mmc: core: Remove unnecessary check for the remove callback
[deliverable/linux.git] / drivers / mmc / core / core.c
CommitLineData
1da177e4 1/*
aaac1b47 2 * linux/drivers/mmc/core/core.c
1da177e4
LT
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5b4fd9ae 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
ad3868b2 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
bce40a36 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
1da177e4
LT
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
1da177e4
LT
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
af8350c7 21#include <linux/leds.h>
b57c43ad 22#include <linux/scatterlist.h>
86e8286a 23#include <linux/log2.h>
5c13941a 24#include <linux/regulator/consumer.h>
e594573d 25#include <linux/pm_runtime.h>
35eb6db1 26#include <linux/suspend.h>
1b676f70
PF
27#include <linux/fault-inject.h>
28#include <linux/random.h>
950d56ac 29#include <linux/slab.h>
1da177e4
LT
30
31#include <linux/mmc/card.h>
32#include <linux/mmc/host.h>
da7fbe58
PO
33#include <linux/mmc/mmc.h>
34#include <linux/mmc/sd.h>
1da177e4 35
aaac1b47 36#include "core.h"
ffce2e7e
PO
37#include "bus.h"
38#include "host.h"
e29a7d73 39#include "sdio_bus.h"
da7fbe58
PO
40
41#include "mmc_ops.h"
42#include "sd_ops.h"
5c4e6f13 43#include "sdio_ops.h"
1da177e4 44
8fee476b
TR
45/* If the device is not responding */
46#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
47
950d56ac
JC
48/*
49 * Background operations can take a long time, depending on the housekeeping
50 * operations the card has to perform.
51 */
52#define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
53
ffce2e7e 54static struct workqueue_struct *workqueue;
fa550189 55static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
ffce2e7e 56
af517150
DB
57/*
58 * Enabling software CRCs on the data blocks can be a significant (30%)
59 * performance cost, and for other reasons may not always be desired.
60 * So we allow it it to be disabled.
61 */
90ab5ee9 62bool use_spi_crc = 1;
af517150
DB
63module_param(use_spi_crc, bool, 0);
64
bd68e083
BH
65/*
66 * We normally treat cards as removed during suspend if they are not
67 * known to be on a non-removable bus, to avoid the risk of writing
68 * back data to a different card after resume. Allow this to be
69 * overridden if necessary.
70 */
71#ifdef CONFIG_MMC_UNSAFE_RESUME
90ab5ee9 72bool mmc_assume_removable;
bd68e083 73#else
90ab5ee9 74bool mmc_assume_removable = 1;
bd68e083 75#endif
71d7d3d1 76EXPORT_SYMBOL(mmc_assume_removable);
bd68e083
BH
77module_param_named(removable, mmc_assume_removable, bool, 0644);
78MODULE_PARM_DESC(
79 removable,
80 "MMC/SD cards are removable and may be removed during suspend");
81
ffce2e7e
PO
82/*
83 * Internal function. Schedule delayed work in the MMC work queue.
84 */
85static int mmc_schedule_delayed_work(struct delayed_work *work,
86 unsigned long delay)
87{
88 return queue_delayed_work(workqueue, work, delay);
89}
90
91/*
92 * Internal function. Flush all scheduled work from the MMC work queue.
93 */
94static void mmc_flush_scheduled_work(void)
95{
96 flush_workqueue(workqueue);
97}
98
1b676f70
PF
99#ifdef CONFIG_FAIL_MMC_REQUEST
100
101/*
102 * Internal function. Inject random data errors.
103 * If mmc_data is NULL no errors are injected.
104 */
105static void mmc_should_fail_request(struct mmc_host *host,
106 struct mmc_request *mrq)
107{
108 struct mmc_command *cmd = mrq->cmd;
109 struct mmc_data *data = mrq->data;
110 static const int data_errors[] = {
111 -ETIMEDOUT,
112 -EILSEQ,
113 -EIO,
114 };
115
116 if (!data)
117 return;
118
119 if (cmd->error || data->error ||
120 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
121 return;
122
2e744fcb
AM
123 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
124 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
1b676f70
PF
125}
126
127#else /* CONFIG_FAIL_MMC_REQUEST */
128
129static inline void mmc_should_fail_request(struct mmc_host *host,
130 struct mmc_request *mrq)
131{
132}
133
134#endif /* CONFIG_FAIL_MMC_REQUEST */
135
1da177e4 136/**
fe10c6ab
RK
137 * mmc_request_done - finish processing an MMC request
138 * @host: MMC host which completed request
139 * @mrq: MMC request which request
1da177e4
LT
140 *
141 * MMC drivers should call this function when they have completed
fe10c6ab 142 * their processing of a request.
1da177e4
LT
143 */
144void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
145{
146 struct mmc_command *cmd = mrq->cmd;
920e70c5
RK
147 int err = cmd->error;
148
af517150
DB
149 if (err && cmd->retries && mmc_host_is_spi(host)) {
150 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
151 cmd->retries = 0;
152 }
153
d3049504 154 if (err && cmd->retries && !mmc_card_removed(host->card)) {
08a7e1df
AH
155 /*
156 * Request starter must handle retries - see
157 * mmc_wait_for_req_done().
158 */
159 if (mrq->done)
160 mrq->done(mrq);
e4d21708 161 } else {
1b676f70
PF
162 mmc_should_fail_request(host, mrq);
163
af8350c7
PO
164 led_trigger_event(host->led, LED_OFF);
165
e4d21708
PO
166 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
167 mmc_hostname(host), cmd->opcode, err,
168 cmd->resp[0], cmd->resp[1],
169 cmd->resp[2], cmd->resp[3]);
170
171 if (mrq->data) {
172 pr_debug("%s: %d bytes transferred: %d\n",
173 mmc_hostname(host),
174 mrq->data->bytes_xfered, mrq->data->error);
175 }
176
177 if (mrq->stop) {
178 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
179 mmc_hostname(host), mrq->stop->opcode,
180 mrq->stop->error,
181 mrq->stop->resp[0], mrq->stop->resp[1],
182 mrq->stop->resp[2], mrq->stop->resp[3]);
183 }
184
185 if (mrq->done)
186 mrq->done(mrq);
04566831 187
08c14071 188 mmc_host_clk_release(host);
1da177e4
LT
189 }
190}
191
192EXPORT_SYMBOL(mmc_request_done);
193
39361851 194static void
1da177e4
LT
195mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
196{
976d9276
PO
197#ifdef CONFIG_MMC_DEBUG
198 unsigned int i, sz;
a84756c5 199 struct scatterlist *sg;
976d9276
PO
200#endif
201
7b2fd4f2
JC
202 if (mrq->sbc) {
203 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
204 mmc_hostname(host), mrq->sbc->opcode,
205 mrq->sbc->arg, mrq->sbc->flags);
206 }
207
920e70c5
RK
208 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
209 mmc_hostname(host), mrq->cmd->opcode,
210 mrq->cmd->arg, mrq->cmd->flags);
1da177e4 211
e4d21708
PO
212 if (mrq->data) {
213 pr_debug("%s: blksz %d blocks %d flags %08x "
214 "tsac %d ms nsac %d\n",
215 mmc_hostname(host), mrq->data->blksz,
216 mrq->data->blocks, mrq->data->flags,
ce252edd 217 mrq->data->timeout_ns / 1000000,
e4d21708
PO
218 mrq->data->timeout_clks);
219 }
220
221 if (mrq->stop) {
222 pr_debug("%s: CMD%u arg %08x flags %08x\n",
223 mmc_hostname(host), mrq->stop->opcode,
224 mrq->stop->arg, mrq->stop->flags);
225 }
226
f22ee4ed 227 WARN_ON(!host->claimed);
1da177e4
LT
228
229 mrq->cmd->error = 0;
230 mrq->cmd->mrq = mrq;
231 if (mrq->data) {
fe4a3c7a 232 BUG_ON(mrq->data->blksz > host->max_blk_size);
55db890a
PO
233 BUG_ON(mrq->data->blocks > host->max_blk_count);
234 BUG_ON(mrq->data->blocks * mrq->data->blksz >
235 host->max_req_size);
fe4a3c7a 236
976d9276
PO
237#ifdef CONFIG_MMC_DEBUG
238 sz = 0;
a84756c5
PO
239 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
240 sz += sg->length;
976d9276
PO
241 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
242#endif
243
1da177e4
LT
244 mrq->cmd->data = mrq->data;
245 mrq->data->error = 0;
246 mrq->data->mrq = mrq;
247 if (mrq->stop) {
248 mrq->data->stop = mrq->stop;
249 mrq->stop->error = 0;
250 mrq->stop->mrq = mrq;
251 }
252 }
08c14071 253 mmc_host_clk_hold(host);
66c036e0 254 led_trigger_event(host->led, LED_FULL);
1da177e4
LT
255 host->ops->request(host, mrq);
256}
257
950d56ac
JC
258/**
259 * mmc_start_bkops - start BKOPS for supported cards
260 * @card: MMC card to start BKOPS
261 * @form_exception: A flag to indicate if this function was
262 * called due to an exception raised by the card
263 *
264 * Start background operations whenever requested.
265 * When the urgent BKOPS bit is set in a R1 command response
266 * then background operations should be started immediately.
267*/
268void mmc_start_bkops(struct mmc_card *card, bool from_exception)
269{
270 int err;
271 int timeout;
272 bool use_busy_signal;
273
274 BUG_ON(!card);
275
276 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
277 return;
278
279 err = mmc_read_bkops_status(card);
280 if (err) {
281 pr_err("%s: Failed to read bkops status: %d\n",
282 mmc_hostname(card->host), err);
283 return;
284 }
285
286 if (!card->ext_csd.raw_bkops_status)
287 return;
288
289 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
290 from_exception)
291 return;
292
293 mmc_claim_host(card->host);
294 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
295 timeout = MMC_BKOPS_MAX_TIMEOUT;
296 use_busy_signal = true;
297 } else {
298 timeout = 0;
299 use_busy_signal = false;
300 }
301
302 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
303 EXT_CSD_BKOPS_START, 1, timeout, use_busy_signal);
304 if (err) {
305 pr_warn("%s: Error %d starting bkops\n",
306 mmc_hostname(card->host), err);
307 goto out;
308 }
309
310 /*
311 * For urgent bkops status (LEVEL_2 and more)
312 * bkops executed synchronously, otherwise
313 * the operation is in progress
314 */
315 if (!use_busy_signal)
316 mmc_card_set_doing_bkops(card);
317out:
318 mmc_release_host(card->host);
319}
320EXPORT_SYMBOL(mmc_start_bkops);
321
2220eedf
KD
322/*
323 * mmc_wait_data_done() - done callback for data request
324 * @mrq: done data request
325 *
326 * Wakes up mmc context, passed as a callback to host controller driver
327 */
328static void mmc_wait_data_done(struct mmc_request *mrq)
329{
330 mrq->host->context_info.is_done_rcv = true;
331 wake_up_interruptible(&mrq->host->context_info.wait);
332}
333
1da177e4
LT
334static void mmc_wait_done(struct mmc_request *mrq)
335{
aa8b683a
PF
336 complete(&mrq->completion);
337}
338
2220eedf
KD
339/*
340 *__mmc_start_data_req() - starts data request
341 * @host: MMC host to start the request
342 * @mrq: data request to start
343 *
344 * Sets the done callback to be called when request is completed by the card.
345 * Starts data mmc request execution
346 */
347static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
348{
349 mrq->done = mmc_wait_data_done;
350 mrq->host = host;
351 if (mmc_card_removed(host->card)) {
352 mrq->cmd->error = -ENOMEDIUM;
9b844961 353 mmc_wait_data_done(mrq);
2220eedf
KD
354 return -ENOMEDIUM;
355 }
356 mmc_start_request(host, mrq);
357
358 return 0;
359}
360
956d9fd5 361static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
aa8b683a
PF
362{
363 init_completion(&mrq->completion);
364 mrq->done = mmc_wait_done;
d3049504
AH
365 if (mmc_card_removed(host->card)) {
366 mrq->cmd->error = -ENOMEDIUM;
367 complete(&mrq->completion);
956d9fd5 368 return -ENOMEDIUM;
d3049504 369 }
aa8b683a 370 mmc_start_request(host, mrq);
956d9fd5 371 return 0;
aa8b683a
PF
372}
373
2220eedf
KD
374/*
375 * mmc_wait_for_data_req_done() - wait for request completed
376 * @host: MMC host to prepare the command.
