mmc: core: Move cached value of the negotiated ocr mask to card struct
[deliverable/linux.git] / drivers / mmc / core / core.c
CommitLineData
1da177e4 1/*
aaac1b47 2 * linux/drivers/mmc/core/core.c
1da177e4
LT
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5b4fd9ae 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
ad3868b2 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
bce40a36 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
1da177e4
LT
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
1da177e4
LT
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
af8350c7 21#include <linux/leds.h>
b57c43ad 22#include <linux/scatterlist.h>
86e8286a 23#include <linux/log2.h>
5c13941a 24#include <linux/regulator/consumer.h>
e594573d 25#include <linux/pm_runtime.h>
35eb6db1 26#include <linux/suspend.h>
1b676f70
PF
27#include <linux/fault-inject.h>
28#include <linux/random.h>
950d56ac 29#include <linux/slab.h>
6e9e318b 30#include <linux/of.h>
1da177e4
LT
31
32#include <linux/mmc/card.h>
33#include <linux/mmc/host.h>
da7fbe58
PO
34#include <linux/mmc/mmc.h>
35#include <linux/mmc/sd.h>
1da177e4 36
aaac1b47 37#include "core.h"
ffce2e7e
PO
38#include "bus.h"
39#include "host.h"
e29a7d73 40#include "sdio_bus.h"
da7fbe58
PO
41
42#include "mmc_ops.h"
43#include "sd_ops.h"
5c4e6f13 44#include "sdio_ops.h"
1da177e4 45
8fee476b
TR
46/* If the device is not responding */
47#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
48
950d56ac
JC
49/*
50 * Background operations can take a long time, depending on the housekeeping
51 * operations the card has to perform.
52 */
53#define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
54
ffce2e7e 55static struct workqueue_struct *workqueue;
fa550189 56static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
ffce2e7e 57
af517150
DB
58/*
59 * Enabling software CRCs on the data blocks can be a significant (30%)
60 * performance cost, and for other reasons may not always be desired.
61 * So we allow it it to be disabled.
62 */
90ab5ee9 63bool use_spi_crc = 1;
af517150
DB
64module_param(use_spi_crc, bool, 0);
65
bd68e083
BH
66/*
67 * We normally treat cards as removed during suspend if they are not
68 * known to be on a non-removable bus, to avoid the risk of writing
69 * back data to a different card after resume. Allow this to be
70 * overridden if necessary.
71 */
72#ifdef CONFIG_MMC_UNSAFE_RESUME
90ab5ee9 73bool mmc_assume_removable;
bd68e083 74#else
90ab5ee9 75bool mmc_assume_removable = 1;
bd68e083 76#endif
71d7d3d1 77EXPORT_SYMBOL(mmc_assume_removable);
bd68e083
BH
78module_param_named(removable, mmc_assume_removable, bool, 0644);
79MODULE_PARM_DESC(
80 removable,
81 "MMC/SD cards are removable and may be removed during suspend");
82
ffce2e7e
PO
83/*
84 * Internal function. Schedule delayed work in the MMC work queue.
85 */
86static int mmc_schedule_delayed_work(struct delayed_work *work,
87 unsigned long delay)
88{
89 return queue_delayed_work(workqueue, work, delay);
90}
91
92/*
93 * Internal function. Flush all scheduled work from the MMC work queue.
94 */
95static void mmc_flush_scheduled_work(void)
96{
97 flush_workqueue(workqueue);
98}
99
1b676f70
PF
100#ifdef CONFIG_FAIL_MMC_REQUEST
101
102/*
103 * Internal function. Inject random data errors.
104 * If mmc_data is NULL no errors are injected.
105 */
106static void mmc_should_fail_request(struct mmc_host *host,
107 struct mmc_request *mrq)
108{
109 struct mmc_command *cmd = mrq->cmd;
110 struct mmc_data *data = mrq->data;
111 static const int data_errors[] = {
112 -ETIMEDOUT,
113 -EILSEQ,
114 -EIO,
115 };
116
117 if (!data)
118 return;
119
120 if (cmd->error || data->error ||
121 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
122 return;
123
2e744fcb
AM
124 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
125 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
1b676f70
PF
126}
127
128#else /* CONFIG_FAIL_MMC_REQUEST */
129
130static inline void mmc_should_fail_request(struct mmc_host *host,
131 struct mmc_request *mrq)
132{
133}
134
135#endif /* CONFIG_FAIL_MMC_REQUEST */
136
1da177e4 137/**
fe10c6ab
RK
138 * mmc_request_done - finish processing an MMC request
139 * @host: MMC host which completed request
140 * @mrq: MMC request which request
1da177e4
LT
141 *
142 * MMC drivers should call this function when they have completed
fe10c6ab 143 * their processing of a request.
1da177e4
LT
144 */
145void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
146{
147 struct mmc_command *cmd = mrq->cmd;
920e70c5
RK
148 int err = cmd->error;
149
af517150
DB
150 if (err && cmd->retries && mmc_host_is_spi(host)) {
151 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
152 cmd->retries = 0;
153 }
154
d3049504 155 if (err && cmd->retries && !mmc_card_removed(host->card)) {
08a7e1df
AH
156 /*
157 * Request starter must handle retries - see
158 * mmc_wait_for_req_done().
159 */
160 if (mrq->done)
161 mrq->done(mrq);
e4d21708 162 } else {
1b676f70
PF
163 mmc_should_fail_request(host, mrq);
164
af8350c7
PO
165 led_trigger_event(host->led, LED_OFF);
166
e4d21708
PO
167 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
168 mmc_hostname(host), cmd->opcode, err,
169 cmd->resp[0], cmd->resp[1],
170 cmd->resp[2], cmd->resp[3]);
171
172 if (mrq->data) {
173 pr_debug("%s: %d bytes transferred: %d\n",
174 mmc_hostname(host),
175 mrq->data->bytes_xfered, mrq->data->error);
176 }
177
178 if (mrq->stop) {
179 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
180 mmc_hostname(host), mrq->stop->opcode,
181 mrq->stop->error,
182 mrq->stop->resp[0], mrq->stop->resp[1],
183 mrq->stop->resp[2], mrq->stop->resp[3]);
184 }
185
186 if (mrq->done)
187 mrq->done(mrq);
04566831 188
08c14071 189 mmc_host_clk_release(host);
1da177e4
LT
190 }
191}
192
193EXPORT_SYMBOL(mmc_request_done);
194
39361851 195static void
1da177e4
LT
196mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
197{
976d9276
PO
198#ifdef CONFIG_MMC_DEBUG
199 unsigned int i, sz;
a84756c5 200 struct scatterlist *sg;
976d9276
PO
201#endif
202
7b2fd4f2
JC
203 if (mrq->sbc) {
204 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
205 mmc_hostname(host), mrq->sbc->opcode,
206 mrq->sbc->arg, mrq->sbc->flags);
207 }
208
920e70c5
RK
209 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
210 mmc_hostname(host), mrq->cmd->opcode,
211 mrq->cmd->arg, mrq->cmd->flags);
1da177e4 212
e4d21708
PO
213 if (mrq->data) {
214 pr_debug("%s: blksz %d blocks %d flags %08x "
215 "tsac %d ms nsac %d\n",
216 mmc_hostname(host), mrq->data->blksz,
217 mrq->data->blocks, mrq->data->flags,
ce252edd 218 mrq->data->timeout_ns / 1000000,
e4d21708
PO
219 mrq->data->timeout_clks);
220 }
221
222 if (mrq->stop) {
223 pr_debug("%s: CMD%u arg %08x flags %08x\n",
224 mmc_hostname(host), mrq->stop->opcode,
225 mrq->stop->arg, mrq->stop->flags);
226 }
227
f22ee4ed 228 WARN_ON(!host->claimed);
1da177e4
LT
229
230 mrq->cmd->error = 0;
231 mrq->cmd->mrq = mrq;
232 if (mrq->data) {
fe4a3c7a 233 BUG_ON(mrq->data->blksz > host->max_blk_size);
55db890a
PO
234 BUG_ON(mrq->data->blocks > host->max_blk_count);
235 BUG_ON(mrq->data->blocks * mrq->data->blksz >
236 host->max_req_size);
fe4a3c7a 237
976d9276
PO
238#ifdef CONFIG_MMC_DEBUG
239 sz = 0;
a84756c5
PO
240 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
241 sz += sg->length;
976d9276
PO
242 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
243#endif
244
1da177e4
LT
245 mrq->cmd->data = mrq->data;
246 mrq->data->error = 0;
247 mrq->data->mrq = mrq;
248 if (mrq->stop) {
249 mrq->data->stop = mrq->stop;
250 mrq->stop->error = 0;
251 mrq->stop->mrq = mrq;
252 }
253 }
08c14071 254 mmc_host_clk_hold(host);
66c036e0 255 led_trigger_event(host->led, LED_FULL);
1da177e4
LT
256 host->ops->request(host, mrq);
257}
258
950d56ac
JC
259/**
260 * mmc_start_bkops - start BKOPS for supported cards
261 * @card: MMC card to start BKOPS
262 * @form_exception: A flag to indicate if this function was
263 * called due to an exception raised by the card
264 *
265 * Start background operations whenever requested.
266 * When the urgent BKOPS bit is set in a R1 command response
267 * then background operations should be started immediately.
268*/
269void mmc_start_bkops(struct mmc_card *card, bool from_exception)
270{
271 int err;
272 int timeout;
273 bool use_busy_signal;
274
275 BUG_ON(!card);
276
277 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
278 return;
279
280 err = mmc_read_bkops_status(card);
281 if (err) {
282 pr_err("%s: Failed to read bkops status: %d\n",
283 mmc_hostname(card->host), err);
284 return;
285 }
286
287 if (!card->ext_csd.raw_bkops_status)
288 return;
289
290 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
291 from_exception)
292 return;
293
294 mmc_claim_host(card->host);
295 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
296 timeout = MMC_BKOPS_MAX_TIMEOUT;
297 use_busy_signal = true;
298 } else {
299 timeout = 0;
300 use_busy_signal = false;
301 }
302
303 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
878e200b 304 EXT_CSD_BKOPS_START, 1, timeout, use_busy_signal, true);
950d56ac
JC
305 if (err) {
306 pr_warn("%s: Error %d starting bkops\n",
307 mmc_hostname(card->host), err);
308 goto out;
309 }
310
311 /*
312 * For urgent bkops status (LEVEL_2 and more)
313 * bkops executed synchronously, otherwise
314 * the operation is in progress
315 */
316 if (!use_busy_signal)
317 mmc_card_set_doing_bkops(card);
318out:
319 mmc_release_host(card->host);
320}
321EXPORT_SYMBOL(mmc_start_bkops);
322
2220eedf
KD
323/*
324 * mmc_wait_data_done() - done callback for data request
325 * @mrq: done data request
326 *
327 * Wakes up mmc context, passed as a callback to host controller driver
328 */
329static void mmc_wait_data_done(struct mmc_request *mrq)
330{
331 mrq->host->context_info.is_done_rcv = true;
332 wake_up_interruptible(&mrq->host->context_info.wait);
333}
334
1da177e4
LT
335static void mmc_wait_done(struct mmc_request *mrq)
336{
aa8b683a
PF
337 complete(&mrq->completion);
338}
339
2220eedf
KD
340/*
341 *__mmc_start_data_req() - starts data request
342 * @host: MMC host to start the request
343 * @mrq: data request to start
344 *
345 * Sets the done callback to be called when request is completed by the card.
