mmc: core: Add 'card' to drive strength selection callback
[deliverable/linux.git] / drivers / mmc / core / core.c
CommitLineData
1da177e4 1/*
aaac1b47 2 * linux/drivers/mmc/core/core.c
1da177e4
LT
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5b4fd9ae 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
ad3868b2 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
bce40a36 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
1da177e4
LT
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
1da177e4
LT
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
af8350c7 21#include <linux/leds.h>
b57c43ad 22#include <linux/scatterlist.h>
86e8286a 23#include <linux/log2.h>
5c13941a 24#include <linux/regulator/consumer.h>
e594573d 25#include <linux/pm_runtime.h>
bbd43682 26#include <linux/pm_wakeup.h>
35eb6db1 27#include <linux/suspend.h>
1b676f70
PF
28#include <linux/fault-inject.h>
29#include <linux/random.h>
950d56ac 30#include <linux/slab.h>
6e9e318b 31#include <linux/of.h>
1da177e4
LT
32
33#include <linux/mmc/card.h>
34#include <linux/mmc/host.h>
da7fbe58
PO
35#include <linux/mmc/mmc.h>
36#include <linux/mmc/sd.h>
740a221e 37#include <linux/mmc/slot-gpio.h>
1da177e4 38
aaac1b47 39#include "core.h"
ffce2e7e
PO
40#include "bus.h"
41#include "host.h"
e29a7d73 42#include "sdio_bus.h"
3aa8793f 43#include "pwrseq.h"
da7fbe58
PO
44
45#include "mmc_ops.h"
46#include "sd_ops.h"
5c4e6f13 47#include "sdio_ops.h"
1da177e4 48
8fee476b
TR
49/* If the device is not responding */
50#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
51
950d56ac
JC
52/*
53 * Background operations can take a long time, depending on the housekeeping
54 * operations the card has to perform.
55 */
56#define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
57
ffce2e7e 58static struct workqueue_struct *workqueue;
fa550189 59static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
ffce2e7e 60
af517150
DB
61/*
62 * Enabling software CRCs on the data blocks can be a significant (30%)
63 * performance cost, and for other reasons may not always be desired.
64 * So we allow it it to be disabled.
65 */
90ab5ee9 66bool use_spi_crc = 1;
af517150
DB
67module_param(use_spi_crc, bool, 0);
68
ffce2e7e
PO
69/*
70 * Internal function. Schedule delayed work in the MMC work queue.
71 */
72static int mmc_schedule_delayed_work(struct delayed_work *work,
73 unsigned long delay)
74{
75 return queue_delayed_work(workqueue, work, delay);
76}
77
78/*
79 * Internal function. Flush all scheduled work from the MMC work queue.
80 */
81static void mmc_flush_scheduled_work(void)
82{
83 flush_workqueue(workqueue);
84}
85
1b676f70
PF
86#ifdef CONFIG_FAIL_MMC_REQUEST
87
88/*
89 * Internal function. Inject random data errors.
90 * If mmc_data is NULL no errors are injected.
91 */
92static void mmc_should_fail_request(struct mmc_host *host,
93 struct mmc_request *mrq)
94{
95 struct mmc_command *cmd = mrq->cmd;
96 struct mmc_data *data = mrq->data;
97 static const int data_errors[] = {
98 -ETIMEDOUT,
99 -EILSEQ,
100 -EIO,
101 };
102
103 if (!data)
104 return;
105
106 if (cmd->error || data->error ||
107 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
108 return;
109
2e744fcb
AM
110 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
111 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
1b676f70
PF
112}
113
114#else /* CONFIG_FAIL_MMC_REQUEST */
115
116static inline void mmc_should_fail_request(struct mmc_host *host,
117 struct mmc_request *mrq)
118{
119}
120
121#endif /* CONFIG_FAIL_MMC_REQUEST */
122
1da177e4 123/**
fe10c6ab
RK
124 * mmc_request_done - finish processing an MMC request
125 * @host: MMC host which completed request
126 * @mrq: MMC request which request
1da177e4
LT
127 *
128 * MMC drivers should call this function when they have completed
fe10c6ab 129 * their processing of a request.
1da177e4
LT
130 */
131void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
132{
133 struct mmc_command *cmd = mrq->cmd;
920e70c5
RK
134 int err = cmd->error;
135
bd11e8bd
AH
136 /* Flag re-tuning needed on CRC errors */
137 if (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
138 (mrq->data && mrq->data->error == -EILSEQ) ||
139 (mrq->stop && mrq->stop->error == -EILSEQ))
140 mmc_retune_needed(host);
141
af517150
DB
142 if (err && cmd->retries && mmc_host_is_spi(host)) {
143 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
144 cmd->retries = 0;
145 }
146
d3049504 147 if (err && cmd->retries && !mmc_card_removed(host->card)) {
08a7e1df
AH
148 /*
149 * Request starter must handle retries - see
150 * mmc_wait_for_req_done().
151 */
152 if (mrq->done)
153 mrq->done(mrq);
e4d21708 154 } else {
1b676f70
PF
155 mmc_should_fail_request(host, mrq);
156
af8350c7
PO
157 led_trigger_event(host->led, LED_OFF);
158
fc75b708
AG
159 if (mrq->sbc) {
160 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
161 mmc_hostname(host), mrq->sbc->opcode,
162 mrq->sbc->error,
163 mrq->sbc->resp[0], mrq->sbc->resp[1],
164 mrq->sbc->resp[2], mrq->sbc->resp[3]);
165 }
166
e4d21708
PO
167 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
168 mmc_hostname(host), cmd->opcode, err,
169 cmd->resp[0], cmd->resp[1],
170 cmd->resp[2], cmd->resp[3]);
171
172 if (mrq->data) {
173 pr_debug("%s: %d bytes transferred: %d\n",
174 mmc_hostname(host),
175 mrq->data->bytes_xfered, mrq->data->error);
176 }
177
178 if (mrq->stop) {
179 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
180 mmc_hostname(host), mrq->stop->opcode,
181 mrq->stop->error,
182 mrq->stop->resp[0], mrq->stop->resp[1],
183 mrq->stop->resp[2], mrq->stop->resp[3]);
184 }
185
186 if (mrq->done)
187 mrq->done(mrq);
04566831 188
08c14071 189 mmc_host_clk_release(host);
1da177e4
LT
190 }
191}
192
193EXPORT_SYMBOL(mmc_request_done);
194
90a81489
AH
195static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
196{
197 int err;
198
199 /* Assumes host controller has been runtime resumed by mmc_claim_host */
200 err = mmc_retune(host);
201 if (err) {
202 mrq->cmd->error = err;
203 mmc_request_done(host, mrq);
204 return;
205 }
206
207 host->ops->request(host, mrq);
208}
209
f100c1c2 210static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
1da177e4 211{
976d9276
PO
212#ifdef CONFIG_MMC_DEBUG
213 unsigned int i, sz;
a84756c5 214 struct scatterlist *sg;
976d9276 215#endif
90a81489
AH
216 mmc_retune_hold(host);
217
f100c1c2
AH
218 if (mmc_card_removed(host->card))
219 return -ENOMEDIUM;
976d9276 220
7b2fd4f2
JC
221 if (mrq->sbc) {
222 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
223 mmc_hostname(host), mrq->sbc->opcode,
224 mrq->sbc->arg, mrq->sbc->flags);
225 }
226
920e70c5
RK
227 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
228 mmc_hostname(host), mrq->cmd->opcode,
229 mrq->cmd->arg, mrq->cmd->flags);
1da177e4 230
e4d21708
PO
231 if (mrq->data) {
232 pr_debug("%s: blksz %d blocks %d flags %08x "
233 "tsac %d ms nsac %d\n",
234 mmc_hostname(host), mrq->data->blksz,
235 mrq->data->blocks, mrq->data->flags,
ce252edd 236 mrq->data->timeout_ns / 1000000,
e4d21708
PO
237 mrq->data->timeout_clks);
238 }
239
240 if (mrq->stop) {
241 pr_debug("%s: CMD%u arg %08x flags %08x\n",
242 mmc_hostname(host), mrq->stop->opcode,
243 mrq->stop->arg, mrq->stop->flags);
244 }
245
f22ee4ed 246 WARN_ON(!host->claimed);
1da177e4
LT
247
248 mrq->cmd->error = 0;
249 mrq->cmd->mrq = mrq;
cce411e6
AG
250 if (mrq->sbc) {
251 mrq->sbc->error = 0;
252 mrq->sbc->mrq = mrq;
253 }
1da177e4 254 if (mrq->data) {
fe4a3c7a 255 BUG_ON(mrq->data->blksz > host->max_blk_size);
55db890a
PO
256 BUG_ON(mrq->data->blocks > host->max_blk_count);
257 BUG_ON(mrq->data->blocks * mrq->data->blksz >
258 host->max_req_size);
fe4a3c7a 259
976d9276
PO
260#ifdef CONFIG_MMC_DEBUG
261 sz = 0;
a84756c5
PO
262 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
263 sz += sg->length;
976d9276
PO
264 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
265#endif
266
1da177e4
LT
267 mrq->cmd->data = mrq->data;
268 mrq->data->error = 0;
269 mrq->data->mrq = mrq;
270 if (mrq->stop) {
271 mrq->data->stop = mrq->stop;
272 mrq->stop->error = 0;
273 mrq->stop->mrq = mrq;
274 }
275 }
08c14071 276 mmc_host_clk_hold(host);
66c036e0 277 led_trigger_event(host->led, LED_FULL);
90a81489 278 __mmc_start_request(host, mrq);
f100c1c2
AH
279
280 return 0;
1da177e4
LT
281}
282
950d56ac
JC
283/**
284 * mmc_start_bkops - start BKOPS for supported cards
285 * @card: MMC card to start BKOPS
286 * @form_exception: A flag to indicate if this function was
287 * called due to an exception raised by the card
288 *
289 * Start background operations whenever requested.
290 * When the urgent BKOPS bit is set in a R1 command response
291 * then background operations should be started immediately.
292*/
293void mmc_start_bkops(struct mmc_card *card, bool from_exception)
294{
295 int err;
296 int timeout;
297 bool use_busy_signal;
298
299 BUG_ON(!card);
300
0501be64 301 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
950d56ac
JC
302 return;
303
304 err = mmc_read_bkops_status(card);
305 if (err) {
306 pr_err("%s: Failed to read bkops status: %d\n",
307 mmc_hostname(card->host), err);
308 return;
309 }
310
311 if (!card->ext_csd.raw_bkops_status)
312 return;
313
314 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
315 from_exception)
316 return;
317
318 mmc_claim_host(card->host);
319 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
320 timeout = MMC_BKOPS_MAX_TIMEOUT;
321 use_busy_signal = true;
322 } else {
323 timeout = 0;
324 use_busy_signal = false;
325 }
326
66073d86
AH
327 mmc_retune_hold(card->host);
328
950d56ac 329 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
4509f847
UH
330 EXT_CSD_BKOPS_START, 1, timeout,
331 use_busy_signal, true, false);
950d56ac
JC
332 if (err) {
333 pr_warn("%s: Error %d starting bkops\n",
334 mmc_hostname(card->host), err);
66073d86 335 mmc_retune_release(card->host);
950d56ac
JC
336 goto out;
337 }
338
339 /*
340 * For urgent bkops status (LEVEL_2 and more)
341 * bkops executed synchronously, otherwise
342 * the operation is in progress
343 */
344 if (!use_busy_signal)
345 mmc_card_set_doing_bkops(card);
66073d86
AH
346 else
347 mmc_retune_release(card->host);
950d56ac
JC
348out:
349 mmc_release_host(card->host);
350}
351EXPORT_SYMBOL(mmc_start_bkops);
352
2220eedf
KD
353/*
354 * mmc_wait_data_done() - done callback for data request
355 * @mrq: done data request
356 *
357 * Wakes up mmc context, passed as a callback to host controller driver
358 */
359static void mmc_wait_data_done(struct mmc_request *mrq)
360{
361 mrq->host->context_info.is_done_rcv = true;
362 wake_up_interruptible(&mrq->host->context_info.wait);
363}
364
1da177e4
LT
365static void mmc_wait_done(struct mmc_request *mrq)
366{
aa8b683a
PF
367 complete(&mrq->completion);
368}
369
2220eedf
KD
370/*
371 *__mmc_start_data_req() - starts data request
372 * @host: MMC host to start the request
373 * @mrq: data request to start
374 *
375 * Sets the done callback to be called when request is completed by the card.
