72static int mmc_schedule_delayed_work(struct delayed_work *work,
73 unsigned long delay)
74{
75 return queue_delayed_work(workqueue, work, delay);
76}
77
78/*
79 * Internal function. Flush all scheduled work from the MMC work queue.
80 */
81static void mmc_flush_scheduled_work(void)
82{
83 flush_workqueue(workqueue);
84}
85
1b676f70
PF
86#ifdef CONFIG_FAIL_MMC_REQUEST
87
88/*
89 * Internal function. Inject random data errors.
90 * If mmc_data is NULL no errors are injected.
91 */
92static void mmc_should_fail_request(struct mmc_host *host,
93 struct mmc_request *mrq)
94{
95 struct mmc_command *cmd = mrq->cmd;
96 struct mmc_data *data = mrq->data;
97 static const int data_errors[] = {
98 -ETIMEDOUT,
99 -EILSEQ,
100 -EIO,
101 };
102
103 if (!data)
104 return;
105
106 if (cmd->error || data->error ||
107 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
108 return;
109
2e744fcb
AM
110 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
111 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
1b676f70
PF
112}
113
114#else /* CONFIG_FAIL_MMC_REQUEST */
115
116static inline void mmc_should_fail_request(struct mmc_host *host,
117 struct mmc_request *mrq)
118{
119}
120
121#endif /* CONFIG_FAIL_MMC_REQUEST */
122
1da177e4 123/**
fe10c6ab
RK
124 * mmc_request_done - finish processing an MMC request
125 * @host: MMC host which completed request
126 * @mrq: MMC request which request
1da177e4
LT
127 *
128 * MMC drivers should call this function when they have completed
fe10c6ab 129 * their processing of a request.
1da177e4
LT
130 */
131void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
132{
133 struct mmc_command *cmd = mrq->cmd;
920e70c5
RK
134 int err = cmd->error;
135
bd11e8bd 136 /* Flag re-tuning needed on CRC errors */
031277d4
CJ
137 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
138 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
139 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
bd11e8bd 140 (mrq->data && mrq->data->error == -EILSEQ) ||
031277d4 141 (mrq->stop && mrq->stop->error == -EILSEQ)))
bd11e8bd
AH
142 mmc_retune_needed(host);
143
af517150
DB
144 if (err && cmd->retries && mmc_host_is_spi(host)) {
145 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
146 cmd->retries = 0;
147 }
148
d3049504 149 if (err && cmd->retries && !mmc_card_removed(host->card)) {
08a7e1df
AH
150 /*
151 * Request starter must handle retries - see
152 * mmc_wait_for_req_done().
153 */
154 if (mrq->done)
155 mrq->done(mrq);
e4d21708 156 } else {
1b676f70
PF
157 mmc_should_fail_request(host, mrq);
158
af8350c7
PO
159 led_trigger_event(host->led, LED_OFF);
160
fc75b708
AG
161 if (mrq->sbc) {
162 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
163 mmc_hostname(host), mrq->sbc->opcode,
164 mrq->sbc->error,
165 mrq->sbc->resp[0], mrq->sbc->resp[1],
166 mrq->sbc->resp[2], mrq->sbc->resp[3]);
167 }
168
e4d21708
PO
169 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
170 mmc_hostname(host), cmd->opcode, err,
171 cmd->resp[0], cmd->resp[1],
172 cmd->resp[2], cmd->resp[3]);
173
174 if (mrq->data) {
175 pr_debug("%s: %d bytes transferred: %d\n",
176 mmc_hostname(host),
177 mrq->data->bytes_xfered, mrq->data->error);
178 }
179
180 if (mrq->stop) {
181 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
182 mmc_hostname(host), mrq->stop->opcode,
183 mrq->stop->error,
184 mrq->stop->resp[0], mrq->stop->resp[1],
185 mrq->stop->resp[2], mrq->stop->resp[3]);
186 }
187
188 if (mrq->done)
189 mrq->done(mrq);
1da177e4
LT
190 }
191}
192
193EXPORT_SYMBOL(mmc_request_done);
194
90a81489
AH
195static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
196{
197 int err;
198
199 /* Assumes host controller has been runtime resumed by mmc_claim_host */
200 err = mmc_retune(host);
201 if (err) {
202 mrq->cmd->error = err;
203 mmc_request_done(host, mrq);
204 return;
205 }
206
5d3f6ef0
HG
207 /*
208 * For sdio rw commands we must wait for card busy otherwise some
209 * sdio devices won't work properly.
210 */
211 if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
212 int tries = 500; /* Wait aprox 500ms at maximum */
213
214 while (host->ops->card_busy(host) && --tries)
215 mmc_delay(1);
216
217 if (tries == 0) {
218 mrq->cmd->error = -EBUSY;
219 mmc_request_done(host, mrq);
220 return;
221 }
222 }
223
90a81489
AH
224 host->ops->request(host, mrq);
225}
226
f100c1c2 227static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
1da177e4 228{
976d9276
PO
229#ifdef CONFIG_MMC_DEBUG
230 unsigned int i, sz;
a84756c5 231 struct scatterlist *sg;
976d9276 232#endif
90a81489
AH
233 mmc_retune_hold(host);
234
f100c1c2
AH
235 if (mmc_card_removed(host->card))
236 return -ENOMEDIUM;
976d9276 237
7b2fd4f2
JC
238 if (mrq->sbc) {
239 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
240 mmc_hostname(host), mrq->sbc->opcode,
241 mrq->sbc->arg, mrq->sbc->flags);
242 }
243
920e70c5
RK
244 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
245 mmc_hostname(host), mrq->cmd->opcode,
246 mrq->cmd->arg, mrq->cmd->flags);
1da177e4 247
e4d21708
PO
248 if (mrq->data) {
249 pr_debug("%s: blksz %d blocks %d flags %08x "
250 "tsac %d ms nsac %d\n",
251 mmc_hostname(host), mrq->data->blksz,
252 mrq->data->blocks, mrq->data->flags,
ce252edd 253 mrq->data->timeout_ns / 1000000,
e4d21708
PO
254 mrq->data->timeout_clks);
255 }
256
257 if (mrq->stop) {
258 pr_debug("%s: CMD%u arg %08x flags %08x\n",
259 mmc_hostname(host), mrq->stop->opcode,
260 mrq->stop->arg, mrq->stop->flags);
261 }
262
f22ee4ed 263 WARN_ON(!host->claimed);
1da177e4
LT
264
265 mrq->cmd->error = 0;
266 mrq->cmd->mrq = mrq;
cce411e6
AG
267 if (mrq->sbc) {
268 mrq->sbc->error = 0;
269 mrq->sbc->mrq = mrq;
270 }
1da177e4 271 if (mrq->data) {
fe4a3c7a 272 BUG_ON(mrq->data->blksz > host->max_blk_size);
55db890a
PO
273 BUG_ON(mrq->data->blocks > host->max_blk_count);
274 BUG_ON(mrq->data->blocks * mrq->data->blksz >
275 host->max_req_size);
fe4a3c7a 276
976d9276
PO
277#ifdef CONFIG_MMC_DEBUG
278 sz = 0;
a84756c5
PO
279 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
280 sz += sg->length;
976d9276
PO
281 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
282#endif
283
1da177e4
LT
284 mrq->cmd->data = mrq->data;
285 mrq->data->error = 0;
286 mrq->data->mrq = mrq;
287 if (mrq->stop) {
288 mrq->data->stop = mrq->stop;
289 mrq->stop->error = 0;
290 mrq->stop->mrq = mrq;
291 }
292 }
66c036e0 293 led_trigger_event(host->led, LED_FULL);
90a81489 294 __mmc_start_request(host, mrq);
f100c1c2
AH
295
296 return 0;
1da177e4
LT
297}
298
950d56ac
JC
299/**
300 * mmc_start_bkops - start BKOPS for supported cards
301 * @card: MMC card to start BKOPS
302 * @form_exception: A flag to indicate if this function was
303 * called due to an exception raised by the card
304 *
305 * Start background operations whenever requested.
306 * When the urgent BKOPS bit is set in a R1 command response
307 * then background operations should be started immediately.
308*/
309void mmc_start_bkops(struct mmc_card *card, bool from_exception)
310{
311 int err;
312 int timeout;
313 bool use_busy_signal;
314
315 BUG_ON(!card);
316
0501be64 317 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
950d56ac
JC
318 return;
319
320 err = mmc_read_bkops_status(card);
321 if (err) {
322 pr_err("%s: Failed to read bkops status: %d\n",
323 mmc_hostname(card->host), err);
324 return;
325 }
326
327 if (!card->ext_csd.raw_bkops_status)
328 return;
329
330 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
331 from_exception)
332 return;
333
334 mmc_claim_host(card->host);
335 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
336 timeout = MMC_BKOPS_MAX_TIMEOUT;
337 use_busy_signal = true;
338 } else {
339 timeout = 0;
340 use_busy_signal = false;
341 }
342
66073d86
AH
343 mmc_retune_hold(card->host);
344
950d56ac 345 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
4509f847
UH
346 EXT_CSD_BKOPS_START, 1, timeout,
347 use_busy_signal, true, false);
950d56ac
JC
348 if (err) {
349 pr_warn("%s: Error %d starting bkops\n",
350 mmc_hostname(card->host), err);
66073d86 351 mmc_retune_release(card->host);
950d56ac
JC
352 goto out;
353 }
354
355 /*
356 * For urgent bkops status (LEVEL_2 and more)
357 * bkops executed synchronously, otherwise
358 * the operation is in progress
359 */
360 if (!use_busy_signal)
361 mmc_card_set_doing_bkops(card);
66073d86
AH
362 else
363 mmc_retune_release(card->host);
950d56ac
JC
364out:
365 mmc_release_host(card->host);
366}
367EXPORT_SYMBOL(mmc_start_bkops);
368
2220eedf
KD
369/*
370 * mmc_wait_data_done() - done callback for data request
371 * @mrq: done data request
372 *
373 * Wakes up mmc context, passed as a callback to host controller driver
374 */
375static void mmc_wait_data_done(struct mmc_request *mrq)
376{
71f8a4b8
JF
377 struct mmc_context_info *context_info = &mrq->host->context_info;
378
379 context_info->is_done_rcv = true;
380 wake_up_interruptible(&context_info->wait);
2220eedf
KD
381}
382
1da177e4
LT
383static void mmc_wait_done(struct mmc_request *mrq)
384{
aa8b683a
PF
385 complete(&mrq->completion);
386}
387
2220eedf
KD
388/*
389 *__mmc_start_data_req() - starts data request
390 * @host: MMC host to start the request
391 * @mrq: data request to start
392 *
393 * Sets the done callback to be called when request is completed by the card.
394 * Starts data mmc request execution
395 */
396static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
397{
f100c1c2
AH
398 int err;
399
2220eedf
KD
400 mrq->done = mmc_wait_data_done;
401 mrq->host = host;
f100c1c2
AH
402
403 err = mmc_start_request(host, mrq);
404 if (err) {
405 mrq->cmd->error = err;
9b844961 406 mmc_wait_data_done(mrq);
2220eedf 407 }
2220eedf 408
f100c1c2 409 return err;
2220eedf
KD
410}
411
956d9fd5 412static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
aa8b683a 413{
f100c1c2
AH
414 int err;
415
aa8b683a
PF
416 init_completion(&mrq->completion);
417 mrq->done = mmc_wait_done;
f100c1c2
AH
418
419 err = mmc_start_request(host, mrq);
420 if (err) {
421 mrq->cmd->error = err;
d3049504 422 complete(&mrq->completion);
d3049504 423 }
f100c1c2
AH
424
425 return err;
aa8b683a
PF
426}
427
2220eedf
KD
428/*
429 * mmc_wait_for_data_req_done() - wait for request completed
430 * @host: MMC host to prepare the command.
431 * @mrq: MMC request to wait for
432 *
433 * Blocks MMC context till host controller will ack end of data request
434 * execution or new request notification arrives from the block layer.