346 * Starts data mmc request execution
347 */
348static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
349{
350 mrq->done = mmc_wait_data_done;
351 mrq->host = host;
352 if (mmc_card_removed(host->card)) {
353 mrq->cmd->error = -ENOMEDIUM;
9b844961 354 mmc_wait_data_done(mrq);
2220eedf
KD
355 return -ENOMEDIUM;
356 }
357 mmc_start_request(host, mrq);
358
359 return 0;
360}
361
956d9fd5 362static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
aa8b683a
PF
363{
364 init_completion(&mrq->completion);
365 mrq->done = mmc_wait_done;
d3049504
AH
366 if (mmc_card_removed(host->card)) {
367 mrq->cmd->error = -ENOMEDIUM;
368 complete(&mrq->completion);
956d9fd5 369 return -ENOMEDIUM;
d3049504 370 }
aa8b683a 371 mmc_start_request(host, mrq);
956d9fd5 372 return 0;
aa8b683a
PF
373}
374
2220eedf
KD
375/*
376 * mmc_wait_for_data_req_done() - wait for request completed
377 * @host: MMC host to prepare the command.
378 * @mrq: MMC request to wait for
379 *
380 * Blocks MMC context till host controller will ack end of data request
381 * execution or new request notification arrives from the block layer.
382 * Handles command retries.
383 *
384 * Returns enum mmc_blk_status after checking errors.
385 */
386static int mmc_wait_for_data_req_done(struct mmc_host *host,
387 struct mmc_request *mrq,
388 struct mmc_async_req *next_req)
389{
390 struct mmc_command *cmd;
391 struct mmc_context_info *context_info = &host->context_info;
392 int err;
393 unsigned long flags;
394
395 while (1) {
396 wait_event_interruptible(context_info->wait,
397 (context_info->is_done_rcv ||
398 context_info->is_new_req));
399 spin_lock_irqsave(&context_info->lock, flags);
400 context_info->is_waiting_last_req = false;
401 spin_unlock_irqrestore(&context_info->lock, flags);
402 if (context_info->is_done_rcv) {
403 context_info->is_done_rcv = false;
404 context_info->is_new_req = false;
405 cmd = mrq->cmd;
775a9362 406
2220eedf
KD
407 if (!cmd->error || !cmd->retries ||
408 mmc_card_removed(host->card)) {
409 err = host->areq->err_check(host->card,
410 host->areq);
411 break; /* return err */
412 } else {
413 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
414 mmc_hostname(host),
415 cmd->opcode, cmd->error);
416 cmd->retries--;
417 cmd->error = 0;
418 host->ops->request(host, mrq);
419 continue; /* wait for done/new event again */
420 }
421 } else if (context_info->is_new_req) {
422 context_info->is_new_req = false;
423 if (!next_req) {
424 err = MMC_BLK_NEW_REQUEST;
425 break; /* return err */
426 }
427 }
428 }
429 return err;
430}
431
aa8b683a
PF
432static void mmc_wait_for_req_done(struct mmc_host *host,
433 struct mmc_request *mrq)
434{
08a7e1df
AH
435 struct mmc_command *cmd;
436
437 while (1) {
438 wait_for_completion(&mrq->completion);
439
440 cmd = mrq->cmd;
775a9362
ME
441
442 /*
443 * If host has timed out waiting for the sanitize
444 * to complete, card might be still in programming state
445 * so let's try to bring the card out of programming
446 * state.
447 */
448 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
449 if (!mmc_interrupt_hpi(host->card)) {
450 pr_warning("%s: %s: Interrupted sanitize\n",
451 mmc_hostname(host), __func__);
452 cmd->error = 0;
453 break;
454 } else {
455 pr_err("%s: %s: Failed to interrupt sanitize\n",
456 mmc_hostname(host), __func__);
457 }
458 }
d3049504
AH
459 if (!cmd->error || !cmd->retries ||
460 mmc_card_removed(host->card))
08a7e1df
AH
461 break;
462
463 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
464 mmc_hostname(host), cmd->opcode, cmd->error);
465 cmd->retries--;
466 cmd->error = 0;
467 host->ops->request(host, mrq);
468 }
aa8b683a
PF
469}
470
471/**
472 * mmc_pre_req - Prepare for a new request
473 * @host: MMC host to prepare command
474 * @mrq: MMC request to prepare for
475 * @is_first_req: true if there is no previous started request
476 * that may run in parellel to this call, otherwise false
477 *
478 * mmc_pre_req() is called in prior to mmc_start_req() to let
479 * host prepare for the new request. Preparation of a request may be
480 * performed while another request is running on the host.
481 */
482static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
483 bool is_first_req)
484{
2c4967f7
SRT
485 if (host->ops->pre_req) {
486 mmc_host_clk_hold(host);
aa8b683a 487 host->ops->pre_req(host, mrq, is_first_req);
2c4967f7
SRT
488 mmc_host_clk_release(host);
489 }
aa8b683a
PF
490}
491
492/**
493 * mmc_post_req - Post process a completed request
494 * @host: MMC host to post process command
495 * @mrq: MMC request to post process for
496 * @err: Error, if non zero, clean up any resources made in pre_req
497 *
498 * Let the host post process a completed request. Post processing of
499 * a request may be performed while another reuqest is running.
500 */
501static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
502 int err)
503{
2c4967f7
SRT
504 if (host->ops->post_req) {
505 mmc_host_clk_hold(host);
aa8b683a 506 host->ops->post_req(host, mrq, err);
2c4967f7
SRT
507 mmc_host_clk_release(host);
508 }
1da177e4
LT
509}
510
aa8b683a
PF
511/**
512 * mmc_start_req - start a non-blocking request
513 * @host: MMC host to start command
514 * @areq: async request to start
515 * @error: out parameter returns 0 for success, otherwise non zero
516 *
517 * Start a new MMC custom command request for a host.
518 * If there is on ongoing async request wait for completion
519 * of that request and start the new one and return.
520 * Does not wait for the new request to complete.
521 *
522 * Returns the completed request, NULL in case of none completed.
523 * Wait for the an ongoing request (previoulsy started) to complete and
524 * return the completed request. If there is no ongoing request, NULL
525 * is returned without waiting. NULL is not an error condition.
526 */
527struct mmc_async_req *mmc_start_req(struct mmc_host *host,
528 struct mmc_async_req *areq, int *error)
529{
530 int err = 0;
956d9fd5 531 int start_err = 0;
aa8b683a
PF
532 struct mmc_async_req *data = host->areq;
533
534 /* Prepare a new request */
535 if (areq)
536 mmc_pre_req(host, areq->mrq, !host->areq);
537
538 if (host->areq) {
f5c2758f
JC
539 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
540 if (err == MMC_BLK_NEW_REQUEST) {
541 if (error)
542 *error = err;
543 /*
544 * The previous request was not completed,
545 * nothing to return
546 */
547 return NULL;
548 }
950d56ac
JC
549 /*
550 * Check BKOPS urgency for each R1 response
551 */
552 if (host->card && mmc_card_mmc(host->card) &&
553 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
554 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
555 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
556 mmc_start_bkops(host->card, true);
aa8b683a
PF
557 }
558
956d9fd5 559 if (!err && areq)
2220eedf 560 start_err = __mmc_start_data_req(host, areq->mrq);
aa8b683a
PF
561
562 if (host->areq)
563 mmc_post_req(host, host->areq->mrq, 0);
564
956d9fd5
UH
565 /* Cancel a prepared request if it was not started. */
566 if ((err || start_err) && areq)
f5c2758f 567 mmc_post_req(host, areq->mrq, -EINVAL);
956d9fd5
UH
568
569 if (err)
570 host->areq = NULL;
571 else
572 host->areq = areq;
573
aa8b683a
PF
574 if (error)
575 *error = err;
576 return data;
577}
578EXPORT_SYMBOL(mmc_start_req);
579
67a61c48
PO
580/**
581 * mmc_wait_for_req - start a request and wait for completion
582 * @host: MMC host to start command
583 * @mrq: MMC request to start
584 *
585 * Start a new MMC custom command request for a host, and wait
586 * for the command to complete. Does not attempt to parse the
587 * response.
588 */
589void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
1da177e4 590{
aa8b683a
PF
591 __mmc_start_req(host, mrq);
592 mmc_wait_for_req_done(host, mrq);
1da177e4 593}
1da177e4
LT
594EXPORT_SYMBOL(mmc_wait_for_req);
595
eb0d8f13
JC
596/**
597 * mmc_interrupt_hpi - Issue for High priority Interrupt
598 * @card: the MMC card associated with the HPI transfer
599 *
600 * Issued High Priority Interrupt, and check for card status
950d56ac 601 * until out-of prg-state.
eb0d8f13
JC
602 */
603int mmc_interrupt_hpi(struct mmc_card *card)
604{
605 int err;
606 u32 status;
6af9e96e 607 unsigned long prg_wait;
eb0d8f13
JC
608
609 BUG_ON(!card);
610
611 if (!card->ext_csd.hpi_en) {
612 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
613 return 1;
614 }
615
616 mmc_claim_host(card->host);
617 err = mmc_send_status(card, &status);
618 if (err) {
619 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
620 goto out;
621 }
622
6af9e96e
V
623 switch (R1_CURRENT_STATE(status)) {
624 case R1_STATE_IDLE:
625 case R1_STATE_READY:
626 case R1_STATE_STBY:
211d4fe5 627 case R1_STATE_TRAN:
6af9e96e 628 /*
211d4fe5 629 * In idle and transfer states, HPI is not needed and the caller
6af9e96e
V
630 * can issue the next intended command immediately
631 */
632 goto out;
633 case R1_STATE_PRG:
634 break;
635 default:
636 /* In all other states, it's illegal to issue HPI */
637 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
638 mmc_hostname(card->host), R1_CURRENT_STATE(status));
639 err = -EINVAL;
640 goto out;
641 }
642
643 err = mmc_send_hpi_cmd(card, &status);
644 if (err)
645 goto out;
646
647 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
648 do {
649 err = mmc_send_status(card, &status);
650
651 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
652 break;
653 if (time_after(jiffies, prg_wait))
654 err = -ETIMEDOUT;
655 } while (!err);
eb0d8f13
JC
656
657out:
658 mmc_release_host(card->host);
659 return err;
660}
661EXPORT_SYMBOL(mmc_interrupt_hpi);
662
1da177e4
LT
663/**
664 * mmc_wait_for_cmd - start a command and wait for completion
665 * @host: MMC host to start command
666 * @cmd: MMC command to start
667 * @retries: maximum number of retries
668 *
669 * Start a new MMC command for a host, and wait for the command
670 * to complete. Return any error that occurred while the command
671 * was executing. Do not attempt to parse the response.
672 */
673int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
674{
ad5fd972 675 struct mmc_request mrq = {NULL};
1da177e4 676
d84075c8 677 WARN_ON(!host->claimed);
1da177e4 678
1da177e4
LT
679 memset(cmd->resp, 0, sizeof(cmd->resp));
680 cmd->retries = retries;
681
682 mrq.cmd = cmd;
683 cmd->data = NULL;
684
685 mmc_wait_for_req(host, &mrq);
686
687 return cmd->error;
688}
689
690EXPORT_SYMBOL(mmc_wait_for_cmd);
691
950d56ac
JC
692/**
693 * mmc_stop_bkops - stop ongoing BKOPS
694 * @card: MMC card to check BKOPS
695 *
696 * Send HPI command to stop ongoing background operations to
697 * allow rapid servicing of foreground operations, e.g. read/
698 * writes. Wait until the card comes out of the programming state
699 * to avoid errors in servicing read/write requests.
700 */
701int mmc_stop_bkops(struct mmc_card *card)
702{
703 int err = 0;
704
705 BUG_ON(!card);
706 err = mmc_interrupt_hpi(card);
707
708 /*
709 * If err is EINVAL, we can't issue an HPI.
710 * It should complete the BKOPS.
711 */
712 if (!err || (err == -EINVAL)) {
713 mmc_card_clr_doing_bkops(card);
714 err = 0;
715 }
716
717 return err;
718}
719EXPORT_SYMBOL(mmc_stop_bkops);
720
721int mmc_read_bkops_status(struct mmc_card *card)
722{
723 int err;
724 u8 *ext_csd;
725
726 /*
727 * In future work, we should consider storing the entire ext_csd.
