mmc: mxcmmc: Use mmc_regulator_get_supply() API
[deliverable/linux.git] / drivers / mmc / core / core.c
CommitLineData
1da177e4 1/*
aaac1b47 2 * linux/drivers/mmc/core/core.c
1da177e4
LT
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5b4fd9ae 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
ad3868b2 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
bce40a36 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
1da177e4
LT
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
1da177e4
LT
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
af8350c7 21#include <linux/leds.h>
b57c43ad 22#include <linux/scatterlist.h>
86e8286a 23#include <linux/log2.h>
5c13941a 24#include <linux/regulator/consumer.h>
e594573d 25#include <linux/pm_runtime.h>
bbd43682 26#include <linux/pm_wakeup.h>
35eb6db1 27#include <linux/suspend.h>
1b676f70
PF
28#include <linux/fault-inject.h>
29#include <linux/random.h>
950d56ac 30#include <linux/slab.h>
6e9e318b 31#include <linux/of.h>
1da177e4
LT
32
33#include <linux/mmc/card.h>
34#include <linux/mmc/host.h>
da7fbe58
PO
35#include <linux/mmc/mmc.h>
36#include <linux/mmc/sd.h>
740a221e 37#include <linux/mmc/slot-gpio.h>
1da177e4 38
aaac1b47 39#include "core.h"
ffce2e7e
PO
40#include "bus.h"
41#include "host.h"
e29a7d73 42#include "sdio_bus.h"
da7fbe58
PO
43
44#include "mmc_ops.h"
45#include "sd_ops.h"
5c4e6f13 46#include "sdio_ops.h"
1da177e4 47
8fee476b
TR
48/* If the device is not responding */
49#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
50
950d56ac
JC
51/*
52 * Background operations can take a long time, depending on the housekeeping
53 * operations the card has to perform.
54 */
55#define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
56
ffce2e7e 57static struct workqueue_struct *workqueue;
fa550189 58static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
ffce2e7e 59
af517150
DB
60/*
61 * Enabling software CRCs on the data blocks can be a significant (30%)
62 * performance cost, and for other reasons may not always be desired.
63 * So we allow it it to be disabled.
64 */
90ab5ee9 65bool use_spi_crc = 1;
af517150
DB
66module_param(use_spi_crc, bool, 0);
67
ffce2e7e
PO
68/*
69 * Internal function. Schedule delayed work in the MMC work queue.
70 */
71static int mmc_schedule_delayed_work(struct delayed_work *work,
72 unsigned long delay)
73{
74 return queue_delayed_work(workqueue, work, delay);
75}
76
77/*
78 * Internal function. Flush all scheduled work from the MMC work queue.
79 */
80static void mmc_flush_scheduled_work(void)
81{
82 flush_workqueue(workqueue);
83}
84
1b676f70
PF
85#ifdef CONFIG_FAIL_MMC_REQUEST
86
87/*
88 * Internal function. Inject random data errors.
89 * If mmc_data is NULL no errors are injected.
90 */
91static void mmc_should_fail_request(struct mmc_host *host,
92 struct mmc_request *mrq)
93{
94 struct mmc_command *cmd = mrq->cmd;
95 struct mmc_data *data = mrq->data;
96 static const int data_errors[] = {
97 -ETIMEDOUT,
98 -EILSEQ,
99 -EIO,
100 };
101
102 if (!data)
103 return;
104
105 if (cmd->error || data->error ||
106 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
107 return;
108
2e744fcb
AM
109 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
110 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
1b676f70
PF
111}
112
113#else /* CONFIG_FAIL_MMC_REQUEST */
114
115static inline void mmc_should_fail_request(struct mmc_host *host,
116 struct mmc_request *mrq)
117{
118}
119
120#endif /* CONFIG_FAIL_MMC_REQUEST */
121
1da177e4 122/**
fe10c6ab
RK
123 * mmc_request_done - finish processing an MMC request
124 * @host: MMC host which completed request
125 * @mrq: MMC request which request
1da177e4
LT
126 *
127 * MMC drivers should call this function when they have completed
fe10c6ab 128 * their processing of a request.
1da177e4
LT
129 */
130void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
131{
132 struct mmc_command *cmd = mrq->cmd;
920e70c5
RK
133 int err = cmd->error;
134
af517150
DB
135 if (err && cmd->retries && mmc_host_is_spi(host)) {
136 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
137 cmd->retries = 0;
138 }
139
d3049504 140 if (err && cmd->retries && !mmc_card_removed(host->card)) {
08a7e1df
AH
141 /*
142 * Request starter must handle retries - see
143 * mmc_wait_for_req_done().
144 */
145 if (mrq->done)
146 mrq->done(mrq);
e4d21708 147 } else {
1b676f70
PF
148 mmc_should_fail_request(host, mrq);
149
af8350c7
PO
150 led_trigger_event(host->led, LED_OFF);
151
e4d21708
PO
152 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
153 mmc_hostname(host), cmd->opcode, err,
154 cmd->resp[0], cmd->resp[1],
155 cmd->resp[2], cmd->resp[3]);
156
157 if (mrq->data) {
158 pr_debug("%s: %d bytes transferred: %d\n",
159 mmc_hostname(host),
160 mrq->data->bytes_xfered, mrq->data->error);
161 }
162
163 if (mrq->stop) {
164 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
165 mmc_hostname(host), mrq->stop->opcode,
166 mrq->stop->error,
167 mrq->stop->resp[0], mrq->stop->resp[1],
168 mrq->stop->resp[2], mrq->stop->resp[3]);
169 }
170
171 if (mrq->done)
172 mrq->done(mrq);
04566831 173
08c14071 174 mmc_host_clk_release(host);
1da177e4
LT
175 }
176}
177
178EXPORT_SYMBOL(mmc_request_done);
179
39361851 180static void
1da177e4
LT
181mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
182{
976d9276
PO
183#ifdef CONFIG_MMC_DEBUG
184 unsigned int i, sz;
a84756c5 185 struct scatterlist *sg;
976d9276
PO
186#endif
187
7b2fd4f2
JC
188 if (mrq->sbc) {
189 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
190 mmc_hostname(host), mrq->sbc->opcode,
191 mrq->sbc->arg, mrq->sbc->flags);
192 }
193
920e70c5
RK
194 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
195 mmc_hostname(host), mrq->cmd->opcode,
196 mrq->cmd->arg, mrq->cmd->flags);
1da177e4 197
e4d21708
PO
198 if (mrq->data) {
199 pr_debug("%s: blksz %d blocks %d flags %08x "
200 "tsac %d ms nsac %d\n",
201 mmc_hostname(host), mrq->data->blksz,
202 mrq->data->blocks, mrq->data->flags,
ce252edd 203 mrq->data->timeout_ns / 1000000,
e4d21708
PO
204 mrq->data->timeout_clks);
205 }
206
207 if (mrq->stop) {
208 pr_debug("%s: CMD%u arg %08x flags %08x\n",
209 mmc_hostname(host), mrq->stop->opcode,
210 mrq->stop->arg, mrq->stop->flags);
211 }
212
f22ee4ed 213 WARN_ON(!host->claimed);
1da177e4
LT
214
215 mrq->cmd->error = 0;
216 mrq->cmd->mrq = mrq;
217 if (mrq->data) {
fe4a3c7a 218 BUG_ON(mrq->data->blksz > host->max_blk_size);
55db890a
PO
219 BUG_ON(mrq->data->blocks > host->max_blk_count);
220 BUG_ON(mrq->data->blocks * mrq->data->blksz >
221 host->max_req_size);
fe4a3c7a 222
976d9276
PO
223#ifdef CONFIG_MMC_DEBUG
224 sz = 0;
a84756c5
PO
225 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
226 sz += sg->length;
976d9276
PO
227 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
228#endif
229
1da177e4
LT
230 mrq->cmd->data = mrq->data;
231 mrq->data->error = 0;
232 mrq->data->mrq = mrq;
233 if (mrq->stop) {
234 mrq->data->stop = mrq->stop;
235 mrq->stop->error = 0;
236 mrq->stop->mrq = mrq;
237 }
238 }
08c14071 239 mmc_host_clk_hold(host);
66c036e0 240 led_trigger_event(host->led, LED_FULL);
1da177e4
LT
241 host->ops->request(host, mrq);
242}
243
950d56ac
JC
244/**
245 * mmc_start_bkops - start BKOPS for supported cards
246 * @card: MMC card to start BKOPS
247 * @form_exception: A flag to indicate if this function was
248 * called due to an exception raised by the card
249 *
250 * Start background operations whenever requested.
251 * When the urgent BKOPS bit is set in a R1 command response
252 * then background operations should be started immediately.
253*/
254void mmc_start_bkops(struct mmc_card *card, bool from_exception)
255{
256 int err;
257 int timeout;
258 bool use_busy_signal;
259
260 BUG_ON(!card);
261
262 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
263 return;
264
265 err = mmc_read_bkops_status(card);
266 if (err) {
267 pr_err("%s: Failed to read bkops status: %d\n",
268 mmc_hostname(card->host), err);
269 return;
270 }
271
272 if (!card->ext_csd.raw_bkops_status)
273 return;
274
275 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
276 from_exception)
277 return;
278
279 mmc_claim_host(card->host);
280 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
281 timeout = MMC_BKOPS_MAX_TIMEOUT;
282 use_busy_signal = true;
283 } else {
284 timeout = 0;
285 use_busy_signal = false;
286 }
287
288 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
4509f847
UH
289 EXT_CSD_BKOPS_START, 1, timeout,
290 use_busy_signal, true, false);
950d56ac
JC
291 if (err) {
292 pr_warn("%s: Error %d starting bkops\n",
293 mmc_hostname(card->host), err);
294 goto out;
295 }
296
297 /*
298 * For urgent bkops status (LEVEL_2 and more)
299 * bkops executed synchronously, otherwise
300 * the operation is in progress
301 */
302 if (!use_busy_signal)
303 mmc_card_set_doing_bkops(card);
304out:
305 mmc_release_host(card->host);
306}
307EXPORT_SYMBOL(mmc_start_bkops);
308
2220eedf
KD
309/*
310 * mmc_wait_data_done() - done callback for data request
311 * @mrq: done data request
312 *
313 * Wakes up mmc context, passed as a callback to host controller driver
314 */
315static void mmc_wait_data_done(struct mmc_request *mrq)
316{
317 mrq->host->context_info.is_done_rcv = true;
318 wake_up_interruptible(&mrq->host->context_info.wait);
319}
320
1da177e4
LT
321static void mmc_wait_done(struct mmc_request *mrq)
322{
aa8b683a
PF
323 complete(&mrq->completion);
324}
325
2220eedf
KD
326/*
327 *__mmc_start_data_req() - starts data request
328 * @host: MMC host to start the request
329 * @mrq: data request to start
330 *
331 * Sets the done callback to be called when request is completed by the card.
332 * Starts data mmc request execution
333 */
334static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
335{
336 mrq->done = mmc_wait_data_done;
337 mrq->host = host;
338 if (mmc_card_removed(host->card)) {
339 mrq->cmd->error = -ENOMEDIUM;
9b844961 340 mmc_wait_data_done(mrq);
2220eedf
KD
341 return -ENOMEDIUM;
342 }
343 mmc_start_request(host, mrq);
344
345 return 0;
346}
347
956d9fd5 348static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
aa8b683a
PF
349{
350 init_completion(&mrq->completion);
351 mrq->done = mmc_wait_done;
d3049504
AH
352 if (mmc_card_removed(host->card)) {
353 mrq->cmd->error = -ENOMEDIUM;
354 complete(&mrq->completion);
956d9fd5 355 return -ENOMEDIUM;
d3049504 356 }
aa8b683a 357 mmc_start_request(host, mrq);
956d9fd5 358 return 0;
aa8b683a
PF
359}
360
2220eedf
KD
361/*
362 * mmc_wait_for_data_req_done() - wait for request completed
363 * @host: MMC host to prepare the command.