435 * Handles command retries.
436 *
437 * Returns enum mmc_blk_status after checking errors.
438 */
439static int mmc_wait_for_data_req_done(struct mmc_host *host,
440 struct mmc_request *mrq,
441 struct mmc_async_req *next_req)
442{
443 struct mmc_command *cmd;
444 struct mmc_context_info *context_info = &host->context_info;
445 int err;
446 unsigned long flags;
447
448 while (1) {
449 wait_event_interruptible(context_info->wait,
450 (context_info->is_done_rcv ||
451 context_info->is_new_req));
452 spin_lock_irqsave(&context_info->lock, flags);
453 context_info->is_waiting_last_req = false;
454 spin_unlock_irqrestore(&context_info->lock, flags);
455 if (context_info->is_done_rcv) {
456 context_info->is_done_rcv = false;
457 context_info->is_new_req = false;
458 cmd = mrq->cmd;
775a9362 459
2220eedf
KD
460 if (!cmd->error || !cmd->retries ||
461 mmc_card_removed(host->card)) {
462 err = host->areq->err_check(host->card,
463 host->areq);
464 break; /* return err */
465 } else {
90a81489 466 mmc_retune_recheck(host);
2220eedf
KD
467 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
468 mmc_hostname(host),
469 cmd->opcode, cmd->error);
470 cmd->retries--;
471 cmd->error = 0;
90a81489 472 __mmc_start_request(host, mrq);
2220eedf
KD
473 continue; /* wait for done/new event again */
474 }
475 } else if (context_info->is_new_req) {
476 context_info->is_new_req = false;
90a81489
AH
477 if (!next_req)
478 return MMC_BLK_NEW_REQUEST;
2220eedf
KD
479 }
480 }
90a81489 481 mmc_retune_release(host);
2220eedf
KD
482 return err;
483}
484
aa8b683a
PF
485static void mmc_wait_for_req_done(struct mmc_host *host,
486 struct mmc_request *mrq)
487{
08a7e1df
AH
488 struct mmc_command *cmd;
489
490 while (1) {
491 wait_for_completion(&mrq->completion);
492
493 cmd = mrq->cmd;
775a9362
ME
494
495 /*
496 * If host has timed out waiting for the sanitize
497 * to complete, card might be still in programming state
498 * so let's try to bring the card out of programming
499 * state.
500 */
501 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
502 if (!mmc_interrupt_hpi(host->card)) {
6606110d
JP
503 pr_warn("%s: %s: Interrupted sanitize\n",
504 mmc_hostname(host), __func__);
775a9362
ME
505 cmd->error = 0;
506 break;
507 } else {
508 pr_err("%s: %s: Failed to interrupt sanitize\n",
509 mmc_hostname(host), __func__);
510 }
511 }
d3049504
AH
512 if (!cmd->error || !cmd->retries ||
513 mmc_card_removed(host->card))
08a7e1df
AH
514 break;
515
90a81489
AH
516 mmc_retune_recheck(host);
517
08a7e1df
AH
518 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
519 mmc_hostname(host), cmd->opcode, cmd->error);
520 cmd->retries--;
521 cmd->error = 0;
90a81489 522 __mmc_start_request(host, mrq);
08a7e1df 523 }
90a81489
AH
524
525 mmc_retune_release(host);
aa8b683a
PF
526}
527
528/**
529 * mmc_pre_req - Prepare for a new request
530 * @host: MMC host to prepare command
531 * @mrq: MMC request to prepare for
532 * @is_first_req: true if there is no previous started request
533 * that may run in parellel to this call, otherwise false
534 *
535 * mmc_pre_req() is called in prior to mmc_start_req() to let
536 * host prepare for the new request. Preparation of a request may be
537 * performed while another request is running on the host.
538 */
539static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
540 bool is_first_req)
541{
9eadcc05 542 if (host->ops->pre_req)
aa8b683a
PF
543 host->ops->pre_req(host, mrq, is_first_req);
544}
545
546/**
547 * mmc_post_req - Post process a completed request
548 * @host: MMC host to post process command
549 * @mrq: MMC request to post process for
550 * @err: Error, if non zero, clean up any resources made in pre_req
551 *
552 * Let the host post process a completed request. Post processing of
553 * a request may be performed while another reuqest is running.
554 */
555static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
556 int err)
557{
9eadcc05 558 if (host->ops->post_req)
aa8b683a 559 host->ops->post_req(host, mrq, err);
1da177e4
LT
560}
561
aa8b683a
PF
562/**
563 * mmc_start_req - start a non-blocking request
564 * @host: MMC host to start command
565 * @areq: async request to start
566 * @error: out parameter returns 0 for success, otherwise non zero
567 *
568 * Start a new MMC custom command request for a host.
569 * If there is on ongoing async request wait for completion
570 * of that request and start the new one and return.
571 * Does not wait for the new request to complete.
572 *
573 * Returns the completed request, NULL in case of none completed.
574 * Wait for the an ongoing request (previoulsy started) to complete and
575 * return the completed request. If there is no ongoing request, NULL
576 * is returned without waiting. NULL is not an error condition.
577 */
578struct mmc_async_req *mmc_start_req(struct mmc_host *host,
579 struct mmc_async_req *areq, int *error)
580{
581 int err = 0;
956d9fd5 582 int start_err = 0;
aa8b683a
PF
583 struct mmc_async_req *data = host->areq;
584
585 /* Prepare a new request */
586 if (areq)
587 mmc_pre_req(host, areq->mrq, !host->areq);
588
589 if (host->areq) {
f5c2758f
JC
590 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
591 if (err == MMC_BLK_NEW_REQUEST) {
592 if (error)
593 *error = err;
594 /*
595 * The previous request was not completed,
596 * nothing to return
597 */
598 return NULL;
599 }
950d56ac
JC
600 /*
601 * Check BKOPS urgency for each R1 response
602 */
603 if (host->card && mmc_card_mmc(host->card) &&
604 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
605 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
64b12a68
SK
606 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
607
608 /* Cancel the prepared request */
609 if (areq)
610 mmc_post_req(host, areq->mrq, -EINVAL);
611
950d56ac 612 mmc_start_bkops(host->card, true);
64b12a68
SK
613
614 /* prepare the request again */
615 if (areq)
616 mmc_pre_req(host, areq->mrq, !host->areq);
617 }
aa8b683a
PF
618 }
619
956d9fd5 620 if (!err && areq)
2220eedf 621 start_err = __mmc_start_data_req(host, areq->mrq);
aa8b683a
PF
622
623 if (host->areq)
624 mmc_post_req(host, host->areq->mrq, 0);
625
956d9fd5
UH
626 /* Cancel a prepared request if it was not started. */
627 if ((err || start_err) && areq)
f5c2758f 628 mmc_post_req(host, areq->mrq, -EINVAL);
956d9fd5
UH
629
630 if (err)
631 host->areq = NULL;
632 else
633 host->areq = areq;
634
aa8b683a
PF
635 if (error)
636 *error = err;
637 return data;
638}
639EXPORT_SYMBOL(mmc_start_req);
640
67a61c48
PO
641/**
642 * mmc_wait_for_req - start a request and wait for completion
643 * @host: MMC host to start command
644 * @mrq: MMC request to start
645 *
646 * Start a new MMC custom command request for a host, and wait
647 * for the command to complete. Does not attempt to parse the
648 * response.
649 */
650void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
1da177e4 651{
aa8b683a
PF
652 __mmc_start_req(host, mrq);
653 mmc_wait_for_req_done(host, mrq);
1da177e4 654}
1da177e4
LT
655EXPORT_SYMBOL(mmc_wait_for_req);
656
eb0d8f13
JC
657/**
658 * mmc_interrupt_hpi - Issue for High priority Interrupt
659 * @card: the MMC card associated with the HPI transfer
660 *
661 * Issued High Priority Interrupt, and check for card status
950d56ac 662 * until out-of prg-state.
eb0d8f13
JC
663 */
664int mmc_interrupt_hpi(struct mmc_card *card)
665{
666 int err;
667 u32 status;
6af9e96e 668 unsigned long prg_wait;
eb0d8f13
JC
669
670 BUG_ON(!card);
671
672 if (!card->ext_csd.hpi_en) {
673 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
674 return 1;
675 }
676
677 mmc_claim_host(card->host);
678 err = mmc_send_status(card, &status);
679 if (err) {
680 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
681 goto out;
682 }
683
6af9e96e
V
684 switch (R1_CURRENT_STATE(status)) {
685 case R1_STATE_IDLE:
686 case R1_STATE_READY:
687 case R1_STATE_STBY:
211d4fe5 688 case R1_STATE_TRAN:
6af9e96e 689 /*
211d4fe5 690 * In idle and transfer states, HPI is not needed and the caller
6af9e96e
V
691 * can issue the next intended command immediately
692 */
693 goto out;
694 case R1_STATE_PRG:
695 break;
696 default:
697 /* In all other states, it's illegal to issue HPI */
698 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
699 mmc_hostname(card->host), R1_CURRENT_STATE(status));
700 err = -EINVAL;
701 goto out;
702 }
703
704 err = mmc_send_hpi_cmd(card, &status);
705 if (err)
706 goto out;
707
708 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
709 do {
710 err = mmc_send_status(card, &status);
711
712 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
713 break;
714 if (time_after(jiffies, prg_wait))
715 err = -ETIMEDOUT;
716 } while (!err);
eb0d8f13
JC
717
718out:
719 mmc_release_host(card->host);
720 return err;
721}
722EXPORT_SYMBOL(mmc_interrupt_hpi);
723
1da177e4
LT
724/**
725 * mmc_wait_for_cmd - start a command and wait for completion
726 * @host: MMC host to start command
727 * @cmd: MMC command to start
728 * @retries: maximum number of retries
729 *
730 * Start a new MMC command for a host, and wait for the command
731 * to complete. Return any error that occurred while the command
732 * was executing. Do not attempt to parse the response.
733 */
734int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
735{
ad5fd972 736 struct mmc_request mrq = {NULL};
1da177e4 737
d84075c8 738 WARN_ON(!host->claimed);
1da177e4 739
1da177e4
LT
740 memset(cmd->resp, 0, sizeof(cmd->resp));
741 cmd->retries = retries;
742
743 mrq.cmd = cmd;
744 cmd->data = NULL;
745
746 mmc_wait_for_req(host, &mrq);
747
748 return cmd->error;
749}
750
751EXPORT_SYMBOL(mmc_wait_for_cmd);
752
950d56ac
JC
753/**
754 * mmc_stop_bkops - stop ongoing BKOPS
755 * @card: MMC card to check BKOPS
756 *
757 * Send HPI command to stop ongoing background operations to
758 * allow rapid servicing of foreground operations, e.g. read/
759 * writes. Wait until the card comes out of the programming state
760 * to avoid errors in servicing read/write requests.
761 */
762int mmc_stop_bkops(struct mmc_card *card)
763{
764 int err = 0;
765
766 BUG_ON(!card);
767 err = mmc_interrupt_hpi(card);
768
769 /*
770 * If err is EINVAL, we can't issue an HPI.
771 * It should complete the BKOPS.
772 */
773 if (!err || (err == -EINVAL)) {
774 mmc_card_clr_doing_bkops(card);
66073d86 775 mmc_retune_release(card->host);
950d56ac
JC
776 err = 0;
777 }
778
779 return err;
780}
781EXPORT_SYMBOL(mmc_stop_bkops);
782
783int mmc_read_bkops_status(struct mmc_card *card)
784{
785 int err;
786 u8 *ext_csd;
787
950d56ac 788 mmc_claim_host(card->host);
b2cada73 789 err = mmc_get_ext_csd(card, &ext_csd);
950d56ac
JC
790 mmc_release_host(card->host);
791 if (err)
b2cada73 792 return err;
950d56ac
JC
793
794 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
795 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
950d56ac 796 kfree(ext_csd);
b2cada73 797 return 0;
950d56ac
JC
798}
799EXPORT_SYMBOL(mmc_read_bkops_status);
800
d773d725
RK
801/**
802 * mmc_set_data_timeout - set the timeout for a data command
803 * @data: data phase for command
804 * @card: the MMC card associated with the data transfer
67a61c48
PO
805 *
806 * Computes the data timeout parameters according to the
807 * correct algorithm given the card type.
d773d725 808 */
b146d26a 809void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
d773d725
RK
810{
811 unsigned int mult;
812
e6f918bf
PO
813 /*
814 * SDIO cards only define an upper 1 s limit on access.