728 */
729 ext_csd = kmalloc(512, GFP_KERNEL);
730 if (!ext_csd) {
731 pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
732 mmc_hostname(card->host));
733 return -ENOMEM;
734 }
735
736 mmc_claim_host(card->host);
737 err = mmc_send_ext_csd(card, ext_csd);
738 mmc_release_host(card->host);
739 if (err)
740 goto out;
741
742 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
743 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
744out:
745 kfree(ext_csd);
746 return err;
747}
748EXPORT_SYMBOL(mmc_read_bkops_status);
749
d773d725
RK
750/**
751 * mmc_set_data_timeout - set the timeout for a data command
752 * @data: data phase for command
753 * @card: the MMC card associated with the data transfer
67a61c48
PO
754 *
755 * Computes the data timeout parameters according to the
756 * correct algorithm given the card type.
d773d725 757 */
b146d26a 758void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
d773d725
RK
759{
760 unsigned int mult;
761
e6f918bf
PO
762 /*
763 * SDIO cards only define an upper 1 s limit on access.
764 */
765 if (mmc_card_sdio(card)) {
766 data->timeout_ns = 1000000000;
767 data->timeout_clks = 0;
768 return;
769 }
770
d773d725
RK
771 /*
772 * SD cards use a 100 multiplier rather than 10
773 */
774 mult = mmc_card_sd(card) ? 100 : 10;
775
776 /*
777 * Scale up the multiplier (and therefore the timeout) by
778 * the r2w factor for writes.
779 */
b146d26a 780 if (data->flags & MMC_DATA_WRITE)
d773d725
RK
781 mult <<= card->csd.r2w_factor;
782
783 data->timeout_ns = card->csd.tacc_ns * mult;
784 data->timeout_clks = card->csd.tacc_clks * mult;
785
786 /*
787 * SD cards also have an upper limit on the timeout.
788 */
789 if (mmc_card_sd(card)) {
790 unsigned int timeout_us, limit_us;
791
792 timeout_us = data->timeout_ns / 1000;
e9b86841
LW
793 if (mmc_host_clk_rate(card->host))
794 timeout_us += data->timeout_clks * 1000 /
795 (mmc_host_clk_rate(card->host) / 1000);
d773d725 796
b146d26a 797 if (data->flags & MMC_DATA_WRITE)
493890e7 798 /*
3bdc9ba8
PW
799 * The MMC spec "It is strongly recommended
800 * for hosts to implement more than 500ms
801 * timeout value even if the card indicates
802 * the 250ms maximum busy length." Even the
803 * previous value of 300ms is known to be
804 * insufficient for some cards.
493890e7 805 */
3bdc9ba8 806 limit_us = 3000000;
d773d725
RK
807 else
808 limit_us = 100000;
809
fba68bd2
PL
810 /*
811 * SDHC cards always use these fixed values.
812 */
813 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
d773d725
RK
814 data->timeout_ns = limit_us * 1000;
815 data->timeout_clks = 0;
816 }
817 }
6de5fc9c
SNX
818
819 /*
820 * Some cards require longer data read timeout than indicated in CSD.
821 * Address this by setting the read timeout to a "reasonably high"
822 * value. For the cards tested, 300ms has proven enough. If necessary,
823 * this value can be increased if other problematic cards require this.
824 */
825 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
826 data->timeout_ns = 300000000;
827 data->timeout_clks = 0;
828 }
829
c0c88871
WM
830 /*
831 * Some cards need very high timeouts if driven in SPI mode.
832 * The worst observed timeout was 900ms after writing a
833 * continuous stream of data until the internal logic
834 * overflowed.
835 */
836 if (mmc_host_is_spi(card->host)) {
837 if (data->flags & MMC_DATA_WRITE) {
838 if (data->timeout_ns < 1000000000)
839 data->timeout_ns = 1000000000; /* 1s */
840 } else {
841 if (data->timeout_ns < 100000000)
842 data->timeout_ns = 100000000; /* 100ms */
843 }
844 }
d773d725
RK
845}
846EXPORT_SYMBOL(mmc_set_data_timeout);
847
ad3868b2
PO
848/**
849 * mmc_align_data_size - pads a transfer size to a more optimal value
850 * @card: the MMC card associated with the data transfer
851 * @sz: original transfer size
852 *
853 * Pads the original data size with a number of extra bytes in
854 * order to avoid controller bugs and/or performance hits
855 * (e.g. some controllers revert to PIO for certain sizes).
856 *
857 * Returns the improved size, which might be unmodified.
858 *
859 * Note that this function is only relevant when issuing a
860 * single scatter gather entry.
861 */
862unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
863{
864 /*
865 * FIXME: We don't have a system for the controller to tell
866 * the core about its problems yet, so for now we just 32-bit
867 * align the size.
868 */
869 sz = ((sz + 3) / 4) * 4;
870
871 return sz;
872}
873EXPORT_SYMBOL(mmc_align_data_size);
874
1da177e4 875/**
2342f332 876 * __mmc_claim_host - exclusively claim a host
1da177e4 877 * @host: mmc host to claim
2342f332 878 * @abort: whether or not the operation should be aborted
1da177e4 879 *
2342f332
NP
880 * Claim a host for a set of operations. If @abort is non null and
881 * dereference a non-zero value then this will return prematurely with
882 * that non-zero value without acquiring the lock. Returns zero
883 * with the lock held otherwise.
1da177e4 884 */
2342f332 885int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
1da177e4
LT
886{
887 DECLARE_WAITQUEUE(wait, current);
888 unsigned long flags;
2342f332 889 int stop;
1da177e4 890
cf795bfb
PO
891 might_sleep();
892
1da177e4
LT
893 add_wait_queue(&host->wq, &wait);
894 spin_lock_irqsave(&host->lock, flags);
895 while (1) {
896 set_current_state(TASK_UNINTERRUPTIBLE);
2342f332 897 stop = abort ? atomic_read(abort) : 0;
319a3f14 898 if (stop || !host->claimed || host->claimer == current)
1da177e4
LT
899 break;
900 spin_unlock_irqrestore(&host->lock, flags);
901 schedule();
902 spin_lock_irqsave(&host->lock, flags);
903 }
904 set_current_state(TASK_RUNNING);
319a3f14 905 if (!stop) {
2342f332 906 host->claimed = 1;
319a3f14
AH
907 host->claimer = current;
908 host->claim_cnt += 1;
909 } else
2342f332 910 wake_up(&host->wq);
1da177e4
LT
911 spin_unlock_irqrestore(&host->lock, flags);
912 remove_wait_queue(&host->wq, &wait);
907d2e7c
AH
913 if (host->ops->enable && !stop && host->claim_cnt == 1)
914 host->ops->enable(host);
2342f332 915 return stop;
1da177e4
LT
916}
917
2342f332 918EXPORT_SYMBOL(__mmc_claim_host);
8ea926b2 919
ab1efd27 920/**
907d2e7c 921 * mmc_release_host - release a host
ab1efd27
UH
922 * @host: mmc host to release
923 *
907d2e7c
AH
924 * Release a MMC host, allowing others to claim the host
925 * for their operations.
ab1efd27 926 */
907d2e7c 927void mmc_release_host(struct mmc_host *host)
8ea926b2
AH
928{
929 unsigned long flags;
930
907d2e7c
AH
931 WARN_ON(!host->claimed);
932
933 if (host->ops->disable && host->claim_cnt == 1)
934 host->ops->disable(host);
935
8ea926b2 936 spin_lock_irqsave(&host->lock, flags);
319a3f14
AH
937 if (--host->claim_cnt) {
938 /* Release for nested claim */
939 spin_unlock_irqrestore(&host->lock, flags);
940 } else {
941 host->claimed = 0;
942 host->claimer = NULL;
943 spin_unlock_irqrestore(&host->lock, flags);
944 wake_up(&host->wq);
945 }
8ea926b2 946}
1da177e4
LT
947EXPORT_SYMBOL(mmc_release_host);
948
e94cfef6
UH
949/*
950 * This is a helper function, which fetches a runtime pm reference for the
951 * card device and also claims the host.
952 */
953void mmc_get_card(struct mmc_card *card)
954{
955 pm_runtime_get_sync(&card->dev);
956 mmc_claim_host(card->host);
957}
958EXPORT_SYMBOL(mmc_get_card);
959
960/*
961 * This is a helper function, which releases the host and drops the runtime
962 * pm reference for the card device.
963 */
964void mmc_put_card(struct mmc_card *card)
965{
966 mmc_release_host(card->host);
967 pm_runtime_mark_last_busy(&card->dev);
968 pm_runtime_put_autosuspend(&card->dev);
969}
970EXPORT_SYMBOL(mmc_put_card);
971
7ea239d9
PO
972/*
973 * Internal function that does the actual ios call to the host driver,
974 * optionally printing some debug output.
975 */
920e70c5
RK
976static inline void mmc_set_ios(struct mmc_host *host)
977{
978 struct mmc_ios *ios = &host->ios;
979
cd9277c0
PO
980 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
981 "width %u timing %u\n",
920e70c5
RK
982 mmc_hostname(host), ios->clock, ios->bus_mode,
983 ios->power_mode, ios->chip_select, ios->vdd,
cd9277c0 984 ios->bus_width, ios->timing);
fba68bd2 985
04566831
LW
986 if (ios->clock > 0)
987 mmc_set_ungated(host);
920e70c5
RK
988 host->ops->set_ios(host, ios);
989}
990
7ea239d9
PO
991/*
992 * Control chip select pin on a host.
993 */
da7fbe58 994void mmc_set_chip_select(struct mmc_host *host, int mode)
1da177e4 995{
778e277c 996 mmc_host_clk_hold(host);
da7fbe58
PO
997 host->ios.chip_select = mode;
998 mmc_set_ios(host);
778e277c 999 mmc_host_clk_release(host);
1da177e4
LT
1000}
1001
7ea239d9
PO
1002/*
1003 * Sets the host clock to the highest possible frequency that
1004 * is below "hz".
1005 */
778e277c 1006static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
7ea239d9
PO
1007{
1008 WARN_ON(hz < host->f_min);
1009
1010 if (hz > host->f_max)
1011 hz = host->f_max;
1012
1013 host->ios.clock = hz;
1014 mmc_set_ios(host);
1015}
1016
778e277c
MW
1017void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1018{
1019 mmc_host_clk_hold(host);
1020 __mmc_set_clock(host, hz);
1021 mmc_host_clk_release(host);
1022}
1023
04566831
LW
1024#ifdef CONFIG_MMC_CLKGATE
1025/*
1026 * This gates the clock by setting it to 0 Hz.
1027 */
1028void mmc_gate_clock(struct mmc_host *host)
1029{
1030 unsigned long flags;
1031
1032 spin_lock_irqsave(&host->clk_lock, flags);
1033 host->clk_old = host->ios.clock;
1034 host->ios.clock = 0;
1035 host->clk_gated = true;
1036 spin_unlock_irqrestore(&host->clk_lock, flags);
1037 mmc_set_ios(host);
1038}
1039
1040/*
1041 * This restores the clock from gating by using the cached
1042 * clock value.
1043 */
1044void mmc_ungate_clock(struct mmc_host *host)
1045{
1046 /*
1047 * We should previously have gated the clock, so the clock shall
1048 * be 0 here! The clock may however be 0 during initialization,
1049 * when some request operations are performed before setting
1050 * the frequency. When ungate is requested in that situation
1051 * we just ignore the call.