364 * @mrq: MMC request to wait for
365 *
366 * Blocks MMC context till host controller will ack end of data request
367 * execution or new request notification arrives from the block layer.
368 * Handles command retries.
369 *
370 * Returns enum mmc_blk_status after checking errors.
371 */
372static int mmc_wait_for_data_req_done(struct mmc_host *host,
373 struct mmc_request *mrq,
374 struct mmc_async_req *next_req)
375{
376 struct mmc_command *cmd;
377 struct mmc_context_info *context_info = &host->context_info;
378 int err;
379 unsigned long flags;
380
381 while (1) {
382 wait_event_interruptible(context_info->wait,
383 (context_info->is_done_rcv ||
384 context_info->is_new_req));
385 spin_lock_irqsave(&context_info->lock, flags);
386 context_info->is_waiting_last_req = false;
387 spin_unlock_irqrestore(&context_info->lock, flags);
388 if (context_info->is_done_rcv) {
389 context_info->is_done_rcv = false;
390 context_info->is_new_req = false;
391 cmd = mrq->cmd;
775a9362 392
2220eedf
KD
393 if (!cmd->error || !cmd->retries ||
394 mmc_card_removed(host->card)) {
395 err = host->areq->err_check(host->card,
396 host->areq);
397 break; /* return err */
398 } else {
399 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
400 mmc_hostname(host),
401 cmd->opcode, cmd->error);
402 cmd->retries--;
403 cmd->error = 0;
404 host->ops->request(host, mrq);
405 continue; /* wait for done/new event again */
406 }
407 } else if (context_info->is_new_req) {
408 context_info->is_new_req = false;
409 if (!next_req) {
410 err = MMC_BLK_NEW_REQUEST;
411 break; /* return err */
412 }
413 }
414 }
415 return err;
416}
417
aa8b683a
PF
418static void mmc_wait_for_req_done(struct mmc_host *host,
419 struct mmc_request *mrq)
420{
08a7e1df
AH
421 struct mmc_command *cmd;
422
423 while (1) {
424 wait_for_completion(&mrq->completion);
425
426 cmd = mrq->cmd;
775a9362
ME
427
428 /*
429 * If host has timed out waiting for the sanitize
430 * to complete, card might be still in programming state
431 * so let's try to bring the card out of programming
432 * state.
433 */
434 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
435 if (!mmc_interrupt_hpi(host->card)) {
436 pr_warning("%s: %s: Interrupted sanitize\n",
437 mmc_hostname(host), __func__);
438 cmd->error = 0;
439 break;
440 } else {
441 pr_err("%s: %s: Failed to interrupt sanitize\n",
442 mmc_hostname(host), __func__);
443 }
444 }
d3049504
AH
445 if (!cmd->error || !cmd->retries ||
446 mmc_card_removed(host->card))
08a7e1df
AH
447 break;
448
449 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
450 mmc_hostname(host), cmd->opcode, cmd->error);
451 cmd->retries--;
452 cmd->error = 0;
453 host->ops->request(host, mrq);
454 }
aa8b683a
PF
455}
456
457/**
458 * mmc_pre_req - Prepare for a new request
459 * @host: MMC host to prepare command
460 * @mrq: MMC request to prepare for
461 * @is_first_req: true if there is no previous started request
462 * that may run in parellel to this call, otherwise false
463 *
464 * mmc_pre_req() is called in prior to mmc_start_req() to let
465 * host prepare for the new request. Preparation of a request may be
466 * performed while another request is running on the host.
467 */
468static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
469 bool is_first_req)
470{
2c4967f7
SRT
471 if (host->ops->pre_req) {
472 mmc_host_clk_hold(host);
aa8b683a 473 host->ops->pre_req(host, mrq, is_first_req);
2c4967f7
SRT
474 mmc_host_clk_release(host);
475 }
aa8b683a
PF
476}
477
478/**
479 * mmc_post_req - Post process a completed request
480 * @host: MMC host to post process command
481 * @mrq: MMC request to post process for
482 * @err: Error, if non zero, clean up any resources made in pre_req
483 *
484 * Let the host post process a completed request. Post processing of
485 * a request may be performed while another reuqest is running.
486 */
487static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
488 int err)
489{
2c4967f7
SRT
490 if (host->ops->post_req) {
491 mmc_host_clk_hold(host);
aa8b683a 492 host->ops->post_req(host, mrq, err);
2c4967f7
SRT
493 mmc_host_clk_release(host);
494 }
1da177e4
LT
495}
496
aa8b683a
PF
497/**
498 * mmc_start_req - start a non-blocking request
499 * @host: MMC host to start command
500 * @areq: async request to start
501 * @error: out parameter returns 0 for success, otherwise non zero
502 *
503 * Start a new MMC custom command request for a host.
504 * If there is on ongoing async request wait for completion
505 * of that request and start the new one and return.
506 * Does not wait for the new request to complete.
507 *
508 * Returns the completed request, NULL in case of none completed.
509 * Wait for the an ongoing request (previoulsy started) to complete and
510 * return the completed request. If there is no ongoing request, NULL
511 * is returned without waiting. NULL is not an error condition.
512 */
513struct mmc_async_req *mmc_start_req(struct mmc_host *host,
514 struct mmc_async_req *areq, int *error)
515{
516 int err = 0;
956d9fd5 517 int start_err = 0;
aa8b683a
PF
518 struct mmc_async_req *data = host->areq;
519
520 /* Prepare a new request */
521 if (areq)
522 mmc_pre_req(host, areq->mrq, !host->areq);
523
524 if (host->areq) {
f5c2758f
JC
525 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
526 if (err == MMC_BLK_NEW_REQUEST) {
527 if (error)
528 *error = err;
529 /*
530 * The previous request was not completed,
531 * nothing to return
532 */
533 return NULL;
534 }
950d56ac
JC
535 /*
536 * Check BKOPS urgency for each R1 response
537 */
538 if (host->card && mmc_card_mmc(host->card) &&
539 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
540 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
541 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
542 mmc_start_bkops(host->card, true);
aa8b683a
PF
543 }
544
956d9fd5 545 if (!err && areq)
2220eedf 546 start_err = __mmc_start_data_req(host, areq->mrq);
aa8b683a
PF
547
548 if (host->areq)
549 mmc_post_req(host, host->areq->mrq, 0);
550
956d9fd5
UH
551 /* Cancel a prepared request if it was not started. */
552 if ((err || start_err) && areq)
f5c2758f 553 mmc_post_req(host, areq->mrq, -EINVAL);
956d9fd5
UH
554
555 if (err)
556 host->areq = NULL;
557 else
558 host->areq = areq;
559
aa8b683a
PF
560 if (error)
561 *error = err;
562 return data;
563}
564EXPORT_SYMBOL(mmc_start_req);
565
67a61c48
PO
566/**
567 * mmc_wait_for_req - start a request and wait for completion
568 * @host: MMC host to start command
569 * @mrq: MMC request to start
570 *
571 * Start a new MMC custom command request for a host, and wait
572 * for the command to complete. Does not attempt to parse the
573 * response.
574 */
575void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
1da177e4 576{
aa8b683a
PF
577 __mmc_start_req(host, mrq);
578 mmc_wait_for_req_done(host, mrq);
1da177e4 579}
1da177e4
LT
580EXPORT_SYMBOL(mmc_wait_for_req);
581
eb0d8f13
JC
582/**
583 * mmc_interrupt_hpi - Issue for High priority Interrupt
584 * @card: the MMC card associated with the HPI transfer
585 *
586 * Issued High Priority Interrupt, and check for card status
950d56ac 587 * until out-of prg-state.
eb0d8f13
JC
588 */
589int mmc_interrupt_hpi(struct mmc_card *card)
590{
591 int err;
592 u32 status;
6af9e96e 593 unsigned long prg_wait;
eb0d8f13
JC
594
595 BUG_ON(!card);
596
597 if (!card->ext_csd.hpi_en) {
598 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
599 return 1;
600 }
601
602 mmc_claim_host(card->host);
603 err = mmc_send_status(card, &status);
604 if (err) {
605 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
606 goto out;
607 }
608
6af9e96e
V
609 switch (R1_CURRENT_STATE(status)) {
610 case R1_STATE_IDLE:
611 case R1_STATE_READY:
612 case R1_STATE_STBY:
211d4fe5 613 case R1_STATE_TRAN:
6af9e96e 614 /*
211d4fe5 615 * In idle and transfer states, HPI is not needed and the caller
6af9e96e
V
616 * can issue the next intended command immediately
617 */
618 goto out;
619 case R1_STATE_PRG:
620 break;
621 default:
622 /* In all other states, it's illegal to issue HPI */
623 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
624 mmc_hostname(card->host), R1_CURRENT_STATE(status));
625 err = -EINVAL;
626 goto out;
627 }
628
629 err = mmc_send_hpi_cmd(card, &status);
630 if (err)
631 goto out;
632
633 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
634 do {
635 err = mmc_send_status(card, &status);
636
637 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
638 break;
639 if (time_after(jiffies, prg_wait))
640 err = -ETIMEDOUT;
641 } while (!err);
eb0d8f13
JC
642
643out:
644 mmc_release_host(card->host);
645 return err;
646}
647EXPORT_SYMBOL(mmc_interrupt_hpi);
648
1da177e4
LT
649/**
650 * mmc_wait_for_cmd - start a command and wait for completion
651 * @host: MMC host to start command
652 * @cmd: MMC command to start
653 * @retries: maximum number of retries
654 *
655 * Start a new MMC command for a host, and wait for the command
656 * to complete. Return any error that occurred while the command
657 * was executing. Do not attempt to parse the response.
658 */
659int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
660{
ad5fd972 661 struct mmc_request mrq = {NULL};
1da177e4 662
d84075c8 663 WARN_ON(!host->claimed);
1da177e4 664
1da177e4
LT
665 memset(cmd->resp, 0, sizeof(cmd->resp));
666 cmd->retries = retries;
667
668 mrq.cmd = cmd;
669 cmd->data = NULL;
670
671 mmc_wait_for_req(host, &mrq);
672
673 return cmd->error;
674}
675
676EXPORT_SYMBOL(mmc_wait_for_cmd);
677
950d56ac
JC
678/**
679 * mmc_stop_bkops - stop ongoing BKOPS
680 * @card: MMC card to check BKOPS
681 *
682 * Send HPI command to stop ongoing background operations to
683 * allow rapid servicing of foreground operations, e.g. read/
684 * writes. Wait until the card comes out of the programming state
685 * to avoid errors in servicing read/write requests.
686 */
687int mmc_stop_bkops(struct mmc_card *card)
688{
689 int err = 0;
690
691 BUG_ON(!card);
692 err = mmc_interrupt_hpi(card);
693
694 /*
695 * If err is EINVAL, we can't issue an HPI.
696 * It should complete the BKOPS.
697 */
698 if (!err || (err == -EINVAL)) {
699 mmc_card_clr_doing_bkops(card);
700 err = 0;
701 }
702
703 return err;
704}
705EXPORT_SYMBOL(mmc_stop_bkops);
706
707int mmc_read_bkops_status(struct mmc_card *card)
708{
709 int err;
710 u8 *ext_csd;
711
712 /*
713 * In future work, we should consider storing the entire ext_csd.