376 * Starts data mmc request execution
377 */
378static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
379{
f100c1c2
AH
380 int err;
381
2220eedf
KD
382 mrq->done = mmc_wait_data_done;
383 mrq->host = host;
f100c1c2
AH
384
385 err = mmc_start_request(host, mrq);
386 if (err) {
387 mrq->cmd->error = err;
9b844961 388 mmc_wait_data_done(mrq);
2220eedf 389 }
2220eedf 390
f100c1c2 391 return err;
2220eedf
KD
392}
393
956d9fd5 394static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
aa8b683a 395{
f100c1c2
AH
396 int err;
397
aa8b683a
PF
398 init_completion(&mrq->completion);
399 mrq->done = mmc_wait_done;
f100c1c2
AH
400
401 err = mmc_start_request(host, mrq);
402 if (err) {
403 mrq->cmd->error = err;
d3049504 404 complete(&mrq->completion);
d3049504 405 }
f100c1c2
AH
406
407 return err;
aa8b683a
PF
408}
409
2220eedf
KD
410/*
411 * mmc_wait_for_data_req_done() - wait for request completed
412 * @host: MMC host to prepare the command.
413 * @mrq: MMC request to wait for
414 *
415 * Blocks MMC context till host controller will ack end of data request
416 * execution or new request notification arrives from the block layer.
417 * Handles command retries.
418 *
419 * Returns enum mmc_blk_status after checking errors.
420 */
421static int mmc_wait_for_data_req_done(struct mmc_host *host,
422 struct mmc_request *mrq,
423 struct mmc_async_req *next_req)
424{
425 struct mmc_command *cmd;
426 struct mmc_context_info *context_info = &host->context_info;
427 int err;
428 unsigned long flags;
429
430 while (1) {
431 wait_event_interruptible(context_info->wait,
432 (context_info->is_done_rcv ||
433 context_info->is_new_req));
434 spin_lock_irqsave(&context_info->lock, flags);
435 context_info->is_waiting_last_req = false;
436 spin_unlock_irqrestore(&context_info->lock, flags);
437 if (context_info->is_done_rcv) {
438 context_info->is_done_rcv = false;
439 context_info->is_new_req = false;
440 cmd = mrq->cmd;
775a9362 441
2220eedf
KD
442 if (!cmd->error || !cmd->retries ||
443 mmc_card_removed(host->card)) {
444 err = host->areq->err_check(host->card,
445 host->areq);
446 break; /* return err */
447 } else {
90a81489 448 mmc_retune_recheck(host);
2220eedf
KD
449 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
450 mmc_hostname(host),
451 cmd->opcode, cmd->error);
452 cmd->retries--;
453 cmd->error = 0;
90a81489 454 __mmc_start_request(host, mrq);
2220eedf
KD
455 continue; /* wait for done/new event again */
456 }
457 } else if (context_info->is_new_req) {
458 context_info->is_new_req = false;
90a81489
AH
459 if (!next_req)
460 return MMC_BLK_NEW_REQUEST;
2220eedf
KD
461 }
462 }
90a81489 463 mmc_retune_release(host);
2220eedf
KD
464 return err;
465}
466
aa8b683a
PF
467static void mmc_wait_for_req_done(struct mmc_host *host,
468 struct mmc_request *mrq)
469{
08a7e1df
AH
470 struct mmc_command *cmd;
471
472 while (1) {
473 wait_for_completion(&mrq->completion);
474
475 cmd = mrq->cmd;
775a9362
ME
476
477 /*
478 * If host has timed out waiting for the sanitize
479 * to complete, card might be still in programming state
480 * so let's try to bring the card out of programming
481 * state.
482 */
483 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
484 if (!mmc_interrupt_hpi(host->card)) {
6606110d
JP
485 pr_warn("%s: %s: Interrupted sanitize\n",
486 mmc_hostname(host), __func__);
775a9362
ME
487 cmd->error = 0;
488 break;
489 } else {
490 pr_err("%s: %s: Failed to interrupt sanitize\n",
491 mmc_hostname(host), __func__);
492 }
493 }
d3049504
AH
494 if (!cmd->error || !cmd->retries ||
495 mmc_card_removed(host->card))
08a7e1df
AH
496 break;
497
90a81489
AH
498 mmc_retune_recheck(host);
499
08a7e1df
AH
500 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
501 mmc_hostname(host), cmd->opcode, cmd->error);
502 cmd->retries--;
503 cmd->error = 0;
90a81489 504 __mmc_start_request(host, mrq);
08a7e1df 505 }
90a81489
AH
506
507 mmc_retune_release(host);
aa8b683a
PF
508}
509
510/**
511 * mmc_pre_req - Prepare for a new request
512 * @host: MMC host to prepare command
513 * @mrq: MMC request to prepare for
514 * @is_first_req: true if there is no previous started request
515 * that may run in parellel to this call, otherwise false
516 *
517 * mmc_pre_req() is called in prior to mmc_start_req() to let
518 * host prepare for the new request. Preparation of a request may be
519 * performed while another request is running on the host.
520 */
521static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
522 bool is_first_req)
523{
2c4967f7
SRT
524 if (host->ops->pre_req) {
525 mmc_host_clk_hold(host);
aa8b683a 526 host->ops->pre_req(host, mrq, is_first_req);
2c4967f7
SRT
527 mmc_host_clk_release(host);
528 }
aa8b683a
PF
529}
530
531/**
532 * mmc_post_req - Post process a completed request
533 * @host: MMC host to post process command
534 * @mrq: MMC request to post process for
535 * @err: Error, if non zero, clean up any resources made in pre_req
536 *
537 * Let the host post process a completed request. Post processing of
538 * a request may be performed while another reuqest is running.
539 */
540static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
541 int err)
542{
2c4967f7
SRT
543 if (host->ops->post_req) {
544 mmc_host_clk_hold(host);
aa8b683a 545 host->ops->post_req(host, mrq, err);
2c4967f7
SRT
546 mmc_host_clk_release(host);
547 }
1da177e4
LT
548}
549
aa8b683a
PF
550/**
551 * mmc_start_req - start a non-blocking request
552 * @host: MMC host to start command
553 * @areq: async request to start
554 * @error: out parameter returns 0 for success, otherwise non zero
555 *
556 * Start a new MMC custom command request for a host.
557 * If there is on ongoing async request wait for completion
558 * of that request and start the new one and return.
559 * Does not wait for the new request to complete.
560 *
561 * Returns the completed request, NULL in case of none completed.
562 * Wait for the an ongoing request (previoulsy started) to complete and
563 * return the completed request. If there is no ongoing request, NULL
564 * is returned without waiting. NULL is not an error condition.
565 */
566struct mmc_async_req *mmc_start_req(struct mmc_host *host,
567 struct mmc_async_req *areq, int *error)
568{
569 int err = 0;
956d9fd5 570 int start_err = 0;
aa8b683a
PF
571 struct mmc_async_req *data = host->areq;
572
573 /* Prepare a new request */
574 if (areq)
575 mmc_pre_req(host, areq->mrq, !host->areq);
576
577 if (host->areq) {
f5c2758f
JC
578 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
579 if (err == MMC_BLK_NEW_REQUEST) {
580 if (error)
581 *error = err;
582 /*
583 * The previous request was not completed,
584 * nothing to return
585 */
586 return NULL;
587 }
950d56ac
JC
588 /*
589 * Check BKOPS urgency for each R1 response
590 */
591 if (host->card && mmc_card_mmc(host->card) &&
592 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
593 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
64b12a68
SK
594 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
595
596 /* Cancel the prepared request */
597 if (areq)
598 mmc_post_req(host, areq->mrq, -EINVAL);
599
950d56ac 600 mmc_start_bkops(host->card, true);
64b12a68
SK
601
602 /* prepare the request again */
603 if (areq)
604 mmc_pre_req(host, areq->mrq, !host->areq);
605 }
aa8b683a
PF
606 }
607
956d9fd5 608 if (!err && areq)
2220eedf 609 start_err = __mmc_start_data_req(host, areq->mrq);
aa8b683a
PF
610
611 if (host->areq)
612 mmc_post_req(host, host->areq->mrq, 0);
613
956d9fd5
UH
614 /* Cancel a prepared request if it was not started. */
615 if ((err || start_err) && areq)
f5c2758f 616 mmc_post_req(host, areq->mrq, -EINVAL);
956d9fd5
UH
617
618 if (err)
619 host->areq = NULL;
620 else
621 host->areq = areq;
622
aa8b683a
PF
623 if (error)
624 *error = err;
625 return data;
626}
627EXPORT_SYMBOL(mmc_start_req);
628
67a61c48
PO
629/**
630 * mmc_wait_for_req - start a request and wait for completion
631 * @host: MMC host to start command
632 * @mrq: MMC request to start
633 *
634 * Start a new MMC custom command request for a host, and wait
635 * for the command to complete. Does not attempt to parse the
636 * response.
637 */
638void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
1da177e4 639{
aa8b683a
PF
640 __mmc_start_req(host, mrq);
641 mmc_wait_for_req_done(host, mrq);
1da177e4 642}
1da177e4
LT
643EXPORT_SYMBOL(mmc_wait_for_req);
644
eb0d8f13
JC
645/**
646 * mmc_interrupt_hpi - Issue for High priority Interrupt
647 * @card: the MMC card associated with the HPI transfer
648 *
649 * Issued High Priority Interrupt, and check for card status
950d56ac 650 * until out-of prg-state.
eb0d8f13
JC
651 */
652int mmc_interrupt_hpi(struct mmc_card *card)
653{
654 int err;
655 u32 status;
6af9e96e 656 unsigned long prg_wait;
eb0d8f13
JC
657
658 BUG_ON(!card);
659
660 if (!card->ext_csd.hpi_en) {
661 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
662 return 1;
663 }
664
665 mmc_claim_host(card->host);
666 err = mmc_send_status(card, &status);
667 if (err) {
668 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
669 goto out;
670 }
671
6af9e96e
V
672 switch (R1_CURRENT_STATE(status)) {
673 case R1_STATE_IDLE:
674 case R1_STATE_READY:
675 case R1_STATE_STBY:
211d4fe5 676 case R1_STATE_TRAN:
6af9e96e 677 /*
211d4fe5 678 * In idle and transfer states, HPI is not needed and the caller
6af9e96e
V
679 * can issue the next intended command immediately
680 */
681 goto out;
682 case R1_STATE_PRG:
683 break;
684 default:
685 /* In all other states, it's illegal to issue HPI */
686 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
687 mmc_hostname(card->host), R1_CURRENT_STATE(status));
688 err = -EINVAL;
689 goto out;
690 }
691
692 err = mmc_send_hpi_cmd(card, &status);
693 if (err)
694 goto out;
695
696 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
697 do {
698 err = mmc_send_status(card, &status);
699
700 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
701 break;
702 if (time_after(jiffies, prg_wait))
703 err = -ETIMEDOUT;
704 } while (!err);
eb0d8f13
JC
705
706out:
707 mmc_release_host(card->host);
708 return err;
709}
710EXPORT_SYMBOL(mmc_interrupt_hpi);
711
1da177e4
LT
712/**
713 * mmc_wait_for_cmd - start a command and wait for completion
714 * @host: MMC host to start command
715 * @cmd: MMC command to start
716 * @retries: maximum number of retries
717 *
718 * Start a new MMC command for a host, and wait for the command
719 * to complete. Return any error that occurred while the command
720 * was executing. Do not attempt to parse the response.