1052 */
1053 if (host->clk_old) {
1054 BUG_ON(host->ios.clock);
1055 /* This call will also set host->clk_gated to false */
778e277c 1056 __mmc_set_clock(host, host->clk_old);
04566831
LW
1057 }
1058}
1059
1060void mmc_set_ungated(struct mmc_host *host)
1061{
1062 unsigned long flags;
1063
1064 /*
1065 * We've been given a new frequency while the clock is gated,
1066 * so make sure we regard this as ungating it.
1067 */
1068 spin_lock_irqsave(&host->clk_lock, flags);
1069 host->clk_gated = false;
1070 spin_unlock_irqrestore(&host->clk_lock, flags);
1071}
1072
1073#else
1074void mmc_set_ungated(struct mmc_host *host)
1075{
1076}
1077#endif
1078
7ea239d9
PO
1079/*
1080 * Change the bus mode (open drain/push-pull) of a host.
1081 */
1082void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1083{
778e277c 1084 mmc_host_clk_hold(host);
7ea239d9
PO
1085 host->ios.bus_mode = mode;
1086 mmc_set_ios(host);
778e277c 1087 mmc_host_clk_release(host);
7ea239d9
PO
1088}
1089
0f8d8ea6
AH
1090/*
1091 * Change data bus width of a host.
1092 */
1093void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1094{
778e277c 1095 mmc_host_clk_hold(host);
4c4cb171
PR
1096 host->ios.bus_width = width;
1097 mmc_set_ios(host);
778e277c 1098 mmc_host_clk_release(host);
0f8d8ea6
AH
1099}
1100
86e8286a
AV
1101/**
1102 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1103 * @vdd: voltage (mV)
1104 * @low_bits: prefer low bits in boundary cases
1105 *
1106 * This function returns the OCR bit number according to the provided @vdd
1107 * value. If conversion is not possible a negative errno value returned.
1108 *
1109 * Depending on the @low_bits flag the function prefers low or high OCR bits
1110 * on boundary voltages. For example,
1111 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1112 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1113 *
1114 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1115 */
1116static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1117{
1118 const int max_bit = ilog2(MMC_VDD_35_36);
1119 int bit;
1120
1121 if (vdd < 1650 || vdd > 3600)
1122 return -EINVAL;
1123
1124 if (vdd >= 1650 && vdd <= 1950)
1125 return ilog2(MMC_VDD_165_195);
1126
1127 if (low_bits)
1128 vdd -= 1;
1129
1130 /* Base 2000 mV, step 100 mV, bit's base 8. */
1131 bit = (vdd - 2000) / 100 + 8;
1132 if (bit > max_bit)
1133 return max_bit;
1134 return bit;
1135}
1136
1137/**
1138 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1139 * @vdd_min: minimum voltage value (mV)
1140 * @vdd_max: maximum voltage value (mV)
1141 *
1142 * This function returns the OCR mask bits according to the provided @vdd_min
1143 * and @vdd_max values. If conversion is not possible the function returns 0.
1144 *
1145 * Notes wrt boundary cases:
1146 * This function sets the OCR bits for all boundary voltages, for example
1147 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1148 * MMC_VDD_34_35 mask.
1149 */
1150u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1151{
1152 u32 mask = 0;
1153
1154 if (vdd_max < vdd_min)
1155 return 0;
1156
1157 /* Prefer high bits for the boundary vdd_max values. */
1158 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1159 if (vdd_max < 0)
1160 return 0;
1161
1162 /* Prefer low bits for the boundary vdd_min values. */
1163 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1164 if (vdd_min < 0)
1165 return 0;
1166
1167 /* Fill the mask, from max bit to min bit. */
1168 while (vdd_max >= vdd_min)
1169 mask |= 1 << vdd_max--;
1170
1171 return mask;
1172}
1173EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1174
6e9e318b
HZ
1175#ifdef CONFIG_OF
1176
1177/**
1178 * mmc_of_parse_voltage - return mask of supported voltages
1179 * @np: The device node need to be parsed.
1180 * @mask: mask of voltages available for MMC/SD/SDIO
1181 *
1182 * 1. Return zero on success.
1183 * 2. Return negative errno: voltage-range is invalid.
1184 */
1185int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1186{
1187 const u32 *voltage_ranges;
1188 int num_ranges, i;
1189
1190 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1191 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1192 if (!voltage_ranges || !num_ranges) {
1193 pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1194 return -EINVAL;
1195 }
1196
1197 for (i = 0; i < num_ranges; i++) {
1198 const int j = i * 2;
1199 u32 ocr_mask;
1200
1201 ocr_mask = mmc_vddrange_to_ocrmask(
1202 be32_to_cpu(voltage_ranges[j]),
1203 be32_to_cpu(voltage_ranges[j + 1]));
1204 if (!ocr_mask) {
1205 pr_err("%s: voltage-range #%d is invalid\n",
1206 np->full_name, i);
1207 return -EINVAL;
1208 }
1209 *mask |= ocr_mask;
1210 }
1211
1212 return 0;
1213}
1214EXPORT_SYMBOL(mmc_of_parse_voltage);
1215
1216#endif /* CONFIG_OF */
1217
5c13941a
DB
1218#ifdef CONFIG_REGULATOR
1219
1220/**
1221 * mmc_regulator_get_ocrmask - return mask of supported voltages
1222 * @supply: regulator to use
1223 *
1224 * This returns either a negative errno, or a mask of voltages that
1225 * can be provided to MMC/SD/SDIO devices using the specified voltage
1226 * regulator. This would normally be called before registering the
1227 * MMC host adapter.
1228 */
1229int mmc_regulator_get_ocrmask(struct regulator *supply)
1230{
1231 int result = 0;
1232 int count;
1233 int i;
1234
1235 count = regulator_count_voltages(supply);
1236 if (count < 0)
1237 return count;
1238
1239 for (i = 0; i < count; i++) {
1240 int vdd_uV;
1241 int vdd_mV;
1242
1243 vdd_uV = regulator_list_voltage(supply, i);
1244 if (vdd_uV <= 0)
1245 continue;
1246
1247 vdd_mV = vdd_uV / 1000;
1248 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1249 }
1250
1251 return result;
1252}
45a6b32e 1253EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
5c13941a
DB
1254
1255/**
1256 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
99fc5131 1257 * @mmc: the host to regulate
5c13941a 1258 * @supply: regulator to use
99fc5131 1259 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
5c13941a
DB
1260 *
1261 * Returns zero on success, else negative errno.
1262 *
1263 * MMC host drivers may use this to enable or disable a regulator using
1264 * a particular supply voltage. This would normally be called from the
1265 * set_ios() method.
1266 */
99fc5131
LW
1267int mmc_regulator_set_ocr(struct mmc_host *mmc,
1268 struct regulator *supply,
1269 unsigned short vdd_bit)
5c13941a
DB
1270{
1271 int result = 0;
1272 int min_uV, max_uV;
5c13941a
DB
1273
1274 if (vdd_bit) {
1275 int tmp;
1276 int voltage;
1277
9cde5b7a
CB
1278 /*
1279 * REVISIT mmc_vddrange_to_ocrmask() may have set some
5c13941a
DB
1280 * bits this regulator doesn't quite support ... don't
1281 * be too picky, most cards and regulators are OK with
1282 * a 0.1V range goof (it's a small error percentage).
1283 */
1284 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1285 if (tmp == 0) {
1286 min_uV = 1650 * 1000;
1287 max_uV = 1950 * 1000;
1288 } else {
1289 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1290 max_uV = min_uV + 100 * 1000;
1291 }
1292
9cde5b7a
CB
1293 /*
1294 * If we're using a fixed/static regulator, don't call
1295 * regulator_set_voltage; it would fail.
5c13941a
DB
1296 */
1297 voltage = regulator_get_voltage(supply);
6e8201f5 1298
5f56a8e6 1299 if (!regulator_can_change_voltage(supply))
6e8201f5
JC
1300 min_uV = max_uV = voltage;
1301
5c13941a
DB
1302 if (voltage < 0)
1303 result = voltage;
1304 else if (voltage < min_uV || voltage > max_uV)
1305 result = regulator_set_voltage(supply, min_uV, max_uV);
1306 else
1307 result = 0;
1308
99fc5131 1309 if (result == 0 && !mmc->regulator_enabled) {
5c13941a 1310 result = regulator_enable(supply);
99fc5131
LW
1311 if (!result)
1312 mmc->regulator_enabled = true;
1313 }
1314 } else if (mmc->regulator_enabled) {
5c13941a 1315 result = regulator_disable(supply);
99fc5131
LW
1316 if (result == 0)
1317 mmc->regulator_enabled = false;
5c13941a
DB
1318 }
1319
99fc5131
LW
1320 if (result)
1321 dev_err(mmc_dev(mmc),
1322 "could not set regulator OCR (%d)\n", result);
5c13941a
DB
1323 return result;
1324}
45a6b32e 1325EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
5c13941a 1326
e137788d
GL
1327int mmc_regulator_get_supply(struct mmc_host *mmc)
1328{
1329 struct device *dev = mmc_dev(mmc);
1330 struct regulator *supply;
1331 int ret;
1332
1333 supply = devm_regulator_get(dev, "vmmc");
1334 mmc->supply.vmmc = supply;
bc35d5ed 1335 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
e137788d
GL
1336
1337 if (IS_ERR(supply))
1338 return PTR_ERR(supply);
1339
1340 ret = mmc_regulator_get_ocrmask(supply);
1341 if (ret > 0)
1342 mmc->ocr_avail = ret;
1343 else
1344 dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1345
1346 return 0;
1347}
1348EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1349
99fc5131 1350#endif /* CONFIG_REGULATOR */
5c13941a 1351
1da177e4
LT
1352/*
1353 * Mask off any voltages we don't support and select
1354 * the lowest voltage
1355 */
7ea239d9 1356u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1da177e4
LT
1357{
1358 int bit;
1359
1360 ocr &= host->ocr_avail;
1361
1362 bit = ffs(ocr);
1363 if (bit) {
1364 bit -= 1;
1365
63ef731a 1366 ocr &= 3 << bit;
1da177e4 1367
778e277c 1368 mmc_host_clk_hold(host);
1da177e4 1369 host->ios.vdd = bit;
920e70c5 1370 mmc_set_ios(host);
778e277c 1371 mmc_host_clk_release(host);
1da177e4 1372 } else {
f6e10b86
DB
1373 pr_warning("%s: host doesn't support card's voltages\n",
1374 mmc_hostname(host));
1da177e4
LT
1375 ocr = 0;
1376 }
1377
1378 return ocr;
1379}
1380
567c8903
JR
1381int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1382{
1383 int err = 0;
1384 int old_signal_voltage = host->ios.signal_voltage;
1385
1386 host->ios.signal_voltage = signal_voltage;
1387 if (host->ops->start_signal_voltage_switch) {
1388 mmc_host_clk_hold(host);
1389 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1390 mmc_host_clk_release(host);
1391 }
1392
1393 if (err)
1394 host->ios.signal_voltage = old_signal_voltage;
1395
1396 return err;
1397
1398}
1399
0f791fda 1400int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
f2119df6
AN
1401{
1402 struct mmc_command cmd = {0};
1403 int err = 0;
0797e5f1 1404 u32 clock;
f2119df6
AN
1405
1406 BUG_ON(!host);
1407
1408 /*
1409 * Send CMD11 only if the request is to switch the card to
1410 * 1.8V signalling.