377 * @mrq: MMC request to wait for
378 *
379 * Blocks MMC context till host controller will ack end of data request
380 * execution or new request notification arrives from the block layer.
381 * Handles command retries.
382 *
383 * Returns enum mmc_blk_status after checking errors.
384 */
385static int mmc_wait_for_data_req_done(struct mmc_host *host,
386 struct mmc_request *mrq,
387 struct mmc_async_req *next_req)
388{
389 struct mmc_command *cmd;
390 struct mmc_context_info *context_info = &host->context_info;
391 int err;
392 unsigned long flags;
393
394 while (1) {
395 wait_event_interruptible(context_info->wait,
396 (context_info->is_done_rcv ||
397 context_info->is_new_req));
398 spin_lock_irqsave(&context_info->lock, flags);
399 context_info->is_waiting_last_req = false;
400 spin_unlock_irqrestore(&context_info->lock, flags);
401 if (context_info->is_done_rcv) {
402 context_info->is_done_rcv = false;
403 context_info->is_new_req = false;
404 cmd = mrq->cmd;
775a9362 405
2220eedf
KD
406 if (!cmd->error || !cmd->retries ||
407 mmc_card_removed(host->card)) {
408 err = host->areq->err_check(host->card,
409 host->areq);
410 break; /* return err */
411 } else {
412 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
413 mmc_hostname(host),
414 cmd->opcode, cmd->error);
415 cmd->retries--;
416 cmd->error = 0;
417 host->ops->request(host, mrq);
418 continue; /* wait for done/new event again */
419 }
420 } else if (context_info->is_new_req) {
421 context_info->is_new_req = false;
422 if (!next_req) {
423 err = MMC_BLK_NEW_REQUEST;
424 break; /* return err */
425 }
426 }
427 }
428 return err;
429}
430
aa8b683a
PF
431static void mmc_wait_for_req_done(struct mmc_host *host,
432 struct mmc_request *mrq)
433{
08a7e1df
AH
434 struct mmc_command *cmd;
435
436 while (1) {
437 wait_for_completion(&mrq->completion);
438
439 cmd = mrq->cmd;
775a9362
ME
440
441 /*
442 * If host has timed out waiting for the sanitize
443 * to complete, card might be still in programming state
444 * so let's try to bring the card out of programming
445 * state.
446 */
447 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
448 if (!mmc_interrupt_hpi(host->card)) {
449 pr_warning("%s: %s: Interrupted sanitize\n",
450 mmc_hostname(host), __func__);
451 cmd->error = 0;
452 break;
453 } else {
454 pr_err("%s: %s: Failed to interrupt sanitize\n",
455 mmc_hostname(host), __func__);
456 }
457 }
d3049504
AH
458 if (!cmd->error || !cmd->retries ||
459 mmc_card_removed(host->card))
08a7e1df
AH
460 break;
461
462 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
463 mmc_hostname(host), cmd->opcode, cmd->error);
464 cmd->retries--;
465 cmd->error = 0;
466 host->ops->request(host, mrq);
467 }
aa8b683a
PF
468}
469
470/**
471 * mmc_pre_req - Prepare for a new request
472 * @host: MMC host to prepare command
473 * @mrq: MMC request to prepare for
474 * @is_first_req: true if there is no previous started request
475 * that may run in parellel to this call, otherwise false
476 *
477 * mmc_pre_req() is called in prior to mmc_start_req() to let
478 * host prepare for the new request. Preparation of a request may be
479 * performed while another request is running on the host.
480 */
481static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
482 bool is_first_req)
483{
2c4967f7
SRT
484 if (host->ops->pre_req) {
485 mmc_host_clk_hold(host);
aa8b683a 486 host->ops->pre_req(host, mrq, is_first_req);
2c4967f7
SRT
487 mmc_host_clk_release(host);
488 }
aa8b683a
PF
489}
490
491/**
492 * mmc_post_req - Post process a completed request
493 * @host: MMC host to post process command
494 * @mrq: MMC request to post process for
495 * @err: Error, if non zero, clean up any resources made in pre_req
496 *
497 * Let the host post process a completed request. Post processing of
498 * a request may be performed while another reuqest is running.
499 */
500static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
501 int err)
502{
2c4967f7
SRT
503 if (host->ops->post_req) {
504 mmc_host_clk_hold(host);
aa8b683a 505 host->ops->post_req(host, mrq, err);
2c4967f7
SRT
506 mmc_host_clk_release(host);
507 }
1da177e4
LT
508}
509
aa8b683a
PF
510/**
511 * mmc_start_req - start a non-blocking request
512 * @host: MMC host to start command
513 * @areq: async request to start
514 * @error: out parameter returns 0 for success, otherwise non zero
515 *
516 * Start a new MMC custom command request for a host.
517 * If there is on ongoing async request wait for completion
518 * of that request and start the new one and return.
519 * Does not wait for the new request to complete.
520 *
521 * Returns the completed request, NULL in case of none completed.
522 * Wait for the an ongoing request (previoulsy started) to complete and
523 * return the completed request. If there is no ongoing request, NULL
524 * is returned without waiting. NULL is not an error condition.
525 */
526struct mmc_async_req *mmc_start_req(struct mmc_host *host,
527 struct mmc_async_req *areq, int *error)
528{
529 int err = 0;
956d9fd5 530 int start_err = 0;
aa8b683a
PF
531 struct mmc_async_req *data = host->areq;
532
533 /* Prepare a new request */
534 if (areq)
535 mmc_pre_req(host, areq->mrq, !host->areq);
536
537 if (host->areq) {
f5c2758f
JC
538 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
539 if (err == MMC_BLK_NEW_REQUEST) {
540 if (error)
541 *error = err;
542 /*
543 * The previous request was not completed,
544 * nothing to return
545 */
546 return NULL;
547 }
950d56ac
JC
548 /*
549 * Check BKOPS urgency for each R1 response
550 */
551 if (host->card && mmc_card_mmc(host->card) &&
552 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
553 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
554 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
555 mmc_start_bkops(host->card, true);
aa8b683a
PF
556 }
557
956d9fd5 558 if (!err && areq)
2220eedf 559 start_err = __mmc_start_data_req(host, areq->mrq);
aa8b683a
PF
560
561 if (host->areq)
562 mmc_post_req(host, host->areq->mrq, 0);
563
956d9fd5
UH
564 /* Cancel a prepared request if it was not started. */
565 if ((err || start_err) && areq)
f5c2758f 566 mmc_post_req(host, areq->mrq, -EINVAL);
956d9fd5
UH
567
568 if (err)
569 host->areq = NULL;
570 else
571 host->areq = areq;
572
aa8b683a
PF
573 if (error)
574 *error = err;
575 return data;
576}
577EXPORT_SYMBOL(mmc_start_req);
578
67a61c48
PO
579/**
580 * mmc_wait_for_req - start a request and wait for completion
581 * @host: MMC host to start command
582 * @mrq: MMC request to start
583 *
584 * Start a new MMC custom command request for a host, and wait
585 * for the command to complete. Does not attempt to parse the
586 * response.
587 */
588void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
1da177e4 589{
aa8b683a
PF
590 __mmc_start_req(host, mrq);
591 mmc_wait_for_req_done(host, mrq);
1da177e4 592}
1da177e4
LT
593EXPORT_SYMBOL(mmc_wait_for_req);
594
eb0d8f13
JC
595/**
596 * mmc_interrupt_hpi - Issue for High priority Interrupt
597 * @card: the MMC card associated with the HPI transfer
598 *
599 * Issued High Priority Interrupt, and check for card status
950d56ac 600 * until out-of prg-state.
eb0d8f13
JC
601 */
602int mmc_interrupt_hpi(struct mmc_card *card)
603{
604 int err;
605 u32 status;
6af9e96e 606 unsigned long prg_wait;
eb0d8f13
JC
607
608 BUG_ON(!card);
609
610 if (!card->ext_csd.hpi_en) {
611 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
612 return 1;
613 }
614
615 mmc_claim_host(card->host);
616 err = mmc_send_status(card, &status);
617 if (err) {
618 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
619 goto out;
620 }
621
6af9e96e
V
622 switch (R1_CURRENT_STATE(status)) {
623 case R1_STATE_IDLE:
624 case R1_STATE_READY:
625 case R1_STATE_STBY:
211d4fe5 626 case R1_STATE_TRAN:
6af9e96e 627 /*
211d4fe5 628 * In idle and transfer states, HPI is not needed and the caller
6af9e96e
V
629 * can issue the next intended command immediately
630 */
631 goto out;
632 case R1_STATE_PRG:
633 break;
634 default:
635 /* In all other states, it's illegal to issue HPI */
636 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
637 mmc_hostname(card->host), R1_CURRENT_STATE(status));
638 err = -EINVAL;
639 goto out;
640 }
641
642 err = mmc_send_hpi_cmd(card, &status);
643 if (err)
644 goto out;
645
646 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
647 do {
648 err = mmc_send_status(card, &status);
649
650 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
651 break;
652 if (time_after(jiffies, prg_wait))
653 err = -ETIMEDOUT;
654 } while (!err);
eb0d8f13
JC
655
656out:
657 mmc_release_host(card->host);
658 return err;
659}
660EXPORT_SYMBOL(mmc_interrupt_hpi);
661
1da177e4
LT
662/**
663 * mmc_wait_for_cmd - start a command and wait for completion
664 * @host: MMC host to start command
665 * @cmd: MMC command to start
666 * @retries: maximum number of retries
667 *
668 * Start a new MMC command for a host, and wait for the command
669 * to complete. Return any error that occurred while the command
670 * was executing. Do not attempt to parse the response.
671 */
672int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
673{
ad5fd972 674 struct mmc_request mrq = {NULL};
1da177e4 675
d84075c8 676 WARN_ON(!host->claimed);
1da177e4 677
1da177e4
LT
678 memset(cmd->resp, 0, sizeof(cmd->resp));
679 cmd->retries = retries;
680
681 mrq.cmd = cmd;
682 cmd->data = NULL;
683
684 mmc_wait_for_req(host, &mrq);
685
686 return cmd->error;
687}
688
689EXPORT_SYMBOL(mmc_wait_for_cmd);
690
950d56ac
JC
691/**
692 * mmc_stop_bkops - stop ongoing BKOPS
693 * @card: MMC card to check BKOPS
694 *
695 * Send HPI command to stop ongoing background operations to
696 * allow rapid servicing of foreground operations, e.g. read/
697 * writes. Wait until the card comes out of the programming state
698 * to avoid errors in servicing read/write requests.
699 */
700int mmc_stop_bkops(struct mmc_card *card)
701{
702 int err = 0;
703
704 BUG_ON(!card);
705 err = mmc_interrupt_hpi(card);
706
707 /*
708 * If err is EINVAL, we can't issue an HPI.
709 * It should complete the BKOPS.
710 */
711 if (!err || (err == -EINVAL)) {
712 mmc_card_clr_doing_bkops(card);
713 err = 0;
714 }
715
716 return err;
717}
718EXPORT_SYMBOL(mmc_stop_bkops);
719
720int mmc_read_bkops_status(struct mmc_card *card)
721{
722 int err;
723 u8 *ext_csd;
724
725 /*
726 * In future work, we should consider storing the entire ext_csd.