815 */
816 if (mmc_card_sdio(card)) {
817 data->timeout_ns = 1000000000;
818 data->timeout_clks = 0;
819 return;
820 }
821
d773d725
RK
822 /*
823 * SD cards use a 100 multiplier rather than 10
824 */
825 mult = mmc_card_sd(card) ? 100 : 10;
826
827 /*
828 * Scale up the multiplier (and therefore the timeout) by
829 * the r2w factor for writes.
830 */
b146d26a 831 if (data->flags & MMC_DATA_WRITE)
d773d725
RK
832 mult <<= card->csd.r2w_factor;
833
834 data->timeout_ns = card->csd.tacc_ns * mult;
835 data->timeout_clks = card->csd.tacc_clks * mult;
836
837 /*
838 * SD cards also have an upper limit on the timeout.
839 */
840 if (mmc_card_sd(card)) {
841 unsigned int timeout_us, limit_us;
842
843 timeout_us = data->timeout_ns / 1000;
9eadcc05 844 if (card->host->ios.clock)
e9b86841 845 timeout_us += data->timeout_clks * 1000 /
9eadcc05 846 (card->host->ios.clock / 1000);
d773d725 847
b146d26a 848 if (data->flags & MMC_DATA_WRITE)
493890e7 849 /*
3bdc9ba8
PW
850 * The MMC spec "It is strongly recommended
851 * for hosts to implement more than 500ms
852 * timeout value even if the card indicates
853 * the 250ms maximum busy length." Even the
854 * previous value of 300ms is known to be
855 * insufficient for some cards.
493890e7 856 */
3bdc9ba8 857 limit_us = 3000000;
d773d725
RK
858 else
859 limit_us = 100000;
860
fba68bd2
PL
861 /*
862 * SDHC cards always use these fixed values.
863 */
864 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
d773d725
RK
865 data->timeout_ns = limit_us * 1000;
866 data->timeout_clks = 0;
867 }
f7bf11a3
SW
868
869 /* assign limit value if invalid */
870 if (timeout_us == 0)
871 data->timeout_ns = limit_us * 1000;
d773d725 872 }
6de5fc9c
SNX
873
874 /*
875 * Some cards require longer data read timeout than indicated in CSD.
876 * Address this by setting the read timeout to a "reasonably high"
877 * value. For the cards tested, 300ms has proven enough. If necessary,
878 * this value can be increased if other problematic cards require this.
879 */
880 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
881 data->timeout_ns = 300000000;
882 data->timeout_clks = 0;
883 }
884
c0c88871
WM
885 /*
886 * Some cards need very high timeouts if driven in SPI mode.
887 * The worst observed timeout was 900ms after writing a
888 * continuous stream of data until the internal logic
889 * overflowed.
890 */
891 if (mmc_host_is_spi(card->host)) {
892 if (data->flags & MMC_DATA_WRITE) {
893 if (data->timeout_ns < 1000000000)
894 data->timeout_ns = 1000000000; /* 1s */
895 } else {
896 if (data->timeout_ns < 100000000)
897 data->timeout_ns = 100000000; /* 100ms */
898 }
899 }
d773d725
RK
900}
901EXPORT_SYMBOL(mmc_set_data_timeout);
902
ad3868b2
PO
903/**
904 * mmc_align_data_size - pads a transfer size to a more optimal value
905 * @card: the MMC card associated with the data transfer
906 * @sz: original transfer size
907 *
908 * Pads the original data size with a number of extra bytes in
909 * order to avoid controller bugs and/or performance hits
910 * (e.g. some controllers revert to PIO for certain sizes).
911 *
912 * Returns the improved size, which might be unmodified.
913 *
914 * Note that this function is only relevant when issuing a
915 * single scatter gather entry.
916 */
917unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
918{
919 /*
920 * FIXME: We don't have a system for the controller to tell
921 * the core about its problems yet, so for now we just 32-bit
922 * align the size.
923 */
924 sz = ((sz + 3) / 4) * 4;
925
926 return sz;
927}
928EXPORT_SYMBOL(mmc_align_data_size);
929
1da177e4 930/**
2342f332 931 * __mmc_claim_host - exclusively claim a host
1da177e4 932 * @host: mmc host to claim
2342f332 933 * @abort: whether or not the operation should be aborted
1da177e4 934 *
2342f332
NP
935 * Claim a host for a set of operations. If @abort is non null and
936 * dereference a non-zero value then this will return prematurely with
937 * that non-zero value without acquiring the lock. Returns zero
938 * with the lock held otherwise.
1da177e4 939 */
2342f332 940int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
1da177e4
LT
941{
942 DECLARE_WAITQUEUE(wait, current);
943 unsigned long flags;
2342f332 944 int stop;
9250aea7 945 bool pm = false;
1da177e4 946
cf795bfb
PO
947 might_sleep();
948
1da177e4
LT
949 add_wait_queue(&host->wq, &wait);
950 spin_lock_irqsave(&host->lock, flags);
951 while (1) {
952 set_current_state(TASK_UNINTERRUPTIBLE);
2342f332 953 stop = abort ? atomic_read(abort) : 0;
319a3f14 954 if (stop || !host->claimed || host->claimer == current)
1da177e4
LT
955 break;
956 spin_unlock_irqrestore(&host->lock, flags);
957 schedule();
958 spin_lock_irqsave(&host->lock, flags);
959 }
960 set_current_state(TASK_RUNNING);
319a3f14 961 if (!stop) {
2342f332 962 host->claimed = 1;
319a3f14
AH
963 host->claimer = current;
964 host->claim_cnt += 1;
9250aea7
UH
965 if (host->claim_cnt == 1)
966 pm = true;
319a3f14 967 } else
2342f332 968 wake_up(&host->wq);
1da177e4
LT
969 spin_unlock_irqrestore(&host->lock, flags);
970 remove_wait_queue(&host->wq, &wait);
9250aea7
UH
971
972 if (pm)
973 pm_runtime_get_sync(mmc_dev(host));
974
2342f332 975 return stop;
1da177e4 976}
2342f332 977EXPORT_SYMBOL(__mmc_claim_host);
8ea926b2 978
ab1efd27 979/**
907d2e7c 980 * mmc_release_host - release a host
ab1efd27
UH
981 * @host: mmc host to release
982 *
907d2e7c
AH
983 * Release a MMC host, allowing others to claim the host
984 * for their operations.
ab1efd27 985 */
907d2e7c 986void mmc_release_host(struct mmc_host *host)
8ea926b2
AH
987{
988 unsigned long flags;
989
907d2e7c
AH
990 WARN_ON(!host->claimed);
991
8ea926b2 992 spin_lock_irqsave(&host->lock, flags);
319a3f14
AH
993 if (--host->claim_cnt) {
994 /* Release for nested claim */
995 spin_unlock_irqrestore(&host->lock, flags);
996 } else {
997 host->claimed = 0;
998 host->claimer = NULL;
999 spin_unlock_irqrestore(&host->lock, flags);
1000 wake_up(&host->wq);
9250aea7
UH
1001 pm_runtime_mark_last_busy(mmc_dev(host));
1002 pm_runtime_put_autosuspend(mmc_dev(host));
319a3f14 1003 }
8ea926b2 1004}
1da177e4
LT
1005EXPORT_SYMBOL(mmc_release_host);
1006
e94cfef6
UH
1007/*
1008 * This is a helper function, which fetches a runtime pm reference for the
1009 * card device and also claims the host.
1010 */
1011void mmc_get_card(struct mmc_card *card)
1012{
1013 pm_runtime_get_sync(&card->dev);
1014 mmc_claim_host(card->host);
1015}
1016EXPORT_SYMBOL(mmc_get_card);
1017
1018/*
1019 * This is a helper function, which releases the host and drops the runtime
1020 * pm reference for the card device.
1021 */
1022void mmc_put_card(struct mmc_card *card)
1023{
1024 mmc_release_host(card->host);
1025 pm_runtime_mark_last_busy(&card->dev);
1026 pm_runtime_put_autosuspend(&card->dev);
1027}
1028EXPORT_SYMBOL(mmc_put_card);
1029
7ea239d9
PO
1030/*
1031 * Internal function that does the actual ios call to the host driver,
1032 * optionally printing some debug output.
1033 */
920e70c5
RK
1034static inline void mmc_set_ios(struct mmc_host *host)
1035{
1036 struct mmc_ios *ios = &host->ios;
1037
cd9277c0
PO
1038 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1039 "width %u timing %u\n",
920e70c5
RK
1040 mmc_hostname(host), ios->clock, ios->bus_mode,
1041 ios->power_mode, ios->chip_select, ios->vdd,
cd9277c0 1042 ios->bus_width, ios->timing);
fba68bd2 1043
920e70c5
RK
1044 host->ops->set_ios(host, ios);
1045}
1046
7ea239d9
PO
1047/*
1048 * Control chip select pin on a host.
1049 */
da7fbe58 1050void mmc_set_chip_select(struct mmc_host *host, int mode)
1da177e4 1051{
da7fbe58
PO
1052 host->ios.chip_select = mode;
1053 mmc_set_ios(host);
1da177e4
LT
1054}
1055
7ea239d9
PO
1056/*
1057 * Sets the host clock to the highest possible frequency that
1058 * is below "hz".
1059 */
9eadcc05 1060void mmc_set_clock(struct mmc_host *host, unsigned int hz)
7ea239d9 1061{
6a98f1e8 1062 WARN_ON(hz && hz < host->f_min);
7ea239d9
PO
1063
1064 if (hz > host->f_max)
1065 hz = host->f_max;
1066
1067 host->ios.clock = hz;
1068 mmc_set_ios(host);
1069}
1070
63e415c6
AH
1071int mmc_execute_tuning(struct mmc_card *card)
1072{
1073 struct mmc_host *host = card->host;
1074 u32 opcode;
1075 int err;
1076
1077 if (!host->ops->execute_tuning)
1078 return 0;
1079
1080 if (mmc_card_mmc(card))
1081 opcode = MMC_SEND_TUNING_BLOCK_HS200;
1082 else
1083 opcode = MMC_SEND_TUNING_BLOCK;
1084
63e415c6 1085 err = host->ops->execute_tuning(host, opcode);
63e415c6
AH
1086
1087 if (err)
1088 pr_err("%s: tuning execution failed\n", mmc_hostname(host));
79d5a65a
AH
1089 else
1090 mmc_retune_enable(host);
63e415c6
AH
1091
1092 return err;
1093}
1094
7ea239d9
PO
1095/*
1096 * Change the bus mode (open drain/push-pull) of a host.
1097 */
1098void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1099{
1100 host->ios.bus_mode = mode;
1101 mmc_set_ios(host);
1102}
1103
0f8d8ea6
AH
1104/*
1105 * Change data bus width of a host.
1106 */
1107void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1108{
4c4cb171
PR
1109 host->ios.bus_width = width;
1110 mmc_set_ios(host);
0f8d8ea6
AH
1111}
1112
2d079c43
JR
1113/*
1114 * Set initial state after a power cycle or a hw_reset.