1411 */
0797e5f1
JR
1412 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1413 return __mmc_set_signal_voltage(host, signal_voltage);
f2119df6 1414
0797e5f1
JR
1415 /*
1416 * If we cannot switch voltages, return failure so the caller
1417 * can continue without UHS mode
1418 */
1419 if (!host->ops->start_signal_voltage_switch)
1420 return -EPERM;
1421 if (!host->ops->card_busy)
1422 pr_warning("%s: cannot verify signal voltage switch\n",
1423 mmc_hostname(host));
1424
1425 cmd.opcode = SD_SWITCH_VOLTAGE;
1426 cmd.arg = 0;
1427 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1428
1429 err = mmc_wait_for_cmd(host, &cmd, 0);
1430 if (err)
1431 return err;
1432
1433 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1434 return -EIO;
1435
1436 mmc_host_clk_hold(host);
1437 /*
1438 * The card should drive cmd and dat[0:3] low immediately
1439 * after the response of cmd11, but wait 1 ms to be sure
1440 */
1441 mmc_delay(1);
1442 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1443 err = -EAGAIN;
1444 goto power_cycle;
1445 }
1446 /*
1447 * During a signal voltage level switch, the clock must be gated
1448 * for 5 ms according to the SD spec
1449 */
1450 clock = host->ios.clock;
1451 host->ios.clock = 0;
1452 mmc_set_ios(host);
f2119df6 1453
0797e5f1
JR
1454 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1455 /*
1456 * Voltages may not have been switched, but we've already
1457 * sent CMD11, so a power cycle is required anyway
1458 */
1459 err = -EAGAIN;
1460 goto power_cycle;
f2119df6
AN
1461 }
1462
0797e5f1
JR
1463 /* Keep clock gated for at least 5 ms */
1464 mmc_delay(5);
1465 host->ios.clock = clock;
1466 mmc_set_ios(host);
1467
1468 /* Wait for at least 1 ms according to spec */
1469 mmc_delay(1);
1470
1471 /*
1472 * Failure to switch is indicated by the card holding
1473 * dat[0:3] low
1474 */
1475 if (host->ops->card_busy && host->ops->card_busy(host))
1476 err = -EAGAIN;
1477
1478power_cycle:
1479 if (err) {
1480 pr_debug("%s: Signal voltage switch failed, "
1481 "power cycling card\n", mmc_hostname(host));
0f791fda 1482 mmc_power_cycle(host, ocr);
0797e5f1
JR
1483 }
1484
1485 mmc_host_clk_release(host);
1486
1487 return err;
f2119df6
AN
1488}
1489
b57c43ad 1490/*
7ea239d9 1491 * Select timing parameters for host.
b57c43ad 1492 */
7ea239d9 1493void mmc_set_timing(struct mmc_host *host, unsigned int timing)
b57c43ad 1494{
778e277c 1495 mmc_host_clk_hold(host);
7ea239d9
PO
1496 host->ios.timing = timing;
1497 mmc_set_ios(host);
778e277c 1498 mmc_host_clk_release(host);
b57c43ad
PO
1499}
1500
d6d50a15
AN
1501/*
1502 * Select appropriate driver type for host.
1503 */
1504void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1505{
778e277c 1506 mmc_host_clk_hold(host);
d6d50a15
AN
1507 host->ios.drv_type = drv_type;
1508 mmc_set_ios(host);
778e277c 1509 mmc_host_clk_release(host);
d6d50a15
AN
1510}
1511
1da177e4 1512/*
45f8245b
RK
1513 * Apply power to the MMC stack. This is a two-stage process.
1514 * First, we enable power to the card without the clock running.
1515 * We then wait a bit for the power to stabilise. Finally,
1516 * enable the bus drivers and clock to the card.
1517 *
1518 * We must _NOT_ enable the clock prior to power stablising.
1519 *
1520 * If a host does all the power sequencing itself, ignore the
1521 * initial MMC_POWER_UP stage.
1da177e4 1522 */
4a065193 1523void mmc_power_up(struct mmc_host *host, u32 ocr)
1da177e4 1524{
fa550189
UH
1525 if (host->ios.power_mode == MMC_POWER_ON)
1526 return;
1527
778e277c
MW
1528 mmc_host_clk_hold(host);
1529
4a065193 1530 host->ios.vdd = fls(ocr) - 1;
44669034 1531 if (mmc_host_is_spi(host))
af517150 1532 host->ios.chip_select = MMC_CS_HIGH;
44669034 1533 else
af517150 1534 host->ios.chip_select = MMC_CS_DONTCARE;
44669034 1535 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1da177e4 1536 host->ios.power_mode = MMC_POWER_UP;
f218278a 1537 host->ios.bus_width = MMC_BUS_WIDTH_1;
cd9277c0 1538 host->ios.timing = MMC_TIMING_LEGACY;
920e70c5 1539 mmc_set_ios(host);
1da177e4 1540
108ecc4c 1541 /* Set signal voltage to 3.3V */
567c8903 1542 __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
108ecc4c 1543
f9996aee
PO
1544 /*
1545 * This delay should be sufficient to allow the power supply
1546 * to reach the minimum voltage.
1547 */
79bccc5a 1548 mmc_delay(10);
1da177e4 1549
88ae8b86 1550 host->ios.clock = host->f_init;
8dfd0374 1551
1da177e4 1552 host->ios.power_mode = MMC_POWER_ON;
920e70c5 1553 mmc_set_ios(host);
1da177e4 1554
f9996aee
PO
1555 /*
1556 * This delay must be at least 74 clock sizes, or 1 ms, or the
1557 * time required to reach a stable voltage.
1558 */
79bccc5a 1559 mmc_delay(10);
778e277c
MW
1560
1561 mmc_host_clk_release(host);
1da177e4
LT
1562}
1563
7f7e4129 1564void mmc_power_off(struct mmc_host *host)
1da177e4 1565{
fa550189
UH
1566 if (host->ios.power_mode == MMC_POWER_OFF)
1567 return;
1568
778e277c
MW
1569 mmc_host_clk_hold(host);
1570
1da177e4
LT
1571 host->ios.clock = 0;
1572 host->ios.vdd = 0;
b33d46c3 1573
bec8726a 1574
b33d46c3
UH
1575 /*
1576 * Reset ocr mask to be the highest possible voltage supported for
69041150 1577 * this card. This value will be used at next power up.
b33d46c3 1578 */
69041150
UH
1579 if (host->card)
1580 host->card->ocr = 1 << (fls(host->ocr_avail) - 1);
b33d46c3 1581
af517150
DB
1582 if (!mmc_host_is_spi(host)) {
1583 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1584 host->ios.chip_select = MMC_CS_DONTCARE;
1585 }
1da177e4 1586 host->ios.power_mode = MMC_POWER_OFF;
f218278a 1587 host->ios.bus_width = MMC_BUS_WIDTH_1;
cd9277c0 1588 host->ios.timing = MMC_TIMING_LEGACY;
920e70c5 1589 mmc_set_ios(host);
778e277c 1590
041beb1d
DD
1591 /*
1592 * Some configurations, such as the 802.11 SDIO card in the OLPC
1593 * XO-1.5, require a short delay after poweroff before the card
1594 * can be successfully turned on again.
1595 */
1596 mmc_delay(1);
1597
778e277c 1598 mmc_host_clk_release(host);
1da177e4
LT
1599}
1600
4a065193 1601void mmc_power_cycle(struct mmc_host *host, u32 ocr)
276e090f
JR
1602{
1603 mmc_power_off(host);
1604 /* Wait at least 1 ms according to SD spec */
1605 mmc_delay(1);
4a065193 1606 mmc_power_up(host, ocr);
276e090f
JR
1607}
1608
39361851
AB
1609/*
1610 * Cleanup when the last reference to the bus operator is dropped.
1611 */
261172fd 1612static void __mmc_release_bus(struct mmc_host *host)
39361851
AB
1613{
1614 BUG_ON(!host);
1615 BUG_ON(host->bus_refs);
1616 BUG_ON(!host->bus_dead);
1617
1618 host->bus_ops = NULL;
1619}
1620
1621/*
1622 * Increase reference count of bus operator
1623 */
1624static inline void mmc_bus_get(struct mmc_host *host)
1625{
1626 unsigned long flags;
1627
1628 spin_lock_irqsave(&host->lock, flags);
1629 host->bus_refs++;
1630 spin_unlock_irqrestore(&host->lock, flags);
1631}
1632
1633/*
1634 * Decrease reference count of bus operator and free it if
1635 * it is the last reference.
1636 */
1637static inline void mmc_bus_put(struct mmc_host *host)
1638{
1639 unsigned long flags;
1640
1641 spin_lock_irqsave(&host->lock, flags);
1642 host->bus_refs--;
1643 if ((host->bus_refs == 0) && host->bus_ops)
1644 __mmc_release_bus(host);
1645 spin_unlock_irqrestore(&host->lock, flags);
1646}
1647
1da177e4 1648/*
7ea239d9
PO
1649 * Assign a mmc bus handler to a host. Only one bus handler may control a
1650 * host at any given time.
1da177e4 1651 */
7ea239d9 1652void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1da177e4 1653{
7ea239d9 1654 unsigned long flags;
e45a1bd2 1655
7ea239d9
PO
1656 BUG_ON(!host);
1657 BUG_ON(!ops);
b855885e 1658
d84075c8 1659 WARN_ON(!host->claimed);
bce40a36 1660
7ea239d9 1661 spin_lock_irqsave(&host->lock, flags);
bce40a36 1662
7ea239d9
PO
1663 BUG_ON(host->bus_ops);
1664 BUG_ON(host->bus_refs);
b57c43ad 1665
7ea239d9
PO
1666 host->bus_ops = ops;
1667 host->bus_refs = 1;
1668 host->bus_dead = 0;
b57c43ad 1669
7ea239d9 1670 spin_unlock_irqrestore(&host->lock, flags);
b57c43ad
PO
1671}
1672
7ea239d9 1673/*
7f7e4129 1674 * Remove the current bus handler from a host.
7ea239d9
PO
1675 */
1676void mmc_detach_bus(struct mmc_host *host)
7ccd266e 1677{
7ea239d9 1678 unsigned long flags;
7ccd266e 1679
7ea239d9 1680 BUG_ON(!host);
7ccd266e 1681
d84075c8
PO
1682 WARN_ON(!host->claimed);
1683 WARN_ON(!host->bus_ops);
cd9277c0 1684
7ea239d9 1685 spin_lock_irqsave(&host->lock, flags);
7ccd266e 1686
7ea239d9 1687 host->bus_dead = 1;
7ccd266e 1688
7ea239d9 1689 spin_unlock_irqrestore(&host->lock, flags);
1da177e4 1690
7ea239d9 1691 mmc_bus_put(host);
1da177e4
LT
1692}
1693
1da177e4
LT
1694/**
1695 * mmc_detect_change - process change of state on a MMC socket
1696 * @host: host which changed state.
8dc00335 1697 * @delay: optional delay to wait before detection (jiffies)
1da177e4 1698 *
67a61c48
PO
1699 * MMC drivers should call this when they detect a card has been
1700 * inserted or removed. The MMC layer will confirm that any
1701 * present card is still functional, and initialize any newly
1702 * inserted.
1da177e4 1703 */
8dc00335 1704void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1da177e4 1705{
3b91e550 1706#ifdef CONFIG_MMC_DEBUG
1efd48b3 1707 unsigned long flags;
01f41ec7 1708 spin_lock_irqsave(&host->lock, flags);
d84075c8 1709 WARN_ON(host->removed);
01f41ec7 1710 spin_unlock_irqrestore(&host->lock, flags);
3b91e550 1711#endif
d3049504 1712 host->detect_change = 1;
c4028958 1713 mmc_schedule_delayed_work(&host->detect, delay);
1da177e4
LT
1714}
1715
1716EXPORT_SYMBOL(mmc_detect_change);
1717
dfe86cba
AH
1718void mmc_init_erase(struct mmc_card *card)
1719{
1720 unsigned int sz;
1721
1722 if (is_power_of_2(card->erase_size))
1723 card->erase_shift = ffs(card->erase_size) - 1;
1724 else
1725 card->erase_shift = 0;
1726
1727 /*
1728 * It is possible to erase an arbitrarily large area of an SD or MMC
1729 * card. That is not desirable because it can take a long time
1730 * (minutes) potentially delaying more important I/O, and also the
1731 * timeout calculations become increasingly hugely over-estimated.