721 */
722int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
723{
ad5fd972 724 struct mmc_request mrq = {NULL};
1da177e4 725
d84075c8 726 WARN_ON(!host->claimed);
1da177e4 727
1da177e4
LT
728 memset(cmd->resp, 0, sizeof(cmd->resp));
729 cmd->retries = retries;
730
731 mrq.cmd = cmd;
732 cmd->data = NULL;
733
734 mmc_wait_for_req(host, &mrq);
735
736 return cmd->error;
737}
738
739EXPORT_SYMBOL(mmc_wait_for_cmd);
740
950d56ac
JC
741/**
742 * mmc_stop_bkops - stop ongoing BKOPS
743 * @card: MMC card to check BKOPS
744 *
745 * Send HPI command to stop ongoing background operations to
746 * allow rapid servicing of foreground operations, e.g. read/
747 * writes. Wait until the card comes out of the programming state
748 * to avoid errors in servicing read/write requests.
749 */
750int mmc_stop_bkops(struct mmc_card *card)
751{
752 int err = 0;
753
754 BUG_ON(!card);
755 err = mmc_interrupt_hpi(card);
756
757 /*
758 * If err is EINVAL, we can't issue an HPI.
759 * It should complete the BKOPS.
760 */
761 if (!err || (err == -EINVAL)) {
762 mmc_card_clr_doing_bkops(card);
66073d86 763 mmc_retune_release(card->host);
950d56ac
JC
764 err = 0;
765 }
766
767 return err;
768}
769EXPORT_SYMBOL(mmc_stop_bkops);
770
771int mmc_read_bkops_status(struct mmc_card *card)
772{
773 int err;
774 u8 *ext_csd;
775
950d56ac 776 mmc_claim_host(card->host);
b2cada73 777 err = mmc_get_ext_csd(card, &ext_csd);
950d56ac
JC
778 mmc_release_host(card->host);
779 if (err)
b2cada73 780 return err;
950d56ac
JC
781
782 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
783 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
950d56ac 784 kfree(ext_csd);
b2cada73 785 return 0;
950d56ac
JC
786}
787EXPORT_SYMBOL(mmc_read_bkops_status);
788
d773d725
RK
789/**
790 * mmc_set_data_timeout - set the timeout for a data command
791 * @data: data phase for command
792 * @card: the MMC card associated with the data transfer
67a61c48
PO
793 *
794 * Computes the data timeout parameters according to the
795 * correct algorithm given the card type.
d773d725 796 */
b146d26a 797void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
d773d725
RK
798{
799 unsigned int mult;
800
e6f918bf
PO
801 /*
802 * SDIO cards only define an upper 1 s limit on access.
803 */
804 if (mmc_card_sdio(card)) {
805 data->timeout_ns = 1000000000;
806 data->timeout_clks = 0;
807 return;
808 }
809
d773d725
RK
810 /*
811 * SD cards use a 100 multiplier rather than 10
812 */
813 mult = mmc_card_sd(card) ? 100 : 10;
814
815 /*
816 * Scale up the multiplier (and therefore the timeout) by
817 * the r2w factor for writes.
818 */
b146d26a 819 if (data->flags & MMC_DATA_WRITE)
d773d725
RK
820 mult <<= card->csd.r2w_factor;
821
822 data->timeout_ns = card->csd.tacc_ns * mult;
823 data->timeout_clks = card->csd.tacc_clks * mult;
824
825 /*
826 * SD cards also have an upper limit on the timeout.
827 */
828 if (mmc_card_sd(card)) {
829 unsigned int timeout_us, limit_us;
830
831 timeout_us = data->timeout_ns / 1000;
e9b86841
LW
832 if (mmc_host_clk_rate(card->host))
833 timeout_us += data->timeout_clks * 1000 /
834 (mmc_host_clk_rate(card->host) / 1000);
d773d725 835
b146d26a 836 if (data->flags & MMC_DATA_WRITE)
493890e7 837 /*
3bdc9ba8
PW
838 * The MMC spec "It is strongly recommended
839 * for hosts to implement more than 500ms
840 * timeout value even if the card indicates
841 * the 250ms maximum busy length." Even the
842 * previous value of 300ms is known to be
843 * insufficient for some cards.
493890e7 844 */
3bdc9ba8 845 limit_us = 3000000;
d773d725
RK
846 else
847 limit_us = 100000;
848
fba68bd2
PL
849 /*
850 * SDHC cards always use these fixed values.
851 */
852 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
d773d725
RK
853 data->timeout_ns = limit_us * 1000;
854 data->timeout_clks = 0;
855 }
f7bf11a3
SW
856
857 /* assign limit value if invalid */
858 if (timeout_us == 0)
859 data->timeout_ns = limit_us * 1000;
d773d725 860 }
6de5fc9c
SNX
861
862 /*
863 * Some cards require longer data read timeout than indicated in CSD.
864 * Address this by setting the read timeout to a "reasonably high"
865 * value. For the cards tested, 300ms has proven enough. If necessary,
866 * this value can be increased if other problematic cards require this.
867 */
868 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
869 data->timeout_ns = 300000000;
870 data->timeout_clks = 0;
871 }
872
c0c88871
WM
873 /*
874 * Some cards need very high timeouts if driven in SPI mode.
875 * The worst observed timeout was 900ms after writing a
876 * continuous stream of data until the internal logic
877 * overflowed.
878 */
879 if (mmc_host_is_spi(card->host)) {
880 if (data->flags & MMC_DATA_WRITE) {
881 if (data->timeout_ns < 1000000000)
882 data->timeout_ns = 1000000000; /* 1s */
883 } else {
884 if (data->timeout_ns < 100000000)
885 data->timeout_ns = 100000000; /* 100ms */
886 }
887 }
d773d725
RK
888}
889EXPORT_SYMBOL(mmc_set_data_timeout);
890
ad3868b2
PO
891/**
892 * mmc_align_data_size - pads a transfer size to a more optimal value
893 * @card: the MMC card associated with the data transfer
894 * @sz: original transfer size
895 *
896 * Pads the original data size with a number of extra bytes in
897 * order to avoid controller bugs and/or performance hits
898 * (e.g. some controllers revert to PIO for certain sizes).
899 *
900 * Returns the improved size, which might be unmodified.
901 *
902 * Note that this function is only relevant when issuing a
903 * single scatter gather entry.
904 */
905unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
906{
907 /*
908 * FIXME: We don't have a system for the controller to tell
909 * the core about its problems yet, so for now we just 32-bit
910 * align the size.
911 */
912 sz = ((sz + 3) / 4) * 4;
913
914 return sz;
915}
916EXPORT_SYMBOL(mmc_align_data_size);
917
1da177e4 918/**
2342f332 919 * __mmc_claim_host - exclusively claim a host
1da177e4 920 * @host: mmc host to claim
2342f332 921 * @abort: whether or not the operation should be aborted
1da177e4 922 *
2342f332
NP
923 * Claim a host for a set of operations. If @abort is non null and
924 * dereference a non-zero value then this will return prematurely with
925 * that non-zero value without acquiring the lock. Returns zero
926 * with the lock held otherwise.
1da177e4 927 */
2342f332 928int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
1da177e4
LT
929{
930 DECLARE_WAITQUEUE(wait, current);
931 unsigned long flags;
2342f332 932 int stop;
9250aea7 933 bool pm = false;
1da177e4 934
cf795bfb
PO
935 might_sleep();
936
1da177e4
LT
937 add_wait_queue(&host->wq, &wait);
938 spin_lock_irqsave(&host->lock, flags);
939 while (1) {
940 set_current_state(TASK_UNINTERRUPTIBLE);
2342f332 941 stop = abort ? atomic_read(abort) : 0;
319a3f14 942 if (stop || !host->claimed || host->claimer == current)
1da177e4
LT
943 break;
944 spin_unlock_irqrestore(&host->lock, flags);
945 schedule();
946 spin_lock_irqsave(&host->lock, flags);
947 }
948 set_current_state(TASK_RUNNING);
319a3f14 949 if (!stop) {
2342f332 950 host->claimed = 1;
319a3f14
AH
951 host->claimer = current;
952 host->claim_cnt += 1;
9250aea7
UH
953 if (host->claim_cnt == 1)
954 pm = true;
319a3f14 955 } else
2342f332 956 wake_up(&host->wq);
1da177e4
LT
957 spin_unlock_irqrestore(&host->lock, flags);
958 remove_wait_queue(&host->wq, &wait);
9250aea7
UH
959
960 if (pm)
961 pm_runtime_get_sync(mmc_dev(host));
962
2342f332 963 return stop;
1da177e4 964}
2342f332 965EXPORT_SYMBOL(__mmc_claim_host);
8ea926b2 966
ab1efd27 967/**
907d2e7c 968 * mmc_release_host - release a host
ab1efd27
UH
969 * @host: mmc host to release
970 *
907d2e7c
AH
971 * Release a MMC host, allowing others to claim the host
972 * for their operations.
ab1efd27 973 */
907d2e7c 974void mmc_release_host(struct mmc_host *host)
8ea926b2
AH
975{
976 unsigned long flags;
977
907d2e7c
AH
978 WARN_ON(!host->claimed);
979
8ea926b2 980 spin_lock_irqsave(&host->lock, flags);
319a3f14
AH
981 if (--host->claim_cnt) {
982 /* Release for nested claim */
983 spin_unlock_irqrestore(&host->lock, flags);
984 } else {
985 host->claimed = 0;
986 host->claimer = NULL;
987 spin_unlock_irqrestore(&host->lock, flags);
988 wake_up(&host->wq);
9250aea7
UH
989 pm_runtime_mark_last_busy(mmc_dev(host));
990 pm_runtime_put_autosuspend(mmc_dev(host));
319a3f14 991 }
8ea926b2 992}
1da177e4
LT
993EXPORT_SYMBOL(mmc_release_host);
994
e94cfef6
UH
995/*
996 * This is a helper function, which fetches a runtime pm reference for the
997 * card device and also claims the host.
998 */
999void mmc_get_card(struct mmc_card *card)
1000{
1001 pm_runtime_get_sync(&card->dev);
1002 mmc_claim_host(card->host);
1003}
1004EXPORT_SYMBOL(mmc_get_card);
1005
1006/*
1007 * This is a helper function, which releases the host and drops the runtime
1008 * pm reference for the card device.
1009 */
1010void mmc_put_card(struct mmc_card *card)
1011{
1012 mmc_release_host(card->host);
1013 pm_runtime_mark_last_busy(&card->dev);
1014 pm_runtime_put_autosuspend(&card->dev);
1015}
1016EXPORT_SYMBOL(mmc_put_card);
1017
7ea239d9
PO
1018/*
1019 * Internal function that does the actual ios call to the host driver,
1020 * optionally printing some debug output.
1021 */
920e70c5
RK
1022static inline void mmc_set_ios(struct mmc_host *host)
1023{
1024 struct mmc_ios *ios = &host->ios;
1025
cd9277c0
PO
1026 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1027 "width %u timing %u\n",
920e70c5
RK
1028 mmc_hostname(host), ios->clock, ios->bus_mode,
1029 ios->power_mode, ios->chip_select, ios->vdd,
cd9277c0 1030 ios->bus_width, ios->timing);
fba68bd2 1031
04566831
LW
1032 if (ios->clock > 0)
1033 mmc_set_ungated(host);
920e70c5
RK
1034 host->ops->set_ios(host, ios);
1035}
1036
7ea239d9
PO
1037/*
1038 * Control chip select pin on a host.
1039 */
da7fbe58 1040void mmc_set_chip_select(struct mmc_host *host, int mode)
1da177e4 1041{
778e277c 1042 mmc_host_clk_hold(host);
da7fbe58
PO
1043 host->ios.chip_select = mode;
1044 mmc_set_ios(host);
778e277c 1045 mmc_host_clk_release(host);
1da177e4
LT
1046}
1047
7ea239d9
PO
1048/*
1049 * Sets the host clock to the highest possible frequency that
1050 * is below "hz".
1051 */
778e277c 1052static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
7ea239d9 1053{
6a98f1e8 1054 WARN_ON(hz && hz < host->f_min);
7ea239d9
PO
1055
1056 if (hz > host->f_max)
1057 hz = host->f_max;
1058
1059 host->ios.clock = hz;
1060 mmc_set_ios(host);
1061}
1062
778e277c
MW
1063void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1064{
1065 mmc_host_clk_hold(host);
1066 __mmc_set_clock(host, hz);
1067 mmc_host_clk_release(host);
1068}
1069
04566831
LW
1070#ifdef CONFIG_MMC_CLKGATE
1071/*
1072 * This gates the clock by setting it to 0 Hz.