727 */
728 ext_csd = kmalloc(512, GFP_KERNEL);
729 if (!ext_csd) {
730 pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
731 mmc_hostname(card->host));
732 return -ENOMEM;
733 }
734
735 mmc_claim_host(card->host);
736 err = mmc_send_ext_csd(card, ext_csd);
737 mmc_release_host(card->host);
738 if (err)
739 goto out;
740
741 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
742 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
743out:
744 kfree(ext_csd);
745 return err;
746}
747EXPORT_SYMBOL(mmc_read_bkops_status);
748
d773d725
RK
749/**
750 * mmc_set_data_timeout - set the timeout for a data command
751 * @data: data phase for command
752 * @card: the MMC card associated with the data transfer
67a61c48
PO
753 *
754 * Computes the data timeout parameters according to the
755 * correct algorithm given the card type.
d773d725 756 */
b146d26a 757void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
d773d725
RK
758{
759 unsigned int mult;
760
e6f918bf
PO
761 /*
762 * SDIO cards only define an upper 1 s limit on access.
763 */
764 if (mmc_card_sdio(card)) {
765 data->timeout_ns = 1000000000;
766 data->timeout_clks = 0;
767 return;
768 }
769
d773d725
RK
770 /*
771 * SD cards use a 100 multiplier rather than 10
772 */
773 mult = mmc_card_sd(card) ? 100 : 10;
774
775 /*
776 * Scale up the multiplier (and therefore the timeout) by
777 * the r2w factor for writes.
778 */
b146d26a 779 if (data->flags & MMC_DATA_WRITE)
d773d725
RK
780 mult <<= card->csd.r2w_factor;
781
782 data->timeout_ns = card->csd.tacc_ns * mult;
783 data->timeout_clks = card->csd.tacc_clks * mult;
784
785 /*
786 * SD cards also have an upper limit on the timeout.
787 */
788 if (mmc_card_sd(card)) {
789 unsigned int timeout_us, limit_us;
790
791 timeout_us = data->timeout_ns / 1000;
e9b86841
LW
792 if (mmc_host_clk_rate(card->host))
793 timeout_us += data->timeout_clks * 1000 /
794 (mmc_host_clk_rate(card->host) / 1000);
d773d725 795
b146d26a 796 if (data->flags & MMC_DATA_WRITE)
493890e7 797 /*
3bdc9ba8
PW
798 * The MMC spec "It is strongly recommended
799 * for hosts to implement more than 500ms
800 * timeout value even if the card indicates
801 * the 250ms maximum busy length." Even the
802 * previous value of 300ms is known to be
803 * insufficient for some cards.
493890e7 804 */
3bdc9ba8 805 limit_us = 3000000;
d773d725
RK
806 else
807 limit_us = 100000;
808
fba68bd2
PL
809 /*
810 * SDHC cards always use these fixed values.
811 */
812 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
d773d725
RK
813 data->timeout_ns = limit_us * 1000;
814 data->timeout_clks = 0;
815 }
816 }
6de5fc9c
SNX
817
818 /*
819 * Some cards require longer data read timeout than indicated in CSD.
820 * Address this by setting the read timeout to a "reasonably high"
821 * value. For the cards tested, 300ms has proven enough. If necessary,
822 * this value can be increased if other problematic cards require this.
823 */
824 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
825 data->timeout_ns = 300000000;
826 data->timeout_clks = 0;
827 }
828
c0c88871
WM
829 /*
830 * Some cards need very high timeouts if driven in SPI mode.
831 * The worst observed timeout was 900ms after writing a
832 * continuous stream of data until the internal logic
833 * overflowed.
834 */
835 if (mmc_host_is_spi(card->host)) {
836 if (data->flags & MMC_DATA_WRITE) {
837 if (data->timeout_ns < 1000000000)
838 data->timeout_ns = 1000000000; /* 1s */
839 } else {
840 if (data->timeout_ns < 100000000)
841 data->timeout_ns = 100000000; /* 100ms */
842 }
843 }
d773d725
RK
844}
845EXPORT_SYMBOL(mmc_set_data_timeout);
846
ad3868b2
PO
847/**
848 * mmc_align_data_size - pads a transfer size to a more optimal value
849 * @card: the MMC card associated with the data transfer
850 * @sz: original transfer size
851 *
852 * Pads the original data size with a number of extra bytes in
853 * order to avoid controller bugs and/or performance hits
854 * (e.g. some controllers revert to PIO for certain sizes).
855 *
856 * Returns the improved size, which might be unmodified.
857 *
858 * Note that this function is only relevant when issuing a
859 * single scatter gather entry.
860 */
861unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
862{
863 /*
864 * FIXME: We don't have a system for the controller to tell
865 * the core about its problems yet, so for now we just 32-bit
866 * align the size.
867 */
868 sz = ((sz + 3) / 4) * 4;
869
870 return sz;
871}
872EXPORT_SYMBOL(mmc_align_data_size);
873
1da177e4 874/**
2342f332 875 * __mmc_claim_host - exclusively claim a host
1da177e4 876 * @host: mmc host to claim
2342f332 877 * @abort: whether or not the operation should be aborted
1da177e4 878 *
2342f332
NP
879 * Claim a host for a set of operations. If @abort is non null and
880 * dereference a non-zero value then this will return prematurely with
881 * that non-zero value without acquiring the lock. Returns zero
882 * with the lock held otherwise.
1da177e4 883 */
2342f332 884int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
1da177e4
LT
885{
886 DECLARE_WAITQUEUE(wait, current);
887 unsigned long flags;
2342f332 888 int stop;
1da177e4 889
cf795bfb
PO
890 might_sleep();
891
1da177e4
LT
892 add_wait_queue(&host->wq, &wait);
893 spin_lock_irqsave(&host->lock, flags);
894 while (1) {
895 set_current_state(TASK_UNINTERRUPTIBLE);
2342f332 896 stop = abort ? atomic_read(abort) : 0;
319a3f14 897 if (stop || !host->claimed || host->claimer == current)
1da177e4
LT
898 break;
899 spin_unlock_irqrestore(&host->lock, flags);
900 schedule();
901 spin_lock_irqsave(&host->lock, flags);
902 }
903 set_current_state(TASK_RUNNING);
319a3f14 904 if (!stop) {
2342f332 905 host->claimed = 1;
319a3f14
AH
906 host->claimer = current;
907 host->claim_cnt += 1;
908 } else
2342f332 909 wake_up(&host->wq);
1da177e4
LT
910 spin_unlock_irqrestore(&host->lock, flags);
911 remove_wait_queue(&host->wq, &wait);
907d2e7c
AH
912 if (host->ops->enable && !stop && host->claim_cnt == 1)
913 host->ops->enable(host);
2342f332 914 return stop;
1da177e4
LT
915}
916
2342f332 917EXPORT_SYMBOL(__mmc_claim_host);
1da177e4 918
319a3f14
AH
919/**
920 * mmc_try_claim_host - try exclusively to claim a host
921 * @host: mmc host to claim
922 *
923 * Returns %1 if the host is claimed, %0 otherwise.
924 */
925int mmc_try_claim_host(struct mmc_host *host)
8ea926b2
AH
926{
927 int claimed_host = 0;
928 unsigned long flags;
929
930 spin_lock_irqsave(&host->lock, flags);
319a3f14 931 if (!host->claimed || host->claimer == current) {
8ea926b2 932 host->claimed = 1;
319a3f14
AH
933 host->claimer = current;
934 host->claim_cnt += 1;
8ea926b2
AH
935 claimed_host = 1;
936 }
937 spin_unlock_irqrestore(&host->lock, flags);
907d2e7c
AH
938 if (host->ops->enable && claimed_host && host->claim_cnt == 1)
939 host->ops->enable(host);
8ea926b2
AH
940 return claimed_host;
941}
319a3f14 942EXPORT_SYMBOL(mmc_try_claim_host);
8ea926b2 943
ab1efd27 944/**
907d2e7c 945 * mmc_release_host - release a host
ab1efd27
UH
946 * @host: mmc host to release
947 *
907d2e7c
AH
948 * Release a MMC host, allowing others to claim the host
949 * for their operations.
ab1efd27 950 */
907d2e7c 951void mmc_release_host(struct mmc_host *host)
8ea926b2
AH
952{
953 unsigned long flags;
954
907d2e7c
AH
955 WARN_ON(!host->claimed);
956
957 if (host->ops->disable && host->claim_cnt == 1)
958 host->ops->disable(host);
959
8ea926b2 960 spin_lock_irqsave(&host->lock, flags);
319a3f14
AH
961 if (--host->claim_cnt) {
962 /* Release for nested claim */
963 spin_unlock_irqrestore(&host->lock, flags);
964 } else {
965 host->claimed = 0;
966 host->claimer = NULL;
967 spin_unlock_irqrestore(&host->lock, flags);
968 wake_up(&host->wq);
969 }
8ea926b2 970}
1da177e4
LT
971EXPORT_SYMBOL(mmc_release_host);
972
e94cfef6
UH
973/*
974 * This is a helper function, which fetches a runtime pm reference for the
975 * card device and also claims the host.
976 */
977void mmc_get_card(struct mmc_card *card)
978{
979 pm_runtime_get_sync(&card->dev);
980 mmc_claim_host(card->host);
981}
982EXPORT_SYMBOL(mmc_get_card);
983
984/*
985 * This is a helper function, which releases the host and drops the runtime
986 * pm reference for the card device.
987 */
988void mmc_put_card(struct mmc_card *card)
989{
990 mmc_release_host(card->host);
991 pm_runtime_mark_last_busy(&card->dev);
992 pm_runtime_put_autosuspend(&card->dev);
993}
994EXPORT_SYMBOL(mmc_put_card);
995
7ea239d9
PO
996/*
997 * Internal function that does the actual ios call to the host driver,
998 * optionally printing some debug output.
999 */
920e70c5
RK
1000static inline void mmc_set_ios(struct mmc_host *host)
1001{
1002 struct mmc_ios *ios = &host->ios;
1003
cd9277c0
PO
1004 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1005 "width %u timing %u\n",
920e70c5
RK
1006 mmc_hostname(host), ios->clock, ios->bus_mode,
1007 ios->power_mode, ios->chip_select, ios->vdd,
cd9277c0 1008 ios->bus_width, ios->timing);
fba68bd2 1009
04566831
LW
1010 if (ios->clock > 0)
1011 mmc_set_ungated(host);
920e70c5
RK
1012 host->ops->set_ios(host, ios);
1013}
1014
7ea239d9
PO
1015/*
1016 * Control chip select pin on a host.
1017 */
da7fbe58 1018void mmc_set_chip_select(struct mmc_host *host, int mode)
1da177e4 1019{
778e277c 1020 mmc_host_clk_hold(host);
da7fbe58
PO
1021 host->ios.chip_select = mode;
1022 mmc_set_ios(host);
778e277c 1023 mmc_host_clk_release(host);
1da177e4
LT
1024}
1025
7ea239d9
PO
1026/*
1027 * Sets the host clock to the highest possible frequency that
1028 * is below "hz".
1029 */
778e277c 1030static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
7ea239d9
PO
1031{
1032 WARN_ON(hz < host->f_min);
1033
1034 if (hz > host->f_max)
1035 hz = host->f_max;
1036
1037 host->ios.clock = hz;
1038 mmc_set_ios(host);
1039}
1040
778e277c
MW
1041void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1042{
1043 mmc_host_clk_hold(host);
1044 __mmc_set_clock(host, hz);
1045 mmc_host_clk_release(host);
1046}
1047
04566831
LW
1048#ifdef CONFIG_MMC_CLKGATE
1049/*
1050 * This gates the clock by setting it to 0 Hz.
1051 */
1052void mmc_gate_clock(struct mmc_host *host)
1053{
1054 unsigned long flags;
1055
1056 spin_lock_irqsave(&host->clk_lock, flags);
1057 host->clk_old = host->ios.clock;
1058 host->ios.clock = 0;
1059 host->clk_gated = true;
1060 spin_unlock_irqrestore(&host->clk_lock, flags);
1061 mmc_set_ios(host);
1062}
1063
1064/*
1065 * This restores the clock from gating by using the cached
1066 * clock value.
1067 */
1068void mmc_ungate_clock(struct mmc_host *host)
1069{
1070 /*
1071 * We should previously have gated the clock, so the clock shall
1072 * be 0 here! The clock may however be 0 during initialization,
1073 * when some request operations are performed before setting
1074 * the frequency. When ungate is requested in that situation
1075 * we just ignore the call.