714 */
715 ext_csd = kmalloc(512, GFP_KERNEL);
716 if (!ext_csd) {
717 pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
718 mmc_hostname(card->host));
719 return -ENOMEM;
720 }
721
722 mmc_claim_host(card->host);
723 err = mmc_send_ext_csd(card, ext_csd);
724 mmc_release_host(card->host);
725 if (err)
726 goto out;
727
728 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
729 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
730out:
731 kfree(ext_csd);
732 return err;
733}
734EXPORT_SYMBOL(mmc_read_bkops_status);
735
d773d725
RK
736/**
737 * mmc_set_data_timeout - set the timeout for a data command
738 * @data: data phase for command
739 * @card: the MMC card associated with the data transfer
67a61c48
PO
740 *
741 * Computes the data timeout parameters according to the
742 * correct algorithm given the card type.
d773d725 743 */
b146d26a 744void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
d773d725
RK
745{
746 unsigned int mult;
747
e6f918bf
PO
748 /*
749 * SDIO cards only define an upper 1 s limit on access.
750 */
751 if (mmc_card_sdio(card)) {
752 data->timeout_ns = 1000000000;
753 data->timeout_clks = 0;
754 return;
755 }
756
d773d725
RK
757 /*
758 * SD cards use a 100 multiplier rather than 10
759 */
760 mult = mmc_card_sd(card) ? 100 : 10;
761
762 /*
763 * Scale up the multiplier (and therefore the timeout) by
764 * the r2w factor for writes.
765 */
b146d26a 766 if (data->flags & MMC_DATA_WRITE)
d773d725
RK
767 mult <<= card->csd.r2w_factor;
768
769 data->timeout_ns = card->csd.tacc_ns * mult;
770 data->timeout_clks = card->csd.tacc_clks * mult;
771
772 /*
773 * SD cards also have an upper limit on the timeout.
774 */
775 if (mmc_card_sd(card)) {
776 unsigned int timeout_us, limit_us;
777
778 timeout_us = data->timeout_ns / 1000;
e9b86841
LW
779 if (mmc_host_clk_rate(card->host))
780 timeout_us += data->timeout_clks * 1000 /
781 (mmc_host_clk_rate(card->host) / 1000);
d773d725 782
b146d26a 783 if (data->flags & MMC_DATA_WRITE)
493890e7 784 /*
3bdc9ba8
PW
785 * The MMC spec "It is strongly recommended
786 * for hosts to implement more than 500ms
787 * timeout value even if the card indicates
788 * the 250ms maximum busy length." Even the
789 * previous value of 300ms is known to be
790 * insufficient for some cards.
493890e7 791 */
3bdc9ba8 792 limit_us = 3000000;
d773d725
RK
793 else
794 limit_us = 100000;
795
fba68bd2
PL
796 /*
797 * SDHC cards always use these fixed values.
798 */
799 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
d773d725
RK
800 data->timeout_ns = limit_us * 1000;
801 data->timeout_clks = 0;
802 }
f7bf11a3
SW
803
804 /* assign limit value if invalid */
805 if (timeout_us == 0)
806 data->timeout_ns = limit_us * 1000;
d773d725 807 }
6de5fc9c
SNX
808
809 /*
810 * Some cards require longer data read timeout than indicated in CSD.
811 * Address this by setting the read timeout to a "reasonably high"
812 * value. For the cards tested, 300ms has proven enough. If necessary,
813 * this value can be increased if other problematic cards require this.
814 */
815 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
816 data->timeout_ns = 300000000;
817 data->timeout_clks = 0;
818 }
819
c0c88871
WM
820 /*
821 * Some cards need very high timeouts if driven in SPI mode.
822 * The worst observed timeout was 900ms after writing a
823 * continuous stream of data until the internal logic
824 * overflowed.
825 */
826 if (mmc_host_is_spi(card->host)) {
827 if (data->flags & MMC_DATA_WRITE) {
828 if (data->timeout_ns < 1000000000)
829 data->timeout_ns = 1000000000; /* 1s */
830 } else {
831 if (data->timeout_ns < 100000000)
832 data->timeout_ns = 100000000; /* 100ms */
833 }
834 }
d773d725
RK
835}
836EXPORT_SYMBOL(mmc_set_data_timeout);
837
ad3868b2
PO
838/**
839 * mmc_align_data_size - pads a transfer size to a more optimal value
840 * @card: the MMC card associated with the data transfer
841 * @sz: original transfer size
842 *
843 * Pads the original data size with a number of extra bytes in
844 * order to avoid controller bugs and/or performance hits
845 * (e.g. some controllers revert to PIO for certain sizes).
846 *
847 * Returns the improved size, which might be unmodified.
848 *
849 * Note that this function is only relevant when issuing a
850 * single scatter gather entry.
851 */
852unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
853{
854 /*
855 * FIXME: We don't have a system for the controller to tell
856 * the core about its problems yet, so for now we just 32-bit
857 * align the size.
858 */
859 sz = ((sz + 3) / 4) * 4;
860
861 return sz;
862}
863EXPORT_SYMBOL(mmc_align_data_size);
864
1da177e4 865/**
2342f332 866 * __mmc_claim_host - exclusively claim a host
1da177e4 867 * @host: mmc host to claim
2342f332 868 * @abort: whether or not the operation should be aborted
1da177e4 869 *
2342f332
NP
870 * Claim a host for a set of operations. If @abort is non null and
871 * dereference a non-zero value then this will return prematurely with
872 * that non-zero value without acquiring the lock. Returns zero
873 * with the lock held otherwise.
1da177e4 874 */
2342f332 875int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
1da177e4
LT
876{
877 DECLARE_WAITQUEUE(wait, current);
878 unsigned long flags;
2342f332 879 int stop;
1da177e4 880
cf795bfb
PO
881 might_sleep();
882
1da177e4
LT
883 add_wait_queue(&host->wq, &wait);
884 spin_lock_irqsave(&host->lock, flags);
885 while (1) {
886 set_current_state(TASK_UNINTERRUPTIBLE);
2342f332 887 stop = abort ? atomic_read(abort) : 0;
319a3f14 888 if (stop || !host->claimed || host->claimer == current)
1da177e4
LT
889 break;
890 spin_unlock_irqrestore(&host->lock, flags);
891 schedule();
892 spin_lock_irqsave(&host->lock, flags);
893 }
894 set_current_state(TASK_RUNNING);
319a3f14 895 if (!stop) {
2342f332 896 host->claimed = 1;
319a3f14
AH
897 host->claimer = current;
898 host->claim_cnt += 1;
899 } else
2342f332 900 wake_up(&host->wq);
1da177e4
LT
901 spin_unlock_irqrestore(&host->lock, flags);
902 remove_wait_queue(&host->wq, &wait);
907d2e7c
AH
903 if (host->ops->enable && !stop && host->claim_cnt == 1)
904 host->ops->enable(host);
2342f332 905 return stop;
1da177e4
LT
906}
907
2342f332 908EXPORT_SYMBOL(__mmc_claim_host);
8ea926b2 909
ab1efd27 910/**
907d2e7c 911 * mmc_release_host - release a host
ab1efd27
UH
912 * @host: mmc host to release
913 *
907d2e7c
AH
914 * Release a MMC host, allowing others to claim the host
915 * for their operations.
ab1efd27 916 */
907d2e7c 917void mmc_release_host(struct mmc_host *host)
8ea926b2
AH
918{
919 unsigned long flags;
920
907d2e7c
AH
921 WARN_ON(!host->claimed);
922
923 if (host->ops->disable && host->claim_cnt == 1)
924 host->ops->disable(host);
925
8ea926b2 926 spin_lock_irqsave(&host->lock, flags);
319a3f14
AH
927 if (--host->claim_cnt) {
928 /* Release for nested claim */
929 spin_unlock_irqrestore(&host->lock, flags);
930 } else {
931 host->claimed = 0;
932 host->claimer = NULL;
933 spin_unlock_irqrestore(&host->lock, flags);
934 wake_up(&host->wq);
935 }
8ea926b2 936}
1da177e4
LT
937EXPORT_SYMBOL(mmc_release_host);
938
e94cfef6
UH
939/*
940 * This is a helper function, which fetches a runtime pm reference for the
941 * card device and also claims the host.
942 */
943void mmc_get_card(struct mmc_card *card)
944{
945 pm_runtime_get_sync(&card->dev);
946 mmc_claim_host(card->host);
947}
948EXPORT_SYMBOL(mmc_get_card);
949
950/*
951 * This is a helper function, which releases the host and drops the runtime
952 * pm reference for the card device.
953 */
954void mmc_put_card(struct mmc_card *card)
955{
956 mmc_release_host(card->host);
957 pm_runtime_mark_last_busy(&card->dev);
958 pm_runtime_put_autosuspend(&card->dev);
959}
960EXPORT_SYMBOL(mmc_put_card);
961
7ea239d9
PO
962/*
963 * Internal function that does the actual ios call to the host driver,
964 * optionally printing some debug output.
965 */
920e70c5
RK
966static inline void mmc_set_ios(struct mmc_host *host)
967{
968 struct mmc_ios *ios = &host->ios;
969
cd9277c0
PO
970 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
971 "width %u timing %u\n",
920e70c5
RK
972 mmc_hostname(host), ios->clock, ios->bus_mode,
973 ios->power_mode, ios->chip_select, ios->vdd,
cd9277c0 974 ios->bus_width, ios->timing);
fba68bd2 975
04566831
LW
976 if (ios->clock > 0)
977 mmc_set_ungated(host);
920e70c5
RK
978 host->ops->set_ios(host, ios);
979}
980
7ea239d9
PO
981/*
982 * Control chip select pin on a host.
983 */
da7fbe58 984void mmc_set_chip_select(struct mmc_host *host, int mode)
1da177e4 985{
778e277c 986 mmc_host_clk_hold(host);
da7fbe58
PO
987 host->ios.chip_select = mode;
988 mmc_set_ios(host);
778e277c 989 mmc_host_clk_release(host);
1da177e4
LT
990}
991
7ea239d9
PO
992/*
993 * Sets the host clock to the highest possible frequency that
994 * is below "hz".
995 */
778e277c 996static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
7ea239d9
PO
997{
998 WARN_ON(hz < host->f_min);
999
1000 if (hz > host->f_max)
1001 hz = host->f_max;
1002
1003 host->ios.clock = hz;
1004 mmc_set_ios(host);
1005}
1006
778e277c
MW
1007void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1008{
1009 mmc_host_clk_hold(host);
1010 __mmc_set_clock(host, hz);
1011 mmc_host_clk_release(host);
1012}
1013
04566831
LW
1014#ifdef CONFIG_MMC_CLKGATE
1015/*
1016 * This gates the clock by setting it to 0 Hz.
1017 */
1018void mmc_gate_clock(struct mmc_host *host)
1019{
1020 unsigned long flags;
1021
1022 spin_lock_irqsave(&host->clk_lock, flags);
1023 host->clk_old = host->ios.clock;
1024 host->ios.clock = 0;
1025 host->clk_gated = true;
1026 spin_unlock_irqrestore(&host->clk_lock, flags);
1027 mmc_set_ios(host);
1028}
1029
1030/*
1031 * This restores the clock from gating by using the cached
1032 * clock value.
1033 */
1034void mmc_ungate_clock(struct mmc_host *host)
1035{
1036 /*
1037 * We should previously have gated the clock, so the clock shall
1038 * be 0 here! The clock may however be 0 during initialization,
1039 * when some request operations are performed before setting
1040 * the frequency. When ungate is requested in that situation
1041 * we just ignore the call.