1073 */
1074void mmc_gate_clock(struct mmc_host *host)
1075{
1076 unsigned long flags;
1077
1078 spin_lock_irqsave(&host->clk_lock, flags);
1079 host->clk_old = host->ios.clock;
1080 host->ios.clock = 0;
1081 host->clk_gated = true;
1082 spin_unlock_irqrestore(&host->clk_lock, flags);
1083 mmc_set_ios(host);
1084}
1085
1086/*
1087 * This restores the clock from gating by using the cached
1088 * clock value.
1089 */
1090void mmc_ungate_clock(struct mmc_host *host)
1091{
1092 /*
1093 * We should previously have gated the clock, so the clock shall
1094 * be 0 here! The clock may however be 0 during initialization,
1095 * when some request operations are performed before setting
1096 * the frequency. When ungate is requested in that situation
1097 * we just ignore the call.
1098 */
1099 if (host->clk_old) {
1100 BUG_ON(host->ios.clock);
1101 /* This call will also set host->clk_gated to false */
778e277c 1102 __mmc_set_clock(host, host->clk_old);
04566831
LW
1103 }
1104}
1105
1106void mmc_set_ungated(struct mmc_host *host)
1107{
1108 unsigned long flags;
1109
1110 /*
1111 * We've been given a new frequency while the clock is gated,
1112 * so make sure we regard this as ungating it.
1113 */
1114 spin_lock_irqsave(&host->clk_lock, flags);
1115 host->clk_gated = false;
1116 spin_unlock_irqrestore(&host->clk_lock, flags);
1117}
1118
1119#else
1120void mmc_set_ungated(struct mmc_host *host)
1121{
1122}
1123#endif
1124
63e415c6
AH
1125int mmc_execute_tuning(struct mmc_card *card)
1126{
1127 struct mmc_host *host = card->host;
1128 u32 opcode;
1129 int err;
1130
1131 if (!host->ops->execute_tuning)
1132 return 0;
1133
1134 if (mmc_card_mmc(card))
1135 opcode = MMC_SEND_TUNING_BLOCK_HS200;
1136 else
1137 opcode = MMC_SEND_TUNING_BLOCK;
1138
1139 mmc_host_clk_hold(host);
1140 err = host->ops->execute_tuning(host, opcode);
1141 mmc_host_clk_release(host);
1142
1143 if (err)
1144 pr_err("%s: tuning execution failed\n", mmc_hostname(host));
79d5a65a
AH
1145 else
1146 mmc_retune_enable(host);
63e415c6
AH
1147
1148 return err;
1149}
1150
7ea239d9
PO
1151/*
1152 * Change the bus mode (open drain/push-pull) of a host.
1153 */
1154void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1155{
778e277c 1156 mmc_host_clk_hold(host);
7ea239d9
PO
1157 host->ios.bus_mode = mode;
1158 mmc_set_ios(host);
778e277c 1159 mmc_host_clk_release(host);
7ea239d9
PO
1160}
1161
0f8d8ea6
AH
1162/*
1163 * Change data bus width of a host.
1164 */
1165void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1166{
778e277c 1167 mmc_host_clk_hold(host);
4c4cb171
PR
1168 host->ios.bus_width = width;
1169 mmc_set_ios(host);
778e277c 1170 mmc_host_clk_release(host);
0f8d8ea6
AH
1171}
1172
2d079c43
JR
1173/*
1174 * Set initial state after a power cycle or a hw_reset.
1175 */
1176void mmc_set_initial_state(struct mmc_host *host)
1177{
79d5a65a
AH
1178 mmc_retune_disable(host);
1179
2d079c43
JR
1180 if (mmc_host_is_spi(host))
1181 host->ios.chip_select = MMC_CS_HIGH;
1182 else
1183 host->ios.chip_select = MMC_CS_DONTCARE;
1184 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1185 host->ios.bus_width = MMC_BUS_WIDTH_1;
1186 host->ios.timing = MMC_TIMING_LEGACY;
75e8a228 1187 host->ios.drv_type = 0;
2d079c43
JR
1188
1189 mmc_set_ios(host);
1190}
1191
86e8286a
AV
1192/**
1193 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1194 * @vdd: voltage (mV)
1195 * @low_bits: prefer low bits in boundary cases
1196 *
1197 * This function returns the OCR bit number according to the provided @vdd
1198 * value. If conversion is not possible a negative errno value returned.
1199 *
1200 * Depending on the @low_bits flag the function prefers low or high OCR bits
1201 * on boundary voltages. For example,
1202 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1203 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1204 *
1205 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1206 */
1207static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1208{
1209 const int max_bit = ilog2(MMC_VDD_35_36);
1210 int bit;
1211
1212 if (vdd < 1650 || vdd > 3600)
1213 return -EINVAL;
1214
1215 if (vdd >= 1650 && vdd <= 1950)
1216 return ilog2(MMC_VDD_165_195);
1217
1218 if (low_bits)
1219 vdd -= 1;
1220
1221 /* Base 2000 mV, step 100 mV, bit's base 8. */
1222 bit = (vdd - 2000) / 100 + 8;
1223 if (bit > max_bit)
1224 return max_bit;
1225 return bit;
1226}
1227
1228/**
1229 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1230 * @vdd_min: minimum voltage value (mV)
1231 * @vdd_max: maximum voltage value (mV)
1232 *
1233 * This function returns the OCR mask bits according to the provided @vdd_min
1234 * and @vdd_max values. If conversion is not possible the function returns 0.
1235 *
1236 * Notes wrt boundary cases:
1237 * This function sets the OCR bits for all boundary voltages, for example
1238 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1239 * MMC_VDD_34_35 mask.
1240 */
1241u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1242{
1243 u32 mask = 0;
1244
1245 if (vdd_max < vdd_min)
1246 return 0;
1247
1248 /* Prefer high bits for the boundary vdd_max values. */
1249 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1250 if (vdd_max < 0)
1251 return 0;
1252
1253 /* Prefer low bits for the boundary vdd_min values. */
1254 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1255 if (vdd_min < 0)
1256 return 0;
1257
1258 /* Fill the mask, from max bit to min bit. */
1259 while (vdd_max >= vdd_min)
1260 mask |= 1 << vdd_max--;
1261
1262 return mask;
1263}
1264EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1265
6e9e318b
HZ
1266#ifdef CONFIG_OF
1267
1268/**
1269 * mmc_of_parse_voltage - return mask of supported voltages
1270 * @np: The device node need to be parsed.
1271 * @mask: mask of voltages available for MMC/SD/SDIO
1272 *
1273 * 1. Return zero on success.
1274 * 2. Return negative errno: voltage-range is invalid.
1275 */
1276int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1277{
1278 const u32 *voltage_ranges;
1279 int num_ranges, i;
1280
1281 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1282 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1283 if (!voltage_ranges || !num_ranges) {
1284 pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1285 return -EINVAL;
1286 }
1287
1288 for (i = 0; i < num_ranges; i++) {
1289 const int j = i * 2;
1290 u32 ocr_mask;
1291
1292 ocr_mask = mmc_vddrange_to_ocrmask(
1293 be32_to_cpu(voltage_ranges[j]),
1294 be32_to_cpu(voltage_ranges[j + 1]));
1295 if (!ocr_mask) {
1296 pr_err("%s: voltage-range #%d is invalid\n",
1297 np->full_name, i);
1298 return -EINVAL;
1299 }
1300 *mask |= ocr_mask;
1301 }
1302
1303 return 0;
1304}
1305EXPORT_SYMBOL(mmc_of_parse_voltage);
1306
1307#endif /* CONFIG_OF */
1308
25185f3f
SH
1309static int mmc_of_get_func_num(struct device_node *node)
1310{
1311 u32 reg;
1312 int ret;
1313
1314 ret = of_property_read_u32(node, "reg", &reg);
1315 if (ret < 0)
1316 return ret;
1317
1318 return reg;
1319}
1320
1321struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1322 unsigned func_num)
1323{
1324 struct device_node *node;
1325
1326 if (!host->parent || !host->parent->of_node)
1327 return NULL;
1328
1329 for_each_child_of_node(host->parent->of_node, node) {
1330 if (mmc_of_get_func_num(node) == func_num)
1331 return node;
1332 }
1333
1334 return NULL;
1335}
1336
5c13941a
DB
1337#ifdef CONFIG_REGULATOR
1338
1339/**
1340 * mmc_regulator_get_ocrmask - return mask of supported voltages
1341 * @supply: regulator to use
1342 *
1343 * This returns either a negative errno, or a mask of voltages that
1344 * can be provided to MMC/SD/SDIO devices using the specified voltage
1345 * regulator. This would normally be called before registering the
1346 * MMC host adapter.
1347 */
1348int mmc_regulator_get_ocrmask(struct regulator *supply)
1349{
1350 int result = 0;
1351 int count;
1352 int i;
9ed7ca89
JMC
1353 int vdd_uV;
1354 int vdd_mV;
5c13941a
DB
1355
1356 count = regulator_count_voltages(supply);
1357 if (count < 0)
1358 return count;
1359
1360 for (i = 0; i < count; i++) {
5c13941a
DB
1361 vdd_uV = regulator_list_voltage(supply, i);
1362 if (vdd_uV <= 0)
1363 continue;
1364
1365 vdd_mV = vdd_uV / 1000;
1366 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1367 }
1368
9ed7ca89
JMC
1369 if (!result) {
1370 vdd_uV = regulator_get_voltage(supply);
1371 if (vdd_uV <= 0)
1372 return vdd_uV;
1373
1374 vdd_mV = vdd_uV / 1000;
1375 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1376 }
1377
5c13941a
DB
1378 return result;
1379}
45a6b32e 1380EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
5c13941a
DB
1381
1382/**
1383 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
99fc5131 1384 * @mmc: the host to regulate
5c13941a 1385 * @supply: regulator to use
99fc5131 1386 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
5c13941a
DB
1387 *
1388 * Returns zero on success, else negative errno.
1389 *
1390 * MMC host drivers may use this to enable or disable a regulator using
1391 * a particular supply voltage. This would normally be called from the
1392 * set_ios() method.
1393 */
99fc5131
LW
1394int mmc_regulator_set_ocr(struct mmc_host *mmc,
1395 struct regulator *supply,
1396 unsigned short vdd_bit)
5c13941a
DB
1397{
1398 int result = 0;
1399 int min_uV, max_uV;
5c13941a
DB
1400
1401 if (vdd_bit) {
1402 int tmp;
5c13941a 1403
9cde5b7a
CB
1404 /*
1405 * REVISIT mmc_vddrange_to_ocrmask() may have set some
5c13941a
DB
1406 * bits this regulator doesn't quite support ... don't
1407 * be too picky, most cards and regulators are OK with
1408 * a 0.1V range goof (it's a small error percentage).
1409 */
1410 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1411 if (tmp == 0) {
1412 min_uV = 1650 * 1000;
1413 max_uV = 1950 * 1000;
1414 } else {
1415 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1416 max_uV = min_uV + 100 * 1000;
1417 }
1418
ca6429d4 1419 result = regulator_set_voltage(supply, min_uV, max_uV);
99fc5131 1420 if (result == 0 && !mmc->regulator_enabled) {
5c13941a 1421 result = regulator_enable(supply);
99fc5131
LW
1422 if (!result)
1423 mmc->regulator_enabled = true;
1424 }
1425 } else if (mmc->regulator_enabled) {
5c13941a 1426 result = regulator_disable(supply);
99fc5131
LW
1427 if (result == 0)
1428 mmc->regulator_enabled = false;
5c13941a
DB
1429 }
1430
99fc5131
LW
1431 if (result)
1432 dev_err(mmc_dev(mmc),
1433 "could not set regulator OCR (%d)\n", result);
5c13941a
DB
1434 return result;
1435}
45a6b32e 1436EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
5c13941a 1437
4d1f52f9
TK
1438#endif /* CONFIG_REGULATOR */
1439
e137788d
GL
1440int mmc_regulator_get_supply(struct mmc_host *mmc)
1441{
1442 struct device *dev = mmc_dev(mmc);
e137788d
GL
1443 int ret;
1444
4d1f52f9 1445 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
bc35d5ed 1446 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
e137788d 1447
4d1f52f9
TK
1448 if (IS_ERR(mmc->supply.vmmc)) {
1449 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1450 return -EPROBE_DEFER;
1451 dev_info(dev, "No vmmc regulator found\n");
1452 } else {
1453 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1454 if (ret > 0)
1455 mmc->ocr_avail = ret;
1456 else
1457 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1458 }
e137788d 1459
4d1f52f9
TK
1460 if (IS_ERR(mmc->supply.vqmmc)) {
1461 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1462 return -EPROBE_DEFER;
1463 dev_info(dev, "No vqmmc regulator found\n");
1464 }
e137788d
GL
1465
1466 return 0;
1467}
1468EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1469
1da177e4
LT
1470/*
1471 * Mask off any voltages we don't support and select
1472 * the lowest voltage
1473 */
7ea239d9 1474u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1da177e4
LT
1475{
1476 int bit;
1477
726d6f23
UH
1478 /*
1479 * Sanity check the voltages that the card claims to
1480 * support.
