mmc: block: Use mmc_get_ext_csd() instead of mmc_send_ext_csd()
[deliverable/linux.git] / drivers / mmc / core / core.c
CommitLineData
1da177e4 1/*
aaac1b47 2 * linux/drivers/mmc/core/core.c
1da177e4
LT
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5b4fd9ae 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
ad3868b2 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
bce40a36 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
1da177e4
LT
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
1da177e4
LT
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
af8350c7 21#include <linux/leds.h>
b57c43ad 22#include <linux/scatterlist.h>
86e8286a 23#include <linux/log2.h>
5c13941a 24#include <linux/regulator/consumer.h>
e594573d 25#include <linux/pm_runtime.h>
bbd43682 26#include <linux/pm_wakeup.h>
35eb6db1 27#include <linux/suspend.h>
1b676f70
PF
28#include <linux/fault-inject.h>
29#include <linux/random.h>
950d56ac 30#include <linux/slab.h>
6e9e318b 31#include <linux/of.h>
1da177e4
LT
32
33#include <linux/mmc/card.h>
34#include <linux/mmc/host.h>
da7fbe58
PO
35#include <linux/mmc/mmc.h>
36#include <linux/mmc/sd.h>
740a221e 37#include <linux/mmc/slot-gpio.h>
1da177e4 38
aaac1b47 39#include "core.h"
ffce2e7e
PO
40#include "bus.h"
41#include "host.h"
e29a7d73 42#include "sdio_bus.h"
da7fbe58
PO
43
44#include "mmc_ops.h"
45#include "sd_ops.h"
5c4e6f13 46#include "sdio_ops.h"
1da177e4 47
8fee476b
TR
48/* If the device is not responding */
49#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
50
950d56ac
JC
51/*
52 * Background operations can take a long time, depending on the housekeeping
53 * operations the card has to perform.
54 */
55#define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
56
ffce2e7e 57static struct workqueue_struct *workqueue;
fa550189 58static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
ffce2e7e 59
af517150
DB
60/*
61 * Enabling software CRCs on the data blocks can be a significant (30%)
62 * performance cost, and for other reasons may not always be desired.
63 * So we allow it it to be disabled.
64 */
90ab5ee9 65bool use_spi_crc = 1;
af517150
DB
66module_param(use_spi_crc, bool, 0);
67
ffce2e7e
PO
68/*
69 * Internal function. Schedule delayed work in the MMC work queue.
70 */
71static int mmc_schedule_delayed_work(struct delayed_work *work,
72 unsigned long delay)
73{
74 return queue_delayed_work(workqueue, work, delay);
75}
76
77/*
78 * Internal function. Flush all scheduled work from the MMC work queue.
79 */
80static void mmc_flush_scheduled_work(void)
81{
82 flush_workqueue(workqueue);
83}
84
1b676f70
PF
85#ifdef CONFIG_FAIL_MMC_REQUEST
86
87/*
88 * Internal function. Inject random data errors.
89 * If mmc_data is NULL no errors are injected.
90 */
91static void mmc_should_fail_request(struct mmc_host *host,
92 struct mmc_request *mrq)
93{
94 struct mmc_command *cmd = mrq->cmd;
95 struct mmc_data *data = mrq->data;
96 static const int data_errors[] = {
97 -ETIMEDOUT,
98 -EILSEQ,
99 -EIO,
100 };
101
102 if (!data)
103 return;
104
105 if (cmd->error || data->error ||
106 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
107 return;
108
2e744fcb
AM
109 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
110 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
1b676f70
PF
111}
112
113#else /* CONFIG_FAIL_MMC_REQUEST */
114
115static inline void mmc_should_fail_request(struct mmc_host *host,
116 struct mmc_request *mrq)
117{
118}
119
120#endif /* CONFIG_FAIL_MMC_REQUEST */
121
1da177e4 122/**
fe10c6ab
RK
123 * mmc_request_done - finish processing an MMC request
124 * @host: MMC host which completed request
125 * @mrq: MMC request which request
1da177e4
LT
126 *
127 * MMC drivers should call this function when they have completed
fe10c6ab 128 * their processing of a request.
1da177e4
LT
129 */
130void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
131{
132 struct mmc_command *cmd = mrq->cmd;
920e70c5
RK
133 int err = cmd->error;
134
af517150
DB
135 if (err && cmd->retries && mmc_host_is_spi(host)) {
136 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
137 cmd->retries = 0;
138 }
139
d3049504 140 if (err && cmd->retries && !mmc_card_removed(host->card)) {
08a7e1df
AH
141 /*
142 * Request starter must handle retries - see
143 * mmc_wait_for_req_done().
144 */
145 if (mrq->done)
146 mrq->done(mrq);
e4d21708 147 } else {
1b676f70
PF
148 mmc_should_fail_request(host, mrq);
149
af8350c7
PO
150 led_trigger_event(host->led, LED_OFF);
151
fc75b708
AG
152 if (mrq->sbc) {
153 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
154 mmc_hostname(host), mrq->sbc->opcode,
155 mrq->sbc->error,
156 mrq->sbc->resp[0], mrq->sbc->resp[1],
157 mrq->sbc->resp[2], mrq->sbc->resp[3]);
158 }
159
e4d21708
PO
160 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
161 mmc_hostname(host), cmd->opcode, err,
162 cmd->resp[0], cmd->resp[1],
163 cmd->resp[2], cmd->resp[3]);
164
165 if (mrq->data) {
166 pr_debug("%s: %d bytes transferred: %d\n",
167 mmc_hostname(host),
168 mrq->data->bytes_xfered, mrq->data->error);
169 }
170
171 if (mrq->stop) {
172 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
173 mmc_hostname(host), mrq->stop->opcode,
174 mrq->stop->error,
175 mrq->stop->resp[0], mrq->stop->resp[1],
176 mrq->stop->resp[2], mrq->stop->resp[3]);
177 }
178
179 if (mrq->done)
180 mrq->done(mrq);
04566831 181
08c14071 182 mmc_host_clk_release(host);
1da177e4
LT
183 }
184}
185
186EXPORT_SYMBOL(mmc_request_done);
187
39361851 188static void
1da177e4
LT
189mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
190{
976d9276
PO
191#ifdef CONFIG_MMC_DEBUG
192 unsigned int i, sz;
a84756c5 193 struct scatterlist *sg;
976d9276
PO
194#endif
195
7b2fd4f2
JC
196 if (mrq->sbc) {
197 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
198 mmc_hostname(host), mrq->sbc->opcode,
199 mrq->sbc->arg, mrq->sbc->flags);
200 }
201
920e70c5
RK
202 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
203 mmc_hostname(host), mrq->cmd->opcode,
204 mrq->cmd->arg, mrq->cmd->flags);
1da177e4 205
e4d21708
PO
206 if (mrq->data) {
207 pr_debug("%s: blksz %d blocks %d flags %08x "
208 "tsac %d ms nsac %d\n",
209 mmc_hostname(host), mrq->data->blksz,
210 mrq->data->blocks, mrq->data->flags,
ce252edd 211 mrq->data->timeout_ns / 1000000,
e4d21708
PO
212 mrq->data->timeout_clks);
213 }
214
215 if (mrq->stop) {
216 pr_debug("%s: CMD%u arg %08x flags %08x\n",
217 mmc_hostname(host), mrq->stop->opcode,
218 mrq->stop->arg, mrq->stop->flags);
219 }
220
f22ee4ed 221 WARN_ON(!host->claimed);
1da177e4
LT
222
223 mrq->cmd->error = 0;
224 mrq->cmd->mrq = mrq;
cce411e6
AG
225 if (mrq->sbc) {
226 mrq->sbc->error = 0;
227 mrq->sbc->mrq = mrq;
228 }
1da177e4 229 if (mrq->data) {
fe4a3c7a 230 BUG_ON(mrq->data->blksz > host->max_blk_size);
55db890a
PO
231 BUG_ON(mrq->data->blocks > host->max_blk_count);
232 BUG_ON(mrq->data->blocks * mrq->data->blksz >
233 host->max_req_size);
fe4a3c7a 234
976d9276
PO
235#ifdef CONFIG_MMC_DEBUG
236 sz = 0;
a84756c5
PO
237 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
238 sz += sg->length;
976d9276
PO
239 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
240#endif
241
1da177e4
LT
242 mrq->cmd->data = mrq->data;
243 mrq->data->error = 0;
244 mrq->data->mrq = mrq;
245 if (mrq->stop) {
246 mrq->data->stop = mrq->stop;
247 mrq->stop->error = 0;
248 mrq->stop->mrq = mrq;
249 }
250 }
08c14071 251 mmc_host_clk_hold(host);
66c036e0 252 led_trigger_event(host->led, LED_FULL);
1da177e4
LT
253 host->ops->request(host, mrq);
254}
255
950d56ac
JC
256/**
257 * mmc_start_bkops - start BKOPS for supported cards
258 * @card: MMC card to start BKOPS
259 * @form_exception: A flag to indicate if this function was
260 * called due to an exception raised by the card
261 *
262 * Start background operations whenever requested.
263 * When the urgent BKOPS bit is set in a R1 command response
264 * then background operations should be started immediately.
265*/
266void mmc_start_bkops(struct mmc_card *card, bool from_exception)
267{
268 int err;
269 int timeout;
270 bool use_busy_signal;
271
272 BUG_ON(!card);
273
274 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
275 return;
276
277 err = mmc_read_bkops_status(card);
278 if (err) {
279 pr_err("%s: Failed to read bkops status: %d\n",
280 mmc_hostname(card->host), err);
281 return;
282 }
283
284 if (!card->ext_csd.raw_bkops_status)
285 return;
286
287 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
288 from_exception)
289 return;
290
291 mmc_claim_host(card->host);
292 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
293 timeout = MMC_BKOPS_MAX_TIMEOUT;
294 use_busy_signal = true;
295 } else {
296 timeout = 0;
297 use_busy_signal = false;
298 }
299
300 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
4509f847
UH
301 EXT_CSD_BKOPS_START, 1, timeout,
302 use_busy_signal, true, false);
950d56ac
JC
303 if (err) {
304 pr_warn("%s: Error %d starting bkops\n",
305 mmc_hostname(card->host), err);
306 goto out;
307 }
308
309 /*
310 * For urgent bkops status (LEVEL_2 and more)
311 * bkops executed synchronously, otherwise
312 * the operation is in progress
313 */
314 if (!use_busy_signal)
315 mmc_card_set_doing_bkops(card);
316out:
317 mmc_release_host(card->host);
318}
319EXPORT_SYMBOL(mmc_start_bkops);
320
2220eedf
KD
321/*
322 * mmc_wait_data_done() - done callback for data request
323 * @mrq: done data request
324 *
325 * Wakes up mmc context, passed as a callback to host controller driver
326 */
327static void mmc_wait_data_done(struct mmc_request *mrq)
328{
329 mrq->host->context_info.is_done_rcv = true;
330 wake_up_interruptible(&mrq->host->context_info.wait);
331}
332
1da177e4
LT
333static void mmc_wait_done(struct mmc_request *mrq)
334{
aa8b683a
PF
335 complete(&mrq->completion);
336}
337
2220eedf
KD
338/*
339 *__mmc_start_data_req() - starts data request
340 * @host: MMC host to start the request
341 * @mrq: data request to start
342 *
343 * Sets the done callback to be called when request is completed by the card.