1042 */
1043 if (host->clk_old) {
1044 BUG_ON(host->ios.clock);
1045 /* This call will also set host->clk_gated to false */
778e277c 1046 __mmc_set_clock(host, host->clk_old);
04566831
LW
1047 }
1048}
1049
1050void mmc_set_ungated(struct mmc_host *host)
1051{
1052 unsigned long flags;
1053
1054 /*
1055 * We've been given a new frequency while the clock is gated,
1056 * so make sure we regard this as ungating it.
1057 */
1058 spin_lock_irqsave(&host->clk_lock, flags);
1059 host->clk_gated = false;
1060 spin_unlock_irqrestore(&host->clk_lock, flags);
1061}
1062
1063#else
1064void mmc_set_ungated(struct mmc_host *host)
1065{
1066}
1067#endif
1068
7ea239d9
PO
1069/*
1070 * Change the bus mode (open drain/push-pull) of a host.
1071 */
1072void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1073{
778e277c 1074 mmc_host_clk_hold(host);
7ea239d9
PO
1075 host->ios.bus_mode = mode;
1076 mmc_set_ios(host);
778e277c 1077 mmc_host_clk_release(host);
7ea239d9
PO
1078}
1079
0f8d8ea6
AH
1080/*
1081 * Change data bus width of a host.
1082 */
1083void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1084{
778e277c 1085 mmc_host_clk_hold(host);
4c4cb171
PR
1086 host->ios.bus_width = width;
1087 mmc_set_ios(host);
778e277c 1088 mmc_host_clk_release(host);
0f8d8ea6
AH
1089}
1090
86e8286a
AV
1091/**
1092 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1093 * @vdd: voltage (mV)
1094 * @low_bits: prefer low bits in boundary cases
1095 *
1096 * This function returns the OCR bit number according to the provided @vdd
1097 * value. If conversion is not possible a negative errno value returned.
1098 *
1099 * Depending on the @low_bits flag the function prefers low or high OCR bits
1100 * on boundary voltages. For example,
1101 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1102 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1103 *
1104 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1105 */
1106static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1107{
1108 const int max_bit = ilog2(MMC_VDD_35_36);
1109 int bit;
1110
1111 if (vdd < 1650 || vdd > 3600)
1112 return -EINVAL;
1113
1114 if (vdd >= 1650 && vdd <= 1950)
1115 return ilog2(MMC_VDD_165_195);
1116
1117 if (low_bits)
1118 vdd -= 1;
1119
1120 /* Base 2000 mV, step 100 mV, bit's base 8. */
1121 bit = (vdd - 2000) / 100 + 8;
1122 if (bit > max_bit)
1123 return max_bit;
1124 return bit;
1125}
1126
1127/**
1128 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1129 * @vdd_min: minimum voltage value (mV)
1130 * @vdd_max: maximum voltage value (mV)
1131 *
1132 * This function returns the OCR mask bits according to the provided @vdd_min
1133 * and @vdd_max values. If conversion is not possible the function returns 0.
1134 *
1135 * Notes wrt boundary cases:
1136 * This function sets the OCR bits for all boundary voltages, for example
1137 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1138 * MMC_VDD_34_35 mask.
1139 */
1140u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1141{
1142 u32 mask = 0;
1143
1144 if (vdd_max < vdd_min)
1145 return 0;
1146
1147 /* Prefer high bits for the boundary vdd_max values. */
1148 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1149 if (vdd_max < 0)
1150 return 0;
1151
1152 /* Prefer low bits for the boundary vdd_min values. */
1153 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1154 if (vdd_min < 0)
1155 return 0;
1156
1157 /* Fill the mask, from max bit to min bit. */
1158 while (vdd_max >= vdd_min)
1159 mask |= 1 << vdd_max--;
1160
1161 return mask;
1162}
1163EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1164
6e9e318b
HZ
1165#ifdef CONFIG_OF
1166
1167/**
1168 * mmc_of_parse_voltage - return mask of supported voltages
1169 * @np: The device node need to be parsed.
1170 * @mask: mask of voltages available for MMC/SD/SDIO
1171 *
1172 * 1. Return zero on success.
1173 * 2. Return negative errno: voltage-range is invalid.
1174 */
1175int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1176{
1177 const u32 *voltage_ranges;
1178 int num_ranges, i;
1179
1180 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1181 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1182 if (!voltage_ranges || !num_ranges) {
1183 pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1184 return -EINVAL;
1185 }
1186
1187 for (i = 0; i < num_ranges; i++) {
1188 const int j = i * 2;
1189 u32 ocr_mask;
1190
1191 ocr_mask = mmc_vddrange_to_ocrmask(
1192 be32_to_cpu(voltage_ranges[j]),
1193 be32_to_cpu(voltage_ranges[j + 1]));
1194 if (!ocr_mask) {
1195 pr_err("%s: voltage-range #%d is invalid\n",
1196 np->full_name, i);
1197 return -EINVAL;
1198 }
1199 *mask |= ocr_mask;
1200 }
1201
1202 return 0;
1203}
1204EXPORT_SYMBOL(mmc_of_parse_voltage);
1205
1206#endif /* CONFIG_OF */
1207
5c13941a
DB
1208#ifdef CONFIG_REGULATOR
1209
1210/**
1211 * mmc_regulator_get_ocrmask - return mask of supported voltages
1212 * @supply: regulator to use
1213 *
1214 * This returns either a negative errno, or a mask of voltages that
1215 * can be provided to MMC/SD/SDIO devices using the specified voltage
1216 * regulator. This would normally be called before registering the
1217 * MMC host adapter.
1218 */
1219int mmc_regulator_get_ocrmask(struct regulator *supply)
1220{
1221 int result = 0;
1222 int count;
1223 int i;
1224
1225 count = regulator_count_voltages(supply);
1226 if (count < 0)
1227 return count;
1228
1229 for (i = 0; i < count; i++) {
1230 int vdd_uV;
1231 int vdd_mV;
1232
1233 vdd_uV = regulator_list_voltage(supply, i);
1234 if (vdd_uV <= 0)
1235 continue;
1236
1237 vdd_mV = vdd_uV / 1000;
1238 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1239 }
1240
1241 return result;
1242}
45a6b32e 1243EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
5c13941a
DB
1244
1245/**
1246 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
99fc5131 1247 * @mmc: the host to regulate
5c13941a 1248 * @supply: regulator to use
99fc5131 1249 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
5c13941a
DB
1250 *
1251 * Returns zero on success, else negative errno.
1252 *
1253 * MMC host drivers may use this to enable or disable a regulator using
1254 * a particular supply voltage. This would normally be called from the
1255 * set_ios() method.
1256 */
99fc5131
LW
1257int mmc_regulator_set_ocr(struct mmc_host *mmc,
1258 struct regulator *supply,
1259 unsigned short vdd_bit)
5c13941a
DB
1260{
1261 int result = 0;
1262 int min_uV, max_uV;
5c13941a
DB
1263
1264 if (vdd_bit) {
1265 int tmp;
1266 int voltage;
1267
9cde5b7a
CB
1268 /*
1269 * REVISIT mmc_vddrange_to_ocrmask() may have set some
5c13941a
DB
1270 * bits this regulator doesn't quite support ... don't
1271 * be too picky, most cards and regulators are OK with
1272 * a 0.1V range goof (it's a small error percentage).
1273 */
1274 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1275 if (tmp == 0) {
1276 min_uV = 1650 * 1000;
1277 max_uV = 1950 * 1000;
1278 } else {
1279 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1280 max_uV = min_uV + 100 * 1000;
1281 }
1282
9cde5b7a
CB
1283 /*
1284 * If we're using a fixed/static regulator, don't call
1285 * regulator_set_voltage; it would fail.
5c13941a
DB
1286 */
1287 voltage = regulator_get_voltage(supply);
6e8201f5 1288
5f56a8e6 1289 if (!regulator_can_change_voltage(supply))
6e8201f5
JC
1290 min_uV = max_uV = voltage;
1291
5c13941a
DB
1292 if (voltage < 0)
1293 result = voltage;
1294 else if (voltage < min_uV || voltage > max_uV)
1295 result = regulator_set_voltage(supply, min_uV, max_uV);
1296 else
1297 result = 0;
1298
99fc5131 1299 if (result == 0 && !mmc->regulator_enabled) {
5c13941a 1300 result = regulator_enable(supply);
99fc5131
LW
1301 if (!result)
1302 mmc->regulator_enabled = true;
1303 }
1304 } else if (mmc->regulator_enabled) {
5c13941a 1305 result = regulator_disable(supply);
99fc5131
LW
1306 if (result == 0)
1307 mmc->regulator_enabled = false;
5c13941a
DB
1308 }
1309
99fc5131
LW
1310 if (result)
1311 dev_err(mmc_dev(mmc),
1312 "could not set regulator OCR (%d)\n", result);
5c13941a
DB
1313 return result;
1314}
45a6b32e 1315EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
5c13941a 1316
e137788d
GL
1317int mmc_regulator_get_supply(struct mmc_host *mmc)
1318{
1319 struct device *dev = mmc_dev(mmc);
1320 struct regulator *supply;
1321 int ret;
1322
1323 supply = devm_regulator_get(dev, "vmmc");
1324 mmc->supply.vmmc = supply;
bc35d5ed 1325 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
e137788d
GL
1326
1327 if (IS_ERR(supply))
1328 return PTR_ERR(supply);
1329
1330 ret = mmc_regulator_get_ocrmask(supply);
1331 if (ret > 0)
1332 mmc->ocr_avail = ret;
1333 else
1334 dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1335
1336 return 0;
1337}
1338EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1339
99fc5131 1340#endif /* CONFIG_REGULATOR */
5c13941a 1341
1da177e4
LT
1342/*
1343 * Mask off any voltages we don't support and select
1344 * the lowest voltage
1345 */
7ea239d9 1346u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1da177e4
LT
1347{
1348 int bit;
1349
726d6f23
UH
1350 /*
1351 * Sanity check the voltages that the card claims to
1352 * support.
1353 */
1354 if (ocr & 0x7F) {
1355 dev_warn(mmc_dev(host),
1356 "card claims to support voltages below defined range\n");
1357 ocr &= ~0x7F;
1358 }
1359
1da177e4 1360 ocr &= host->ocr_avail;
ce69d37b
UH
1361 if (!ocr) {
1362 dev_warn(mmc_dev(host), "no support for card's volts\n");
1363 return 0;
1364 }
1da177e4 1365
ce69d37b
UH
1366 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1367 bit = ffs(ocr) - 1;
63ef731a 1368 ocr &= 3 << bit;
ce69d37b 1369 mmc_power_cycle(host, ocr);
1da177e4 1370 } else {
ce69d37b
UH
1371 bit = fls(ocr) - 1;
1372 ocr &= 3 << bit;
1373 if (bit != host->ios.vdd)
1374 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1da177e4
LT
1375 }
1376
1377 return ocr;
1378}
1379
567c8903
JR
1380int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1381{
1382 int err = 0;
1383 int old_signal_voltage = host->ios.signal_voltage;
1384
1385 host->ios.signal_voltage = signal_voltage;
1386 if (host->ops->start_signal_voltage_switch) {
1387 mmc_host_clk_hold(host);
1388 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1389 mmc_host_clk_release(host);
1390 }
1391
1392 if (err)
1393 host->ios.signal_voltage = old_signal_voltage;
1394
1395 return err;
1396
1397}
1398
0f791fda 1399int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
f2119df6
AN
1400{
1401 struct mmc_command cmd = {0};
1402 int err = 0;
0797e5f1 1403 u32 clock;
f2119df6
AN
1404
1405 BUG_ON(!host);
1406
1407 /*
1408 * Send CMD11 only if the request is to switch the card to
1409 * 1.8V signalling.