1076 */
1077 if (host->clk_old) {
1078 BUG_ON(host->ios.clock);
1079 /* This call will also set host->clk_gated to false */
778e277c 1080 __mmc_set_clock(host, host->clk_old);
04566831
LW
1081 }
1082}
1083
1084void mmc_set_ungated(struct mmc_host *host)
1085{
1086 unsigned long flags;
1087
1088 /*
1089 * We've been given a new frequency while the clock is gated,
1090 * so make sure we regard this as ungating it.
1091 */
1092 spin_lock_irqsave(&host->clk_lock, flags);
1093 host->clk_gated = false;
1094 spin_unlock_irqrestore(&host->clk_lock, flags);
1095}
1096
1097#else
1098void mmc_set_ungated(struct mmc_host *host)
1099{
1100}
1101#endif
1102
7ea239d9
PO
1103/*
1104 * Change the bus mode (open drain/push-pull) of a host.
1105 */
1106void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1107{
778e277c 1108 mmc_host_clk_hold(host);
7ea239d9
PO
1109 host->ios.bus_mode = mode;
1110 mmc_set_ios(host);
778e277c 1111 mmc_host_clk_release(host);
7ea239d9
PO
1112}
1113
0f8d8ea6
AH
1114/*
1115 * Change data bus width of a host.
1116 */
1117void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1118{
778e277c 1119 mmc_host_clk_hold(host);
4c4cb171
PR
1120 host->ios.bus_width = width;
1121 mmc_set_ios(host);
778e277c 1122 mmc_host_clk_release(host);
0f8d8ea6
AH
1123}
1124
86e8286a
AV
1125/**
1126 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1127 * @vdd: voltage (mV)
1128 * @low_bits: prefer low bits in boundary cases
1129 *
1130 * This function returns the OCR bit number according to the provided @vdd
1131 * value. If conversion is not possible a negative errno value returned.
1132 *
1133 * Depending on the @low_bits flag the function prefers low or high OCR bits
1134 * on boundary voltages. For example,
1135 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1136 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1137 *
1138 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1139 */
1140static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1141{
1142 const int max_bit = ilog2(MMC_VDD_35_36);
1143 int bit;
1144
1145 if (vdd < 1650 || vdd > 3600)
1146 return -EINVAL;
1147
1148 if (vdd >= 1650 && vdd <= 1950)
1149 return ilog2(MMC_VDD_165_195);
1150
1151 if (low_bits)
1152 vdd -= 1;
1153
1154 /* Base 2000 mV, step 100 mV, bit's base 8. */
1155 bit = (vdd - 2000) / 100 + 8;
1156 if (bit > max_bit)
1157 return max_bit;
1158 return bit;
1159}
1160
1161/**
1162 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1163 * @vdd_min: minimum voltage value (mV)
1164 * @vdd_max: maximum voltage value (mV)
1165 *
1166 * This function returns the OCR mask bits according to the provided @vdd_min
1167 * and @vdd_max values. If conversion is not possible the function returns 0.
1168 *
1169 * Notes wrt boundary cases:
1170 * This function sets the OCR bits for all boundary voltages, for example
1171 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1172 * MMC_VDD_34_35 mask.
1173 */
1174u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1175{
1176 u32 mask = 0;
1177
1178 if (vdd_max < vdd_min)
1179 return 0;
1180
1181 /* Prefer high bits for the boundary vdd_max values. */
1182 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1183 if (vdd_max < 0)
1184 return 0;
1185
1186 /* Prefer low bits for the boundary vdd_min values. */
1187 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1188 if (vdd_min < 0)
1189 return 0;
1190
1191 /* Fill the mask, from max bit to min bit. */
1192 while (vdd_max >= vdd_min)
1193 mask |= 1 << vdd_max--;
1194
1195 return mask;
1196}
1197EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1198
5c13941a
DB
1199#ifdef CONFIG_REGULATOR
1200
1201/**
1202 * mmc_regulator_get_ocrmask - return mask of supported voltages
1203 * @supply: regulator to use
1204 *
1205 * This returns either a negative errno, or a mask of voltages that
1206 * can be provided to MMC/SD/SDIO devices using the specified voltage
1207 * regulator. This would normally be called before registering the
1208 * MMC host adapter.
1209 */
1210int mmc_regulator_get_ocrmask(struct regulator *supply)
1211{
1212 int result = 0;
1213 int count;
1214 int i;
1215
1216 count = regulator_count_voltages(supply);
1217 if (count < 0)
1218 return count;
1219
1220 for (i = 0; i < count; i++) {
1221 int vdd_uV;
1222 int vdd_mV;
1223
1224 vdd_uV = regulator_list_voltage(supply, i);
1225 if (vdd_uV <= 0)
1226 continue;
1227
1228 vdd_mV = vdd_uV / 1000;
1229 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1230 }
1231
1232 return result;
1233}
45a6b32e 1234EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
5c13941a
DB
1235
1236/**
1237 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
99fc5131 1238 * @mmc: the host to regulate
5c13941a 1239 * @supply: regulator to use
99fc5131 1240 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
5c13941a
DB
1241 *
1242 * Returns zero on success, else negative errno.
1243 *
1244 * MMC host drivers may use this to enable or disable a regulator using
1245 * a particular supply voltage. This would normally be called from the
1246 * set_ios() method.
1247 */
99fc5131
LW
1248int mmc_regulator_set_ocr(struct mmc_host *mmc,
1249 struct regulator *supply,
1250 unsigned short vdd_bit)
5c13941a
DB
1251{
1252 int result = 0;
1253 int min_uV, max_uV;
5c13941a
DB
1254
1255 if (vdd_bit) {
1256 int tmp;
1257 int voltage;
1258
9cde5b7a
CB
1259 /*
1260 * REVISIT mmc_vddrange_to_ocrmask() may have set some
5c13941a
DB
1261 * bits this regulator doesn't quite support ... don't
1262 * be too picky, most cards and regulators are OK with
1263 * a 0.1V range goof (it's a small error percentage).
1264 */
1265 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1266 if (tmp == 0) {
1267 min_uV = 1650 * 1000;
1268 max_uV = 1950 * 1000;
1269 } else {
1270 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1271 max_uV = min_uV + 100 * 1000;
1272 }
1273
9cde5b7a
CB
1274 /*
1275 * If we're using a fixed/static regulator, don't call
1276 * regulator_set_voltage; it would fail.
5c13941a
DB
1277 */
1278 voltage = regulator_get_voltage(supply);
6e8201f5 1279
5f56a8e6 1280 if (!regulator_can_change_voltage(supply))
6e8201f5
JC
1281 min_uV = max_uV = voltage;
1282
5c13941a
DB
1283 if (voltage < 0)
1284 result = voltage;
1285 else if (voltage < min_uV || voltage > max_uV)
1286 result = regulator_set_voltage(supply, min_uV, max_uV);
1287 else
1288 result = 0;
1289
99fc5131 1290 if (result == 0 && !mmc->regulator_enabled) {
5c13941a 1291 result = regulator_enable(supply);
99fc5131
LW
1292 if (!result)
1293 mmc->regulator_enabled = true;
1294 }
1295 } else if (mmc->regulator_enabled) {
5c13941a 1296 result = regulator_disable(supply);
99fc5131
LW
1297 if (result == 0)
1298 mmc->regulator_enabled = false;
5c13941a
DB
1299 }
1300
99fc5131
LW
1301 if (result)
1302 dev_err(mmc_dev(mmc),
1303 "could not set regulator OCR (%d)\n", result);
5c13941a
DB
1304 return result;
1305}
45a6b32e 1306EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
5c13941a 1307
e137788d
GL
1308int mmc_regulator_get_supply(struct mmc_host *mmc)
1309{
1310 struct device *dev = mmc_dev(mmc);
1311 struct regulator *supply;
1312 int ret;
1313
1314 supply = devm_regulator_get(dev, "vmmc");
1315 mmc->supply.vmmc = supply;
1316 mmc->supply.vqmmc = devm_regulator_get(dev, "vqmmc");
1317
1318 if (IS_ERR(supply))
1319 return PTR_ERR(supply);
1320
1321 ret = mmc_regulator_get_ocrmask(supply);
1322 if (ret > 0)
1323 mmc->ocr_avail = ret;
1324 else
1325 dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1326
1327 return 0;
1328}
1329EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1330
99fc5131 1331#endif /* CONFIG_REGULATOR */
5c13941a 1332
1da177e4
LT
1333/*
1334 * Mask off any voltages we don't support and select
1335 * the lowest voltage
1336 */
7ea239d9 1337u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1da177e4
LT
1338{
1339 int bit;
1340
1341 ocr &= host->ocr_avail;
1342
1343 bit = ffs(ocr);
1344 if (bit) {
1345 bit -= 1;
1346
63ef731a 1347 ocr &= 3 << bit;
1da177e4 1348
778e277c 1349 mmc_host_clk_hold(host);
1da177e4 1350 host->ios.vdd = bit;
920e70c5 1351 mmc_set_ios(host);
778e277c 1352 mmc_host_clk_release(host);
1da177e4 1353 } else {
f6e10b86
DB
1354 pr_warning("%s: host doesn't support card's voltages\n",
1355 mmc_hostname(host));
1da177e4
LT
1356 ocr = 0;
1357 }
1358
1359 return ocr;
1360}
1361
567c8903
JR
1362int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1363{
1364 int err = 0;
1365 int old_signal_voltage = host->ios.signal_voltage;
1366
1367 host->ios.signal_voltage = signal_voltage;
1368 if (host->ops->start_signal_voltage_switch) {
1369 mmc_host_clk_hold(host);
1370 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1371 mmc_host_clk_release(host);
1372 }
1373
1374 if (err)
1375 host->ios.signal_voltage = old_signal_voltage;
1376
1377 return err;
1378
1379}
1380
1381int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
f2119df6
AN
1382{
1383 struct mmc_command cmd = {0};
1384 int err = 0;
0797e5f1 1385 u32 clock;
f2119df6
AN
1386
1387 BUG_ON(!host);
1388
1389 /*
1390 * Send CMD11 only if the request is to switch the card to
1391 * 1.8V signalling.
1392 */
0797e5f1
JR
1393 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1394 return __mmc_set_signal_voltage(host, signal_voltage);
f2119df6 1395
0797e5f1
JR
1396 /*
1397 * If we cannot switch voltages, return failure so the caller
1398 * can continue without UHS mode
1399 */
1400 if (!host->ops->start_signal_voltage_switch)
1401 return -EPERM;
1402 if (!host->ops->card_busy)
1403 pr_warning("%s: cannot verify signal voltage switch\n",
1404 mmc_hostname(host));
1405
1406 cmd.opcode = SD_SWITCH_VOLTAGE;
1407 cmd.arg = 0;
1408 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1409
1410 err = mmc_wait_for_cmd(host, &cmd, 0);
1411 if (err)
1412 return err;
1413
1414 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1415 return -EIO;
1416
1417 mmc_host_clk_hold(host);
1418 /*
1419 * The card should drive cmd and dat[0:3] low immediately
1420 * after the response of cmd11, but wait 1 ms to be sure
1421 */
1422 mmc_delay(1);
1423 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1424 err = -EAGAIN;
1425 goto power_cycle;
1426 }
1427 /*
1428 * During a signal voltage level switch, the clock must be gated
1429 * for 5 ms according to the SD spec
1430 */
1431 clock = host->ios.clock;
1432 host->ios.clock = 0;
1433 mmc_set_ios(host);
f2119df6 1434
0797e5f1
JR
1435 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1436 /*
1437 * Voltages may not have been switched, but we've already
1438 * sent CMD11, so a power cycle is required anyway
1439 */
1440 err = -EAGAIN;
1441 goto power_cycle;
f2119df6
AN
1442 }
1443
0797e5f1
JR
1444 /* Keep clock gated for at least 5 ms */
1445 mmc_delay(5);
1446 host->ios.clock = clock;
1447 mmc_set_ios(host);
1448
1449 /* Wait for at least 1 ms according to spec */
1450 mmc_delay(1);
1451
1452 /*
1453 * Failure to switch is indicated by the card holding
1454 * dat[0:3] low
1455 */
1456 if (host->ops->card_busy && host->ops->card_busy(host))
1457 err = -EAGAIN;
1458
1459power_cycle:
1460 if (err) {
1461 pr_debug("%s: Signal voltage switch failed, "
1462 "power cycling card\n", mmc_hostname(host));
1463 mmc_power_cycle(host);
1464 }
1465
1466 mmc_host_clk_release(host);
1467
1468 return err;
f2119df6
AN
1469}
1470
b57c43ad 1471/*
7ea239d9 1472 * Select timing parameters for host.
b57c43ad 1473 */
7ea239d9 1474void mmc_set_timing(struct mmc_host *host, unsigned int timing)
b57c43ad 1475{
778e277c 1476 mmc_host_clk_hold(host);
7ea239d9
PO
1477 host->ios.timing = timing;
1478 mmc_set_ios(host);
778e277c 1479 mmc_host_clk_release(host);
b57c43ad
PO
1480}
1481
d6d50a15
AN
1482/*
1483 * Select appropriate driver type for host.