344 * Starts data mmc request execution
345 */
346static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
347{
348 mrq->done = mmc_wait_data_done;
349 mrq->host = host;
350 if (mmc_card_removed(host->card)) {
351 mrq->cmd->error = -ENOMEDIUM;
9b844961 352 mmc_wait_data_done(mrq);
2220eedf
KD
353 return -ENOMEDIUM;
354 }
355 mmc_start_request(host, mrq);
356
357 return 0;
358}
359
956d9fd5 360static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
aa8b683a
PF
361{
362 init_completion(&mrq->completion);
363 mrq->done = mmc_wait_done;
d3049504
AH
364 if (mmc_card_removed(host->card)) {
365 mrq->cmd->error = -ENOMEDIUM;
366 complete(&mrq->completion);
956d9fd5 367 return -ENOMEDIUM;
d3049504 368 }
aa8b683a 369 mmc_start_request(host, mrq);
956d9fd5 370 return 0;
aa8b683a
PF
371}
372
2220eedf
KD
373/*
374 * mmc_wait_for_data_req_done() - wait for request completed
375 * @host: MMC host to prepare the command.
376 * @mrq: MMC request to wait for
377 *
378 * Blocks MMC context till host controller will ack end of data request
379 * execution or new request notification arrives from the block layer.
380 * Handles command retries.
381 *
382 * Returns enum mmc_blk_status after checking errors.
383 */
384static int mmc_wait_for_data_req_done(struct mmc_host *host,
385 struct mmc_request *mrq,
386 struct mmc_async_req *next_req)
387{
388 struct mmc_command *cmd;
389 struct mmc_context_info *context_info = &host->context_info;
390 int err;
391 unsigned long flags;
392
393 while (1) {
394 wait_event_interruptible(context_info->wait,
395 (context_info->is_done_rcv ||
396 context_info->is_new_req));
397 spin_lock_irqsave(&context_info->lock, flags);
398 context_info->is_waiting_last_req = false;
399 spin_unlock_irqrestore(&context_info->lock, flags);
400 if (context_info->is_done_rcv) {
401 context_info->is_done_rcv = false;
402 context_info->is_new_req = false;
403 cmd = mrq->cmd;
775a9362 404
2220eedf
KD
405 if (!cmd->error || !cmd->retries ||
406 mmc_card_removed(host->card)) {
407 err = host->areq->err_check(host->card,
408 host->areq);
409 break; /* return err */
410 } else {
411 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
412 mmc_hostname(host),
413 cmd->opcode, cmd->error);
414 cmd->retries--;
415 cmd->error = 0;
416 host->ops->request(host, mrq);
417 continue; /* wait for done/new event again */
418 }
419 } else if (context_info->is_new_req) {
420 context_info->is_new_req = false;
421 if (!next_req) {
422 err = MMC_BLK_NEW_REQUEST;
423 break; /* return err */
424 }
425 }
426 }
427 return err;
428}
429
aa8b683a
PF
430static void mmc_wait_for_req_done(struct mmc_host *host,
431 struct mmc_request *mrq)
432{
08a7e1df
AH
433 struct mmc_command *cmd;
434
435 while (1) {
436 wait_for_completion(&mrq->completion);
437
438 cmd = mrq->cmd;
775a9362
ME
439
440 /*
441 * If host has timed out waiting for the sanitize
442 * to complete, card might be still in programming state
443 * so let's try to bring the card out of programming
444 * state.
445 */
446 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
447 if (!mmc_interrupt_hpi(host->card)) {
6606110d
JP
448 pr_warn("%s: %s: Interrupted sanitize\n",
449 mmc_hostname(host), __func__);
775a9362
ME
450 cmd->error = 0;
451 break;
452 } else {
453 pr_err("%s: %s: Failed to interrupt sanitize\n",
454 mmc_hostname(host), __func__);
455 }
456 }
d3049504
AH
457 if (!cmd->error || !cmd->retries ||
458 mmc_card_removed(host->card))
08a7e1df
AH
459 break;
460
461 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
462 mmc_hostname(host), cmd->opcode, cmd->error);
463 cmd->retries--;
464 cmd->error = 0;
465 host->ops->request(host, mrq);
466 }
aa8b683a
PF
467}
468
469/**
470 * mmc_pre_req - Prepare for a new request
471 * @host: MMC host to prepare command
472 * @mrq: MMC request to prepare for
473 * @is_first_req: true if there is no previous started request
474 * that may run in parellel to this call, otherwise false
475 *
476 * mmc_pre_req() is called in prior to mmc_start_req() to let
477 * host prepare for the new request. Preparation of a request may be
478 * performed while another request is running on the host.
479 */
480static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
481 bool is_first_req)
482{
2c4967f7
SRT
483 if (host->ops->pre_req) {
484 mmc_host_clk_hold(host);
aa8b683a 485 host->ops->pre_req(host, mrq, is_first_req);
2c4967f7
SRT
486 mmc_host_clk_release(host);
487 }
aa8b683a
PF
488}
489
490/**
491 * mmc_post_req - Post process a completed request
492 * @host: MMC host to post process command
493 * @mrq: MMC request to post process for
494 * @err: Error, if non zero, clean up any resources made in pre_req
495 *
496 * Let the host post process a completed request. Post processing of
497 * a request may be performed while another reuqest is running.
498 */
499static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
500 int err)
501{
2c4967f7
SRT
502 if (host->ops->post_req) {
503 mmc_host_clk_hold(host);
aa8b683a 504 host->ops->post_req(host, mrq, err);
2c4967f7
SRT
505 mmc_host_clk_release(host);
506 }
1da177e4
LT
507}
508
aa8b683a
PF
509/**
510 * mmc_start_req - start a non-blocking request
511 * @host: MMC host to start command
512 * @areq: async request to start
513 * @error: out parameter returns 0 for success, otherwise non zero
514 *
515 * Start a new MMC custom command request for a host.
516 * If there is on ongoing async request wait for completion
517 * of that request and start the new one and return.
518 * Does not wait for the new request to complete.
519 *
520 * Returns the completed request, NULL in case of none completed.
521 * Wait for the an ongoing request (previoulsy started) to complete and
522 * return the completed request. If there is no ongoing request, NULL
523 * is returned without waiting. NULL is not an error condition.
524 */
525struct mmc_async_req *mmc_start_req(struct mmc_host *host,
526 struct mmc_async_req *areq, int *error)
527{
528 int err = 0;
956d9fd5 529 int start_err = 0;
aa8b683a
PF
530 struct mmc_async_req *data = host->areq;
531
532 /* Prepare a new request */
533 if (areq)
534 mmc_pre_req(host, areq->mrq, !host->areq);
535
536 if (host->areq) {
f5c2758f
JC
537 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
538 if (err == MMC_BLK_NEW_REQUEST) {
539 if (error)
540 *error = err;
541 /*
542 * The previous request was not completed,
543 * nothing to return
544 */
545 return NULL;
546 }
950d56ac
JC
547 /*
548 * Check BKOPS urgency for each R1 response
549 */
550 if (host->card && mmc_card_mmc(host->card) &&
551 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
552 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
64b12a68
SK
553 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
554
555 /* Cancel the prepared request */
556 if (areq)
557 mmc_post_req(host, areq->mrq, -EINVAL);
558
950d56ac 559 mmc_start_bkops(host->card, true);
64b12a68
SK
560
561 /* prepare the request again */
562 if (areq)
563 mmc_pre_req(host, areq->mrq, !host->areq);
564 }
aa8b683a
PF
565 }
566
956d9fd5 567 if (!err && areq)
2220eedf 568 start_err = __mmc_start_data_req(host, areq->mrq);
aa8b683a
PF
569
570 if (host->areq)
571 mmc_post_req(host, host->areq->mrq, 0);
572
956d9fd5
UH
573 /* Cancel a prepared request if it was not started. */
574 if ((err || start_err) && areq)
f5c2758f 575 mmc_post_req(host, areq->mrq, -EINVAL);
956d9fd5
UH
576
577 if (err)
578 host->areq = NULL;
579 else
580 host->areq = areq;
581
aa8b683a
PF
582 if (error)
583 *error = err;
584 return data;
585}
586EXPORT_SYMBOL(mmc_start_req);
587
67a61c48
PO
588/**
589 * mmc_wait_for_req - start a request and wait for completion
590 * @host: MMC host to start command
591 * @mrq: MMC request to start
592 *
593 * Start a new MMC custom command request for a host, and wait
594 * for the command to complete. Does not attempt to parse the
595 * response.
596 */
597void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
1da177e4 598{
aa8b683a
PF
599 __mmc_start_req(host, mrq);
600 mmc_wait_for_req_done(host, mrq);
1da177e4 601}
1da177e4
LT
602EXPORT_SYMBOL(mmc_wait_for_req);
603
eb0d8f13
JC
604/**
605 * mmc_interrupt_hpi - Issue for High priority Interrupt
606 * @card: the MMC card associated with the HPI transfer
607 *
608 * Issued High Priority Interrupt, and check for card status
950d56ac 609 * until out-of prg-state.
eb0d8f13
JC
610 */
611int mmc_interrupt_hpi(struct mmc_card *card)
612{
613 int err;
614 u32 status;
6af9e96e 615 unsigned long prg_wait;
eb0d8f13
JC
616
617 BUG_ON(!card);
618
619 if (!card->ext_csd.hpi_en) {
620 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
621 return 1;
622 }
623
624 mmc_claim_host(card->host);
625 err = mmc_send_status(card, &status);
626 if (err) {
627 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
628 goto out;
629 }
630
6af9e96e
V
631 switch (R1_CURRENT_STATE(status)) {
632 case R1_STATE_IDLE:
633 case R1_STATE_READY:
634 case R1_STATE_STBY:
211d4fe5 635 case R1_STATE_TRAN:
6af9e96e 636 /*
211d4fe5 637 * In idle and transfer states, HPI is not needed and the caller
6af9e96e
V
638 * can issue the next intended command immediately
639 */
640 goto out;
641 case R1_STATE_PRG:
642 break;
643 default:
644 /* In all other states, it's illegal to issue HPI */
645 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
646 mmc_hostname(card->host), R1_CURRENT_STATE(status));
647 err = -EINVAL;
648 goto out;
649 }
650
651 err = mmc_send_hpi_cmd(card, &status);
652 if (err)
653 goto out;
654
655 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
656 do {
657 err = mmc_send_status(card, &status);
658
659 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
660 break;
661 if (time_after(jiffies, prg_wait))
662 err = -ETIMEDOUT;
663 } while (!err);
eb0d8f13
JC
664
665out:
666 mmc_release_host(card->host);
667 return err;
668}
669EXPORT_SYMBOL(mmc_interrupt_hpi);
670
1da177e4
LT
671/**
672 * mmc_wait_for_cmd - start a command and wait for completion
673 * @host: MMC host to start command
674 * @cmd: MMC command to start
675 * @retries: maximum number of retries
676 *
677 * Start a new MMC command for a host, and wait for the command
678 * to complete. Return any error that occurred while the command
679 * was executing. Do not attempt to parse the response.
680 */
681int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
682{
ad5fd972 683 struct mmc_request mrq = {NULL};
1da177e4 684
d84075c8 685 WARN_ON(!host->claimed);
1da177e4 686
1da177e4
LT
687 memset(cmd->resp, 0, sizeof(cmd->resp));
688 cmd->retries = retries;
689
690 mrq.cmd = cmd;
691 cmd->data = NULL;
692
693 mmc_wait_for_req(host, &mrq);
694
695 return cmd->error;
696}
697
698EXPORT_SYMBOL(mmc_wait_for_cmd);
699
950d56ac
JC
700/**
701 * mmc_stop_bkops - stop ongoing BKOPS
702 * @card: MMC card to check BKOPS
703 *
704 * Send HPI command to stop ongoing background operations to
705 * allow rapid servicing of foreground operations, e.g. read/
706 * writes. Wait until the card comes out of the programming state
707 * to avoid errors in servicing read/write requests.
708 */
709int mmc_stop_bkops(struct mmc_card *card)
710{
711 int err = 0;
712
713 BUG_ON(!card);
714 err = mmc_interrupt_hpi(card);
715
716 /*
717 * If err is EINVAL, we can't issue an HPI.
718 * It should complete the BKOPS.