1410 */
0797e5f1
JR
1411 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1412 return __mmc_set_signal_voltage(host, signal_voltage);
f2119df6 1413
0797e5f1
JR
1414 /*
1415 * If we cannot switch voltages, return failure so the caller
1416 * can continue without UHS mode
1417 */
1418 if (!host->ops->start_signal_voltage_switch)
1419 return -EPERM;
1420 if (!host->ops->card_busy)
1421 pr_warning("%s: cannot verify signal voltage switch\n",
1422 mmc_hostname(host));
1423
1424 cmd.opcode = SD_SWITCH_VOLTAGE;
1425 cmd.arg = 0;
1426 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1427
1428 err = mmc_wait_for_cmd(host, &cmd, 0);
1429 if (err)
1430 return err;
1431
1432 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1433 return -EIO;
1434
1435 mmc_host_clk_hold(host);
1436 /*
1437 * The card should drive cmd and dat[0:3] low immediately
1438 * after the response of cmd11, but wait 1 ms to be sure
1439 */
1440 mmc_delay(1);
1441 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1442 err = -EAGAIN;
1443 goto power_cycle;
1444 }
1445 /*
1446 * During a signal voltage level switch, the clock must be gated
1447 * for 5 ms according to the SD spec
1448 */
1449 clock = host->ios.clock;
1450 host->ios.clock = 0;
1451 mmc_set_ios(host);
f2119df6 1452
0797e5f1
JR
1453 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1454 /*
1455 * Voltages may not have been switched, but we've already
1456 * sent CMD11, so a power cycle is required anyway
1457 */
1458 err = -EAGAIN;
1459 goto power_cycle;
f2119df6
AN
1460 }
1461
0797e5f1
JR
1462 /* Keep clock gated for at least 5 ms */
1463 mmc_delay(5);
1464 host->ios.clock = clock;
1465 mmc_set_ios(host);
1466
1467 /* Wait for at least 1 ms according to spec */
1468 mmc_delay(1);
1469
1470 /*
1471 * Failure to switch is indicated by the card holding
1472 * dat[0:3] low
1473 */
1474 if (host->ops->card_busy && host->ops->card_busy(host))
1475 err = -EAGAIN;
1476
1477power_cycle:
1478 if (err) {
1479 pr_debug("%s: Signal voltage switch failed, "
1480 "power cycling card\n", mmc_hostname(host));
0f791fda 1481 mmc_power_cycle(host, ocr);
0797e5f1
JR
1482 }
1483
1484 mmc_host_clk_release(host);
1485
1486 return err;
f2119df6
AN
1487}
1488
b57c43ad 1489/*
7ea239d9 1490 * Select timing parameters for host.
b57c43ad 1491 */
7ea239d9 1492void mmc_set_timing(struct mmc_host *host, unsigned int timing)
b57c43ad 1493{
778e277c 1494 mmc_host_clk_hold(host);
7ea239d9
PO
1495 host->ios.timing = timing;
1496 mmc_set_ios(host);
778e277c 1497 mmc_host_clk_release(host);
b57c43ad
PO
1498}
1499
d6d50a15
AN
1500/*
1501 * Select appropriate driver type for host.
1502 */
1503void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1504{
778e277c 1505 mmc_host_clk_hold(host);
d6d50a15
AN
1506 host->ios.drv_type = drv_type;
1507 mmc_set_ios(host);
778e277c 1508 mmc_host_clk_release(host);
d6d50a15
AN
1509}
1510
1da177e4 1511/*
45f8245b
RK
1512 * Apply power to the MMC stack. This is a two-stage process.
1513 * First, we enable power to the card without the clock running.
1514 * We then wait a bit for the power to stabilise. Finally,
1515 * enable the bus drivers and clock to the card.
1516 *
1517 * We must _NOT_ enable the clock prior to power stablising.
1518 *
1519 * If a host does all the power sequencing itself, ignore the
1520 * initial MMC_POWER_UP stage.
1da177e4 1521 */
4a065193 1522void mmc_power_up(struct mmc_host *host, u32 ocr)
1da177e4 1523{
fa550189
UH
1524 if (host->ios.power_mode == MMC_POWER_ON)
1525 return;
1526
778e277c
MW
1527 mmc_host_clk_hold(host);
1528
4a065193 1529 host->ios.vdd = fls(ocr) - 1;
44669034 1530 if (mmc_host_is_spi(host))
af517150 1531 host->ios.chip_select = MMC_CS_HIGH;
44669034 1532 else
af517150 1533 host->ios.chip_select = MMC_CS_DONTCARE;
44669034 1534 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1da177e4 1535 host->ios.power_mode = MMC_POWER_UP;
f218278a 1536 host->ios.bus_width = MMC_BUS_WIDTH_1;
cd9277c0 1537 host->ios.timing = MMC_TIMING_LEGACY;
920e70c5 1538 mmc_set_ios(host);
1da177e4 1539
ceae98f2
TK
1540 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1541 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1542 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1543 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1544 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1545 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1546 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
108ecc4c 1547
f9996aee
PO
1548 /*
1549 * This delay should be sufficient to allow the power supply
1550 * to reach the minimum voltage.
1551 */
79bccc5a 1552 mmc_delay(10);
1da177e4 1553
88ae8b86 1554 host->ios.clock = host->f_init;
8dfd0374 1555
1da177e4 1556 host->ios.power_mode = MMC_POWER_ON;
920e70c5 1557 mmc_set_ios(host);
1da177e4 1558
f9996aee
PO
1559 /*
1560 * This delay must be at least 74 clock sizes, or 1 ms, or the
1561 * time required to reach a stable voltage.
1562 */
79bccc5a 1563 mmc_delay(10);
778e277c
MW
1564
1565 mmc_host_clk_release(host);
1da177e4
LT
1566}
1567
7f7e4129 1568void mmc_power_off(struct mmc_host *host)
1da177e4 1569{
fa550189
UH
1570 if (host->ios.power_mode == MMC_POWER_OFF)
1571 return;
1572
778e277c
MW
1573 mmc_host_clk_hold(host);
1574
1da177e4
LT
1575 host->ios.clock = 0;
1576 host->ios.vdd = 0;
b33d46c3 1577
af517150
DB
1578 if (!mmc_host_is_spi(host)) {
1579 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1580 host->ios.chip_select = MMC_CS_DONTCARE;
1581 }
1da177e4 1582 host->ios.power_mode = MMC_POWER_OFF;
f218278a 1583 host->ios.bus_width = MMC_BUS_WIDTH_1;
cd9277c0 1584 host->ios.timing = MMC_TIMING_LEGACY;
920e70c5 1585 mmc_set_ios(host);
778e277c 1586
041beb1d
DD
1587 /*
1588 * Some configurations, such as the 802.11 SDIO card in the OLPC
1589 * XO-1.5, require a short delay after poweroff before the card
1590 * can be successfully turned on again.
1591 */
1592 mmc_delay(1);
1593
778e277c 1594 mmc_host_clk_release(host);
1da177e4
LT
1595}
1596
4a065193 1597void mmc_power_cycle(struct mmc_host *host, u32 ocr)
276e090f
JR
1598{
1599 mmc_power_off(host);
1600 /* Wait at least 1 ms according to SD spec */
1601 mmc_delay(1);
4a065193 1602 mmc_power_up(host, ocr);
276e090f
JR
1603}
1604
39361851
AB
1605/*
1606 * Cleanup when the last reference to the bus operator is dropped.
1607 */
261172fd 1608static void __mmc_release_bus(struct mmc_host *host)
39361851
AB
1609{
1610 BUG_ON(!host);
1611 BUG_ON(host->bus_refs);
1612 BUG_ON(!host->bus_dead);
1613
1614 host->bus_ops = NULL;
1615}
1616
1617/*
1618 * Increase reference count of bus operator
1619 */
1620static inline void mmc_bus_get(struct mmc_host *host)
1621{
1622 unsigned long flags;
1623
1624 spin_lock_irqsave(&host->lock, flags);
1625 host->bus_refs++;
1626 spin_unlock_irqrestore(&host->lock, flags);
1627}
1628
1629/*
1630 * Decrease reference count of bus operator and free it if
1631 * it is the last reference.
1632 */
1633static inline void mmc_bus_put(struct mmc_host *host)
1634{
1635 unsigned long flags;
1636
1637 spin_lock_irqsave(&host->lock, flags);
1638 host->bus_refs--;
1639 if ((host->bus_refs == 0) && host->bus_ops)
1640 __mmc_release_bus(host);
1641 spin_unlock_irqrestore(&host->lock, flags);
1642}
1643
1da177e4 1644/*
7ea239d9
PO
1645 * Assign a mmc bus handler to a host. Only one bus handler may control a
1646 * host at any given time.
1da177e4 1647 */
7ea239d9 1648void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1da177e4 1649{
7ea239d9 1650 unsigned long flags;
e45a1bd2 1651
7ea239d9
PO
1652 BUG_ON(!host);
1653 BUG_ON(!ops);
b855885e 1654
d84075c8 1655 WARN_ON(!host->claimed);
bce40a36 1656
7ea239d9 1657 spin_lock_irqsave(&host->lock, flags);
bce40a36 1658
7ea239d9
PO
1659 BUG_ON(host->bus_ops);
1660 BUG_ON(host->bus_refs);
b57c43ad 1661
7ea239d9
PO
1662 host->bus_ops = ops;
1663 host->bus_refs = 1;
1664 host->bus_dead = 0;
b57c43ad 1665
7ea239d9 1666 spin_unlock_irqrestore(&host->lock, flags);
b57c43ad
PO
1667}
1668
7ea239d9 1669/*
7f7e4129 1670 * Remove the current bus handler from a host.
7ea239d9
PO
1671 */
1672void mmc_detach_bus(struct mmc_host *host)
7ccd266e 1673{
7ea239d9 1674 unsigned long flags;
7ccd266e 1675
7ea239d9 1676 BUG_ON(!host);
7ccd266e 1677
d84075c8
PO
1678 WARN_ON(!host->claimed);
1679 WARN_ON(!host->bus_ops);
cd9277c0 1680
7ea239d9 1681 spin_lock_irqsave(&host->lock, flags);
7ccd266e 1682
7ea239d9 1683 host->bus_dead = 1;
7ccd266e 1684
7ea239d9 1685 spin_unlock_irqrestore(&host->lock, flags);
1da177e4 1686
7ea239d9 1687 mmc_bus_put(host);
1da177e4
LT
1688}
1689
bbd43682
UH
1690static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1691 bool cd_irq)
1692{
1693#ifdef CONFIG_MMC_DEBUG
1694 unsigned long flags;
1695 spin_lock_irqsave(&host->lock, flags);
1696 WARN_ON(host->removed);
1697 spin_unlock_irqrestore(&host->lock, flags);
1698#endif
1699
1700 /*
1701 * If the device is configured as wakeup, we prevent a new sleep for
1702 * 5 s to give provision for user space to consume the event.
1703 */
1704 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1705 device_can_wakeup(mmc_dev(host)))
1706 pm_wakeup_event(mmc_dev(host), 5000);
1707
1708 host->detect_change = 1;
1709 mmc_schedule_delayed_work(&host->detect, delay);
1710}
1711
1da177e4
LT
1712/**
1713 * mmc_detect_change - process change of state on a MMC socket
1714 * @host: host which changed state.
8dc00335 1715 * @delay: optional delay to wait before detection (jiffies)
1da177e4 1716 *
67a61c48
PO
1717 * MMC drivers should call this when they detect a card has been
1718 * inserted or removed. The MMC layer will confirm that any
1719 * present card is still functional, and initialize any newly
1720 * inserted.