1484 */
1485void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1486{
778e277c 1487 mmc_host_clk_hold(host);
d6d50a15
AN
1488 host->ios.drv_type = drv_type;
1489 mmc_set_ios(host);
778e277c 1490 mmc_host_clk_release(host);
d6d50a15
AN
1491}
1492
1da177e4 1493/*
45f8245b
RK
1494 * Apply power to the MMC stack. This is a two-stage process.
1495 * First, we enable power to the card without the clock running.
1496 * We then wait a bit for the power to stabilise. Finally,
1497 * enable the bus drivers and clock to the card.
1498 *
1499 * We must _NOT_ enable the clock prior to power stablising.
1500 *
1501 * If a host does all the power sequencing itself, ignore the
1502 * initial MMC_POWER_UP stage.
1da177e4 1503 */
12d01d0b 1504void mmc_power_up(struct mmc_host *host)
1da177e4 1505{
500f3564
BR
1506 int bit;
1507
fa550189
UH
1508 if (host->ios.power_mode == MMC_POWER_ON)
1509 return;
1510
778e277c
MW
1511 mmc_host_clk_hold(host);
1512
500f3564
BR
1513 /* If ocr is set, we use it */
1514 if (host->ocr)
1515 bit = ffs(host->ocr) - 1;
1516 else
1517 bit = fls(host->ocr_avail) - 1;
1da177e4
LT
1518
1519 host->ios.vdd = bit;
44669034 1520 if (mmc_host_is_spi(host))
af517150 1521 host->ios.chip_select = MMC_CS_HIGH;
44669034 1522 else
af517150 1523 host->ios.chip_select = MMC_CS_DONTCARE;
44669034 1524 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1da177e4 1525 host->ios.power_mode = MMC_POWER_UP;
f218278a 1526 host->ios.bus_width = MMC_BUS_WIDTH_1;
cd9277c0 1527 host->ios.timing = MMC_TIMING_LEGACY;
920e70c5 1528 mmc_set_ios(host);
1da177e4 1529
108ecc4c 1530 /* Set signal voltage to 3.3V */
567c8903 1531 __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
108ecc4c 1532
f9996aee
PO
1533 /*
1534 * This delay should be sufficient to allow the power supply
1535 * to reach the minimum voltage.
1536 */
79bccc5a 1537 mmc_delay(10);
1da177e4 1538
88ae8b86 1539 host->ios.clock = host->f_init;
8dfd0374 1540
1da177e4 1541 host->ios.power_mode = MMC_POWER_ON;
920e70c5 1542 mmc_set_ios(host);
1da177e4 1543
f9996aee
PO
1544 /*
1545 * This delay must be at least 74 clock sizes, or 1 ms, or the
1546 * time required to reach a stable voltage.
1547 */
79bccc5a 1548 mmc_delay(10);
778e277c
MW
1549
1550 mmc_host_clk_release(host);
1da177e4
LT
1551}
1552
7f7e4129 1553void mmc_power_off(struct mmc_host *host)
1da177e4 1554{
fa550189
UH
1555 if (host->ios.power_mode == MMC_POWER_OFF)
1556 return;
1557
778e277c
MW
1558 mmc_host_clk_hold(host);
1559
1da177e4
LT
1560 host->ios.clock = 0;
1561 host->ios.vdd = 0;
b33d46c3 1562
bec8726a 1563
b33d46c3
UH
1564 /*
1565 * Reset ocr mask to be the highest possible voltage supported for
1566 * this mmc host. This value will be used at next power up.
1567 */
1568 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1569
af517150
DB
1570 if (!mmc_host_is_spi(host)) {
1571 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1572 host->ios.chip_select = MMC_CS_DONTCARE;
1573 }
1da177e4 1574 host->ios.power_mode = MMC_POWER_OFF;
f218278a 1575 host->ios.bus_width = MMC_BUS_WIDTH_1;
cd9277c0 1576 host->ios.timing = MMC_TIMING_LEGACY;
920e70c5 1577 mmc_set_ios(host);
778e277c 1578
041beb1d
DD
1579 /*
1580 * Some configurations, such as the 802.11 SDIO card in the OLPC
1581 * XO-1.5, require a short delay after poweroff before the card
1582 * can be successfully turned on again.
1583 */
1584 mmc_delay(1);
1585
778e277c 1586 mmc_host_clk_release(host);
1da177e4
LT
1587}
1588
276e090f
JR
1589void mmc_power_cycle(struct mmc_host *host)
1590{
1591 mmc_power_off(host);
1592 /* Wait at least 1 ms according to SD spec */
1593 mmc_delay(1);
1594 mmc_power_up(host);
1595}
1596
39361851
AB
1597/*
1598 * Cleanup when the last reference to the bus operator is dropped.
1599 */
261172fd 1600static void __mmc_release_bus(struct mmc_host *host)
39361851
AB
1601{
1602 BUG_ON(!host);
1603 BUG_ON(host->bus_refs);
1604 BUG_ON(!host->bus_dead);
1605
1606 host->bus_ops = NULL;
1607}
1608
1609/*
1610 * Increase reference count of bus operator
1611 */
1612static inline void mmc_bus_get(struct mmc_host *host)
1613{
1614 unsigned long flags;
1615
1616 spin_lock_irqsave(&host->lock, flags);
1617 host->bus_refs++;
1618 spin_unlock_irqrestore(&host->lock, flags);
1619}
1620
1621/*
1622 * Decrease reference count of bus operator and free it if
1623 * it is the last reference.
1624 */
1625static inline void mmc_bus_put(struct mmc_host *host)
1626{
1627 unsigned long flags;
1628
1629 spin_lock_irqsave(&host->lock, flags);
1630 host->bus_refs--;
1631 if ((host->bus_refs == 0) && host->bus_ops)
1632 __mmc_release_bus(host);
1633 spin_unlock_irqrestore(&host->lock, flags);
1634}
1635
1da177e4 1636/*
7ea239d9
PO
1637 * Assign a mmc bus handler to a host. Only one bus handler may control a
1638 * host at any given time.
1da177e4 1639 */
7ea239d9 1640void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1da177e4 1641{
7ea239d9 1642 unsigned long flags;
e45a1bd2 1643
7ea239d9
PO
1644 BUG_ON(!host);
1645 BUG_ON(!ops);
b855885e 1646
d84075c8 1647 WARN_ON(!host->claimed);
bce40a36 1648
7ea239d9 1649 spin_lock_irqsave(&host->lock, flags);
bce40a36 1650
7ea239d9
PO
1651 BUG_ON(host->bus_ops);
1652 BUG_ON(host->bus_refs);
b57c43ad 1653
7ea239d9
PO
1654 host->bus_ops = ops;
1655 host->bus_refs = 1;
1656 host->bus_dead = 0;
b57c43ad 1657
7ea239d9 1658 spin_unlock_irqrestore(&host->lock, flags);
b57c43ad
PO
1659}
1660
7ea239d9 1661/*
7f7e4129 1662 * Remove the current bus handler from a host.
7ea239d9
PO
1663 */
1664void mmc_detach_bus(struct mmc_host *host)
7ccd266e 1665{
7ea239d9 1666 unsigned long flags;
7ccd266e 1667
7ea239d9 1668 BUG_ON(!host);
7ccd266e 1669
d84075c8
PO
1670 WARN_ON(!host->claimed);
1671 WARN_ON(!host->bus_ops);
cd9277c0 1672
7ea239d9 1673 spin_lock_irqsave(&host->lock, flags);
7ccd266e 1674
7ea239d9 1675 host->bus_dead = 1;
7ccd266e 1676
7ea239d9 1677 spin_unlock_irqrestore(&host->lock, flags);
1da177e4 1678
7ea239d9 1679 mmc_bus_put(host);
1da177e4
LT
1680}
1681
1da177e4
LT
1682/**
1683 * mmc_detect_change - process change of state on a MMC socket
1684 * @host: host which changed state.
8dc00335 1685 * @delay: optional delay to wait before detection (jiffies)
1da177e4 1686 *
67a61c48
PO
1687 * MMC drivers should call this when they detect a card has been
1688 * inserted or removed. The MMC layer will confirm that any
1689 * present card is still functional, and initialize any newly
1690 * inserted.
1da177e4 1691 */
8dc00335 1692void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1da177e4 1693{
3b91e550 1694#ifdef CONFIG_MMC_DEBUG
1efd48b3 1695 unsigned long flags;
01f41ec7 1696 spin_lock_irqsave(&host->lock, flags);
d84075c8 1697 WARN_ON(host->removed);
01f41ec7 1698 spin_unlock_irqrestore(&host->lock, flags);
3b91e550 1699#endif
d3049504 1700 host->detect_change = 1;
c4028958 1701 mmc_schedule_delayed_work(&host->detect, delay);
1da177e4
LT
1702}
1703
1704EXPORT_SYMBOL(mmc_detect_change);
1705
dfe86cba
AH
1706void mmc_init_erase(struct mmc_card *card)
1707{
1708 unsigned int sz;
1709
1710 if (is_power_of_2(card->erase_size))
1711 card->erase_shift = ffs(card->erase_size) - 1;
1712 else
1713 card->erase_shift = 0;
1714
1715 /*
1716 * It is possible to erase an arbitrarily large area of an SD or MMC
1717 * card. That is not desirable because it can take a long time
1718 * (minutes) potentially delaying more important I/O, and also the
1719 * timeout calculations become increasingly hugely over-estimated.
1720 * Consequently, 'pref_erase' is defined as a guide to limit erases
1721 * to that size and alignment.
1722 *
1723 * For SD cards that define Allocation Unit size, limit erases to one
1724 * Allocation Unit at a time. For MMC cards that define High Capacity
1725 * Erase Size, whether it is switched on or not, limit to that size.
1726 * Otherwise just have a stab at a good value. For modern cards it
1727 * will end up being 4MiB. Note that if the value is too small, it
1728 * can end up taking longer to erase.
