mmc: block: Retry errored data requests when re-tuning is needed
[deliverable/linux.git] / drivers / mmc / core / core.c
CommitLineData
1da177e4 1/*
aaac1b47 2 * linux/drivers/mmc/core/core.c
1da177e4
LT
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5b4fd9ae 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
ad3868b2 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
bce40a36 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
1da177e4
LT
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
1da177e4
LT
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
af8350c7 21#include <linux/leds.h>
b57c43ad 22#include <linux/scatterlist.h>
86e8286a 23#include <linux/log2.h>
5c13941a 24#include <linux/regulator/consumer.h>
e594573d 25#include <linux/pm_runtime.h>
bbd43682 26#include <linux/pm_wakeup.h>
35eb6db1 27#include <linux/suspend.h>
1b676f70
PF
28#include <linux/fault-inject.h>
29#include <linux/random.h>
950d56ac 30#include <linux/slab.h>
6e9e318b 31#include <linux/of.h>
1da177e4
LT
32
33#include <linux/mmc/card.h>
34#include <linux/mmc/host.h>
da7fbe58
PO
35#include <linux/mmc/mmc.h>
36#include <linux/mmc/sd.h>
740a221e 37#include <linux/mmc/slot-gpio.h>
1da177e4 38
aaac1b47 39#include "core.h"
ffce2e7e
PO
40#include "bus.h"
41#include "host.h"
e29a7d73 42#include "sdio_bus.h"
3aa8793f 43#include "pwrseq.h"
da7fbe58
PO
44
45#include "mmc_ops.h"
46#include "sd_ops.h"
5c4e6f13 47#include "sdio_ops.h"
1da177e4 48
8fee476b
TR
49/* If the device is not responding */
50#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
51
950d56ac
JC
52/*
53 * Background operations can take a long time, depending on the housekeeping
54 * operations the card has to perform.
55 */
56#define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
57
ffce2e7e 58static struct workqueue_struct *workqueue;
fa550189 59static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
ffce2e7e 60
af517150
DB
61/*
62 * Enabling software CRCs on the data blocks can be a significant (30%)
63 * performance cost, and for other reasons may not always be desired.
64 * So we allow it it to be disabled.
65 */
90ab5ee9 66bool use_spi_crc = 1;
af517150
DB
67module_param(use_spi_crc, bool, 0);
68
ffce2e7e
PO
69/*
70 * Internal function. Schedule delayed work in the MMC work queue.
71 */
72static int mmc_schedule_delayed_work(struct delayed_work *work,
73 unsigned long delay)
74{
75 return queue_delayed_work(workqueue, work, delay);
76}
77
78/*
79 * Internal function. Flush all scheduled work from the MMC work queue.
80 */
81static void mmc_flush_scheduled_work(void)
82{
83 flush_workqueue(workqueue);
84}
85
1b676f70
PF
86#ifdef CONFIG_FAIL_MMC_REQUEST
87
88/*
89 * Internal function. Inject random data errors.
90 * If mmc_data is NULL no errors are injected.
91 */
92static void mmc_should_fail_request(struct mmc_host *host,
93 struct mmc_request *mrq)
94{
95 struct mmc_command *cmd = mrq->cmd;
96 struct mmc_data *data = mrq->data;
97 static const int data_errors[] = {
98 -ETIMEDOUT,
99 -EILSEQ,
100 -EIO,
101 };
102
103 if (!data)
104 return;
105
106 if (cmd->error || data->error ||
107 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
108 return;
109
2e744fcb
AM
110 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
111 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
1b676f70
PF
112}
113
114#else /* CONFIG_FAIL_MMC_REQUEST */
115
116static inline void mmc_should_fail_request(struct mmc_host *host,
117 struct mmc_request *mrq)
118{
119}
120
121#endif /* CONFIG_FAIL_MMC_REQUEST */
122
1da177e4 123/**
fe10c6ab
RK
124 * mmc_request_done - finish processing an MMC request
125 * @host: MMC host which completed request
126 * @mrq: MMC request which request
1da177e4
LT
127 *
128 * MMC drivers should call this function when they have completed
fe10c6ab 129 * their processing of a request.
1da177e4
LT
130 */
131void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
132{
133 struct mmc_command *cmd = mrq->cmd;
920e70c5
RK
134 int err = cmd->error;
135
bd11e8bd
AH
136 /* Flag re-tuning needed on CRC errors */
137 if (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
138 (mrq->data && mrq->data->error == -EILSEQ) ||
139 (mrq->stop && mrq->stop->error == -EILSEQ))
140 mmc_retune_needed(host);
141
af517150
DB
142 if (err && cmd->retries && mmc_host_is_spi(host)) {
143 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
144 cmd->retries = 0;
145 }
146
d3049504 147 if (err && cmd->retries && !mmc_card_removed(host->card)) {
08a7e1df
AH
148 /*
149 * Request starter must handle retries - see
150 * mmc_wait_for_req_done().
151 */
152 if (mrq->done)
153 mrq->done(mrq);
e4d21708 154 } else {
1b676f70
PF
155 mmc_should_fail_request(host, mrq);
156
af8350c7
PO
157 led_trigger_event(host->led, LED_OFF);
158
fc75b708
AG
159 if (mrq->sbc) {
160 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
161 mmc_hostname(host), mrq->sbc->opcode,
162 mrq->sbc->error,
163 mrq->sbc->resp[0], mrq->sbc->resp[1],
164 mrq->sbc->resp[2], mrq->sbc->resp[3]);
165 }
166
e4d21708
PO
167 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
168 mmc_hostname(host), cmd->opcode, err,
169 cmd->resp[0], cmd->resp[1],
170 cmd->resp[2], cmd->resp[3]);
171
172 if (mrq->data) {
173 pr_debug("%s: %d bytes transferred: %d\n",
174 mmc_hostname(host),
175 mrq->data->bytes_xfered, mrq->data->error);
176 }
177
178 if (mrq->stop) {
179 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
180 mmc_hostname(host), mrq->stop->opcode,
181 mrq->stop->error,
182 mrq->stop->resp[0], mrq->stop->resp[1],
183 mrq->stop->resp[2], mrq->stop->resp[3]);
184 }
185
186 if (mrq->done)
187 mrq->done(mrq);
04566831 188
08c14071 189 mmc_host_clk_release(host);
1da177e4
LT
190 }
191}
192
193EXPORT_SYMBOL(mmc_request_done);
194
90a81489
AH
195static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
196{
197 int err;
198
199 /* Assumes host controller has been runtime resumed by mmc_claim_host */
200 err = mmc_retune(host);
201 if (err) {
202 mrq->cmd->error = err;
203 mmc_request_done(host, mrq);
204 return;
205 }
206
207 host->ops->request(host, mrq);
208}
209
f100c1c2 210static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
1da177e4 211{
976d9276
PO
212#ifdef CONFIG_MMC_DEBUG
213 unsigned int i, sz;
a84756c5 214 struct scatterlist *sg;
976d9276 215#endif
90a81489
AH
216 mmc_retune_hold(host);
217
f100c1c2
AH
218 if (mmc_card_removed(host->card))
219 return -ENOMEDIUM;
976d9276 220
7b2fd4f2
JC
221 if (mrq->sbc) {
222 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
223 mmc_hostname(host), mrq->sbc->opcode,
224 mrq->sbc->arg, mrq->sbc->flags);
225 }
226
920e70c5
RK
227 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
228 mmc_hostname(host), mrq->cmd->opcode,
229 mrq->cmd->arg, mrq->cmd->flags);
1da177e4 230
e4d21708
PO
231 if (mrq->data) {
232 pr_debug("%s: blksz %d blocks %d flags %08x "
233 "tsac %d ms nsac %d\n",
234 mmc_hostname(host), mrq->data->blksz,
235 mrq->data->blocks, mrq->data->flags,
ce252edd 236 mrq->data->timeout_ns / 1000000,
e4d21708
PO
237 mrq->data->timeout_clks);
238 }
239
240 if (mrq->stop) {
241 pr_debug("%s: CMD%u arg %08x flags %08x\n",
242 mmc_hostname(host), mrq->stop->opcode,
243 mrq->stop->arg, mrq->stop->flags);
244 }
245
f22ee4ed 246 WARN_ON(!host->claimed);
1da177e4
LT
247
248 mrq->cmd->error = 0;
249 mrq->cmd->mrq = mrq;
cce411e6
AG
250 if (mrq->sbc) {
251 mrq->sbc->error = 0;
252 mrq->sbc->mrq = mrq;
253 }
1da177e4 254 if (mrq->data) {
fe4a3c7a 255 BUG_ON(mrq->data->blksz > host->max_blk_size);
55db890a
PO
256 BUG_ON(mrq->data->blocks > host->max_blk_count);
257 BUG_ON(mrq->data->blocks * mrq->data->blksz >
258 host->max_req_size);
fe4a3c7a 259
976d9276
PO
260#ifdef CONFIG_MMC_DEBUG
261 sz = 0;
a84756c5
PO
262 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
263 sz += sg->length;
976d9276
PO
264 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
265#endif
266
1da177e4
LT
267 mrq->cmd->data = mrq->data;
268 mrq->data->error = 0;
269 mrq->data->mrq = mrq;
270 if (mrq->stop) {
271 mrq->data->stop = mrq->stop;
272 mrq->stop->error = 0;
273 mrq->stop->mrq = mrq;
274 }
275 }
08c14071 276 mmc_host_clk_hold(host);
66c036e0 277 led_trigger_event(host->led, LED_FULL);
90a81489 278 __mmc_start_request(host, mrq);
f100c1c2
AH
279
280 return 0;
1da177e4
LT
281}
282
950d56ac
JC
283/**
284 * mmc_start_bkops - start BKOPS for supported cards
285 * @card: MMC card to start BKOPS
286 * @form_exception: A flag to indicate if this function was
287 * called due to an exception raised by the card
288 *
289 * Start background operations whenever requested.
290 * When the urgent BKOPS bit is set in a R1 command response
291 * then background operations should be started immediately.
292*/
293void mmc_start_bkops(struct mmc_card *card, bool from_exception)
294{
295 int err;
296 int timeout;
297 bool use_busy_signal;
298
299 BUG_ON(!card);
300
0501be64 301 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
950d56ac
JC
302 return;
303
304 err = mmc_read_bkops_status(card);
305 if (err) {
306 pr_err("%s: Failed to read bkops status: %d\n",
307 mmc_hostname(card->host), err);
308 return;
309 }
310
311 if (!card->ext_csd.raw_bkops_status)
312 return;
313
314 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
315 from_exception)
316 return;
317
318 mmc_claim_host(card->host);
319 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
320 timeout = MMC_BKOPS_MAX_TIMEOUT;
321 use_busy_signal = true;
322 } else {
323 timeout = 0;
324 use_busy_signal = false;
325 }
326
66073d86
AH
327 mmc_retune_hold(card->host);
328
950d56ac 329 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
4509f847
UH
330 EXT_CSD_BKOPS_START, 1, timeout,
331 use_busy_signal, true, false);
950d56ac
JC
332 if (err) {
333 pr_warn("%s: Error %d starting bkops\n",
334 mmc_hostname(card->host), err);
66073d86 335 mmc_retune_release(card->host);
950d56ac
JC
336 goto out;
337 }
338
339 /*
340 * For urgent bkops status (LEVEL_2 and more)
341 * bkops executed synchronously, otherwise
342 * the operation is in progress
343 */
344 if (!use_busy_signal)
345 mmc_card_set_doing_bkops(card);
66073d86
AH
346 else
347 mmc_retune_release(card->host);
950d56ac
JC
348out:
349 mmc_release_host(card->host);
350}
351EXPORT_SYMBOL(mmc_start_bkops);
352
2220eedf
KD
353/*
354 * mmc_wait_data_done() - done callback for data request
355 * @mrq: done data request
356 *
357 * Wakes up mmc context, passed as a callback to host controller driver
358 */
359static void mmc_wait_data_done(struct mmc_request *mrq)
360{
361 mrq->host->context_info.is_done_rcv = true;
362 wake_up_interruptible(&mrq->host->context_info.wait);
363}
364
1da177e4
LT
365static void mmc_wait_done(struct mmc_request *mrq)
366{
aa8b683a
PF
367 complete(&mrq->completion);
368}
369
2220eedf
KD
370/*
371 *__mmc_start_data_req() - starts data request
372 * @host: MMC host to start the request
373 * @mrq: data request to start
374 *
375 * Sets the done callback to be called when request is completed by the card.