719 */
720 if (!err || (err == -EINVAL)) {
721 mmc_card_clr_doing_bkops(card);
722 err = 0;
723 }
724
725 return err;
726}
727EXPORT_SYMBOL(mmc_stop_bkops);
728
729int mmc_read_bkops_status(struct mmc_card *card)
730{
731 int err;
732 u8 *ext_csd;
733
734 /*
735 * In future work, we should consider storing the entire ext_csd.
736 */
737 ext_csd = kmalloc(512, GFP_KERNEL);
738 if (!ext_csd) {
739 pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
740 mmc_hostname(card->host));
741 return -ENOMEM;
742 }
743
744 mmc_claim_host(card->host);
745 err = mmc_send_ext_csd(card, ext_csd);
746 mmc_release_host(card->host);
747 if (err)
748 goto out;
749
750 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
751 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
752out:
753 kfree(ext_csd);
754 return err;
755}
756EXPORT_SYMBOL(mmc_read_bkops_status);
757
d773d725
RK
758/**
759 * mmc_set_data_timeout - set the timeout for a data command
760 * @data: data phase for command
761 * @card: the MMC card associated with the data transfer
67a61c48
PO
762 *
763 * Computes the data timeout parameters according to the
764 * correct algorithm given the card type.
d773d725 765 */
b146d26a 766void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
d773d725
RK
767{
768 unsigned int mult;
769
e6f918bf
PO
770 /*
771 * SDIO cards only define an upper 1 s limit on access.
772 */
773 if (mmc_card_sdio(card)) {
774 data->timeout_ns = 1000000000;
775 data->timeout_clks = 0;
776 return;
777 }
778
d773d725
RK
779 /*
780 * SD cards use a 100 multiplier rather than 10
781 */
782 mult = mmc_card_sd(card) ? 100 : 10;
783
784 /*
785 * Scale up the multiplier (and therefore the timeout) by
786 * the r2w factor for writes.
787 */
b146d26a 788 if (data->flags & MMC_DATA_WRITE)
d773d725
RK
789 mult <<= card->csd.r2w_factor;
790
791 data->timeout_ns = card->csd.tacc_ns * mult;
792 data->timeout_clks = card->csd.tacc_clks * mult;
793
794 /*
795 * SD cards also have an upper limit on the timeout.
796 */
797 if (mmc_card_sd(card)) {
798 unsigned int timeout_us, limit_us;
799
800 timeout_us = data->timeout_ns / 1000;
e9b86841
LW
801 if (mmc_host_clk_rate(card->host))
802 timeout_us += data->timeout_clks * 1000 /
803 (mmc_host_clk_rate(card->host) / 1000);
d773d725 804
b146d26a 805 if (data->flags & MMC_DATA_WRITE)
493890e7 806 /*
3bdc9ba8
PW
807 * The MMC spec "It is strongly recommended
808 * for hosts to implement more than 500ms
809 * timeout value even if the card indicates
810 * the 250ms maximum busy length." Even the
811 * previous value of 300ms is known to be
812 * insufficient for some cards.
493890e7 813 */
3bdc9ba8 814 limit_us = 3000000;
d773d725
RK
815 else
816 limit_us = 100000;
817
fba68bd2
PL
818 /*
819 * SDHC cards always use these fixed values.
820 */
821 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
d773d725
RK
822 data->timeout_ns = limit_us * 1000;
823 data->timeout_clks = 0;
824 }
f7bf11a3
SW
825
826 /* assign limit value if invalid */
827 if (timeout_us == 0)
828 data->timeout_ns = limit_us * 1000;
d773d725 829 }
6de5fc9c
SNX
830
831 /*
832 * Some cards require longer data read timeout than indicated in CSD.
833 * Address this by setting the read timeout to a "reasonably high"
834 * value. For the cards tested, 300ms has proven enough. If necessary,
835 * this value can be increased if other problematic cards require this.
836 */
837 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
838 data->timeout_ns = 300000000;
839 data->timeout_clks = 0;
840 }
841
c0c88871
WM
842 /*
843 * Some cards need very high timeouts if driven in SPI mode.
844 * The worst observed timeout was 900ms after writing a
845 * continuous stream of data until the internal logic
846 * overflowed.
847 */
848 if (mmc_host_is_spi(card->host)) {
849 if (data->flags & MMC_DATA_WRITE) {
850 if (data->timeout_ns < 1000000000)
851 data->timeout_ns = 1000000000; /* 1s */
852 } else {
853 if (data->timeout_ns < 100000000)
854 data->timeout_ns = 100000000; /* 100ms */
855 }
856 }
d773d725
RK
857}
858EXPORT_SYMBOL(mmc_set_data_timeout);
859
ad3868b2
PO
860/**
861 * mmc_align_data_size - pads a transfer size to a more optimal value
862 * @card: the MMC card associated with the data transfer
863 * @sz: original transfer size
864 *
865 * Pads the original data size with a number of extra bytes in
866 * order to avoid controller bugs and/or performance hits
867 * (e.g. some controllers revert to PIO for certain sizes).
868 *
869 * Returns the improved size, which might be unmodified.
870 *
871 * Note that this function is only relevant when issuing a
872 * single scatter gather entry.
873 */
874unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
875{
876 /*
877 * FIXME: We don't have a system for the controller to tell
878 * the core about its problems yet, so for now we just 32-bit
879 * align the size.
880 */
881 sz = ((sz + 3) / 4) * 4;
882
883 return sz;
884}
885EXPORT_SYMBOL(mmc_align_data_size);
886
1da177e4 887/**
2342f332 888 * __mmc_claim_host - exclusively claim a host
1da177e4 889 * @host: mmc host to claim
2342f332 890 * @abort: whether or not the operation should be aborted
1da177e4 891 *
2342f332
NP
892 * Claim a host for a set of operations. If @abort is non null and
893 * dereference a non-zero value then this will return prematurely with
894 * that non-zero value without acquiring the lock. Returns zero
895 * with the lock held otherwise.
1da177e4 896 */
2342f332 897int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
1da177e4
LT
898{
899 DECLARE_WAITQUEUE(wait, current);
900 unsigned long flags;
2342f332 901 int stop;
1da177e4 902
cf795bfb
PO
903 might_sleep();
904
1da177e4
LT
905 add_wait_queue(&host->wq, &wait);
906 spin_lock_irqsave(&host->lock, flags);
907 while (1) {
908 set_current_state(TASK_UNINTERRUPTIBLE);
2342f332 909 stop = abort ? atomic_read(abort) : 0;
319a3f14 910 if (stop || !host->claimed || host->claimer == current)
1da177e4
LT
911 break;
912 spin_unlock_irqrestore(&host->lock, flags);
913 schedule();
914 spin_lock_irqsave(&host->lock, flags);
915 }
916 set_current_state(TASK_RUNNING);
319a3f14 917 if (!stop) {
2342f332 918 host->claimed = 1;
319a3f14
AH
919 host->claimer = current;
920 host->claim_cnt += 1;
921 } else
2342f332 922 wake_up(&host->wq);
1da177e4
LT
923 spin_unlock_irqrestore(&host->lock, flags);
924 remove_wait_queue(&host->wq, &wait);
907d2e7c
AH
925 if (host->ops->enable && !stop && host->claim_cnt == 1)
926 host->ops->enable(host);
2342f332 927 return stop;
1da177e4
LT
928}
929
2342f332 930EXPORT_SYMBOL(__mmc_claim_host);
8ea926b2 931
ab1efd27 932/**
907d2e7c 933 * mmc_release_host - release a host
ab1efd27
UH
934 * @host: mmc host to release
935 *
907d2e7c
AH
936 * Release a MMC host, allowing others to claim the host
937 * for their operations.
ab1efd27 938 */
907d2e7c 939void mmc_release_host(struct mmc_host *host)
8ea926b2
AH
940{
941 unsigned long flags;
942
907d2e7c
AH
943 WARN_ON(!host->claimed);
944
945 if (host->ops->disable && host->claim_cnt == 1)
946 host->ops->disable(host);
947
8ea926b2 948 spin_lock_irqsave(&host->lock, flags);
319a3f14
AH
949 if (--host->claim_cnt) {
950 /* Release for nested claim */
951 spin_unlock_irqrestore(&host->lock, flags);
952 } else {
953 host->claimed = 0;
954 host->claimer = NULL;
955 spin_unlock_irqrestore(&host->lock, flags);
956 wake_up(&host->wq);
957 }
8ea926b2 958}
1da177e4
LT
959EXPORT_SYMBOL(mmc_release_host);
960
e94cfef6
UH
961/*
962 * This is a helper function, which fetches a runtime pm reference for the
963 * card device and also claims the host.
964 */
965void mmc_get_card(struct mmc_card *card)
966{
967 pm_runtime_get_sync(&card->dev);
968 mmc_claim_host(card->host);
969}
970EXPORT_SYMBOL(mmc_get_card);
971
972/*
973 * This is a helper function, which releases the host and drops the runtime
974 * pm reference for the card device.
975 */
976void mmc_put_card(struct mmc_card *card)
977{
978 mmc_release_host(card->host);
979 pm_runtime_mark_last_busy(&card->dev);
980 pm_runtime_put_autosuspend(&card->dev);
981}
982EXPORT_SYMBOL(mmc_put_card);
983
7ea239d9
PO
984/*
985 * Internal function that does the actual ios call to the host driver,
986 * optionally printing some debug output.
987 */
920e70c5
RK
988static inline void mmc_set_ios(struct mmc_host *host)
989{
990 struct mmc_ios *ios = &host->ios;
991
cd9277c0
PO
992 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
993 "width %u timing %u\n",
920e70c5
RK
994 mmc_hostname(host), ios->clock, ios->bus_mode,
995 ios->power_mode, ios->chip_select, ios->vdd,
cd9277c0 996 ios->bus_width, ios->timing);
fba68bd2 997
04566831
LW
998 if (ios->clock > 0)
999 mmc_set_ungated(host);
920e70c5
RK
1000 host->ops->set_ios(host, ios);
1001}
1002
7ea239d9
PO
1003/*
1004 * Control chip select pin on a host.
1005 */
da7fbe58 1006void mmc_set_chip_select(struct mmc_host *host, int mode)
1da177e4 1007{
778e277c 1008 mmc_host_clk_hold(host);
da7fbe58
PO
1009 host->ios.chip_select = mode;
1010 mmc_set_ios(host);
778e277c 1011 mmc_host_clk_release(host);
1da177e4
LT
1012}
1013
7ea239d9
PO
1014/*
1015 * Sets the host clock to the highest possible frequency that
1016 * is below "hz".
1017 */
778e277c 1018static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
7ea239d9 1019{
6a98f1e8 1020 WARN_ON(hz && hz < host->f_min);
7ea239d9
PO
1021
1022 if (hz > host->f_max)
1023 hz = host->f_max;
1024
1025 host->ios.clock = hz;
1026 mmc_set_ios(host);
1027}
1028
778e277c
MW
1029void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1030{
1031 mmc_host_clk_hold(host);
1032 __mmc_set_clock(host, hz);
1033 mmc_host_clk_release(host);
1034}
1035
04566831
LW
1036#ifdef CONFIG_MMC_CLKGATE
1037/*
1038 * This gates the clock by setting it to 0 Hz.
1039 */
1040void mmc_gate_clock(struct mmc_host *host)
1041{
1042 unsigned long flags;
1043
1044 spin_lock_irqsave(&host->clk_lock, flags);
1045 host->clk_old = host->ios.clock;
1046 host->ios.clock = 0;
1047 host->clk_gated = true;
1048 spin_unlock_irqrestore(&host->clk_lock, flags);
1049 mmc_set_ios(host);
1050}
1051
1052/*
1053 * This restores the clock from gating by using the cached
1054 * clock value.