1da177e4 1721 */
8dc00335 1722void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1da177e4 1723{
bbd43682 1724 _mmc_detect_change(host, delay, true);
1da177e4 1725}
1da177e4
LT
1726EXPORT_SYMBOL(mmc_detect_change);
1727
dfe86cba
AH
1728void mmc_init_erase(struct mmc_card *card)
1729{
1730 unsigned int sz;
1731
1732 if (is_power_of_2(card->erase_size))
1733 card->erase_shift = ffs(card->erase_size) - 1;
1734 else
1735 card->erase_shift = 0;
1736
1737 /*
1738 * It is possible to erase an arbitrarily large area of an SD or MMC
1739 * card. That is not desirable because it can take a long time
1740 * (minutes) potentially delaying more important I/O, and also the
1741 * timeout calculations become increasingly hugely over-estimated.
1742 * Consequently, 'pref_erase' is defined as a guide to limit erases
1743 * to that size and alignment.
1744 *
1745 * For SD cards that define Allocation Unit size, limit erases to one
1746 * Allocation Unit at a time. For MMC cards that define High Capacity
1747 * Erase Size, whether it is switched on or not, limit to that size.
1748 * Otherwise just have a stab at a good value. For modern cards it
1749 * will end up being 4MiB. Note that if the value is too small, it
1750 * can end up taking longer to erase.
1751 */
1752 if (mmc_card_sd(card) && card->ssr.au) {
1753 card->pref_erase = card->ssr.au;
1754 card->erase_shift = ffs(card->ssr.au) - 1;
1755 } else if (card->ext_csd.hc_erase_size) {
1756 card->pref_erase = card->ext_csd.hc_erase_size;
1757 } else {
1758 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1759 if (sz < 128)
1760 card->pref_erase = 512 * 1024 / 512;
1761 else if (sz < 512)
1762 card->pref_erase = 1024 * 1024 / 512;
1763 else if (sz < 1024)
1764 card->pref_erase = 2 * 1024 * 1024 / 512;
1765 else
1766 card->pref_erase = 4 * 1024 * 1024 / 512;
1767 if (card->pref_erase < card->erase_size)
1768 card->pref_erase = card->erase_size;
1769 else {
1770 sz = card->pref_erase % card->erase_size;
1771 if (sz)
1772 card->pref_erase += card->erase_size - sz;
1773 }
1774 }
1775}
1776
eaa02f75
AW
1777static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1778 unsigned int arg, unsigned int qty)
dfe86cba
AH
1779{
1780 unsigned int erase_timeout;
1781
7194efb8
AH
1782 if (arg == MMC_DISCARD_ARG ||
1783 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1784 erase_timeout = card->ext_csd.trim_timeout;
1785 } else if (card->ext_csd.erase_group_def & 1) {
dfe86cba
AH
1786 /* High Capacity Erase Group Size uses HC timeouts */
1787 if (arg == MMC_TRIM_ARG)
1788 erase_timeout = card->ext_csd.trim_timeout;
1789 else
1790 erase_timeout = card->ext_csd.hc_erase_timeout;
1791 } else {
1792 /* CSD Erase Group Size uses write timeout */
1793 unsigned int mult = (10 << card->csd.r2w_factor);
1794 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1795 unsigned int timeout_us;
1796
1797 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1798 if (card->csd.tacc_ns < 1000000)
1799 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1800 else
1801 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1802
1803 /*
1804 * ios.clock is only a target. The real clock rate might be
1805 * less but not that much less, so fudge it by multiplying by 2.
1806 */
1807 timeout_clks <<= 1;
1808 timeout_us += (timeout_clks * 1000) /
4cf8c6dd 1809 (mmc_host_clk_rate(card->host) / 1000);
dfe86cba
AH
1810
1811 erase_timeout = timeout_us / 1000;
1812
1813 /*
1814 * Theoretically, the calculation could underflow so round up
1815 * to 1ms in that case.
1816 */
1817 if (!erase_timeout)
1818 erase_timeout = 1;
1819 }
1820
1821 /* Multiplier for secure operations */
1822 if (arg & MMC_SECURE_ARGS) {
1823 if (arg == MMC_SECURE_ERASE_ARG)
1824 erase_timeout *= card->ext_csd.sec_erase_mult;
1825 else
1826 erase_timeout *= card->ext_csd.sec_trim_mult;
1827 }
1828
1829 erase_timeout *= qty;
1830
1831 /*
1832 * Ensure at least a 1 second timeout for SPI as per
1833 * 'mmc_set_data_timeout()'
1834 */
1835 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1836 erase_timeout = 1000;
1837
eaa02f75 1838 return erase_timeout;
dfe86cba
AH
1839}
1840
eaa02f75
AW
1841static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1842 unsigned int arg,
1843 unsigned int qty)
dfe86cba 1844{
eaa02f75
AW
1845 unsigned int erase_timeout;
1846
dfe86cba
AH
1847 if (card->ssr.erase_timeout) {
1848 /* Erase timeout specified in SD Status Register (SSR) */
eaa02f75
AW
1849 erase_timeout = card->ssr.erase_timeout * qty +
1850 card->ssr.erase_offset;
dfe86cba
AH
1851 } else {
1852 /*
1853 * Erase timeout not specified in SD Status Register (SSR) so
1854 * use 250ms per write block.
1855 */
eaa02f75 1856 erase_timeout = 250 * qty;
dfe86cba
AH
1857 }
1858
1859 /* Must not be less than 1 second */
eaa02f75
AW
1860 if (erase_timeout < 1000)
1861 erase_timeout = 1000;
1862
1863 return erase_timeout;
dfe86cba
AH
1864}
1865
eaa02f75
AW
1866static unsigned int mmc_erase_timeout(struct mmc_card *card,
1867 unsigned int arg,
1868 unsigned int qty)
dfe86cba
AH
1869{
1870 if (mmc_card_sd(card))
eaa02f75 1871 return mmc_sd_erase_timeout(card, arg, qty);
dfe86cba 1872 else
eaa02f75 1873 return mmc_mmc_erase_timeout(card, arg, qty);
dfe86cba
AH
1874}
1875
1876static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1877 unsigned int to, unsigned int arg)
1878{
1278dba1 1879 struct mmc_command cmd = {0};
dfe86cba 1880 unsigned int qty = 0;
8fee476b 1881 unsigned long timeout;
dfe86cba
AH
1882 int err;
1883
1884 /*
1885 * qty is used to calculate the erase timeout which depends on how many
1886 * erase groups (or allocation units in SD terminology) are affected.
1887 * We count erasing part of an erase group as one erase group.
1888 * For SD, the allocation units are always a power of 2. For MMC, the
1889 * erase group size is almost certainly also power of 2, but it does not
1890 * seem to insist on that in the JEDEC standard, so we fall back to
1891 * division in that case. SD may not specify an allocation unit size,
1892 * in which case the timeout is based on the number of write blocks.
1893 *
1894 * Note that the timeout for secure trim 2 will only be correct if the
1895 * number of erase groups specified is the same as the total of all
1896 * preceding secure trim 1 commands. Since the power may have been
1897 * lost since the secure trim 1 commands occurred, it is generally
1898 * impossible to calculate the secure trim 2 timeout correctly.
1899 */
1900 if (card->erase_shift)
1901 qty += ((to >> card->erase_shift) -
1902 (from >> card->erase_shift)) + 1;
1903 else if (mmc_card_sd(card))
1904 qty += to - from + 1;
1905 else
1906 qty += ((to / card->erase_size) -
1907 (from / card->erase_size)) + 1;
1908
1909 if (!mmc_card_blockaddr(card)) {
1910 from <<= 9;
1911 to <<= 9;
1912 }
1913
dfe86cba
AH
1914 if (mmc_card_sd(card))
1915 cmd.opcode = SD_ERASE_WR_BLK_START;
1916 else
1917 cmd.opcode = MMC_ERASE_GROUP_START;
1918 cmd.arg = from;
1919 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1920 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1921 if (err) {
a3c76eb9 1922 pr_err("mmc_erase: group start error %d, "
dfe86cba 1923 "status %#x\n", err, cmd.resp[0]);
67716327 1924 err = -EIO;
dfe86cba
AH
1925 goto out;
1926 }
1927
1928 memset(&cmd, 0, sizeof(struct mmc_command));
1929 if (mmc_card_sd(card))
1930 cmd.opcode = SD_ERASE_WR_BLK_END;
1931 else
1932 cmd.opcode = MMC_ERASE_GROUP_END;
1933 cmd.arg = to;
1934 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1935 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1936 if (err) {
a3c76eb9 1937 pr_err("mmc_erase: group end error %d, status %#x\n",
dfe86cba 1938 err, cmd.resp[0]);
67716327 1939 err = -EIO;
dfe86cba
AH
1940 goto out;
1941 }
1942
1943 memset(&cmd, 0, sizeof(struct mmc_command));
1944 cmd.opcode = MMC_ERASE;
1945 cmd.arg = arg;
1946 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1d4d7744 1947 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
dfe86cba
AH
1948 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1949 if (err) {
a3c76eb9 1950 pr_err("mmc_erase: erase error %d, status %#x\n",
dfe86cba
AH
1951 err, cmd.resp[0]);
1952 err = -EIO;
1953 goto out;
1954 }
1955
1956 if (mmc_host_is_spi(card->host))
1957 goto out;
1958
8fee476b 1959 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
dfe86cba
AH
1960 do {
1961 memset(&cmd, 0, sizeof(struct mmc_command));
1962 cmd.opcode = MMC_SEND_STATUS;
1963 cmd.arg = card->rca << 16;
1964 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1965 /* Do not retry else we can't see errors */
1966 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1967 if (err || (cmd.resp[0] & 0xFDF92000)) {
a3c76eb9 1968 pr_err("error %d requesting status %#x\n",
dfe86cba
AH
1969 err, cmd.resp[0]);
1970 err = -EIO;
1971 goto out;
1972 }
8fee476b
TR
1973
1974 /* Timeout if the device never becomes ready for data and
1975 * never leaves the program state.
1976 */
1977 if (time_after(jiffies, timeout)) {
1978 pr_err("%s: Card stuck in programming state! %s\n",
1979 mmc_hostname(card->host), __func__);
1980 err = -EIO;
1981 goto out;
1982 }
1983
dfe86cba 1984 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
8fee476b 1985 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
dfe86cba
AH
1986out:
1987 return err;
1988}
1989
1990/**
1991 * mmc_erase - erase sectors.
1992 * @card: card to erase
1993 * @from: first sector to erase
1994 * @nr: number of sectors to erase
1995 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1996 *
1997 * Caller must claim host before calling this function.
1998 */
1999int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2000 unsigned int arg)
2001{
2002 unsigned int rem, to = from + nr;
2003
2004 if (!(card->host->caps & MMC_CAP_ERASE) ||
2005 !(card->csd.cmdclass & CCC_ERASE))
2006 return -EOPNOTSUPP;
2007
2008 if (!card->erase_size)
2009 return -EOPNOTSUPP;
2010
2011 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2012 return -EOPNOTSUPP;
2013
2014 if ((arg & MMC_SECURE_ARGS) &&
2015 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2016 return -EOPNOTSUPP;
2017
2018 if ((arg & MMC_TRIM_ARGS) &&
2019 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2020 return -EOPNOTSUPP;
2021
2022 if (arg == MMC_SECURE_ERASE_ARG) {
2023 if (from % card->erase_size || nr % card->erase_size)
2024 return -EINVAL;
2025 }
2026
2027 if (arg == MMC_ERASE_ARG) {
2028 rem = from % card->erase_size;
2029 if (rem) {
2030 rem = card->erase_size - rem;
2031 from += rem;
2032 if (nr > rem)
2033 nr -= rem;
2034 else
2035 return 0;
2036 }
2037 rem = nr % card->erase_size;
2038 if (rem)
2039 nr -= rem;
2040 }
2041
2042 if (nr == 0)
2043 return 0;
2044
2045 to = from + nr;
2046
2047 if (to <= from)
2048 return -EINVAL;
2049
2050 /* 'from' and 'to' are inclusive */
2051 to -= 1;
2052
2053 return mmc_do_erase(card, from, to, arg);
2054}
2055EXPORT_SYMBOL(mmc_erase);
2056
2057int mmc_can_erase(struct mmc_card *card)
2058{
2059 if ((card->host->caps & MMC_CAP_ERASE) &&
2060 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2061 return 1;
2062 return 0;
2063}
2064EXPORT_SYMBOL(mmc_can_erase);
2065
2066int mmc_can_trim(struct mmc_card *card)
2067{
2068 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2069 return 1;
2070 return 0;
2071}
2072EXPORT_SYMBOL(mmc_can_trim);
2073
b3bf9153
KP
2074int mmc_can_discard(struct mmc_card *card)
2075{
2076 /*
2077 * As there's no way to detect the discard support bit at v4.5
2078 * use the s/w feature support filed.