376 * Starts data mmc request execution
377 */
378static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
379{
f100c1c2
AH
380 int err;
381
2220eedf
KD
382 mrq->done = mmc_wait_data_done;
383 mrq->host = host;
f100c1c2
AH
384
385 err = mmc_start_request(host, mrq);
386 if (err) {
387 mrq->cmd->error = err;
9b844961 388 mmc_wait_data_done(mrq);
2220eedf 389 }
2220eedf 390
f100c1c2 391 return err;
2220eedf
KD
392}
393
956d9fd5 394static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
aa8b683a 395{
f100c1c2
AH
396 int err;
397
aa8b683a
PF
398 init_completion(&mrq->completion);
399 mrq->done = mmc_wait_done;
f100c1c2
AH
400
401 err = mmc_start_request(host, mrq);
402 if (err) {
403 mrq->cmd->error = err;
d3049504 404 complete(&mrq->completion);
d3049504 405 }
f100c1c2
AH
406
407 return err;
aa8b683a
PF
408}
409
2220eedf
KD
410/*
411 * mmc_wait_for_data_req_done() - wait for request completed
412 * @host: MMC host to prepare the command.
413 * @mrq: MMC request to wait for
414 *
415 * Blocks MMC context till host controller will ack end of data request
416 * execution or new request notification arrives from the block layer.
417 * Handles command retries.
418 *
419 * Returns enum mmc_blk_status after checking errors.
420 */
421static int mmc_wait_for_data_req_done(struct mmc_host *host,
422 struct mmc_request *mrq,
423 struct mmc_async_req *next_req)
424{
425 struct mmc_command *cmd;
426 struct mmc_context_info *context_info = &host->context_info;
427 int err;
428 unsigned long flags;
429
430 while (1) {
431 wait_event_interruptible(context_info->wait,
432 (context_info->is_done_rcv ||
433 context_info->is_new_req));
434 spin_lock_irqsave(&context_info->lock, flags);
435 context_info->is_waiting_last_req = false;
436 spin_unlock_irqrestore(&context_info->lock, flags);
437 if (context_info->is_done_rcv) {
438 context_info->is_done_rcv = false;
439 context_info->is_new_req = false;
440 cmd = mrq->cmd;
775a9362 441
2220eedf
KD
442 if (!cmd->error || !cmd->retries ||
443 mmc_card_removed(host->card)) {
444 err = host->areq->err_check(host->card,
445 host->areq);
446 break; /* return err */
447 } else {
90a81489 448 mmc_retune_recheck(host);
2220eedf
KD
449 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
450 mmc_hostname(host),
451 cmd->opcode, cmd->error);
452 cmd->retries--;
453 cmd->error = 0;
90a81489 454 __mmc_start_request(host, mrq);
2220eedf
KD
455 continue; /* wait for done/new event again */
456 }
457 } else if (context_info->is_new_req) {
458 context_info->is_new_req = false;
90a81489
AH
459 if (!next_req)
460 return MMC_BLK_NEW_REQUEST;
2220eedf
KD
461 }
462 }
90a81489 463 mmc_retune_release(host);
2220eedf
KD
464 return err;
465}
466
aa8b683a
PF
467static void mmc_wait_for_req_done(struct mmc_host *host,
468 struct mmc_request *mrq)
469{
08a7e1df
AH
470 struct mmc_command *cmd;
471
472 while (1) {
473 wait_for_completion(&mrq->completion);
474
475 cmd = mrq->cmd;
775a9362
ME
476
477 /*
478 * If host has timed out waiting for the sanitize
479 * to complete, card might be still in programming state
480 * so let's try to bring the card out of programming
481 * state.
482 */
483 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
484 if (!mmc_interrupt_hpi(host->card)) {
6606110d
JP
485 pr_warn("%s: %s: Interrupted sanitize\n",
486 mmc_hostname(host), __func__);
775a9362
ME
487 cmd->error = 0;
488 break;
489 } else {
490 pr_err("%s: %s: Failed to interrupt sanitize\n",
491 mmc_hostname(host), __func__);
492 }
493 }
d3049504
AH
494 if (!cmd->error || !cmd->retries ||
495 mmc_card_removed(host->card))
08a7e1df
AH
496 break;
497
90a81489
AH
498 mmc_retune_recheck(host);
499
08a7e1df
AH
500 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
501 mmc_hostname(host), cmd->opcode, cmd->error);
502 cmd->retries--;
503 cmd->error = 0;
90a81489 504 __mmc_start_request(host, mrq);
08a7e1df 505 }
90a81489
AH
506
507 mmc_retune_release(host);
aa8b683a
PF
508}
509
510/**
511 * mmc_pre_req - Prepare for a new request
512 * @host: MMC host to prepare command
513 * @mrq: MMC request to prepare for
514 * @is_first_req: true if there is no previous started request
515 * that may run in parellel to this call, otherwise false
516 *
517 * mmc_pre_req() is called in prior to mmc_start_req() to let
518 * host prepare for the new request. Preparation of a request may be
519 * performed while another request is running on the host.
520 */
521static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
522 bool is_first_req)
523{
2c4967f7
SRT
524 if (host->ops->pre_req) {
525 mmc_host_clk_hold(host);
aa8b683a 526 host->ops->pre_req(host, mrq, is_first_req);
2c4967f7
SRT
527 mmc_host_clk_release(host);
528 }
aa8b683a
PF
529}
530
531/**
532 * mmc_post_req - Post process a completed request
533 * @host: MMC host to post process command
534 * @mrq: MMC request to post process for
535 * @err: Error, if non zero, clean up any resources made in pre_req
536 *
537 * Let the host post process a completed request. Post processing of
538 * a request may be performed while another reuqest is running.
539 */
540static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
541 int err)
542{
2c4967f7
SRT
543 if (host->ops->post_req) {
544 mmc_host_clk_hold(host);
aa8b683a 545 host->ops->post_req(host, mrq, err);
2c4967f7
SRT
546 mmc_host_clk_release(host);
547 }
1da177e4
LT
548}
549
aa8b683a
PF
550/**
551 * mmc_start_req - start a non-blocking request
552 * @host: MMC host to start command
553 * @areq: async request to start
554 * @error: out parameter returns 0 for success, otherwise non zero
555 *
556 * Start a new MMC custom command request for a host.
557 * If there is on ongoing async request wait for completion
558 * of that request and start the new one and return.
559 * Does not wait for the new request to complete.
560 *
561 * Returns the completed request, NULL in case of none completed.
562 * Wait for the an ongoing request (previoulsy started) to complete and
563 * return the completed request. If there is no ongoing request, NULL
564 * is returned without waiting. NULL is not an error condition.
565 */
566struct mmc_async_req *mmc_start_req(struct mmc_host *host,
567 struct mmc_async_req *areq, int *error)
568{
569 int err = 0;
956d9fd5 570 int start_err = 0;
aa8b683a
PF
571 struct mmc_async_req *data = host->areq;
572
573 /* Prepare a new request */
574 if (areq)
575 mmc_pre_req(host, areq->mrq, !host->areq);
576
577 if (host->areq) {
f5c2758f
JC
578 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
579 if (err == MMC_BLK_NEW_REQUEST) {
580 if (error)
581 *error = err;
582 /*
583 * The previous request was not completed,
584 * nothing to return
585 */
586 return NULL;
587 }
950d56ac
JC
588 /*
589 * Check BKOPS urgency for each R1 response
590 */
591 if (host->card && mmc_card_mmc(host->card) &&
592 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
593 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
64b12a68
SK
594 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
595
596 /* Cancel the prepared request */
597 if (areq)
598 mmc_post_req(host, areq->mrq, -EINVAL);
599
950d56ac 600 mmc_start_bkops(host->card, true);
64b12a68
SK
601
602 /* prepare the request again */
603 if (areq)
604 mmc_pre_req(host, areq->mrq, !host->areq);
605 }
aa8b683a
PF
606 }
607
956d9fd5 608 if (!err && areq)
2220eedf 609 start_err = __mmc_start_data_req(host, areq->mrq);
aa8b683a
PF
610
611 if (host->areq)
612 mmc_post_req(host, host->areq->mrq, 0);
613
956d9fd5
UH
614 /* Cancel a prepared request if it was not started. */
615 if ((err || start_err) && areq)
f5c2758f 616 mmc_post_req(host, areq->mrq, -EINVAL);
956d9fd5
UH
617
618 if (err)
619 host->areq = NULL;
620 else
621 host->areq = areq;
622
aa8b683a
PF
623 if (error)
624 *error = err;
625 return data;
626}
627EXPORT_SYMBOL(mmc_start_req);
628
67a61c48
PO
629/**
630 * mmc_wait_for_req - start a request and wait for completion
631 * @host: MMC host to start command
632 * @mrq: MMC request to start
633 *
634 * Start a new MMC custom command request for a host, and wait
635 * for the command to complete. Does not attempt to parse the
636 * response.
637 */
638void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
1da177e4 639{
aa8b683a
PF
640 __mmc_start_req(host, mrq);
641 mmc_wait_for_req_done(host, mrq);
1da177e4 642}
1da177e4
LT
643EXPORT_SYMBOL(mmc_wait_for_req);
644
eb0d8f13
JC
645/**
646 * mmc_interrupt_hpi - Issue for High priority Interrupt
647 * @card: the MMC card associated with the HPI transfer
648 *
649 * Issued High Priority Interrupt, and check for card status
950d56ac 650 * until out-of prg-state.
eb0d8f13
JC
651 */
652int mmc_interrupt_hpi(struct mmc_card *card)
653{
654 int err;
655 u32 status;
6af9e96e 656 unsigned long prg_wait;
eb0d8f13
JC
657
658 BUG_ON(!card);
659
660 if (!card->ext_csd.hpi_en) {
661 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
662 return 1;
663 }
664
665 mmc_claim_host(card->host);
666 err = mmc_send_status(card, &status);
667 if (err) {
668 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
669 goto out;
670 }
671
6af9e96e
V
672 switch (R1_CURRENT_STATE(status)) {
673 case R1_STATE_IDLE:
674 case R1_STATE_READY:
675 case R1_STATE_STBY:
211d4fe5 676 case R1_STATE_TRAN:
6af9e96e 677 /*
211d4fe5 678 * In idle and transfer states, HPI is not needed and the caller
6af9e96e
V
679 * can issue the next intended command immediately
680 */
681 goto out;
682 case R1_STATE_PRG:
683 break;
684 default:
685 /* In all other states, it's illegal to issue HPI */
686 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
687 mmc_hostname(card->host), R1_CURRENT_STATE(status));
688 err = -EINVAL;
689 goto out;
690 }
691
692 err = mmc_send_hpi_cmd(card, &status);
693 if (err)
694 goto out;
695
696 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
697 do {
698 err = mmc_send_status(card, &status);
699
700 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
701 break;
702 if (time_after(jiffies, prg_wait))
703 err = -ETIMEDOUT;
704 } while (!err);
eb0d8f13
JC
705
706out:
707 mmc_release_host(card->host);
708 return err;
709}
710EXPORT_SYMBOL(mmc_interrupt_hpi);
711
1da177e4
LT
712/**
713 * mmc_wait_for_cmd - start a command and wait for completion
714 * @host: MMC host to start command
715 * @cmd: MMC command to start
716 * @retries: maximum number of retries
717 *
718 * Start a new MMC command for a host, and wait for the command
719 * to complete. Return any error that occurred while the command
720 * was executing. Do not attempt to parse the response.