1055 */
1056void mmc_ungate_clock(struct mmc_host *host)
1057{
1058 /*
1059 * We should previously have gated the clock, so the clock shall
1060 * be 0 here! The clock may however be 0 during initialization,
1061 * when some request operations are performed before setting
1062 * the frequency. When ungate is requested in that situation
1063 * we just ignore the call.
1064 */
1065 if (host->clk_old) {
1066 BUG_ON(host->ios.clock);
1067 /* This call will also set host->clk_gated to false */
778e277c 1068 __mmc_set_clock(host, host->clk_old);
04566831
LW
1069 }
1070}
1071
1072void mmc_set_ungated(struct mmc_host *host)
1073{
1074 unsigned long flags;
1075
1076 /*
1077 * We've been given a new frequency while the clock is gated,
1078 * so make sure we regard this as ungating it.
1079 */
1080 spin_lock_irqsave(&host->clk_lock, flags);
1081 host->clk_gated = false;
1082 spin_unlock_irqrestore(&host->clk_lock, flags);
1083}
1084
1085#else
1086void mmc_set_ungated(struct mmc_host *host)
1087{
1088}
1089#endif
1090
7ea239d9
PO
1091/*
1092 * Change the bus mode (open drain/push-pull) of a host.
1093 */
1094void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1095{
778e277c 1096 mmc_host_clk_hold(host);
7ea239d9
PO
1097 host->ios.bus_mode = mode;
1098 mmc_set_ios(host);
778e277c 1099 mmc_host_clk_release(host);
7ea239d9
PO
1100}
1101
0f8d8ea6
AH
1102/*
1103 * Change data bus width of a host.
1104 */
1105void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1106{
778e277c 1107 mmc_host_clk_hold(host);
4c4cb171
PR
1108 host->ios.bus_width = width;
1109 mmc_set_ios(host);
778e277c 1110 mmc_host_clk_release(host);
0f8d8ea6
AH
1111}
1112
86e8286a
AV
1113/**
1114 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1115 * @vdd: voltage (mV)
1116 * @low_bits: prefer low bits in boundary cases
1117 *
1118 * This function returns the OCR bit number according to the provided @vdd
1119 * value. If conversion is not possible a negative errno value returned.
1120 *
1121 * Depending on the @low_bits flag the function prefers low or high OCR bits
1122 * on boundary voltages. For example,
1123 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1124 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1125 *
1126 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1127 */
1128static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1129{
1130 const int max_bit = ilog2(MMC_VDD_35_36);
1131 int bit;
1132
1133 if (vdd < 1650 || vdd > 3600)
1134 return -EINVAL;
1135
1136 if (vdd >= 1650 && vdd <= 1950)
1137 return ilog2(MMC_VDD_165_195);
1138
1139 if (low_bits)
1140 vdd -= 1;
1141
1142 /* Base 2000 mV, step 100 mV, bit's base 8. */
1143 bit = (vdd - 2000) / 100 + 8;
1144 if (bit > max_bit)
1145 return max_bit;
1146 return bit;
1147}
1148
1149/**
1150 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1151 * @vdd_min: minimum voltage value (mV)
1152 * @vdd_max: maximum voltage value (mV)
1153 *
1154 * This function returns the OCR mask bits according to the provided @vdd_min
1155 * and @vdd_max values. If conversion is not possible the function returns 0.
1156 *
1157 * Notes wrt boundary cases:
1158 * This function sets the OCR bits for all boundary voltages, for example
1159 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1160 * MMC_VDD_34_35 mask.
1161 */
1162u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1163{
1164 u32 mask = 0;
1165
1166 if (vdd_max < vdd_min)
1167 return 0;
1168
1169 /* Prefer high bits for the boundary vdd_max values. */
1170 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1171 if (vdd_max < 0)
1172 return 0;
1173
1174 /* Prefer low bits for the boundary vdd_min values. */
1175 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1176 if (vdd_min < 0)
1177 return 0;
1178
1179 /* Fill the mask, from max bit to min bit. */
1180 while (vdd_max >= vdd_min)
1181 mask |= 1 << vdd_max--;
1182
1183 return mask;
1184}
1185EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1186
6e9e318b
HZ
1187#ifdef CONFIG_OF
1188
1189/**
1190 * mmc_of_parse_voltage - return mask of supported voltages
1191 * @np: The device node need to be parsed.
1192 * @mask: mask of voltages available for MMC/SD/SDIO
1193 *
1194 * 1. Return zero on success.
1195 * 2. Return negative errno: voltage-range is invalid.
1196 */
1197int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1198{
1199 const u32 *voltage_ranges;
1200 int num_ranges, i;
1201
1202 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1203 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1204 if (!voltage_ranges || !num_ranges) {
1205 pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1206 return -EINVAL;
1207 }
1208
1209 for (i = 0; i < num_ranges; i++) {
1210 const int j = i * 2;
1211 u32 ocr_mask;
1212
1213 ocr_mask = mmc_vddrange_to_ocrmask(
1214 be32_to_cpu(voltage_ranges[j]),
1215 be32_to_cpu(voltage_ranges[j + 1]));
1216 if (!ocr_mask) {
1217 pr_err("%s: voltage-range #%d is invalid\n",
1218 np->full_name, i);
1219 return -EINVAL;
1220 }
1221 *mask |= ocr_mask;
1222 }
1223
1224 return 0;
1225}
1226EXPORT_SYMBOL(mmc_of_parse_voltage);
1227
1228#endif /* CONFIG_OF */
1229
5c13941a
DB
1230#ifdef CONFIG_REGULATOR
1231
1232/**
1233 * mmc_regulator_get_ocrmask - return mask of supported voltages
1234 * @supply: regulator to use
1235 *
1236 * This returns either a negative errno, or a mask of voltages that
1237 * can be provided to MMC/SD/SDIO devices using the specified voltage
1238 * regulator. This would normally be called before registering the
1239 * MMC host adapter.
1240 */
1241int mmc_regulator_get_ocrmask(struct regulator *supply)
1242{
1243 int result = 0;
1244 int count;
1245 int i;
9ed7ca89
JMC
1246 int vdd_uV;
1247 int vdd_mV;
5c13941a
DB
1248
1249 count = regulator_count_voltages(supply);
1250 if (count < 0)
1251 return count;
1252
1253 for (i = 0; i < count; i++) {
5c13941a
DB
1254 vdd_uV = regulator_list_voltage(supply, i);
1255 if (vdd_uV <= 0)
1256 continue;
1257
1258 vdd_mV = vdd_uV / 1000;
1259 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1260 }
1261
9ed7ca89
JMC
1262 if (!result) {
1263 vdd_uV = regulator_get_voltage(supply);
1264 if (vdd_uV <= 0)
1265 return vdd_uV;
1266
1267 vdd_mV = vdd_uV / 1000;
1268 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1269 }
1270
5c13941a
DB
1271 return result;
1272}
45a6b32e 1273EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
5c13941a
DB
1274
1275/**
1276 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
99fc5131 1277 * @mmc: the host to regulate
5c13941a 1278 * @supply: regulator to use
99fc5131 1279 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
5c13941a
DB
1280 *
1281 * Returns zero on success, else negative errno.
1282 *
1283 * MMC host drivers may use this to enable or disable a regulator using
1284 * a particular supply voltage. This would normally be called from the
1285 * set_ios() method.
1286 */
99fc5131
LW
1287int mmc_regulator_set_ocr(struct mmc_host *mmc,
1288 struct regulator *supply,
1289 unsigned short vdd_bit)
5c13941a
DB
1290{
1291 int result = 0;
1292 int min_uV, max_uV;
5c13941a
DB
1293
1294 if (vdd_bit) {
1295 int tmp;
5c13941a 1296
9cde5b7a
CB
1297 /*
1298 * REVISIT mmc_vddrange_to_ocrmask() may have set some
5c13941a
DB
1299 * bits this regulator doesn't quite support ... don't
1300 * be too picky, most cards and regulators are OK with
1301 * a 0.1V range goof (it's a small error percentage).
1302 */
1303 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1304 if (tmp == 0) {
1305 min_uV = 1650 * 1000;
1306 max_uV = 1950 * 1000;
1307 } else {
1308 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1309 max_uV = min_uV + 100 * 1000;
1310 }
1311
ca6429d4 1312 result = regulator_set_voltage(supply, min_uV, max_uV);
99fc5131 1313 if (result == 0 && !mmc->regulator_enabled) {
5c13941a 1314 result = regulator_enable(supply);
99fc5131
LW
1315 if (!result)
1316 mmc->regulator_enabled = true;
1317 }
1318 } else if (mmc->regulator_enabled) {
5c13941a 1319 result = regulator_disable(supply);
99fc5131
LW
1320 if (result == 0)
1321 mmc->regulator_enabled = false;
5c13941a
DB
1322 }
1323
99fc5131
LW
1324 if (result)
1325 dev_err(mmc_dev(mmc),
1326 "could not set regulator OCR (%d)\n", result);
5c13941a
DB
1327 return result;
1328}
45a6b32e 1329EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
5c13941a 1330
4d1f52f9
TK
1331#endif /* CONFIG_REGULATOR */
1332
e137788d
GL
1333int mmc_regulator_get_supply(struct mmc_host *mmc)
1334{
1335 struct device *dev = mmc_dev(mmc);
e137788d
GL
1336 int ret;
1337
4d1f52f9 1338 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
bc35d5ed 1339 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
e137788d 1340
4d1f52f9
TK
1341 if (IS_ERR(mmc->supply.vmmc)) {
1342 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1343 return -EPROBE_DEFER;
1344 dev_info(dev, "No vmmc regulator found\n");
1345 } else {
1346 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1347 if (ret > 0)
1348 mmc->ocr_avail = ret;
1349 else
1350 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1351 }
e137788d 1352
4d1f52f9
TK
1353 if (IS_ERR(mmc->supply.vqmmc)) {
1354 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1355 return -EPROBE_DEFER;
1356 dev_info(dev, "No vqmmc regulator found\n");
1357 }
e137788d
GL
1358
1359 return 0;
1360}
1361EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1362
1da177e4
LT
1363/*
1364 * Mask off any voltages we don't support and select
1365 * the lowest voltage
1366 */
7ea239d9 1367u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1da177e4
LT
1368{
1369 int bit;
1370
726d6f23
UH
1371 /*
1372 * Sanity check the voltages that the card claims to
1373 * support.
1374 */
1375 if (ocr & 0x7F) {
1376 dev_warn(mmc_dev(host),
1377 "card claims to support voltages below defined range\n");
1378 ocr &= ~0x7F;
1379 }
1380
1da177e4 1381 ocr &= host->ocr_avail;
ce69d37b
UH
1382 if (!ocr) {
1383 dev_warn(mmc_dev(host), "no support for card's volts\n");
1384 return 0;
1385 }
1da177e4 1386
ce69d37b
UH
1387 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1388 bit = ffs(ocr) - 1;
63ef731a 1389 ocr &= 3 << bit;
ce69d37b 1390 mmc_power_cycle(host, ocr);
1da177e4 1391 } else {
ce69d37b
UH
1392 bit = fls(ocr) - 1;
1393 ocr &= 3 << bit;
1394 if (bit != host->ios.vdd)
1395 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1da177e4
LT
1396 }
1397
1398 return ocr;
1399}
1400
567c8903
JR
1401int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1402{
1403 int err = 0;
1404 int old_signal_voltage = host->ios.signal_voltage;
1405
1406 host->ios.signal_voltage = signal_voltage;
1407 if (host->ops->start_signal_voltage_switch) {
1408 mmc_host_clk_hold(host);
1409 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1410 mmc_host_clk_release(host);
1411 }
1412
1413 if (err)
1414 host->ios.signal_voltage = old_signal_voltage;
1415
1416 return err;
1417
1418}
1419
0f791fda 1420int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
f2119df6
AN
1421{
1422 struct mmc_command cmd = {0};
1423 int err = 0;
0797e5f1 1424 u32 clock;
f2119df6
AN
1425
1426 BUG_ON(!host);
1427
1428 /*
1429 * Send CMD11 only if the request is to switch the card to
1430 * 1.8V signalling.