2079 */
2080 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2081 return 1;
2082 return 0;
2083}
2084EXPORT_SYMBOL(mmc_can_discard);
2085
d9ddd629
KP
2086int mmc_can_sanitize(struct mmc_card *card)
2087{
28302812
AH
2088 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2089 return 0;
d9ddd629
KP
2090 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2091 return 1;
2092 return 0;
2093}
2094EXPORT_SYMBOL(mmc_can_sanitize);
2095
dfe86cba
AH
2096int mmc_can_secure_erase_trim(struct mmc_card *card)
2097{
2098 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2099 return 1;
2100 return 0;
2101}
2102EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2103
2104int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2105 unsigned int nr)
2106{
2107 if (!card->erase_size)
2108 return 0;
2109 if (from % card->erase_size || nr % card->erase_size)
2110 return 0;
2111 return 1;
2112}
2113EXPORT_SYMBOL(mmc_erase_group_aligned);
1da177e4 2114
e056a1b5
AH
2115static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2116 unsigned int arg)
2117{
2118 struct mmc_host *host = card->host;
2119 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2120 unsigned int last_timeout = 0;
2121
2122 if (card->erase_shift)
2123 max_qty = UINT_MAX >> card->erase_shift;
2124 else if (mmc_card_sd(card))
2125 max_qty = UINT_MAX;
2126 else
2127 max_qty = UINT_MAX / card->erase_size;
2128
2129 /* Find the largest qty with an OK timeout */
2130 do {
2131 y = 0;
2132 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2133 timeout = mmc_erase_timeout(card, arg, qty + x);
68eb80e0 2134 if (timeout > host->max_busy_timeout)
e056a1b5
AH
2135 break;
2136 if (timeout < last_timeout)
2137 break;
2138 last_timeout = timeout;
2139 y = x;
2140 }
2141 qty += y;
2142 } while (y);
2143
2144 if (!qty)
2145 return 0;
2146
2147 if (qty == 1)
2148 return 1;
2149
2150 /* Convert qty to sectors */
2151 if (card->erase_shift)
2152 max_discard = --qty << card->erase_shift;
2153 else if (mmc_card_sd(card))
2154 max_discard = qty;
2155 else
2156 max_discard = --qty * card->erase_size;
2157
2158 return max_discard;
2159}
2160
2161unsigned int mmc_calc_max_discard(struct mmc_card *card)
2162{
2163 struct mmc_host *host = card->host;
2164 unsigned int max_discard, max_trim;
2165
68eb80e0 2166 if (!host->max_busy_timeout)
e056a1b5
AH
2167 return UINT_MAX;
2168
2169 /*
2170 * Without erase_group_def set, MMC erase timeout depends on clock
2171 * frequence which can change. In that case, the best choice is
2172 * just the preferred erase size.
2173 */
2174 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2175 return card->pref_erase;
2176
2177 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2178 if (mmc_can_trim(card)) {
2179 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2180 if (max_trim < max_discard)
2181 max_discard = max_trim;
2182 } else if (max_discard < card->erase_size) {
2183 max_discard = 0;
2184 }
2185 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
68eb80e0 2186 mmc_hostname(host), max_discard, host->max_busy_timeout);
e056a1b5
AH
2187 return max_discard;
2188}
2189EXPORT_SYMBOL(mmc_calc_max_discard);
2190
0f8d8ea6
AH
2191int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2192{
1278dba1 2193 struct mmc_command cmd = {0};
0f8d8ea6 2194
cdc99179 2195 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
0f8d8ea6
AH
2196 return 0;
2197
0f8d8ea6
AH
2198 cmd.opcode = MMC_SET_BLOCKLEN;
2199 cmd.arg = blocklen;
2200 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2201 return mmc_wait_for_cmd(card->host, &cmd, 5);
2202}
2203EXPORT_SYMBOL(mmc_set_blocklen);
2204
67c79db8
LP
2205int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2206 bool is_rel_write)
2207{
2208 struct mmc_command cmd = {0};
2209
2210 cmd.opcode = MMC_SET_BLOCK_COUNT;
2211 cmd.arg = blockcount & 0x0000FFFF;
2212 if (is_rel_write)
2213 cmd.arg |= 1 << 31;
2214 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2215 return mmc_wait_for_cmd(card->host, &cmd, 5);
2216}
2217EXPORT_SYMBOL(mmc_set_blockcount);
2218
b2499518
AH
2219static void mmc_hw_reset_for_init(struct mmc_host *host)
2220{
2221 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2222 return;
2223 mmc_host_clk_hold(host);
2224 host->ops->hw_reset(host);
2225 mmc_host_clk_release(host);
2226}
2227
2228int mmc_can_reset(struct mmc_card *card)
2229{
2230 u8 rst_n_function;
2231
2232 if (!mmc_card_mmc(card))
2233 return 0;
2234 rst_n_function = card->ext_csd.rst_n_function;
2235 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2236 return 0;
2237 return 1;
2238}
2239EXPORT_SYMBOL(mmc_can_reset);
2240
2241static int mmc_do_hw_reset(struct mmc_host *host, int check)
2242{
2243 struct mmc_card *card = host->card;
2244
b2499518
AH
2245 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2246 return -EOPNOTSUPP;
2247
2248 if (!card)
2249 return -EINVAL;
2250
2251 if (!mmc_can_reset(card))
2252 return -EOPNOTSUPP;
2253
2254 mmc_host_clk_hold(host);
2255 mmc_set_clock(host, host->f_init);
2256
2257 host->ops->hw_reset(host);
2258
2259 /* If the reset has happened, then a status command will fail */
2260 if (check) {
2261 struct mmc_command cmd = {0};
2262 int err;
2263
2264 cmd.opcode = MMC_SEND_STATUS;
2265 if (!mmc_host_is_spi(card->host))
2266 cmd.arg = card->rca << 16;
2267 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2268 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2269 if (!err) {
2270 mmc_host_clk_release(host);
2271 return -ENOSYS;
2272 }
2273 }
2274
b2499518
AH
2275 if (mmc_host_is_spi(host)) {
2276 host->ios.chip_select = MMC_CS_HIGH;
2277 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2278 } else {
2279 host->ios.chip_select = MMC_CS_DONTCARE;
2280 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2281 }
2282 host->ios.bus_width = MMC_BUS_WIDTH_1;
2283 host->ios.timing = MMC_TIMING_LEGACY;
2284 mmc_set_ios(host);
2285
2286 mmc_host_clk_release(host);
2287
2288 return host->bus_ops->power_restore(host);
2289}
2290
2291int mmc_hw_reset(struct mmc_host *host)
2292{
2293 return mmc_do_hw_reset(host, 0);
2294}
2295EXPORT_SYMBOL(mmc_hw_reset);
2296
2297int mmc_hw_reset_check(struct mmc_host *host)
2298{
2299 return mmc_do_hw_reset(host, 1);
2300}
2301EXPORT_SYMBOL(mmc_hw_reset_check);
2302
807e8e40
AR
2303static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2304{
2305 host->f_init = freq;
2306
2307#ifdef CONFIG_MMC_DEBUG
2308 pr_info("%s: %s: trying to init card at %u Hz\n",
2309 mmc_hostname(host), __func__, host->f_init);
2310#endif
4a065193 2311 mmc_power_up(host, host->ocr_avail);
2f94e55a 2312
b2499518
AH
2313 /*
2314 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2315 * do a hardware reset if possible.
2316 */
2317 mmc_hw_reset_for_init(host);
2318
2f94e55a
PR
2319 /*
2320 * sdio_reset sends CMD52 to reset card. Since we do not know
2321 * if the card is being re-initialized, just send it. CMD52
2322 * should be ignored by SD/eMMC cards.
2323 */
807e8e40
AR
2324 sdio_reset(host);
2325 mmc_go_idle(host);
2326
2327 mmc_send_if_cond(host, host->ocr_avail);
2328
2329 /* Order's important: probe SDIO, then SD, then MMC */
2330 if (!mmc_attach_sdio(host))
2331 return 0;
2332 if (!mmc_attach_sd(host))
2333 return 0;
2334 if (!mmc_attach_mmc(host))
2335 return 0;
2336
2337 mmc_power_off(host);
2338 return -EIO;
2339}
2340
d3049504
AH
2341int _mmc_detect_card_removed(struct mmc_host *host)
2342{
2343 int ret;
2344
5601aaf7 2345 if (host->caps & MMC_CAP_NONREMOVABLE)
d3049504
AH
2346 return 0;
2347
2348 if (!host->card || mmc_card_removed(host->card))
2349 return 1;
2350
2351 ret = host->bus_ops->alive(host);
1450734e
KL
2352
2353 /*
2354 * Card detect status and alive check may be out of sync if card is
2355 * removed slowly, when card detect switch changes while card/slot
2356 * pads are still contacted in hardware (refer to "SD Card Mechanical
2357 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2358 * detect work 200ms later for this case.
2359 */
2360 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2361 mmc_detect_change(host, msecs_to_jiffies(200));
2362 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2363 }
2364
d3049504
AH
2365 if (ret) {
2366 mmc_card_set_removed(host->card);
2367 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2368 }
2369
2370 return ret;
2371}
2372
2373int mmc_detect_card_removed(struct mmc_host *host)
2374{
2375 struct mmc_card *card = host->card;
f0cc9cf9 2376 int ret;
d3049504
AH
2377
2378 WARN_ON(!host->claimed);
f0cc9cf9
UH
2379
2380 if (!card)
2381 return 1;
2382
2383 ret = mmc_card_removed(card);
d3049504
AH
2384 /*
2385 * The card will be considered unchanged unless we have been asked to
2386 * detect a change or host requires polling to provide card detection.
2387 */
b6891679 2388 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
f0cc9cf9 2389 return ret;
d3049504
AH
2390
2391 host->detect_change = 0;
f0cc9cf9
UH
2392 if (!ret) {
2393 ret = _mmc_detect_card_removed(host);
b6891679 2394 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
f0cc9cf9
UH
2395 /*
2396 * Schedule a detect work as soon as possible to let a
2397 * rescan handle the card removal.