721 */
722int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
723{
ad5fd972 724 struct mmc_request mrq = {NULL};
1da177e4 725
d84075c8 726 WARN_ON(!host->claimed);
1da177e4 727
1da177e4
LT
728 memset(cmd->resp, 0, sizeof(cmd->resp));
729 cmd->retries = retries;
730
731 mrq.cmd = cmd;
732 cmd->data = NULL;
733
734 mmc_wait_for_req(host, &mrq);
735
736 return cmd->error;
737}
738
739EXPORT_SYMBOL(mmc_wait_for_cmd);
740
950d56ac
JC
741/**
742 * mmc_stop_bkops - stop ongoing BKOPS
743 * @card: MMC card to check BKOPS
744 *
745 * Send HPI command to stop ongoing background operations to
746 * allow rapid servicing of foreground operations, e.g. read/
747 * writes. Wait until the card comes out of the programming state
748 * to avoid errors in servicing read/write requests.
749 */
750int mmc_stop_bkops(struct mmc_card *card)
751{
752 int err = 0;
753
754 BUG_ON(!card);
755 err = mmc_interrupt_hpi(card);
756
757 /*
758 * If err is EINVAL, we can't issue an HPI.
759 * It should complete the BKOPS.
760 */
761 if (!err || (err == -EINVAL)) {
762 mmc_card_clr_doing_bkops(card);
66073d86 763 mmc_retune_release(card->host);
950d56ac
JC
764 err = 0;
765 }
766
767 return err;
768}
769EXPORT_SYMBOL(mmc_stop_bkops);
770
771int mmc_read_bkops_status(struct mmc_card *card)
772{
773 int err;
774 u8 *ext_csd;
775
950d56ac 776 mmc_claim_host(card->host);
b2cada73 777 err = mmc_get_ext_csd(card, &ext_csd);
950d56ac
JC
778 mmc_release_host(card->host);
779 if (err)
b2cada73 780 return err;
950d56ac
JC
781
782 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
783 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
950d56ac 784 kfree(ext_csd);
b2cada73 785 return 0;
950d56ac
JC
786}
787EXPORT_SYMBOL(mmc_read_bkops_status);
788
d773d725
RK
789/**
790 * mmc_set_data_timeout - set the timeout for a data command
791 * @data: data phase for command
792 * @card: the MMC card associated with the data transfer
67a61c48
PO
793 *
794 * Computes the data timeout parameters according to the
795 * correct algorithm given the card type.
d773d725 796 */
b146d26a 797void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
d773d725
RK
798{
799 unsigned int mult;
800
e6f918bf
PO
801 /*
802 * SDIO cards only define an upper 1 s limit on access.
803 */
804 if (mmc_card_sdio(card)) {
805 data->timeout_ns = 1000000000;
806 data->timeout_clks = 0;
807 return;
808 }
809
d773d725
RK
810 /*
811 * SD cards use a 100 multiplier rather than 10
812 */
813 mult = mmc_card_sd(card) ? 100 : 10;
814
815 /*
816 * Scale up the multiplier (and therefore the timeout) by
817 * the r2w factor for writes.
818 */
b146d26a 819 if (data->flags & MMC_DATA_WRITE)
d773d725
RK
820 mult <<= card->csd.r2w_factor;
821
822 data->timeout_ns = card->csd.tacc_ns * mult;
823 data->timeout_clks = card->csd.tacc_clks * mult;
824
825 /*
826 * SD cards also have an upper limit on the timeout.
827 */
828 if (mmc_card_sd(card)) {
829 unsigned int timeout_us, limit_us;
830
831 timeout_us = data->timeout_ns / 1000;
e9b86841
LW
832 if (mmc_host_clk_rate(card->host))
833 timeout_us += data->timeout_clks * 1000 /
834 (mmc_host_clk_rate(card->host) / 1000);
d773d725 835
b146d26a 836 if (data->flags & MMC_DATA_WRITE)
493890e7 837 /*
3bdc9ba8
PW
838 * The MMC spec "It is strongly recommended
839 * for hosts to implement more than 500ms
840 * timeout value even if the card indicates
841 * the 250ms maximum busy length." Even the
842 * previous value of 300ms is known to be
843 * insufficient for some cards.
493890e7 844 */
3bdc9ba8 845 limit_us = 3000000;
d773d725
RK
846 else
847 limit_us = 100000;
848
fba68bd2
PL
849 /*
850 * SDHC cards always use these fixed values.
851 */
852 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
d773d725
RK
853 data->timeout_ns = limit_us * 1000;
854 data->timeout_clks = 0;
855 }
f7bf11a3
SW
856
857 /* assign limit value if invalid */
858 if (timeout_us == 0)
859 data->timeout_ns = limit_us * 1000;
d773d725 860 }
6de5fc9c
SNX
861
862 /*
863 * Some cards require longer data read timeout than indicated in CSD.
864 * Address this by setting the read timeout to a "reasonably high"
865 * value. For the cards tested, 300ms has proven enough. If necessary,
866 * this value can be increased if other problematic cards require this.
867 */
868 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
869 data->timeout_ns = 300000000;
870 data->timeout_clks = 0;
871 }
872
c0c88871
WM
873 /*
874 * Some cards need very high timeouts if driven in SPI mode.
875 * The worst observed timeout was 900ms after writing a
876 * continuous stream of data until the internal logic
877 * overflowed.
878 */
879 if (mmc_host_is_spi(card->host)) {
880 if (data->flags & MMC_DATA_WRITE) {
881 if (data->timeout_ns < 1000000000)
882 data->timeout_ns = 1000000000; /* 1s */
883 } else {
884 if (data->timeout_ns < 100000000)
885 data->timeout_ns = 100000000; /* 100ms */
886 }
887 }
d773d725
RK
888}
889EXPORT_SYMBOL(mmc_set_data_timeout);
890
ad3868b2
PO
891/**
892 * mmc_align_data_size - pads a transfer size to a more optimal value
893 * @card: the MMC card associated with the data transfer
894 * @sz: original transfer size
895 *
896 * Pads the original data size with a number of extra bytes in
897 * order to avoid controller bugs and/or performance hits
898 * (e.g. some controllers revert to PIO for certain sizes).
899 *
900 * Returns the improved size, which might be unmodified.
901 *
902 * Note that this function is only relevant when issuing a
903 * single scatter gather entry.
904 */
905unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
906{
907 /*
908 * FIXME: We don't have a system for the controller to tell
909 * the core about its problems yet, so for now we just 32-bit
910 * align the size.
911 */
912 sz = ((sz + 3) / 4) * 4;
913
914 return sz;
915}
916EXPORT_SYMBOL(mmc_align_data_size);
917
1da177e4 918/**
2342f332 919 * __mmc_claim_host - exclusively claim a host
1da177e4 920 * @host: mmc host to claim
2342f332 921 * @abort: whether or not the operation should be aborted
1da177e4 922 *
2342f332
NP
923 * Claim a host for a set of operations. If @abort is non null and
924 * dereference a non-zero value then this will return prematurely with
925 * that non-zero value without acquiring the lock. Returns zero
926 * with the lock held otherwise.
1da177e4 927 */
2342f332 928int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
1da177e4
LT
929{
930 DECLARE_WAITQUEUE(wait, current);
931 unsigned long flags;
2342f332 932 int stop;
9250aea7 933 bool pm = false;
1da177e4 934
cf795bfb
PO
935 might_sleep();
936
1da177e4
LT
937 add_wait_queue(&host->wq, &wait);
938 spin_lock_irqsave(&host->lock, flags);
939 while (1) {
940 set_current_state(TASK_UNINTERRUPTIBLE);
2342f332 941 stop = abort ? atomic_read(abort) : 0;
319a3f14 942 if (stop || !host->claimed || host->claimer == current)
1da177e4
LT
943 break;
944 spin_unlock_irqrestore(&host->lock, flags);
945 schedule();
946 spin_lock_irqsave(&host->lock, flags);
947 }
948 set_current_state(TASK_RUNNING);
319a3f14 949 if (!stop) {
2342f332 950 host->claimed = 1;
319a3f14
AH
951 host->claimer = current;
952 host->claim_cnt += 1;
9250aea7
UH
953 if (host->claim_cnt == 1)
954 pm = true;
319a3f14 955 } else
2342f332 956 wake_up(&host->wq);
1da177e4
LT
957 spin_unlock_irqrestore(&host->lock, flags);
958 remove_wait_queue(&host->wq, &wait);
9250aea7
UH
959
960 if (pm)
961 pm_runtime_get_sync(mmc_dev(host));
962
2342f332 963 return stop;
1da177e4 964}
2342f332 965EXPORT_SYMBOL(__mmc_claim_host);
8ea926b2 966
ab1efd27 967/**
907d2e7c 968 * mmc_release_host - release a host
ab1efd27
UH
969 * @host: mmc host to release
970 *
907d2e7c
AH
971 * Release a MMC host, allowing others to claim the host
972 * for their operations.
ab1efd27 973 */
907d2e7c 974void mmc_release_host(struct mmc_host *host)
8ea926b2
AH
975{
976 unsigned long flags;
977
907d2e7c
AH
978 WARN_ON(!host->claimed);
979
8ea926b2 980 spin_lock_irqsave(&host->lock, flags);
319a3f14
AH
981 if (--host->claim_cnt) {
982 /* Release for nested claim */
983 spin_unlock_irqrestore(&host->lock, flags);
984 } else {
985 host->claimed = 0;
986 host->claimer = NULL;
987 spin_unlock_irqrestore(&host->lock, flags);
988 wake_up(&host->wq);
9250aea7
UH
989 pm_runtime_mark_last_busy(mmc_dev(host));
990 pm_runtime_put_autosuspend(mmc_dev(host));
319a3f14 991 }
8ea926b2 992}
1da177e4
LT
993EXPORT_SYMBOL(mmc_release_host);
994
e94cfef6
UH
995/*
996 * This is a helper function, which fetches a runtime pm reference for the
997 * card device and also claims the host.
998 */
999void mmc_get_card(struct mmc_card *card)
1000{
1001 pm_runtime_get_sync(&card->dev);
1002 mmc_claim_host(card->host);
1003}
1004EXPORT_SYMBOL(mmc_get_card);
1005
1006/*
1007 * This is a helper function, which releases the host and drops the runtime
1008 * pm reference for the card device.
1009 */
1010void mmc_put_card(struct mmc_card *card)
1011{
1012 mmc_release_host(card->host);
1013 pm_runtime_mark_last_busy(&card->dev);
1014 pm_runtime_put_autosuspend(&card->dev);
1015}
1016EXPORT_SYMBOL(mmc_put_card);
1017
7ea239d9
PO
1018/*
1019 * Internal function that does the actual ios call to the host driver,
1020 * optionally printing some debug output.
1021 */
920e70c5
RK
1022static inline void mmc_set_ios(struct mmc_host *host)
1023{
1024 struct mmc_ios *ios = &host->ios;
1025
cd9277c0
PO
1026 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1027 "width %u timing %u\n",
920e70c5
RK
1028 mmc_hostname(host), ios->clock, ios->bus_mode,
1029 ios->power_mode, ios->chip_select, ios->vdd,
cd9277c0 1030 ios->bus_width, ios->timing);
fba68bd2 1031
04566831
LW
1032 if (ios->clock > 0)
1033 mmc_set_ungated(host);
920e70c5
RK
1034 host->ops->set_ios(host, ios);
1035}
1036
7ea239d9
PO
1037/*
1038 * Control chip select pin on a host.
1039 */
da7fbe58 1040void mmc_set_chip_select(struct mmc_host *host, int mode)
1da177e4 1041{
778e277c 1042 mmc_host_clk_hold(host);
da7fbe58
PO
1043 host->ios.chip_select = mode;
1044 mmc_set_ios(host);
778e277c 1045 mmc_host_clk_release(host);
1da177e4
LT
1046}
1047
7ea239d9
PO
1048/*
1049 * Sets the host clock to the highest possible frequency that
1050 * is below "hz".
1051 */
778e277c 1052static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
7ea239d9 1053{
6a98f1e8 1054 WARN_ON(hz && hz < host->f_min);
7ea239d9
PO
1055
1056 if (hz > host->f_max)
1057 hz = host->f_max;
1058
1059 host->ios.clock = hz;
1060 mmc_set_ios(host);
1061}
1062
778e277c
MW
1063void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1064{
1065 mmc_host_clk_hold(host);
1066 __mmc_set_clock(host, hz);
1067 mmc_host_clk_release(host);
1068}
1069
04566831
LW
1070#ifdef CONFIG_MMC_CLKGATE
1071/*
1072 * This gates the clock by setting it to 0 Hz.