1431 */
0797e5f1
JR
1432 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1433 return __mmc_set_signal_voltage(host, signal_voltage);
f2119df6 1434
0797e5f1
JR
1435 /*
1436 * If we cannot switch voltages, return failure so the caller
1437 * can continue without UHS mode
1438 */
1439 if (!host->ops->start_signal_voltage_switch)
1440 return -EPERM;
1441 if (!host->ops->card_busy)
6606110d
JP
1442 pr_warn("%s: cannot verify signal voltage switch\n",
1443 mmc_hostname(host));
0797e5f1
JR
1444
1445 cmd.opcode = SD_SWITCH_VOLTAGE;
1446 cmd.arg = 0;
1447 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1448
1449 err = mmc_wait_for_cmd(host, &cmd, 0);
1450 if (err)
1451 return err;
1452
1453 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1454 return -EIO;
1455
1456 mmc_host_clk_hold(host);
1457 /*
1458 * The card should drive cmd and dat[0:3] low immediately
1459 * after the response of cmd11, but wait 1 ms to be sure
1460 */
1461 mmc_delay(1);
1462 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1463 err = -EAGAIN;
1464 goto power_cycle;
1465 }
1466 /*
1467 * During a signal voltage level switch, the clock must be gated
1468 * for 5 ms according to the SD spec
1469 */
1470 clock = host->ios.clock;
1471 host->ios.clock = 0;
1472 mmc_set_ios(host);
f2119df6 1473
0797e5f1
JR
1474 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1475 /*
1476 * Voltages may not have been switched, but we've already
1477 * sent CMD11, so a power cycle is required anyway
1478 */
1479 err = -EAGAIN;
1480 goto power_cycle;
f2119df6
AN
1481 }
1482
0797e5f1
JR
1483 /* Keep clock gated for at least 5 ms */
1484 mmc_delay(5);
1485 host->ios.clock = clock;
1486 mmc_set_ios(host);
1487
1488 /* Wait for at least 1 ms according to spec */
1489 mmc_delay(1);
1490
1491 /*
1492 * Failure to switch is indicated by the card holding
1493 * dat[0:3] low
1494 */
1495 if (host->ops->card_busy && host->ops->card_busy(host))
1496 err = -EAGAIN;
1497
1498power_cycle:
1499 if (err) {
1500 pr_debug("%s: Signal voltage switch failed, "
1501 "power cycling card\n", mmc_hostname(host));
0f791fda 1502 mmc_power_cycle(host, ocr);
0797e5f1
JR
1503 }
1504
1505 mmc_host_clk_release(host);
1506
1507 return err;
f2119df6
AN
1508}
1509
b57c43ad 1510/*
7ea239d9 1511 * Select timing parameters for host.
b57c43ad 1512 */
7ea239d9 1513void mmc_set_timing(struct mmc_host *host, unsigned int timing)
b57c43ad 1514{
778e277c 1515 mmc_host_clk_hold(host);
7ea239d9
PO
1516 host->ios.timing = timing;
1517 mmc_set_ios(host);
778e277c 1518 mmc_host_clk_release(host);
b57c43ad
PO
1519}
1520
d6d50a15
AN
1521/*
1522 * Select appropriate driver type for host.
1523 */
1524void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1525{
778e277c 1526 mmc_host_clk_hold(host);
d6d50a15
AN
1527 host->ios.drv_type = drv_type;
1528 mmc_set_ios(host);
778e277c 1529 mmc_host_clk_release(host);
d6d50a15
AN
1530}
1531
1da177e4 1532/*
45f8245b
RK
1533 * Apply power to the MMC stack. This is a two-stage process.
1534 * First, we enable power to the card without the clock running.
1535 * We then wait a bit for the power to stabilise. Finally,
1536 * enable the bus drivers and clock to the card.
1537 *
1538 * We must _NOT_ enable the clock prior to power stablising.
1539 *
1540 * If a host does all the power sequencing itself, ignore the
1541 * initial MMC_POWER_UP stage.
1da177e4 1542 */
4a065193 1543void mmc_power_up(struct mmc_host *host, u32 ocr)
1da177e4 1544{
fa550189
UH
1545 if (host->ios.power_mode == MMC_POWER_ON)
1546 return;
1547
778e277c
MW
1548 mmc_host_clk_hold(host);
1549
4a065193 1550 host->ios.vdd = fls(ocr) - 1;
44669034 1551 if (mmc_host_is_spi(host))
af517150 1552 host->ios.chip_select = MMC_CS_HIGH;
44669034 1553 else
af517150 1554 host->ios.chip_select = MMC_CS_DONTCARE;
44669034 1555 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1da177e4 1556 host->ios.power_mode = MMC_POWER_UP;
f218278a 1557 host->ios.bus_width = MMC_BUS_WIDTH_1;
cd9277c0 1558 host->ios.timing = MMC_TIMING_LEGACY;
920e70c5 1559 mmc_set_ios(host);
1da177e4 1560
ceae98f2
TK
1561 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1562 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1563 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1564 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1565 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1566 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1567 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
108ecc4c 1568
f9996aee
PO
1569 /*
1570 * This delay should be sufficient to allow the power supply
1571 * to reach the minimum voltage.
1572 */
79bccc5a 1573 mmc_delay(10);
1da177e4 1574
88ae8b86 1575 host->ios.clock = host->f_init;
8dfd0374 1576
1da177e4 1577 host->ios.power_mode = MMC_POWER_ON;
920e70c5 1578 mmc_set_ios(host);
1da177e4 1579
f9996aee
PO
1580 /*
1581 * This delay must be at least 74 clock sizes, or 1 ms, or the
1582 * time required to reach a stable voltage.
1583 */
79bccc5a 1584 mmc_delay(10);
778e277c
MW
1585
1586 mmc_host_clk_release(host);
1da177e4
LT
1587}
1588
7f7e4129 1589void mmc_power_off(struct mmc_host *host)
1da177e4 1590{
fa550189
UH
1591 if (host->ios.power_mode == MMC_POWER_OFF)
1592 return;
1593
778e277c
MW
1594 mmc_host_clk_hold(host);
1595
1da177e4
LT
1596 host->ios.clock = 0;
1597 host->ios.vdd = 0;
b33d46c3 1598
af517150
DB
1599 if (!mmc_host_is_spi(host)) {
1600 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1601 host->ios.chip_select = MMC_CS_DONTCARE;
1602 }
1da177e4 1603 host->ios.power_mode = MMC_POWER_OFF;
f218278a 1604 host->ios.bus_width = MMC_BUS_WIDTH_1;
cd9277c0 1605 host->ios.timing = MMC_TIMING_LEGACY;
920e70c5 1606 mmc_set_ios(host);
778e277c 1607
041beb1d
DD
1608 /*
1609 * Some configurations, such as the 802.11 SDIO card in the OLPC
1610 * XO-1.5, require a short delay after poweroff before the card
1611 * can be successfully turned on again.
1612 */
1613 mmc_delay(1);
1614
778e277c 1615 mmc_host_clk_release(host);
1da177e4
LT
1616}
1617
4a065193 1618void mmc_power_cycle(struct mmc_host *host, u32 ocr)
276e090f
JR
1619{
1620 mmc_power_off(host);
1621 /* Wait at least 1 ms according to SD spec */
1622 mmc_delay(1);
4a065193 1623 mmc_power_up(host, ocr);
276e090f
JR
1624}
1625
39361851
AB
1626/*
1627 * Cleanup when the last reference to the bus operator is dropped.
1628 */
261172fd 1629static void __mmc_release_bus(struct mmc_host *host)
39361851
AB
1630{
1631 BUG_ON(!host);
1632 BUG_ON(host->bus_refs);
1633 BUG_ON(!host->bus_dead);
1634
1635 host->bus_ops = NULL;
1636}
1637
1638/*
1639 * Increase reference count of bus operator
1640 */
1641static inline void mmc_bus_get(struct mmc_host *host)
1642{
1643 unsigned long flags;
1644
1645 spin_lock_irqsave(&host->lock, flags);
1646 host->bus_refs++;
1647 spin_unlock_irqrestore(&host->lock, flags);
1648}
1649
1650/*
1651 * Decrease reference count of bus operator and free it if
1652 * it is the last reference.
1653 */
1654static inline void mmc_bus_put(struct mmc_host *host)
1655{
1656 unsigned long flags;
1657
1658 spin_lock_irqsave(&host->lock, flags);
1659 host->bus_refs--;
1660 if ((host->bus_refs == 0) && host->bus_ops)
1661 __mmc_release_bus(host);
1662 spin_unlock_irqrestore(&host->lock, flags);
1663}
1664
1da177e4 1665/*
7ea239d9
PO
1666 * Assign a mmc bus handler to a host. Only one bus handler may control a
1667 * host at any given time.
1da177e4 1668 */
7ea239d9 1669void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1da177e4 1670{
7ea239d9 1671 unsigned long flags;
e45a1bd2 1672
7ea239d9
PO
1673 BUG_ON(!host);
1674 BUG_ON(!ops);
b855885e 1675
d84075c8 1676 WARN_ON(!host->claimed);
bce40a36 1677
7ea239d9 1678 spin_lock_irqsave(&host->lock, flags);
bce40a36 1679
7ea239d9
PO
1680 BUG_ON(host->bus_ops);
1681 BUG_ON(host->bus_refs);
b57c43ad 1682
7ea239d9
PO
1683 host->bus_ops = ops;
1684 host->bus_refs = 1;
1685 host->bus_dead = 0;
b57c43ad 1686
7ea239d9 1687 spin_unlock_irqrestore(&host->lock, flags);
b57c43ad
PO
1688}
1689
7ea239d9 1690/*
7f7e4129 1691 * Remove the current bus handler from a host.
7ea239d9
PO
1692 */
1693void mmc_detach_bus(struct mmc_host *host)
7ccd266e 1694{
7ea239d9 1695 unsigned long flags;
7ccd266e 1696
7ea239d9 1697 BUG_ON(!host);
7ccd266e 1698
d84075c8
PO
1699 WARN_ON(!host->claimed);
1700 WARN_ON(!host->bus_ops);
cd9277c0 1701
7ea239d9 1702 spin_lock_irqsave(&host->lock, flags);
7ccd266e 1703
7ea239d9 1704 host->bus_dead = 1;
7ccd266e 1705
7ea239d9 1706 spin_unlock_irqrestore(&host->lock, flags);
1da177e4 1707
7ea239d9 1708 mmc_bus_put(host);
1da177e4
LT
1709}
1710
bbd43682
UH
1711static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1712 bool cd_irq)
1713{
1714#ifdef CONFIG_MMC_DEBUG
1715 unsigned long flags;
1716 spin_lock_irqsave(&host->lock, flags);
1717 WARN_ON(host->removed);
1718 spin_unlock_irqrestore(&host->lock, flags);
1719#endif
1720
1721 /*
1722 * If the device is configured as wakeup, we prevent a new sleep for
1723 * 5 s to give provision for user space to consume the event.
1724 */
1725 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1726 device_can_wakeup(mmc_dev(host)))
1727 pm_wakeup_event(mmc_dev(host), 5000);
1728
1729 host->detect_change = 1;
1730 mmc_schedule_delayed_work(&host->detect, delay);
1731}
1732
1da177e4
LT
1733/**
1734 * mmc_detect_change - process change of state on a MMC socket
1735 * @host: host which changed state.
8dc00335 1736 * @delay: optional delay to wait before detection (jiffies)
1da177e4 1737 *
67a61c48
PO
1738 * MMC drivers should call this when they detect a card has been
1739 * inserted or removed. The MMC layer will confirm that any
1740 * present card is still functional, and initialize any newly
1741 * inserted.