1481 */
1482 if (ocr & 0x7F) {
1483 dev_warn(mmc_dev(host),
1484 "card claims to support voltages below defined range\n");
1485 ocr &= ~0x7F;
1486 }
1487
1da177e4 1488 ocr &= host->ocr_avail;
ce69d37b
UH
1489 if (!ocr) {
1490 dev_warn(mmc_dev(host), "no support for card's volts\n");
1491 return 0;
1492 }
1da177e4 1493
ce69d37b
UH
1494 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1495 bit = ffs(ocr) - 1;
63ef731a 1496 ocr &= 3 << bit;
ce69d37b 1497 mmc_power_cycle(host, ocr);
1da177e4 1498 } else {
ce69d37b
UH
1499 bit = fls(ocr) - 1;
1500 ocr &= 3 << bit;
1501 if (bit != host->ios.vdd)
1502 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1da177e4
LT
1503 }
1504
1505 return ocr;
1506}
1507
567c8903
JR
1508int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1509{
1510 int err = 0;
1511 int old_signal_voltage = host->ios.signal_voltage;
1512
1513 host->ios.signal_voltage = signal_voltage;
1514 if (host->ops->start_signal_voltage_switch) {
1515 mmc_host_clk_hold(host);
1516 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1517 mmc_host_clk_release(host);
1518 }
1519
1520 if (err)
1521 host->ios.signal_voltage = old_signal_voltage;
1522
1523 return err;
1524
1525}
1526
0f791fda 1527int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
f2119df6
AN
1528{
1529 struct mmc_command cmd = {0};
1530 int err = 0;
0797e5f1 1531 u32 clock;
f2119df6
AN
1532
1533 BUG_ON(!host);
1534
1535 /*
1536 * Send CMD11 only if the request is to switch the card to
1537 * 1.8V signalling.
1538 */
0797e5f1
JR
1539 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1540 return __mmc_set_signal_voltage(host, signal_voltage);
f2119df6 1541
0797e5f1
JR
1542 /*
1543 * If we cannot switch voltages, return failure so the caller
1544 * can continue without UHS mode
1545 */
1546 if (!host->ops->start_signal_voltage_switch)
1547 return -EPERM;
1548 if (!host->ops->card_busy)
6606110d
JP
1549 pr_warn("%s: cannot verify signal voltage switch\n",
1550 mmc_hostname(host));
0797e5f1 1551
c6eb5880
VY
1552 mmc_host_clk_hold(host);
1553
0797e5f1
JR
1554 cmd.opcode = SD_SWITCH_VOLTAGE;
1555 cmd.arg = 0;
1556 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1557
1558 err = mmc_wait_for_cmd(host, &cmd, 0);
1559 if (err)
c6eb5880 1560 goto err_command;
0797e5f1 1561
c6eb5880
VY
1562 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) {
1563 err = -EIO;
1564 goto err_command;
1565 }
0797e5f1
JR
1566 /*
1567 * The card should drive cmd and dat[0:3] low immediately
1568 * after the response of cmd11, but wait 1 ms to be sure
1569 */
1570 mmc_delay(1);
1571 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1572 err = -EAGAIN;
1573 goto power_cycle;
1574 }
1575 /*
1576 * During a signal voltage level switch, the clock must be gated
1577 * for 5 ms according to the SD spec
1578 */
1579 clock = host->ios.clock;
1580 host->ios.clock = 0;
1581 mmc_set_ios(host);
f2119df6 1582
0797e5f1
JR
1583 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1584 /*
1585 * Voltages may not have been switched, but we've already
1586 * sent CMD11, so a power cycle is required anyway
1587 */
1588 err = -EAGAIN;
1589 goto power_cycle;
f2119df6
AN
1590 }
1591
7c5209c3
DA
1592 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1593 mmc_delay(10);
0797e5f1
JR
1594 host->ios.clock = clock;
1595 mmc_set_ios(host);
1596
1597 /* Wait for at least 1 ms according to spec */
1598 mmc_delay(1);
1599
1600 /*
1601 * Failure to switch is indicated by the card holding
1602 * dat[0:3] low
1603 */
1604 if (host->ops->card_busy && host->ops->card_busy(host))
1605 err = -EAGAIN;
1606
1607power_cycle:
1608 if (err) {
1609 pr_debug("%s: Signal voltage switch failed, "
1610 "power cycling card\n", mmc_hostname(host));
0f791fda 1611 mmc_power_cycle(host, ocr);
0797e5f1
JR
1612 }
1613
c6eb5880 1614err_command:
0797e5f1
JR
1615 mmc_host_clk_release(host);
1616
1617 return err;
f2119df6
AN
1618}
1619
b57c43ad 1620/*
7ea239d9 1621 * Select timing parameters for host.
b57c43ad 1622 */
7ea239d9 1623void mmc_set_timing(struct mmc_host *host, unsigned int timing)
b57c43ad 1624{
778e277c 1625 mmc_host_clk_hold(host);
7ea239d9
PO
1626 host->ios.timing = timing;
1627 mmc_set_ios(host);
778e277c 1628 mmc_host_clk_release(host);
b57c43ad
PO
1629}
1630
d6d50a15
AN
1631/*
1632 * Select appropriate driver type for host.
1633 */
1634void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1635{
778e277c 1636 mmc_host_clk_hold(host);
d6d50a15
AN
1637 host->ios.drv_type = drv_type;
1638 mmc_set_ios(host);
778e277c 1639 mmc_host_clk_release(host);
d6d50a15
AN
1640}
1641
1da177e4 1642/*
45f8245b
RK
1643 * Apply power to the MMC stack. This is a two-stage process.
1644 * First, we enable power to the card without the clock running.
1645 * We then wait a bit for the power to stabilise. Finally,
1646 * enable the bus drivers and clock to the card.
1647 *
1648 * We must _NOT_ enable the clock prior to power stablising.
1649 *
1650 * If a host does all the power sequencing itself, ignore the
1651 * initial MMC_POWER_UP stage.
1da177e4 1652 */
4a065193 1653void mmc_power_up(struct mmc_host *host, u32 ocr)
1da177e4 1654{
fa550189
UH
1655 if (host->ios.power_mode == MMC_POWER_ON)
1656 return;
1657
778e277c
MW
1658 mmc_host_clk_hold(host);
1659
3aa8793f
UH
1660 mmc_pwrseq_pre_power_on(host);
1661
4a065193 1662 host->ios.vdd = fls(ocr) - 1;
1da177e4 1663 host->ios.power_mode = MMC_POWER_UP;
2d079c43
JR
1664 /* Set initial state and call mmc_set_ios */
1665 mmc_set_initial_state(host);
1da177e4 1666
ceae98f2
TK
1667 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1668 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1669 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1670 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1671 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1672 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1673 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
108ecc4c 1674
f9996aee
PO
1675 /*
1676 * This delay should be sufficient to allow the power supply
1677 * to reach the minimum voltage.
1678 */
79bccc5a 1679 mmc_delay(10);
1da177e4 1680
4febb7e2
UH
1681 mmc_pwrseq_post_power_on(host);
1682
88ae8b86 1683 host->ios.clock = host->f_init;
8dfd0374 1684
1da177e4 1685 host->ios.power_mode = MMC_POWER_ON;
920e70c5 1686 mmc_set_ios(host);
1da177e4 1687
f9996aee
PO
1688 /*
1689 * This delay must be at least 74 clock sizes, or 1 ms, or the
1690 * time required to reach a stable voltage.
1691 */
79bccc5a 1692 mmc_delay(10);
778e277c
MW
1693
1694 mmc_host_clk_release(host);
1da177e4
LT
1695}
1696
7f7e4129 1697void mmc_power_off(struct mmc_host *host)
1da177e4 1698{
fa550189
UH
1699 if (host->ios.power_mode == MMC_POWER_OFF)
1700 return;
1701
778e277c
MW
1702 mmc_host_clk_hold(host);
1703
3aa8793f
UH
1704 mmc_pwrseq_power_off(host);
1705
1da177e4
LT
1706 host->ios.clock = 0;
1707 host->ios.vdd = 0;
b33d46c3 1708
1da177e4 1709 host->ios.power_mode = MMC_POWER_OFF;
2d079c43
JR
1710 /* Set initial state and call mmc_set_ios */
1711 mmc_set_initial_state(host);
778e277c 1712
041beb1d
DD
1713 /*
1714 * Some configurations, such as the 802.11 SDIO card in the OLPC
1715 * XO-1.5, require a short delay after poweroff before the card
1716 * can be successfully turned on again.
1717 */
1718 mmc_delay(1);
1719
778e277c 1720 mmc_host_clk_release(host);
1da177e4
LT
1721}
1722
4a065193 1723void mmc_power_cycle(struct mmc_host *host, u32 ocr)
276e090f
JR
1724{
1725 mmc_power_off(host);
1726 /* Wait at least 1 ms according to SD spec */
1727 mmc_delay(1);
4a065193 1728 mmc_power_up(host, ocr);
276e090f
JR
1729}
1730
39361851
AB
1731/*
1732 * Cleanup when the last reference to the bus operator is dropped.
1733 */
261172fd 1734static void __mmc_release_bus(struct mmc_host *host)
39361851
AB
1735{
1736 BUG_ON(!host);
1737 BUG_ON(host->bus_refs);
1738 BUG_ON(!host->bus_dead);
1739
1740 host->bus_ops = NULL;
1741}
1742
1743/*
1744 * Increase reference count of bus operator
1745 */
1746static inline void mmc_bus_get(struct mmc_host *host)
1747{
1748 unsigned long flags;
1749
1750 spin_lock_irqsave(&host->lock, flags);
1751 host->bus_refs++;
1752 spin_unlock_irqrestore(&host->lock, flags);
1753}
1754
1755/*
1756 * Decrease reference count of bus operator and free it if
1757 * it is the last reference.
1758 */
1759static inline void mmc_bus_put(struct mmc_host *host)
1760{
1761 unsigned long flags;
1762
1763 spin_lock_irqsave(&host->lock, flags);
1764 host->bus_refs--;
1765 if ((host->bus_refs == 0) && host->bus_ops)
1766 __mmc_release_bus(host);
1767 spin_unlock_irqrestore(&host->lock, flags);
1768}
1769
1da177e4 1770/*
7ea239d9
PO
1771 * Assign a mmc bus handler to a host. Only one bus handler may control a
1772 * host at any given time.
1da177e4 1773 */
7ea239d9 1774void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1da177e4 1775{
7ea239d9 1776 unsigned long flags;
e45a1bd2 1777
7ea239d9
PO
1778 BUG_ON(!host);
1779 BUG_ON(!ops);
b855885e 1780
d84075c8 1781 WARN_ON(!host->claimed);
bce40a36 1782
7ea239d9 1783 spin_lock_irqsave(&host->lock, flags);
bce40a36 1784
7ea239d9
PO
1785 BUG_ON(host->bus_ops);
1786 BUG_ON(host->bus_refs);
b57c43ad 1787
7ea239d9
PO
1788 host->bus_ops = ops;
1789 host->bus_refs = 1;
1790 host->bus_dead = 0;
b57c43ad 1791
7ea239d9 1792 spin_unlock_irqrestore(&host->lock, flags);
b57c43ad
PO
1793}
1794
7ea239d9 1795/*
7f7e4129 1796 * Remove the current bus handler from a host.