1729 */
1730 if (mmc_card_sd(card) && card->ssr.au) {
1731 card->pref_erase = card->ssr.au;
1732 card->erase_shift = ffs(card->ssr.au) - 1;
1733 } else if (card->ext_csd.hc_erase_size) {
1734 card->pref_erase = card->ext_csd.hc_erase_size;
1735 } else {
1736 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1737 if (sz < 128)
1738 card->pref_erase = 512 * 1024 / 512;
1739 else if (sz < 512)
1740 card->pref_erase = 1024 * 1024 / 512;
1741 else if (sz < 1024)
1742 card->pref_erase = 2 * 1024 * 1024 / 512;
1743 else
1744 card->pref_erase = 4 * 1024 * 1024 / 512;
1745 if (card->pref_erase < card->erase_size)
1746 card->pref_erase = card->erase_size;
1747 else {
1748 sz = card->pref_erase % card->erase_size;
1749 if (sz)
1750 card->pref_erase += card->erase_size - sz;
1751 }
1752 }
1753}
1754
eaa02f75
AW
1755static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1756 unsigned int arg, unsigned int qty)
dfe86cba
AH
1757{
1758 unsigned int erase_timeout;
1759
7194efb8
AH
1760 if (arg == MMC_DISCARD_ARG ||
1761 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1762 erase_timeout = card->ext_csd.trim_timeout;
1763 } else if (card->ext_csd.erase_group_def & 1) {
dfe86cba
AH
1764 /* High Capacity Erase Group Size uses HC timeouts */
1765 if (arg == MMC_TRIM_ARG)
1766 erase_timeout = card->ext_csd.trim_timeout;
1767 else
1768 erase_timeout = card->ext_csd.hc_erase_timeout;
1769 } else {
1770 /* CSD Erase Group Size uses write timeout */
1771 unsigned int mult = (10 << card->csd.r2w_factor);
1772 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1773 unsigned int timeout_us;
1774
1775 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1776 if (card->csd.tacc_ns < 1000000)
1777 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1778 else
1779 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1780
1781 /*
1782 * ios.clock is only a target. The real clock rate might be
1783 * less but not that much less, so fudge it by multiplying by 2.
1784 */
1785 timeout_clks <<= 1;
1786 timeout_us += (timeout_clks * 1000) /
4cf8c6dd 1787 (mmc_host_clk_rate(card->host) / 1000);
dfe86cba
AH
1788
1789 erase_timeout = timeout_us / 1000;
1790
1791 /*
1792 * Theoretically, the calculation could underflow so round up
1793 * to 1ms in that case.
1794 */
1795 if (!erase_timeout)
1796 erase_timeout = 1;
1797 }
1798
1799 /* Multiplier for secure operations */
1800 if (arg & MMC_SECURE_ARGS) {
1801 if (arg == MMC_SECURE_ERASE_ARG)
1802 erase_timeout *= card->ext_csd.sec_erase_mult;
1803 else
1804 erase_timeout *= card->ext_csd.sec_trim_mult;
1805 }
1806
1807 erase_timeout *= qty;
1808
1809 /*
1810 * Ensure at least a 1 second timeout for SPI as per
1811 * 'mmc_set_data_timeout()'
1812 */
1813 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1814 erase_timeout = 1000;
1815
eaa02f75 1816 return erase_timeout;
dfe86cba
AH
1817}
1818
eaa02f75
AW
1819static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1820 unsigned int arg,
1821 unsigned int qty)
dfe86cba 1822{
eaa02f75
AW
1823 unsigned int erase_timeout;
1824
dfe86cba
AH
1825 if (card->ssr.erase_timeout) {
1826 /* Erase timeout specified in SD Status Register (SSR) */
eaa02f75
AW
1827 erase_timeout = card->ssr.erase_timeout * qty +
1828 card->ssr.erase_offset;
dfe86cba
AH
1829 } else {
1830 /*
1831 * Erase timeout not specified in SD Status Register (SSR) so
1832 * use 250ms per write block.
1833 */
eaa02f75 1834 erase_timeout = 250 * qty;
dfe86cba
AH
1835 }
1836
1837 /* Must not be less than 1 second */
eaa02f75
AW
1838 if (erase_timeout < 1000)
1839 erase_timeout = 1000;
1840
1841 return erase_timeout;
dfe86cba
AH
1842}
1843
eaa02f75
AW
1844static unsigned int mmc_erase_timeout(struct mmc_card *card,
1845 unsigned int arg,
1846 unsigned int qty)
dfe86cba
AH
1847{
1848 if (mmc_card_sd(card))
eaa02f75 1849 return mmc_sd_erase_timeout(card, arg, qty);
dfe86cba 1850 else
eaa02f75 1851 return mmc_mmc_erase_timeout(card, arg, qty);
dfe86cba
AH
1852}
1853
1854static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1855 unsigned int to, unsigned int arg)
1856{
1278dba1 1857 struct mmc_command cmd = {0};
dfe86cba 1858 unsigned int qty = 0;
8fee476b 1859 unsigned long timeout;
dfe86cba
AH
1860 int err;
1861
1862 /*
1863 * qty is used to calculate the erase timeout which depends on how many
1864 * erase groups (or allocation units in SD terminology) are affected.
1865 * We count erasing part of an erase group as one erase group.
1866 * For SD, the allocation units are always a power of 2. For MMC, the
1867 * erase group size is almost certainly also power of 2, but it does not
1868 * seem to insist on that in the JEDEC standard, so we fall back to
1869 * division in that case. SD may not specify an allocation unit size,
1870 * in which case the timeout is based on the number of write blocks.
1871 *
1872 * Note that the timeout for secure trim 2 will only be correct if the
1873 * number of erase groups specified is the same as the total of all
1874 * preceding secure trim 1 commands. Since the power may have been
1875 * lost since the secure trim 1 commands occurred, it is generally
1876 * impossible to calculate the secure trim 2 timeout correctly.
1877 */
1878 if (card->erase_shift)
1879 qty += ((to >> card->erase_shift) -
1880 (from >> card->erase_shift)) + 1;
1881 else if (mmc_card_sd(card))
1882 qty += to - from + 1;
1883 else
1884 qty += ((to / card->erase_size) -
1885 (from / card->erase_size)) + 1;
1886
1887 if (!mmc_card_blockaddr(card)) {
1888 from <<= 9;
1889 to <<= 9;
1890 }
1891
dfe86cba
AH
1892 if (mmc_card_sd(card))
1893 cmd.opcode = SD_ERASE_WR_BLK_START;
1894 else
1895 cmd.opcode = MMC_ERASE_GROUP_START;
1896 cmd.arg = from;
1897 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1898 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1899 if (err) {
a3c76eb9 1900 pr_err("mmc_erase: group start error %d, "
dfe86cba 1901 "status %#x\n", err, cmd.resp[0]);
67716327 1902 err = -EIO;
dfe86cba
AH
1903 goto out;
1904 }
1905
1906 memset(&cmd, 0, sizeof(struct mmc_command));
1907 if (mmc_card_sd(card))
1908 cmd.opcode = SD_ERASE_WR_BLK_END;
1909 else
1910 cmd.opcode = MMC_ERASE_GROUP_END;
1911 cmd.arg = to;
1912 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1913 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1914 if (err) {
a3c76eb9 1915 pr_err("mmc_erase: group end error %d, status %#x\n",
dfe86cba 1916 err, cmd.resp[0]);
67716327 1917 err = -EIO;
dfe86cba
AH
1918 goto out;
1919 }
1920
1921 memset(&cmd, 0, sizeof(struct mmc_command));
1922 cmd.opcode = MMC_ERASE;
1923 cmd.arg = arg;
1924 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
eaa02f75 1925 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
dfe86cba
AH
1926 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1927 if (err) {
a3c76eb9 1928 pr_err("mmc_erase: erase error %d, status %#x\n",
dfe86cba
AH
1929 err, cmd.resp[0]);
1930 err = -EIO;
1931 goto out;
1932 }
1933
1934 if (mmc_host_is_spi(card->host))
1935 goto out;
1936
8fee476b 1937 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
dfe86cba
AH
1938 do {
1939 memset(&cmd, 0, sizeof(struct mmc_command));
1940 cmd.opcode = MMC_SEND_STATUS;
1941 cmd.arg = card->rca << 16;
1942 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1943 /* Do not retry else we can't see errors */
1944 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1945 if (err || (cmd.resp[0] & 0xFDF92000)) {
a3c76eb9 1946 pr_err("error %d requesting status %#x\n",
dfe86cba
AH
1947 err, cmd.resp[0]);
1948 err = -EIO;
1949 goto out;
1950 }
8fee476b
TR
1951
1952 /* Timeout if the device never becomes ready for data and
1953 * never leaves the program state.
1954 */
1955 if (time_after(jiffies, timeout)) {
1956 pr_err("%s: Card stuck in programming state! %s\n",
1957 mmc_hostname(card->host), __func__);
1958 err = -EIO;
1959 goto out;
1960 }
1961
dfe86cba 1962 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
8fee476b 1963 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
dfe86cba
AH
1964out:
1965 return err;
1966}
1967
1968/**
1969 * mmc_erase - erase sectors.
1970 * @card: card to erase
1971 * @from: first sector to erase
1972 * @nr: number of sectors to erase
1973 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1974 *
1975 * Caller must claim host before calling this function.
1976 */
1977int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1978 unsigned int arg)
1979{
1980 unsigned int rem, to = from + nr;
1981
1982 if (!(card->host->caps & MMC_CAP_ERASE) ||
1983 !(card->csd.cmdclass & CCC_ERASE))
1984 return -EOPNOTSUPP;
1985
1986 if (!card->erase_size)
1987 return -EOPNOTSUPP;
1988
1989 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1990 return -EOPNOTSUPP;
1991
1992 if ((arg & MMC_SECURE_ARGS) &&
1993 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1994 return -EOPNOTSUPP;
1995
1996 if ((arg & MMC_TRIM_ARGS) &&
1997 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1998 return -EOPNOTSUPP;
1999
2000 if (arg == MMC_SECURE_ERASE_ARG) {
2001 if (from % card->erase_size || nr % card->erase_size)
2002 return -EINVAL;
2003 }
2004
2005 if (arg == MMC_ERASE_ARG) {
2006 rem = from % card->erase_size;
2007 if (rem) {
2008 rem = card->erase_size - rem;
2009 from += rem;
2010 if (nr > rem)
2011 nr -= rem;
2012 else
2013 return 0;
2014 }
2015 rem = nr % card->erase_size;
2016 if (rem)
2017 nr -= rem;
2018 }
2019
2020 if (nr == 0)
2021 return 0;
2022
2023 to = from + nr;
2024
2025 if (to <= from)
2026 return -EINVAL;
2027
2028 /* 'from' and 'to' are inclusive */
2029 to -= 1;
2030
2031 return mmc_do_erase(card, from, to, arg);
2032}
2033EXPORT_SYMBOL(mmc_erase);
2034
2035int mmc_can_erase(struct mmc_card *card)
2036{
2037 if ((card->host->caps & MMC_CAP_ERASE) &&
2038 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2039 return 1;
2040 return 0;
2041}
2042EXPORT_SYMBOL(mmc_can_erase);
2043
2044int mmc_can_trim(struct mmc_card *card)
2045{
2046 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2047 return 1;
2048 return 0;
2049}
2050EXPORT_SYMBOL(mmc_can_trim);
2051
b3bf9153
KP
2052int mmc_can_discard(struct mmc_card *card)
2053{
2054 /*
2055 * As there's no way to detect the discard support bit at v4.5
2056 * use the s/w feature support filed.
2057 */
2058 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2059 return 1;
2060 return 0;
2061}
2062EXPORT_SYMBOL(mmc_can_discard);
2063
d9ddd629
KP
2064int mmc_can_sanitize(struct mmc_card *card)
2065{
28302812
AH
2066 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2067 return 0;
d9ddd629
KP
2068 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2069 return 1;
2070 return 0;
2071}
2072EXPORT_SYMBOL(mmc_can_sanitize);
2073
dfe86cba
AH
2074int mmc_can_secure_erase_trim(struct mmc_card *card)
2075{
2076 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2077 return 1;
2078 return 0;
2079}
2080EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2081
2082int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2083 unsigned int nr)
2084{
2085 if (!card->erase_size)
2086 return 0;
2087 if (from % card->erase_size || nr % card->erase_size)
2088 return 0;
2089 return 1;
2090}
2091EXPORT_SYMBOL(mmc_erase_group_aligned);
1da177e4 2092
e056a1b5
AH
2093static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2094 unsigned int arg)
2095{
2096 struct mmc_host *host = card->host;
2097 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2098 unsigned int last_timeout = 0;
2099
2100 if (card->erase_shift)
2101 max_qty = UINT_MAX >> card->erase_shift;
2102 else if (mmc_card_sd(card))
2103 max_qty = UINT_MAX;
2104 else
2105 max_qty = UINT_MAX / card->erase_size;
2106
2107 /* Find the largest qty with an OK timeout */
2108 do {
2109 y = 0;
2110 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2111 timeout = mmc_erase_timeout(card, arg, qty + x);
2112 if (timeout > host->max_discard_to)
2113 break;
2114 if (timeout < last_timeout)
2115 break;
2116 last_timeout = timeout;
2117 y = x;
2118 }
2119 qty += y;
2120 } while (y);
2121
2122 if (!qty)
2123 return 0;
2124
2125 if (qty == 1)
2126 return 1;
2127
2128 /* Convert qty to sectors */
2129 if (card->erase_shift)
2130 max_discard = --qty << card->erase_shift;
2131 else if (mmc_card_sd(card))
2132 max_discard = qty;
2133 else
2134 max_discard = --qty * card->erase_size;
2135
2136 return max_discard;
2137}
2138
2139unsigned int mmc_calc_max_discard(struct mmc_card *card)
2140{
2141 struct mmc_host *host = card->host;
2142 unsigned int max_discard, max_trim;
2143
2144 if (!host->max_discard_to)
2145 return UINT_MAX;
2146
2147 /*
2148 * Without erase_group_def set, MMC erase timeout depends on clock
2149 * frequence which can change. In that case, the best choice is
2150 * just the preferred erase size.