1115 */
1116void mmc_set_initial_state(struct mmc_host *host)
1117{
79d5a65a
AH
1118 mmc_retune_disable(host);
1119
2d079c43
JR
1120 if (mmc_host_is_spi(host))
1121 host->ios.chip_select = MMC_CS_HIGH;
1122 else
1123 host->ios.chip_select = MMC_CS_DONTCARE;
1124 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1125 host->ios.bus_width = MMC_BUS_WIDTH_1;
1126 host->ios.timing = MMC_TIMING_LEGACY;
75e8a228 1127 host->ios.drv_type = 0;
2d079c43
JR
1128
1129 mmc_set_ios(host);
1130}
1131
86e8286a
AV
1132/**
1133 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1134 * @vdd: voltage (mV)
1135 * @low_bits: prefer low bits in boundary cases
1136 *
1137 * This function returns the OCR bit number according to the provided @vdd
1138 * value. If conversion is not possible a negative errno value returned.
1139 *
1140 * Depending on the @low_bits flag the function prefers low or high OCR bits
1141 * on boundary voltages. For example,
1142 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1143 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1144 *
1145 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1146 */
1147static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1148{
1149 const int max_bit = ilog2(MMC_VDD_35_36);
1150 int bit;
1151
1152 if (vdd < 1650 || vdd > 3600)
1153 return -EINVAL;
1154
1155 if (vdd >= 1650 && vdd <= 1950)
1156 return ilog2(MMC_VDD_165_195);
1157
1158 if (low_bits)
1159 vdd -= 1;
1160
1161 /* Base 2000 mV, step 100 mV, bit's base 8. */
1162 bit = (vdd - 2000) / 100 + 8;
1163 if (bit > max_bit)
1164 return max_bit;
1165 return bit;
1166}
1167
1168/**
1169 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1170 * @vdd_min: minimum voltage value (mV)
1171 * @vdd_max: maximum voltage value (mV)
1172 *
1173 * This function returns the OCR mask bits according to the provided @vdd_min
1174 * and @vdd_max values. If conversion is not possible the function returns 0.
1175 *
1176 * Notes wrt boundary cases:
1177 * This function sets the OCR bits for all boundary voltages, for example
1178 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1179 * MMC_VDD_34_35 mask.
1180 */
1181u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1182{
1183 u32 mask = 0;
1184
1185 if (vdd_max < vdd_min)
1186 return 0;
1187
1188 /* Prefer high bits for the boundary vdd_max values. */
1189 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1190 if (vdd_max < 0)
1191 return 0;
1192
1193 /* Prefer low bits for the boundary vdd_min values. */
1194 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1195 if (vdd_min < 0)
1196 return 0;
1197
1198 /* Fill the mask, from max bit to min bit. */
1199 while (vdd_max >= vdd_min)
1200 mask |= 1 << vdd_max--;
1201
1202 return mask;
1203}
1204EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1205
6e9e318b
HZ
1206#ifdef CONFIG_OF
1207
1208/**
1209 * mmc_of_parse_voltage - return mask of supported voltages
1210 * @np: The device node need to be parsed.
1211 * @mask: mask of voltages available for MMC/SD/SDIO
1212 *
1213 * 1. Return zero on success.
1214 * 2. Return negative errno: voltage-range is invalid.
1215 */
1216int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1217{
1218 const u32 *voltage_ranges;
1219 int num_ranges, i;
1220
1221 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1222 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1223 if (!voltage_ranges || !num_ranges) {
1224 pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1225 return -EINVAL;
1226 }
1227
1228 for (i = 0; i < num_ranges; i++) {
1229 const int j = i * 2;
1230 u32 ocr_mask;
1231
1232 ocr_mask = mmc_vddrange_to_ocrmask(
1233 be32_to_cpu(voltage_ranges[j]),
1234 be32_to_cpu(voltage_ranges[j + 1]));
1235 if (!ocr_mask) {
1236 pr_err("%s: voltage-range #%d is invalid\n",
1237 np->full_name, i);
1238 return -EINVAL;
1239 }
1240 *mask |= ocr_mask;
1241 }
1242
1243 return 0;
1244}
1245EXPORT_SYMBOL(mmc_of_parse_voltage);
1246
1247#endif /* CONFIG_OF */
1248
25185f3f
SH
1249static int mmc_of_get_func_num(struct device_node *node)
1250{
1251 u32 reg;
1252 int ret;
1253
1254 ret = of_property_read_u32(node, "reg", &reg);
1255 if (ret < 0)
1256 return ret;
1257
1258 return reg;
1259}
1260
1261struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1262 unsigned func_num)
1263{
1264 struct device_node *node;
1265
1266 if (!host->parent || !host->parent->of_node)
1267 return NULL;
1268
1269 for_each_child_of_node(host->parent->of_node, node) {
1270 if (mmc_of_get_func_num(node) == func_num)
1271 return node;
1272 }
1273
1274 return NULL;
1275}
1276
5c13941a
DB
1277#ifdef CONFIG_REGULATOR
1278
310c805e
HS
1279/**
1280 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1281 * @vdd_bit: OCR bit number
1282 * @min_uV: minimum voltage value (mV)
1283 * @max_uV: maximum voltage value (mV)
1284 *
1285 * This function returns the voltage range according to the provided OCR
1286 * bit number. If conversion is not possible a negative errno value returned.
1287 */
1288static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1289{
1290 int tmp;
1291
1292 if (!vdd_bit)
1293 return -EINVAL;
1294
1295 /*
1296 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1297 * bits this regulator doesn't quite support ... don't
1298 * be too picky, most cards and regulators are OK with
1299 * a 0.1V range goof (it's a small error percentage).
1300 */
1301 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1302 if (tmp == 0) {
1303 *min_uV = 1650 * 1000;
1304 *max_uV = 1950 * 1000;
1305 } else {
1306 *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1307 *max_uV = *min_uV + 100 * 1000;
1308 }
1309
1310 return 0;
1311}
1312
5c13941a
DB
1313/**
1314 * mmc_regulator_get_ocrmask - return mask of supported voltages
1315 * @supply: regulator to use
1316 *
1317 * This returns either a negative errno, or a mask of voltages that
1318 * can be provided to MMC/SD/SDIO devices using the specified voltage
1319 * regulator. This would normally be called before registering the
1320 * MMC host adapter.
1321 */
1322int mmc_regulator_get_ocrmask(struct regulator *supply)
1323{
1324 int result = 0;
1325 int count;
1326 int i;
9ed7ca89
JMC
1327 int vdd_uV;
1328 int vdd_mV;
5c13941a
DB
1329
1330 count = regulator_count_voltages(supply);
1331 if (count < 0)
1332 return count;
1333
1334 for (i = 0; i < count; i++) {
5c13941a
DB
1335 vdd_uV = regulator_list_voltage(supply, i);
1336 if (vdd_uV <= 0)
1337 continue;
1338
1339 vdd_mV = vdd_uV / 1000;
1340 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1341 }
1342
9ed7ca89
JMC
1343 if (!result) {
1344 vdd_uV = regulator_get_voltage(supply);
1345 if (vdd_uV <= 0)
1346 return vdd_uV;
1347
1348 vdd_mV = vdd_uV / 1000;
1349 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1350 }
1351
5c13941a
DB
1352 return result;
1353}
45a6b32e 1354EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
5c13941a
DB
1355
1356/**
1357 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
99fc5131 1358 * @mmc: the host to regulate
5c13941a 1359 * @supply: regulator to use
99fc5131 1360 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
5c13941a
DB
1361 *
1362 * Returns zero on success, else negative errno.
1363 *
1364 * MMC host drivers may use this to enable or disable a regulator using
1365 * a particular supply voltage. This would normally be called from the
1366 * set_ios() method.
1367 */
99fc5131
LW
1368int mmc_regulator_set_ocr(struct mmc_host *mmc,
1369 struct regulator *supply,
1370 unsigned short vdd_bit)
5c13941a
DB
1371{
1372 int result = 0;
1373 int min_uV, max_uV;
5c13941a
DB
1374
1375 if (vdd_bit) {
310c805e 1376 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
5c13941a 1377
ca6429d4 1378 result = regulator_set_voltage(supply, min_uV, max_uV);
99fc5131 1379 if (result == 0 && !mmc->regulator_enabled) {
5c13941a 1380 result = regulator_enable(supply);
99fc5131
LW
1381 if (!result)
1382 mmc->regulator_enabled = true;
1383 }
1384 } else if (mmc->regulator_enabled) {
5c13941a 1385 result = regulator_disable(supply);
99fc5131
LW
1386 if (result == 0)
1387 mmc->regulator_enabled = false;
5c13941a
DB
1388 }
1389
99fc5131
LW
1390 if (result)
1391 dev_err(mmc_dev(mmc),
1392 "could not set regulator OCR (%d)\n", result);
5c13941a
DB
1393 return result;
1394}
45a6b32e 1395EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
5c13941a 1396
4d1f52f9
TK
1397#endif /* CONFIG_REGULATOR */
1398
e137788d
GL
1399int mmc_regulator_get_supply(struct mmc_host *mmc)
1400{
1401 struct device *dev = mmc_dev(mmc);
e137788d
GL
1402 int ret;
1403
4d1f52f9 1404 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
bc35d5ed 1405 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
e137788d 1406
4d1f52f9
TK
1407 if (IS_ERR(mmc->supply.vmmc)) {
1408 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1409 return -EPROBE_DEFER;
1410 dev_info(dev, "No vmmc regulator found\n");
1411 } else {
1412 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1413 if (ret > 0)
1414 mmc->ocr_avail = ret;
1415 else
1416 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1417 }
e137788d 1418
4d1f52f9
TK
1419 if (IS_ERR(mmc->supply.vqmmc)) {
1420 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1421 return -EPROBE_DEFER;
1422 dev_info(dev, "No vqmmc regulator found\n");
1423 }
e137788d
GL
1424
1425 return 0;
1426}
1427EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1428
1da177e4
LT
1429/*
1430 * Mask off any voltages we don't support and select
1431 * the lowest voltage
1432 */
7ea239d9 1433u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1da177e4
LT
1434{
1435 int bit;
1436
726d6f23
UH
1437 /*
1438 * Sanity check the voltages that the card claims to
1439 * support.
1440 */
1441 if (ocr & 0x7F) {
1442 dev_warn(mmc_dev(host),
1443 "card claims to support voltages below defined range\n");
1444 ocr &= ~0x7F;
1445 }
1446
1da177e4 1447 ocr &= host->ocr_avail;
ce69d37b
UH
1448 if (!ocr) {
1449 dev_warn(mmc_dev(host), "no support for card's volts\n");
1450 return 0;
1451 }
1da177e4 1452
ce69d37b
UH
1453 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1454 bit = ffs(ocr) - 1;
63ef731a 1455 ocr &= 3 << bit;
ce69d37b 1456 mmc_power_cycle(host, ocr);
1da177e4 1457 } else {
ce69d37b
UH
1458 bit = fls(ocr) - 1;
1459 ocr &= 3 << bit;
1460 if (bit != host->ios.vdd)
1461 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1da177e4
LT
1462 }
1463
1464 return ocr;
1465}
1466
567c8903
JR
1467int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1468{
1469 int err = 0;
1470 int old_signal_voltage = host->ios.signal_voltage;
1471
1472 host->ios.signal_voltage = signal_voltage;
9eadcc05 1473 if (host->ops->start_signal_voltage_switch)
567c8903 1474 err = host->ops->start_signal_voltage_switch(host, &host->ios);
567c8903
JR
1475
1476 if (err)
1477 host->ios.signal_voltage = old_signal_voltage;
1478
1479 return err;
1480
1481}
1482
0f791fda 1483int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
f2119df6
AN
1484{
1485 struct mmc_command cmd = {0};
1486 int err = 0;
0797e5f1 1487 u32 clock;
f2119df6
AN
1488
1489 BUG_ON(!host);
1490
1491 /*
1492 * Send CMD11 only if the request is to switch the card to
1493 * 1.8V signalling.