7ea239d9
PO
1797 */
1798void mmc_detach_bus(struct mmc_host *host)
7ccd266e 1799{
7ea239d9 1800 unsigned long flags;
7ccd266e 1801
7ea239d9 1802 BUG_ON(!host);
7ccd266e 1803
d84075c8
PO
1804 WARN_ON(!host->claimed);
1805 WARN_ON(!host->bus_ops);
cd9277c0 1806
7ea239d9 1807 spin_lock_irqsave(&host->lock, flags);
7ccd266e 1808
7ea239d9 1809 host->bus_dead = 1;
7ccd266e 1810
7ea239d9 1811 spin_unlock_irqrestore(&host->lock, flags);
1da177e4 1812
7ea239d9 1813 mmc_bus_put(host);
1da177e4
LT
1814}
1815
bbd43682
UH
1816static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1817 bool cd_irq)
1818{
1819#ifdef CONFIG_MMC_DEBUG
1820 unsigned long flags;
1821 spin_lock_irqsave(&host->lock, flags);
1822 WARN_ON(host->removed);
1823 spin_unlock_irqrestore(&host->lock, flags);
1824#endif
1825
1826 /*
1827 * If the device is configured as wakeup, we prevent a new sleep for
1828 * 5 s to give provision for user space to consume the event.
1829 */
1830 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1831 device_can_wakeup(mmc_dev(host)))
1832 pm_wakeup_event(mmc_dev(host), 5000);
1833
1834 host->detect_change = 1;
1835 mmc_schedule_delayed_work(&host->detect, delay);
1836}
1837
1da177e4
LT
1838/**
1839 * mmc_detect_change - process change of state on a MMC socket
1840 * @host: host which changed state.
8dc00335 1841 * @delay: optional delay to wait before detection (jiffies)
1da177e4 1842 *
67a61c48
PO
1843 * MMC drivers should call this when they detect a card has been
1844 * inserted or removed. The MMC layer will confirm that any
1845 * present card is still functional, and initialize any newly
1846 * inserted.
1da177e4 1847 */
8dc00335 1848void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1da177e4 1849{
bbd43682 1850 _mmc_detect_change(host, delay, true);
1da177e4 1851}
1da177e4
LT
1852EXPORT_SYMBOL(mmc_detect_change);
1853
dfe86cba
AH
1854void mmc_init_erase(struct mmc_card *card)
1855{
1856 unsigned int sz;
1857
1858 if (is_power_of_2(card->erase_size))
1859 card->erase_shift = ffs(card->erase_size) - 1;
1860 else
1861 card->erase_shift = 0;
1862
1863 /*
1864 * It is possible to erase an arbitrarily large area of an SD or MMC
1865 * card. That is not desirable because it can take a long time
1866 * (minutes) potentially delaying more important I/O, and also the
1867 * timeout calculations become increasingly hugely over-estimated.
1868 * Consequently, 'pref_erase' is defined as a guide to limit erases
1869 * to that size and alignment.
1870 *
1871 * For SD cards that define Allocation Unit size, limit erases to one
1872 * Allocation Unit at a time. For MMC cards that define High Capacity
1873 * Erase Size, whether it is switched on or not, limit to that size.
1874 * Otherwise just have a stab at a good value. For modern cards it
1875 * will end up being 4MiB. Note that if the value is too small, it
1876 * can end up taking longer to erase.
1877 */
1878 if (mmc_card_sd(card) && card->ssr.au) {
1879 card->pref_erase = card->ssr.au;
1880 card->erase_shift = ffs(card->ssr.au) - 1;
1881 } else if (card->ext_csd.hc_erase_size) {
1882 card->pref_erase = card->ext_csd.hc_erase_size;
cc8aa7de 1883 } else if (card->erase_size) {
dfe86cba
AH
1884 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1885 if (sz < 128)
1886 card->pref_erase = 512 * 1024 / 512;
1887 else if (sz < 512)
1888 card->pref_erase = 1024 * 1024 / 512;
1889 else if (sz < 1024)
1890 card->pref_erase = 2 * 1024 * 1024 / 512;
1891 else
1892 card->pref_erase = 4 * 1024 * 1024 / 512;
1893 if (card->pref_erase < card->erase_size)
1894 card->pref_erase = card->erase_size;
1895 else {
1896 sz = card->pref_erase % card->erase_size;
1897 if (sz)
1898 card->pref_erase += card->erase_size - sz;
1899 }
cc8aa7de
CD
1900 } else
1901 card->pref_erase = 0;
dfe86cba
AH
1902}
1903
eaa02f75
AW
1904static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1905 unsigned int arg, unsigned int qty)
dfe86cba
AH
1906{
1907 unsigned int erase_timeout;
1908
7194efb8
AH
1909 if (arg == MMC_DISCARD_ARG ||
1910 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1911 erase_timeout = card->ext_csd.trim_timeout;
1912 } else if (card->ext_csd.erase_group_def & 1) {
dfe86cba
AH
1913 /* High Capacity Erase Group Size uses HC timeouts */
1914 if (arg == MMC_TRIM_ARG)
1915 erase_timeout = card->ext_csd.trim_timeout;
1916 else
1917 erase_timeout = card->ext_csd.hc_erase_timeout;
1918 } else {
1919 /* CSD Erase Group Size uses write timeout */
1920 unsigned int mult = (10 << card->csd.r2w_factor);
1921 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1922 unsigned int timeout_us;
1923
1924 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1925 if (card->csd.tacc_ns < 1000000)
1926 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1927 else
1928 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1929
1930 /*
1931 * ios.clock is only a target. The real clock rate might be
1932 * less but not that much less, so fudge it by multiplying by 2.
1933 */
1934 timeout_clks <<= 1;
1935 timeout_us += (timeout_clks * 1000) /
4cf8c6dd 1936 (mmc_host_clk_rate(card->host) / 1000);
dfe86cba
AH
1937
1938 erase_timeout = timeout_us / 1000;
1939
1940 /*
1941 * Theoretically, the calculation could underflow so round up
1942 * to 1ms in that case.
1943 */
1944 if (!erase_timeout)
1945 erase_timeout = 1;
1946 }
1947
1948 /* Multiplier for secure operations */
1949 if (arg & MMC_SECURE_ARGS) {
1950 if (arg == MMC_SECURE_ERASE_ARG)
1951 erase_timeout *= card->ext_csd.sec_erase_mult;
1952 else
1953 erase_timeout *= card->ext_csd.sec_trim_mult;
1954 }
1955
1956 erase_timeout *= qty;
1957
1958 /*
1959 * Ensure at least a 1 second timeout for SPI as per
1960 * 'mmc_set_data_timeout()'
1961 */
1962 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1963 erase_timeout = 1000;
1964
eaa02f75 1965 return erase_timeout;
dfe86cba
AH
1966}
1967
eaa02f75
AW
1968static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1969 unsigned int arg,
1970 unsigned int qty)
dfe86cba 1971{
eaa02f75
AW
1972 unsigned int erase_timeout;
1973
dfe86cba
AH
1974 if (card->ssr.erase_timeout) {
1975 /* Erase timeout specified in SD Status Register (SSR) */
eaa02f75
AW
1976 erase_timeout = card->ssr.erase_timeout * qty +
1977 card->ssr.erase_offset;
dfe86cba
AH
1978 } else {
1979 /*
1980 * Erase timeout not specified in SD Status Register (SSR) so
1981 * use 250ms per write block.
1982 */
eaa02f75 1983 erase_timeout = 250 * qty;
dfe86cba
AH
1984 }
1985
1986 /* Must not be less than 1 second */
eaa02f75
AW
1987 if (erase_timeout < 1000)
1988 erase_timeout = 1000;
1989
1990 return erase_timeout;
dfe86cba
AH
1991}
1992
eaa02f75
AW
1993static unsigned int mmc_erase_timeout(struct mmc_card *card,
1994 unsigned int arg,
1995 unsigned int qty)
dfe86cba
AH
1996{
1997 if (mmc_card_sd(card))
eaa02f75 1998 return mmc_sd_erase_timeout(card, arg, qty);
dfe86cba 1999 else
eaa02f75 2000 return mmc_mmc_erase_timeout(card, arg, qty);
dfe86cba
AH
2001}
2002
2003static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2004 unsigned int to, unsigned int arg)
2005{
1278dba1 2006 struct mmc_command cmd = {0};
dfe86cba 2007 unsigned int qty = 0;
8fee476b 2008 unsigned long timeout;
dfe86cba
AH
2009 int err;
2010
8f11d106
AH
2011 mmc_retune_hold(card->host);
2012
dfe86cba
AH
2013 /*
2014 * qty is used to calculate the erase timeout which depends on how many
2015 * erase groups (or allocation units in SD terminology) are affected.
2016 * We count erasing part of an erase group as one erase group.
2017 * For SD, the allocation units are always a power of 2. For MMC, the
2018 * erase group size is almost certainly also power of 2, but it does not
2019 * seem to insist on that in the JEDEC standard, so we fall back to
2020 * division in that case. SD may not specify an allocation unit size,
2021 * in which case the timeout is based on the number of write blocks.
2022 *
2023 * Note that the timeout for secure trim 2 will only be correct if the
2024 * number of erase groups specified is the same as the total of all
2025 * preceding secure trim 1 commands. Since the power may have been
2026 * lost since the secure trim 1 commands occurred, it is generally
2027 * impossible to calculate the secure trim 2 timeout correctly.
2028 */
2029 if (card->erase_shift)
2030 qty += ((to >> card->erase_shift) -
2031 (from >> card->erase_shift)) + 1;
2032 else if (mmc_card_sd(card))
2033 qty += to - from + 1;
2034 else
2035 qty += ((to / card->erase_size) -
2036 (from / card->erase_size)) + 1;
2037
2038 if (!mmc_card_blockaddr(card)) {
2039 from <<= 9;
2040 to <<= 9;
2041 }
2042
dfe86cba
AH
2043 if (mmc_card_sd(card))
2044 cmd.opcode = SD_ERASE_WR_BLK_START;
2045 else
2046 cmd.opcode = MMC_ERASE_GROUP_START;
2047 cmd.arg = from;
2048 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2049 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2050 if (err) {
a3c76eb9 2051 pr_err("mmc_erase: group start error %d, "
dfe86cba 2052 "status %#x\n", err, cmd.resp[0]);
67716327 2053 err = -EIO;
dfe86cba
AH
2054 goto out;
2055 }
2056
2057 memset(&cmd, 0, sizeof(struct mmc_command));
2058 if (mmc_card_sd(card))
2059 cmd.opcode = SD_ERASE_WR_BLK_END;
2060 else
2061 cmd.opcode = MMC_ERASE_GROUP_END;
2062 cmd.arg = to;
2063 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2064 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2065 if (err) {
a3c76eb9 2066 pr_err("mmc_erase: group end error %d, status %#x\n",
dfe86cba 2067 err, cmd.resp[0]);
67716327 2068 err = -EIO;
dfe86cba
AH
2069 goto out;
2070 }
2071
2072 memset(&cmd, 0, sizeof(struct mmc_command));
2073 cmd.opcode = MMC_ERASE;
2074 cmd.arg = arg;
2075 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1d4d7744 2076 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
dfe86cba
AH
2077 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2078 if (err) {
a3c76eb9 2079 pr_err("mmc_erase: erase error %d, status %#x\n",
dfe86cba
AH
2080 err, cmd.resp[0]);
2081 err = -EIO;
2082 goto out;
2083 }
2084
2085 if (mmc_host_is_spi(card->host))
2086 goto out;
2087
8fee476b 2088 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
dfe86cba
AH
2089 do {
2090 memset(&cmd, 0, sizeof(struct mmc_command));
2091 cmd.opcode = MMC_SEND_STATUS;
2092 cmd.arg = card->rca << 16;
2093 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2094 /* Do not retry else we can't see errors */
2095 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2096 if (err || (cmd.resp[0] & 0xFDF92000)) {
a3c76eb9 2097 pr_err("error %d requesting status %#x\n",
dfe86cba
AH
2098 err, cmd.resp[0]);
2099 err = -EIO;
2100 goto out;
2101 }
8fee476b
TR
2102
2103 /* Timeout if the device never becomes ready for data and
2104 * never leaves the program state.