1732 * Consequently, 'pref_erase' is defined as a guide to limit erases
1733 * to that size and alignment.
1734 *
1735 * For SD cards that define Allocation Unit size, limit erases to one
1736 * Allocation Unit at a time. For MMC cards that define High Capacity
1737 * Erase Size, whether it is switched on or not, limit to that size.
1738 * Otherwise just have a stab at a good value. For modern cards it
1739 * will end up being 4MiB. Note that if the value is too small, it
1740 * can end up taking longer to erase.
1741 */
1742 if (mmc_card_sd(card) && card->ssr.au) {
1743 card->pref_erase = card->ssr.au;
1744 card->erase_shift = ffs(card->ssr.au) - 1;
1745 } else if (card->ext_csd.hc_erase_size) {
1746 card->pref_erase = card->ext_csd.hc_erase_size;
1747 } else {
1748 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1749 if (sz < 128)
1750 card->pref_erase = 512 * 1024 / 512;
1751 else if (sz < 512)
1752 card->pref_erase = 1024 * 1024 / 512;
1753 else if (sz < 1024)
1754 card->pref_erase = 2 * 1024 * 1024 / 512;
1755 else
1756 card->pref_erase = 4 * 1024 * 1024 / 512;
1757 if (card->pref_erase < card->erase_size)
1758 card->pref_erase = card->erase_size;
1759 else {
1760 sz = card->pref_erase % card->erase_size;
1761 if (sz)
1762 card->pref_erase += card->erase_size - sz;
1763 }
1764 }
1765}
1766
eaa02f75
AW
1767static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1768 unsigned int arg, unsigned int qty)
dfe86cba
AH
1769{
1770 unsigned int erase_timeout;
1771
7194efb8
AH
1772 if (arg == MMC_DISCARD_ARG ||
1773 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1774 erase_timeout = card->ext_csd.trim_timeout;
1775 } else if (card->ext_csd.erase_group_def & 1) {
dfe86cba
AH
1776 /* High Capacity Erase Group Size uses HC timeouts */
1777 if (arg == MMC_TRIM_ARG)
1778 erase_timeout = card->ext_csd.trim_timeout;
1779 else
1780 erase_timeout = card->ext_csd.hc_erase_timeout;
1781 } else {
1782 /* CSD Erase Group Size uses write timeout */
1783 unsigned int mult = (10 << card->csd.r2w_factor);
1784 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1785 unsigned int timeout_us;
1786
1787 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1788 if (card->csd.tacc_ns < 1000000)
1789 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1790 else
1791 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1792
1793 /*
1794 * ios.clock is only a target. The real clock rate might be
1795 * less but not that much less, so fudge it by multiplying by 2.
1796 */
1797 timeout_clks <<= 1;
1798 timeout_us += (timeout_clks * 1000) /
4cf8c6dd 1799 (mmc_host_clk_rate(card->host) / 1000);
dfe86cba
AH
1800
1801 erase_timeout = timeout_us / 1000;
1802
1803 /*
1804 * Theoretically, the calculation could underflow so round up
1805 * to 1ms in that case.
1806 */
1807 if (!erase_timeout)
1808 erase_timeout = 1;
1809 }
1810
1811 /* Multiplier for secure operations */
1812 if (arg & MMC_SECURE_ARGS) {
1813 if (arg == MMC_SECURE_ERASE_ARG)
1814 erase_timeout *= card->ext_csd.sec_erase_mult;
1815 else
1816 erase_timeout *= card->ext_csd.sec_trim_mult;
1817 }
1818
1819 erase_timeout *= qty;
1820
1821 /*
1822 * Ensure at least a 1 second timeout for SPI as per
1823 * 'mmc_set_data_timeout()'
1824 */
1825 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1826 erase_timeout = 1000;
1827
eaa02f75 1828 return erase_timeout;
dfe86cba
AH
1829}
1830
eaa02f75
AW
1831static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1832 unsigned int arg,
1833 unsigned int qty)
dfe86cba 1834{
eaa02f75
AW
1835 unsigned int erase_timeout;
1836
dfe86cba
AH
1837 if (card->ssr.erase_timeout) {
1838 /* Erase timeout specified in SD Status Register (SSR) */
eaa02f75
AW
1839 erase_timeout = card->ssr.erase_timeout * qty +
1840 card->ssr.erase_offset;
dfe86cba
AH
1841 } else {
1842 /*
1843 * Erase timeout not specified in SD Status Register (SSR) so
1844 * use 250ms per write block.
1845 */
eaa02f75 1846 erase_timeout = 250 * qty;
dfe86cba
AH
1847 }
1848
1849 /* Must not be less than 1 second */
eaa02f75
AW
1850 if (erase_timeout < 1000)
1851 erase_timeout = 1000;
1852
1853 return erase_timeout;
dfe86cba
AH
1854}
1855
eaa02f75
AW
1856static unsigned int mmc_erase_timeout(struct mmc_card *card,
1857 unsigned int arg,
1858 unsigned int qty)
dfe86cba
AH
1859{
1860 if (mmc_card_sd(card))
eaa02f75 1861 return mmc_sd_erase_timeout(card, arg, qty);
dfe86cba 1862 else
eaa02f75 1863 return mmc_mmc_erase_timeout(card, arg, qty);
dfe86cba
AH
1864}
1865
1866static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1867 unsigned int to, unsigned int arg)
1868{
1278dba1 1869 struct mmc_command cmd = {0};
dfe86cba 1870 unsigned int qty = 0;
8fee476b 1871 unsigned long timeout;
dfe86cba
AH
1872 int err;
1873
1874 /*
1875 * qty is used to calculate the erase timeout which depends on how many
1876 * erase groups (or allocation units in SD terminology) are affected.
1877 * We count erasing part of an erase group as one erase group.
1878 * For SD, the allocation units are always a power of 2. For MMC, the
1879 * erase group size is almost certainly also power of 2, but it does not
1880 * seem to insist on that in the JEDEC standard, so we fall back to
1881 * division in that case. SD may not specify an allocation unit size,
1882 * in which case the timeout is based on the number of write blocks.
1883 *
1884 * Note that the timeout for secure trim 2 will only be correct if the
1885 * number of erase groups specified is the same as the total of all
1886 * preceding secure trim 1 commands. Since the power may have been
1887 * lost since the secure trim 1 commands occurred, it is generally
1888 * impossible to calculate the secure trim 2 timeout correctly.
1889 */
1890 if (card->erase_shift)
1891 qty += ((to >> card->erase_shift) -
1892 (from >> card->erase_shift)) + 1;
1893 else if (mmc_card_sd(card))
1894 qty += to - from + 1;
1895 else
1896 qty += ((to / card->erase_size) -
1897 (from / card->erase_size)) + 1;
1898
1899 if (!mmc_card_blockaddr(card)) {
1900 from <<= 9;
1901 to <<= 9;
1902 }
1903
dfe86cba
AH
1904 if (mmc_card_sd(card))
1905 cmd.opcode = SD_ERASE_WR_BLK_START;
1906 else
1907 cmd.opcode = MMC_ERASE_GROUP_START;
1908 cmd.arg = from;
1909 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1910 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1911 if (err) {
a3c76eb9 1912 pr_err("mmc_erase: group start error %d, "
dfe86cba 1913 "status %#x\n", err, cmd.resp[0]);
67716327 1914 err = -EIO;
dfe86cba
AH
1915 goto out;
1916 }
1917
1918 memset(&cmd, 0, sizeof(struct mmc_command));
1919 if (mmc_card_sd(card))
1920 cmd.opcode = SD_ERASE_WR_BLK_END;
1921 else
1922 cmd.opcode = MMC_ERASE_GROUP_END;
1923 cmd.arg = to;
1924 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1925 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1926 if (err) {
a3c76eb9 1927 pr_err("mmc_erase: group end error %d, status %#x\n",
dfe86cba 1928 err, cmd.resp[0]);
67716327 1929 err = -EIO;
dfe86cba
AH
1930 goto out;
1931 }
1932
1933 memset(&cmd, 0, sizeof(struct mmc_command));
1934 cmd.opcode = MMC_ERASE;
1935 cmd.arg = arg;
1936 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
eaa02f75 1937 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
dfe86cba
AH
1938 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1939 if (err) {
a3c76eb9 1940 pr_err("mmc_erase: erase error %d, status %#x\n",
dfe86cba
AH
1941 err, cmd.resp[0]);
1942 err = -EIO;
1943 goto out;
1944 }
1945
1946 if (mmc_host_is_spi(card->host))
1947 goto out;
1948
8fee476b 1949 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
dfe86cba
AH
1950 do {
1951 memset(&cmd, 0, sizeof(struct mmc_command));
1952 cmd.opcode = MMC_SEND_STATUS;
1953 cmd.arg = card->rca << 16;
1954 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1955 /* Do not retry else we can't see errors */
1956 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1957 if (err || (cmd.resp[0] & 0xFDF92000)) {
a3c76eb9 1958 pr_err("error %d requesting status %#x\n",
dfe86cba
AH
1959 err, cmd.resp[0]);
1960 err = -EIO;
1961 goto out;
1962 }
8fee476b
TR
1963
1964 /* Timeout if the device never becomes ready for data and
1965 * never leaves the program state.
1966 */
1967 if (time_after(jiffies, timeout)) {
1968 pr_err("%s: Card stuck in programming state! %s\n",
1969 mmc_hostname(card->host), __func__);
1970 err = -EIO;
1971 goto out;
1972 }
1973
dfe86cba 1974 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
8fee476b 1975 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
dfe86cba
AH
1976out:
1977 return err;
1978}
1979
1980/**
1981 * mmc_erase - erase sectors.
1982 * @card: card to erase
1983 * @from: first sector to erase
1984 * @nr: number of sectors to erase
1985 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1986 *
1987 * Caller must claim host before calling this function.
1988 */
1989int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1990 unsigned int arg)
1991{
1992 unsigned int rem, to = from + nr;
1993
1994 if (!(card->host->caps & MMC_CAP_ERASE) ||
1995 !(card->csd.cmdclass & CCC_ERASE))
1996 return -EOPNOTSUPP;
1997
1998 if (!card->erase_size)
1999 return -EOPNOTSUPP;
2000
2001 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2002 return -EOPNOTSUPP;
2003
2004 if ((arg & MMC_SECURE_ARGS) &&
2005 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2006 return -EOPNOTSUPP;
2007
2008 if ((arg & MMC_TRIM_ARGS) &&
2009 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2010 return -EOPNOTSUPP;
2011
2012 if (arg == MMC_SECURE_ERASE_ARG) {
2013 if (from % card->erase_size || nr % card->erase_size)
2014 return -EINVAL;
2015 }
2016
2017 if (arg == MMC_ERASE_ARG) {
2018 rem = from % card->erase_size;
2019 if (rem) {
2020 rem = card->erase_size - rem;
2021 from += rem;
2022 if (nr > rem)
2023 nr -= rem;
2024 else
2025 return 0;
2026 }
2027 rem = nr % card->erase_size;
2028 if (rem)
2029 nr -= rem;
2030 }
2031
2032 if (nr == 0)
2033 return 0;
2034
2035 to = from + nr;
2036
2037 if (to <= from)
2038 return -EINVAL;
2039
2040 /* 'from' and 'to' are inclusive */
2041 to -= 1;
2042
2043 return mmc_do_erase(card, from, to, arg);
2044}
2045EXPORT_SYMBOL(mmc_erase);
2046
2047int mmc_can_erase(struct mmc_card *card)
2048{
2049 if ((card->host->caps & MMC_CAP_ERASE) &&
2050 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2051 return 1;
2052 return 0;
2053}
2054EXPORT_SYMBOL(mmc_can_erase);
2055
2056int mmc_can_trim(struct mmc_card *card)
2057{
2058 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2059 return 1;
2060 return 0;
2061}
2062EXPORT_SYMBOL(mmc_can_trim);
2063
b3bf9153
KP
2064int mmc_can_discard(struct mmc_card *card)
2065{
2066 /*
2067 * As there's no way to detect the discard support bit at v4.5
2068 * use the s/w feature support filed.