1494 */
0797e5f1
JR
1495 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1496 return __mmc_set_signal_voltage(host, signal_voltage);
f2119df6 1497
0797e5f1
JR
1498 /*
1499 * If we cannot switch voltages, return failure so the caller
1500 * can continue without UHS mode
1501 */
1502 if (!host->ops->start_signal_voltage_switch)
1503 return -EPERM;
1504 if (!host->ops->card_busy)
6606110d
JP
1505 pr_warn("%s: cannot verify signal voltage switch\n",
1506 mmc_hostname(host));
0797e5f1
JR
1507
1508 cmd.opcode = SD_SWITCH_VOLTAGE;
1509 cmd.arg = 0;
1510 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1511
1512 err = mmc_wait_for_cmd(host, &cmd, 0);
1513 if (err)
9eadcc05
UH
1514 return err;
1515
1516 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1517 return -EIO;
0797e5f1 1518
0797e5f1
JR
1519 /*
1520 * The card should drive cmd and dat[0:3] low immediately
1521 * after the response of cmd11, but wait 1 ms to be sure
1522 */
1523 mmc_delay(1);
1524 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1525 err = -EAGAIN;
1526 goto power_cycle;
1527 }
1528 /*
1529 * During a signal voltage level switch, the clock must be gated
1530 * for 5 ms according to the SD spec
1531 */
1532 clock = host->ios.clock;
1533 host->ios.clock = 0;
1534 mmc_set_ios(host);
f2119df6 1535
0797e5f1
JR
1536 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1537 /*
1538 * Voltages may not have been switched, but we've already
1539 * sent CMD11, so a power cycle is required anyway
1540 */
1541 err = -EAGAIN;
1542 goto power_cycle;
f2119df6
AN
1543 }
1544
7c5209c3
DA
1545 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1546 mmc_delay(10);
0797e5f1
JR
1547 host->ios.clock = clock;
1548 mmc_set_ios(host);
1549
1550 /* Wait for at least 1 ms according to spec */
1551 mmc_delay(1);
1552
1553 /*
1554 * Failure to switch is indicated by the card holding
1555 * dat[0:3] low
1556 */
1557 if (host->ops->card_busy && host->ops->card_busy(host))
1558 err = -EAGAIN;
1559
1560power_cycle:
1561 if (err) {
1562 pr_debug("%s: Signal voltage switch failed, "
1563 "power cycling card\n", mmc_hostname(host));
0f791fda 1564 mmc_power_cycle(host, ocr);
0797e5f1
JR
1565 }
1566
0797e5f1 1567 return err;
f2119df6
AN
1568}
1569
b57c43ad 1570/*
7ea239d9 1571 * Select timing parameters for host.
b57c43ad 1572 */
7ea239d9 1573void mmc_set_timing(struct mmc_host *host, unsigned int timing)
b57c43ad 1574{
7ea239d9
PO
1575 host->ios.timing = timing;
1576 mmc_set_ios(host);
b57c43ad
PO
1577}
1578
d6d50a15
AN
1579/*
1580 * Select appropriate driver type for host.
1581 */
1582void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1583{
1584 host->ios.drv_type = drv_type;
1585 mmc_set_ios(host);
1586}
1587
e23350b3
AH
1588int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1589 int card_drv_type, int *drv_type)
1590{
1591 struct mmc_host *host = card->host;
1592 int host_drv_type = SD_DRIVER_TYPE_B;
e23350b3
AH
1593
1594 *drv_type = 0;
1595
1596 if (!host->ops->select_drive_strength)
1597 return 0;
1598
1599 /* Use SD definition of driver strength for hosts */
1600 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1601 host_drv_type |= SD_DRIVER_TYPE_A;
1602
1603 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1604 host_drv_type |= SD_DRIVER_TYPE_C;
1605
1606 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1607 host_drv_type |= SD_DRIVER_TYPE_D;
1608
1609 /*
1610 * The drive strength that the hardware can support
1611 * depends on the board design. Pass the appropriate
1612 * information and let the hardware specific code
1613 * return what is possible given the options
1614 */
9eadcc05
UH
1615 return host->ops->select_drive_strength(card, max_dtr,
1616 host_drv_type,
1617 card_drv_type,
1618 drv_type);
e23350b3
AH
1619}
1620
1da177e4 1621/*
45f8245b
RK
1622 * Apply power to the MMC stack. This is a two-stage process.
1623 * First, we enable power to the card without the clock running.
1624 * We then wait a bit for the power to stabilise. Finally,
1625 * enable the bus drivers and clock to the card.
1626 *
1627 * We must _NOT_ enable the clock prior to power stablising.
1628 *
1629 * If a host does all the power sequencing itself, ignore the
1630 * initial MMC_POWER_UP stage.
1da177e4 1631 */
4a065193 1632void mmc_power_up(struct mmc_host *host, u32 ocr)
1da177e4 1633{
fa550189
UH
1634 if (host->ios.power_mode == MMC_POWER_ON)
1635 return;
1636
3aa8793f
UH
1637 mmc_pwrseq_pre_power_on(host);
1638
4a065193 1639 host->ios.vdd = fls(ocr) - 1;
1da177e4 1640 host->ios.power_mode = MMC_POWER_UP;
2d079c43
JR
1641 /* Set initial state and call mmc_set_ios */
1642 mmc_set_initial_state(host);
1da177e4 1643
ceae98f2
TK
1644 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1645 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1646 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1647 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1648 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1649 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1650 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
108ecc4c 1651
f9996aee
PO
1652 /*
1653 * This delay should be sufficient to allow the power supply
1654 * to reach the minimum voltage.
1655 */
79bccc5a 1656 mmc_delay(10);
1da177e4 1657
4febb7e2
UH
1658 mmc_pwrseq_post_power_on(host);
1659
88ae8b86 1660 host->ios.clock = host->f_init;
8dfd0374 1661
1da177e4 1662 host->ios.power_mode = MMC_POWER_ON;
920e70c5 1663 mmc_set_ios(host);
1da177e4 1664
f9996aee
PO
1665 /*
1666 * This delay must be at least 74 clock sizes, or 1 ms, or the
1667 * time required to reach a stable voltage.
1668 */
79bccc5a 1669 mmc_delay(10);
1da177e4
LT
1670}
1671
7f7e4129 1672void mmc_power_off(struct mmc_host *host)
1da177e4 1673{
fa550189
UH
1674 if (host->ios.power_mode == MMC_POWER_OFF)
1675 return;
1676
3aa8793f
UH
1677 mmc_pwrseq_power_off(host);
1678
1da177e4
LT
1679 host->ios.clock = 0;
1680 host->ios.vdd = 0;
b33d46c3 1681
1da177e4 1682 host->ios.power_mode = MMC_POWER_OFF;
2d079c43
JR
1683 /* Set initial state and call mmc_set_ios */
1684 mmc_set_initial_state(host);
778e277c 1685
041beb1d
DD
1686 /*
1687 * Some configurations, such as the 802.11 SDIO card in the OLPC
1688 * XO-1.5, require a short delay after poweroff before the card
1689 * can be successfully turned on again.
1690 */
1691 mmc_delay(1);
1da177e4
LT
1692}
1693
4a065193 1694void mmc_power_cycle(struct mmc_host *host, u32 ocr)
276e090f
JR
1695{
1696 mmc_power_off(host);
1697 /* Wait at least 1 ms according to SD spec */
1698 mmc_delay(1);
4a065193 1699 mmc_power_up(host, ocr);
276e090f
JR
1700}
1701
39361851
AB
1702/*
1703 * Cleanup when the last reference to the bus operator is dropped.
1704 */
261172fd 1705static void __mmc_release_bus(struct mmc_host *host)
39361851
AB
1706{
1707 BUG_ON(!host);
1708 BUG_ON(host->bus_refs);
1709 BUG_ON(!host->bus_dead);
1710
1711 host->bus_ops = NULL;
1712}
1713
1714/*
1715 * Increase reference count of bus operator
1716 */
1717static inline void mmc_bus_get(struct mmc_host *host)
1718{
1719 unsigned long flags;
1720
1721 spin_lock_irqsave(&host->lock, flags);
1722 host->bus_refs++;
1723 spin_unlock_irqrestore(&host->lock, flags);
1724}
1725
1726/*
1727 * Decrease reference count of bus operator and free it if
1728 * it is the last reference.
1729 */
1730static inline void mmc_bus_put(struct mmc_host *host)
1731{
1732 unsigned long flags;
1733
1734 spin_lock_irqsave(&host->lock, flags);
1735 host->bus_refs--;
1736 if ((host->bus_refs == 0) && host->bus_ops)
1737 __mmc_release_bus(host);
1738 spin_unlock_irqrestore(&host->lock, flags);
1739}
1740
1da177e4 1741/*
7ea239d9
PO
1742 * Assign a mmc bus handler to a host. Only one bus handler may control a
1743 * host at any given time.
1da177e4 1744 */
7ea239d9 1745void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1da177e4 1746{
7ea239d9 1747 unsigned long flags;
e45a1bd2 1748
7ea239d9
PO
1749 BUG_ON(!host);
1750 BUG_ON(!ops);
b855885e 1751
d84075c8 1752 WARN_ON(!host->claimed);
bce40a36 1753
7ea239d9 1754 spin_lock_irqsave(&host->lock, flags);
bce40a36 1755
7ea239d9
PO
1756 BUG_ON(host->bus_ops);
1757 BUG_ON(host->bus_refs);
b57c43ad 1758
7ea239d9
PO
1759 host->bus_ops = ops;
1760 host->bus_refs = 1;
1761 host->bus_dead = 0;
b57c43ad 1762
7ea239d9 1763 spin_unlock_irqrestore(&host->lock, flags);
b57c43ad
PO
1764}
1765
7ea239d9 1766/*
7f7e4129 1767 * Remove the current bus handler from a host.
7ea239d9
PO
1768 */
1769void mmc_detach_bus(struct mmc_host *host)
7ccd266e 1770{
7ea239d9 1771 unsigned long flags;
7ccd266e 1772
7ea239d9 1773 BUG_ON(!host);
7ccd266e 1774
d84075c8
PO
1775 WARN_ON(!host->claimed);
1776 WARN_ON(!host->bus_ops);
cd9277c0 1777
7ea239d9 1778 spin_lock_irqsave(&host->lock, flags);
7ccd266e 1779
7ea239d9 1780 host->bus_dead = 1;
7ccd266e 1781
7ea239d9 1782 spin_unlock_irqrestore(&host->lock, flags);
1da177e4 1783
7ea239d9 1784 mmc_bus_put(host);
1da177e4
LT
1785}
1786
bbd43682
UH
1787static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1788 bool cd_irq)
1789{
1790#ifdef CONFIG_MMC_DEBUG
1791 unsigned long flags;
1792 spin_lock_irqsave(&host->lock, flags);
1793 WARN_ON(host->removed);
1794 spin_unlock_irqrestore(&host->lock, flags);
1795#endif
1796
1797 /*
1798 * If the device is configured as wakeup, we prevent a new sleep for
1799 * 5 s to give provision for user space to consume the event.
1800 */
1801 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1802 device_can_wakeup(mmc_dev(host)))
1803 pm_wakeup_event(mmc_dev(host), 5000);
1804
1805 host->detect_change = 1;
1806 mmc_schedule_delayed_work(&host->detect, delay);
1807}
1808
1da177e4
LT
1809/**
1810 * mmc_detect_change - process change of state on a MMC socket
1811 * @host: host which changed state.
8dc00335 1812 * @delay: optional delay to wait before detection (jiffies)
1da177e4 1813 *
67a61c48
PO
1814 * MMC drivers should call this when they detect a card has been
1815 * inserted or removed. The MMC layer will confirm that any
1816 * present card is still functional, and initialize any newly
1817 * inserted.