1da177e4 1742 */
8dc00335 1743void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1da177e4 1744{
bbd43682 1745 _mmc_detect_change(host, delay, true);
1da177e4 1746}
1da177e4
LT
1747EXPORT_SYMBOL(mmc_detect_change);
1748
dfe86cba
AH
1749void mmc_init_erase(struct mmc_card *card)
1750{
1751 unsigned int sz;
1752
1753 if (is_power_of_2(card->erase_size))
1754 card->erase_shift = ffs(card->erase_size) - 1;
1755 else
1756 card->erase_shift = 0;
1757
1758 /*
1759 * It is possible to erase an arbitrarily large area of an SD or MMC
1760 * card. That is not desirable because it can take a long time
1761 * (minutes) potentially delaying more important I/O, and also the
1762 * timeout calculations become increasingly hugely over-estimated.
1763 * Consequently, 'pref_erase' is defined as a guide to limit erases
1764 * to that size and alignment.
1765 *
1766 * For SD cards that define Allocation Unit size, limit erases to one
1767 * Allocation Unit at a time. For MMC cards that define High Capacity
1768 * Erase Size, whether it is switched on or not, limit to that size.
1769 * Otherwise just have a stab at a good value. For modern cards it
1770 * will end up being 4MiB. Note that if the value is too small, it
1771 * can end up taking longer to erase.
1772 */
1773 if (mmc_card_sd(card) && card->ssr.au) {
1774 card->pref_erase = card->ssr.au;
1775 card->erase_shift = ffs(card->ssr.au) - 1;
1776 } else if (card->ext_csd.hc_erase_size) {
1777 card->pref_erase = card->ext_csd.hc_erase_size;
cc8aa7de 1778 } else if (card->erase_size) {
dfe86cba
AH
1779 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1780 if (sz < 128)
1781 card->pref_erase = 512 * 1024 / 512;
1782 else if (sz < 512)
1783 card->pref_erase = 1024 * 1024 / 512;
1784 else if (sz < 1024)
1785 card->pref_erase = 2 * 1024 * 1024 / 512;
1786 else
1787 card->pref_erase = 4 * 1024 * 1024 / 512;
1788 if (card->pref_erase < card->erase_size)
1789 card->pref_erase = card->erase_size;
1790 else {
1791 sz = card->pref_erase % card->erase_size;
1792 if (sz)
1793 card->pref_erase += card->erase_size - sz;
1794 }
cc8aa7de
CD
1795 } else
1796 card->pref_erase = 0;
dfe86cba
AH
1797}
1798
eaa02f75
AW
1799static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1800 unsigned int arg, unsigned int qty)
dfe86cba
AH
1801{
1802 unsigned int erase_timeout;
1803
7194efb8
AH
1804 if (arg == MMC_DISCARD_ARG ||
1805 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1806 erase_timeout = card->ext_csd.trim_timeout;
1807 } else if (card->ext_csd.erase_group_def & 1) {
dfe86cba
AH
1808 /* High Capacity Erase Group Size uses HC timeouts */
1809 if (arg == MMC_TRIM_ARG)
1810 erase_timeout = card->ext_csd.trim_timeout;
1811 else
1812 erase_timeout = card->ext_csd.hc_erase_timeout;
1813 } else {
1814 /* CSD Erase Group Size uses write timeout */
1815 unsigned int mult = (10 << card->csd.r2w_factor);
1816 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1817 unsigned int timeout_us;
1818
1819 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1820 if (card->csd.tacc_ns < 1000000)
1821 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1822 else
1823 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1824
1825 /*
1826 * ios.clock is only a target. The real clock rate might be
1827 * less but not that much less, so fudge it by multiplying by 2.
1828 */
1829 timeout_clks <<= 1;
1830 timeout_us += (timeout_clks * 1000) /
4cf8c6dd 1831 (mmc_host_clk_rate(card->host) / 1000);
dfe86cba
AH
1832
1833 erase_timeout = timeout_us / 1000;
1834
1835 /*
1836 * Theoretically, the calculation could underflow so round up
1837 * to 1ms in that case.
1838 */
1839 if (!erase_timeout)
1840 erase_timeout = 1;
1841 }
1842
1843 /* Multiplier for secure operations */
1844 if (arg & MMC_SECURE_ARGS) {
1845 if (arg == MMC_SECURE_ERASE_ARG)
1846 erase_timeout *= card->ext_csd.sec_erase_mult;
1847 else
1848 erase_timeout *= card->ext_csd.sec_trim_mult;
1849 }
1850
1851 erase_timeout *= qty;
1852
1853 /*
1854 * Ensure at least a 1 second timeout for SPI as per
1855 * 'mmc_set_data_timeout()'
1856 */
1857 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1858 erase_timeout = 1000;
1859
eaa02f75 1860 return erase_timeout;
dfe86cba
AH
1861}
1862
eaa02f75
AW
1863static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1864 unsigned int arg,
1865 unsigned int qty)
dfe86cba 1866{
eaa02f75
AW
1867 unsigned int erase_timeout;
1868
dfe86cba
AH
1869 if (card->ssr.erase_timeout) {
1870 /* Erase timeout specified in SD Status Register (SSR) */
eaa02f75
AW
1871 erase_timeout = card->ssr.erase_timeout * qty +
1872 card->ssr.erase_offset;
dfe86cba
AH
1873 } else {
1874 /*
1875 * Erase timeout not specified in SD Status Register (SSR) so
1876 * use 250ms per write block.
1877 */
eaa02f75 1878 erase_timeout = 250 * qty;
dfe86cba
AH
1879 }
1880
1881 /* Must not be less than 1 second */
eaa02f75
AW
1882 if (erase_timeout < 1000)
1883 erase_timeout = 1000;
1884
1885 return erase_timeout;
dfe86cba
AH
1886}
1887
eaa02f75
AW
1888static unsigned int mmc_erase_timeout(struct mmc_card *card,
1889 unsigned int arg,
1890 unsigned int qty)
dfe86cba
AH
1891{
1892 if (mmc_card_sd(card))
eaa02f75 1893 return mmc_sd_erase_timeout(card, arg, qty);
dfe86cba 1894 else
eaa02f75 1895 return mmc_mmc_erase_timeout(card, arg, qty);
dfe86cba
AH
1896}
1897
1898static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1899 unsigned int to, unsigned int arg)
1900{
1278dba1 1901 struct mmc_command cmd = {0};
dfe86cba 1902 unsigned int qty = 0;
8fee476b 1903 unsigned long timeout;
dfe86cba
AH
1904 int err;
1905
1906 /*
1907 * qty is used to calculate the erase timeout which depends on how many
1908 * erase groups (or allocation units in SD terminology) are affected.
1909 * We count erasing part of an erase group as one erase group.
1910 * For SD, the allocation units are always a power of 2. For MMC, the
1911 * erase group size is almost certainly also power of 2, but it does not
1912 * seem to insist on that in the JEDEC standard, so we fall back to
1913 * division in that case. SD may not specify an allocation unit size,
1914 * in which case the timeout is based on the number of write blocks.
1915 *
1916 * Note that the timeout for secure trim 2 will only be correct if the
1917 * number of erase groups specified is the same as the total of all
1918 * preceding secure trim 1 commands. Since the power may have been
1919 * lost since the secure trim 1 commands occurred, it is generally
1920 * impossible to calculate the secure trim 2 timeout correctly.
1921 */
1922 if (card->erase_shift)
1923 qty += ((to >> card->erase_shift) -
1924 (from >> card->erase_shift)) + 1;
1925 else if (mmc_card_sd(card))
1926 qty += to - from + 1;
1927 else
1928 qty += ((to / card->erase_size) -
1929 (from / card->erase_size)) + 1;
1930
1931 if (!mmc_card_blockaddr(card)) {
1932 from <<= 9;
1933 to <<= 9;
1934 }
1935
dfe86cba
AH
1936 if (mmc_card_sd(card))
1937 cmd.opcode = SD_ERASE_WR_BLK_START;
1938 else
1939 cmd.opcode = MMC_ERASE_GROUP_START;
1940 cmd.arg = from;
1941 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1942 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1943 if (err) {
a3c76eb9 1944 pr_err("mmc_erase: group start error %d, "
dfe86cba 1945 "status %#x\n", err, cmd.resp[0]);
67716327 1946 err = -EIO;
dfe86cba
AH
1947 goto out;
1948 }
1949
1950 memset(&cmd, 0, sizeof(struct mmc_command));
1951 if (mmc_card_sd(card))
1952 cmd.opcode = SD_ERASE_WR_BLK_END;
1953 else
1954 cmd.opcode = MMC_ERASE_GROUP_END;
1955 cmd.arg = to;
1956 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1957 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1958 if (err) {
a3c76eb9 1959 pr_err("mmc_erase: group end error %d, status %#x\n",
dfe86cba 1960 err, cmd.resp[0]);
67716327 1961 err = -EIO;
dfe86cba
AH
1962 goto out;
1963 }
1964
1965 memset(&cmd, 0, sizeof(struct mmc_command));
1966 cmd.opcode = MMC_ERASE;
1967 cmd.arg = arg;
1968 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1d4d7744 1969 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
dfe86cba
AH
1970 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1971 if (err) {
a3c76eb9 1972 pr_err("mmc_erase: erase error %d, status %#x\n",
dfe86cba
AH
1973 err, cmd.resp[0]);
1974 err = -EIO;
1975 goto out;
1976 }
1977
1978 if (mmc_host_is_spi(card->host))
1979 goto out;
1980
8fee476b 1981 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
dfe86cba
AH
1982 do {
1983 memset(&cmd, 0, sizeof(struct mmc_command));
1984 cmd.opcode = MMC_SEND_STATUS;
1985 cmd.arg = card->rca << 16;
1986 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1987 /* Do not retry else we can't see errors */
1988 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1989 if (err || (cmd.resp[0] & 0xFDF92000)) {
a3c76eb9 1990 pr_err("error %d requesting status %#x\n",
dfe86cba
AH
1991 err, cmd.resp[0]);
1992 err = -EIO;
1993 goto out;
1994 }
8fee476b
TR
1995
1996 /* Timeout if the device never becomes ready for data and
1997 * never leaves the program state.
1998 */
1999 if (time_after(jiffies, timeout)) {
2000 pr_err("%s: Card stuck in programming state! %s\n",
2001 mmc_hostname(card->host), __func__);
2002 err = -EIO;
2003 goto out;
2004 }
2005
dfe86cba 2006 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
8fee476b 2007 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
dfe86cba
AH
2008out:
2009 return err;
2010}
2011
2012/**
2013 * mmc_erase - erase sectors.
2014 * @card: card to erase
2015 * @from: first sector to erase
2016 * @nr: number of sectors to erase
2017 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2018 *
2019 * Caller must claim host before calling this function.