2151 */
2152 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2153 return card->pref_erase;
2154
2155 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2156 if (mmc_can_trim(card)) {
2157 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2158 if (max_trim < max_discard)
2159 max_discard = max_trim;
2160 } else if (max_discard < card->erase_size) {
2161 max_discard = 0;
2162 }
2163 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2164 mmc_hostname(host), max_discard, host->max_discard_to);
2165 return max_discard;
2166}
2167EXPORT_SYMBOL(mmc_calc_max_discard);
2168
0f8d8ea6
AH
2169int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2170{
1278dba1 2171 struct mmc_command cmd = {0};
0f8d8ea6
AH
2172
2173 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
2174 return 0;
2175
0f8d8ea6
AH
2176 cmd.opcode = MMC_SET_BLOCKLEN;
2177 cmd.arg = blocklen;
2178 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2179 return mmc_wait_for_cmd(card->host, &cmd, 5);
2180}
2181EXPORT_SYMBOL(mmc_set_blocklen);
2182
67c79db8
LP
2183int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2184 bool is_rel_write)
2185{
2186 struct mmc_command cmd = {0};
2187
2188 cmd.opcode = MMC_SET_BLOCK_COUNT;
2189 cmd.arg = blockcount & 0x0000FFFF;
2190 if (is_rel_write)
2191 cmd.arg |= 1 << 31;
2192 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2193 return mmc_wait_for_cmd(card->host, &cmd, 5);
2194}
2195EXPORT_SYMBOL(mmc_set_blockcount);
2196
b2499518
AH
2197static void mmc_hw_reset_for_init(struct mmc_host *host)
2198{
2199 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2200 return;
2201 mmc_host_clk_hold(host);
2202 host->ops->hw_reset(host);
2203 mmc_host_clk_release(host);
2204}
2205
2206int mmc_can_reset(struct mmc_card *card)
2207{
2208 u8 rst_n_function;
2209
2210 if (!mmc_card_mmc(card))
2211 return 0;
2212 rst_n_function = card->ext_csd.rst_n_function;
2213 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2214 return 0;
2215 return 1;
2216}
2217EXPORT_SYMBOL(mmc_can_reset);
2218
2219static int mmc_do_hw_reset(struct mmc_host *host, int check)
2220{
2221 struct mmc_card *card = host->card;
2222
2223 if (!host->bus_ops->power_restore)
2224 return -EOPNOTSUPP;
2225
2226 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2227 return -EOPNOTSUPP;
2228
2229 if (!card)
2230 return -EINVAL;
2231
2232 if (!mmc_can_reset(card))
2233 return -EOPNOTSUPP;
2234
2235 mmc_host_clk_hold(host);
2236 mmc_set_clock(host, host->f_init);
2237
2238 host->ops->hw_reset(host);
2239
2240 /* If the reset has happened, then a status command will fail */
2241 if (check) {
2242 struct mmc_command cmd = {0};
2243 int err;
2244
2245 cmd.opcode = MMC_SEND_STATUS;
2246 if (!mmc_host_is_spi(card->host))
2247 cmd.arg = card->rca << 16;
2248 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2249 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2250 if (!err) {
2251 mmc_host_clk_release(host);
2252 return -ENOSYS;
2253 }
2254 }
2255
2256 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2257 if (mmc_host_is_spi(host)) {
2258 host->ios.chip_select = MMC_CS_HIGH;
2259 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2260 } else {
2261 host->ios.chip_select = MMC_CS_DONTCARE;
2262 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2263 }
2264 host->ios.bus_width = MMC_BUS_WIDTH_1;
2265 host->ios.timing = MMC_TIMING_LEGACY;
2266 mmc_set_ios(host);
2267
2268 mmc_host_clk_release(host);
2269
2270 return host->bus_ops->power_restore(host);
2271}
2272
2273int mmc_hw_reset(struct mmc_host *host)
2274{
2275 return mmc_do_hw_reset(host, 0);
2276}
2277EXPORT_SYMBOL(mmc_hw_reset);
2278
2279int mmc_hw_reset_check(struct mmc_host *host)
2280{
2281 return mmc_do_hw_reset(host, 1);
2282}
2283EXPORT_SYMBOL(mmc_hw_reset_check);
2284
807e8e40
AR
2285static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2286{
2287 host->f_init = freq;
2288
2289#ifdef CONFIG_MMC_DEBUG
2290 pr_info("%s: %s: trying to init card at %u Hz\n",
2291 mmc_hostname(host), __func__, host->f_init);
2292#endif
2293 mmc_power_up(host);
2f94e55a 2294
b2499518
AH
2295 /*
2296 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2297 * do a hardware reset if possible.
2298 */
2299 mmc_hw_reset_for_init(host);
2300
2f94e55a
PR
2301 /*
2302 * sdio_reset sends CMD52 to reset card. Since we do not know
2303 * if the card is being re-initialized, just send it. CMD52
2304 * should be ignored by SD/eMMC cards.
2305 */
807e8e40
AR
2306 sdio_reset(host);
2307 mmc_go_idle(host);
2308
2309 mmc_send_if_cond(host, host->ocr_avail);
2310
2311 /* Order's important: probe SDIO, then SD, then MMC */
2312 if (!mmc_attach_sdio(host))
2313 return 0;
2314 if (!mmc_attach_sd(host))
2315 return 0;
2316 if (!mmc_attach_mmc(host))
2317 return 0;
2318
2319 mmc_power_off(host);
2320 return -EIO;
2321}
2322
d3049504
AH
2323int _mmc_detect_card_removed(struct mmc_host *host)
2324{
2325 int ret;
2326
2327 if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
2328 return 0;
2329
2330 if (!host->card || mmc_card_removed(host->card))
2331 return 1;
2332
2333 ret = host->bus_ops->alive(host);
1450734e
KL
2334
2335 /*
2336 * Card detect status and alive check may be out of sync if card is
2337 * removed slowly, when card detect switch changes while card/slot
2338 * pads are still contacted in hardware (refer to "SD Card Mechanical
2339 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2340 * detect work 200ms later for this case.
2341 */
2342 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2343 mmc_detect_change(host, msecs_to_jiffies(200));
2344 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2345 }
2346
d3049504
AH
2347 if (ret) {
2348 mmc_card_set_removed(host->card);
2349 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2350 }
2351
2352 return ret;
2353}
2354
2355int mmc_detect_card_removed(struct mmc_host *host)
2356{
2357 struct mmc_card *card = host->card;
f0cc9cf9 2358 int ret;
d3049504
AH
2359
2360 WARN_ON(!host->claimed);
f0cc9cf9
UH
2361
2362 if (!card)
2363 return 1;
2364
2365 ret = mmc_card_removed(card);
d3049504
AH
2366 /*
2367 * The card will be considered unchanged unless we have been asked to
2368 * detect a change or host requires polling to provide card detection.
2369 */
b6891679 2370 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
f0cc9cf9 2371 return ret;
d3049504
AH
2372
2373 host->detect_change = 0;
f0cc9cf9
UH
2374 if (!ret) {
2375 ret = _mmc_detect_card_removed(host);
b6891679 2376 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
f0cc9cf9
UH
2377 /*
2378 * Schedule a detect work as soon as possible to let a
2379 * rescan handle the card removal.
2380 */
2381 cancel_delayed_work(&host->detect);
2382 mmc_detect_change(host, 0);
2383 }
2384 }
d3049504 2385
f0cc9cf9 2386 return ret;
d3049504
AH
2387}
2388EXPORT_SYMBOL(mmc_detect_card_removed);
2389
b93931a6 2390void mmc_rescan(struct work_struct *work)
1da177e4 2391{
c4028958
DH
2392 struct mmc_host *host =
2393 container_of(work, struct mmc_host, detect.work);
88ae8b86 2394 int i;
4c2ef25f 2395
807e8e40 2396 if (host->rescan_disable)
4c2ef25f 2397 return;
1da177e4 2398
3339d1e3
JR
2399 /* If there is a non-removable card registered, only scan once */
2400 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2401 return;
2402 host->rescan_entered = 1;
2403
7ea239d9 2404 mmc_bus_get(host);
b855885e 2405
30201e7f
OBC
2406 /*
2407 * if there is a _removable_ card registered, check whether it is
2408 * still present
2409 */
2410 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
bad3baba 2411 && !(host->caps & MMC_CAP_NONREMOVABLE))
94d89efb
JS
2412 host->bus_ops->detect(host);
2413
d3049504
AH
2414 host->detect_change = 0;
2415
c5841798
CB
2416 /*
2417 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2418 * the card is no longer present.
2419 */
94d89efb 2420 mmc_bus_put(host);
94d89efb
JS
2421 mmc_bus_get(host);
2422
2423 /* if there still is a card present, stop here */
2424 if (host->bus_ops != NULL) {
7ea239d9 2425 mmc_bus_put(host);
94d89efb
JS
2426 goto out;
2427 }
1da177e4 2428
94d89efb
JS
2429 /*
2430 * Only we can add a new handler, so it's safe to
2431 * release the lock here.