1da177e4 1818 */
8dc00335 1819void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1da177e4 1820{
bbd43682 1821 _mmc_detect_change(host, delay, true);
1da177e4 1822}
1da177e4
LT
1823EXPORT_SYMBOL(mmc_detect_change);
1824
dfe86cba
AH
1825void mmc_init_erase(struct mmc_card *card)
1826{
1827 unsigned int sz;
1828
1829 if (is_power_of_2(card->erase_size))
1830 card->erase_shift = ffs(card->erase_size) - 1;
1831 else
1832 card->erase_shift = 0;
1833
1834 /*
1835 * It is possible to erase an arbitrarily large area of an SD or MMC
1836 * card. That is not desirable because it can take a long time
1837 * (minutes) potentially delaying more important I/O, and also the
1838 * timeout calculations become increasingly hugely over-estimated.
1839 * Consequently, 'pref_erase' is defined as a guide to limit erases
1840 * to that size and alignment.
1841 *
1842 * For SD cards that define Allocation Unit size, limit erases to one
1843 * Allocation Unit at a time. For MMC cards that define High Capacity
1844 * Erase Size, whether it is switched on or not, limit to that size.
1845 * Otherwise just have a stab at a good value. For modern cards it
1846 * will end up being 4MiB. Note that if the value is too small, it
1847 * can end up taking longer to erase.
1848 */
1849 if (mmc_card_sd(card) && card->ssr.au) {
1850 card->pref_erase = card->ssr.au;
1851 card->erase_shift = ffs(card->ssr.au) - 1;
1852 } else if (card->ext_csd.hc_erase_size) {
1853 card->pref_erase = card->ext_csd.hc_erase_size;
cc8aa7de 1854 } else if (card->erase_size) {
dfe86cba
AH
1855 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1856 if (sz < 128)
1857 card->pref_erase = 512 * 1024 / 512;
1858 else if (sz < 512)
1859 card->pref_erase = 1024 * 1024 / 512;
1860 else if (sz < 1024)
1861 card->pref_erase = 2 * 1024 * 1024 / 512;
1862 else
1863 card->pref_erase = 4 * 1024 * 1024 / 512;
1864 if (card->pref_erase < card->erase_size)
1865 card->pref_erase = card->erase_size;
1866 else {
1867 sz = card->pref_erase % card->erase_size;
1868 if (sz)
1869 card->pref_erase += card->erase_size - sz;
1870 }
cc8aa7de
CD
1871 } else
1872 card->pref_erase = 0;
dfe86cba
AH
1873}
1874
eaa02f75
AW
1875static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1876 unsigned int arg, unsigned int qty)
dfe86cba
AH
1877{
1878 unsigned int erase_timeout;
1879
7194efb8
AH
1880 if (arg == MMC_DISCARD_ARG ||
1881 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1882 erase_timeout = card->ext_csd.trim_timeout;
1883 } else if (card->ext_csd.erase_group_def & 1) {
dfe86cba
AH
1884 /* High Capacity Erase Group Size uses HC timeouts */
1885 if (arg == MMC_TRIM_ARG)
1886 erase_timeout = card->ext_csd.trim_timeout;
1887 else
1888 erase_timeout = card->ext_csd.hc_erase_timeout;
1889 } else {
1890 /* CSD Erase Group Size uses write timeout */
1891 unsigned int mult = (10 << card->csd.r2w_factor);
1892 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1893 unsigned int timeout_us;
1894
1895 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1896 if (card->csd.tacc_ns < 1000000)
1897 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1898 else
1899 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1900
1901 /*
1902 * ios.clock is only a target. The real clock rate might be
1903 * less but not that much less, so fudge it by multiplying by 2.
1904 */
1905 timeout_clks <<= 1;
1906 timeout_us += (timeout_clks * 1000) /
9eadcc05 1907 (card->host->ios.clock / 1000);
dfe86cba
AH
1908
1909 erase_timeout = timeout_us / 1000;
1910
1911 /*
1912 * Theoretically, the calculation could underflow so round up
1913 * to 1ms in that case.
1914 */
1915 if (!erase_timeout)
1916 erase_timeout = 1;
1917 }
1918
1919 /* Multiplier for secure operations */
1920 if (arg & MMC_SECURE_ARGS) {
1921 if (arg == MMC_SECURE_ERASE_ARG)
1922 erase_timeout *= card->ext_csd.sec_erase_mult;
1923 else
1924 erase_timeout *= card->ext_csd.sec_trim_mult;
1925 }
1926
1927 erase_timeout *= qty;
1928
1929 /*
1930 * Ensure at least a 1 second timeout for SPI as per
1931 * 'mmc_set_data_timeout()'
1932 */
1933 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1934 erase_timeout = 1000;
1935
eaa02f75 1936 return erase_timeout;
dfe86cba
AH
1937}
1938
eaa02f75
AW
1939static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1940 unsigned int arg,
1941 unsigned int qty)
dfe86cba 1942{
eaa02f75
AW
1943 unsigned int erase_timeout;
1944
dfe86cba
AH
1945 if (card->ssr.erase_timeout) {
1946 /* Erase timeout specified in SD Status Register (SSR) */
eaa02f75
AW
1947 erase_timeout = card->ssr.erase_timeout * qty +
1948 card->ssr.erase_offset;
dfe86cba
AH
1949 } else {
1950 /*
1951 * Erase timeout not specified in SD Status Register (SSR) so
1952 * use 250ms per write block.
1953 */
eaa02f75 1954 erase_timeout = 250 * qty;
dfe86cba
AH
1955 }
1956
1957 /* Must not be less than 1 second */
eaa02f75
AW
1958 if (erase_timeout < 1000)
1959 erase_timeout = 1000;
1960
1961 return erase_timeout;
dfe86cba
AH
1962}
1963
eaa02f75
AW
1964static unsigned int mmc_erase_timeout(struct mmc_card *card,
1965 unsigned int arg,
1966 unsigned int qty)
dfe86cba
AH
1967{
1968 if (mmc_card_sd(card))
eaa02f75 1969 return mmc_sd_erase_timeout(card, arg, qty);
dfe86cba 1970 else
eaa02f75 1971 return mmc_mmc_erase_timeout(card, arg, qty);
dfe86cba
AH
1972}
1973
1974static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1975 unsigned int to, unsigned int arg)
1976{
1278dba1 1977 struct mmc_command cmd = {0};
dfe86cba 1978 unsigned int qty = 0;
8fee476b 1979 unsigned long timeout;
dfe86cba
AH
1980 int err;
1981
8f11d106
AH
1982 mmc_retune_hold(card->host);
1983
dfe86cba
AH
1984 /*
1985 * qty is used to calculate the erase timeout which depends on how many
1986 * erase groups (or allocation units in SD terminology) are affected.
1987 * We count erasing part of an erase group as one erase group.
1988 * For SD, the allocation units are always a power of 2. For MMC, the
1989 * erase group size is almost certainly also power of 2, but it does not
1990 * seem to insist on that in the JEDEC standard, so we fall back to
1991 * division in that case. SD may not specify an allocation unit size,
1992 * in which case the timeout is based on the number of write blocks.
1993 *
1994 * Note that the timeout for secure trim 2 will only be correct if the
1995 * number of erase groups specified is the same as the total of all
1996 * preceding secure trim 1 commands. Since the power may have been
1997 * lost since the secure trim 1 commands occurred, it is generally
1998 * impossible to calculate the secure trim 2 timeout correctly.
1999 */
2000 if (card->erase_shift)
2001 qty += ((to >> card->erase_shift) -
2002 (from >> card->erase_shift)) + 1;
2003 else if (mmc_card_sd(card))
2004 qty += to - from + 1;
2005 else
2006 qty += ((to / card->erase_size) -
2007 (from / card->erase_size)) + 1;
2008
2009 if (!mmc_card_blockaddr(card)) {
2010 from <<= 9;
2011 to <<= 9;
2012 }
2013
dfe86cba
AH
2014 if (mmc_card_sd(card))
2015 cmd.opcode = SD_ERASE_WR_BLK_START;
2016 else
2017 cmd.opcode = MMC_ERASE_GROUP_START;
2018 cmd.arg = from;
2019 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2020 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2021 if (err) {
a3c76eb9 2022 pr_err("mmc_erase: group start error %d, "
dfe86cba 2023 "status %#x\n", err, cmd.resp[0]);
67716327 2024 err = -EIO;
dfe86cba
AH
2025 goto out;
2026 }
2027
2028 memset(&cmd, 0, sizeof(struct mmc_command));
2029 if (mmc_card_sd(card))
2030 cmd.opcode = SD_ERASE_WR_BLK_END;
2031 else
2032 cmd.opcode = MMC_ERASE_GROUP_END;
2033 cmd.arg = to;
2034 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2035 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2036 if (err) {
a3c76eb9 2037 pr_err("mmc_erase: group end error %d, status %#x\n",
dfe86cba 2038 err, cmd.resp[0]);
67716327 2039 err = -EIO;
dfe86cba
AH
2040 goto out;
2041 }
2042
2043 memset(&cmd, 0, sizeof(struct mmc_command));
2044 cmd.opcode = MMC_ERASE;
2045 cmd.arg = arg;
2046 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1d4d7744 2047 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
dfe86cba
AH
2048 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2049 if (err) {
a3c76eb9 2050 pr_err("mmc_erase: erase error %d, status %#x\n",
dfe86cba
AH
2051 err, cmd.resp[0]);
2052 err = -EIO;
2053 goto out;
2054 }
2055
2056 if (mmc_host_is_spi(card->host))
2057 goto out;
2058
8fee476b 2059 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
dfe86cba
AH
2060 do {
2061 memset(&cmd, 0, sizeof(struct mmc_command));
2062 cmd.opcode = MMC_SEND_STATUS;
2063 cmd.arg = card->rca << 16;
2064 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2065 /* Do not retry else we can't see errors */
2066 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2067 if (err || (cmd.resp[0] & 0xFDF92000)) {
a3c76eb9 2068 pr_err("error %d requesting status %#x\n",
dfe86cba
AH
2069 err, cmd.resp[0]);
2070 err = -EIO;
2071 goto out;
2072 }
8fee476b
TR
2073
2074 /* Timeout if the device never becomes ready for data and
2075 * never leaves the program state.
2076 */
2077 if (time_after(jiffies, timeout)) {
2078 pr_err("%s: Card stuck in programming state! %s\n",
2079 mmc_hostname(card->host), __func__);
2080 err = -EIO;
2081 goto out;
2082 }
2083
dfe86cba 2084 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
8fee476b 2085 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
dfe86cba 2086out:
8f11d106 2087 mmc_retune_release(card->host);
dfe86cba
AH
2088 return err;
2089}
2090
2091/**
2092 * mmc_erase - erase sectors.
2093 * @card: card to erase
2094 * @from: first sector to erase
2095 * @nr: number of sectors to erase
2096 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2097 *
2098 * Caller must claim host before calling this function.
2099 */
2100int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2101 unsigned int arg)
2102{
2103 unsigned int rem, to = from + nr;
642c28ab 2104 int err;
dfe86cba
AH
2105
2106 if (!(card->host->caps & MMC_CAP_ERASE) ||
2107 !(card->csd.cmdclass & CCC_ERASE))
2108 return -EOPNOTSUPP;
2109
2110 if (!card->erase_size)
2111 return -EOPNOTSUPP;
2112
2113 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2114 return -EOPNOTSUPP;
2115
2116 if ((arg & MMC_SECURE_ARGS) &&
2117 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2118 return -EOPNOTSUPP;
2119
2120 if ((arg & MMC_TRIM_ARGS) &&
2121 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2122 return -EOPNOTSUPP;
2123
2124 if (arg == MMC_SECURE_ERASE_ARG) {
2125 if (from % card->erase_size || nr % card->erase_size)
2126 return -EINVAL;
2127 }
2128
2129 if (arg == MMC_ERASE_ARG) {
2130 rem = from % card->erase_size;
2131 if (rem) {
2132 rem = card->erase_size - rem;
2133 from += rem;
2134 if (nr > rem)
2135 nr -= rem;
2136 else
2137 return 0;
2138 }
2139 rem = nr % card->erase_size;
2140 if (rem)
2141 nr -= rem;
2142 }
2143
2144 if (nr == 0)
2145 return 0;
2146
2147 to = from + nr;
2148
2149 if (to <= from)
2150 return -EINVAL;
2151
2152 /* 'from' and 'to' are inclusive */
2153 to -= 1;
2154
642c28ab
DJ
2155 /*
2156 * Special case where only one erase-group fits in the timeout budget:
2157 * If the region crosses an erase-group boundary on this particular
2158 * case, we will be trimming more than one erase-group which, does not
2159 * fit in the timeout budget of the controller, so we need to split it
2160 * and call mmc_do_erase() twice if necessary. This special case is
2161 * identified by the card->eg_boundary flag.