1073 */
1074void mmc_gate_clock(struct mmc_host *host)
1075{
1076 unsigned long flags;
1077
1078 spin_lock_irqsave(&host->clk_lock, flags);
1079 host->clk_old = host->ios.clock;
1080 host->ios.clock = 0;
1081 host->clk_gated = true;
1082 spin_unlock_irqrestore(&host->clk_lock, flags);
1083 mmc_set_ios(host);
1084}
1085
1086/*
1087 * This restores the clock from gating by using the cached
1088 * clock value.
1089 */
1090void mmc_ungate_clock(struct mmc_host *host)
1091{
1092 /*
1093 * We should previously have gated the clock, so the clock shall
1094 * be 0 here! The clock may however be 0 during initialization,
1095 * when some request operations are performed before setting
1096 * the frequency. When ungate is requested in that situation
1097 * we just ignore the call.
1098 */
1099 if (host->clk_old) {
1100 BUG_ON(host->ios.clock);
1101 /* This call will also set host->clk_gated to false */
778e277c 1102 __mmc_set_clock(host, host->clk_old);
04566831
LW
1103 }
1104}
1105
1106void mmc_set_ungated(struct mmc_host *host)
1107{
1108 unsigned long flags;
1109
1110 /*
1111 * We've been given a new frequency while the clock is gated,
1112 * so make sure we regard this as ungating it.
1113 */
1114 spin_lock_irqsave(&host->clk_lock, flags);
1115 host->clk_gated = false;
1116 spin_unlock_irqrestore(&host->clk_lock, flags);
1117}
1118
1119#else
1120void mmc_set_ungated(struct mmc_host *host)
1121{
1122}
1123#endif
1124
63e415c6
AH
1125int mmc_execute_tuning(struct mmc_card *card)
1126{
1127 struct mmc_host *host = card->host;
1128 u32 opcode;
1129 int err;
1130
1131 if (!host->ops->execute_tuning)
1132 return 0;
1133
1134 if (mmc_card_mmc(card))
1135 opcode = MMC_SEND_TUNING_BLOCK_HS200;
1136 else
1137 opcode = MMC_SEND_TUNING_BLOCK;
1138
1139 mmc_host_clk_hold(host);
1140 err = host->ops->execute_tuning(host, opcode);
1141 mmc_host_clk_release(host);
1142
1143 if (err)
1144 pr_err("%s: tuning execution failed\n", mmc_hostname(host));
79d5a65a
AH
1145 else
1146 mmc_retune_enable(host);
63e415c6
AH
1147
1148 return err;
1149}
1150
7ea239d9
PO
1151/*
1152 * Change the bus mode (open drain/push-pull) of a host.
1153 */
1154void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1155{
778e277c 1156 mmc_host_clk_hold(host);
7ea239d9
PO
1157 host->ios.bus_mode = mode;
1158 mmc_set_ios(host);
778e277c 1159 mmc_host_clk_release(host);
7ea239d9
PO
1160}
1161
0f8d8ea6
AH
1162/*
1163 * Change data bus width of a host.
1164 */
1165void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1166{
778e277c 1167 mmc_host_clk_hold(host);
4c4cb171
PR
1168 host->ios.bus_width = width;
1169 mmc_set_ios(host);
778e277c 1170 mmc_host_clk_release(host);
0f8d8ea6
AH
1171}
1172
2d079c43
JR
1173/*
1174 * Set initial state after a power cycle or a hw_reset.
1175 */
1176void mmc_set_initial_state(struct mmc_host *host)
1177{
79d5a65a
AH
1178 mmc_retune_disable(host);
1179
2d079c43
JR
1180 if (mmc_host_is_spi(host))
1181 host->ios.chip_select = MMC_CS_HIGH;
1182 else
1183 host->ios.chip_select = MMC_CS_DONTCARE;
1184 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1185 host->ios.bus_width = MMC_BUS_WIDTH_1;
1186 host->ios.timing = MMC_TIMING_LEGACY;
1187
1188 mmc_set_ios(host);
1189}
1190
86e8286a
AV
1191/**
1192 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1193 * @vdd: voltage (mV)
1194 * @low_bits: prefer low bits in boundary cases
1195 *
1196 * This function returns the OCR bit number according to the provided @vdd
1197 * value. If conversion is not possible a negative errno value returned.
1198 *
1199 * Depending on the @low_bits flag the function prefers low or high OCR bits
1200 * on boundary voltages. For example,
1201 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1202 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1203 *
1204 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1205 */
1206static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1207{
1208 const int max_bit = ilog2(MMC_VDD_35_36);
1209 int bit;
1210
1211 if (vdd < 1650 || vdd > 3600)
1212 return -EINVAL;
1213
1214 if (vdd >= 1650 && vdd <= 1950)
1215 return ilog2(MMC_VDD_165_195);
1216
1217 if (low_bits)
1218 vdd -= 1;
1219
1220 /* Base 2000 mV, step 100 mV, bit's base 8. */
1221 bit = (vdd - 2000) / 100 + 8;
1222 if (bit > max_bit)
1223 return max_bit;
1224 return bit;
1225}
1226
1227/**
1228 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1229 * @vdd_min: minimum voltage value (mV)
1230 * @vdd_max: maximum voltage value (mV)
1231 *
1232 * This function returns the OCR mask bits according to the provided @vdd_min
1233 * and @vdd_max values. If conversion is not possible the function returns 0.
1234 *
1235 * Notes wrt boundary cases:
1236 * This function sets the OCR bits for all boundary voltages, for example
1237 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1238 * MMC_VDD_34_35 mask.
1239 */
1240u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1241{
1242 u32 mask = 0;
1243
1244 if (vdd_max < vdd_min)
1245 return 0;
1246
1247 /* Prefer high bits for the boundary vdd_max values. */
1248 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1249 if (vdd_max < 0)
1250 return 0;
1251
1252 /* Prefer low bits for the boundary vdd_min values. */
1253 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1254 if (vdd_min < 0)
1255 return 0;
1256
1257 /* Fill the mask, from max bit to min bit. */
1258 while (vdd_max >= vdd_min)
1259 mask |= 1 << vdd_max--;
1260
1261 return mask;
1262}
1263EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1264
6e9e318b
HZ
1265#ifdef CONFIG_OF
1266
1267/**
1268 * mmc_of_parse_voltage - return mask of supported voltages
1269 * @np: The device node need to be parsed.
1270 * @mask: mask of voltages available for MMC/SD/SDIO
1271 *
1272 * 1. Return zero on success.
1273 * 2. Return negative errno: voltage-range is invalid.
1274 */
1275int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1276{
1277 const u32 *voltage_ranges;
1278 int num_ranges, i;
1279
1280 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1281 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1282 if (!voltage_ranges || !num_ranges) {
1283 pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1284 return -EINVAL;
1285 }
1286
1287 for (i = 0; i < num_ranges; i++) {
1288 const int j = i * 2;
1289 u32 ocr_mask;
1290
1291 ocr_mask = mmc_vddrange_to_ocrmask(
1292 be32_to_cpu(voltage_ranges[j]),
1293 be32_to_cpu(voltage_ranges[j + 1]));
1294 if (!ocr_mask) {
1295 pr_err("%s: voltage-range #%d is invalid\n",
1296 np->full_name, i);
1297 return -EINVAL;
1298 }
1299 *mask |= ocr_mask;
1300 }
1301
1302 return 0;
1303}
1304EXPORT_SYMBOL(mmc_of_parse_voltage);
1305
1306#endif /* CONFIG_OF */
1307
25185f3f
SH
1308static int mmc_of_get_func_num(struct device_node *node)
1309{
1310 u32 reg;
1311 int ret;
1312
1313 ret = of_property_read_u32(node, "reg", &reg);
1314 if (ret < 0)
1315 return ret;
1316
1317 return reg;
1318}
1319
1320struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1321 unsigned func_num)
1322{
1323 struct device_node *node;
1324
1325 if (!host->parent || !host->parent->of_node)
1326 return NULL;
1327
1328 for_each_child_of_node(host->parent->of_node, node) {
1329 if (mmc_of_get_func_num(node) == func_num)
1330 return node;
1331 }
1332
1333 return NULL;
1334}
1335
5c13941a
DB
1336#ifdef CONFIG_REGULATOR
1337
1338/**
1339 * mmc_regulator_get_ocrmask - return mask of supported voltages
1340 * @supply: regulator to use
1341 *
1342 * This returns either a negative errno, or a mask of voltages that
1343 * can be provided to MMC/SD/SDIO devices using the specified voltage
1344 * regulator. This would normally be called before registering the
1345 * MMC host adapter.
1346 */
1347int mmc_regulator_get_ocrmask(struct regulator *supply)
1348{
1349 int result = 0;
1350 int count;
1351 int i;
9ed7ca89
JMC
1352 int vdd_uV;
1353 int vdd_mV;
5c13941a
DB
1354
1355 count = regulator_count_voltages(supply);
1356 if (count < 0)
1357 return count;
1358
1359 for (i = 0; i < count; i++) {
5c13941a
DB
1360 vdd_uV = regulator_list_voltage(supply, i);
1361 if (vdd_uV <= 0)
1362 continue;
1363
1364 vdd_mV = vdd_uV / 1000;
1365 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1366 }
1367
9ed7ca89
JMC
1368 if (!result) {
1369 vdd_uV = regulator_get_voltage(supply);
1370 if (vdd_uV <= 0)
1371 return vdd_uV;
1372
1373 vdd_mV = vdd_uV / 1000;
1374 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1375 }
1376
5c13941a
DB
1377 return result;
1378}
45a6b32e 1379EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
5c13941a
DB
1380
1381/**
1382 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
99fc5131 1383 * @mmc: the host to regulate
5c13941a 1384 * @supply: regulator to use
99fc5131 1385 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
5c13941a
DB
1386 *
1387 * Returns zero on success, else negative errno.
1388 *
1389 * MMC host drivers may use this to enable or disable a regulator using
1390 * a particular supply voltage. This would normally be called from the
1391 * set_ios() method.
1392 */
99fc5131
LW
1393int mmc_regulator_set_ocr(struct mmc_host *mmc,
1394 struct regulator *supply,
1395 unsigned short vdd_bit)
5c13941a
DB
1396{
1397 int result = 0;
1398 int min_uV, max_uV;
5c13941a
DB
1399
1400 if (vdd_bit) {
1401 int tmp;
5c13941a 1402
9cde5b7a
CB
1403 /*
1404 * REVISIT mmc_vddrange_to_ocrmask() may have set some
5c13941a
DB
1405 * bits this regulator doesn't quite support ... don't
1406 * be too picky, most cards and regulators are OK with
1407 * a 0.1V range goof (it's a small error percentage).
1408 */
1409 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1410 if (tmp == 0) {
1411 min_uV = 1650 * 1000;
1412 max_uV = 1950 * 1000;
1413 } else {
1414 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1415 max_uV = min_uV + 100 * 1000;
1416 }
1417
ca6429d4 1418 result = regulator_set_voltage(supply, min_uV, max_uV);
99fc5131 1419 if (result == 0 && !mmc->regulator_enabled) {
5c13941a 1420 result = regulator_enable(supply);
99fc5131
LW
1421 if (!result)
1422 mmc->regulator_enabled = true;
1423 }
1424 } else if (mmc->regulator_enabled) {
5c13941a 1425 result = regulator_disable(supply);
99fc5131
LW
1426 if (result == 0)
1427 mmc->regulator_enabled = false;
5c13941a
DB
1428 }
1429
99fc5131
LW
1430 if (result)
1431 dev_err(mmc_dev(mmc),
1432 "could not set regulator OCR (%d)\n", result);
5c13941a
DB
1433 return result;
1434}
45a6b32e 1435EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
5c13941a 1436
4d1f52f9
TK
1437#endif /* CONFIG_REGULATOR */
1438
e137788d
GL
1439int mmc_regulator_get_supply(struct mmc_host *mmc)
1440{
1441 struct device *dev = mmc_dev(mmc);
e137788d
GL
1442 int ret;
1443
4d1f52f9 1444 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
bc35d5ed 1445 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
e137788d 1446
4d1f52f9
TK
1447 if (IS_ERR(mmc->supply.vmmc)) {
1448 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1449 return -EPROBE_DEFER;
1450 dev_info(dev, "No vmmc regulator found\n");
1451 } else {
1452 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1453 if (ret > 0)
1454 mmc->ocr_avail = ret;
1455 else
1456 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1457 }
e137788d 1458
4d1f52f9
TK
1459 if (IS_ERR(mmc->supply.vqmmc)) {
1460 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1461 return -EPROBE_DEFER;
1462 dev_info(dev, "No vqmmc regulator found\n");
1463 }
e137788d
GL
1464
1465 return 0;
1466}
1467EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1468
1da177e4
LT
1469/*
1470 * Mask off any voltages we don't support and select
1471 * the lowest voltage
1472 */
7ea239d9 1473u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1da177e4
LT
1474{
1475 int bit;
1476
726d6f23
UH
1477 /*
1478 * Sanity check the voltages that the card claims to
1479 * support.