2069 */
2070 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2071 return 1;
2072 return 0;
2073}
2074EXPORT_SYMBOL(mmc_can_discard);
2075
d9ddd629
KP
2076int mmc_can_sanitize(struct mmc_card *card)
2077{
28302812
AH
2078 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2079 return 0;
d9ddd629
KP
2080 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2081 return 1;
2082 return 0;
2083}
2084EXPORT_SYMBOL(mmc_can_sanitize);
2085
dfe86cba
AH
2086int mmc_can_secure_erase_trim(struct mmc_card *card)
2087{
2088 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2089 return 1;
2090 return 0;
2091}
2092EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2093
2094int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2095 unsigned int nr)
2096{
2097 if (!card->erase_size)
2098 return 0;
2099 if (from % card->erase_size || nr % card->erase_size)
2100 return 0;
2101 return 1;
2102}
2103EXPORT_SYMBOL(mmc_erase_group_aligned);
1da177e4 2104
e056a1b5
AH
2105static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2106 unsigned int arg)
2107{
2108 struct mmc_host *host = card->host;
2109 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2110 unsigned int last_timeout = 0;
2111
2112 if (card->erase_shift)
2113 max_qty = UINT_MAX >> card->erase_shift;
2114 else if (mmc_card_sd(card))
2115 max_qty = UINT_MAX;
2116 else
2117 max_qty = UINT_MAX / card->erase_size;
2118
2119 /* Find the largest qty with an OK timeout */
2120 do {
2121 y = 0;
2122 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2123 timeout = mmc_erase_timeout(card, arg, qty + x);
2124 if (timeout > host->max_discard_to)
2125 break;
2126 if (timeout < last_timeout)
2127 break;
2128 last_timeout = timeout;
2129 y = x;
2130 }
2131 qty += y;
2132 } while (y);
2133
2134 if (!qty)
2135 return 0;
2136
2137 if (qty == 1)
2138 return 1;
2139
2140 /* Convert qty to sectors */
2141 if (card->erase_shift)
2142 max_discard = --qty << card->erase_shift;
2143 else if (mmc_card_sd(card))
2144 max_discard = qty;
2145 else
2146 max_discard = --qty * card->erase_size;
2147
2148 return max_discard;
2149}
2150
2151unsigned int mmc_calc_max_discard(struct mmc_card *card)
2152{
2153 struct mmc_host *host = card->host;
2154 unsigned int max_discard, max_trim;
2155
2156 if (!host->max_discard_to)
2157 return UINT_MAX;
2158
2159 /*
2160 * Without erase_group_def set, MMC erase timeout depends on clock
2161 * frequence which can change. In that case, the best choice is
2162 * just the preferred erase size.
2163 */
2164 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2165 return card->pref_erase;
2166
2167 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2168 if (mmc_can_trim(card)) {
2169 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2170 if (max_trim < max_discard)
2171 max_discard = max_trim;
2172 } else if (max_discard < card->erase_size) {
2173 max_discard = 0;
2174 }
2175 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2176 mmc_hostname(host), max_discard, host->max_discard_to);
2177 return max_discard;
2178}
2179EXPORT_SYMBOL(mmc_calc_max_discard);
2180
0f8d8ea6
AH
2181int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2182{
1278dba1 2183 struct mmc_command cmd = {0};
0f8d8ea6
AH
2184
2185 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
2186 return 0;
2187
0f8d8ea6
AH
2188 cmd.opcode = MMC_SET_BLOCKLEN;
2189 cmd.arg = blocklen;
2190 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2191 return mmc_wait_for_cmd(card->host, &cmd, 5);
2192}
2193EXPORT_SYMBOL(mmc_set_blocklen);
2194
67c79db8
LP
2195int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2196 bool is_rel_write)
2197{
2198 struct mmc_command cmd = {0};
2199
2200 cmd.opcode = MMC_SET_BLOCK_COUNT;
2201 cmd.arg = blockcount & 0x0000FFFF;
2202 if (is_rel_write)
2203 cmd.arg |= 1 << 31;
2204 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2205 return mmc_wait_for_cmd(card->host, &cmd, 5);
2206}
2207EXPORT_SYMBOL(mmc_set_blockcount);
2208
b2499518
AH
2209static void mmc_hw_reset_for_init(struct mmc_host *host)
2210{
2211 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2212 return;
2213 mmc_host_clk_hold(host);
2214 host->ops->hw_reset(host);
2215 mmc_host_clk_release(host);
2216}
2217
2218int mmc_can_reset(struct mmc_card *card)
2219{
2220 u8 rst_n_function;
2221
2222 if (!mmc_card_mmc(card))
2223 return 0;
2224 rst_n_function = card->ext_csd.rst_n_function;
2225 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2226 return 0;
2227 return 1;
2228}
2229EXPORT_SYMBOL(mmc_can_reset);
2230
2231static int mmc_do_hw_reset(struct mmc_host *host, int check)
2232{
2233 struct mmc_card *card = host->card;
2234
2235 if (!host->bus_ops->power_restore)
2236 return -EOPNOTSUPP;
2237
2238 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2239 return -EOPNOTSUPP;
2240
2241 if (!card)
2242 return -EINVAL;
2243
2244 if (!mmc_can_reset(card))
2245 return -EOPNOTSUPP;
2246
2247 mmc_host_clk_hold(host);
2248 mmc_set_clock(host, host->f_init);
2249
2250 host->ops->hw_reset(host);
2251
2252 /* If the reset has happened, then a status command will fail */
2253 if (check) {
2254 struct mmc_command cmd = {0};
2255 int err;
2256
2257 cmd.opcode = MMC_SEND_STATUS;
2258 if (!mmc_host_is_spi(card->host))
2259 cmd.arg = card->rca << 16;
2260 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2261 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2262 if (!err) {
2263 mmc_host_clk_release(host);
2264 return -ENOSYS;
2265 }
2266 }
2267
2268 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2269 if (mmc_host_is_spi(host)) {
2270 host->ios.chip_select = MMC_CS_HIGH;
2271 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2272 } else {
2273 host->ios.chip_select = MMC_CS_DONTCARE;
2274 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2275 }
2276 host->ios.bus_width = MMC_BUS_WIDTH_1;
2277 host->ios.timing = MMC_TIMING_LEGACY;
2278 mmc_set_ios(host);
2279
2280 mmc_host_clk_release(host);
2281
2282 return host->bus_ops->power_restore(host);
2283}
2284
2285int mmc_hw_reset(struct mmc_host *host)
2286{
2287 return mmc_do_hw_reset(host, 0);
2288}
2289EXPORT_SYMBOL(mmc_hw_reset);
2290
2291int mmc_hw_reset_check(struct mmc_host *host)
2292{
2293 return mmc_do_hw_reset(host, 1);
2294}
2295EXPORT_SYMBOL(mmc_hw_reset_check);
2296
807e8e40
AR
2297static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2298{
2299 host->f_init = freq;
2300
2301#ifdef CONFIG_MMC_DEBUG
2302 pr_info("%s: %s: trying to init card at %u Hz\n",
2303 mmc_hostname(host), __func__, host->f_init);
2304#endif
4a065193 2305 mmc_power_up(host, host->ocr_avail);
2f94e55a 2306
b2499518
AH
2307 /*
2308 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2309 * do a hardware reset if possible.
2310 */
2311 mmc_hw_reset_for_init(host);
2312
2f94e55a
PR
2313 /*
2314 * sdio_reset sends CMD52 to reset card. Since we do not know
2315 * if the card is being re-initialized, just send it. CMD52
2316 * should be ignored by SD/eMMC cards.
2317 */
807e8e40
AR
2318 sdio_reset(host);
2319 mmc_go_idle(host);
2320
2321 mmc_send_if_cond(host, host->ocr_avail);
2322
2323 /* Order's important: probe SDIO, then SD, then MMC */
2324 if (!mmc_attach_sdio(host))
2325 return 0;
2326 if (!mmc_attach_sd(host))
2327 return 0;
2328 if (!mmc_attach_mmc(host))
2329 return 0;
2330
2331 mmc_power_off(host);
2332 return -EIO;
2333}
2334
d3049504
AH
2335int _mmc_detect_card_removed(struct mmc_host *host)
2336{
2337 int ret;
2338
2339 if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
2340 return 0;
2341
2342 if (!host->card || mmc_card_removed(host->card))
2343 return 1;
2344
2345 ret = host->bus_ops->alive(host);
1450734e
KL
2346
2347 /*
2348 * Card detect status and alive check may be out of sync if card is
2349 * removed slowly, when card detect switch changes while card/slot
2350 * pads are still contacted in hardware (refer to "SD Card Mechanical
2351 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2352 * detect work 200ms later for this case.
2353 */
2354 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2355 mmc_detect_change(host, msecs_to_jiffies(200));
2356 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2357 }
2358
d3049504
AH
2359 if (ret) {
2360 mmc_card_set_removed(host->card);
2361 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2362 }
2363
2364 return ret;
2365}
2366
2367int mmc_detect_card_removed(struct mmc_host *host)
2368{
2369 struct mmc_card *card = host->card;
f0cc9cf9 2370 int ret;
d3049504
AH
2371
2372 WARN_ON(!host->claimed);
f0cc9cf9
UH
2373
2374 if (!card)
2375 return 1;
2376
2377 ret = mmc_card_removed(card);
d3049504
AH
2378 /*
2379 * The card will be considered unchanged unless we have been asked to
2380 * detect a change or host requires polling to provide card detection.
2381 */
b6891679 2382 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
f0cc9cf9 2383 return ret;
d3049504
AH
2384
2385 host->detect_change = 0;
f0cc9cf9
UH
2386 if (!ret) {
2387 ret = _mmc_detect_card_removed(host);
b6891679 2388 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
f0cc9cf9
UH
2389 /*
2390 * Schedule a detect work as soon as possible to let a
2391 * rescan handle the card removal.
2392 */
2393 cancel_delayed_work(&host->detect);
2394 mmc_detect_change(host, 0);
2395 }
2396 }
d3049504 2397
f0cc9cf9 2398 return ret;
d3049504
AH
2399}
2400EXPORT_SYMBOL(mmc_detect_card_removed);
2401
b93931a6 2402void mmc_rescan(struct work_struct *work)
1da177e4 2403{
c4028958
DH
2404 struct mmc_host *host =
2405 container_of(work, struct mmc_host, detect.work);
88ae8b86 2406 int i;
4c2ef25f 2407
807e8e40 2408 if (host->rescan_disable)
4c2ef25f 2409 return;
1da177e4 2410
3339d1e3
JR
2411 /* If there is a non-removable card registered, only scan once */
2412 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2413 return;
2414 host->rescan_entered = 1;
2415
7ea239d9 2416 mmc_bus_get(host);
b855885e 2417
30201e7f
OBC
2418 /*
2419 * if there is a _removable_ card registered, check whether it is
2420 * still present
2421 */
2422 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
bad3baba 2423 && !(host->caps & MMC_CAP_NONREMOVABLE))
94d89efb
JS
2424 host->bus_ops->detect(host);
2425
d3049504
AH
2426 host->detect_change = 0;
2427
c5841798
CB
2428 /*
2429 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2430 * the card is no longer present.
2431 */
94d89efb 2432 mmc_bus_put(host);
94d89efb
JS
2433 mmc_bus_get(host);
2434
2435 /* if there still is a card present, stop here */
2436 if (host->bus_ops != NULL) {
7ea239d9 2437 mmc_bus_put(host);
94d89efb
JS
2438 goto out;
2439 }
1da177e4 2440
94d89efb
JS
2441 /*
2442 * Only we can add a new handler, so it's safe to
2443 * release the lock here.