2162 */
22d7e85f
RG
2163 rem = card->erase_size - (from % card->erase_size);
2164 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
642c28ab
DJ
2165 err = mmc_do_erase(card, from, from + rem - 1, arg);
2166 from += rem;
2167 if ((err) || (to <= from))
2168 return err;
2169 }
2170
dfe86cba
AH
2171 return mmc_do_erase(card, from, to, arg);
2172}
2173EXPORT_SYMBOL(mmc_erase);
2174
2175int mmc_can_erase(struct mmc_card *card)
2176{
2177 if ((card->host->caps & MMC_CAP_ERASE) &&
2178 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2179 return 1;
2180 return 0;
2181}
2182EXPORT_SYMBOL(mmc_can_erase);
2183
2184int mmc_can_trim(struct mmc_card *card)
2185{
b5b4ff0a
SL
2186 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2187 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
dfe86cba
AH
2188 return 1;
2189 return 0;
2190}
2191EXPORT_SYMBOL(mmc_can_trim);
2192
b3bf9153
KP
2193int mmc_can_discard(struct mmc_card *card)
2194{
2195 /*
2196 * As there's no way to detect the discard support bit at v4.5
2197 * use the s/w feature support filed.
2198 */
2199 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2200 return 1;
2201 return 0;
2202}
2203EXPORT_SYMBOL(mmc_can_discard);
2204
d9ddd629
KP
2205int mmc_can_sanitize(struct mmc_card *card)
2206{
28302812
AH
2207 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2208 return 0;
d9ddd629
KP
2209 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2210 return 1;
2211 return 0;
2212}
2213EXPORT_SYMBOL(mmc_can_sanitize);
2214
dfe86cba
AH
2215int mmc_can_secure_erase_trim(struct mmc_card *card)
2216{
5204d00f
LC
2217 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2218 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
dfe86cba
AH
2219 return 1;
2220 return 0;
2221}
2222EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2223
2224int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2225 unsigned int nr)
2226{
2227 if (!card->erase_size)
2228 return 0;
2229 if (from % card->erase_size || nr % card->erase_size)
2230 return 0;
2231 return 1;
2232}
2233EXPORT_SYMBOL(mmc_erase_group_aligned);
1da177e4 2234
e056a1b5
AH
2235static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2236 unsigned int arg)
2237{
2238 struct mmc_host *host = card->host;
2239 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2240 unsigned int last_timeout = 0;
2241
2242 if (card->erase_shift)
2243 max_qty = UINT_MAX >> card->erase_shift;
2244 else if (mmc_card_sd(card))
2245 max_qty = UINT_MAX;
2246 else
2247 max_qty = UINT_MAX / card->erase_size;
2248
2249 /* Find the largest qty with an OK timeout */
2250 do {
2251 y = 0;
2252 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2253 timeout = mmc_erase_timeout(card, arg, qty + x);
68eb80e0 2254 if (timeout > host->max_busy_timeout)
e056a1b5
AH
2255 break;
2256 if (timeout < last_timeout)
2257 break;
2258 last_timeout = timeout;
2259 y = x;
2260 }
2261 qty += y;
2262 } while (y);
2263
2264 if (!qty)
2265 return 0;
2266
642c28ab
DJ
2267 /*
2268 * When specifying a sector range to trim, chances are we might cross
2269 * an erase-group boundary even if the amount of sectors is less than
2270 * one erase-group.
2271 * If we can only fit one erase-group in the controller timeout budget,
2272 * we have to care that erase-group boundaries are not crossed by a
2273 * single trim operation. We flag that special case with "eg_boundary".
2274 * In all other cases we can just decrement qty and pretend that we
2275 * always touch (qty + 1) erase-groups as a simple optimization.
2276 */
e056a1b5 2277 if (qty == 1)
642c28ab
DJ
2278 card->eg_boundary = 1;
2279 else
2280 qty--;
e056a1b5
AH
2281
2282 /* Convert qty to sectors */
2283 if (card->erase_shift)
642c28ab 2284 max_discard = qty << card->erase_shift;
e056a1b5 2285 else if (mmc_card_sd(card))
642c28ab 2286 max_discard = qty + 1;
e056a1b5 2287 else
642c28ab 2288 max_discard = qty * card->erase_size;
e056a1b5
AH
2289
2290 return max_discard;
2291}
2292
2293unsigned int mmc_calc_max_discard(struct mmc_card *card)
2294{
2295 struct mmc_host *host = card->host;
2296 unsigned int max_discard, max_trim;
2297
68eb80e0 2298 if (!host->max_busy_timeout)
e056a1b5
AH
2299 return UINT_MAX;
2300
2301 /*
2302 * Without erase_group_def set, MMC erase timeout depends on clock
2303 * frequence which can change. In that case, the best choice is
2304 * just the preferred erase size.
2305 */
2306 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2307 return card->pref_erase;
2308
2309 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2310 if (mmc_can_trim(card)) {
2311 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2312 if (max_trim < max_discard)
2313 max_discard = max_trim;
2314 } else if (max_discard < card->erase_size) {
2315 max_discard = 0;
2316 }
2317 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
68eb80e0 2318 mmc_hostname(host), max_discard, host->max_busy_timeout);
e056a1b5
AH
2319 return max_discard;
2320}
2321EXPORT_SYMBOL(mmc_calc_max_discard);
2322
0f8d8ea6
AH
2323int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2324{
1278dba1 2325 struct mmc_command cmd = {0};
0f8d8ea6 2326
cdc99179 2327 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
0f8d8ea6
AH
2328 return 0;
2329
0f8d8ea6
AH
2330 cmd.opcode = MMC_SET_BLOCKLEN;
2331 cmd.arg = blocklen;
2332 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2333 return mmc_wait_for_cmd(card->host, &cmd, 5);
2334}
2335EXPORT_SYMBOL(mmc_set_blocklen);
2336
67c79db8
LP
2337int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2338 bool is_rel_write)
2339{
2340 struct mmc_command cmd = {0};
2341
2342 cmd.opcode = MMC_SET_BLOCK_COUNT;
2343 cmd.arg = blockcount & 0x0000FFFF;
2344 if (is_rel_write)
2345 cmd.arg |= 1 << 31;
2346 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2347 return mmc_wait_for_cmd(card->host, &cmd, 5);
2348}
2349EXPORT_SYMBOL(mmc_set_blockcount);
2350
b2499518
AH
2351static void mmc_hw_reset_for_init(struct mmc_host *host)
2352{
2353 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2354 return;
b2499518 2355 host->ops->hw_reset(host);
b2499518
AH
2356}
2357
83533ab2 2358int mmc_hw_reset(struct mmc_host *host)
b2499518 2359{
f855a371 2360 int ret;
b2499518 2361
f855a371 2362 if (!host->card)
b2499518
AH
2363 return -EINVAL;
2364
f855a371
JR
2365 mmc_bus_get(host);
2366 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2367 mmc_bus_put(host);
b2499518 2368 return -EOPNOTSUPP;
b2499518
AH
2369 }
2370
f855a371
JR
2371 ret = host->bus_ops->reset(host);
2372 mmc_bus_put(host);
b2499518 2373
0250fdf2
AH
2374 if (ret != -EOPNOTSUPP)
2375 pr_warn("%s: tried to reset card\n", mmc_hostname(host));
b2499518 2376
f855a371 2377 return ret;
b2499518 2378}
b2499518
AH
2379EXPORT_SYMBOL(mmc_hw_reset);
2380
807e8e40
AR
2381static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2382{
2383 host->f_init = freq;
2384
2385#ifdef CONFIG_MMC_DEBUG
2386 pr_info("%s: %s: trying to init card at %u Hz\n",
2387 mmc_hostname(host), __func__, host->f_init);
2388#endif
4a065193 2389 mmc_power_up(host, host->ocr_avail);
2f94e55a 2390
b2499518
AH
2391 /*
2392 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2393 * do a hardware reset if possible.
2394 */
2395 mmc_hw_reset_for_init(host);
2396
2f94e55a
PR
2397 /*
2398 * sdio_reset sends CMD52 to reset card. Since we do not know
2399 * if the card is being re-initialized, just send it. CMD52
2400 * should be ignored by SD/eMMC cards.
2401 */
807e8e40
AR
2402 sdio_reset(host);
2403 mmc_go_idle(host);
2404
2405 mmc_send_if_cond(host, host->ocr_avail);
2406
2407 /* Order's important: probe SDIO, then SD, then MMC */
2408 if (!mmc_attach_sdio(host))
2409 return 0;
2410 if (!mmc_attach_sd(host))
2411 return 0;
2412 if (!mmc_attach_mmc(host))
2413 return 0;
2414
2415 mmc_power_off(host);
2416 return -EIO;
2417}
2418
d3049504
AH
2419int _mmc_detect_card_removed(struct mmc_host *host)
2420{
2421 int ret;
2422
5601aaf7 2423 if (host->caps & MMC_CAP_NONREMOVABLE)
d3049504
AH
2424 return 0;
2425
2426 if (!host->card || mmc_card_removed(host->card))
2427 return 1;
2428
2429 ret = host->bus_ops->alive(host);
1450734e
KL
2430
2431 /*
2432 * Card detect status and alive check may be out of sync if card is
2433 * removed slowly, when card detect switch changes while card/slot
2434 * pads are still contacted in hardware (refer to "SD Card Mechanical
2435 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2436 * detect work 200ms later for this case.
2437 */
2438 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2439 mmc_detect_change(host, msecs_to_jiffies(200));
2440 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2441 }
2442
d3049504
AH
2443 if (ret) {
2444 mmc_card_set_removed(host->card);
2445 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2446 }
2447
2448 return ret;
2449}
2450
2451int mmc_detect_card_removed(struct mmc_host *host)
2452{
2453 struct mmc_card *card = host->card;
f0cc9cf9 2454 int ret;
d3049504
AH
2455
2456 WARN_ON(!host->claimed);
f0cc9cf9
UH
2457
2458 if (!card)
2459 return 1;
2460
2461 ret = mmc_card_removed(card);
d3049504
AH
2462 /*
2463 * The card will be considered unchanged unless we have been asked to
2464 * detect a change or host requires polling to provide card detection.
2465 */
b6891679 2466 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
f0cc9cf9 2467 return ret;
d3049504
AH
2468
2469 host->detect_change = 0;
f0cc9cf9
UH
2470 if (!ret) {
2471 ret = _mmc_detect_card_removed(host);
b6891679 2472 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
f0cc9cf9
UH
2473 /*
2474 * Schedule a detect work as soon as possible to let a
2475 * rescan handle the card removal.