2105 */
2106 if (time_after(jiffies, timeout)) {
2107 pr_err("%s: Card stuck in programming state! %s\n",
2108 mmc_hostname(card->host), __func__);
2109 err = -EIO;
2110 goto out;
2111 }
2112
dfe86cba 2113 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
8fee476b 2114 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
dfe86cba 2115out:
8f11d106 2116 mmc_retune_release(card->host);
dfe86cba
AH
2117 return err;
2118}
2119
2120/**
2121 * mmc_erase - erase sectors.
2122 * @card: card to erase
2123 * @from: first sector to erase
2124 * @nr: number of sectors to erase
2125 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2126 *
2127 * Caller must claim host before calling this function.
2128 */
2129int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2130 unsigned int arg)
2131{
2132 unsigned int rem, to = from + nr;
2133
2134 if (!(card->host->caps & MMC_CAP_ERASE) ||
2135 !(card->csd.cmdclass & CCC_ERASE))
2136 return -EOPNOTSUPP;
2137
2138 if (!card->erase_size)
2139 return -EOPNOTSUPP;
2140
2141 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2142 return -EOPNOTSUPP;
2143
2144 if ((arg & MMC_SECURE_ARGS) &&
2145 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2146 return -EOPNOTSUPP;
2147
2148 if ((arg & MMC_TRIM_ARGS) &&
2149 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2150 return -EOPNOTSUPP;
2151
2152 if (arg == MMC_SECURE_ERASE_ARG) {
2153 if (from % card->erase_size || nr % card->erase_size)
2154 return -EINVAL;
2155 }
2156
2157 if (arg == MMC_ERASE_ARG) {
2158 rem = from % card->erase_size;
2159 if (rem) {
2160 rem = card->erase_size - rem;
2161 from += rem;
2162 if (nr > rem)
2163 nr -= rem;
2164 else
2165 return 0;
2166 }
2167 rem = nr % card->erase_size;
2168 if (rem)
2169 nr -= rem;
2170 }
2171
2172 if (nr == 0)
2173 return 0;
2174
2175 to = from + nr;
2176
2177 if (to <= from)
2178 return -EINVAL;
2179
2180 /* 'from' and 'to' are inclusive */
2181 to -= 1;
2182
2183 return mmc_do_erase(card, from, to, arg);
2184}
2185EXPORT_SYMBOL(mmc_erase);
2186
2187int mmc_can_erase(struct mmc_card *card)
2188{
2189 if ((card->host->caps & MMC_CAP_ERASE) &&
2190 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2191 return 1;
2192 return 0;
2193}
2194EXPORT_SYMBOL(mmc_can_erase);
2195
2196int mmc_can_trim(struct mmc_card *card)
2197{
2198 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2199 return 1;
2200 return 0;
2201}
2202EXPORT_SYMBOL(mmc_can_trim);
2203
b3bf9153
KP
2204int mmc_can_discard(struct mmc_card *card)
2205{
2206 /*
2207 * As there's no way to detect the discard support bit at v4.5
2208 * use the s/w feature support filed.
2209 */
2210 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2211 return 1;
2212 return 0;
2213}
2214EXPORT_SYMBOL(mmc_can_discard);
2215
d9ddd629
KP
2216int mmc_can_sanitize(struct mmc_card *card)
2217{
28302812
AH
2218 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2219 return 0;
d9ddd629
KP
2220 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2221 return 1;
2222 return 0;
2223}
2224EXPORT_SYMBOL(mmc_can_sanitize);
2225
dfe86cba
AH
2226int mmc_can_secure_erase_trim(struct mmc_card *card)
2227{
5204d00f
LC
2228 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2229 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
dfe86cba
AH
2230 return 1;
2231 return 0;
2232}
2233EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2234
2235int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2236 unsigned int nr)
2237{
2238 if (!card->erase_size)
2239 return 0;
2240 if (from % card->erase_size || nr % card->erase_size)
2241 return 0;
2242 return 1;
2243}
2244EXPORT_SYMBOL(mmc_erase_group_aligned);
1da177e4 2245
e056a1b5
AH
2246static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2247 unsigned int arg)
2248{
2249 struct mmc_host *host = card->host;
2250 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2251 unsigned int last_timeout = 0;
2252
2253 if (card->erase_shift)
2254 max_qty = UINT_MAX >> card->erase_shift;
2255 else if (mmc_card_sd(card))
2256 max_qty = UINT_MAX;
2257 else
2258 max_qty = UINT_MAX / card->erase_size;
2259
2260 /* Find the largest qty with an OK timeout */
2261 do {
2262 y = 0;
2263 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2264 timeout = mmc_erase_timeout(card, arg, qty + x);
68eb80e0 2265 if (timeout > host->max_busy_timeout)
e056a1b5
AH
2266 break;
2267 if (timeout < last_timeout)
2268 break;
2269 last_timeout = timeout;
2270 y = x;
2271 }
2272 qty += y;
2273 } while (y);
2274
2275 if (!qty)
2276 return 0;
2277
2278 if (qty == 1)
2279 return 1;
2280
2281 /* Convert qty to sectors */
2282 if (card->erase_shift)
2283 max_discard = --qty << card->erase_shift;
2284 else if (mmc_card_sd(card))
2285 max_discard = qty;
2286 else
2287 max_discard = --qty * card->erase_size;
2288
2289 return max_discard;
2290}
2291
2292unsigned int mmc_calc_max_discard(struct mmc_card *card)
2293{
2294 struct mmc_host *host = card->host;
2295 unsigned int max_discard, max_trim;
2296
68eb80e0 2297 if (!host->max_busy_timeout)
e056a1b5
AH
2298 return UINT_MAX;
2299
2300 /*
2301 * Without erase_group_def set, MMC erase timeout depends on clock
2302 * frequence which can change. In that case, the best choice is
2303 * just the preferred erase size.
2304 */
2305 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2306 return card->pref_erase;
2307
2308 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2309 if (mmc_can_trim(card)) {
2310 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2311 if (max_trim < max_discard)
2312 max_discard = max_trim;
2313 } else if (max_discard < card->erase_size) {
2314 max_discard = 0;
2315 }
2316 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
68eb80e0 2317 mmc_hostname(host), max_discard, host->max_busy_timeout);
e056a1b5
AH
2318 return max_discard;
2319}
2320EXPORT_SYMBOL(mmc_calc_max_discard);
2321
0f8d8ea6
AH
2322int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2323{
1278dba1 2324 struct mmc_command cmd = {0};
0f8d8ea6 2325
cdc99179 2326 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
0f8d8ea6
AH
2327 return 0;
2328
0f8d8ea6
AH
2329 cmd.opcode = MMC_SET_BLOCKLEN;
2330 cmd.arg = blocklen;
2331 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2332 return mmc_wait_for_cmd(card->host, &cmd, 5);
2333}
2334EXPORT_SYMBOL(mmc_set_blocklen);
2335
67c79db8
LP
2336int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2337 bool is_rel_write)
2338{
2339 struct mmc_command cmd = {0};
2340
2341 cmd.opcode = MMC_SET_BLOCK_COUNT;
2342 cmd.arg = blockcount & 0x0000FFFF;
2343 if (is_rel_write)
2344 cmd.arg |= 1 << 31;
2345 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2346 return mmc_wait_for_cmd(card->host, &cmd, 5);
2347}
2348EXPORT_SYMBOL(mmc_set_blockcount);
2349
b2499518
AH
2350static void mmc_hw_reset_for_init(struct mmc_host *host)
2351{
2352 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2353 return;
2354 mmc_host_clk_hold(host);
2355 host->ops->hw_reset(host);
2356 mmc_host_clk_release(host);
2357}
2358
83533ab2 2359int mmc_hw_reset(struct mmc_host *host)
b2499518 2360{
f855a371 2361 int ret;
b2499518 2362
f855a371 2363 if (!host->card)
b2499518
AH
2364 return -EINVAL;
2365
f855a371
JR
2366 mmc_bus_get(host);
2367 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2368 mmc_bus_put(host);
b2499518 2369 return -EOPNOTSUPP;
b2499518
AH
2370 }
2371
f855a371
JR
2372 ret = host->bus_ops->reset(host);
2373 mmc_bus_put(host);
b2499518 2374
0250fdf2
AH
2375 if (ret != -EOPNOTSUPP)
2376 pr_warn("%s: tried to reset card\n", mmc_hostname(host));
b2499518 2377
f855a371 2378 return ret;
b2499518 2379}
b2499518
AH
2380EXPORT_SYMBOL(mmc_hw_reset);
2381
807e8e40
AR
2382static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2383{
2384 host->f_init = freq;
2385
2386#ifdef CONFIG_MMC_DEBUG
2387 pr_info("%s: %s: trying to init card at %u Hz\n",
2388 mmc_hostname(host), __func__, host->f_init);
2389#endif
4a065193 2390 mmc_power_up(host, host->ocr_avail);
2f94e55a 2391
b2499518
AH
2392 /*
2393 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2394 * do a hardware reset if possible.
2395 */
2396 mmc_hw_reset_for_init(host);
2397
2f94e55a
PR
2398 /*
2399 * sdio_reset sends CMD52 to reset card. Since we do not know
2400 * if the card is being re-initialized, just send it. CMD52
2401 * should be ignored by SD/eMMC cards.
2402 */
807e8e40
AR
2403 sdio_reset(host);
2404 mmc_go_idle(host);
2405
2406 mmc_send_if_cond(host, host->ocr_avail);
2407
2408 /* Order's important: probe SDIO, then SD, then MMC */
2409 if (!mmc_attach_sdio(host))
2410 return 0;
2411 if (!mmc_attach_sd(host))
2412 return 0;
2413 if (!mmc_attach_mmc(host))
2414 return 0;
2415
2416 mmc_power_off(host);
2417 return -EIO;
2418}
2419
d3049504
AH
2420int _mmc_detect_card_removed(struct mmc_host *host)
2421{
2422 int ret;
2423
5601aaf7 2424 if (host->caps & MMC_CAP_NONREMOVABLE)
d3049504
AH
2425 return 0;
2426
2427 if (!host->card || mmc_card_removed(host->card))
2428 return 1;
2429
2430 ret = host->bus_ops->alive(host);
1450734e
KL
2431
2432 /*
2433 * Card detect status and alive check may be out of sync if card is
2434 * removed slowly, when card detect switch changes while card/slot
2435 * pads are still contacted in hardware (refer to "SD Card Mechanical
2436 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2437 * detect work 200ms later for this case.
2438 */
2439 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2440 mmc_detect_change(host, msecs_to_jiffies(200));
2441 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2442 }
2443
d3049504
AH
2444 if (ret) {
2445 mmc_card_set_removed(host->card);
2446 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2447 }
2448
2449 return ret;
2450}
2451
2452int mmc_detect_card_removed(struct mmc_host *host)
2453{
2454 struct mmc_card *card = host->card;
f0cc9cf9 2455 int ret;
d3049504
AH
2456
2457 WARN_ON(!host->claimed);
f0cc9cf9
UH
2458
2459 if (!card)
2460 return 1;
2461
2462 ret = mmc_card_removed(card);
d3049504
AH
2463 /*
2464 * The card will be considered unchanged unless we have been asked to
2465 * detect a change or host requires polling to provide card detection.
2466 */
b6891679 2467 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
f0cc9cf9 2468 return ret;
d3049504
AH
2469
2470 host->detect_change = 0;
f0cc9cf9
UH
2471 if (!ret) {
2472 ret = _mmc_detect_card_removed(host);
b6891679 2473 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
f0cc9cf9
UH
2474 /*
2475 * Schedule a detect work as soon as possible to let a
2476 * rescan handle the card removal.