2020 */
2021int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2022 unsigned int arg)
2023{
2024 unsigned int rem, to = from + nr;
2025
2026 if (!(card->host->caps & MMC_CAP_ERASE) ||
2027 !(card->csd.cmdclass & CCC_ERASE))
2028 return -EOPNOTSUPP;
2029
2030 if (!card->erase_size)
2031 return -EOPNOTSUPP;
2032
2033 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2034 return -EOPNOTSUPP;
2035
2036 if ((arg & MMC_SECURE_ARGS) &&
2037 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2038 return -EOPNOTSUPP;
2039
2040 if ((arg & MMC_TRIM_ARGS) &&
2041 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2042 return -EOPNOTSUPP;
2043
2044 if (arg == MMC_SECURE_ERASE_ARG) {
2045 if (from % card->erase_size || nr % card->erase_size)
2046 return -EINVAL;
2047 }
2048
2049 if (arg == MMC_ERASE_ARG) {
2050 rem = from % card->erase_size;
2051 if (rem) {
2052 rem = card->erase_size - rem;
2053 from += rem;
2054 if (nr > rem)
2055 nr -= rem;
2056 else
2057 return 0;
2058 }
2059 rem = nr % card->erase_size;
2060 if (rem)
2061 nr -= rem;
2062 }
2063
2064 if (nr == 0)
2065 return 0;
2066
2067 to = from + nr;
2068
2069 if (to <= from)
2070 return -EINVAL;
2071
2072 /* 'from' and 'to' are inclusive */
2073 to -= 1;
2074
2075 return mmc_do_erase(card, from, to, arg);
2076}
2077EXPORT_SYMBOL(mmc_erase);
2078
2079int mmc_can_erase(struct mmc_card *card)
2080{
2081 if ((card->host->caps & MMC_CAP_ERASE) &&
2082 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2083 return 1;
2084 return 0;
2085}
2086EXPORT_SYMBOL(mmc_can_erase);
2087
2088int mmc_can_trim(struct mmc_card *card)
2089{
2090 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2091 return 1;
2092 return 0;
2093}
2094EXPORT_SYMBOL(mmc_can_trim);
2095
b3bf9153
KP
2096int mmc_can_discard(struct mmc_card *card)
2097{
2098 /*
2099 * As there's no way to detect the discard support bit at v4.5
2100 * use the s/w feature support filed.
2101 */
2102 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2103 return 1;
2104 return 0;
2105}
2106EXPORT_SYMBOL(mmc_can_discard);
2107
d9ddd629
KP
2108int mmc_can_sanitize(struct mmc_card *card)
2109{
28302812
AH
2110 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2111 return 0;
d9ddd629
KP
2112 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2113 return 1;
2114 return 0;
2115}
2116EXPORT_SYMBOL(mmc_can_sanitize);
2117
dfe86cba
AH
2118int mmc_can_secure_erase_trim(struct mmc_card *card)
2119{
5204d00f
LC
2120 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2121 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
dfe86cba
AH
2122 return 1;
2123 return 0;
2124}
2125EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2126
2127int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2128 unsigned int nr)
2129{
2130 if (!card->erase_size)
2131 return 0;
2132 if (from % card->erase_size || nr % card->erase_size)
2133 return 0;
2134 return 1;
2135}
2136EXPORT_SYMBOL(mmc_erase_group_aligned);
1da177e4 2137
e056a1b5
AH
2138static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2139 unsigned int arg)
2140{
2141 struct mmc_host *host = card->host;
2142 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2143 unsigned int last_timeout = 0;
2144
2145 if (card->erase_shift)
2146 max_qty = UINT_MAX >> card->erase_shift;
2147 else if (mmc_card_sd(card))
2148 max_qty = UINT_MAX;
2149 else
2150 max_qty = UINT_MAX / card->erase_size;
2151
2152 /* Find the largest qty with an OK timeout */
2153 do {
2154 y = 0;
2155 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2156 timeout = mmc_erase_timeout(card, arg, qty + x);
68eb80e0 2157 if (timeout > host->max_busy_timeout)
e056a1b5
AH
2158 break;
2159 if (timeout < last_timeout)
2160 break;
2161 last_timeout = timeout;
2162 y = x;
2163 }
2164 qty += y;
2165 } while (y);
2166
2167 if (!qty)
2168 return 0;
2169
2170 if (qty == 1)
2171 return 1;
2172
2173 /* Convert qty to sectors */
2174 if (card->erase_shift)
2175 max_discard = --qty << card->erase_shift;
2176 else if (mmc_card_sd(card))
2177 max_discard = qty;
2178 else
2179 max_discard = --qty * card->erase_size;
2180
2181 return max_discard;
2182}
2183
2184unsigned int mmc_calc_max_discard(struct mmc_card *card)
2185{
2186 struct mmc_host *host = card->host;
2187 unsigned int max_discard, max_trim;
2188
68eb80e0 2189 if (!host->max_busy_timeout)
e056a1b5
AH
2190 return UINT_MAX;
2191
2192 /*
2193 * Without erase_group_def set, MMC erase timeout depends on clock
2194 * frequence which can change. In that case, the best choice is
2195 * just the preferred erase size.
2196 */
2197 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2198 return card->pref_erase;
2199
2200 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2201 if (mmc_can_trim(card)) {
2202 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2203 if (max_trim < max_discard)
2204 max_discard = max_trim;
2205 } else if (max_discard < card->erase_size) {
2206 max_discard = 0;
2207 }
2208 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
68eb80e0 2209 mmc_hostname(host), max_discard, host->max_busy_timeout);
e056a1b5
AH
2210 return max_discard;
2211}
2212EXPORT_SYMBOL(mmc_calc_max_discard);
2213
0f8d8ea6
AH
2214int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2215{
1278dba1 2216 struct mmc_command cmd = {0};
0f8d8ea6 2217
cdc99179 2218 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
0f8d8ea6
AH
2219 return 0;
2220
0f8d8ea6
AH
2221 cmd.opcode = MMC_SET_BLOCKLEN;
2222 cmd.arg = blocklen;
2223 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2224 return mmc_wait_for_cmd(card->host, &cmd, 5);
2225}
2226EXPORT_SYMBOL(mmc_set_blocklen);
2227
67c79db8
LP
2228int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2229 bool is_rel_write)
2230{
2231 struct mmc_command cmd = {0};
2232
2233 cmd.opcode = MMC_SET_BLOCK_COUNT;
2234 cmd.arg = blockcount & 0x0000FFFF;
2235 if (is_rel_write)
2236 cmd.arg |= 1 << 31;
2237 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2238 return mmc_wait_for_cmd(card->host, &cmd, 5);
2239}
2240EXPORT_SYMBOL(mmc_set_blockcount);
2241
b2499518
AH
2242static void mmc_hw_reset_for_init(struct mmc_host *host)
2243{
2244 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2245 return;
2246 mmc_host_clk_hold(host);
2247 host->ops->hw_reset(host);
2248 mmc_host_clk_release(host);
2249}
2250
2251int mmc_can_reset(struct mmc_card *card)
2252{
2253 u8 rst_n_function;
2254
2255 if (!mmc_card_mmc(card))
2256 return 0;
2257 rst_n_function = card->ext_csd.rst_n_function;
2258 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2259 return 0;
2260 return 1;
2261}
2262EXPORT_SYMBOL(mmc_can_reset);
2263
2264static int mmc_do_hw_reset(struct mmc_host *host, int check)
2265{
2266 struct mmc_card *card = host->card;
2267
b2499518
AH
2268 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2269 return -EOPNOTSUPP;
2270
2271 if (!card)
2272 return -EINVAL;
2273
2274 if (!mmc_can_reset(card))
2275 return -EOPNOTSUPP;
2276
2277 mmc_host_clk_hold(host);
2278 mmc_set_clock(host, host->f_init);
2279
2280 host->ops->hw_reset(host);
2281
2282 /* If the reset has happened, then a status command will fail */
2283 if (check) {
2284 struct mmc_command cmd = {0};
2285 int err;
2286
2287 cmd.opcode = MMC_SEND_STATUS;
2288 if (!mmc_host_is_spi(card->host))
2289 cmd.arg = card->rca << 16;
2290 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2291 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2292 if (!err) {
2293 mmc_host_clk_release(host);
2294 return -ENOSYS;
2295 }
2296 }
2297
b2499518
AH
2298 if (mmc_host_is_spi(host)) {
2299 host->ios.chip_select = MMC_CS_HIGH;
2300 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2301 } else {
2302 host->ios.chip_select = MMC_CS_DONTCARE;
2303 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2304 }
2305 host->ios.bus_width = MMC_BUS_WIDTH_1;
2306 host->ios.timing = MMC_TIMING_LEGACY;
2307 mmc_set_ios(host);
2308
2309 mmc_host_clk_release(host);
2310
2311 return host->bus_ops->power_restore(host);
2312}
2313
2314int mmc_hw_reset(struct mmc_host *host)
2315{
2316 return mmc_do_hw_reset(host, 0);
2317}
2318EXPORT_SYMBOL(mmc_hw_reset);
2319
2320int mmc_hw_reset_check(struct mmc_host *host)
2321{
2322 return mmc_do_hw_reset(host, 1);
2323}
2324EXPORT_SYMBOL(mmc_hw_reset_check);
2325
807e8e40
AR
2326static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2327{
2328 host->f_init = freq;
2329
2330#ifdef CONFIG_MMC_DEBUG
2331 pr_info("%s: %s: trying to init card at %u Hz\n",
2332 mmc_hostname(host), __func__, host->f_init);
2333#endif
4a065193 2334 mmc_power_up(host, host->ocr_avail);
2f94e55a 2335
b2499518
AH
2336 /*
2337 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2338 * do a hardware reset if possible.
2339 */
2340 mmc_hw_reset_for_init(host);
2341
2f94e55a
PR
2342 /*
2343 * sdio_reset sends CMD52 to reset card. Since we do not know
2344 * if the card is being re-initialized, just send it. CMD52
2345 * should be ignored by SD/eMMC cards.
2346 */
807e8e40
AR
2347 sdio_reset(host);
2348 mmc_go_idle(host);
2349
2350 mmc_send_if_cond(host, host->ocr_avail);
2351
2352 /* Order's important: probe SDIO, then SD, then MMC */
2353 if (!mmc_attach_sdio(host))
2354 return 0;
2355 if (!mmc_attach_sd(host))
2356 return 0;
2357 if (!mmc_attach_mmc(host))
2358 return 0;
2359
2360 mmc_power_off(host);
2361 return -EIO;
2362}
2363
d3049504
AH
2364int _mmc_detect_card_removed(struct mmc_host *host)
2365{
2366 int ret;
2367
5601aaf7 2368 if (host->caps & MMC_CAP_NONREMOVABLE)
d3049504
AH
2369 return 0;
2370
2371 if (!host->card || mmc_card_removed(host->card))
2372 return 1;
2373
2374 ret = host->bus_ops->alive(host);
1450734e
KL
2375
2376 /*
2377 * Card detect status and alive check may be out of sync if card is
2378 * removed slowly, when card detect switch changes while card/slot
2379 * pads are still contacted in hardware (refer to "SD Card Mechanical
2380 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2381 * detect work 200ms later for this case.
2382 */
2383 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2384 mmc_detect_change(host, msecs_to_jiffies(200));
2385 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2386 }
2387
d3049504
AH
2388 if (ret) {
2389 mmc_card_set_removed(host->card);
2390 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2391 }
2392
2393 return ret;
2394}
2395
2396int mmc_detect_card_removed(struct mmc_host *host)
2397{
2398 struct mmc_card *card = host->card;
f0cc9cf9 2399 int ret;
d3049504
AH
2400
2401 WARN_ON(!host->claimed);
f0cc9cf9
UH
2402
2403 if (!card)
2404 return 1;
2405
2406 ret = mmc_card_removed(card);
d3049504
AH
2407 /*
2408 * The card will be considered unchanged unless we have been asked to
2409 * detect a change or host requires polling to provide card detection.
2410 */
b6891679 2411 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
f0cc9cf9 2412 return ret;
d3049504
AH
2413
2414 host->detect_change = 0;
f0cc9cf9
UH
2415 if (!ret) {
2416 ret = _mmc_detect_card_removed(host);
b6891679 2417 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
f0cc9cf9
UH
2418 /*
2419 * Schedule a detect work as soon as possible to let a
2420 * rescan handle the card removal.