2444 */
2445 mmc_bus_put(host);
1da177e4 2446
fa550189
UH
2447 if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2448 mmc_claim_host(host);
2449 mmc_power_off(host);
2450 mmc_release_host(host);
94d89efb 2451 goto out;
fa550189 2452 }
1da177e4 2453
807e8e40 2454 mmc_claim_host(host);
88ae8b86 2455 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
807e8e40
AR
2456 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2457 break;
06b2233a 2458 if (freqs[i] <= host->f_min)
807e8e40 2459 break;
88ae8b86 2460 }
807e8e40
AR
2461 mmc_release_host(host);
2462
2463 out:
28f52482
AV
2464 if (host->caps & MMC_CAP_NEEDS_POLL)
2465 mmc_schedule_delayed_work(&host->detect, HZ);
1da177e4
LT
2466}
2467
b93931a6 2468void mmc_start_host(struct mmc_host *host)
1da177e4 2469{
fa550189 2470 host->f_init = max(freqs[0], host->f_min);
d9adcc12 2471 host->rescan_disable = 0;
a08b17be
AH
2472 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2473 mmc_power_off(host);
2474 else
4a065193 2475 mmc_power_up(host, host->ocr_avail);
b93931a6 2476 mmc_detect_change(host, 0);
1da177e4
LT
2477}
2478
b93931a6 2479void mmc_stop_host(struct mmc_host *host)
1da177e4 2480{
3b91e550 2481#ifdef CONFIG_MMC_DEBUG
1efd48b3
PO
2482 unsigned long flags;
2483 spin_lock_irqsave(&host->lock, flags);
3b91e550 2484 host->removed = 1;
1efd48b3 2485 spin_unlock_irqrestore(&host->lock, flags);
3b91e550
PO
2486#endif
2487
d9adcc12 2488 host->rescan_disable = 1;
d9bcbf34 2489 cancel_delayed_work_sync(&host->detect);
3b91e550
PO
2490 mmc_flush_scheduled_work();
2491
da68c4eb
NP
2492 /* clear pm flags now and let card drivers set them as needed */
2493 host->pm_flags = 0;
2494
7ea239d9
PO
2495 mmc_bus_get(host);
2496 if (host->bus_ops && !host->bus_dead) {
0db13fc2 2497 /* Calling bus_ops->remove() with a claimed host can deadlock */
58a8a4a1 2498 host->bus_ops->remove(host);
7ea239d9
PO
2499 mmc_claim_host(host);
2500 mmc_detach_bus(host);
7f7e4129 2501 mmc_power_off(host);
7ea239d9 2502 mmc_release_host(host);
53509f0f
DK
2503 mmc_bus_put(host);
2504 return;
1da177e4 2505 }
7ea239d9
PO
2506 mmc_bus_put(host);
2507
2508 BUG_ON(host->card);
1da177e4
LT
2509
2510 mmc_power_off(host);
2511}
2512
12ae637f 2513int mmc_power_save_host(struct mmc_host *host)
eae1aeee 2514{
12ae637f
OBC
2515 int ret = 0;
2516
bb9cab94
DD
2517#ifdef CONFIG_MMC_DEBUG
2518 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2519#endif
2520
eae1aeee
AH
2521 mmc_bus_get(host);
2522
2523 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2524 mmc_bus_put(host);
12ae637f 2525 return -EINVAL;
eae1aeee
AH
2526 }
2527
2528 if (host->bus_ops->power_save)
12ae637f 2529 ret = host->bus_ops->power_save(host);
eae1aeee
AH
2530
2531 mmc_bus_put(host);
2532
2533 mmc_power_off(host);
12ae637f
OBC
2534
2535 return ret;
eae1aeee
AH
2536}
2537EXPORT_SYMBOL(mmc_power_save_host);
2538
12ae637f 2539int mmc_power_restore_host(struct mmc_host *host)
eae1aeee 2540{
12ae637f
OBC
2541 int ret;
2542
bb9cab94
DD
2543#ifdef CONFIG_MMC_DEBUG
2544 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2545#endif
2546
eae1aeee
AH
2547 mmc_bus_get(host);
2548
2549 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2550 mmc_bus_put(host);
12ae637f 2551 return -EINVAL;
eae1aeee
AH
2552 }
2553
69041150 2554 mmc_power_up(host, host->card->ocr);
12ae637f 2555 ret = host->bus_ops->power_restore(host);
eae1aeee
AH
2556
2557 mmc_bus_put(host);
12ae637f
OBC
2558
2559 return ret;
eae1aeee
AH
2560}
2561EXPORT_SYMBOL(mmc_power_restore_host);
2562
881d1c25
SJ
2563/*
2564 * Flush the cache to the non-volatile storage.
2565 */
2566int mmc_flush_cache(struct mmc_card *card)
2567{
2568 struct mmc_host *host = card->host;
2569 int err = 0;
2570
2571 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2572 return err;
2573
2574 if (mmc_card_mmc(card) &&
2575 (card->ext_csd.cache_size > 0) &&
2576 (card->ext_csd.cache_ctrl & 1)) {
2577 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2578 EXT_CSD_FLUSH_CACHE, 1, 0);
2579 if (err)
2580 pr_err("%s: cache flush error %d\n",
2581 mmc_hostname(card->host), err);
2582 }
2583
2584 return err;
2585}
2586EXPORT_SYMBOL(mmc_flush_cache);
2587
2588/*
2589 * Turn the cache ON/OFF.
2590 * Turning the cache OFF shall trigger flushing of the data
2591 * to the non-volatile storage.
881d926d 2592 * This function should be called with host claimed
881d1c25
SJ
2593 */
2594int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2595{
2596 struct mmc_card *card = host->card;
8bc0678b 2597 unsigned int timeout;
881d1c25
SJ
2598 int err = 0;
2599
2600 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2601 mmc_card_is_removable(host))
2602 return err;
2603
2604 if (card && mmc_card_mmc(card) &&
2605 (card->ext_csd.cache_size > 0)) {
2606 enable = !!enable;
2607
8bc0678b
SJ
2608 if (card->ext_csd.cache_ctrl ^ enable) {
2609 timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
881d1c25 2610 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
8bc0678b
SJ
2611 EXT_CSD_CACHE_CTRL, enable, timeout);
2612 if (err)
2613 pr_err("%s: cache %s error %d\n",
2614 mmc_hostname(card->host),
2615 enable ? "on" : "off",
2616 err);
2617 else
2618 card->ext_csd.cache_ctrl = enable;
2619 }
881d1c25
SJ
2620 }
2621
2622 return err;
2623}
2624EXPORT_SYMBOL(mmc_cache_ctrl);
2625
1da177e4
LT
2626#ifdef CONFIG_PM
2627
2628/**
2629 * mmc_suspend_host - suspend a host
2630 * @host: mmc host
1da177e4 2631 */
1a13f8fa 2632int mmc_suspend_host(struct mmc_host *host)
1da177e4 2633{
986892ca
UH
2634 /* This function is deprecated */
2635 return 0;
1da177e4 2636}
1da177e4
LT
2637EXPORT_SYMBOL(mmc_suspend_host);
2638
2639/**
2640 * mmc_resume_host - resume a previously suspended host
2641 * @host: mmc host
2642 */
2643int mmc_resume_host(struct mmc_host *host)
2644{
986892ca 2645 /* This function is deprecated */
74590263 2646 return 0;
1da177e4 2647}
1da177e4
LT
2648EXPORT_SYMBOL(mmc_resume_host);
2649
4c2ef25f
ML
2650/* Do the card removal on suspend if card is assumed removeable
2651 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2652 to sync the card.
2653*/
2654int mmc_pm_notify(struct notifier_block *notify_block,
2655 unsigned long mode, void *unused)
2656{
2657 struct mmc_host *host = container_of(
2658 notify_block, struct mmc_host, pm_notify);
2659 unsigned long flags;
810caddb 2660 int err = 0;
4c2ef25f
ML
2661
2662 switch (mode) {
2663 case PM_HIBERNATION_PREPARE:
2664 case PM_SUSPEND_PREPARE:
4c2ef25f
ML
2665 spin_lock_irqsave(&host->lock, flags);
2666 host->rescan_disable = 1;
2667 spin_unlock_irqrestore(&host->lock, flags);
2668 cancel_delayed_work_sync(&host->detect);
2669
810caddb
UH
2670 if (!host->bus_ops)
2671 break;
2672
2673 /* Validate prerequisites for suspend */
2674 if (host->bus_ops->pre_suspend)
2675 err = host->bus_ops->pre_suspend(host);
2676 if (!err && host->bus_ops->suspend)
4c2ef25f
ML
2677 break;
2678
0db13fc2 2679 /* Calling bus_ops->remove() with a claimed host can deadlock */
58a8a4a1 2680 host->bus_ops->remove(host);
0db13fc2 2681 mmc_claim_host(host);
4c2ef25f 2682 mmc_detach_bus(host);
7f7e4129 2683 mmc_power_off(host);
4c2ef25f
ML
2684 mmc_release_host(host);
2685 host->pm_flags = 0;
2686 break;
2687
2688 case PM_POST_SUSPEND:
2689 case PM_POST_HIBERNATION:
274476f8 2690 case PM_POST_RESTORE:
4c2ef25f
ML
2691
2692 spin_lock_irqsave(&host->lock, flags);
2693 host->rescan_disable = 0;
2694 spin_unlock_irqrestore(&host->lock, flags);
2695 mmc_detect_change(host, 0);
2696
2697 }
2698
2699 return 0;
2700}
1da177e4
LT
2701#endif
2702
2220eedf
KD
2703/**
2704 * mmc_init_context_info() - init synchronization context
2705 * @host: mmc host
2706 *
2707 * Init struct context_info needed to implement asynchronous
2708 * request mechanism, used by mmc core, host driver and mmc requests
2709 * supplier.
2710 */
2711void mmc_init_context_info(struct mmc_host *host)
2712{
2713 spin_lock_init(&host->context_info.lock);
2714 host->context_info.is_new_req = false;
2715 host->context_info.is_done_rcv = false;
2716 host->context_info.is_waiting_last_req = false;
2717 init_waitqueue_head(&host->context_info.wait);
2718}
2719
ffce2e7e
PO
2720static int __init mmc_init(void)
2721{
2722 int ret;
2723
0d9ee5b2 2724 workqueue = alloc_ordered_workqueue("kmmcd", 0);
ffce2e7e
PO
2725 if (!workqueue)
2726 return -ENOMEM;
2727
2728 ret = mmc_register_bus();
e29a7d73
PO
2729 if (ret)
2730 goto destroy_workqueue;
2731
2732 ret = mmc_register_host_class();
2733 if (ret)
2734 goto unregister_bus;
2735
2736 ret = sdio_register_bus();
2737 if (ret)
2738 goto unregister_host_class;
2739
2740 return 0;
2741
2742unregister_host_class:
2743 mmc_unregister_host_class();
2744unregister_bus:
2745 mmc_unregister_bus();
2746destroy_workqueue:
2747 destroy_workqueue(workqueue);
2748
ffce2e7e
PO
2749 return ret;
2750}
2751
2752static void __exit mmc_exit(void)
2753{
e29a7d73 2754 sdio_unregister_bus();
ffce2e7e
PO
2755 mmc_unregister_host_class();
2756 mmc_unregister_bus();
2757 destroy_workqueue(workqueue);
2758}
2759
26074962 2760subsys_initcall(mmc_init);
ffce2e7e
PO
2761module_exit(mmc_exit);
2762
1da177e4 2763MODULE_LICENSE("GPL");
This page took 0.95511 seconds and 5 git commands to generate.