2477 */
2478 cancel_delayed_work(&host->detect);
bbd43682 2479 _mmc_detect_change(host, 0, false);
f0cc9cf9
UH
2480 }
2481 }
d3049504 2482
f0cc9cf9 2483 return ret;
d3049504
AH
2484}
2485EXPORT_SYMBOL(mmc_detect_card_removed);
2486
b93931a6 2487void mmc_rescan(struct work_struct *work)
1da177e4 2488{
c4028958
DH
2489 struct mmc_host *host =
2490 container_of(work, struct mmc_host, detect.work);
88ae8b86 2491 int i;
4c2ef25f 2492
fa372a51
MM
2493 if (host->trigger_card_event && host->ops->card_event) {
2494 host->ops->card_event(host);
2495 host->trigger_card_event = false;
2496 }
2497
807e8e40 2498 if (host->rescan_disable)
4c2ef25f 2499 return;
1da177e4 2500
3339d1e3
JR
2501 /* If there is a non-removable card registered, only scan once */
2502 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2503 return;
2504 host->rescan_entered = 1;
2505
7ea239d9 2506 mmc_bus_get(host);
b855885e 2507
30201e7f
OBC
2508 /*
2509 * if there is a _removable_ card registered, check whether it is
2510 * still present
2511 */
5601aaf7 2512 if (host->bus_ops && !host->bus_dead
bad3baba 2513 && !(host->caps & MMC_CAP_NONREMOVABLE))
94d89efb
JS
2514 host->bus_ops->detect(host);
2515
d3049504
AH
2516 host->detect_change = 0;
2517
c5841798
CB
2518 /*
2519 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2520 * the card is no longer present.
2521 */
94d89efb 2522 mmc_bus_put(host);
94d89efb
JS
2523 mmc_bus_get(host);
2524
2525 /* if there still is a card present, stop here */
2526 if (host->bus_ops != NULL) {
7ea239d9 2527 mmc_bus_put(host);
94d89efb
JS
2528 goto out;
2529 }
1da177e4 2530
94d89efb
JS
2531 /*
2532 * Only we can add a new handler, so it's safe to
2533 * release the lock here.
2534 */
2535 mmc_bus_put(host);
1da177e4 2536
c1b55bfc
SH
2537 if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2538 host->ops->get_cd(host) == 0) {
fa550189
UH
2539 mmc_claim_host(host);
2540 mmc_power_off(host);
2541 mmc_release_host(host);
94d89efb 2542 goto out;
fa550189 2543 }
1da177e4 2544
807e8e40 2545 mmc_claim_host(host);
88ae8b86 2546 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
807e8e40
AR
2547 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2548 break;
06b2233a 2549 if (freqs[i] <= host->f_min)
807e8e40 2550 break;
88ae8b86 2551 }
807e8e40
AR
2552 mmc_release_host(host);
2553
2554 out:
28f52482
AV
2555 if (host->caps & MMC_CAP_NEEDS_POLL)
2556 mmc_schedule_delayed_work(&host->detect, HZ);
1da177e4
LT
2557}
2558
b93931a6 2559void mmc_start_host(struct mmc_host *host)
1da177e4 2560{
fa550189 2561 host->f_init = max(freqs[0], host->f_min);
d9adcc12 2562 host->rescan_disable = 0;
8af465db 2563 host->ios.power_mode = MMC_POWER_UNDEFINED;
a08b17be
AH
2564 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2565 mmc_power_off(host);
2566 else
4a065193 2567 mmc_power_up(host, host->ocr_avail);
740a221e 2568 mmc_gpiod_request_cd_irq(host);
bbd43682 2569 _mmc_detect_change(host, 0, false);
1da177e4
LT
2570}
2571
b93931a6 2572void mmc_stop_host(struct mmc_host *host)
1da177e4 2573{
3b91e550 2574#ifdef CONFIG_MMC_DEBUG
1efd48b3
PO
2575 unsigned long flags;
2576 spin_lock_irqsave(&host->lock, flags);
3b91e550 2577 host->removed = 1;
1efd48b3 2578 spin_unlock_irqrestore(&host->lock, flags);
3b91e550 2579#endif
740a221e
AH
2580 if (host->slot.cd_irq >= 0)
2581 disable_irq(host->slot.cd_irq);
3b91e550 2582
d9adcc12 2583 host->rescan_disable = 1;
d9bcbf34 2584 cancel_delayed_work_sync(&host->detect);
3b91e550
PO
2585 mmc_flush_scheduled_work();
2586
da68c4eb
NP
2587 /* clear pm flags now and let card drivers set them as needed */
2588 host->pm_flags = 0;
2589
7ea239d9
PO
2590 mmc_bus_get(host);
2591 if (host->bus_ops && !host->bus_dead) {
0db13fc2 2592 /* Calling bus_ops->remove() with a claimed host can deadlock */
58a8a4a1 2593 host->bus_ops->remove(host);
7ea239d9
PO
2594 mmc_claim_host(host);
2595 mmc_detach_bus(host);
7f7e4129 2596 mmc_power_off(host);
7ea239d9 2597 mmc_release_host(host);
53509f0f
DK
2598 mmc_bus_put(host);
2599 return;
1da177e4 2600 }
7ea239d9
PO
2601 mmc_bus_put(host);
2602
2603 BUG_ON(host->card);
1da177e4
LT
2604
2605 mmc_power_off(host);
2606}
2607
12ae637f 2608int mmc_power_save_host(struct mmc_host *host)
eae1aeee 2609{
12ae637f
OBC
2610 int ret = 0;
2611
bb9cab94
DD
2612#ifdef CONFIG_MMC_DEBUG
2613 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2614#endif
2615
eae1aeee
AH
2616 mmc_bus_get(host);
2617
5601aaf7 2618 if (!host->bus_ops || host->bus_dead) {
eae1aeee 2619 mmc_bus_put(host);
12ae637f 2620 return -EINVAL;
eae1aeee
AH
2621 }
2622
2623 if (host->bus_ops->power_save)
12ae637f 2624 ret = host->bus_ops->power_save(host);
eae1aeee
AH
2625
2626 mmc_bus_put(host);
2627
2628 mmc_power_off(host);
12ae637f
OBC
2629
2630 return ret;
eae1aeee
AH
2631}
2632EXPORT_SYMBOL(mmc_power_save_host);
2633
12ae637f 2634int mmc_power_restore_host(struct mmc_host *host)
eae1aeee 2635{
12ae637f
OBC
2636 int ret;
2637
bb9cab94
DD
2638#ifdef CONFIG_MMC_DEBUG
2639 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2640#endif
2641
eae1aeee
AH
2642 mmc_bus_get(host);
2643
5601aaf7 2644 if (!host->bus_ops || host->bus_dead) {
eae1aeee 2645 mmc_bus_put(host);
12ae637f 2646 return -EINVAL;
eae1aeee
AH
2647 }
2648
69041150 2649 mmc_power_up(host, host->card->ocr);
12ae637f 2650 ret = host->bus_ops->power_restore(host);
eae1aeee
AH
2651
2652 mmc_bus_put(host);
12ae637f
OBC
2653
2654 return ret;
eae1aeee
AH
2655}
2656EXPORT_SYMBOL(mmc_power_restore_host);
2657
881d1c25
SJ
2658/*
2659 * Flush the cache to the non-volatile storage.
2660 */
2661int mmc_flush_cache(struct mmc_card *card)
2662{
881d1c25
SJ
2663 int err = 0;
2664
881d1c25
SJ
2665 if (mmc_card_mmc(card) &&
2666 (card->ext_csd.cache_size > 0) &&
2667 (card->ext_csd.cache_ctrl & 1)) {
2668 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2669 EXT_CSD_FLUSH_CACHE, 1, 0);
2670 if (err)
2671 pr_err("%s: cache flush error %d\n",
2672 mmc_hostname(card->host), err);
2673 }
2674
2675 return err;
2676}
2677EXPORT_SYMBOL(mmc_flush_cache);
2678
1da177e4
LT
2679#ifdef CONFIG_PM
2680
4c2ef25f
ML
2681/* Do the card removal on suspend if card is assumed removeable
2682 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2683 to sync the card.
2684*/
2685int mmc_pm_notify(struct notifier_block *notify_block,
2686 unsigned long mode, void *unused)
2687{
2688 struct mmc_host *host = container_of(
2689 notify_block, struct mmc_host, pm_notify);
2690 unsigned long flags;
810caddb 2691 int err = 0;
4c2ef25f
ML
2692
2693 switch (mode) {
2694 case PM_HIBERNATION_PREPARE:
2695 case PM_SUSPEND_PREPARE:
184af16b 2696 case PM_RESTORE_PREPARE:
4c2ef25f
ML
2697 spin_lock_irqsave(&host->lock, flags);
2698 host->rescan_disable = 1;
2699 spin_unlock_irqrestore(&host->lock, flags);
2700 cancel_delayed_work_sync(&host->detect);
2701
810caddb
UH
2702 if (!host->bus_ops)
2703 break;
2704
2705 /* Validate prerequisites for suspend */
2706 if (host->bus_ops->pre_suspend)
2707 err = host->bus_ops->pre_suspend(host);
5601aaf7 2708 if (!err)
4c2ef25f
ML
2709 break;
2710
0db13fc2 2711 /* Calling bus_ops->remove() with a claimed host can deadlock */
58a8a4a1 2712 host->bus_ops->remove(host);
0db13fc2 2713 mmc_claim_host(host);
4c2ef25f 2714 mmc_detach_bus(host);
7f7e4129 2715 mmc_power_off(host);
4c2ef25f
ML
2716 mmc_release_host(host);
2717 host->pm_flags = 0;
2718 break;
2719
2720 case PM_POST_SUSPEND:
2721 case PM_POST_HIBERNATION:
274476f8 2722 case PM_POST_RESTORE:
4c2ef25f
ML
2723
2724 spin_lock_irqsave(&host->lock, flags);
2725 host->rescan_disable = 0;
2726 spin_unlock_irqrestore(&host->lock, flags);
bbd43682 2727 _mmc_detect_change(host, 0, false);
4c2ef25f
ML
2728
2729 }
2730
2731 return 0;
2732}
1da177e4
LT
2733#endif
2734
2220eedf
KD
2735/**
2736 * mmc_init_context_info() - init synchronization context
2737 * @host: mmc host
2738 *
2739 * Init struct context_info needed to implement asynchronous
2740 * request mechanism, used by mmc core, host driver and mmc requests
2741 * supplier.
2742 */
2743void mmc_init_context_info(struct mmc_host *host)
2744{
2745 spin_lock_init(&host->context_info.lock);
2746 host->context_info.is_new_req = false;
2747 host->context_info.is_done_rcv = false;
2748 host->context_info.is_waiting_last_req = false;
2749 init_waitqueue_head(&host->context_info.wait);
2750}
2751
ffce2e7e
PO
2752static int __init mmc_init(void)
2753{
2754 int ret;
2755
0d9ee5b2 2756 workqueue = alloc_ordered_workqueue("kmmcd", 0);
ffce2e7e
PO
2757 if (!workqueue)
2758 return -ENOMEM;
2759
2760 ret = mmc_register_bus();
e29a7d73
PO
2761 if (ret)
2762 goto destroy_workqueue;
2763
2764 ret = mmc_register_host_class();
2765 if (ret)
2766 goto unregister_bus;
2767
2768 ret = sdio_register_bus();
2769 if (ret)
2770 goto unregister_host_class;
2771
2772 return 0;
2773
2774unregister_host_class:
2775 mmc_unregister_host_class();
2776unregister_bus:
2777 mmc_unregister_bus();
2778destroy_workqueue:
2779 destroy_workqueue(workqueue);
2780
ffce2e7e
PO
2781 return ret;
2782}
2783
2784static void __exit mmc_exit(void)
2785{
e29a7d73 2786 sdio_unregister_bus();
ffce2e7e
PO
2787 mmc_unregister_host_class();
2788 mmc_unregister_bus();
2789 destroy_workqueue(workqueue);
2790}
2791
26074962 2792subsys_initcall(mmc_init);
ffce2e7e
PO
2793module_exit(mmc_exit);
2794
1da177e4 2795MODULE_LICENSE("GPL");
This page took 0.904968 seconds and 5 git commands to generate.