1480 */
1481 if (ocr & 0x7F) {
1482 dev_warn(mmc_dev(host),
1483 "card claims to support voltages below defined range\n");
1484 ocr &= ~0x7F;
1485 }
1486
1da177e4 1487 ocr &= host->ocr_avail;
ce69d37b
UH
1488 if (!ocr) {
1489 dev_warn(mmc_dev(host), "no support for card's volts\n");
1490 return 0;
1491 }
1da177e4 1492
ce69d37b
UH
1493 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1494 bit = ffs(ocr) - 1;
63ef731a 1495 ocr &= 3 << bit;
ce69d37b 1496 mmc_power_cycle(host, ocr);
1da177e4 1497 } else {
ce69d37b
UH
1498 bit = fls(ocr) - 1;
1499 ocr &= 3 << bit;
1500 if (bit != host->ios.vdd)
1501 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1da177e4
LT
1502 }
1503
1504 return ocr;
1505}
1506
567c8903
JR
1507int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1508{
1509 int err = 0;
1510 int old_signal_voltage = host->ios.signal_voltage;
1511
1512 host->ios.signal_voltage = signal_voltage;
1513 if (host->ops->start_signal_voltage_switch) {
1514 mmc_host_clk_hold(host);
1515 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1516 mmc_host_clk_release(host);
1517 }
1518
1519 if (err)
1520 host->ios.signal_voltage = old_signal_voltage;
1521
1522 return err;
1523
1524}
1525
0f791fda 1526int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
f2119df6
AN
1527{
1528 struct mmc_command cmd = {0};
1529 int err = 0;
0797e5f1 1530 u32 clock;
f2119df6
AN
1531
1532 BUG_ON(!host);
1533
1534 /*
1535 * Send CMD11 only if the request is to switch the card to
1536 * 1.8V signalling.
1537 */
0797e5f1
JR
1538 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1539 return __mmc_set_signal_voltage(host, signal_voltage);
f2119df6 1540
0797e5f1
JR
1541 /*
1542 * If we cannot switch voltages, return failure so the caller
1543 * can continue without UHS mode
1544 */
1545 if (!host->ops->start_signal_voltage_switch)
1546 return -EPERM;
1547 if (!host->ops->card_busy)
6606110d
JP
1548 pr_warn("%s: cannot verify signal voltage switch\n",
1549 mmc_hostname(host));
0797e5f1 1550
c6eb5880
VY
1551 mmc_host_clk_hold(host);
1552
0797e5f1
JR
1553 cmd.opcode = SD_SWITCH_VOLTAGE;
1554 cmd.arg = 0;
1555 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1556
1557 err = mmc_wait_for_cmd(host, &cmd, 0);
1558 if (err)
c6eb5880 1559 goto err_command;
0797e5f1 1560
c6eb5880
VY
1561 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) {
1562 err = -EIO;
1563 goto err_command;
1564 }
0797e5f1
JR
1565 /*
1566 * The card should drive cmd and dat[0:3] low immediately
1567 * after the response of cmd11, but wait 1 ms to be sure
1568 */
1569 mmc_delay(1);
1570 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1571 err = -EAGAIN;
1572 goto power_cycle;
1573 }
1574 /*
1575 * During a signal voltage level switch, the clock must be gated
1576 * for 5 ms according to the SD spec
1577 */
1578 clock = host->ios.clock;
1579 host->ios.clock = 0;
1580 mmc_set_ios(host);
f2119df6 1581
0797e5f1
JR
1582 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1583 /*
1584 * Voltages may not have been switched, but we've already
1585 * sent CMD11, so a power cycle is required anyway
1586 */
1587 err = -EAGAIN;
1588 goto power_cycle;
f2119df6
AN
1589 }
1590
0797e5f1
JR
1591 /* Keep clock gated for at least 5 ms */
1592 mmc_delay(5);
1593 host->ios.clock = clock;
1594 mmc_set_ios(host);
1595
1596 /* Wait for at least 1 ms according to spec */
1597 mmc_delay(1);
1598
1599 /*
1600 * Failure to switch is indicated by the card holding
1601 * dat[0:3] low
1602 */
1603 if (host->ops->card_busy && host->ops->card_busy(host))
1604 err = -EAGAIN;
1605
1606power_cycle:
1607 if (err) {
1608 pr_debug("%s: Signal voltage switch failed, "
1609 "power cycling card\n", mmc_hostname(host));
0f791fda 1610 mmc_power_cycle(host, ocr);
0797e5f1
JR
1611 }
1612
c6eb5880 1613err_command:
0797e5f1
JR
1614 mmc_host_clk_release(host);
1615
1616 return err;
f2119df6
AN
1617}
1618
b57c43ad 1619/*
7ea239d9 1620 * Select timing parameters for host.
b57c43ad 1621 */
7ea239d9 1622void mmc_set_timing(struct mmc_host *host, unsigned int timing)
b57c43ad 1623{
778e277c 1624 mmc_host_clk_hold(host);
7ea239d9
PO
1625 host->ios.timing = timing;
1626 mmc_set_ios(host);
778e277c 1627 mmc_host_clk_release(host);
b57c43ad
PO
1628}
1629
d6d50a15
AN
1630/*
1631 * Select appropriate driver type for host.
1632 */
1633void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1634{
778e277c 1635 mmc_host_clk_hold(host);
d6d50a15
AN
1636 host->ios.drv_type = drv_type;
1637 mmc_set_ios(host);
778e277c 1638 mmc_host_clk_release(host);
d6d50a15
AN
1639}
1640
1da177e4 1641/*
45f8245b
RK
1642 * Apply power to the MMC stack. This is a two-stage process.
1643 * First, we enable power to the card without the clock running.
1644 * We then wait a bit for the power to stabilise. Finally,
1645 * enable the bus drivers and clock to the card.
1646 *
1647 * We must _NOT_ enable the clock prior to power stablising.
1648 *
1649 * If a host does all the power sequencing itself, ignore the
1650 * initial MMC_POWER_UP stage.
1da177e4 1651 */
4a065193 1652void mmc_power_up(struct mmc_host *host, u32 ocr)
1da177e4 1653{
fa550189
UH
1654 if (host->ios.power_mode == MMC_POWER_ON)
1655 return;
1656
778e277c
MW
1657 mmc_host_clk_hold(host);
1658
3aa8793f
UH
1659 mmc_pwrseq_pre_power_on(host);
1660
4a065193 1661 host->ios.vdd = fls(ocr) - 1;
1da177e4 1662 host->ios.power_mode = MMC_POWER_UP;
2d079c43
JR
1663 /* Set initial state and call mmc_set_ios */
1664 mmc_set_initial_state(host);
1da177e4 1665
ceae98f2
TK
1666 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1667 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1668 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1669 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1670 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1671 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1672 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
108ecc4c 1673
f9996aee
PO
1674 /*
1675 * This delay should be sufficient to allow the power supply
1676 * to reach the minimum voltage.
1677 */
79bccc5a 1678 mmc_delay(10);
1da177e4 1679
4febb7e2
UH
1680 mmc_pwrseq_post_power_on(host);
1681
88ae8b86 1682 host->ios.clock = host->f_init;
8dfd0374 1683
1da177e4 1684 host->ios.power_mode = MMC_POWER_ON;
920e70c5 1685 mmc_set_ios(host);
1da177e4 1686
f9996aee
PO
1687 /*
1688 * This delay must be at least 74 clock sizes, or 1 ms, or the
1689 * time required to reach a stable voltage.
1690 */
79bccc5a 1691 mmc_delay(10);
778e277c
MW
1692
1693 mmc_host_clk_release(host);
1da177e4
LT
1694}
1695
7f7e4129 1696void mmc_power_off(struct mmc_host *host)
1da177e4 1697{
fa550189
UH
1698 if (host->ios.power_mode == MMC_POWER_OFF)
1699 return;
1700
778e277c
MW
1701 mmc_host_clk_hold(host);
1702
3aa8793f
UH
1703 mmc_pwrseq_power_off(host);
1704
1da177e4
LT
1705 host->ios.clock = 0;
1706 host->ios.vdd = 0;
b33d46c3 1707
1da177e4 1708 host->ios.power_mode = MMC_POWER_OFF;
2d079c43
JR
1709 /* Set initial state and call mmc_set_ios */
1710 mmc_set_initial_state(host);
778e277c 1711
041beb1d
DD
1712 /*
1713 * Some configurations, such as the 802.11 SDIO card in the OLPC
1714 * XO-1.5, require a short delay after poweroff before the card
1715 * can be successfully turned on again.
1716 */
1717 mmc_delay(1);
1718
778e277c 1719 mmc_host_clk_release(host);
1da177e4
LT
1720}
1721
4a065193 1722void mmc_power_cycle(struct mmc_host *host, u32 ocr)
276e090f
JR
1723{
1724 mmc_power_off(host);
1725 /* Wait at least 1 ms according to SD spec */
1726 mmc_delay(1);
4a065193 1727 mmc_power_up(host, ocr);
276e090f
JR
1728}
1729
39361851
AB
1730/*
1731 * Cleanup when the last reference to the bus operator is dropped.
1732 */
261172fd 1733static void __mmc_release_bus(struct mmc_host *host)
39361851
AB
1734{
1735 BUG_ON(!host);
1736 BUG_ON(host->bus_refs);
1737 BUG_ON(!host->bus_dead);
1738
1739 host->bus_ops = NULL;
1740}
1741
1742/*
1743 * Increase reference count of bus operator
1744 */
1745static inline void mmc_bus_get(struct mmc_host *host)
1746{
1747 unsigned long flags;
1748
1749 spin_lock_irqsave(&host->lock, flags);
1750 host->bus_refs++;
1751 spin_unlock_irqrestore(&host->lock, flags);
1752}
1753
1754/*
1755 * Decrease reference count of bus operator and free it if
1756 * it is the last reference.
1757 */
1758static inline void mmc_bus_put(struct mmc_host *host)
1759{
1760 unsigned long flags;
1761
1762 spin_lock_irqsave(&host->lock, flags);
1763 host->bus_refs--;
1764 if ((host->bus_refs == 0) && host->bus_ops)
1765 __mmc_release_bus(host);
1766 spin_unlock_irqrestore(&host->lock, flags);
1767}
1768
1da177e4 1769/*
7ea239d9
PO
1770 * Assign a mmc bus handler to a host. Only one bus handler may control a
1771 * host at any given time.
1da177e4 1772 */
7ea239d9 1773void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1da177e4 1774{
7ea239d9 1775 unsigned long flags;
e45a1bd2 1776
7ea239d9
PO
1777 BUG_ON(!host);
1778 BUG_ON(!ops);
b855885e 1779
d84075c8 1780 WARN_ON(!host->claimed);
bce40a36 1781
7ea239d9 1782 spin_lock_irqsave(&host->lock, flags);
bce40a36 1783
7ea239d9
PO
1784 BUG_ON(host->bus_ops);
1785 BUG_ON(host->bus_refs);
b57c43ad 1786
7ea239d9
PO
1787 host->bus_ops = ops;
1788 host->bus_refs = 1;
1789 host->bus_dead = 0;
b57c43ad 1790
7ea239d9 1791 spin_unlock_irqrestore(&host->lock, flags);
b57c43ad
PO
1792}
1793
7ea239d9 1794/*
7f7e4129 1795 * Remove the current bus handler from a host.