2476 */
2477 cancel_delayed_work(&host->detect);
bbd43682 2478 _mmc_detect_change(host, 0, false);
f0cc9cf9
UH
2479 }
2480 }
d3049504 2481
f0cc9cf9 2482 return ret;
d3049504
AH
2483}
2484EXPORT_SYMBOL(mmc_detect_card_removed);
2485
b93931a6 2486void mmc_rescan(struct work_struct *work)
1da177e4 2487{
c4028958
DH
2488 struct mmc_host *host =
2489 container_of(work, struct mmc_host, detect.work);
88ae8b86 2490 int i;
4c2ef25f 2491
fa372a51
MM
2492 if (host->trigger_card_event && host->ops->card_event) {
2493 host->ops->card_event(host);
2494 host->trigger_card_event = false;
2495 }
2496
807e8e40 2497 if (host->rescan_disable)
4c2ef25f 2498 return;
1da177e4 2499
3339d1e3
JR
2500 /* If there is a non-removable card registered, only scan once */
2501 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2502 return;
2503 host->rescan_entered = 1;
2504
7ea239d9 2505 mmc_bus_get(host);
b855885e 2506
30201e7f
OBC
2507 /*
2508 * if there is a _removable_ card registered, check whether it is
2509 * still present
2510 */
5601aaf7 2511 if (host->bus_ops && !host->bus_dead
bad3baba 2512 && !(host->caps & MMC_CAP_NONREMOVABLE))
94d89efb
JS
2513 host->bus_ops->detect(host);
2514
d3049504
AH
2515 host->detect_change = 0;
2516
c5841798
CB
2517 /*
2518 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2519 * the card is no longer present.
2520 */
94d89efb 2521 mmc_bus_put(host);
94d89efb
JS
2522 mmc_bus_get(host);
2523
2524 /* if there still is a card present, stop here */
2525 if (host->bus_ops != NULL) {
7ea239d9 2526 mmc_bus_put(host);
94d89efb
JS
2527 goto out;
2528 }
1da177e4 2529
94d89efb
JS
2530 /*
2531 * Only we can add a new handler, so it's safe to
2532 * release the lock here.
2533 */
2534 mmc_bus_put(host);
1da177e4 2535
c1b55bfc
SH
2536 if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2537 host->ops->get_cd(host) == 0) {
fa550189
UH
2538 mmc_claim_host(host);
2539 mmc_power_off(host);
2540 mmc_release_host(host);
94d89efb 2541 goto out;
fa550189 2542 }
1da177e4 2543
807e8e40 2544 mmc_claim_host(host);
88ae8b86 2545 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
807e8e40
AR
2546 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2547 break;
06b2233a 2548 if (freqs[i] <= host->f_min)
807e8e40 2549 break;
88ae8b86 2550 }
807e8e40
AR
2551 mmc_release_host(host);
2552
2553 out:
28f52482
AV
2554 if (host->caps & MMC_CAP_NEEDS_POLL)
2555 mmc_schedule_delayed_work(&host->detect, HZ);
1da177e4
LT
2556}
2557
b93931a6 2558void mmc_start_host(struct mmc_host *host)
1da177e4 2559{
fa550189 2560 host->f_init = max(freqs[0], host->f_min);
d9adcc12 2561 host->rescan_disable = 0;
8af465db 2562 host->ios.power_mode = MMC_POWER_UNDEFINED;
8d1ffc8c
UH
2563
2564 mmc_claim_host(host);
a08b17be
AH
2565 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2566 mmc_power_off(host);
2567 else
4a065193 2568 mmc_power_up(host, host->ocr_avail);
8d1ffc8c
UH
2569 mmc_release_host(host);
2570
740a221e 2571 mmc_gpiod_request_cd_irq(host);
bbd43682 2572 _mmc_detect_change(host, 0, false);
1da177e4
LT
2573}
2574
b93931a6 2575void mmc_stop_host(struct mmc_host *host)
1da177e4 2576{
3b91e550 2577#ifdef CONFIG_MMC_DEBUG
1efd48b3
PO
2578 unsigned long flags;
2579 spin_lock_irqsave(&host->lock, flags);
3b91e550 2580 host->removed = 1;
1efd48b3 2581 spin_unlock_irqrestore(&host->lock, flags);
3b91e550 2582#endif
740a221e
AH
2583 if (host->slot.cd_irq >= 0)
2584 disable_irq(host->slot.cd_irq);
3b91e550 2585
d9adcc12 2586 host->rescan_disable = 1;
d9bcbf34 2587 cancel_delayed_work_sync(&host->detect);
3b91e550
PO
2588 mmc_flush_scheduled_work();
2589
da68c4eb
NP
2590 /* clear pm flags now and let card drivers set them as needed */
2591 host->pm_flags = 0;
2592
7ea239d9
PO
2593 mmc_bus_get(host);
2594 if (host->bus_ops && !host->bus_dead) {
0db13fc2 2595 /* Calling bus_ops->remove() with a claimed host can deadlock */
58a8a4a1 2596 host->bus_ops->remove(host);
7ea239d9
PO
2597 mmc_claim_host(host);
2598 mmc_detach_bus(host);
7f7e4129 2599 mmc_power_off(host);
7ea239d9 2600 mmc_release_host(host);
53509f0f
DK
2601 mmc_bus_put(host);
2602 return;
1da177e4 2603 }
7ea239d9
PO
2604 mmc_bus_put(host);
2605
2606 BUG_ON(host->card);
1da177e4 2607
8d1ffc8c 2608 mmc_claim_host(host);
1da177e4 2609 mmc_power_off(host);
8d1ffc8c 2610 mmc_release_host(host);
1da177e4
LT
2611}
2612
12ae637f 2613int mmc_power_save_host(struct mmc_host *host)
eae1aeee 2614{
12ae637f
OBC
2615 int ret = 0;
2616
bb9cab94
DD
2617#ifdef CONFIG_MMC_DEBUG
2618 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2619#endif
2620
eae1aeee
AH
2621 mmc_bus_get(host);
2622
5601aaf7 2623 if (!host->bus_ops || host->bus_dead) {
eae1aeee 2624 mmc_bus_put(host);
12ae637f 2625 return -EINVAL;
eae1aeee
AH
2626 }
2627
2628 if (host->bus_ops->power_save)
12ae637f 2629 ret = host->bus_ops->power_save(host);
eae1aeee
AH
2630
2631 mmc_bus_put(host);
2632
2633 mmc_power_off(host);
12ae637f
OBC
2634
2635 return ret;
eae1aeee
AH
2636}
2637EXPORT_SYMBOL(mmc_power_save_host);
2638
12ae637f 2639int mmc_power_restore_host(struct mmc_host *host)
eae1aeee 2640{
12ae637f
OBC
2641 int ret;
2642
bb9cab94
DD
2643#ifdef CONFIG_MMC_DEBUG
2644 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2645#endif
2646
eae1aeee
AH
2647 mmc_bus_get(host);
2648
5601aaf7 2649 if (!host->bus_ops || host->bus_dead) {
eae1aeee 2650 mmc_bus_put(host);
12ae637f 2651 return -EINVAL;
eae1aeee
AH
2652 }
2653
69041150 2654 mmc_power_up(host, host->card->ocr);
12ae637f 2655 ret = host->bus_ops->power_restore(host);
eae1aeee
AH
2656
2657 mmc_bus_put(host);
12ae637f
OBC
2658
2659 return ret;
eae1aeee
AH
2660}
2661EXPORT_SYMBOL(mmc_power_restore_host);
2662
881d1c25
SJ
2663/*
2664 * Flush the cache to the non-volatile storage.
2665 */
2666int mmc_flush_cache(struct mmc_card *card)
2667{
881d1c25
SJ
2668 int err = 0;
2669
881d1c25
SJ
2670 if (mmc_card_mmc(card) &&
2671 (card->ext_csd.cache_size > 0) &&
2672 (card->ext_csd.cache_ctrl & 1)) {
2673 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2674 EXT_CSD_FLUSH_CACHE, 1, 0);
2675 if (err)
2676 pr_err("%s: cache flush error %d\n",
2677 mmc_hostname(card->host), err);
2678 }
2679
2680 return err;
2681}
2682EXPORT_SYMBOL(mmc_flush_cache);
2683
1da177e4
LT
2684#ifdef CONFIG_PM
2685
4c2ef25f
ML
2686/* Do the card removal on suspend if card is assumed removeable
2687 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2688 to sync the card.
2689*/
2690int mmc_pm_notify(struct notifier_block *notify_block,
2691 unsigned long mode, void *unused)
2692{
2693 struct mmc_host *host = container_of(
2694 notify_block, struct mmc_host, pm_notify);
2695 unsigned long flags;
810caddb 2696 int err = 0;
4c2ef25f
ML
2697
2698 switch (mode) {
2699 case PM_HIBERNATION_PREPARE:
2700 case PM_SUSPEND_PREPARE:
184af16b 2701 case PM_RESTORE_PREPARE:
4c2ef25f
ML
2702 spin_lock_irqsave(&host->lock, flags);
2703 host->rescan_disable = 1;
2704 spin_unlock_irqrestore(&host->lock, flags);
2705 cancel_delayed_work_sync(&host->detect);
2706
810caddb
UH
2707 if (!host->bus_ops)
2708 break;
2709
2710 /* Validate prerequisites for suspend */
2711 if (host->bus_ops->pre_suspend)
2712 err = host->bus_ops->pre_suspend(host);
5601aaf7 2713 if (!err)
4c2ef25f
ML
2714 break;
2715
0db13fc2 2716 /* Calling bus_ops->remove() with a claimed host can deadlock */
58a8a4a1 2717 host->bus_ops->remove(host);
0db13fc2 2718 mmc_claim_host(host);
4c2ef25f 2719 mmc_detach_bus(host);
7f7e4129 2720 mmc_power_off(host);
4c2ef25f
ML
2721 mmc_release_host(host);
2722 host->pm_flags = 0;
2723 break;
2724
2725 case PM_POST_SUSPEND:
2726 case PM_POST_HIBERNATION:
274476f8 2727 case PM_POST_RESTORE:
4c2ef25f
ML
2728
2729 spin_lock_irqsave(&host->lock, flags);
2730 host->rescan_disable = 0;
2731 spin_unlock_irqrestore(&host->lock, flags);
bbd43682 2732 _mmc_detect_change(host, 0, false);
4c2ef25f
ML
2733
2734 }
2735
2736 return 0;
2737}
1da177e4
LT
2738#endif
2739
2220eedf
KD
2740/**
2741 * mmc_init_context_info() - init synchronization context
2742 * @host: mmc host
2743 *
2744 * Init struct context_info needed to implement asynchronous
2745 * request mechanism, used by mmc core, host driver and mmc requests
2746 * supplier.
2747 */
2748void mmc_init_context_info(struct mmc_host *host)
2749{
2750 spin_lock_init(&host->context_info.lock);
2751 host->context_info.is_new_req = false;
2752 host->context_info.is_done_rcv = false;
2753 host->context_info.is_waiting_last_req = false;
2754 init_waitqueue_head(&host->context_info.wait);
2755}
2756
ffce2e7e
PO
2757static int __init mmc_init(void)
2758{
2759 int ret;
2760
0d9ee5b2 2761 workqueue = alloc_ordered_workqueue("kmmcd", 0);
ffce2e7e
PO
2762 if (!workqueue)
2763 return -ENOMEM;
2764
2765 ret = mmc_register_bus();
e29a7d73
PO
2766 if (ret)
2767 goto destroy_workqueue;
2768
2769 ret = mmc_register_host_class();
2770 if (ret)
2771 goto unregister_bus;
2772
2773 ret = sdio_register_bus();
2774 if (ret)
2775 goto unregister_host_class;
2776
2777 return 0;
2778
2779unregister_host_class:
2780 mmc_unregister_host_class();
2781unregister_bus:
2782 mmc_unregister_bus();
2783destroy_workqueue:
2784 destroy_workqueue(workqueue);
2785
ffce2e7e
PO
2786 return ret;
2787}
2788
2789static void __exit mmc_exit(void)
2790{
e29a7d73 2791 sdio_unregister_bus();
ffce2e7e
PO
2792 mmc_unregister_host_class();
2793 mmc_unregister_bus();
2794 destroy_workqueue(workqueue);
2795}
2796
26074962 2797subsys_initcall(mmc_init);
ffce2e7e
PO
2798module_exit(mmc_exit);
2799
1da177e4 2800MODULE_LICENSE("GPL");
This page took 0.964165 seconds and 5 git commands to generate.