2398 */
2399 cancel_delayed_work(&host->detect);
bbd43682 2400 _mmc_detect_change(host, 0, false);
f0cc9cf9
UH
2401 }
2402 }
d3049504 2403
f0cc9cf9 2404 return ret;
d3049504
AH
2405}
2406EXPORT_SYMBOL(mmc_detect_card_removed);
2407
b93931a6 2408void mmc_rescan(struct work_struct *work)
1da177e4 2409{
c4028958
DH
2410 struct mmc_host *host =
2411 container_of(work, struct mmc_host, detect.work);
88ae8b86 2412 int i;
4c2ef25f 2413
fa372a51
MM
2414 if (host->trigger_card_event && host->ops->card_event) {
2415 host->ops->card_event(host);
2416 host->trigger_card_event = false;
2417 }
2418
807e8e40 2419 if (host->rescan_disable)
4c2ef25f 2420 return;
1da177e4 2421
3339d1e3
JR
2422 /* If there is a non-removable card registered, only scan once */
2423 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2424 return;
2425 host->rescan_entered = 1;
2426
7ea239d9 2427 mmc_bus_get(host);
b855885e 2428
30201e7f
OBC
2429 /*
2430 * if there is a _removable_ card registered, check whether it is
2431 * still present
2432 */
5601aaf7 2433 if (host->bus_ops && !host->bus_dead
bad3baba 2434 && !(host->caps & MMC_CAP_NONREMOVABLE))
94d89efb
JS
2435 host->bus_ops->detect(host);
2436
d3049504
AH
2437 host->detect_change = 0;
2438
c5841798
CB
2439 /*
2440 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2441 * the card is no longer present.
2442 */
94d89efb 2443 mmc_bus_put(host);
94d89efb
JS
2444 mmc_bus_get(host);
2445
2446 /* if there still is a card present, stop here */
2447 if (host->bus_ops != NULL) {
7ea239d9 2448 mmc_bus_put(host);
94d89efb
JS
2449 goto out;
2450 }
1da177e4 2451
94d89efb
JS
2452 /*
2453 * Only we can add a new handler, so it's safe to
2454 * release the lock here.
2455 */
2456 mmc_bus_put(host);
1da177e4 2457
c1b55bfc
SH
2458 if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2459 host->ops->get_cd(host) == 0) {
fa550189
UH
2460 mmc_claim_host(host);
2461 mmc_power_off(host);
2462 mmc_release_host(host);
94d89efb 2463 goto out;
fa550189 2464 }
1da177e4 2465
807e8e40 2466 mmc_claim_host(host);
88ae8b86 2467 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
807e8e40
AR
2468 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2469 break;
06b2233a 2470 if (freqs[i] <= host->f_min)
807e8e40 2471 break;
88ae8b86 2472 }
807e8e40
AR
2473 mmc_release_host(host);
2474
2475 out:
28f52482
AV
2476 if (host->caps & MMC_CAP_NEEDS_POLL)
2477 mmc_schedule_delayed_work(&host->detect, HZ);
1da177e4
LT
2478}
2479
b93931a6 2480void mmc_start_host(struct mmc_host *host)
1da177e4 2481{
fa550189 2482 host->f_init = max(freqs[0], host->f_min);
d9adcc12 2483 host->rescan_disable = 0;
a08b17be
AH
2484 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2485 mmc_power_off(host);
2486 else
4a065193 2487 mmc_power_up(host, host->ocr_avail);
740a221e 2488 mmc_gpiod_request_cd_irq(host);
bbd43682 2489 _mmc_detect_change(host, 0, false);
1da177e4
LT
2490}
2491
b93931a6 2492void mmc_stop_host(struct mmc_host *host)
1da177e4 2493{
3b91e550 2494#ifdef CONFIG_MMC_DEBUG
1efd48b3
PO
2495 unsigned long flags;
2496 spin_lock_irqsave(&host->lock, flags);
3b91e550 2497 host->removed = 1;
1efd48b3 2498 spin_unlock_irqrestore(&host->lock, flags);
3b91e550 2499#endif
740a221e
AH
2500 if (host->slot.cd_irq >= 0)
2501 disable_irq(host->slot.cd_irq);
3b91e550 2502
d9adcc12 2503 host->rescan_disable = 1;
d9bcbf34 2504 cancel_delayed_work_sync(&host->detect);
3b91e550
PO
2505 mmc_flush_scheduled_work();
2506
da68c4eb
NP
2507 /* clear pm flags now and let card drivers set them as needed */
2508 host->pm_flags = 0;
2509
7ea239d9
PO
2510 mmc_bus_get(host);
2511 if (host->bus_ops && !host->bus_dead) {
0db13fc2 2512 /* Calling bus_ops->remove() with a claimed host can deadlock */
58a8a4a1 2513 host->bus_ops->remove(host);
7ea239d9
PO
2514 mmc_claim_host(host);
2515 mmc_detach_bus(host);
7f7e4129 2516 mmc_power_off(host);
7ea239d9 2517 mmc_release_host(host);
53509f0f
DK
2518 mmc_bus_put(host);
2519 return;
1da177e4 2520 }
7ea239d9
PO
2521 mmc_bus_put(host);
2522
2523 BUG_ON(host->card);
1da177e4
LT
2524
2525 mmc_power_off(host);
2526}
2527
12ae637f 2528int mmc_power_save_host(struct mmc_host *host)
eae1aeee 2529{
12ae637f
OBC
2530 int ret = 0;
2531
bb9cab94
DD
2532#ifdef CONFIG_MMC_DEBUG
2533 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2534#endif
2535
eae1aeee
AH
2536 mmc_bus_get(host);
2537
5601aaf7 2538 if (!host->bus_ops || host->bus_dead) {
eae1aeee 2539 mmc_bus_put(host);
12ae637f 2540 return -EINVAL;
eae1aeee
AH
2541 }
2542
2543 if (host->bus_ops->power_save)
12ae637f 2544 ret = host->bus_ops->power_save(host);
eae1aeee
AH
2545
2546 mmc_bus_put(host);
2547
2548 mmc_power_off(host);
12ae637f
OBC
2549
2550 return ret;
eae1aeee
AH
2551}
2552EXPORT_SYMBOL(mmc_power_save_host);
2553
12ae637f 2554int mmc_power_restore_host(struct mmc_host *host)
eae1aeee 2555{
12ae637f
OBC
2556 int ret;
2557
bb9cab94
DD
2558#ifdef CONFIG_MMC_DEBUG
2559 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2560#endif
2561
eae1aeee
AH
2562 mmc_bus_get(host);
2563
5601aaf7 2564 if (!host->bus_ops || host->bus_dead) {
eae1aeee 2565 mmc_bus_put(host);
12ae637f 2566 return -EINVAL;
eae1aeee
AH
2567 }
2568
69041150 2569 mmc_power_up(host, host->card->ocr);
12ae637f 2570 ret = host->bus_ops->power_restore(host);
eae1aeee
AH
2571
2572 mmc_bus_put(host);
12ae637f
OBC
2573
2574 return ret;
eae1aeee
AH
2575}
2576EXPORT_SYMBOL(mmc_power_restore_host);
2577
881d1c25
SJ
2578/*
2579 * Flush the cache to the non-volatile storage.
2580 */
2581int mmc_flush_cache(struct mmc_card *card)
2582{
881d1c25
SJ
2583 int err = 0;
2584
881d1c25
SJ
2585 if (mmc_card_mmc(card) &&
2586 (card->ext_csd.cache_size > 0) &&
2587 (card->ext_csd.cache_ctrl & 1)) {
2588 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2589 EXT_CSD_FLUSH_CACHE, 1, 0);
2590 if (err)
2591 pr_err("%s: cache flush error %d\n",
2592 mmc_hostname(card->host), err);
2593 }
2594
2595 return err;
2596}
2597EXPORT_SYMBOL(mmc_flush_cache);
2598
1da177e4
LT
2599#ifdef CONFIG_PM
2600
4c2ef25f
ML
2601/* Do the card removal on suspend if card is assumed removeable
2602 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2603 to sync the card.
2604*/
2605int mmc_pm_notify(struct notifier_block *notify_block,
2606 unsigned long mode, void *unused)
2607{
2608 struct mmc_host *host = container_of(
2609 notify_block, struct mmc_host, pm_notify);
2610 unsigned long flags;
810caddb 2611 int err = 0;
4c2ef25f
ML
2612
2613 switch (mode) {
2614 case PM_HIBERNATION_PREPARE:
2615 case PM_SUSPEND_PREPARE:
4c2ef25f
ML
2616 spin_lock_irqsave(&host->lock, flags);
2617 host->rescan_disable = 1;
2618 spin_unlock_irqrestore(&host->lock, flags);
2619 cancel_delayed_work_sync(&host->detect);
2620
810caddb
UH
2621 if (!host->bus_ops)
2622 break;
2623
2624 /* Validate prerequisites for suspend */
2625 if (host->bus_ops->pre_suspend)
2626 err = host->bus_ops->pre_suspend(host);
5601aaf7 2627 if (!err)
4c2ef25f
ML
2628 break;
2629
0db13fc2 2630 /* Calling bus_ops->remove() with a claimed host can deadlock */
58a8a4a1 2631 host->bus_ops->remove(host);
0db13fc2 2632 mmc_claim_host(host);
4c2ef25f 2633 mmc_detach_bus(host);
7f7e4129 2634 mmc_power_off(host);
4c2ef25f
ML
2635 mmc_release_host(host);
2636 host->pm_flags = 0;
2637 break;
2638
2639 case PM_POST_SUSPEND:
2640 case PM_POST_HIBERNATION:
274476f8 2641 case PM_POST_RESTORE:
4c2ef25f
ML
2642
2643 spin_lock_irqsave(&host->lock, flags);
2644 host->rescan_disable = 0;
2645 spin_unlock_irqrestore(&host->lock, flags);
bbd43682 2646 _mmc_detect_change(host, 0, false);
4c2ef25f
ML
2647
2648 }
2649
2650 return 0;
2651}
1da177e4
LT
2652#endif
2653
2220eedf
KD
2654/**
2655 * mmc_init_context_info() - init synchronization context
2656 * @host: mmc host
2657 *
2658 * Init struct context_info needed to implement asynchronous
2659 * request mechanism, used by mmc core, host driver and mmc requests
2660 * supplier.
2661 */
2662void mmc_init_context_info(struct mmc_host *host)
2663{
2664 spin_lock_init(&host->context_info.lock);
2665 host->context_info.is_new_req = false;
2666 host->context_info.is_done_rcv = false;
2667 host->context_info.is_waiting_last_req = false;
2668 init_waitqueue_head(&host->context_info.wait);
2669}
2670
ffce2e7e
PO
2671static int __init mmc_init(void)
2672{
2673 int ret;
2674
0d9ee5b2 2675 workqueue = alloc_ordered_workqueue("kmmcd", 0);
ffce2e7e
PO
2676 if (!workqueue)
2677 return -ENOMEM;
2678
2679 ret = mmc_register_bus();
e29a7d73
PO
2680 if (ret)
2681 goto destroy_workqueue;
2682
2683 ret = mmc_register_host_class();
2684 if (ret)
2685 goto unregister_bus;
2686
2687 ret = sdio_register_bus();
2688 if (ret)
2689 goto unregister_host_class;
2690
2691 return 0;
2692
2693unregister_host_class:
2694 mmc_unregister_host_class();
2695unregister_bus:
2696 mmc_unregister_bus();
2697destroy_workqueue:
2698 destroy_workqueue(workqueue);
2699
ffce2e7e
PO
2700 return ret;
2701}
2702
2703static void __exit mmc_exit(void)
2704{
e29a7d73 2705 sdio_unregister_bus();
ffce2e7e
PO
2706 mmc_unregister_host_class();
2707 mmc_unregister_bus();
2708 destroy_workqueue(workqueue);
2709}
2710
26074962 2711subsys_initcall(mmc_init);
ffce2e7e
PO
2712module_exit(mmc_exit);
2713
1da177e4 2714MODULE_LICENSE("GPL");
This page took 1.087103 seconds and 5 git commands to generate.