7ea239d9
PO
1796 */
1797void mmc_detach_bus(struct mmc_host *host)
7ccd266e 1798{
7ea239d9 1799 unsigned long flags;
7ccd266e 1800
7ea239d9 1801 BUG_ON(!host);
7ccd266e 1802
d84075c8
PO
1803 WARN_ON(!host->claimed);
1804 WARN_ON(!host->bus_ops);
cd9277c0 1805
7ea239d9 1806 spin_lock_irqsave(&host->lock, flags);
7ccd266e 1807
7ea239d9 1808 host->bus_dead = 1;
7ccd266e 1809
7ea239d9 1810 spin_unlock_irqrestore(&host->lock, flags);
1da177e4 1811
7ea239d9 1812 mmc_bus_put(host);
1da177e4
LT
1813}
1814
bbd43682
UH
1815static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1816 bool cd_irq)
1817{
1818#ifdef CONFIG_MMC_DEBUG
1819 unsigned long flags;
1820 spin_lock_irqsave(&host->lock, flags);
1821 WARN_ON(host->removed);
1822 spin_unlock_irqrestore(&host->lock, flags);
1823#endif
1824
1825 /*
1826 * If the device is configured as wakeup, we prevent a new sleep for
1827 * 5 s to give provision for user space to consume the event.
1828 */
1829 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1830 device_can_wakeup(mmc_dev(host)))
1831 pm_wakeup_event(mmc_dev(host), 5000);
1832
1833 host->detect_change = 1;
1834 mmc_schedule_delayed_work(&host->detect, delay);
1835}
1836
1da177e4
LT
1837/**
1838 * mmc_detect_change - process change of state on a MMC socket
1839 * @host: host which changed state.
8dc00335 1840 * @delay: optional delay to wait before detection (jiffies)
1da177e4 1841 *
67a61c48
PO
1842 * MMC drivers should call this when they detect a card has been
1843 * inserted or removed. The MMC layer will confirm that any
1844 * present card is still functional, and initialize any newly
1845 * inserted.
1da177e4 1846 */
8dc00335 1847void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1da177e4 1848{
bbd43682 1849 _mmc_detect_change(host, delay, true);
1da177e4 1850}
1da177e4
LT
1851EXPORT_SYMBOL(mmc_detect_change);
1852
dfe86cba
AH
1853void mmc_init_erase(struct mmc_card *card)
1854{
1855 unsigned int sz;
1856
1857 if (is_power_of_2(card->erase_size))
1858 card->erase_shift = ffs(card->erase_size) - 1;
1859 else
1860 card->erase_shift = 0;
1861
1862 /*
1863 * It is possible to erase an arbitrarily large area of an SD or MMC
1864 * card. That is not desirable because it can take a long time
1865 * (minutes) potentially delaying more important I/O, and also the
1866 * timeout calculations become increasingly hugely over-estimated.
1867 * Consequently, 'pref_erase' is defined as a guide to limit erases
1868 * to that size and alignment.
1869 *
1870 * For SD cards that define Allocation Unit size, limit erases to one
1871 * Allocation Unit at a time. For MMC cards that define High Capacity
1872 * Erase Size, whether it is switched on or not, limit to that size.
1873 * Otherwise just have a stab at a good value. For modern cards it
1874 * will end up being 4MiB. Note that if the value is too small, it
1875 * can end up taking longer to erase.
1876 */
1877 if (mmc_card_sd(card) && card->ssr.au) {
1878 card->pref_erase = card->ssr.au;
1879 card->erase_shift = ffs(card->ssr.au) - 1;
1880 } else if (card->ext_csd.hc_erase_size) {
1881 card->pref_erase = card->ext_csd.hc_erase_size;
cc8aa7de 1882 } else if (card->erase_size) {
dfe86cba
AH
1883 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1884 if (sz < 128)
1885 card->pref_erase = 512 * 1024 / 512;
1886 else if (sz < 512)
1887 card->pref_erase = 1024 * 1024 / 512;
1888 else if (sz < 1024)
1889 card->pref_erase = 2 * 1024 * 1024 / 512;
1890 else
1891 card->pref_erase = 4 * 1024 * 1024 / 512;
1892 if (card->pref_erase < card->erase_size)
1893 card->pref_erase = card->erase_size;
1894 else {
1895 sz = card->pref_erase % card->erase_size;
1896 if (sz)
1897 card->pref_erase += card->erase_size - sz;
1898 }
cc8aa7de
CD
1899 } else
1900 card->pref_erase = 0;
dfe86cba
AH
1901}
1902
eaa02f75
AW
1903static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1904 unsigned int arg, unsigned int qty)
dfe86cba
AH
1905{
1906 unsigned int erase_timeout;
1907
7194efb8
AH
1908 if (arg == MMC_DISCARD_ARG ||
1909 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1910 erase_timeout = card->ext_csd.trim_timeout;
1911 } else if (card->ext_csd.erase_group_def & 1) {
dfe86cba
AH
1912 /* High Capacity Erase Group Size uses HC timeouts */
1913 if (arg == MMC_TRIM_ARG)
1914 erase_timeout = card->ext_csd.trim_timeout;
1915 else
1916 erase_timeout = card->ext_csd.hc_erase_timeout;
1917 } else {
1918 /* CSD Erase Group Size uses write timeout */
1919 unsigned int mult = (10 << card->csd.r2w_factor);
1920 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1921 unsigned int timeout_us;
1922
1923 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1924 if (card->csd.tacc_ns < 1000000)
1925 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1926 else
1927 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1928
1929 /*
1930 * ios.clock is only a target. The real clock rate might be
1931 * less but not that much less, so fudge it by multiplying by 2.
1932 */
1933 timeout_clks <<= 1;
1934 timeout_us += (timeout_clks * 1000) /
4cf8c6dd 1935 (mmc_host_clk_rate(card->host) / 1000);
dfe86cba
AH
1936
1937 erase_timeout = timeout_us / 1000;
1938
1939 /*
1940 * Theoretically, the calculation could underflow so round up
1941 * to 1ms in that case.
1942 */
1943 if (!erase_timeout)
1944 erase_timeout = 1;
1945 }
1946
1947 /* Multiplier for secure operations */
1948 if (arg & MMC_SECURE_ARGS) {
1949 if (arg == MMC_SECURE_ERASE_ARG)
1950 erase_timeout *= card->ext_csd.sec_erase_mult;
1951 else
1952 erase_timeout *= card->ext_csd.sec_trim_mult;
1953 }
1954
1955 erase_timeout *= qty;
1956
1957 /*
1958 * Ensure at least a 1 second timeout for SPI as per
1959 * 'mmc_set_data_timeout()'
1960 */
1961 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1962 erase_timeout = 1000;
1963
eaa02f75 1964 return erase_timeout;
dfe86cba
AH
1965}
1966
eaa02f75
AW
1967static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1968 unsigned int arg,
1969 unsigned int qty)
dfe86cba 1970{
eaa02f75
AW
1971 unsigned int erase_timeout;
1972
dfe86cba
AH
1973 if (card->ssr.erase_timeout) {
1974 /* Erase timeout specified in SD Status Register (SSR) */
eaa02f75
AW
1975 erase_timeout = card->ssr.erase_timeout * qty +
1976 card->ssr.erase_offset;
dfe86cba
AH
1977 } else {
1978 /*
1979 * Erase timeout not specified in SD Status Register (SSR) so
1980 * use 250ms per write block.
1981 */
eaa02f75 1982 erase_timeout = 250 * qty;
dfe86cba
AH
1983 }
1984
1985 /* Must not be less than 1 second */
eaa02f75
AW
1986 if (erase_timeout < 1000)
1987 erase_timeout = 1000;
1988
1989 return erase_timeout;
dfe86cba
AH
1990}
1991
eaa02f75
AW
1992static unsigned int mmc_erase_timeout(struct mmc_card *card,
1993 unsigned int arg,
1994 unsigned int qty)
dfe86cba
AH
1995{
1996 if (mmc_card_sd(card))
eaa02f75 1997 return mmc_sd_erase_timeout(card, arg, qty);
dfe86cba 1998 else
eaa02f75 1999 return mmc_mmc_erase_timeout(card, arg, qty);
dfe86cba
AH
2000}
2001
2002static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2003 unsigned int to, unsigned int arg)
2004{
1278dba1 2005 struct mmc_command cmd = {0};
dfe86cba 2006 unsigned int qty = 0;
8fee476b 2007 unsigned long timeout;
dfe86cba
AH
2008 int err;
2009
8f11d106
AH
2010 mmc_retune_hold(card->host);
2011
dfe86cba
AH
2012 /*
2013 * qty is used to calculate the erase timeout which depends on how many
2014 * erase groups (or allocation units in SD terminology) are affected.
2015 * We count erasing part of an erase group as one erase group.
2016 * For SD, the allocation units are always a power of 2. For MMC, the
2017 * erase group size is almost certainly also power of 2, but it does not
2018 * seem to insist on that in the JEDEC standard, so we fall back to
2019 * division in that case. SD may not specify an allocation unit size,
2020 * in which case the timeout is based on the number of write blocks.
2021 *
2022 * Note that the timeout for secure trim 2 will only be correct if the
2023 * number of erase groups specified is the same as the total of all
2024 * preceding secure trim 1 commands. Since the power may have been
2025 * lost since the secure trim 1 commands occurred, it is generally
2026 * impossible to calculate the secure trim 2 timeout correctly.
2027 */
2028 if (card->erase_shift)
2029 qty += ((to >> card->erase_shift) -
2030 (from >> card->erase_shift)) + 1;
2031 else if (mmc_card_sd(card))
2032 qty += to - from + 1;
2033 else
2034 qty += ((to / card->erase_size) -
2035 (from / card->erase_size)) + 1;
2036
2037 if (!mmc_card_blockaddr(card)) {
2038 from <<= 9;
2039 to <<= 9;
2040 }
2041
dfe86cba
AH
2042 if (mmc_card_sd(card))
2043 cmd.opcode = SD_ERASE_WR_BLK_START;
2044 else
2045 cmd.opcode = MMC_ERASE_GROUP_START;
2046 cmd.arg = from;
2047 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2048 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2049 if (err) {
a3c76eb9 2050 pr_err("mmc_erase: group start error %d, "
dfe86cba 2051 "status %#x\n", err, cmd.resp[0]);
67716327 2052 err = -EIO;
dfe86cba
AH
2053 goto out;
2054 }
2055
2056 memset(&cmd, 0, sizeof(struct mmc_command));
2057 if (mmc_card_sd(card))
2058 cmd.opcode = SD_ERASE_WR_BLK_END;
2059 else
2060 cmd.opcode = MMC_ERASE_GROUP_END;
2061 cmd.arg = to;
2062 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2063 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2064 if (err) {
a3c76eb9 2065 pr_err("mmc_erase: group end error %d, status %#x\n",
dfe86cba 2066 err, cmd.resp[0]);
67716327 2067 err = -EIO;
dfe86cba
AH
2068 goto out;
2069 }
2070
2071 memset(&cmd, 0, sizeof(struct mmc_command));
2072 cmd.opcode = MMC_ERASE;
2073 cmd.arg = arg;
2074 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1d4d7744 2075 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
dfe86cba
AH
2076 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2077 if (err) {
a3c76eb9 2078 pr_err("mmc_erase: erase error %d, status %#x\n",
dfe86cba
AH
2079 err, cmd.resp[0]);
2080 err = -EIO;
2081 goto out;
2082 }
2083
2084 if (mmc_host_is_spi(card->host))
2085 goto out;
2086
8fee476b 2087 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
dfe86cba
AH
2088 do {
2089 memset(&cmd, 0, sizeof(struct mmc_command));
2090 cmd.opcode = MMC_SEND_STATUS;
2091 cmd.arg = card->rca << 16;
2092 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2093 /* Do not retry else we can't see errors */
2094 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2095 if (err || (cmd.resp[0] & 0xFDF92000)) {
a3c76eb9 2096 pr_err("error %d requesting status %#x\n",
dfe86cba
AH
2097 err, cmd.resp[0]);
2098 err = -EIO;
2099 goto out;
2100 }
8fee476b
TR
2101
2102 /* Timeout if the device never becomes ready for data and
2103 * never leaves the program state.