2421 */
2422 cancel_delayed_work(&host->detect);
bbd43682 2423 _mmc_detect_change(host, 0, false);
f0cc9cf9
UH
2424 }
2425 }
d3049504 2426
f0cc9cf9 2427 return ret;
d3049504
AH
2428}
2429EXPORT_SYMBOL(mmc_detect_card_removed);
2430
b93931a6 2431void mmc_rescan(struct work_struct *work)
1da177e4 2432{
c4028958
DH
2433 struct mmc_host *host =
2434 container_of(work, struct mmc_host, detect.work);
88ae8b86 2435 int i;
4c2ef25f 2436
fa372a51
MM
2437 if (host->trigger_card_event && host->ops->card_event) {
2438 host->ops->card_event(host);
2439 host->trigger_card_event = false;
2440 }
2441
807e8e40 2442 if (host->rescan_disable)
4c2ef25f 2443 return;
1da177e4 2444
3339d1e3
JR
2445 /* If there is a non-removable card registered, only scan once */
2446 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2447 return;
2448 host->rescan_entered = 1;
2449
7ea239d9 2450 mmc_bus_get(host);
b855885e 2451
30201e7f
OBC
2452 /*
2453 * if there is a _removable_ card registered, check whether it is
2454 * still present
2455 */
5601aaf7 2456 if (host->bus_ops && !host->bus_dead
bad3baba 2457 && !(host->caps & MMC_CAP_NONREMOVABLE))
94d89efb
JS
2458 host->bus_ops->detect(host);
2459
d3049504
AH
2460 host->detect_change = 0;
2461
c5841798
CB
2462 /*
2463 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2464 * the card is no longer present.
2465 */
94d89efb 2466 mmc_bus_put(host);
94d89efb
JS
2467 mmc_bus_get(host);
2468
2469 /* if there still is a card present, stop here */
2470 if (host->bus_ops != NULL) {
7ea239d9 2471 mmc_bus_put(host);
94d89efb
JS
2472 goto out;
2473 }
1da177e4 2474
94d89efb
JS
2475 /*
2476 * Only we can add a new handler, so it's safe to
2477 * release the lock here.
2478 */
2479 mmc_bus_put(host);
1da177e4 2480
c1b55bfc
SH
2481 if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2482 host->ops->get_cd(host) == 0) {
fa550189
UH
2483 mmc_claim_host(host);
2484 mmc_power_off(host);
2485 mmc_release_host(host);
94d89efb 2486 goto out;
fa550189 2487 }
1da177e4 2488
807e8e40 2489 mmc_claim_host(host);
88ae8b86 2490 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
807e8e40
AR
2491 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2492 break;
06b2233a 2493 if (freqs[i] <= host->f_min)
807e8e40 2494 break;
88ae8b86 2495 }
807e8e40
AR
2496 mmc_release_host(host);
2497
2498 out:
28f52482
AV
2499 if (host->caps & MMC_CAP_NEEDS_POLL)
2500 mmc_schedule_delayed_work(&host->detect, HZ);
1da177e4
LT
2501}
2502
b93931a6 2503void mmc_start_host(struct mmc_host *host)
1da177e4 2504{
fa550189 2505 host->f_init = max(freqs[0], host->f_min);
d9adcc12 2506 host->rescan_disable = 0;
8af465db 2507 host->ios.power_mode = MMC_POWER_UNDEFINED;
a08b17be
AH
2508 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2509 mmc_power_off(host);
2510 else
4a065193 2511 mmc_power_up(host, host->ocr_avail);
740a221e 2512 mmc_gpiod_request_cd_irq(host);
bbd43682 2513 _mmc_detect_change(host, 0, false);
1da177e4
LT
2514}
2515
b93931a6 2516void mmc_stop_host(struct mmc_host *host)
1da177e4 2517{
3b91e550 2518#ifdef CONFIG_MMC_DEBUG
1efd48b3
PO
2519 unsigned long flags;
2520 spin_lock_irqsave(&host->lock, flags);
3b91e550 2521 host->removed = 1;
1efd48b3 2522 spin_unlock_irqrestore(&host->lock, flags);
3b91e550 2523#endif
740a221e
AH
2524 if (host->slot.cd_irq >= 0)
2525 disable_irq(host->slot.cd_irq);
3b91e550 2526
d9adcc12 2527 host->rescan_disable = 1;
d9bcbf34 2528 cancel_delayed_work_sync(&host->detect);
3b91e550
PO
2529 mmc_flush_scheduled_work();
2530
da68c4eb
NP
2531 /* clear pm flags now and let card drivers set them as needed */
2532 host->pm_flags = 0;
2533
7ea239d9
PO
2534 mmc_bus_get(host);
2535 if (host->bus_ops && !host->bus_dead) {
0db13fc2 2536 /* Calling bus_ops->remove() with a claimed host can deadlock */
58a8a4a1 2537 host->bus_ops->remove(host);
7ea239d9
PO
2538 mmc_claim_host(host);
2539 mmc_detach_bus(host);
7f7e4129 2540 mmc_power_off(host);
7ea239d9 2541 mmc_release_host(host);
53509f0f
DK
2542 mmc_bus_put(host);
2543 return;
1da177e4 2544 }
7ea239d9
PO
2545 mmc_bus_put(host);
2546
2547 BUG_ON(host->card);
1da177e4
LT
2548
2549 mmc_power_off(host);
2550}
2551
12ae637f 2552int mmc_power_save_host(struct mmc_host *host)
eae1aeee 2553{
12ae637f
OBC
2554 int ret = 0;
2555
bb9cab94
DD
2556#ifdef CONFIG_MMC_DEBUG
2557 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2558#endif
2559
eae1aeee
AH
2560 mmc_bus_get(host);
2561
5601aaf7 2562 if (!host->bus_ops || host->bus_dead) {
eae1aeee 2563 mmc_bus_put(host);
12ae637f 2564 return -EINVAL;
eae1aeee
AH
2565 }
2566
2567 if (host->bus_ops->power_save)
12ae637f 2568 ret = host->bus_ops->power_save(host);
eae1aeee
AH
2569
2570 mmc_bus_put(host);
2571
2572 mmc_power_off(host);
12ae637f
OBC
2573
2574 return ret;
eae1aeee
AH
2575}
2576EXPORT_SYMBOL(mmc_power_save_host);
2577
12ae637f 2578int mmc_power_restore_host(struct mmc_host *host)
eae1aeee 2579{
12ae637f
OBC
2580 int ret;
2581
bb9cab94
DD
2582#ifdef CONFIG_MMC_DEBUG
2583 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2584#endif
2585
eae1aeee
AH
2586 mmc_bus_get(host);
2587
5601aaf7 2588 if (!host->bus_ops || host->bus_dead) {
eae1aeee 2589 mmc_bus_put(host);
12ae637f 2590 return -EINVAL;
eae1aeee
AH
2591 }
2592
69041150 2593 mmc_power_up(host, host->card->ocr);
12ae637f 2594 ret = host->bus_ops->power_restore(host);
eae1aeee
AH
2595
2596 mmc_bus_put(host);
12ae637f
OBC
2597
2598 return ret;
eae1aeee
AH
2599}
2600EXPORT_SYMBOL(mmc_power_restore_host);
2601
881d1c25
SJ
2602/*
2603 * Flush the cache to the non-volatile storage.
2604 */
2605int mmc_flush_cache(struct mmc_card *card)
2606{
881d1c25
SJ
2607 int err = 0;
2608
881d1c25
SJ
2609 if (mmc_card_mmc(card) &&
2610 (card->ext_csd.cache_size > 0) &&
2611 (card->ext_csd.cache_ctrl & 1)) {
2612 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2613 EXT_CSD_FLUSH_CACHE, 1, 0);
2614 if (err)
2615 pr_err("%s: cache flush error %d\n",
2616 mmc_hostname(card->host), err);
2617 }
2618
2619 return err;
2620}
2621EXPORT_SYMBOL(mmc_flush_cache);
2622
1da177e4
LT
2623#ifdef CONFIG_PM
2624
4c2ef25f
ML
2625/* Do the card removal on suspend if card is assumed removeable
2626 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2627 to sync the card.
2628*/
2629int mmc_pm_notify(struct notifier_block *notify_block,
2630 unsigned long mode, void *unused)
2631{
2632 struct mmc_host *host = container_of(
2633 notify_block, struct mmc_host, pm_notify);
2634 unsigned long flags;
810caddb 2635 int err = 0;
4c2ef25f
ML
2636
2637 switch (mode) {
2638 case PM_HIBERNATION_PREPARE:
2639 case PM_SUSPEND_PREPARE:
4c2ef25f
ML
2640 spin_lock_irqsave(&host->lock, flags);
2641 host->rescan_disable = 1;
2642 spin_unlock_irqrestore(&host->lock, flags);
2643 cancel_delayed_work_sync(&host->detect);
2644
810caddb
UH
2645 if (!host->bus_ops)
2646 break;
2647
2648 /* Validate prerequisites for suspend */
2649 if (host->bus_ops->pre_suspend)
2650 err = host->bus_ops->pre_suspend(host);
5601aaf7 2651 if (!err)
4c2ef25f
ML
2652 break;
2653
0db13fc2 2654 /* Calling bus_ops->remove() with a claimed host can deadlock */
58a8a4a1 2655 host->bus_ops->remove(host);
0db13fc2 2656 mmc_claim_host(host);
4c2ef25f 2657 mmc_detach_bus(host);
7f7e4129 2658 mmc_power_off(host);
4c2ef25f
ML
2659 mmc_release_host(host);
2660 host->pm_flags = 0;
2661 break;
2662
2663 case PM_POST_SUSPEND:
2664 case PM_POST_HIBERNATION:
274476f8 2665 case PM_POST_RESTORE:
4c2ef25f
ML
2666
2667 spin_lock_irqsave(&host->lock, flags);
2668 host->rescan_disable = 0;
2669 spin_unlock_irqrestore(&host->lock, flags);
bbd43682 2670 _mmc_detect_change(host, 0, false);
4c2ef25f
ML
2671
2672 }
2673
2674 return 0;
2675}
1da177e4
LT
2676#endif
2677
2220eedf
KD
2678/**
2679 * mmc_init_context_info() - init synchronization context
2680 * @host: mmc host
2681 *
2682 * Init struct context_info needed to implement asynchronous
2683 * request mechanism, used by mmc core, host driver and mmc requests
2684 * supplier.
2685 */
2686void mmc_init_context_info(struct mmc_host *host)
2687{
2688 spin_lock_init(&host->context_info.lock);
2689 host->context_info.is_new_req = false;
2690 host->context_info.is_done_rcv = false;
2691 host->context_info.is_waiting_last_req = false;
2692 init_waitqueue_head(&host->context_info.wait);
2693}
2694
ffce2e7e
PO
2695static int __init mmc_init(void)
2696{
2697 int ret;
2698
0d9ee5b2 2699 workqueue = alloc_ordered_workqueue("kmmcd", 0);
ffce2e7e
PO
2700 if (!workqueue)
2701 return -ENOMEM;
2702
2703 ret = mmc_register_bus();
e29a7d73
PO
2704 if (ret)
2705 goto destroy_workqueue;
2706
2707 ret = mmc_register_host_class();
2708 if (ret)
2709 goto unregister_bus;
2710
2711 ret = sdio_register_bus();
2712 if (ret)
2713 goto unregister_host_class;
2714
2715 return 0;
2716
2717unregister_host_class:
2718 mmc_unregister_host_class();
2719unregister_bus:
2720 mmc_unregister_bus();
2721destroy_workqueue:
2722 destroy_workqueue(workqueue);
2723
ffce2e7e
PO
2724 return ret;
2725}
2726
2727static void __exit mmc_exit(void)
2728{
e29a7d73 2729 sdio_unregister_bus();
ffce2e7e
PO
2730 mmc_unregister_host_class();
2731 mmc_unregister_bus();
2732 destroy_workqueue(workqueue);
2733}
2734
26074962 2735subsys_initcall(mmc_init);
ffce2e7e
PO
2736module_exit(mmc_exit);
2737
1da177e4 2738MODULE_LICENSE("GPL");
This page took 0.946811 seconds and 5 git commands to generate.