2432 */
2433 mmc_bus_put(host);
1da177e4 2434
fa550189
UH
2435 if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2436 mmc_claim_host(host);
2437 mmc_power_off(host);
2438 mmc_release_host(host);
94d89efb 2439 goto out;
fa550189 2440 }
1da177e4 2441
807e8e40 2442 mmc_claim_host(host);
88ae8b86 2443 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
807e8e40
AR
2444 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2445 break;
06b2233a 2446 if (freqs[i] <= host->f_min)
807e8e40 2447 break;
88ae8b86 2448 }
807e8e40
AR
2449 mmc_release_host(host);
2450
2451 out:
28f52482
AV
2452 if (host->caps & MMC_CAP_NEEDS_POLL)
2453 mmc_schedule_delayed_work(&host->detect, HZ);
1da177e4
LT
2454}
2455
b93931a6 2456void mmc_start_host(struct mmc_host *host)
1da177e4 2457{
fa550189 2458 host->f_init = max(freqs[0], host->f_min);
d9adcc12 2459 host->rescan_disable = 0;
a08b17be
AH
2460 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2461 mmc_power_off(host);
2462 else
0d3e3350 2463 mmc_power_up(host);
b93931a6 2464 mmc_detect_change(host, 0);
1da177e4
LT
2465}
2466
b93931a6 2467void mmc_stop_host(struct mmc_host *host)
1da177e4 2468{
3b91e550 2469#ifdef CONFIG_MMC_DEBUG
1efd48b3
PO
2470 unsigned long flags;
2471 spin_lock_irqsave(&host->lock, flags);
3b91e550 2472 host->removed = 1;
1efd48b3 2473 spin_unlock_irqrestore(&host->lock, flags);
3b91e550
PO
2474#endif
2475
d9adcc12 2476 host->rescan_disable = 1;
d9bcbf34 2477 cancel_delayed_work_sync(&host->detect);
3b91e550
PO
2478 mmc_flush_scheduled_work();
2479
da68c4eb
NP
2480 /* clear pm flags now and let card drivers set them as needed */
2481 host->pm_flags = 0;
2482
7ea239d9
PO
2483 mmc_bus_get(host);
2484 if (host->bus_ops && !host->bus_dead) {
0db13fc2 2485 /* Calling bus_ops->remove() with a claimed host can deadlock */
58a8a4a1 2486 host->bus_ops->remove(host);
7ea239d9
PO
2487 mmc_claim_host(host);
2488 mmc_detach_bus(host);
7f7e4129 2489 mmc_power_off(host);
7ea239d9 2490 mmc_release_host(host);
53509f0f
DK
2491 mmc_bus_put(host);
2492 return;
1da177e4 2493 }
7ea239d9
PO
2494 mmc_bus_put(host);
2495
2496 BUG_ON(host->card);
1da177e4
LT
2497
2498 mmc_power_off(host);
2499}
2500
12ae637f 2501int mmc_power_save_host(struct mmc_host *host)
eae1aeee 2502{
12ae637f
OBC
2503 int ret = 0;
2504
bb9cab94
DD
2505#ifdef CONFIG_MMC_DEBUG
2506 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2507#endif
2508
eae1aeee
AH
2509 mmc_bus_get(host);
2510
2511 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2512 mmc_bus_put(host);
12ae637f 2513 return -EINVAL;
eae1aeee
AH
2514 }
2515
2516 if (host->bus_ops->power_save)
12ae637f 2517 ret = host->bus_ops->power_save(host);
eae1aeee
AH
2518
2519 mmc_bus_put(host);
2520
2521 mmc_power_off(host);
12ae637f
OBC
2522
2523 return ret;
eae1aeee
AH
2524}
2525EXPORT_SYMBOL(mmc_power_save_host);
2526
12ae637f 2527int mmc_power_restore_host(struct mmc_host *host)
eae1aeee 2528{
12ae637f
OBC
2529 int ret;
2530
bb9cab94
DD
2531#ifdef CONFIG_MMC_DEBUG
2532 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2533#endif
2534
eae1aeee
AH
2535 mmc_bus_get(host);
2536
2537 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2538 mmc_bus_put(host);
12ae637f 2539 return -EINVAL;
eae1aeee
AH
2540 }
2541
2542 mmc_power_up(host);
12ae637f 2543 ret = host->bus_ops->power_restore(host);
eae1aeee
AH
2544
2545 mmc_bus_put(host);
12ae637f
OBC
2546
2547 return ret;
eae1aeee
AH
2548}
2549EXPORT_SYMBOL(mmc_power_restore_host);
2550
881d1c25
SJ
2551/*
2552 * Flush the cache to the non-volatile storage.
2553 */
2554int mmc_flush_cache(struct mmc_card *card)
2555{
2556 struct mmc_host *host = card->host;
2557 int err = 0;
2558
2559 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2560 return err;
2561
2562 if (mmc_card_mmc(card) &&
2563 (card->ext_csd.cache_size > 0) &&
2564 (card->ext_csd.cache_ctrl & 1)) {
2565 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2566 EXT_CSD_FLUSH_CACHE, 1, 0);
2567 if (err)
2568 pr_err("%s: cache flush error %d\n",
2569 mmc_hostname(card->host), err);
2570 }
2571
2572 return err;
2573}
2574EXPORT_SYMBOL(mmc_flush_cache);
2575
2576/*
2577 * Turn the cache ON/OFF.
2578 * Turning the cache OFF shall trigger flushing of the data
2579 * to the non-volatile storage.
881d926d 2580 * This function should be called with host claimed
881d1c25
SJ
2581 */
2582int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2583{
2584 struct mmc_card *card = host->card;
8bc0678b 2585 unsigned int timeout;
881d1c25
SJ
2586 int err = 0;
2587
2588 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2589 mmc_card_is_removable(host))
2590 return err;
2591
2592 if (card && mmc_card_mmc(card) &&
2593 (card->ext_csd.cache_size > 0)) {
2594 enable = !!enable;
2595
8bc0678b
SJ
2596 if (card->ext_csd.cache_ctrl ^ enable) {
2597 timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
881d1c25 2598 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
8bc0678b
SJ
2599 EXT_CSD_CACHE_CTRL, enable, timeout);
2600 if (err)
2601 pr_err("%s: cache %s error %d\n",
2602 mmc_hostname(card->host),
2603 enable ? "on" : "off",
2604 err);
2605 else
2606 card->ext_csd.cache_ctrl = enable;
2607 }
881d1c25
SJ
2608 }
2609
2610 return err;
2611}
2612EXPORT_SYMBOL(mmc_cache_ctrl);
2613
1da177e4
LT
2614#ifdef CONFIG_PM
2615
2616/**
2617 * mmc_suspend_host - suspend a host
2618 * @host: mmc host
1da177e4 2619 */
1a13f8fa 2620int mmc_suspend_host(struct mmc_host *host)
1da177e4 2621{
95cdfb72
NP
2622 int err = 0;
2623
7de427d0 2624 cancel_delayed_work(&host->detect);
b5af25be 2625 mmc_flush_scheduled_work();
17e9ff55 2626
7ea239d9
PO
2627 mmc_bus_get(host);
2628 if (host->bus_ops && !host->bus_dead) {
39b9431b 2629 if (host->bus_ops->suspend)
7c570919 2630 err = host->bus_ops->suspend(host);
49df7807 2631
7c570919
UH
2632 if (err == -ENOSYS || !host->bus_ops->resume) {
2633 /*
2634 * We simply "remove" the card in this case.
2635 * It will be redetected on resume. (Calling
2636 * bus_ops->remove() with a claimed host can
2637 * deadlock.)
2638 */
58a8a4a1 2639 host->bus_ops->remove(host);
7c570919
UH
2640 mmc_claim_host(host);
2641 mmc_detach_bus(host);
2642 mmc_power_off(host);
2643 mmc_release_host(host);
2644 host->pm_flags = 0;
2645 err = 0;
1c8cf9c9 2646 }
b5af25be 2647 }
7ea239d9
PO
2648 mmc_bus_put(host);
2649
a5e9425d 2650 if (!err && !mmc_card_keep_power(host))
95cdfb72 2651 mmc_power_off(host);
1da177e4 2652
95cdfb72 2653 return err;
1da177e4 2654}
1da177e4
LT
2655EXPORT_SYMBOL(mmc_suspend_host);
2656
2657/**
2658 * mmc_resume_host - resume a previously suspended host
2659 * @host: mmc host
2660 */
2661int mmc_resume_host(struct mmc_host *host)
2662{
95cdfb72
NP
2663 int err = 0;
2664
6abaa0c9
PO
2665 mmc_bus_get(host);
2666 if (host->bus_ops && !host->bus_dead) {
a5e9425d 2667 if (!mmc_card_keep_power(host)) {
da68c4eb
NP
2668 mmc_power_up(host);
2669 mmc_select_voltage(host, host->ocr);
e594573d
OBC
2670 /*
2671 * Tell runtime PM core we just powered up the card,
2672 * since it still believes the card is powered off.
2673 * Note that currently runtime PM is only enabled
2674 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2675 */
2676 if (mmc_card_sdio(host->card) &&
2677 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2678 pm_runtime_disable(&host->card->dev);
2679 pm_runtime_set_active(&host->card->dev);
2680 pm_runtime_enable(&host->card->dev);
2681 }
da68c4eb 2682 }
6abaa0c9 2683 BUG_ON(!host->bus_ops->resume);
95cdfb72
NP
2684 err = host->bus_ops->resume(host);
2685 if (err) {
a3c76eb9 2686 pr_warning("%s: error %d during resume "
95cdfb72
NP
2687 "(card was removed?)\n",
2688 mmc_hostname(host), err);
95cdfb72
NP
2689 err = 0;
2690 }
6abaa0c9 2691 }
a8e6df73 2692 host->pm_flags &= ~MMC_PM_KEEP_POWER;
6abaa0c9
PO
2693 mmc_bus_put(host);
2694
95cdfb72 2695 return err;
1da177e4 2696}
1da177e4
LT
2697EXPORT_SYMBOL(mmc_resume_host);
2698
4c2ef25f
ML
2699/* Do the card removal on suspend if card is assumed removeable
2700 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2701 to sync the card.
2702*/
2703int mmc_pm_notify(struct notifier_block *notify_block,
2704 unsigned long mode, void *unused)
2705{
2706 struct mmc_host *host = container_of(
2707 notify_block, struct mmc_host, pm_notify);
2708 unsigned long flags;
4c2ef25f
ML
2709
2710 switch (mode) {
2711 case PM_HIBERNATION_PREPARE:
2712 case PM_SUSPEND_PREPARE:
4c2ef25f
ML
2713 spin_lock_irqsave(&host->lock, flags);
2714 host->rescan_disable = 1;
2715 spin_unlock_irqrestore(&host->lock, flags);
2716 cancel_delayed_work_sync(&host->detect);
2717
2718 if (!host->bus_ops || host->bus_ops->suspend)
2719 break;
2720
0db13fc2 2721 /* Calling bus_ops->remove() with a claimed host can deadlock */
58a8a4a1 2722 host->bus_ops->remove(host);
0db13fc2 2723 mmc_claim_host(host);
4c2ef25f 2724 mmc_detach_bus(host);
7f7e4129 2725 mmc_power_off(host);
4c2ef25f
ML
2726 mmc_release_host(host);
2727 host->pm_flags = 0;
2728 break;
2729
2730 case PM_POST_SUSPEND:
2731 case PM_POST_HIBERNATION:
274476f8 2732 case PM_POST_RESTORE:
4c2ef25f
ML
2733
2734 spin_lock_irqsave(&host->lock, flags);
2735 host->rescan_disable = 0;
2736 spin_unlock_irqrestore(&host->lock, flags);
2737 mmc_detect_change(host, 0);
2738
2739 }
2740
2741 return 0;
2742}
1da177e4
LT
2743#endif
2744
2220eedf
KD
2745/**
2746 * mmc_init_context_info() - init synchronization context
2747 * @host: mmc host
2748 *
2749 * Init struct context_info needed to implement asynchronous
2750 * request mechanism, used by mmc core, host driver and mmc requests
2751 * supplier.
2752 */
2753void mmc_init_context_info(struct mmc_host *host)
2754{
2755 spin_lock_init(&host->context_info.lock);
2756 host->context_info.is_new_req = false;
2757 host->context_info.is_done_rcv = false;
2758 host->context_info.is_waiting_last_req = false;
2759 init_waitqueue_head(&host->context_info.wait);
2760}
2761
ffce2e7e
PO
2762static int __init mmc_init(void)
2763{
2764 int ret;
2765
0d9ee5b2 2766 workqueue = alloc_ordered_workqueue("kmmcd", 0);
ffce2e7e
PO
2767 if (!workqueue)
2768 return -ENOMEM;
2769
2770 ret = mmc_register_bus();
e29a7d73
PO
2771 if (ret)
2772 goto destroy_workqueue;
2773
2774 ret = mmc_register_host_class();
2775 if (ret)
2776 goto unregister_bus;
2777
2778 ret = sdio_register_bus();
2779 if (ret)
2780 goto unregister_host_class;
2781
2782 return 0;
2783
2784unregister_host_class:
2785 mmc_unregister_host_class();
2786unregister_bus:
2787 mmc_unregister_bus();
2788destroy_workqueue:
2789 destroy_workqueue(workqueue);
2790
ffce2e7e
PO
2791 return ret;
2792}
2793
2794static void __exit mmc_exit(void)
2795{
e29a7d73 2796 sdio_unregister_bus();
ffce2e7e
PO
2797 mmc_unregister_host_class();
2798 mmc_unregister_bus();
2799 destroy_workqueue(workqueue);
2800}
2801
26074962 2802subsys_initcall(mmc_init);
ffce2e7e
PO
2803module_exit(mmc_exit);
2804
1da177e4 2805MODULE_LICENSE("GPL");
This page took 0.830618 seconds and 5 git commands to generate.