2104 */
2105 if (time_after(jiffies, timeout)) {
2106 pr_err("%s: Card stuck in programming state! %s\n",
2107 mmc_hostname(card->host), __func__);
2108 err = -EIO;
2109 goto out;
2110 }
2111
dfe86cba 2112 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
8fee476b 2113 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
dfe86cba 2114out:
8f11d106 2115 mmc_retune_release(card->host);
dfe86cba
AH
2116 return err;
2117}
2118
2119/**
2120 * mmc_erase - erase sectors.
2121 * @card: card to erase
2122 * @from: first sector to erase
2123 * @nr: number of sectors to erase
2124 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2125 *
2126 * Caller must claim host before calling this function.
2127 */
2128int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2129 unsigned int arg)
2130{
2131 unsigned int rem, to = from + nr;
2132
2133 if (!(card->host->caps & MMC_CAP_ERASE) ||
2134 !(card->csd.cmdclass & CCC_ERASE))
2135 return -EOPNOTSUPP;
2136
2137 if (!card->erase_size)
2138 return -EOPNOTSUPP;
2139
2140 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2141 return -EOPNOTSUPP;
2142
2143 if ((arg & MMC_SECURE_ARGS) &&
2144 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2145 return -EOPNOTSUPP;
2146
2147 if ((arg & MMC_TRIM_ARGS) &&
2148 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2149 return -EOPNOTSUPP;
2150
2151 if (arg == MMC_SECURE_ERASE_ARG) {
2152 if (from % card->erase_size || nr % card->erase_size)
2153 return -EINVAL;
2154 }
2155
2156 if (arg == MMC_ERASE_ARG) {
2157 rem = from % card->erase_size;
2158 if (rem) {
2159 rem = card->erase_size - rem;
2160 from += rem;
2161 if (nr > rem)
2162 nr -= rem;
2163 else
2164 return 0;
2165 }
2166 rem = nr % card->erase_size;
2167 if (rem)
2168 nr -= rem;
2169 }
2170
2171 if (nr == 0)
2172 return 0;
2173
2174 to = from + nr;
2175
2176 if (to <= from)
2177 return -EINVAL;
2178
2179 /* 'from' and 'to' are inclusive */
2180 to -= 1;
2181
2182 return mmc_do_erase(card, from, to, arg);
2183}
2184EXPORT_SYMBOL(mmc_erase);
2185
2186int mmc_can_erase(struct mmc_card *card)
2187{
2188 if ((card->host->caps & MMC_CAP_ERASE) &&
2189 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2190 return 1;
2191 return 0;
2192}
2193EXPORT_SYMBOL(mmc_can_erase);
2194
2195int mmc_can_trim(struct mmc_card *card)
2196{
2197 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2198 return 1;
2199 return 0;
2200}
2201EXPORT_SYMBOL(mmc_can_trim);
2202
b3bf9153
KP
2203int mmc_can_discard(struct mmc_card *card)
2204{
2205 /*
2206 * As there's no way to detect the discard support bit at v4.5
2207 * use the s/w feature support filed.
2208 */
2209 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2210 return 1;
2211 return 0;
2212}
2213EXPORT_SYMBOL(mmc_can_discard);
2214
d9ddd629
KP
2215int mmc_can_sanitize(struct mmc_card *card)
2216{
28302812
AH
2217 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2218 return 0;
d9ddd629
KP
2219 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2220 return 1;
2221 return 0;
2222}
2223EXPORT_SYMBOL(mmc_can_sanitize);
2224
dfe86cba
AH
2225int mmc_can_secure_erase_trim(struct mmc_card *card)
2226{
5204d00f
LC
2227 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2228 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
dfe86cba
AH
2229 return 1;
2230 return 0;
2231}
2232EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2233
2234int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2235 unsigned int nr)
2236{
2237 if (!card->erase_size)
2238 return 0;
2239 if (from % card->erase_size || nr % card->erase_size)
2240 return 0;
2241 return 1;
2242}
2243EXPORT_SYMBOL(mmc_erase_group_aligned);
1da177e4 2244
e056a1b5
AH
2245static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2246 unsigned int arg)
2247{
2248 struct mmc_host *host = card->host;
2249 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2250 unsigned int last_timeout = 0;
2251
2252 if (card->erase_shift)
2253 max_qty = UINT_MAX >> card->erase_shift;
2254 else if (mmc_card_sd(card))
2255 max_qty = UINT_MAX;
2256 else
2257 max_qty = UINT_MAX / card->erase_size;
2258
2259 /* Find the largest qty with an OK timeout */
2260 do {
2261 y = 0;
2262 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2263 timeout = mmc_erase_timeout(card, arg, qty + x);
68eb80e0 2264 if (timeout > host->max_busy_timeout)
e056a1b5
AH
2265 break;
2266 if (timeout < last_timeout)
2267 break;
2268 last_timeout = timeout;
2269 y = x;
2270 }
2271 qty += y;
2272 } while (y);
2273
2274 if (!qty)
2275 return 0;
2276
2277 if (qty == 1)
2278 return 1;
2279
2280 /* Convert qty to sectors */
2281 if (card->erase_shift)
2282 max_discard = --qty << card->erase_shift;
2283 else if (mmc_card_sd(card))
2284 max_discard = qty;
2285 else
2286 max_discard = --qty * card->erase_size;
2287
2288 return max_discard;
2289}
2290
2291unsigned int mmc_calc_max_discard(struct mmc_card *card)
2292{
2293 struct mmc_host *host = card->host;
2294 unsigned int max_discard, max_trim;
2295
68eb80e0 2296 if (!host->max_busy_timeout)
e056a1b5
AH
2297 return UINT_MAX;
2298
2299 /*
2300 * Without erase_group_def set, MMC erase timeout depends on clock
2301 * frequence which can change. In that case, the best choice is
2302 * just the preferred erase size.
2303 */
2304 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2305 return card->pref_erase;
2306
2307 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2308 if (mmc_can_trim(card)) {
2309 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2310 if (max_trim < max_discard)
2311 max_discard = max_trim;
2312 } else if (max_discard < card->erase_size) {
2313 max_discard = 0;
2314 }
2315 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
68eb80e0 2316 mmc_hostname(host), max_discard, host->max_busy_timeout);
e056a1b5
AH
2317 return max_discard;
2318}
2319EXPORT_SYMBOL(mmc_calc_max_discard);
2320
0f8d8ea6
AH
2321int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2322{
1278dba1 2323 struct mmc_command cmd = {0};
0f8d8ea6 2324
cdc99179 2325 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
0f8d8ea6
AH
2326 return 0;
2327
0f8d8ea6
AH
2328 cmd.opcode = MMC_SET_BLOCKLEN;
2329 cmd.arg = blocklen;
2330 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2331 return mmc_wait_for_cmd(card->host, &cmd, 5);
2332}
2333EXPORT_SYMBOL(mmc_set_blocklen);
2334
67c79db8
LP
2335int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2336 bool is_rel_write)
2337{
2338 struct mmc_command cmd = {0};
2339
2340 cmd.opcode = MMC_SET_BLOCK_COUNT;
2341 cmd.arg = blockcount & 0x0000FFFF;
2342 if (is_rel_write)
2343 cmd.arg |= 1 << 31;
2344 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2345 return mmc_wait_for_cmd(card->host, &cmd, 5);
2346}
2347EXPORT_SYMBOL(mmc_set_blockcount);
2348
b2499518
AH
2349static void mmc_hw_reset_for_init(struct mmc_host *host)
2350{
2351 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2352 return;
2353 mmc_host_clk_hold(host);
2354 host->ops->hw_reset(host);
2355 mmc_host_clk_release(host);
2356}
2357
83533ab2 2358int mmc_hw_reset(struct mmc_host *host)
b2499518 2359{
f855a371 2360 int ret;
b2499518 2361
f855a371 2362 if (!host->card)
b2499518
AH
2363 return -EINVAL;
2364
f855a371
JR
2365 mmc_bus_get(host);
2366 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2367 mmc_bus_put(host);
b2499518 2368 return -EOPNOTSUPP;
b2499518
AH
2369 }
2370
f855a371
JR
2371 ret = host->bus_ops->reset(host);
2372 mmc_bus_put(host);
b2499518 2373
f855a371 2374 pr_warn("%s: tried to reset card\n", mmc_hostname(host));
b2499518 2375
f855a371 2376 return ret;
b2499518 2377}
b2499518
AH
2378EXPORT_SYMBOL(mmc_hw_reset);
2379
807e8e40
AR
2380static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2381{
2382 host->f_init = freq;
2383
2384#ifdef CONFIG_MMC_DEBUG
2385 pr_info("%s: %s: trying to init card at %u Hz\n",
2386 mmc_hostname(host), __func__, host->f_init);
2387#endif
4a065193 2388 mmc_power_up(host, host->ocr_avail);
2f94e55a 2389
b2499518
AH
2390 /*
2391 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2392 * do a hardware reset if possible.
2393 */
2394 mmc_hw_reset_for_init(host);
2395
2f94e55a
PR
2396 /*
2397 * sdio_reset sends CMD52 to reset card. Since we do not know
2398 * if the card is being re-initialized, just send it. CMD52
2399 * should be ignored by SD/eMMC cards.
2400 */
807e8e40
AR
2401 sdio_reset(host);
2402 mmc_go_idle(host);
2403
2404 mmc_send_if_cond(host, host->ocr_avail);
2405
2406 /* Order's important: probe SDIO, then SD, then MMC */
2407 if (!mmc_attach_sdio(host))
2408 return 0;
2409 if (!mmc_attach_sd(host))
2410 return 0;
2411 if (!mmc_attach_mmc(host))
2412 return 0;
2413
2414 mmc_power_off(host);
2415 return -EIO;
2416}
2417
d3049504
AH
2418int _mmc_detect_card_removed(struct mmc_host *host)
2419{
2420 int ret;
2421
5601aaf7 2422 if (host->caps & MMC_CAP_NONREMOVABLE)
d3049504
AH
2423 return 0;
2424
2425 if (!host->card || mmc_card_removed(host->card))
2426 return 1;
2427
2428 ret = host->bus_ops->alive(host);
1450734e
KL
2429
2430 /*
2431 * Card detect status and alive check may be out of sync if card is
2432 * removed slowly, when card detect switch changes while card/slot
2433 * pads are still contacted in hardware (refer to "SD Card Mechanical
2434 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2435 * detect work 200ms later for this case.
2436 */
2437 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2438 mmc_detect_change(host, msecs_to_jiffies(200));
2439 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2440 }
2441
d3049504
AH
2442 if (ret) {
2443 mmc_card_set_removed(host->card);
2444 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2445 }
2446
2447 return ret;
2448}
2449
2450int mmc_detect_card_removed(struct mmc_host *host)
2451{
2452 struct mmc_card *card = host->card;
f0cc9cf9 2453 int ret;
d3049504
AH
2454
2455 WARN_ON(!host->claimed);
f0cc9cf9
UH
2456
2457 if (!card)
2458 return 1;
2459
2460 ret = mmc_card_removed(card);
d3049504
AH
2461 /*
2462 * The card will be considered unchanged unless we have been asked to
2463 * detect a change or host requires polling to provide card detection.
2464 */
b6891679 2465 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
f0cc9cf9 2466 return ret;
d3049504
AH
2467
2468 host->detect_change = 0;
f0cc9cf9
UH
2469 if (!ret) {
2470 ret = _mmc_detect_card_removed(host);
b6891679 2471 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
f0cc9cf9
UH
2472 /*
2473 * Schedule a detect work as soon as possible to let a
2474 * rescan handle the card removal.
2475 */
2476 cancel_delayed_work(&host->detect);
bbd43682 2477 _mmc_detect_change(host, 0, false);
f0cc9cf9
UH
2478 }
2479 }
d3049504 2480
f0cc9cf9 2481 return ret;
d3049504
AH
2482}
2483EXPORT_SYMBOL(mmc_detect_card_removed);
2484
b93931a6 2485void mmc_rescan(struct work_struct *work)
1da177e4 2486{
c4028958
DH
2487 struct mmc_host *host =
2488 container_of(work, struct mmc_host, detect.work);
88ae8b86 2489 int i;
4c2ef25f 2490
fa372a51
MM
2491 if (host->trigger_card_event && host->ops->card_event) {
2492 host->ops->card_event(host);
2493 host->trigger_card_event = false;
2494 }
2495
807e8e40 2496 if (host->rescan_disable)
4c2ef25f 2497 return;
1da177e4 2498
3339d1e3
JR
2499 /* If there is a non-removable card registered, only scan once */
2500 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2501 return;
2502 host->rescan_entered = 1;
2503
7ea239d9 2504 mmc_bus_get(host);
b855885e 2505
30201e7f
OBC
2506 /*
2507 * if there is a _removable_ card registered, check whether it is
2508 * still present
2509 */
5601aaf7 2510 if (host->bus_ops && !host->bus_dead
bad3baba 2511 && !(host->caps & MMC_CAP_NONREMOVABLE))
94d89efb
JS
2512 host->bus_ops->detect(host);
2513
d3049504
AH
2514 host->detect_change = 0;
2515
c5841798
CB
2516 /*
2517 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2518 * the card is no longer present.
2519 */
94d89efb 2520 mmc_bus_put(host);
94d89efb
JS
2521 mmc_bus_get(host);
2522
2523 /* if there still is a card present, stop here */
2524 if (host->bus_ops != NULL) {
7ea239d9 2525 mmc_bus_put(host);
94d89efb
JS
2526 goto out;
2527 }
1da177e4 2528
94d89efb
JS
2529 /*
2530 * Only we can add a new handler, so it's safe to
2531 * release the lock here.
2532 */
2533 mmc_bus_put(host);
1da177e4 2534
c1b55bfc
SH
2535 if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2536 host->ops->get_cd(host) == 0) {
fa550189
UH
2537 mmc_claim_host(host);
2538 mmc_power_off(host);
2539 mmc_release_host(host);
94d89efb 2540 goto out;
fa550189 2541 }
1da177e4 2542
807e8e40 2543 mmc_claim_host(host);
88ae8b86 2544 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
807e8e40
AR
2545 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2546 break;
06b2233a 2547 if (freqs[i] <= host->f_min)
807e8e40 2548 break;
88ae8b86 2549 }
807e8e40
AR
2550 mmc_release_host(host);
2551
2552 out:
28f52482
AV
2553 if (host->caps & MMC_CAP_NEEDS_POLL)
2554 mmc_schedule_delayed_work(&host->detect, HZ);
1da177e4
LT
2555}
2556
b93931a6 2557void mmc_start_host(struct mmc_host *host)
1da177e4 2558{
fa550189 2559 host->f_init = max(freqs[0], host->f_min);
d9adcc12 2560 host->rescan_disable = 0;
8af465db 2561 host->ios.power_mode = MMC_POWER_UNDEFINED;
a08b17be
AH
2562 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2563 mmc_power_off(host);
2564 else
4a065193 2565 mmc_power_up(host, host->ocr_avail);
740a221e 2566 mmc_gpiod_request_cd_irq(host);
bbd43682 2567 _mmc_detect_change(host, 0, false);
1da177e4
LT
2568}
2569
b93931a6 2570void mmc_stop_host(struct mmc_host *host)
1da177e4 2571{
3b91e550 2572#ifdef CONFIG_MMC_DEBUG
1efd48b3
PO
2573 unsigned long flags;
2574 spin_lock_irqsave(&host->lock, flags);
3b91e550 2575 host->removed = 1;
1efd48b3 2576 spin_unlock_irqrestore(&host->lock, flags);
3b91e550 2577#endif
740a221e
AH
2578 if (host->slot.cd_irq >= 0)
2579 disable_irq(host->slot.cd_irq);
3b91e550 2580
d9adcc12 2581 host->rescan_disable = 1;
d9bcbf34 2582 cancel_delayed_work_sync(&host->detect);
3b91e550
PO
2583 mmc_flush_scheduled_work();
2584
da68c4eb
NP
2585 /* clear pm flags now and let card drivers set them as needed */
2586 host->pm_flags = 0;
2587
7ea239d9
PO
2588 mmc_bus_get(host);
2589 if (host->bus_ops && !host->bus_dead) {
0db13fc2 2590 /* Calling bus_ops->remove() with a claimed host can deadlock */
58a8a4a1 2591 host->bus_ops->remove(host);
7ea239d9
PO
2592 mmc_claim_host(host);
2593 mmc_detach_bus(host);
7f7e4129 2594 mmc_power_off(host);
7ea239d9 2595 mmc_release_host(host);
53509f0f
DK
2596 mmc_bus_put(host);
2597 return;
1da177e4 2598 }
7ea239d9
PO
2599 mmc_bus_put(host);
2600
2601 BUG_ON(host->card);
1da177e4
LT
2602
2603 mmc_power_off(host);
2604}
2605
12ae637f 2606int mmc_power_save_host(struct mmc_host *host)
eae1aeee 2607{
12ae637f
OBC
2608 int ret = 0;
2609
bb9cab94
DD
2610#ifdef CONFIG_MMC_DEBUG
2611 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2612#endif
2613
eae1aeee
AH
2614 mmc_bus_get(host);
2615
5601aaf7 2616 if (!host->bus_ops || host->bus_dead) {
eae1aeee 2617 mmc_bus_put(host);
12ae637f 2618 return -EINVAL;
eae1aeee
AH
2619 }
2620
2621 if (host->bus_ops->power_save)
12ae637f 2622 ret = host->bus_ops->power_save(host);
eae1aeee
AH
2623
2624 mmc_bus_put(host);
2625
2626 mmc_power_off(host);
12ae637f
OBC
2627
2628 return ret;
eae1aeee
AH
2629}
2630EXPORT_SYMBOL(mmc_power_save_host);
2631
12ae637f 2632int mmc_power_restore_host(struct mmc_host *host)
eae1aeee 2633{
12ae637f
OBC
2634 int ret;
2635
bb9cab94
DD
2636#ifdef CONFIG_MMC_DEBUG
2637 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2638#endif
2639
eae1aeee
AH
2640 mmc_bus_get(host);
2641
5601aaf7 2642 if (!host->bus_ops || host->bus_dead) {
eae1aeee 2643 mmc_bus_put(host);
12ae637f 2644 return -EINVAL;
eae1aeee
AH
2645 }
2646
69041150 2647 mmc_power_up(host, host->card->ocr);
12ae637f 2648 ret = host->bus_ops->power_restore(host);
eae1aeee
AH
2649
2650 mmc_bus_put(host);
12ae637f
OBC
2651
2652 return ret;
eae1aeee
AH
2653}
2654EXPORT_SYMBOL(mmc_power_restore_host);
2655
881d1c25
SJ
2656/*
2657 * Flush the cache to the non-volatile storage.
2658 */
2659int mmc_flush_cache(struct mmc_card *card)
2660{
881d1c25
SJ
2661 int err = 0;
2662
881d1c25
SJ
2663 if (mmc_card_mmc(card) &&
2664 (card->ext_csd.cache_size > 0) &&
2665 (card->ext_csd.cache_ctrl & 1)) {
2666 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2667 EXT_CSD_FLUSH_CACHE, 1, 0);
2668 if (err)
2669 pr_err("%s: cache flush error %d\n",
2670 mmc_hostname(card->host), err);
2671 }
2672
2673 return err;
2674}
2675EXPORT_SYMBOL(mmc_flush_cache);
2676
1da177e4
LT
2677#ifdef CONFIG_PM
2678
4c2ef25f
ML
2679/* Do the card removal on suspend if card is assumed removeable
2680 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2681 to sync the card.
2682*/
2683int mmc_pm_notify(struct notifier_block *notify_block,
2684 unsigned long mode, void *unused)
2685{
2686 struct mmc_host *host = container_of(
2687 notify_block, struct mmc_host, pm_notify);
2688 unsigned long flags;
810caddb 2689 int err = 0;
4c2ef25f
ML
2690
2691 switch (mode) {
2692 case PM_HIBERNATION_PREPARE:
2693 case PM_SUSPEND_PREPARE:
184af16b 2694 case PM_RESTORE_PREPARE:
4c2ef25f
ML
2695 spin_lock_irqsave(&host->lock, flags);
2696 host->rescan_disable = 1;
2697 spin_unlock_irqrestore(&host->lock, flags);
2698 cancel_delayed_work_sync(&host->detect);
2699
810caddb
UH
2700 if (!host->bus_ops)
2701 break;
2702
2703 /* Validate prerequisites for suspend */
2704 if (host->bus_ops->pre_suspend)
2705 err = host->bus_ops->pre_suspend(host);
5601aaf7 2706 if (!err)
4c2ef25f
ML
2707 break;
2708
0db13fc2 2709 /* Calling bus_ops->remove() with a claimed host can deadlock */
58a8a4a1 2710 host->bus_ops->remove(host);
0db13fc2 2711 mmc_claim_host(host);
4c2ef25f 2712 mmc_detach_bus(host);
7f7e4129 2713 mmc_power_off(host);
4c2ef25f
ML
2714 mmc_release_host(host);
2715 host->pm_flags = 0;
2716 break;
2717
2718 case PM_POST_SUSPEND:
2719 case PM_POST_HIBERNATION:
274476f8 2720 case PM_POST_RESTORE:
4c2ef25f
ML
2721
2722 spin_lock_irqsave(&host->lock, flags);
2723 host->rescan_disable = 0;
2724 spin_unlock_irqrestore(&host->lock, flags);
bbd43682 2725 _mmc_detect_change(host, 0, false);
4c2ef25f
ML
2726
2727 }
2728
2729 return 0;
2730}
1da177e4
LT
2731#endif
2732
2220eedf
KD
2733/**
2734 * mmc_init_context_info() - init synchronization context
2735 * @host: mmc host
2736 *
2737 * Init struct context_info needed to implement asynchronous
2738 * request mechanism, used by mmc core, host driver and mmc requests
2739 * supplier.
2740 */
2741void mmc_init_context_info(struct mmc_host *host)
2742{
2743 spin_lock_init(&host->context_info.lock);
2744 host->context_info.is_new_req = false;
2745 host->context_info.is_done_rcv = false;
2746 host->context_info.is_waiting_last_req = false;
2747 init_waitqueue_head(&host->context_info.wait);
2748}
2749
ffce2e7e
PO
2750static int __init mmc_init(void)
2751{
2752 int ret;
2753
0d9ee5b2 2754 workqueue = alloc_ordered_workqueue("kmmcd", 0);
ffce2e7e
PO
2755 if (!workqueue)
2756 return -ENOMEM;
2757
2758 ret = mmc_register_bus();
e29a7d73
PO
2759 if (ret)
2760 goto destroy_workqueue;
2761
2762 ret = mmc_register_host_class();
2763 if (ret)
2764 goto unregister_bus;
2765
2766 ret = sdio_register_bus();
2767 if (ret)
2768 goto unregister_host_class;
2769
2770 return 0;
2771
2772unregister_host_class:
2773 mmc_unregister_host_class();
2774unregister_bus:
2775 mmc_unregister_bus();
2776destroy_workqueue:
2777 destroy_workqueue(workqueue);
2778
ffce2e7e
PO
2779 return ret;
2780}
2781
2782static void __exit mmc_exit(void)
2783{
e29a7d73 2784 sdio_unregister_bus();
ffce2e7e
PO
2785 mmc_unregister_host_class();
2786 mmc_unregister_bus();
2787 destroy_workqueue(workqueue);
2788}
2789
26074962 2790subsys_initcall(mmc_init);
ffce2e7e
PO
2791module_exit(mmc_exit);
2792
1da177e4 2793MODULE_LICENSE("GPL");
This page took 0.94339 seconds and 5 git commands to generate.